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Abstract 

In order to demonstrate proton conductivity in an imidazole polymer system, novel 

composite proton exchange membranes were fabricated by casting films of 

poly[4(5)-vinylimidazole/vinylimidazolium trifluoromethylsufonylimide] and 

poly(vinylidene fluoride)], PVdF, from mixed dimethylformamide (DMF) solutions.  The 

phase, composition and morphology of these composites were examined by differential 

scanning calorimetry (DSC), and hot stage polarized microscopy.  Thermal stability was 

evaluated by thermal gravimetric analysis (TGA). Proton conductivity was in a fuel cell 

test fixture evaluated at GM Fuel Cell Activities in Honeoye Falls, NY.   

DSC thermograms were characterized by a crystalline melt for the PVdF component at 

∼169°C.  All composites displayed a well-form exothermic peak for recrystallization of 

PVdF at ∼121°C.  The melting and recrystallization characteristics of PVdF in the 

composites were substantially identical to those of pure PVdF.  In its homogeneous state, 

poly[4(5)-vinylimidazole/imidazolium trifluoromethylsulfonylimide] exhibited a glass 

transition temperature, Tg-mid, of -30°C.  A glass transition temperature was not 

observed for the poly[4(5)-vinylimidazole/imidazolium trifluoromethylsulfonylimide] 

phase in the blends, because the temperature was not scanned below 0°C in the DSC 

thermograms of the blends.  Incorporation of benzoyl peroxide resulted in a slight 

increase in crystallinity of the 3/1 and 4/1 compositions and a substantial increase in 

crystallinity of the 8/1 composite.  Crystallinity increased slightly as the volume fraction 

of PVdF was increased. 

Classic crystalline spherulites were observed in films cast from DMF and dried at 

temperatures below the melting point of PVdF.  On heating to 200°C on the hot stage 

microscope, crystals melted to reveal a rather amorphous dark field with thin worm-like 

inclusions which were presumed to arise from the poly[4(5)-vinylimidazole/imidazolium 

trifluoromethylsulfonylimide] phase.  On cooling to ambient temperature, the 

background field became progressively brighter, however, no structure that might be 

associated with the reformation of crystallites was observed.  This was presumably a 

result of submicroscopic size of the crystallites. 
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TGA spectra of the all composite films were characterized by two transitions, one at 

300°C corresponding to the decomposition of poly[4(5)-vinylimidazole/imidazolium], and 

one at 450°C which corresponds to the decomposition of PVdF. Mass loss corresponded 

well with the mass fractions of the two components of the composite. 

Proton conductivity was measured as a function of relative humidity at 80°C.  

Conductivity (0.05 S/cm) approaching that exhibited by Nafion® 112 (0.18 S/cm) was 

realized in the 4/1, PVdF/poly[4(5)-vinylimidazole/imidazolium] composite film.  

Substantial conductivity (0.02 S/cm) was also measured in the 3/1 composite films. No 

measurable proton conductivity was observed in films of the 8/1 composite.  We believe 

that this is the first instance in which such high proton conductivity levels have been 

realized in a polymer system where a Grotthuss mechanism of proton transport might be 

invoked.  These results are very exciting and may point the way to the preparation of 

membranes exhibiting high levels of proton conductivity at elevated temperature and low 

relative humidity. 
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Introduction and background 

In the present research, composite films of poly(vinylidene fluoride) (PVdF) and 

poly[4(5)-vinylimidazole/vinylimidazolium (2/1 molar) trifluoromethylsulfonylimide], 

poly[4(5)-VIm/VIm+TFSI-], were studied as potential proton exchange membranes for 

fuel cells.  

A proton exchange membrane (PEM) fuel cell, is a device for converting chemical 

energy into DC electricity and consists of three major components, two electrodes 

(anode and cathode) separated by a proton exchange membrane. At the anode, 

hydrogen is oxidized to give an electron and a proton; and at the cathode, oxygen is 

reduced to give an oxide anion. The electrons produced at the anode are transported, 

via an outer circuit which forms an electric current while the protons are transported, 

through the PEM, to the cathode where they react with oxygen anions, completing the 

circuit and the combustion process by producing water. An illustration of a typical fuel 

cell is showed in Figure 1.  

 
Figure 1. Illustration of a PEM fuel cell1  
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There are many different types of fuel cells, including: phosphoric acid fuel cells 

(PAFC), proton exchange membrane fuel cells (PEMFC), molten carbonate fuel cells 

(MCFC), solid oxide fuel cells (SOFC), alkaline fuel cells, regenerative fuel cells, 

zinc-air fuel cells (ZAFC), and protonic ceramic fuel cells (PCFC)2  Among these, 

proton exchange membrane fuel cells are the most promising device type for 

application in vehicular systems.  

Perfluorosulfonic acid membranes, typified by Nafion® and discovered in the late 

1960’s by Walther Grot at Dupont3 are the benchmark proton exchange membranes.  

Nafion® is a sulfonated tetrafluoroethylene copolymer. The polymer, shown in Figure 

2, has a perfluoroethylene backbone with sulfonated perfluoroether side chains.  

 

Figure 2.  Structure of Nafion 

Membrane thickness normally ranges from 25 to 175 µm and proton conductivity 

in perfluorosulfonic acid polymer membranes is of the order of 10-1 Scm-1 at 80°C and 

100% RH.4 These fluoropolymer membranes are used in chloro-alkali processing and 

can withstand harsh thermal-chemical environments. Working life times in fuel cells 

environment are in excess of >60,000 hours.5 The excellent thermal, mechanical and 

chemical/oxidative stability are provided by the tetrafluoroethylene backbone, whilst 

the sulfonic acid groups provide the proton conductivity.  

The critical functional deficiency of perfluorosulfonic acid polymers in PEMs is 

that proton conductivity in these materials is strongly dependent on the relative 

humidity.  As a result, when operating temperatures exceed 100°C, water is driven 

out of the system and the conductivity drops dramatically. In today’s engineering 

prototypes and demonstration vehicles, secondary humidification systems are needed 
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in order to maintain sufficient conductivity.   

