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Abstract

In this work, control techniques for the autonomous navigation and landing of an Un-

manned Aerial Vehicle (UAV) are developed and compared. Controllers were developed

and implemented on two different aircraft models: the Lockheed-Martin F-16 and AAI

Corporation/Israel Aircraft Industries RQ-2 Pioneer. Due to the expense of modify-

ing the pre-existing F-16 flight control system, the controller is implemented outside

of the closed loop. Proportional-integral-derivative and proportional-integral controllers

are developed for holding the aircraft at a desired velocity and altitude. The aircraft

are approximated as Dubins vehicles constrained to travel on a two-dimensional surface

for decreased simulation time. Using the simplified model two control techniques are

developed and then compared. The first uses a proportional feedback controller based

on the Rhumb-line that the aircraft is traveling along. The second control technique

uses a trajectory determined from an algorithm using the Dubins path determination for

the shortest travel distance between two points. A sliding mode controller is developed

to guide the simplified model along the Dubins path trajectory. The advantage of the

Dubins path trajectory is that it allows for a closed-form time estimate to reach the de-

sired way-point. Comparison between the two navigation techniques using the simplified

system shows a significant decrease in time to way-point for the Dubins curve trajectory

controller. The Rhumb-line controller and a hybrid Rhumb-line/Dubins path controller

are implemented on nonlinear models of both aircraft. Simulation of both controllers on

the nonlinear model shows acceptable performance in guiding the aircraft between way-

points. Also, the time to way-point for the nonlinear aircraft model guided by the hybrid

controller is within 5% of the closed-form Dubins trajectory estimate. Autonomous land-

ing is accomplished utilizing the path guidance and altitude controllers. The nonlinear

simulated aircraft successfully followed the glideslope from way-point to runway.
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Chapter 1

Introduction

1.1 Unmanned Aerial Vehicles

Unmanned aerial systems (UAS), which includes unmanned aerial vehicles (UAVs), are

an area of great interest to the United States (US) government. A document released

recently by the US Air Force (USAF) Intelligence, Surveillance and Reconnaissance di-

vision lays out the goals for UAS research and development for the year 2009 through

2047. UAS have seen significant growth in operations in the past six years. Figure 1.1

shows a 660% increase in use of two USAF UAVs, the MQ-1 Predator and MQ-9 Reaper,

in the past six years. Also included in the USAF document are future plans for UAS

research and development, which include a push towards decreasing the amount of pi-

lot interaction. This movement affects the entire range of air vehicles: from micro-air

vehicles to large transport aircraft [1].

The importance of decision making in UAVs was outlined by Clough in 2001 [2]. It

was his belief that UAVs must be given a certain level of intelligence in relation to decision

making in order to achieve further autonomy. A specific example would be rather than

just following instructions given to the aircraft, the systems on board the aircraft should

be able to decide whether or not those instructions will place it in a dangerous condition.

Clough emphasized this point, quoting figures that stated 42% of UAV failures could

be attributed to human error. Also important is the ability of UAV systems to relay

information in a form that the human operator can understand. These improvements

will lead to aircraft where the human role becomes closer to that of a supervisor instead

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: MQ-1 Predator and MQ-9 Reaper Combat Air Patrols [1].

of an operator.

The goal of this work is to develop and implement fully autonomous navigation and

landing control on two aircraft: the Lockheed-Martin F-16 and the AAI/Israel Aircraft

Industries RQ-2 Pioneer. Both will require different approaches as the F-16 is a high-

performance fighter jet, originally designed to have a human pilot on-board, while the

Pioneer was designed as a drone surveillance UAV. In the case of the F-16, the internal

flight controls will not be modified, as validation required for changes to the internal

flight code can be cost prohibitive. Redling provided support for this notion in 2001. In

the case of a fighter jet that is inherently unstable and requires a control system in order

for a pilot to operate the aircraft, Redling states that the control system should not be

modified and autonomous control be completed through supplemental electronics [3].

Because the on-board control system and sensors will be used in controlling the F-

16 aircraft, the proposed work intends to utilize real-time Global Positioning System

(GPS) measurements in tracking location. Wang et. al. discussed the use of GPS in

the navigation of pilotless aircraft. GPS is able to provide a higher level of accuracy

over long distances and also faster response time compared to traditional positioning
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methods. Radio signals and telemetering are not as accurate as GPS and they also have

a much smaller effective range. The authors strongly recommend against a strictly time-

dependant trajectory, as external disturbances such as wind will push the aircraft off

course. A recommended method is to determine a GPS-based course for the aircraft and

determine the error signal between actual and desired position in real-time. The error

signal should then be sent to a flight computer that decides how to return the aircraft

to the course [4].

Issues with GPS resolution in relation to altitude were also found in the literature.

Baird and Snyder stated that although GPS provides a high-resolution for absolute po-

sition, it is not able to account for changes in local relative altitude. Safe operation

at very low altitudes can be compromised because of this. A mathematical model was

developed to apply the Sandia Inertial Terrain-Aided Navigation algorithm to correlate

inertial navigation and radar altimeter data. The range of accuracy that the authors

were striving for was in the range of 1-2 feet [5]. This methodology was validated by

Snyder et. al., who tested the accuracy of a GPS and inertial navigation system with

supplemental radar altimeter data. Using a laser tracking system as a basis, the altitude

error was reduced to a maximum of 2 feet from a previous maximum of 14 feet [6].

1.2 Dubin’s Path Generation

The work of L.E. Dubins provided a basis for current theory regarding two-dimensionsal

trajectory determination. His work provided a method for determining a series of seg-

ments, including curved and straight, that represented the shortest path from an initial

point with a prescribed heading angle to a final way-point, also with a desired heading

angle [7].

The method proposed by Dubins works well, however it is computationally intensive

to determine and compare the resulting paths. Shkel and Lumelsky, in 2001, proposed

a method of significantly decreasing the computation time for selecting the appropriate

path set by using equivalence groups. Based on the initial and final heading angles and

the orientation of the initial and final points, the desired trajectory can be classified

and the path motions chosen from a predetermined set [8]. This method has become

increasingly popular in two-dimensional robotics applications. Jeyaraman et. al applied
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this method to determine appropriate paths for a group of UAVs [9].

The use of the Dubins aircraft model is also quite common in the literature for

simulation of an aircraft traveling along a two-dimensional surface. This model is also

known as a Dubins car or unicycle model depending on the application that it is used in.

For the purposes of this work, the model will be referred to as a Dubins simplified model

or Dubins aircraft model. Equation 1.1 gives the general form of the Dubins simplified

model, where v is velocity, ψ heading angle and u the vehicle’s turning rate.





ẋ

ẏ

ψ̇




=





v cos ψ

v sin ψ

u




(1.1)

The Dubins vehicle model frequently appears in solutions for time-optimal and op-

timal control scenarios. A set of formulas was derived by Tang et. al. for calculating

feedback control steering. The optimal control law developed provided for guiding a Du-

bins vehicle along the shortest path problem [10]. Balluchi et. al. examined the stability

and robustness of applying optimal control to a Dubins vehicle. The turning radius was

constrained and the vehicle could only travel in the forward direction. The resulting

controller was robust against noise in state measurements and also structurally stable

with respect to modeling errors [11]. Chitsaz and LaValle expanded on the simplified

Dubins vehicle model by also adding altitude. Components of paths were examined to

allow an aircraft to reach the desired way-point, heading and altitude. These components

of paths are intended to be used in a library of paths that a navigation controller can

select from to piece together for a time-optimal trajectory [12].

Bhatia et. al. developed a system to implement the Dubins path on UAVs utilizing

commercially available autopilot systems. The autopilot system selected provided for

way-point navigation as well as altitude, airspeed and turning rate holds. Inputs for roll

and airspeed were determined from the desired trajectory and a control law including

saturation for physical limitations was developed. Software in-loop simulations were run

to verify the control law tracking. The commercial autopilot systems provided acceptable

tracking and time to reach way-point and the authors intend to implement the control

system on the UAV and autopilot hardware for further performance evaluation [13].
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1.3 Autonomous Landing

The subject of autonomous landing has also received attention in the literature. Yaki-

menko and Kaminer presented mathematical techniques for computing landing trajectory

in real-time as well as tracking the desired trajectory with respect to uncertainties and

disturbances. Using a simplified aircraft model, they provided for a solution to landing

approach trajectory determination. The paper also stresses the need for optimal tra-

jectories to be determined in real-time, as most other techniques compute trajectories

offline. The technique developed determines the trajectory and then inverts the simpli-

fied aircraft model dynamics in order to determine the required bank angle and normal

load factor projection [14]. The difficulty in applying this method to the proposed work

would be in determining control surface commands on a far more complicated model in

real-time.

Shaoyan and Zongji provided a theoretical model example for a landing control system

applied to a combat air vehicle. The requirements imposed on their aircraft are to follow

the landing track, precise longitudinal and lateral positioning, aircraft response to wind

gusts and the ability to handle failures in the system. Robust control methods were used

to address these issues, and a weighting matrix was introduced to compare an ideal model

to inputs from the aircraft and make appropriate corrections from there. The speed and

altitude commands were decoupled in their model, as a change in one was found to have

little influence on another. The simulated aircraft was able to return to a constant state

with a wind gust disturbance introduced [15].

The topic of autonomous landing was also explored by Pashilkar et. al. A neural-aided

controller was chosen due to the significant advantages that such controllers have over

classical gain controllers when failures are introduced into the system. Control laws for a

high-performance fighter aircraft were designed using classical gain methods, a Baseline

Trajectory Following Controller (BTFC) and a neural-aided BTFC. The BTFC controller

was found to meet the landing requirements only for small stuck aileron deflections. The

neural controller, however, was able to meet landing requirements for much larger stuck

aileron and elevator deflections [16].
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1.4 Overview and Motivation for Present Work

The original scope of this work involved developing and simulating an autonomous nav-

igation and landing controller on a Lockheed-Martin F-16 aircraft. Due to the cost

associated with modifying the internal flight control code already on the aircraft, a con-

troller that is “outside-the-loop” was proposed. During the completion of this task, a

project related to developing a way-point to way-point navigation system that could also

estimate the time to reach the final destination on the RQ-2 Pioneer became available. It

was decided that the RQ-2 Pioneer navigation controller should follow a similar approach

as that developed for the F-16.

The majority of the work is completed in MATLAB and Simulink utilizing nonlinear

aircraft models. Due to the computation time involved in simulating these models,

a simplified model was proposed to decrease the time for navigation control system

development and subsequent analysis.

The resulting control architecture will be implemented in MATLAB and Simulink

utilizing non-linear aircraft models that are known to be accurate. A description of the

requirements is below:

1. Develop an autonomous navigation and landing controller for a Lockheed-Martin

F-16 combat aircraft.

2. Develop a method to simplify the RQ-2 Pioneer aircraft model for decreased com-

putation time.

3. Develop a controller to guide aircraft from initial way-point to final desired way-

point with required heading angle. An accurate estimation of time to way-point is

also required.