Direct methanol fuel cells (DMFC) are proton exchange membrane fuel cells in 

which the fuel is methanol instead of hydrogen. While perfluorosulfonic acid 

membranes can be used in DMFCs, they are poor barriers for methanol.  

It is desirable to operate fuel cell stacks at elevated temperature because both the 

H2-PEMFC and the DM-PEMFC work better at elevated temperature. The H2-PEMFC 

will tolerate higher levels of carbon monoxide toxication at temperatures in excess of 

150°C. In the DM-PEMFC, the kinetics of the methanol oxidation reaction at the 

anode are faster at temperatures ranging from 130 to 200°C.   

The need for a PEM that retains a high level of proton conductivity at elevated 

temperatures and low RH has become known as the “high temperature membrane 

problem,”6 and there has been considerable research in the development of materials 

that might exhibit significant proton conductivity at low relative humidity, and 

elevated temperatures.  The literature presents at least four generic, materials-based, 

strategies: 
1. Ionomer membranes derived from sulfonated aromatic polymers. 

2. Membranes derived from mixtures of polymers containing basic groups (i.e., 
polybenzimidazole) and strong oxy acids (e.g., phosphoric acid or sulfuric 
acid). 

3. Sulfonic acid ionomer membrane composites with inorganic materials ranging 
from oxides to lamellar zirconium phosphates or phosphonates. 

4. Inert polymers filled with ionomers or inorganic particles possessing high 
proton conductivity.7 

Sulfonic acid ionomer membranes  

Aside from fluorosulfonic acid polymer membranes, the predominant types of 

sulfonated polymer membranes that are being explored as proton exchange membranes 

are sulfonated poly(arylene ether ketone) membranes and sulfonated poly(arylene 

ether sulfone) membranes.  Poly(arylene ether ketones) are polymers consisting of 

sequences of ether and carbonyl linkages between phenyl rings.  

Polyetheretherketone (PEEK) is a typical example which is commercially available 

(ICI Advanced Materials).  Figure 3 displays the structures of poly(ether ketone),PEK, 
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and poly(ether-ether ketone) PEEK. 
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Figure 3. Structures of poly(arylene ether ketones) 

Sulfonated poly(arylether ketones) may be obtained by sulfonation of preformed 

polymers or by condensation polymerization of bis-phenols with sulfonated aryl 

ketone precursors.8 The structure of sulfonated PEEK is shown below in Figure 4. 

O

O

.

.

O
HO3S

S-PEEK

 
Figure 4. Structure of sulfonated polyetheretherketone (S-PEEK)  

Sulfonated PEEK can be crosslinked to reduce membrane swelling and increase the 

mechanical strength of the membrane. Proton exchange membranes derived from 

sulfonated arylene ether ketones are comparable to commercial Nafion® in terms of 

their mechanical strength and proton conductivity.9  However, the conductivity of 

these kinds of membranes depends on the sulfonation level.  When the sulfonation 

level is high, the polymer becomes soluble in water.  The patent literature has claimed 

that cross-linked and non-cross-linked S-PEEK membranes could offer better 

performance than Nafion® at elevated temperatures and at lower levels of 

humidification.10 

The poly(arylether sulfone) family consists of phenyl rings separated by alternate 

ether and sulfone (-SO2-) linkages. Sulfonated derivatives of commercially available 

poly(arylether sulfone) Udel® (polysulphone, PSU) and Victrex® PES 

(polyethersulphone, PES) have been extensively studied. 
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Figure 5. Sulfonated poly(arylene ether sulfone) 

Proton conductivity in sulfonated poly(arylene ether sulfones) has been reported to be 

as high as 4x10-2 Scm-1 at 80°C;11 however, conductivity drops dramatically at higher 

temperatures.  Other problems include: excessive water uptake, membrane swelling, 

loss of mechanical strength and integrity, or even water solubility.  To overcome 

these problems, crosslinking has been tried, however, these deficiencies have not yet 

be satisfactorily ameliorated. 

Poly(4-phenoxybenzoyl-1,4-phenylene) (PPBP) is a relatively new poly(arylene 

ether ketone) that is being promoted by Maxdem, Inc. (USA) under the trade name 

Poly-X 2000. Structurally it is similar to PEEK.  Sulfonated PPBP is reported to 

exhibit proton-conductivity at 80°C as high as 9x10-2 Scm-1.12  This is better than that 

reported for S-PEEK at an equivalent sulfonation level.  The higher proton 

conductivity may be a result of increased water uptake. 

Overall, sulfonated polyarylene ethers are less expensive than Nafion®, however 

their proton conductivity is just as dependent on water content.13   

Polybenzimidazole/H3PO4 membranes 

Polymers containing basic ether, amine or imino groups doped with strong acids 

such as H3PO4 or H2SO4, (particularly polybenzimidazole/H3PO4 blends) are an 

extensively studied class of proton exchange membrane materials that have 

demonstrated good proton conductivity at elevated temperature.  Films of 

polybenzimidazole (PBI) doped with aqueous phosphoric acid have been studied by 
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Savinell et al.14  They found that the amount of phosphoric acid in the membrane 

determines the conductivity of the membrane.  Conductivity in the range 5x10-3 to 

2x10-2 Scm-1 was measured at 130°C.  Higher conductivity, 5 x10-2 Scm-1, was found 

at 190°C15.  PBI/H3PO4 membranes show good mechanical strength up to 200°C.  

Mechanical properties are reported to be better than Nafion®16 Proton conductivity at 

operating temperatures outlooked for vehicular fuel cell stacks, however, is lower than 

that for Nafion® systems.  Moreover, the durability of PBI/H3PO4 membranes is poor, 

due to the fact that H3PO4 is leached from the membrane. The leached acid can poison 

electrodes and accelerate their corrosion.  The methanol permeability of PBI/H3PO4 

membrane, also is high10. 

Composites with inorganic materials  

Sulfonic acid ionomer membrane composites with inorganic materials ranging from 
oxides to lamellar zirconium phosphates or phosphonates. 

Watanabe, Stonehart17 and their coworkers reported that Nafion®/SiO2 composites 

were advantageous in the fabrication of H2/O2 solid polymer electrolyte fuel cells. 

Antonucci et al.,18
 
reported the stable operation of a composite Nafion®/SiO2-based 

liquid-fed direct methanol fuel cell working at 145°C. Peak power densities of 250 and 

150 mW/cm2 were achieved in oxygen and air, respectively.  Mauritz and coworkers 

have prepared nanocomposites of Nafion® with SiO2, TiO2, Al2O3, and ZrO2 via in situ 

sol-gel reactions of their respective alkylalkoxysilanes19,20,21,22,23 and suggested the 

potential for these nanocomposites as fuel cell membranes.  Costamagna and 

coworkers 24  reported that composite Nafion®/Zirconium phosphate membranes 

prepared by impregnation of Nafion® 115 or recast Nafion® with zirconyl chloride 

and 1 M phosphoric acid yielded membrane electrode assemblies that gave 1000-1500 

mA/cm2 at 0.45V and 130° C and a pressure of 3 bar in a H2/O2 proton-exchange 

membrane fuel cell. A problem for these types of membranes might be the reactant 

cross over.25 
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Inert polymers filled with ionomers or inorganic particles  
possessing high proton conductivity. 

Many Attempts to fill the pores of polymeric membranes with finely dispersed 

precipitates of inorganic proton conductors have been reported.  Voids in porous inert 

polymer such as porous Teflon® can be filled with a solution of a metal (IV) alkoxide. 

Insoluble metal (IV) hydrous oxide is formed directly inside the membrane pores, by 

exposing this membrane to wet air. Protonic conductivity of these membranes can be 

enhanced by treatment with phosphoric acid, which converts the metal (IV) hydrous 

oxide into its acid phosphate.7  Alternative treatments between a solution of a zirconyl 

chloride and phosphoric acid can be used to allow the direct precipitation of 

amorphous ZrP within the membrane pores26.  Peled et al.,27 reported the fabrication 

of a nanoporous proton-conducting membrane that consists of a ceramic nanopowder 

(SiO2), PVDF and an acid and its application in a direct methanol fuel cell. 28  

Nevertheless, the conductivity of this type of membranes is extensively dependent on 

particle-particle paths connecting the external faces of the membrane.  The 

conduction becomes satisfying only for high contents (>50% V/V) of added particles 

whereby the strength of the composite membrane becomes a problem.7 

Imidazole Systems  

The present research was stimulated by the notion, promoted by Kreuer et al.,9 that, 

in imidazole-containing membrane systems, proton transport by a Grotthuss 

mechanism 29 , 30  might enable anhydrous proton conductivity.  The Grotthus 

mechanism entails the concerted transfer of a proton through a proximate chain of 

hydrogen-bonded molecules (See Figure 6). Protons can thus be transported at a rate 

even faster than molecular diffusion.  
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Figure 6.  Grotthus mechanism of proton transport through water molecules 

Similarly, it would seem that H-bonded sequences of imidazole molecules could 

transport protons via a Grothuss mechanism (see Figure 7 ).  
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Figure 7. Grotthus mechanism of proton transport through imidazole molecules 

Membranes containing imidazoles would therefore be promising materials to employ 

in a PEM working at elevated temperature if they did indeed exhibit significant proton 

conductivity by a Grotthuss mechanism. 

Meilin Liu and coworkers have extensively studied the possibility of developing 

triazole containing PEMs. They found that, by imbibing 1H-1,2,3-triazole into a 

sulfonated polysulfone (sPSU) polymer membrane, conductivity up to 0.01 S/cm was 

realized at 100°C under dry conditions.  Because of the low conductivity of sPSU 

under these conditions, the high conductivity was mainly attributed to triazole. They 

proposed two conduction mechanisms, long-range translative motion of the triazole 

groups, and intermolecular proton transfer between adjacent triazole groups. By 

synthesizing polymers bearing pendant triazole groups, they also showed that proton 

mobility in triazole polymer was substantially greater than that reported for 

poly(4-vinylimidazole). . Study of cyclic voltammograms (CVs) for 1H-1,2,3-triazole 

and imidazole showed that triazole has better electrochemical stability than 

imidazole.31,32  Figure 8 displays a plot of proton conductivity versus temperature for 

imidazole and triazole polymers presented in the publication by Meilin Liu, et al.31  
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Figure 8. 

Proton conductivity of poly(4-vinyl-1H-1,2,3-triazole) and poly(4-vinylimidazole) 

Both poly[4(5)-vinylimidazole] and poly(4-vinyl-1H-1,2,3-triazole) exhibit some level 

of proton conductivity however, conductivity exhibited by these polymer is orders of 

magnitude lower than that provided by fluorosulfonic acid membrane systems. 

Rasmussen and coworkers33 have extensively studied the hydrogen bonding effect 

on proton mobility in dicyanoimidazole monomer and polymers. They found that both 

2-vinyl-4,5-dicyanoimidazole and its polymer are extensively hydrogen bonded and 

show proton mobility in solid state.  Poly(2-vinyl-4,5-dicyanoimidazole) is soluble in 

a number of polar solvents, including dimethylformamide (DMF), methanol and 

acetonitrile.  Films cast from these solutions were brittle. When films of 

poly(2-vinyl-4,5-dicyanoimidazole) were annealed, in vacuo, at temperatures in excess 

of 100°C, they became hard and insoluble. By studying the chemical shift trend 

observed as a function of temperature Rasmussen proposed that poly(2-vinyl-4,5- 

dicyanoimidazole) has great proton conductivity at high temperatures because of a 

proton conductivity mechanism which combines “vehicle” (molecular diffusion) and 

Grotthus (structural diffusion). 