4. Implement improved control technique on nonlinear RQ-2 Pioneer aircraft model.



Chapter 2

Aircraft Model

2.1 Nonlinear Model

2.1.1 Rigid Body Equations

A nonlinear model was developed for three-dimensional simulations of the aircraft. The

model will be used in control system development and also to verify the implementation

of the control system. The model was built utilizing MATLAB and Simulink. Table

2.1.1 displays a list and definition of variables used in this section. Newton’s second law

is used to derive the rigid body equations of motion stating that the time rate of change

of the momentum of the body is equal to the summation of all the external forces and

the time rate change of angular momentum is equal to the summation of the external

moments acting on the body. Newton’s second law is represented by the vector equations

below [17].

∑ "F = d
dt(m"v)

∑ "M = d
dt

"H

(2.1)

In equation 2.1, "F is the net vector force on the rigid body, m the mass, "v the velocity,

"M the net moment vector and "H the angular momentum, referenced to the defined

coordinate frame. The scalar form of the above equations is given below.

7
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Table 2.1: Reference of forces, moments and rates for fixed aircraft body axis system.

Roll Axis xb Pitch Axis yb Yaw Axis zb

Aerodynamic force components X Y Z

Aerodynamic moment components L M N

Angular rates p q r

Velocity components u v w

Moment of inertia (about axis) Ixx Iyy Izz

Products of inertia Iyz Ixz Ixy

Fx = d
dt(mu) Fy = d

dt(mv) Fz = d
dt(mw)

L = d
dtHx M = d

dtHy N = d
dtHz

(2.2)

The force components along the x, y and z axes are represented by Fx, Fy and Fz

while the velocity components are represented by u, v and w, respectively. The moment

components along the x, y and z axes are represented by L, M and N while the moment

of momentum components are represented by Hx, Hy and Hz respectively.

Considering the individual differential mass elements of the aircraft, Newton’s second

law can be written as below where "vc is the velocity of the aircraft’s center of mass, d"r/dt

is the relative velocity of an element to the center of mass, and δm is an element of mass.

∑
δ"F = "F =

d

dt

∑
(

"vc +
d"r

dt

)

δm (2.3)

Assuming that mass is constant and since "r is measured from the center of mass, the sum

of all the "rδm elements is equal to zero and Equation 2.3 can be reduced to the form in

Equation 2.4.

"F = m
d"vc

dt
(2.4)

The moment equation referring to moving center of mass for a differential element can

be derived in the same fashion and written as in Equation 2.5.
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δ "M =
d

dt
δ "H =

d

dt
("r× "v) δm (2.5)

Where "v in Equation 2.5 is equal to the expression in Equation 2.6.

"v = "vc + "ω ×"r (2.6)

Substituting Equation 2.6 into Equation 2.5 and assuming "vc to be constant yields the

moment equation given in Equation 2.7.

"H =
∑

"rδm× "vc +
∑

["r× ("ω ×"r)] δm (2.7)

Equation 2.7 can also be written as below, where p, q and r are the angular rates about

the x, y and z axes, respectively.

"H =





Ixx −Ixy −Ixz

−Ixy Iyy −Iyz

−Ixz −Iyz Izz









p

q

r




(2.8)

The matrix in Equation 2.8 is the inertia tensor for the aircraft, with the components of

the matrix as defined in Equation 2.9.

Ixx =
∫ ∫ ∫

(y2 + z2) δm Ixy =
∫ ∫ ∫

xy δm

Iyy =
∫ ∫ ∫

(x2 + z2) δm Ixz =
∫ ∫ ∫

xz δm

Izz =
∫ ∫ ∫

(x2 + y2) δm Iyz =
∫ ∫ ∫

yz δm

(2.9)

These terms represent the mass moments of inertia about each body axis and the products

of inertia. In a fixed reference frame, if the aircraft rotates these terms will vary. The axis

system is therefore fixed to the aircraft to assume the mass moments of inertia remain

constant for a given mass. The resulting equations of motion are given in Equations 2.10

and 2.11.
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"F =





Fx

Fy

Fz




=





m (u̇ + qw − rv)

m (v̇ + ru− pw)

m (ẇ + pv − qu)




= "Wref + "Faerodynamic + "Fthrust (2.10)

"M =





L

M

N




=





Ixx −Ixy −Ixz

−Ixy Iyy −Iyz

−Ixz −Iyz Izz









ṗ

q̇

ṙ




=





qr(Iyy − Izz) + (q2 − r2)Ixy − prIxy + pqIxz

pr(Izz − Ixx) + (r2 − p2)Ixz − pqIyz + qrIxy

pq(Ixx − Iyy) + (p2 − q2)Ixy − qrIxz + prIyz




+ "Mexternal

(2.11)

These equations of motion are applicable to both the F16 and RQ-2 Pioneer aircraft.

The aircraft mass and inertia tensor will vary between the two models. Aerodynamic,

gravitational and propulsive forces make up the components of force and moment that

act upon the aircraft. The factors consisting of the components of the the summation of

forces and moments are covered in Section 2.1.3.

2.1.2 Euler Kinematic Equations

In order to track the orientation of the aircraft to the Earth fixed-axis system, a standard

method for angular transformations must be used. The Euler angle rotation convention

is a standard sequence of applying rotations for aerospace applications. The rotations

are applied about the primary, secondary and tertiary axes (xb, yb, zb) in that order.

Equation 2.12 defines the transformation matrix for each of the rotations. Equation

2.13 shows how the rotation matrices are applied in order to transform rotations from
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the Earth to vehicle axis system and vice-versa, respectively.

R1 =





1 0 0

0 cos φ sin φ

0 − sin φ cos φ





R2 =





cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ





R3 =





cos ψ sin ψ 0

− sin ψ cos ψ 0

0 0 1





(2.12)

TE→V = R1 · R2 · R3

TV→E = R3 · R2 · R1

(2.13)

The transformation matrices for converting Earth fixed axis rotation rates to body axis

rotation rates (and vice-versa) are given by Equations 2.14 and 2.15. Note: in Equation

2.15, singularities in the matrix exist as pitch angle θ approaches 90 degrees. To avoid

singularities, a quaternion transformation is typically used, however it is not necessary

for this application as pitch angle should not approach 90 degrees while navigating from

way-point to way-point while holding altitude near constant.





p

q

r




=





1 0 − sin θ

0 cos φ cos θ sin φ

0 − sin φ cos θ cos φ









φ̇

θ̇

ψ̇




(2.14)





φ̇

θ̇

ψ̇




=





1 sin φ tan θ cos φ tan θ

0 cos φ − sin φ

0 sin φ sec θ cos φ sec θ









p

q

r




(2.15)
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2.1.3 Stability Axis Coordinate System

The nonlinear equations of motion for the aircraft are based in the stability axis system.

The stability axis is based around the aircraft’s true velocity, VT , which is the magnitude

of the body axis velocity components. The angle of attack, α, is defined as the pitch angle

of the aircraft relative to the oncoming wind. The sideslip angle, β, is also measured

relative to the oncoming wind. Figure 2.1 provides an illustration of α and β in relation

to the oncoming wind.

Equations 2.16 and 2.17 provide transformations from the body to stability axis

system and vice-versa, respectively.

Figure 2.1: Illustration of stability axis and aircraft body axis [18].

α = arctan w
u

β = arcsin v
VT

VT =
√

u2 + v2 + w2

(2.16)

u = VT cos α cos β

v = VT sin β

w = VT sin α cos β

(2.17)

Equation 2.18 gives the stability force equations, where DOM , Y OM and LOM are

defined by Equation 2.19. The variables D, T , Y , and L in Equation 2.19 represent the

drag, thrust, side and lift forces acting on the aircraft. The drag, side and lift forces are

assumed to act along the stability axes while thrust acts along the aircraft body axis, xb.



2.1. NONLINEAR MODEL 13

α̇ = q − (p cos α + r sin α) tan β − LOM
VT cos β+

g
VT cos β (cos θ cos φ cos α + sin θ sin α)

β̇ = p sin α− r cos α + 1
VT

(Y OM cos β + DOM sin β) +
g

VT
(cos θ sin φ cos β + sin θ sin β cos α− cos θ cos φ sin β sin α)

V̇T = Y OM sin β −DOM cos β+

g [(cos θ cos φ sin α− sin θ cos α) cos β + cos θ sin φ sin β]

(2.18)

DOM = D−T cos α
m ; Y OM = Y

m ; LOM = L+T sin α
m

(2.19)

2.1.4 Stability Derivative Equations

As stated in the previous section, the external forces and moments acting on the aircraft

are composed of aerodynamic, gravitational and thrust contributions. Equation 2.20

gives the components of the aircraft weight force, where θ is pitch angle and φ is bank

angle.

W = mg





sin θ

sin φ cos θ

cos φ cos θ




(2.20)

Equations 2.21 and 2.22 give the force and moment vectors, where q̄ is dynamic pressure

defined in equation 2.23, S is the wing reference area, c̄ the wing mean aerodynamic

chord, and b the wing span. The force and moment coefficients, denoted by a C with a

subscript, are determined by the summation of contributions to each term.

Faerodynamic =





Drag

Side

Lift




=





q̄SCD

q̄SCY

q̄SCL




(2.21)

Mexternal =





L

M

N




=





q̄SbCl

q̄Sc̄Cm

q̄SbCn




(2.22)
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q̄ =
1

2
ρ(VT )2 (2.23)

Equations 2.24 gives the components of the force and moment coefficients. The coeffi-

cients are defined by nonlinear lookup tables. Equations 2.25 and 2.26 represent linear

approximations of the nonlinear table lookup models. The variables δa, δe, δf , and δr

are the control surface deflections corresponding to the aileron, elevator, flap and rudder,

respectively.

Longitudinal Axis:

CD = f (α, δe)

CL = f (α, α̇, qb, δe, δf, VT )

Cm = f (α, α̇, qb, δe, VT )

Lateral-Directional Axis:

CY = f (β, δr)

Cl = f (α, β, pb, rb, δa, δr, VT )

Cn = f (α, β, pb, rb, δa, δr, VT )

(2.24)

CD = CD0 + CDαα + c
2VT

(
CDqq + CDα̇α̇

)
+ CDδe

δe + CDδf
δf

CY = CY0 + CYβ
β + b

2VT

(
CYpp + CYrr

)
+ CYδa

δa + CYδr
δr

CL = CL0 + CLαα + c
2VT

(
CLqq + CLα̇α̇

)
+ CLδe

δe + CLδf
δf

(2.25)

Cl = Cl0 + Clββ + b
2VT

(
Clpp + Clrr

)
+ Clδa

δa + Clδr
δr

Cm = Cm0 + Cmαα + c
2VT

(
Cmqq + Cmα̇α̇

)
+ Cmδe

δe + Cmδf
δf

Cn = Cn0 + Cnβ
β + b

2VT

(
Cnpp + Cnrr

)
+ Cnδa

δa + Cnδr
δr

(2.26)

Figure B.7 in (Appendix B.2) shows the Simulink block diagram of the general nonlinear

aircraft model.
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2.2 Aircraft Trim Conditions

Trim is defined as the lack of rotation about the aircraft’s center of gravity when not

performing flight maneuvers [17]. The trim conditions for each aircraft are given in this

section. In each case, a MATLAB R© script was generated in order to trim the aircraft.