Pu, Meyer and Wegner34 studied proton conductivity of poly[4(5)-vinylimidazole] 

blended with H3PO4 and H2SO4.  However, the polymer was more that 100% 

protonated, accordingly conductivity was characteristic of the conductivity of the 
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respective acids.  The conductivity of the blends increased as the temperature was 

increased.  They postulated that proton conductivity in these blends was a result of 

both proton hopping and polymer segmental movement. As the temperature 

approached and exceeded the glass transition temperature, segmental motion of the 

polymer increased, resulting in better conductivity.  They also found that the 

conductivity of poly[4(5)-vinylimidazole] protonated with H2SO4 was higher than that 

of poly[4(5)-vinylimidazole] protonated with H3PO4.  This was ostensibly because 

H2SO4 is a stronger acid than H3PO4.  

Bozkurt and coworkers also investigated the proton conductivity in 

poly(4-vinylimidazole) protonated with phosphoric acid. They found that 

poly(4-vinylimidazole) protonated with different level of phosphoric acid was 

thermally stable up to 150°C.  The glass transition temperature of the 

poly(4-vinylimidazole) protonated with 200 mole % phosphoric acid was reported to 

be about 0°C.  The glass transition of the poly(4-vinylimidazole) protonated with 100 

mole % of phosphoric acid was 80°C.  A glass transition temperature was not 

observed in poly(4-vinylimidazole) itself.35  

Recently, Masayoshi Watanabe and coworkers36 characterized the melting, ionic 

conductivity and proton conductivity of the system comprised of 

bis-trifluoromethylsulfonylimide and imidazole under anhydrous conditions.  The 

melting point of the neutral, stoichiometric, salt was 73°C.  The melting points of 

non-stoichiometric mixtures were lower than that of the equimolar salt.  Some were 

liquid at room temperature.  In mixtures with excess imidazole, conductivity 

decreased with increasing levels of TFSI.  Self-diffusion coefficients, measured by 

pulsed-gradient spin-echo NMR methods, indicated that fast proton exchange was 

occurring between protonated imidazole cations and neutral imidazole moieties.  

Proton conduction was presumed to occur by a combination of Grotthuss and 

vehicle-type mechanisms.  Proton conduction was confirmed by direct current 

polarization measurements.  Reduction of molecular oxygen was observed at the 

interface between a Pt electrode and IM/TFSI ionic liquids. 

Fuller and coworkers37 developed ionically conductive, rubbery gel electrolytes 
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comprised of copoly(vinylidene fluoride/hexafluoropropylene) PVdF/HFP plasticized 

with room temperature ionic liquid imidazolium salts. Ionic conductivity levels as high 

as 1.1-5.8 mS/cm at room temperature were reported. These conductive gel 

electrolytes, based on ionic liquid imidazolium salts and PVdF/HFP, are nonvolatile 

and thermally stable and were successfully operated at temperatures up to 200°C.  

We chose to study PVdF/poly[4(5)-vinylimidazole/imidazolium 

trifluoromethylsulfonylimide] composites because;   

1. the close proximity and high volume density of imidazole groups, 
poly[4(5)-vinylimidazole] or block copolymers thereof were thought to offer an 
excellent platform for maximizing proton conductivity by a Grotthuss 
mechanism. 

2. PVdF is a soluble, melt-processible, polymer that has excellent 
chemical/oxidative and thermal stability. 

3. as was reported by Fuller, PVdF can be plasticized by small molecular 
quaternary imidazolium room temperature ionic liquids, and 

4. Watanabe et al. demonstrated significant proton conductivity in fractionally 
protonated imidazole systems.  

Experimental 

Materials 

Urocanic acid (99%), iodomethane (99%), picric acid, dimethylsulfate (99%), 

1,1,1,3,3,3-Hexamethyldisilazane (98%), and dibenzoyl peroxide were obtained 

from Acros Organics. Chloroform (99.8%), 4-methoxyphenol (99%), 

trifluoromethanesulfonylimide (TFSI) (95%), and 4-methoxyphenol (99%) were 

purchased from Aldrich Chemical Company Inc. Milwaukee, WI. 

N,N’-dimethylformamide (DMF) was purchased from SIGMA Chemical Co. St. 

Louis, MO. Pentane, potassium hydroxide pellets (Baker Analyzed), potassium 

carbonate (anhydrous), EMD chemicals Inc, benzene Tokyo Kasei Kogyo Co. Ltd. 

and ethyl alcohol Pharmco products Inc (absolute anhydrous) were purchased 

through VWR, Bridgeport, NJ. Kynar® 301F poly(vinylidene fluoride), was 

obtained from Atochem North America, Inc..  
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4(5)-vinylimidazole  

4(5)-vinylimidazole was prepared by decarboxylation of urocanic acid in 

accordance with the procedure published by Overberger et al.38 Thus, 1.72 grams 

of anhydrous urocanic acid was charged to a short path distillation apparatus. The 

apparatus was then immersed in a 220°C oil bath and 4(5)-vinylimidazole distilled 

over under vacuum over a period of four and a half hours.  The crude monomer 

crystallized upon refrigeration for 48 hours, yielding 0.77 grams (65.7% yield)of 

product. Crude 4(5)-vinylimidazole was purified by sublimation. In a typical 

purification process, 2 grams of 4(5)-vinyl imidazole was placed in a small 

sublimator. The system was evacuated and immersed in a 70°C oil bath. White 

quickly formed on the cold finger and  after 4 hours 1.78 grams (89 %) of pure 

4(5)-vinyl imidazole was collected.  The monomer was stored in a freezer at 

∼0°C. 

Polymerization of 4(5)-vinylimidazole in benzene solution 

1.25 grams (13 mmol) of sublimed 4(5)-vinyl imidazole and 0.02 grams (0.12 

mmol) of azo-bis-isobutylnitrile (AIBN) were dissolved in 10 ml benzene and 

placed in a sealed tube.  The monomer solution was degassed by subjecting the 

material in the tube to at least three evacuation, freeze and thaw cycles.  After the 

final freeze thaw cycle, the contents of the tube were frozen and the tube was 

sealed.  The sealed polymerization tube was then placed in a 65°C oil bath for 48 

hours.  Polymer precipitated from the benzene solution as it was formed.  Upon 

completion of the polymerization, the tube was opened, benzene was decanted and 

the polymer was dissolved into 10 ml methanol. Poly(4,5-vinylimidazole was 

reprecipitated in benzene by drop wise addition of the methanol solution in 150 ml 

of benzene yielding 1.9 grams of pure poly[4(5)-vinylimidazole] which was 

collected by filtration. 

Polymerization of 4(5)-vinylimidazole in ethanol/water solution 

1 gram (10.6mmol) of sublimed 4(5)-vinylimidazole was dissolved in 10ml 

ethanol/water solution (1 to 1). 4,4-azobis(4-cyano-valeric acid), 0.014 grams, was 



 

13 

added to the solution and the solution was then charged to a Carius tube. The tube 

was subjected to three freeze-thaw cycles, sealed in vacuo, and immersed in a 65°C 

oil bath for ∼16 hours.  A clear viscous solution was obtained.  The polymer 

ethanol/water solution was put into a 2000 molecular weight cut-off dialysis bag. 

The membrane was tied and the bag was tied, placed in a Soxhlet extractor and 

extracted with refluxing benzene for 48 hours. Poly[4(5)-vinylimidazole] 

precipitated in the bag as benzene diffused in.  After drying in an evacuated 

desiccators, 0.6 grams of pure poly[4(5)-vinylimidazole] was collected. 

15 Weight % solution of PVdF in DMF 

A 15% by weight solution of PVdF in DMF was prepared by dissolving 2 

grams of kynar®301 into 13.5 ml DMF.   

15 Weight % solution of poly[4(5)-vinylimidazole] in DMF 

2.2 grams (23.4 mmol) of poly[4(5)-vinylimidazole] {poly[4(5)-VIm]} was 

charged to a disposable test tube. 3.36 grams (11.7 mmol) of 

trifluoromethylsulfonylimide (TFSI) was added to the test tube along with 15 ml DMF 

to yield a homogeneous solution of poly[4(5)-vinylimidazole/imidazolium(2:1molar)] 

{poly[(4(5)-VIm/VIm+TFSI](1/0.5)M}. 

PVdF/poly[(4(5)-VIm/VIm+TFSI] composite films 

PVdF/poly[4(5)-VIm/VIm+TFSI](1/0.5)M](3/1)v 

A homogenous composite solution was made by mixing 3 ml of the 15% 

Weight % solution of PVdF in DMF with 1 ml of 15 Weight % solution of 

poly[4(5)-vinylimidazole in DMF  Films were prepared by drawdown casting 

onto a 5” x 7” glass plate mounted on a perforated vacuum drawn down table 

which was covered with a sheet of 1024 bond paper.  Thus, the gap of an 

adjustable drawn wedge (doctor blade) was set at 20 mil and 4 ml of the composite 

solution was drawn down.  It was anticipated that the thickness of the resultant, 

dried film would be about 50 µm. After the film was dried at room temperature for 

an hour, it was annealed on a hot plate annealing at 100°C for 24 hours to yield an 
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opaque white film.  This process was repeated to prepare several films.  Some of 

the films, initially dried at 100°C for 24 hours, were subsequently heated, under Ar, 

at 200°C for 5 min.  The effect of being heated to 200° C was that the films 

became substantially transparent. The average thickness of the films dried at 100°C 

was 0.0045inches.  After heating to 200°C, the average thickness was 0.0015 

inches. 

PVdF/poly[4(5)-VIm/VIm+TFSI](1/0.5)M](4/1)v 

Films of the above composition were prepared by an analogous procedure to 

that used to prepare the (3/1)v composite.  The average thickness of the films 

dried at 100°C was 0.0040 inches.  After heating to 200°C, the average thickness 

was 0.00175 inches. 

PVdF/poly[4(5)-VIm/VIm+TFSI](1/0.5)M](8/1)v 

Films of the above composition were prepared by an analogous procedure to that 

used to prepare the (3/1)v composite.  The average thickness of the films dried at 

100°C was 0.0045inches.  After heating to 200°C, the average thickness was 

0.0015 inches. 

Crosslinked PVdF/poly[4(5)-VIm/VIm+TFSI](1/0.5)M] composite films 

Dibenzoylperoxide was added to (3/1), (4/1) and (8/1)v solutions of 

PVdF/poly[4(5)-vinylimidazole/imidazolium 2:1 molar in DMF in order to 

promote crosslinking within the film.   Peroxide was incorporated at two levels 

1% and 0.1%. The peroxide-doped films were dried at lab ambient temperature for 

one hour and directly heated at 200°C, under Ar, for 5 minutes.  The compositions 

containing 0.1% by weight of peroxide became substantially transparent, just like 

those that were not doped with peroxide.  The compositions doped at 1% by 

weight of peroxide cracked after they were annealed at 200°C. 

Characterization of the composite films 

Differential Scanning Calorimetry (DSC) 

DSC analysis was conducted on a TA instruments DSC 2010 with a low 

temperature measuring head and liquid nitrogen cooled heating element. Sample 
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pans were heated and cooled at a rate of 10°C/min. All the samples were subjected 

to multiple heating and cooling cycles. Protonated poly[4(5)-vinylimidazole], pure 

PVdF, and films with 3 different polymer compositions before and after annealing 

at 200°C were studied by DSC. 