This was done by running the nonlinear Simulink R© model of each aircraft iteratively

and varying flight parameters until the trim index (shown in Equation 2.27) was within

a specified tolerance.

trim index =
√

V̇T
2
+ α̇2 + β̇2 + ṗ2 + q̇2 + ṙ2 (2.27)

2.2.1 F-16 Trim Specifications

The F-16 was trimmed at an altitude of 2500ft with a desired airspeed of 160 knots.

The resulting values for the trim condition are included in Table 2.2.

Table 2.2: F-16 trim conditions

Altitude (ft) 2.4500000E+03

Mach 2.5273570E-01

Vcas (ft/s) 1.6006514E+02

VT (ft/s) 2.7977589E+02

α (deg) 1.0474635E+01

β (deg) −9.5515703E-31

φ (deg) 0

θ (deg) 1.0474635E+01

ψ (deg) −1.4000000E+02

2.2.2 RQ-2 Pioneer Trim Conditions

In the case of the Pioneer aircraft, two flight conditions for navigation to the desired way-

point were defined. The first was quickest time to way-point and the second minimum

fuel consumption. For the minimum fuel condition, the lift-to-drag ratio defined as L/D
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was found in order to determine most efficient airspeed to operate at. The nonlinear

model of the RQ-2 Pioneer in Simulink R© was used to determine the lift and drag forces

for the trimmed aircraft at a variety of airspeeds. The data points were then fit with a

polynomial function using the polyfit m-function in MATLAB R©. Equation 2.28 gives

the polynomial fit equation shown in Figure 2.2. The derivative of the polynomial fit

was then taken (as shown in Equation 2.29).

L

D
= −1.21404E-05V 4

T + 6.16361E-03V 3
T − 1.117114V 2

T + 98.6808VT − 3100.36 (2.28)

The roots of Equation 2.29 give the VT values where local minima and maxima of L/D

occur. The roots are shown in Equation 2.30. Ignoring the roots with imaginary compo-

nents, VT is found to be 115.294 ft/s in order to operate at maximum L/D.

d

dVT

(
L

D

)
= −4.85614E-05V 3

T + 1.84908E-02V 2
T − 2.34228VT + 98.6808 (2.29)

VT =





132.739E+02 + 2.35758i

132.739E+02− 2.35758i

115.294




ft/s (2.30)

The RQ-2 Pioneer model was then trimmed to a velocity of 115.294 ft/s. The

corresponding aircraft state values and control surface deflections are given in Table 2.3.

The trim conditions for minimum time to way-point, corresponding to a trimmed VT of

167.856 ft/s are also included in Table 2.3. Equation 2.27 was used for determining trim

conditions for both RQ-2 Pioneer cases.
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Figure 2.2: Lift/Drag versus VT curve for RQ-2 Pioneer.

Table 2.3: RQ-2 Pioneer trim conditions for fuel conservation and minimum time to

way-point.

Parameter Min. Fuel Min. Time

Altitude (ft) 5000 5000

VT (ft/s) 115.294 167.856

α (deg) 7.0000 0.16111

β (deg) 0 0

φ (deg) 0 0

θ (deg) 7.0000 0.16111

ψ (deg) 70 70

δe (deg) −2.0433 11.803

δa (deg) 0 0

δr (deg) 0 0
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2.2.3 F-16 Control Law

Outer Loop Control Law

As stated previously, the F-16 is a fly-by-wire aircraft with a pre-existing flight control

system. The control system provides stability augmentation, as the aircraft is inherently

unstable. Equation 2.31 shows the longitudinal axis A matrix for the state-space model

of the F-16 aircraft linearized at the trim conditions specified in Section 2.2.1. Equation

2.33 gives the A matrix for the lateral-directional state-space model linearized at the same

conditions. The state vectors corresponding to these matrices are given in Equations 2.32

and 2.34.

Alon =





−4.7977E-02 −5.3805E-02 −4.0941E-03 −5.6157E-01

−4.5370E-02 −4.7251E-01 9.9521E-01 0

2.2923E-03 2.3891E-01 −5.1226E-01 0

0 0 1.0000E+00 0





(2.31)

xlon =
[

VT α q θ
]T

(2.32)

Alat =





−1.7634E-01 1.8247E-01 −9.7912E-01 1.1309E-01

−1.7866E+01 −1.8552E+00 9.1787E-02 0

1.4047E+00 −4.1356E-02 −3.1466E-01 0

0 1.0000E+00 1.8488E-01 0





(2.33)

xlat =
[

β p r φ
]T

(2.34)

The eigenvalues of these matrices provide information about the stability of the linearized

aircraft at the trim condition. Tables 2.4 and 2.5 give the eigenvalues, damping ratios

and natural frequencies for Equations 2.31 and 2.33, respectively.

Note that the negative eigenvalues indicate poles in the Left Half Plane (LHP), while

positive eigenvalues indicate a pole is in the Right Half Plane (RHP). A system is con-

sidered stable if its poles are location in the LHP. The linearized F-16 aircraft at trim
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Table 2.4: Eigenvalues, damping and natural frequency for longitudinal axis F-16 state-

space model.

Eigenvalue Damping Freq. (rad/s)

1.53E-01 −1.00 1.53E-01

−9.85E-02+1.63E-01i 5.18E-01 1.90E-01

−9.85E-02−1.63E-01i 5.18E-01 1.90E-01

−9.89E-01 1.00E+00 9.89E-01

Table 2.5: Eigenvalues, damping and natural frequency for lateral-directional axis F-16

state-space model.

Eigenvalue Damping Freq. (rad/s)

−9.40E-02 1.00E+00 9.40E-02

−4.28E-01+2.00E+00i 2.09E-01 2.05E+00

−4.28E-01−2.00E+00i 2.09E-01 2.05E+00

−1.40E+00 1.00E+00 1.40E+00

condition has a pole in the longitudinal axis system in the RHP. This pole indicates a

pitching moment instability. Looking at the Alon matrix, it can be seen that a positive

angle-of-attack disturbance will produce a positive rotation q about the y-axis, whereas

a stable aircraft would return to the trim condition after such a disturbance. The pre-

existing F-16 flight control system provides stability augmentation in this case and for

other cases of instability through the aircraft’s flight envelope. In order to develop the

outer-loop navigation controller, the control system need to be modeled. A block dia-

gram of illustrating the outer-loop controller interface with the F-16 control system is

shown in Appendix B.1.

Input Conditioning

In the case of the F16 aircraft modeled, inputs to the control stick must be scaled in

order to be passed into the control system. A dead zone breakout and nonlinear gain is

built into the internal flight control software and must be accounted for, with the goal
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of the controller to be completely outside the pre-existing control loop.

The pitch and roll inputs both have a dead-zone and nonlinear gain, while the yaw

input has a dead-zone and constant gain. The solution to this issue is to invert the

lookup table and then add a constant to the input signal cancelling out the dead-zone

effect. The three input scalars were created in Simulink R© so that they could easily be

placed between the output of the control system and the input to the aircraft model in

later work. Block diagrams of these three input scalers are shown in Appendix B.1.2.

Figure 2.3 shows the signal that the control system sees with and without the scaled

input.

Figure 2.3: Comparison of scaled and unscaled sinusoidal pitch input command.

2.2.4 RQ-2 Pioneer Control Law

The stability of the RQ-2 Pioneer was investigated in a similar method to the F-16

aircraft. The aircraft was linearized about trim conditions and state-space models for

the longitudinal and lateral-directional axes were determined. The A matrix for each of

the axes are shown in Equations 2.35 and 2.36.
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Alon =





−5.3739E-02 2.9495E-01 0 −5.6157E-01

−2.7409E-01 −1.2839 9.8270E-01 0

1.9165E-16 −5.0967E+01 −3.1758E+00 0

0 0 1.0000E+00 0





(2.35)

Alat =





−1.8601E-01 1.2187E-01 −9.9255E-01 2.7699E-01

−7.7377E+00 −6.5874E+00 4.1138E+00 0

2.2134E+01 −2.9371E-01 −1.4934E+00 0

0 1.0000E+00 1.2278E-01 0





(2.36)

Examining the eigenvalues of these matrices provides information regarding the stability

of the linearized RQ-2 Pioneer at the trim conditions. The eigenvalues for the longitudinal

and lateral-directional axes are given in Tables 2.6 and 2.7.

Table 2.6: Eigenvalues, damping and natural frequency for longitudinal axis RQ-2 Pio-

neer state-space model.

Eigenvalue Damping Freq. (rad/s)

−2.33E-02+3.80E-01i 6.11E-02 3.81E-01

−2.33E-02−3.80E-01i 6.11E-02 3.81E-01

−2.23 + 7.01i 3.04E-01 7.36

−2.23− 7.01i 3.04E-01 7.36

As indicated by the eigenvalues, the RQ-2 Pioneer is stable at trim as indicated by

the eigenvalues lying in the LHP with the exception of the spiral roll motion, dependent

primarily on sideslip, β, and yaw rate, r. A controller was implemented to improve the

aircraft’s handling qualities, primarily to increase the long-period longitudinal damping

and Dutch roll lateral-directional damping. Pole placement was used to determine gains

that provided improved handling qualities. Figures 2.4 and 2.5 show the response of both

the open-loop aircraft and closed-loop nonlinear models to an aileron doublet maneuver.

This involves commanding an aileron input and then returning to the original position.
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Table 2.7: Eigenvalues, damping and natural frequency for lateral-directional axis RQ-2

Pioneer state-space model.

Eigenvalue Damping Freq. (rad/s)

1.83E-01 −1.00 1.83E-01

−1.08 + 4.72i 2.23E-01 4.84

−1.08− 4.72i 2.23E-01 4.84

−6.29 1.00 6.29

As can be seen in the figures, the controller provides improved handling for the aircraft.

Note the plot of p, shown in the fourth subplot of Figure 2.4. The roll rate for the

closed-loop controller tracks to a steady value while the open-loop model exhibits poor

damping. After the maneuver is completed the open-loop model still continues to roll,

while the closed-loop aircraft does not. Also note the bank angle response, φ, shown

in the first subplot of Figure 2.5. The open-loop model turns at a quick rate than the

closed loop, however after the maneuver has been completed bank angle continues to

increase. Additional figures showing the closed-loop aircraft responses for a step-input

to the elevator and rudder doublet are provided in Section C.
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Figure 2.4: Orientation and rotation rates for δa aileron doublet. Closed-loop is shown

in blue, open-loop in red.

Figure 2.5: Orientation and altitude for δa aileron doublet. Closed-loop is shown in blue,

open-loop in red.
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2.3 NASA Dryden Wind Gust Model

A time-based wind gust similar to the NASA Dryden wind gust model was implemented

to simulate head and tailwinds for the nonlinear aircraft model. The magnitude of the

wind gust is defined in Equation 2.37. Three parameters are used to calculate the wind

gust. Uwind is the end magnitude of the gust, in ft/s. U wind d is the time to reach

peak from when the wind gust begins. U wind Td is a time delay for the wind gust

to be applied. Figure 2.6 shows a sample output of a wind gust. Uwind was defined as

10 ft/s, U wind d was 2 s, and U wind Td was 0.5 s. The wind gust was modeled in

Simulink R© and is applied as a head or tail wind along the xb body axis on the nonlinear

aircraft model.

|Uwind|
2 ·

[
1− cos πt

U wind d

]
for U ≤ U wind d

|Uwind| for U > U wind d

(2.37)

Figure 2.6: Plot of wind-gust along xb axis over time.
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2.4 Dubins Vehicle Simplified Model

The non-holonomic car, or here-after referred to as the “Dubins vehicle”, is a simplified

model to represent a vehicle constrained to traveling on a two-dimensional surface. The

inputs to the system are the vehicle’s velocity and its turning rate. The general form of

a Dubins vehicle is given in Equation 2.38. The inputs to the model equation are u, the

turning rate of the vehicle, and v, the velocity. Because the aircraft is restricted to a

two-dimensional surface through the altitude hold, it can be approximated as a Dubins

vehicle. Note that the φ specified in Equation 2.38 is not the same as the aircraft’s

bearing angle. It corresponds to the X − Y plane heading angle and to avoid confusion

it is not denoted as ψ.

d

dt





x

y

φd




=





v cos φd

v sin φd

u




(2.38)

The Dubins vehicle model used varies slightly in that a gain corresponding to the turning

rate caused by a deflection of the aileron was used. Data was generated by running

multiple simulations of the aircraft encompassing a range of turning rates and then used

to calculate the gain. A cost function, given in Equation 2.39, was developed in order

to minimize the error in latitude and longitude over the entire trajectory. Latitude and

longitude errors can be independently weighted. The cost function was implemented in

MATLAB utilizing the FMINSEARCH function in order to minimize k. The Dubins

aircraft model is implemented in Simulink R©. The block diagram for the model is given

in Appendix B.5.

k =
∫ tf

0

(
n∑

i=1

[∆longi · wlong] +
n∑

i=1

[∆lati · wlat]

)

dt (2.39)



Chapter 3

Navigation Control

In this section, the development and implementation of the autonomous landing con-

troller as well as two different navigation control schemes are described. The Rhumb-line

navigation controller (first navigation scheme) was first implemented on the nonlinear

F16 aircraft model. This controller was then applied to the RQ-2 Pioneer. The Du-

bins path navigation controller (second navigation scheme) is an improvement on the

Rhumb-line controller in order to decrease time to way-point and also provide a closed-

form prediction of the time to way-point.

3.1 Rhumb-Line Navigation

3.1.1 Rhumb-Lines

Rhumb-lines are lines of constant bearing, also known as loxodromes. When projected

onto a sphere, they spiral from one pole to another. On a Mercator projection map, a

Rhumb-line will appear as a series of parallel lines crossing the globe. Figure 3.1 shows

Rhumb-lines in both spherical and Mercator projections.

Rhumb-lines were chosen to guide the aircraft because of the requirement of au-

tonomous landing. The aircraft can be guided to the vortac point (where the landing

procedure begins) by choosing a Rhumb-line located along the path of the runway.

26
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Figure 3.1: Loxodrome projected onto sphere and Mercator map projection of Rhumb-

line [19].

3.1.2 Rhumb-Line Controller

The Rhumb-line controller is a proportional feedback controller that commands an aileron

deflection based on the course error of the aircraft. The following shows the derivation

of course error, computed from the current position and bearing angle and the desired

way-point position and bearing angle.

Equation 3.1 defines q2, the square of the horizontal scale component. Note that

when the latitude of the way-point is within a given tolerance from the latitude of the

current position, the horizontal scale component is defined differently. The quantity δφ

is defined in Equation 3.2.

if |latwp − latac| < tol

then

q2 = [cos (latac)]
2

else

q2 =
[

latwp−latac

δφ

]2

(3.1)

δφ = ln

[
tan (lat2/2 + π/4)

tan (lat1/2 + π/4)

]

(3.2)

The components of the squares in differences of latitude and longitude are calculated in
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Equations 3.3 through 3.5. Note that the difference in longitude is calculated in both

the East and West directions.

δlat2 = [latwp − latac]
2 (3.3)

δlong2
west = [mod(longwp − longac, 2π)]2 (3.4)

δlong2
east = [mod(longac − longwp, 2π)]2 (3.5)

Equation 3.6 calculates the distance from the current position to the final distance in

units of radians. This quantity is converted to feet in Equation 3.7.

if mod (longwp − longac, 2π) < mod(longac − longwp, 2π)

drad =
√

δlat2 + q2 · δlong2
west

else

drad =
√

δlat2 + q2 · δlong2
east

(3.6)

dft = drad · 180

π
· 60 · 6076.1154856 (3.7)

The bearing angle, the angle between the aircraft’s current course and True North, is

computed by Equation 3.8. Note that the output is in terms of degrees, not radians

as previous quantities were. Also note that the calculation uses the atan2 function in

MATLAB, which provides the four-quadrant inverse tangent.

if mod (longwp − longac, 2π) < mod(longac − longwp, 2π)

then

bearing0−360 = mod
(
atan2

[
−

√
δlong2

west, δφ
]
, 2π

)
· 180

π

else

bearing0−360 = mod
(
atan2

[√
δlong2

east, δφ
]
, 2π

)
· 180

π

(3.8)

The azimuth error is defined as in Equation 3.9, where refcourse0−360 is the desired final
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reference course, or the desired bearing angle at the way-point, and track0−360 is the

aircraft ground track. Note that the azimuth error is resolved between ±180 degrees.

azimuth error0−360 = refcourse0−360 − track0−360 (3.9)

Deviation is defined in Equation 3.10 and is the difference between the bearing angle from

the current position to the way-point and the reference course (desired bearing angle).

deviation±180 = bearing0−360 − refcourse0−360 (3.10)

Equation 3.11 defines the course error, computed from the deviation calculated in Equa-

tion 3.10, the distance from the way-point (in feet) and the azimuth error determined

in 3.9. Note the saturation function with a value of ±60 degrees. This is the maximum

bank angle allowed for navigation maneuvers.

course error±180 = sat±60 [sin deviation±180 · dft · 0.007 + azimuth error±180] (3.11)

Finally, the aileron input is computed from the course error. A saturation is placed

on this function, as the aileron has a physical limit for its deflection which is given in

Equation 3.12 as ±δamax.

δacmd = sat±δamax [−1.25 · (sat±φmax (8 · course error±180 − φdeg))] (3.12)

3.1.3 Implementation of Rhumb-Line Controller

The Rhumb-line controller was implemented in Simulink R©. The model continuously

computes the course error throughout the simulation based on the current location.

Simulink R©block diagrams of the Rhumb-line controller are included in Figures B.8 and

B.9 in Appendix B.3.
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3.2 Autonomous Landing Controller

Once the aircraft has been guided to the point located on the Rhumb-line along the

runway, it begins descent along the glideslope. The aircraft can be guided along this

path by specifying the required altitude as a function of longitude. Although autonomous

landing is not a specified goal of the work related to the RQ-2 Pioneer, the altitude and

velocity controllers developed for the F-16 aircraft are beneficial in implementing the

Rhumb-line navigation controller on the Pioneer.

3.2.1 Velocity Controller

The velocity controller is a proportional-integral-derivative (PID) controller. Equation

3.13 gives the form of the equation to control velocity.

u = KpeVT + Ki
∫

eVT + Kd
d
dteVT

where: eVT = VTdesired
− VT

(3.13)

The output of the PID is the throttle command for the aircraft. The PID gains were

tuned manually. Figure 3.2 shows the response of the velocity-hold controller to a step

input of 10ft/s on the Pioneer aircraft. The overshoot that can be seen in the figure is

4.3%. A similar method was employed for determining the PID controller gains in the

F-16 landing controller.

3.2.2 Altitude Controller

The altitude controller is a proportional-integral feed back (PI) controller. Equation 3.14

gives the form of the altitude controller.

u = Kpealt + Ki
∫

ealt

where: ealt = altitudedesired − altitude− roll compensation

(3.14)

The output of the PI controller is then used to calculate appropriate aileron and elevator

deflections based on the orientation of the aircraft. The gains for the PI controller were

manually tuned in a similar fashion to the PID velocity controller. Figure 3.3 shows the
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Figure 3.2: Step response for commanded change in VT .

response of the altitude controller to a −5ft/s ramp input on the Pioneer aircraft. As

was the case with the velocity control, the gains on the altitude PI controller on the F-16

nonlinear model were also determined manually.

Figure 3.3: Ramp response for altitude change command.
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3.2.3 Glide Slope Trajectory

The glideslope is defined as a the path that the aircraft follows from the vortac point

to the runway threshold. In the case of the F-16 aircraft, the glideslope desired was a

constant rate of altitude change. A relation between pitch angle, θ, and angle-of-attack,

α, defines the glide slope. Equation 3.15 below defines this relation. The glideslope is

usually 2.5− 3◦ [17].

γ = θ − α (3.15)

The runway threshold is defined as the point at which the aircraft touches down. Just

before reaching the runway point, the aircraft should perform a flare maneuver in which

pitch angle is increased and airspeed quickly decreased. Conditions desired for the flare

maneuver determine control surface inputs as the plane reaches the runway threshold.

The purpose of the flare maneuver is to limit the vertical descent to a rate that the

landing gear can absorb the landing impact of [17].

3.3 Dubins Trajectory Determination

As stated in section 1.2, the Dubins curve path determination has been used for path

determination for two-dimensional vehicles. This section explains the work done by Shkel

and Lumelsky in quickly determining the shortest path and then its implementation for

the Dubins path navigation controller.

3.3.1 Dubins Curves

The original work of L.E. Dubins presented a method of finding the shortest path between

two points that a particle can take based on the velocity vector at each point and the

radius of curvature [7]. There are three options for travel that the particle has: straight

line, left curve, and right curve. Using a combination of these three options, the shortest

path between two points can be determined with respect to the initial and final heading

angles. The resulting path will either be of the form CCC or CSC, where C corresponds

to an arc with a radius ρ and S represents a straight line segment (Curved-Curved-Curved
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or Curved-Straight-Curved). The arcs represent a right or left turn, designated as R or

L, respectively. From this conclusion, it can be seen that there are six possible general

paths that exist: LSL, LSR, RSR, RSL, LRL, RLR [8].

Dubins work provides a set of curves that satisfy the required position and orientation

requirements. In order to determine the shortest trajectory, the lengths of all the curves

found must be calculated and compared, however the calculation can be computationally

intensive. The work of Shkel and Lumelsky provided for a quick solution to the long-

path case, which is of the form CSC. This long path solution is applicable for cases where

d ≥ 4ρ and also in certain cases where d < 4ρ, where d is the non-dimensional distance

from initial position to the final way-point [8]. Their work was specifically intended for

applications such as aircraft navigation, where decreased computation time is of great

importance. The algorithm for quickly finding the shortest path solution forms the

foundation of the Dubins curve navigation controller developed in this work.

Three operators corresponding to the left or right circle arc and straight-line motion

are given in Equation 3.16, where φ is the heading angle, x and y the current location,

and v the segment length.