Thermal gravimetric analysis (TGA) 

TGA of all the samples were carried out on a TGA 2050 thermal gravimetric 

analyzer.  The typical running process for TGA here is first heating up the 

materials to 800°C at a rate of 10°C/min and then holding the temperature at 800°C 

for 2 minutes. The protonated poly[4(5)-vinylimidazole], pure PVdF, and films 

with 3 different polymer compositions before and after annealing at 200°C were 

studied by TGA 

Polarized, hot-stage microscopy  

Polarized hot-stage microscopy was carried out on a Nikon Eclipse E600 POL 

with an INSTEC STC200 temperature control stage. The samples were heated and 

cooled from 0°C to 200°C at a rate of 10°C/minutes. Micrographs were taken every 

10 minutes. 

Conductivity Measurements 
The conductivity was evaluated in a fuel cell test fixture at 80°C and at relative 

humidity (RH) levels ranging from 0 -100% RH.  Proton conductivity was 

evaluated by Dr Timothy Fuller at General Motors Global Alternative Propulsion 

Center, Honeoye Falls, NY.  Electrical resistance was measured in the in-plane 

direction of the membrane with varied relative humidity and temperature.  The 

apparatus consisted of a 4-point probe, with an a direct current applied via a 

computer assisted Gamry card  serving as a potentiostat and using a BekkTech 

cell (Loveland, CO) with a 5-cm2, straight-flow-field made of Poco graphite, with 

heated metal end-plates (Fuel Cell Technologies hardware).  The membrane 

sample size was 0.9 cm x 4.5 cm. The hardware was equipped with an external 

humidifier. Membrane thickness was measured using a Mitutoyo micrometer. A d.c. 

voltage sweep was applied over the range between 0.05 and 0.6V, across the inner 

electrodes (sense and reference) by increasing current at the outer probes (working 
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and counter).  The current i was measured and plotted against voltage, and the 

slope of the line was the sample resistance. Measurements of conductivity were 

made as function of percent relative humidity and temperature, usually at 80oC.   

Dry membrane thickness was measured with a micrometer and this value was used 

in the conductivity calculations.   

R = resistivity (ρ) x L/A =( Va-Vb)/R = Vab/R 

The electrical conductivity, σ, of a material is the reciprocal of ρ and i = σ A 

(Va-Vb)/L, where L is the distance between 2 points on a conductor and i/A is the 

current per unit cross-sectional area. 

 

Figure 9. Illustration of testing cell 

Resistance in terms of bulk resistivity is: 

R = ρL/A = ρL/(WT) 

ρ = RWT/L 

σ = 1/ ρ =L/(RWT) 

A piece of membrane (0.9 cm x 4.5 cm) was die-cut from the as-received membrane 

using a custom-made Paragon die. The membrane was placed in a BekkTech 

conductivity cell with platinum electrodes set-up as a 4 point probe.  The 

BekkTech cell was placed in fuel cell hardware with graphite straight flow field 

design with heaters and temperature control set at 80oC, and a humidifier 

maintained the relative humidity at a predetermined set point between 20 and 100% 

relative humidity.  The flow of hydrogen was 2 standard liters per minute.  A 

Gamry Instruments potentiostat card, installed in a lab-grade personal computer, 

was used for the DC conductivity measurements.  The applied voltage sweep 
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across the inner electrode probes (sense and reference) was performed over the 

range from 0.05 to 0.6 V by increasing the current across the outer electrodes 

(working and counter).  The current was simultaneously measured and plotted 

against voltage.  The slope of the plot yielded the sample resistance.  

Conductivity was determined with relative humidity at 10% relative humidity 

increments starting at 20% and ending at 100% relative humidity.  Equilibration 

times at the respective relative humidity values was greater than 30 minutes. In the 

case of the specific PVDF samples, conductivity was measured from 100% to 20% 

relative humidity and then back up, from 20% to 100% relative humidity.  The 

high relative humidity values did not repeat, suggesting there are issues with 

membrane stability.  Lower conductivity at 100% relative humidity in the repeat 

measurements suggests that the conducting species might be washing out of the 

membrane.  

Nuclear magnetic resonance (NMR) 

Nuclear magnetic resonance or NMR was used to confirm the structure of 

vinylimidazoles synthesized in this research. The NMR was carried out on a 

Bruker 300Hz NMR. 
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Results and discussions 

In order to demonstrate proton conductivity in an imidazole polymer system, novel 

composite proton exchange membranes were fabricated by casting composite films of 

poly[4(5)-vinylimidazole/vinylimidazolium trifluoromethylsufonylimide] 

{[poly[4(5)-VIm/VIm+TFSI](1/0.5)M]} and poly(vinylidene fluoride), PVdF, from 

mixed dimethylformamide, DMF, solutions.  The phase composition and morphology 

of these composites were examined by differential scanning calorimetry, and polarized 

hot-stage microscopy.  Thermal stability was evaluated by TGA. Proton conductivity 

was evaluated at GM Fuel Cell Activities in Honeoye Falls, NY.  The present work 

differs from that which was previously done in poly[4(5)-vinylimidazole] systems in 

that previous researchers either examined films of the neutral polymer39 or systems in 

which poly[4(5)-vinylimidazole] was used as a basic polymer medium in which an 

excess of protic acid was dissolved.34 These systems were essentially variants of the 

liquid protic acid fuel cell systems35 in which electrolyte bleed is a debilitating 

problem. 

The reports by Watanabe and Susan et al.,17 in which significant levels of proton 

conductivity (~0.1 S/cm at 130°C) were measured in ionic liquid compositions 

comprised of imidazole fractionally protonated with trifluomethylsulfonylimide, 

stimulated us to examine fractionally neutralized poly[4(5)-vinylimidazole] systems. 