Lv(x, y, φ) = [x + ρ sin(φ + v)− ρ sin φ, y − ρ cos(φ + v) + ρ cos φ, φ + v]

Rv(x, y, φ) = [x− ρ sin(φ− v) + ρ sin φ, y + ρ cos(φ− v)− ρ cos φ, φ− v]

Sv(x, y, φ) = [x + v cos φ, y + v sin φ, φ]

(3.16)

Using these three transformations, the length of each segment along the path and thus

the total path length, L, can be calculated. Specific segment lengths are noted as t, p

and q, where the total path length is given in Equation 3.17.

L = t + p + q (3.17)

The algorithm assumes travel from an initial point with a given heading angle, noted

as (Pi, α), to a final point given as (Pf , β). As shown in Figure 3.4, α and β are the

orientation angles of the vehicle from the X axis. Pi is given as the origin, (0, 0), and Pf

is located at a point along the X-axis, (d, 0). Consider a vehicle traveling from (0, 0, α)

to (d, 0, β). For a vehicle traveling along a LSL (left turn-straight-left turn) path, the
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Figure 3.4: Orientation of α and β in relation to X-axis [8].

application of Equation 3.16 is given in Equation 3.18. Note: the path length computed

assumes a turning radius ρ of 1.

Lq(Sp(Lt(0, 0, α))) = (d, 0, β) (3.18)

The position of the vehicle after completing the Lt path is given in Equation 3.19.

xt = 0 + sin (α + t)− sin α

yt = 0− cos (α + t) + cos α

φt = α + t

(3.19)

Using (xt, yt, φt) as the as the input point, the Sp transformation is applied to find

(xp, yp, φp) as displayed in Equation 3.20.

xp = sin (α + t)− sin α + p cos (α + t)

yp = − cos (α + t) + cos α + p sin (α + t)

φp = α + t

(3.20)

A left turn transformation is then applied to point (xp, yp, φp) in order to calculate

(xq, yq, φq). This transformation is displayed in Equation 3.21.
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xq = sin (α + t)− sin α + p cos (α + t) + sin (α + t + q)− sin (α + t)

yq = − cos (α + t) + cos α + p sin (α + t)− cos (α + t + q) + cos (α + t)

φq = α + t + q

(3.21)

Knowing that the final point (xq, yq, φq) is located at (d, 0, β), equation 3.21 can be

reduced to the form given in Equation 3.22.

d = − sin α + p cos (α + t) + sin (α + t + q)

0 = cos α + p sin (α + t)− cos (α + t + q)

β = α + t + q

(3.22)

Equation 3.22 yields a system of three equations with three unknowns. These equations

can then be solved to find t, p and q for the LSL path. Equation 3.23 gives the resulting

segment lengths.

tLSL = −α + arctan cos β−cos α
d+sin α−sin β [mod2π]

pLSL =
√

2 + d2 − 2 cos (α− β) + 2d(sin α− sin β)

qLSL = β − arctan cos β−cos α
d+sin α−sin β [mod2π]

(3.23)

Substituting the segment lengths from Equation 3.23 into Equation 3.17 yields an equa-

tion for path length LLSL given in Equation 3.24.

LLSL = −α + β + pLSL (3.24)

This process was performed for all the possible path combinations. The simplified path

length calculations allowed for application of the algorithm derived by Shkel and Lumel-

sky. Based on the quadrant where the initial and final heading angles, α and β, are

located, the shortest path can be chosen based on Table 3.1. The various possibilities

of initial and final heading angle are grouped into classes, noted as aij, where i is the

quadrant the initial heading angle is located in, and j the quadrant of the final heading
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angle. The variables S12, S13, etc. in table 3.1 below are switching functions calculated

in cases where there exists more than one solution for a path. The switching functions

are defined in Appendix A. The output of this algorithm is the set of curves (in the form

CSC) and their corresponding path lengths.

Table 3.1: Lookup table for Dubins curve long path solution from Shkel and Lumelsky

[8].

β = 1 β = 2 β = 3 β = 4

α = 1

if S12 < 0 then RSR if S13 < 0 then RSR if S1
14 > 0 then LSR

RSL if S12 > 0 then RSL if S13 > 0 then LSR if S2
14 > 0 then RSL

else RSR

α = 2

if S1
22 < 0 then LSL

if S21 < 0 then LSL if S1
22 > 0 then RSL RSR if S24 < 0 then RSR

if S21 > 0 then RSL if S2
22 < 0 then RSR if S24 > 0 then RSL

if S22 > 0 then RSL

α = 3

if S1
33 < 0 then RSR

if S31 < 0 then LSL LSL if S1
33 > 0 the LSR if S34 < 0 then RSR

if S31 > 0 then LSR if S2
33 < 0 then LSL if S34 > 0 then LSR

if S2
33 > 0 then LSR

α = 4

if S1
41 > 0 then RSL

if S2
41 > 0 then LSR if S42 < 0 then LSL if S43 < 0 then LSL LSR

else LSL if S42 > 0 then RSL if S43 > 0 then LSR

3.3.2 Implementation of Algorithm

The algorithm for quickly determining the Dubins curve long path case, as described in

the previous section, was implemented in MATLAB as a part of the navigation controller.

The inputs to the trajectory determination script are the latitude and longitude of both

the initial and final (desired) locations, the initial and final bearing angles, and also the

turning radius of the aircraft. The output of this script is a set of vectors containing

the time, latitude, longitude and bearing angle that the aircraft should follow in order

to reach the desired way-point in the shortest amount of time.

In order to calculate the desired path, the initial location and desired way-point must

be converted from degrees latitude and longitude to (X, Y ) coordinates with units of

feet. Feet are chosen as the aircraft velocity is specified in ft/s. The turning radius is
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also specified in units of ft. The initial point is taken as the origin, (0, 0) and the desired

way-point is located at (Xd, Yd). The calculation of the desired way-point in terms of

feet is given in Equation 3.25.

Xd = lon2−lon1
ft2deg∗long.deg.convert

Yd = lat2−lat1
ft2deg

(3.25)

The bearing angle of the aircraft is not the same as the heading angle defined in Section

3.3.1. Bearing angle, in aeronautical terms, is the angle from North to the aircraft

body x-axis as depicted in Figure 3.5. In order to determine α and β, the initial and

final bearing angles, φ0d
and φfd

(the subscript d in this case denotes the angle is in

the Dubins reference frame), must be resolved to the ground coordinate system. These

conversions are shown in Equation 3.26. Because the long path Dubins curve is solved

from (0, 0) to (0, d), the distance and bearing angle from the initial point to the final

way-point must also be taken into account. To accomplish this, the distance and angle

between the two points are first found, shown in Equation 3.27. Note that the atan2

function is used in MATLAB rather than the standard arc tangent function, as this is a

four-quadrant inverse tangent. Note, when calculating θ as well as φ0d
and φfd

that the

modulo operator is used with respect to 2π.

φ0d
= mod[−ψ0g + π/2, 2π]

φfd
= mod[−ψfg + π/2, 2π]

(3.26)

D =
√

X2
d + Y 2

d

θ = mod[arctan(Yd/Xd), 2π]

(3.27)

After θ has been calculated, the orientation of the aircraft can be resolved to fit the form

required in Section 3.3.1, done by rotating the X, Y Dubins frame by θ radians so that

the final way-point is at a location of (0, d). Again, the modulo operator is used to resolve

the angles between 0 and 2π as shown in Equation 3.28. The distance is also scaled as
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Figure 3.5: Comparison of aircraft body-axis bearing angle, ψ0g , to initial Dubins path

heading angle, φ0d
.

shown in Equation 3.29. The reason for scaling the distance by ρ is the solutions of

Shkel and Lumelsky were found with the radius of curvature assumed to be equal to 1.

This allows for the system of three simultaneous equations in Equation 3.16 to be solved

easily for a combination of paths.

α = mod[φ0d
− θ, 2π]

β = mod[φfd
− θ, 2π]

(3.28)

d = D/ρ (3.29)
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With the inputs transformed, Table 3.1 is implemented using conditional if − then oper-

ators. In the case where there is more than one path, the switching functions mentioned

in Section 3.3.1 must also be found. Once the switching function terms are calculated,

conditional operators then choose the appropriate set of curves and the curve lengths are

calculated. Individual functions for the LSL, LSR, RSL, & RSR paths were created in

order to improve calculation time. Also output in each case from Table 3.1 is a flagging

vector to signify whether the current segment is a left-turn, right-turn or straight-line.

A left-turn has a value of 3, a right-turn 2, and a straight-line segment 1.

Knowing the scaled path lengths, initial and final position and bearing angles, the

coordinates and bearing angle at each point along the desired trajectory can then be

determined. The scaled paths are corrected using the modulo operator with respect to

2π, as shown in Equation 3.30. They are multiplied by ρ in order to scale them back to

the appropriate size.

tn = mod[t, 2π]ρ

pn = pρ

qn = mod[q, 2π]ρ

(3.30)

The path lengths are then divided by the desired average true velocity in order to find

the time to complete each path, as the average velocity remains constant. Equation 3.31

gives the equations used to calculate the path times for each segment.

Tt = tn/V t0

Tp = pn/V t0

Tq = qn/V t0

(3.31)

The algorithm then computes the first curved segment. Equation 3.32 shows the calcu-

lation of point (a1, b1), located ρ feet away from the initial point. This point will be used

to sweep an arc tn radians from the starting position about (a1, b1). An example of this

is shown in Figure 3.6. The swept path output is a set of X − Y points (Dubins frame

coordinates) and also the heading angle at each location. The calculation for one time

step is shown in Equation 3.33. The variable ta is from a vector created from 0 to Tt
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at an interval of dt, the simulation time step. The final point of (xtl, ytl) is the starting

point for the p, straight-line, path segment.

Figure 3.6: Plot of t path and point (a1, b1).

if turn1 = 3

then ωt = mod[φ0d
+ π/2, 2π]

elseif turn1 = 2

then ωt = mod[φ0d
− π/2, 2π]

end

a1 = ρ cos ωt

b1 = ρ sin ωt

(3.32)
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xt(i, 1) = a1 + ρ · cos [ωt + ta(i, 1) · tn/Tt − π]

yt(i, 1) = b1 + ρ · sin [ωt + ta(i, 1) · tn/Tt − π]

φt(i, 1) = φ0d
+ ta(i, 1) · tn/Tt

(3.33)

The heading angle for segment p is calculated as shown in Equation 3.34. The points

along path p (straight-line path) and heading angle are calculated in the same manner as

for segment t utilizing the simulation time step. Equation 3.35 shows the calculation at

each time step. The last point of the straight line segment is the initial point and bearing

angle for segment q, the final turn. The points along path q and their accompanying

heading angles are determined by sweeping an arc starting at the end of segment p. The

equations for this step are not included as the methodology is the same as for segment

t, also utilizing the turn flag to determine the appropriate point to sweep an arc about.

if turn1 = 3

then ωp = mod[φ0d
+ tn, 2π]

elseif turn1 = 2

then ωp = mod[φ0d
− tn, 2π]

end

(3.34)

xp(j, 1) = xtl + ρ · pa(j, 1) · pn/Tp · cos ωp

yp(j, 1) = ytl + ρ · pa(j, 1) · pn/Tp · sin ωp

φp(j, 1) = ωp

(3.35)

Once the points for all three segments have been calculated, they are combined into one

vector providing the desired Dubins frame position for the aircraft. Because the vector

of angles is still defined in terms of heading angle, it must be resolved to aircraft bearing

angle. This is shown in Equation 3.36, which is the inverse of what was done in Equation

3.26. Because the axis system that the Dubins path is generated in is not the same as

the ground track system for the aircraft, the output in feet is then converted to latitude

and longitude coordinates.

ψcr = −1 · [φd − π/2] (3.36)
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The variables xf and yf in Equation 3.37 above are the combined sets from the three

individual t, p and q position vectors. Because there exists some roundoff error, the final

bearing angle may be slightly off from the desired final bearing angle. For this reason,

the desired way-point is not the vortac point for the runway. A set of points and bearing

angles are added to the end of the calculated values corresponding to a path of constant

bearing equal to the desired angle. This path goes from the calculated final position to

the vortac point. This allows the aircraft time to correct its course before beginning the

landing procedure.

latout = lat1 + yf · ft2deg

lonout = lon1 + xf · ft2deg · −long.deg.convert
(3.37)

Included in Fgures 3.7 and 3.8 are plots of the desired Dubins curve trajectory and also

of the bearing angle versus time. The simulation was run using an initial latitude of

34.9557o and longitude of −117.716o. The desired way-point was located at a latitude of

34.9163o and a longitude of −117.862o. The initial bearing angle was 40o and the final

bearing angle 70o. Average velocity was chosen to be 115.2944 ft/s. The turning radius,

ρ, was 807.061 ft. The distance in feet between these two points is 4.6110E+04. Since

D is much larger than 4ρ, the long path case provides the shortest solution. The time

from the initial position to reach the final way-point was 494.71 seconds.
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Figure 3.7: Longitude and Latitude plot of Dubins calculated path.

Figure 3.8: Plot of corrected bearing angle versus time for Dubins curve trajectory

example
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3.4 Sliding Mode Controller

The explanation of sliding mode control and the example derivation of the control law

are given in the following section as presented by Slotine and Li [20]. The same approach

is then taken in order to determine the control law for the Dubins simplified vehicle.

3.4.1 Sliding Mode Control

Sliding mode control is a form of robust control based on the idea that controlling a

1st-order system is easier than controlling a nth-order system. This notion is applicable

to both nonlinear and uncertain systems. A notational simplification allows nth-order

problems to be represented by 1st-order problems where it can be shown that good per-

formance can be achieved, though usually at the expense of high controller activity. An

explanation of this transformation and control input derivation is shown below consid-

ering a general system given by Equation 3.38. The variable x(n) is the scalar output, x

is the state-variable (given by Equation 3.39 ) and u is the control input.

x(n) = f (x) + b (x) u (3.38)

x =
[

x ẋ ... x(n−1)

]T

(3.39)

The goal of the controller is for x to track xd, a time-varying state vector with specific

states. This is accomplished despite inaccuracies in f(x) and b(x). The tracking error is

represented by x̃, which is given by Equation 3.40.

x̃ = x− xd =
[

x̃ ˜̇x ... x̃(n−1)

]T

(3.40)

The time-varying surface, s(t), also known as the sliding surface, is defined in Equation

3.41. The variable λ is a strictly positive constant.

s (x; t) =

(
d

dt
+ λ

)n−1

x̃ (3.41)
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Equation 3.42 shows the sliding surface for n = 2.

s = ˙̃x + λx̃ (3.42)

The derivative of the sliding surface, ẋ, is given by Equation 3.43.

ṡ = ẍ− ẍd + λ ˙̃x (3.43)

Setting the sliding surface equal to 0 ensures that once the sliding surface is reached, the

system remains there and the error tends towards 0. Applying this condition, the control

input can be determined. For the case of a second-order system given in equation 3.44,

the control input can be determined using the steps in Equations 3.41 through 3.43.

ẍ = f(x) + u (3.44)

The derivative of the sliding surface is the same as Equation 3.43, as n = 2 in this

example. Substituting Equation 3.44 into Equation 3.43 and solving for 0 gives the

control input u. These steps are shown in Equation 3.45.

ṡ = f(x) + u− ẍd + λ ˙̃x = 0

u = −f(x) + ẍd − λ ˙̃x

(3.45)

3.4.2 Model Transformation

In order to simplify the control system development, the Dubins aircraft model was

transformed using a derivation created by Sira-Ramirez and Villeda [21]. They derived

a transformation that expresses the same model with the states being ẍ and ÿ and the

control inputs being u and v, the turning rate and velocity, respectively. Equation 3.46

shows the basic form of a Dubins, or non-holonomic car, subject to the constraints given

in equation 3.47. Also, let w be defined as in Equation 3.48.
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



ẋ

ẏ

ψ̇




=





v cos ψ

v sin ψ

u




(3.46)

ψ = arctan ẏ
ẋ

v =
√

ẋ2 + ẏ2

(3.47)

w =
ẏ

ẋ
(3.48)

The derivative property in Equation 3.49 will be used for inverse trigonometric functions.

Taking the time derivative of Equation 3.48 results Equation 3.50.

d

dt
arctan w =

1

1 + w2

dw

dt
(3.49)

dw

dt
=

d

dt
ẏẋ−1 = ÿẋ−1 − ẏẋ−2ẍ (3.50)

Substituting Equations 3.48 and 3.50 into Equations 3.46 and 3.49 solving for u yields

the solution in Equation 3.51.

u =
ÿẋ− ẏẍ

ẋ2 + ẏ2
(3.51)

Equation 3.52 can be found by taking the derivative of the second portion of Equation

3.47.

dv

dt
=

1

2

(
ẋ2 + ẏ2

)−1/2
(2ẋẍ + 2ẏÿ) (3.52)
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Equation 3.52 can be rewritten in the form shown in Equation 3.53.

v̇ =
ẋẍ + ẏÿ√
ẋ2 + ẏ2

(3.53)

Equations 3.51 and 3.53 can be combined and rewritten in the matrix form shown in

Equation 3.54.




u

v̇



 =




− ẏ

ẋ2+ẏ2
ẋ

ẋ2+ẏ2

ẋ√
ẋ2+ẏ2

ẏ√
ẋ2+ẏ2








ẍ

ÿ



 (3.54)

The matrix equation 3.54 above can be represented in the shortened notation shown in

Equation 3.55 where U = ( u v̇ )T and z = ( x y )T .

U = Mz̈ (3.55)

With the system in this form, the sliding surface is defined in Equation 3.56.

s = (ż − żd) + γ1(z − zd) + γ2

∫ ∞

0
(z − zd) dr (3.56)

Setting the derivative of the sliding surface to zero ensures that there is no movement

once the state trajectories reach the sliding surface. The derivative of Equation 3.56 is

shown in Equation 3.57 where z̃ = z − zd.

ṡ = z̈ − z̈d + γ1
˙̃z + γ2z̃ (3.57)

Solving for z̈ in Equation 3.57 yields the result shown in Equation 3.58.

z̈ = z̈d − γ1
˙̃z − γ2z̃ (3.58)

Equation 3.58 can then be substituted back into Equation 3.55. The result of this

substitution is shown in Equation 3.59, the final form of the sliding mode controller. The

variables γ1 and γ2 are arbitrary parameters which require tuning.

U = M(z̈d − γ1
˙̃z − γ2z̃) (3.59)
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3.4.3 Implementation of Controller

The resulting sliding mode control equation from Section 3.4.2 was implemented in

Simulink R©. The controller was implemented successfully to control the Dubins vehi-

cle simplified model with the turning rate and velocity command inputs. The trajectory

generated by the Dubins curve algorithm does not change throughout the simulation. A

block diagram of this controller is shown in Figure B.12, included in Appendix B.6.

3.5 Rhumb-Line Controller Utilizing Dubins Curve

Trajectory

In an effort to improve the Rhumb-line controller, particularly in decreasing simulation

time and also predicting time to way-point, a hybrid Dubins curve and Rhumb-line nav-

igation controller was created. The basic Rhumb-line controller is utilized with changes

made to the commanded inputs. The Dubins curve trajectory algorithm runs in the same

manner as before, however rather than computing the latitude, longitude and bearing

angles for each time step, the latitude and longitude at the end of the t (first curve) and

p (straight-line) segments are returned. Using these two points, the Rhumb-line between

(longt, latt) and (longp, latp) is computed. Equation 3.60 gives the calculation of the

Rhumb-line angle, given as θp.

δφ = log
[

tan (latp/2+π/4)
tan (latt/2+π/4)

]

θp = atan2
(

longp−longt

δφ

)
· 180

π

(3.60)

The Rhumb-line controller was adjusted so that the desired way-point and Rhumb-line

could be changed during the simulation. The point (longp, latp) is the first commanded

way-point. The bearing angle θp is the commanded bearing angle. Once the aircraft

is within a given tolerance of this location, the input to the Rhumb-line controller in-

put then becomes the location of the vortac point and its corresponding Rhumb-line.

The Rhumb-line controller utilizing the Dubins trajectory was implemented on both the

Dubins simplified vehicle model and the nonlinear aircraft simulation.
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Results

4.1 Discussion of Results

4.1.1 Dubins Simplified Model Representation

The object of the Dubins simplified model was to provide an accurate represenation

that could be used to decrease simulation time in further control system development.

The method in finding the aileron-turning rate gain was originally to run a number of

simulations while varying the gain manually until a fit was found. The optimization

routine was developed to expedite this process while also allowing the gain to be found

for a variety of aircraft. In order to utilize this methodology, the altitude and velocity of

the aircraft must be held constant by some outer-loop controller.

For the case where fuel is to be conserved with the Pioneer UAV, the Dubins gain was

found to be -0.36. In the case where the minimum time to the way-point was desired, and

thus a higher velocity, the gain was found to be -0.29. Simulations were then run using

the simplified model in order to compare its tracking with the full non-linear model.

Figure 4.1 displays the results of the nonlinear simulation and the Dubins simplified

model. As can be seen in the figure, the Dubins vehicle tracks the non-linear model well.

The Dubins vehicle model was used for development of the Dubins path controller

as well as for comparison purposes between the two control methods. The simulation

time for the Rhumb-line controller with the simplified model was decreased significantly

from the nonlinear simulation. The Dubins simplified model is approximately ten times

quicker than the full nonlinear model. This allowed for simulations to be run with a

49
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Figure 4.1: Non-linear simulation trajectory versus Dubins simplified model trajectory

for a given control input.

variety of initial latitude, longitude and bearing conditions to analyze the controller’s

performance.

4.1.2 Rhumb-Line Controller

Dubins Vehicle Model

Simulations to check that the Rhumb-line controller works for a variety of input condi-

tions (longitude, latitude and bearing angle) were run with the Dubins controller as the

computation time is much less than the full nonlinear model. For the simulation shown

in Fgure 4.2, the initial conditions are given in Table 4.1.

The simulation took 1357.30 seconds to travel from the initial location to the way-

point. The bearing angle at the way-point was 70.03◦.
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Table 4.1: Initial Conditions for Rhumb-line Dubins Simplified Vehicle Simulation.