 
Figure 10. Conductivity as a function of the mole fraction of imidazole 
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Figure 10, was taken from Susan and Watanabe’s, 2004 J Phys. Chem. paper and 

shows that the ionic conductivity of the imidazole/TFSI system was maximized at a 

neutralization fraction of about 0.10. While the fractionally neutralized liquid ionic 

system exhibited high proton conductivity, its utility in a practical membrane electrode 

assembly, would be limited by issues of containment and bleed like those encountered 

in liquid protic acid systems.40 

In order to facilitate dissolution in DMF, poly[4(5)-vinylimidazole] was protonated 

with 50 mole percent of TFSI.  Films of poly[(4(5)-VIm/VIm+ TFSI](1/0.5)M, 

however, were tacky, gooey resinous materials.  DSC analysis indicated a glass 

transition of ∼-30°C.  In order to enhance mechanical strength, a polymer blend 

strategy was adopted.  PVdF is soluble in DMF and has been shown to be a 

chemically stable and thermally stable material with good mechanical and gas 

permeability properties.37  Accordingly, it was chosen as the film-forming matrix in 

our composites.  Homogenous solutions of PVdF/poly[(4(5)-VIm/VIm+ 

TFSI](1/0.5)M in DMF were prepared and films were cast therefrom. Films were cast 

from DMF solutions with different volume fractions of PVdF and 

poly[(4(5)-VIm/VIm+ TFSI](1/0.5)M.  Films were characterized by DSC, polarized 

light microscopy (PLM), and TGA. Conductivity was evaluated by Dr Timothy Fuller 

at General Motors Global Alternative Propulsion Center, Honeoye Falls, NY. 

A. Fabrication of PVdF/poly[4(5)-vinylimidazole/imidazolium TFSI] composite films 

As was described in the Experimental Section, composite films were cast from 

DMF solutions of poly[(4(5)-VIm/VIm+ TFSI] and PVdF.  Three compositions were 

prepared in which the volume fraction of PVdF was 0.66, 0.75 and 0.89, respectively. 

After the films were dried at room temperature for an hour, they were put on a hot plate 

and dried at 100°C for 24 hours.  Opaque, white films, like that showed in Figure 11, 

were obtained with all three compositions.  



 

20 

 

Figure 11. Picture of a typical composite film dried at 100°C 

The films were brittle and had little mechanical strength.  However, on annealing 

under Ar, at 200°C for a mere 5 minutes, the films became transparent and strong.  

The annealed composite film with the highest poly[(4(5)-VIm/VIm+ TFSI](1/0.5)M 

content (25 volume %) is shown in Figure 12. 

 
Figure 12. Picture of composite film containing 25 volume % 

poly[(4(5)-VIm/VIm+ TFSI](1/0.5)M, annealed at 200°C 

Given the fact that PEMs must work in a humidified environment and the water 

solubility of protonated poly[4(5)-VIm], it was suspected that the protonated 

poly[4(5)-VIm] might be extracted from the composite films by water.  Accordingly, 

all films were weighed, extracted with distilled water for 48 hours at ambient 
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temperature and dried to constant weight.  The 8/1, 4/1 and 3/1 films lost 16.7, 26.1 

and 30% of their original mass, respectively.  The data is summarized in Table 1 

PVdF/poly[4(5)-VIm/VIm+ 
TFSI] ratio 

Original 
mass (g) 

Final mass 
(g) 

Percent 
Mass lost 

8 to 1 0.0168 0.0140 16.7% 

4 to 1 0.0337 0.0249 26.1% 

3 to 1 0.0447 0.0313 30.0% 

Table 1. Extraction of PVdF/poly[4(5)-VIm/VIm+TFSI] Composite Films 

Clearly, almost all of the poly[4(5)-VIm/VIm+ TFSI] was extracted.  For the 8 to 1 

composite, complete extraction of poly[4(5)-VIm/VIm+ TFSI] would result in a 12.5% 

weight loss; a 16.7% weight loss was measured.  For the 4 to 1 composite, complete 

extraction of poly[4(5)-VIm/VIm+ TFSI] would result in a 25% weight loss; a 26.1% 

weight loss was measured. For the 3 to 1 composite, complete extraction of 

poly[4(5)-VIm/VIm+ TFSI] would result in a 33% weight loss; a 30% weight loss was 

measured. 

In order to prevent extraction of the protonated imidazole polymer by water, we 

attempted to crosslink the composite films.  Dibenzoyl peroxide was used to generate 

free-radicals. Two sets of films were cast from DMF solutions of PVdF/ 

poly[4(5)-VIm/VIm+ TFSI] doped with 1 mole % and 0.1 mole % dibenzoyl peroxide. 

The films were dried at ambient temperature in air for 4 hours, heated at 70°C for 2 

hours and annealed at 200°C for 5 minutes. The set of composite films doped with 1 

mole % dibenzoyl peroxide were extensively cracked, an apparent result of substantial 

crosslinking.  The appearance of the set of composite films doped with 0.1 mole % of 

dibenzoyl peroxide was identical to that of films cast without peroxide.  They were 

transparent and strong and no cracks could be detected by the naked eye.  This set of 

films was extracted with water as in the protocol described above for the peroxide-free 

films.  The 8/1, 4/1 and 3/1 films lost 2.6%, 3.1% and 7.6% of their original mass, 



 

22 

respectively.  The data is summarized in Table 2. 

PVdF/poly[4(5)-VIm/VIm+ 
TFSI] ratio 

Original 
mass(g) 

Final mass 
(g) 

Percent 
Mass lost 

8 to 1 0.0234 0.0228 2.6% 

4 to 1 0.0310 0.0298 3.1% 

3 to 1 0.0367 0.0339 7.6% 

Table 2. 
Extraction of Crosslinked PVdF/poly[4(5)-VIm/VIm+TFSI] Composite Films 

Clearly crosslinking films reduced the mass loss upon water extraction of the 

composite films. It thus appears that robust composite films in which protonated 

poly[4(5)-vinylimidazole] is substantially fixed and immobilized can be realized by 

simply incorporating a small amount of peroxide in the film prior to drying and 

annealing.  