Initial Longitude −117.8994◦

Initial Latitude 35.17233◦

Initial Bearing Angle 10◦

Way-point Longitude −117.8624◦

Way-point Latitude 34.91629◦

Way-point Bearing Angle 70◦

VT 115.2944 ft/s

Dubins Gain −0.36

Figure 4.2: Rhumb-line control implemented on Dubins simplified vehicle model.
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Nonlinear Aircraft Model

The nonlinear aircraft model was also run with same initial and final conditions given

in 4.1. The time to way-point for the nonlinear simulation was 1355.85 seconds, which

is within 0.1% of the Dubins simplified model simulation time. Figure 4.3 shows the

trajectory of the nonlinear RQ-2 Pioneer aircraft model with the Rhumb-line controller

implemented. Figures 4.4 and 4.5 display the nonlinear model aircraft body rates and

orientation. The aircraft velocity is held near constant, as seen in the first subplot of

Figure 4.4. It also remains near trim, as seen by the plots of α, β, P , Q and R also

included in this figure. Figure 4.5 shows the orientation of the aircraft throughout the

simulation and its altitude. Note that altitude remains near constant throughout the

simulation. Also note that the aircraft reaches the desired bearing angle ψ of 70◦ at the

end of the simulation.

Figure 4.3: Rhumb-line control implemented on RQ-2 Pioneer nonlinear aircraft model.
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Figure 4.4: Stability axis and vehicle body axis rate plots Rhumb-line control imple-

mented on RQ-2 Pioneer nonlinear aircraft model.

Figure 4.5: Aircraft orientation of Rhumb-line control implemented on RQ-2 Pioneer

nonlinear aircraft model.
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4.1.3 Dubins Curve Trajectory with Sliding Mode Controller

The sliding mode controller described in Section 3.4.2 was implemented on the Dubins

vehicle simplified model. Simulations were run in order to verify that the model could

accurately track the trajectory determined from the Dubins path generation algorithm

in Section 3.3.2. As was done in Section 4.1.2, the sliding mode navigation controller was

run for a variety of initial and final conditions. Table 4.2 gives the conditions used for the

figures included in this section. Figure 4.6 shows the tracking of the Dubins simplified

model with sliding mode control compared to the desired trajectory. The errors for

longitude, latitude and bearing angle are shown in Figure 4.7. Considering these two

figures, it can be seen that the Dubins simplified model tracks the desired trajectory

well. The final steady-state error for bearing angle is 0◦, indicating that the vehicle is

traveling along the desired 70◦ Rhumb-line. The errors in longitude and latitude at the

end of the simulation are a result of the vehicle traveling along the path, though slightly

behind the desired point for each time step. The control effort from the sliding mode

controller is shown in Figure 4.8. Figure 4.9 displays a rescaled plot of Figure 4.8.

Table 4.2: Dubins Simplified Model with Sliding Mode Control Initial and Final Condi-

tions

Initial Longitude −117.7161◦

Initial Latitude 34.9557◦

Initial Bearing 40◦

Way-point Longitude −117.8624◦

Way-point Latitude 34.91629◦

Way-point Bearing Angle 70◦

VT 115.2944 ft/s

ρ 800 ft

δt 0.01 s
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Figure 4.6: Trajectory of sliding mode controller implemented on Dubins simplified ve-

hicle.

Figure 4.7: Tracking and bearing angle error for sliding mode controller implemented on

Dubins simplified vehicle.
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Figure 4.8: Control effort for sliding mode controller implemented on Dubins simplified

vehicle.

Figure 4.9: Control effort for sliding mode controller implemented on Dubins simplified

vehicle.
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4.1.4 Rhumb-Line Controller vs. Dubins Controller

A disadvantage of the Rhumb-Line controller is that a simulation needs to be run in

order to determine the time to way-point. When the Dubins path is generated, a close

estimate of the time to reach the way-point can be calculated by dividing the path length

by Vavg. This was the original reason for switching to the Dubins path control over the

Rhumb-line controller. End conditions for the comparison simulations are given in table

4.3.

Table 4.3: Simulation parameters and final conditions for Dubins path and Rhumb-line

controller comparison.

Way-point Longitude −117.86243◦

Way-point Latittude −34.9163◦

Way-point ψ 70◦

ρ (turning radius) 800 ft

VT 115.2944 ft/s

δt 0.01 s

As can be seen by the figures included in this section, the Dubins path is more direct

in reaching the way-point than the path taken by the Rhumb-line controller. Table

4.4 shows a comparison of simulation times between the Dubins path and Rhumb-line

simulations. Figures 4.10 and 4.11 show a comparison of the trajectory plots for cases

1 and 6, respectively. In case 1, the advantage of the Dubins path over the Rhumb-line

controller can clearly be seen. As shown in Table 4.4, the time to reach the way-point for

Rhumb-line navigation is almost twice that of the Dubins path. For case 6, although the

difference in time to way-point between the two methods is not as large, the advantage

can be clearly seen from Figure 4.11. The Dubins path provides a more direct trajectory

to reach the way-point.



58 CHAPTER 4. RESULTS

Table 4.4: Comparison of path lengths and travel times for selected Rhumb-Line and

Dubins Curve trajectories.

Case
Initial Longitude Initial Latitude Initial Bearing Time to Waypoint

(degrees) (degrees) (degrees) (seconds)

1
-117.6161 34.9890 10 R 1210.24

D 710.84

2
-117.6161 34.9890 130 R 1169.61

D 710.49

3
-117.6161 34.7557 40 R 1384.28

D 830.18

4
-117.6161 34.7557 210 R 1390.55

D 830.90

5
-118.1161 34.7557 -220 R 966.07

D 830.50

6
-118.1161 34.7557 40 R 958.12

D 813.77

7
-118.1161 35.0890 210 R 1235.98

D 859.82

8
-118.1161 35.0890 -30 R 1257.63

D 884.00
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Figure 4.10: Comparison of Rhumb-line navigation and Dubins trajectory paths for case

1 from table 4.4.

Figure 4.11: Comparison of Rhumb-line navigation and Dubins trajectory paths for case

6 from table 4.4.
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4.1.5 Combined Dubins Path/Rhumb-Line Controller on Non-

linear Model

The combined Dubins/Rhumb-line controller was simulated using the nonlinear RQ-2

Pioneer aircraft model. It utilizes the calculation of the t and p segment endpoints from

the Dubins path calculation, as described in section 3.5. The trajectory calculation by

the Dubins algorithm is plotted against the nonlinear model simulation result in figure

4.12. Tracking along the p, straight path, segment is excellent while during the turning

segments the aircraft does not follow the Dubins path. This is expected, as the inputs to

the combined controller are the locations of the end of the straight segment and the final

way-point. Figures 4.13 and 4.14 show the orientation, altitude, velocity and angular

rates of the aircraft during the simulation. Note that in figure 4.13 the aircraft stays

well within the allowed 60◦ bank angle limit. For the example provided, the predicted

Dubins trajectory time was 494.71 seconds an the simulated time to waypoint was 481.81

seconds, a difference of 2.6%.

Multiple simulations were run to compare the predicted closed-form Dubins path

time estimate to the time to waypoint using the hybrid controller. The simulated time

to waypoint was found to be within 5% of the predicted time for a variety of scenarios.

Incorporating a wind gust disturbance affected the time to waypoint, as wind gusts were

assumed to be head or tail winds, but did not affect the aircrafts ability to follow the

trajectory. Figure 4.15 shows the trajectory of the nonlinear aircraft with a 20 ft/s head

wind incorporated. The time to reach the waypoint increased to 529.61 seconds due to

the head wind, however the aircraft was able to follow the trajectory.
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Figure 4.12: Trajectory of Dubins/Rhumb-Line controller on nonlinear model.
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Figure 4.13: Orientation and altitude for Dubins/Rhumb-Line controller.

Figure 4.14: Stability axis and angular rate plots for Dubins/Rhumb-Line controller.



4.1. DISCUSSION OF RESULTS 63

Figure 4.15: Trajectory of Dubins/Rhumb-Line controller on nonlinear model with wind

gust.

4.1.6 Autonomous Landing Control

Autonomous landing control simulations were run with the nonlinear F-16 aircraft model.

Simulations were run using a model that is autocoded to C by the MATLAB Real Time

Workshop. This is done in order to decrease computation time due the large Simulink

model for the F-16 aircraft. Note that for this simulation, the Rhumb-line controller

and not the hybrid Dubins curve/Rhumb-line controller was used. Table 4.5 gives the

locations and bearing angles of the way-points for the simulation. The desired bearing

angle at the vortac point and runway threshold are the same as the aircraft is traveling

along the glideslope during this time. Figure 4.16 shows a plot of the aircraft’s longitude

and latitude trajectory as well as the way-points it must pass through. More detailed

plots of the aircraft’s position throughout the simulation are shown in figure 4.17. The

green lines on the latitude and longitude subplots represent the location of the runway

threshold. The threshold was reached at a time of around 310 seconds. The ground track

shows the bearing angle of the aircraft versus time. Note that on the altitude graph, the

simulation ends at a height of 250 ft. This is because for testing purposes on the actual

aircraft, the landing was simulated at a height of 250 ft above the runway. Figure 4.18
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shows a plot of the corrected radar altitude data versus simulation time (radar altitude

minus 250 ft).

Figure 4.19 shows orientation angle data and the acceleration along the zb aircraft

body axis throughout the simulation. The bank angle, φ, stays within the limit required

during the turning maneuvers. Note that the acceleration along the zb axis is near

constant at just over -1 G during travel along the glideslope. The aircraft body angular

rates, as well as velocity and control surface inputs to the horizontal tail and rudder are

shown in figure 4.20. As can be seen in the figure, after the aircraft reaches the glideslope

the angular rates remain at 0 deg/s until the aircraft performs the flare maneuver, which

can be seen from the graph of Q, rotation about the yb axis. The plot of VT shows that the

aircraft is traveling at a near constant rate from the initial position to the vortac point

and then slowing down slightly along the glideslope. The drop off in velocity after the

aircraft reaches the threshold point is a result of the flare maneuver, where the throttle

is scaled back.

The throttle input to the aircraft, determined by the velocity controller, is shown in

figure 4.21. The necessary throttle inputs to hold aircraft at a steady velocity can be seen

from the graph as well as the decreased command for travel along the glideslope. The

throttle scaling back during the flare maneuver is shown by the sharp drop-off in throttle

command around 310 seconds. A plot of γ, defined as the difference between pitch angle θ

and angle-of-attack α, is shown in figure 4.22. The aircraft tracks the glideslope, defined

as a −3 deg path, well as shown on the graph. During the portion of the simulation

where the aircraft is traveling along the glideslope, it meets the specified requirement.

Calculated airspeed during the simulation is shown in figure 4.23. Note that calculated

airspeed remains nearly constant until the flare maneuver is performed, after which it

drops off sharply. Figure 4.24 shows a plot of the vertical rate. Fluctuations occur while

the aircraft is navigating to the vortac point, after which it increases to a rate of around

15 ft/s while on the glideslope. At the point of touchdown, just after the threshold time

of 310 seconds, the aircraft has a vertical rate close the desired value of 5 ft/s.

From these figures, it can be seen that the aircraft meets the required specifications

for navigation to the vortac point and also performing autonomous landing.
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Table 4.5: Initial, vortac and runway threshold way-points and bearing angles for F-16

landing simulation.

Initial Longitude −117.6161◦

Initial Latitude 34.9890◦

Initial Bearing Angle −140◦ (220◦)

Vortac Longitude −117.7326◦

Vortac Latitude 34.9824◦

Vortac Bearing Angle 238.24◦

Runway Threshold Longitude −117.8624◦

Runway Threshold Latitude 34.9163◦

Runway Threshold Bearing Angle 238.24◦

Figure 4.16: Trajectory plot for nonlinear F-16 model autonomous landing simulation.
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Figure 4.17: Position data for nonlinear F-16 model autonomous landing simulation.

Figure 4.18: Correct radar altitude data for nonlinear F-16 model autonomous landing

simulation.
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Figure 4.19: Orientation data for nonlinear F-16 model autonomous landing simulation.

Figure 4.20: Angular rate, velocity and horizontal tail and rudder data for nonlinear

F-16 model autonomous landing simulation.
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Figure 4.21: Throttle input command for nonlinear F-16 model autonomous landing

simulation.

Figure 4.22: Plot of γ, defined as θ − α, for nonlinear F-16 model autonomous landing

simulation.
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Figure 4.23: Calculated airspeed (in knots) data for nonlinear F-16 model autonomous

landing simulation.

Figure 4.24: Vertical rate, Ḣ (ft/s), data for nonlinear F-16 model autonomous landing

simulation.
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4.1.7 Implementation on VISTA F-16 Aircraft

The autonomous landing controller was implemented and test on the Variable In-flight

Stability Test Aircraft (VISTA) F-16. Equation 4.1 shows the incorrect longitude and

latitude conversion used, while equation 4.2 shows the correct conversion for convert-

ing from degrees-minutes-seconds to degrees. Table 4.6 shows the incorrect and correct

converted latitude and longitude coordinates for Edwards Air Force Base and the de-

sired vortac point. Figure 4.25 shows the latitude and longitude tracking of VISTA. As

displayed by the figure, the aircraft reached the desired waypoints, however due to the

incorrect conversion the aircraft was not located at the correct runway point. Figure

4.26 displays the airspeed, radar altitude and angle-of-attack recorded from the aircraft

during this test. Note that the runway touchdown point corresponds to the 250 ft point

above the actual runway as described in the previous section.

Longitude = 117 51′ 44.730”W = −117 + (51.44773)/60 = −117.857445◦W

Latitude = 34 54′ 58.630”N = 34 + (54.58630)/60 = 34.909771◦N
(4.1)

Longitude = 117 51′ 44.730”W = −117 + [51 + 44.7730/60]/60 = −117.862425◦W

Latitude = 34 54′ 58.630”N = 34 + [54 + 58.630/60]/60 = 34.916286◦N

(4.2)

Table 4.6: Comparison of latitude and longitude values for VISTA flight testing.

FAA Database Incorrect Waypoints Correct Waypoins

(deg-min-sec) (deg) (deg)

EDW 34 58′ 56.500”N 34.976080◦ 34.98236◦

Vortac 117 43′ 57.380”W −117.72623◦ −117.732605◦

Rwy22 34 54′ 58.630” 34.909771◦ 34.916286◦

117 51′ 44.730”W −117.857455◦ −117.862425◦
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Figure 4.25: Outer loop controller ground track during autoland approach.

Figure 4.26: Outer loop controller airspeed, radar altitude and angle-of-attack during

autoland approach.



Chapter 5

Conclusion & Future Work

5.1 Conclusion

This work led to the development of autonomous navigation and landing controllers

for implementation on pre-existing aircraft. Techniques developed within this work were

compared to previously used methods for path determination and control for tracking the

desired trajectory. It was shown that the newly developed methods provide comparable

performance to previous work. The results of this work are beneficial as the role of UAVs

increases in both military and commercial applications.

The Rhumb-line navigation controller and associated velocity and altitude hold con-

trollers were implemented on a Lockheed-Martin F-16 aircraft. Results from the non-

linear simulation showed that the aircraft was able to successfully navigate from various

initial positions to a final way-point (vortac point). Once the vortac point was reached,

the controller was able to guide the aircraft along the pre-determined glideslope for the

purpose of autonomous landing.

The Rhumb-line controller also formed the basis of work for the guidance and control

system implemented on the RQ-2 Pioneer. With navigation and velocity hold controllers

similar to those on the F-16, the Pioneer aircraft was modeled as a Dubins vehicle

constrained to a two-dimensional surface. This proved to be beneficial in the development

and refinement of the Dubins path controller, as computation time for simulations was

significantly decreased. The Dubins path generation algorithm proved to be favorable

over the Rhumb-line controller as the aircraft takes a more direct path to the way-
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point. Another strength of the Dubins path algorithm was that it provided a closed-

form estimation of the time to way-point, which the Rhumb-line controller is unable

to provide without running a simulation with the desired initial and final conditions.

Sliding mode control was used on the Dubins simplified model as the already designed

Rhumb-line controller was inadequate for guiding the aircraft along the Dubins path.

The hybrid Dubins path/Rhumb-line controller provide a method for using the quick

Dubins path on the nonlinear aircraft model. Results from the Dubins path/Rhumb-

line controller showed that the nonlinear aircraft tracks the straight-path segment and

arrives at the way-point within 5% of the predicted time. The combined controller also

proved acceptable in guiding the aircraft to the final way-point in the presence of external

disturbance in the form of a wind gust.

The end result of this work are methods for autonomous navigation and landing of a

UAV for two types of aircraft. The implementation of the control scheme for the F-16

allows the aircraft to act as a drone without the expense of modifying internal flight

code, while on the RQ-2 Pioneer it allows for a decrease in the role of human interaction.

5.2 Future Work

The products of this work were two techniques for autonomous navigation and landing of

unmanned aircraft. The simulations completed demonstrate that the control techniques

work for nonlinear aircraft models. Future related work involves implementation and

simulation of the sliding mode controller onto a nonlinear aircraft model for improved

accuracy in trajectory tracking and the closed-form estimate of time to way-point. Re-

finements can also be made in regard to the Dubins path generation algorithm. At

present, the turning radius must be specified by the user. The effect of varying the turn-

ing radius on performance is an area open to investigation. The short-path case solution

is also worth consideration for comparison to the Rhumb-line navigation method when

the aircraft is already relatively close to the desired way-point.
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Appendix A

Switching Functions

Class a11 : unique solution

Class a12 : S12 = f(prsr, prsl, qrsl) = prsr − prsl − 2(qrsl − π)

Class a13 : S13 = g(trsr) = trsr − π

Class a14 :
S1

14 = g(trsr) = trsr − π

S2
14 = g(qrsr) = qrsr − π

Class a21 : S21 = f(plsl, prsl, trsl) = plsl − prsl − 2(trsl − π)

Class a22 :
ifα > β, thenS1

22 = f(plsl, prsl, trsl) = plsl − prsl − 2(trsl − π)

ifα < β, thenS2
22 = f(prsr, prsl, qrsl) = prsr − prsl − 2(qrsl − π)

Class a23 : unique solution

Class a24 : S24 = g(qrsr) = qrsr − π

Class a31 : S31 = g(qlsl) = qlsl − π

Class a32 : unique solution

Class a33 :
ifα < β, thenS1

33 = f(prsr, plsr, tlsr) = prsr − plsr − 2(tlsr − π)

ifα > β, thenS2
33 = f(plsl, plsr, qlsr) = plsl − plsr − 2(qlsr − π)

Class a34 : S34 = f(prsr, plsr, tlsr) = prsr − plsr − 2(tlsr − π)

Class a41 :
S1

41 = g(tlsl) = tlsl − π

S2
41 = g(qlsl) = qlsl − π

Class a42 : S42 = g(tlsl) = tlsl − π

Class a43 : S43 = f(plsl, plsr, qlsr) = plsl − plsr − 2(qlsr − π)

Class a44 : unique solution

(A.1)
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Appendix B

Simulink Diagrams

B.1 F-16 Control System

B.1.1 Outer Loop Conrol Law

Figure B.1 shows the overall architecture of the outer-loop controller built in Simulink R©. The

subsystem “Outer Loop Auto CLAW” (blue box in diagram is the developed controller con-

taining the altitude hold, velocity hold and Rhumb-line control navigation system. The three

yellow subsystems are the pitch, roll and yaw reverse gradient and breakouts.
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Figure B.1: Nonlinear Simulink model of F-16 outer-loop control architecture.
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B.1.2 Reverse Gradient/Gain and Breakout

Reverse Pitch Gradient and Breakout

Figure B.2 displays a Simulink R© diagram of the pitch reverse gradient and break out subsystem.

Figure B.3 shows the “reverse pitch gradient” subsystem in figure B.2.

Figure B.2: Pitch reverse gradient and breakout.

Figure B.3: Pitch gradient subsystem.

Reverse Roll Gradient and Breakout

Figure B.4 displays a Simulink R© diagram of the roll reverse gradient and break out subsystem.

Figure B.5 shows the “reverse roll gradient” subsystem in figure B.4. Note that figure B.5

contains two gradients based on the value of the commanded input.

Reverse Rudder Pedal Gain and Breakout

Figure B.6 displays a Simulink R© diagram of the rudder reverse gain and breakout.
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Figure B.4: Roll reverse gradient and breakout.

Figure B.5: Roll gradient subsystem.

Figure B.6: Rudder reverse gain and breakout.
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B.2 Open Loop Nonlinear Aircraft Model

Figure B.7: Non-linear simulink model.
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B.3 Rhumb-Line Navigation Controller

Figure B.8: Rhumb-line controller bearing angle calculation.
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Figure B.9: Rhumb-line controller course error calculation.
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B.4 RQ-2 Pioneer Control System

The RQ-2 Pioneer navigation control system is shown in figure B.10. The altitude hold inputs

are altitude, θ and φ. The input to the velocity hold controller is VT . The outputs of the

system are commands to the aileron and elevator control surfaces (δa and δe) and the throttle

command (δth).

Figure B.10: RQ-2 Pioneer Rhumb-line navigation controller.
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B.5 Dubins Aircraft Model

Figure B.11: Dubins aircraft model with Rhumb-line navigation controller. Note: “Way-

point Navigation” is identical to the nonlinear Waypoint Navigation subsystem.
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B.6 Sliding Mode Controller

Figure B.12: Dubins aircraft model sliding mode navigation controller.



Appendix C

RQ-2 Handling Qualities

C.1 Additional Plots

Step-Input to Elevator

Figure C.1: Orientation and rotation rates for δe elevator step-input. Closed-loop is

shown in blue, open-loop in red.

88



C.1. ADDITIONAL PLOTS 89

Figure C.2: Orientation and altitude for δe elevator step-input. Closed-loop is shown in

blue, open-loop in red.
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Rudder Doublet

Figure C.3: Orientation and rotation rates for δr rudder doublet. Closed-loop is shown

in blue, open-loop in red.

Figure C.4: Orientation and altitude for δr rudder doublet. Closed-loop is shown in blue,

open-loop in red.
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