The thicknesses of the composite films were compared before and after annealing 

at 200°C.  The thickness of each film was measured in the 5 positions shown in 

Figure 13 

 
Figure 13. Illustrated positions at which thickness was measured 

The measured thicknesses of the crosslinked films before annealing are summarized in 

Table 3. 
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Film thickness at specified position in mils 
Before/After annealing PVdF/poly[4(5)-VIm/VIm+ 

TFSI] ratio 
1 2 3 4 5 

8 to 1 4.75/1.5 5.0/1.5 4.0/1.4 4.25/1.5 4.0/1.5 

4 to 1 4.0/1.75 4.1/2.0 3.5/1.5 4.0/1.75 3.6/1.75 

3 to 1 4.5/1.0 4.6/1.2 4.5/1.5 4.4/1.5 4.2/1.5 

Table 3. Table of thickness of films before and after annealing at 200°C 

Annealing at 200°C resulted in a significant, 300%, reduction in the thickness of 

the films.  Given no apparent change in the dimensions of films that were thoroughly 

dried at 100°C prior to annealing at 200°C and the substantially increased strength and 

clarity of the annealed films, it might be reasonably concluded that the thinning of the 

films was a result of densification.  

B. Characterization of the composite films 

The composition and morphology of composite films were examined by 

differential scanning calorimetry and polarized hot-stage microscopy.  Stability at 

elevated temperature was assessed by thermal gravimetric analysis. 

1. Polarized light microscopy (PLM) 

Hot-stage, polarized light microscopy was used to examine the changes of 

morphology of the composite films. Polarized light microscopy is a technique used to 

reveal anisotropic properties of materials. In this research, crystallites are anisotropic 

and the amorphous component is dark under polarized microscope. Figure 14 displays 

a polarized micrograph of a film cast, at room temperature, from the 3 to 1 by volume 

PVdF/poly[4(5)-VIm/VIm+TFSI]  polymer blend. The inset picture in the top left 

corner of Figure 14 shows an unmagnified picture of that film. The dark areas in the 

polarized micrograph are ostensibly amorphous regions perhaps rich in 

poly[4(5)-VIm/VIm+TFSI]; the bright birefringent areas must be substantially 

comprised of crystalline PVdF.  
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Figure 14. Hot stage micrograph of 3/1 film at room temperature 

When this film was heated to 200°C, at a rate of 10°C per minute, and held at 200°C 

for 5 minutes; its hot-stage micrograph changed to appear as shown in Figure 15. At 

this point, the PVdF crystals have apparently melted and one sees a somewhat brighter, 

but still darkened, field typical of an amorphous melt, with brighter worm-like 

inclusions.   

 
Figure 15. Hot stage micrograph of 3 to 1 film at 200°C 

After cooling to ambient temperature at a rate of 10° per minute, the polarized 

micrograph shown in Figure 16 was obtained.  The field in this micrograph is quite 

bright. 
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Figure 16. Hot stage micrograph of 3 to 1 film  

at room temperature after annealing at 200°C 

The picture inset in the top left corner of Figure 16 shows what the film looks like to 

the naked eye after it was annealed at 200°C for 5 minutes.  The film now is clear and 

a lot stronger than it was before annealing.  The bright field of the polarized light 

micrograph is presumably a result of the fact that sub-microscopic crystals are 

uniformly dispersed in this film.   

Similar behavior was observed in hot-stage micrographs of the 4 to 1 

PVdF/poly[4(5)-VIm/VIm+ TFSI] polymer blend (shown in Figures 17-19).  

Figure 17 
Hot-stage micrograph of 4/1 

film at room temperature 

Figure 18 
Hot-stage micrograph of 4/1 

film at 200°C 

Figure 19 
Hot-stage micrograph of 4/1 

film at room temperature 
after annealing at 200°C 

In the hot-stage micrographs of the 8/1 blend (shown in Figure 20-22), little change 

was seen in the before and after the annealing micrographs.  This is ostensibly a result 

of the small volume fraction of poly[4(5)-VIm/VIm+ TFSI] in the 8/1 blend. 
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Figure 20 
Hot-stage micrograph of 8/1 

film at room temperature 

Figure 21 
Hot-stage micrograph of 8/1 

film at 200°C 

Figure 22 
Hot-stage micrograph of 8/1 

film at room temperature 
after annealing at 200°C 

 

Hot-state microscopy of the films cast from the 3/1 by volume 

PVdF/poly[4(5)-VIm/VIm+TFSI]  polymer blend doped with 0.1% 

dibenzoylperoxide yielded micrographs that were similar to those obtained with the 

peroxide-free 3/1 composite. 

2. Differential Scanning Calorimetry (DSC) 

PVdF is a well-studied semicrystalline polymer and exhibits a crystalline melt at 

166-170°C41.  In carrying out our DSC analyses, a typical protocol was to first ramp 

to 60°C and cool to 0°C at a rate of 20°C/minute.  The sample was then ramped to 

200°C at a rate of 10°C/minute and held at 200°C for 5 minutes.  The sample was then 

cooled to 0°C at a rate of 10°C/minute and held at 0°C for 5 minutes.  Thus, the first 

scan was completed.  This cycle was repeated until two DSC traces overlapped, being 

virtually identical.  Figures 23 and 24 display stack plots of heating and cooling 

curves for three DSC cycles of pure PVdF.   
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Figure 23. Stack plot of heating cycle scans of PVdF. 

The melt endotherms in the three DSC heating cycle scans of PVdF, shown in Figure 

23, overlap and indicate a melting point of ∼167°C.  

 

Figure 24. Stack plot of cooling cycle scans of PVdF 

The crystallization exotherms in the three DSC cooling cycle scans of PVdF, shown in 

Figure 24, overlap and indicate recrystallization at a peak temperature of 127°C.  
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Poly[4(5)-vinylimidazole] is an amorphous polymer and would be expected to 

exhibit a glass transition.  However, Figure 25 shows no glass transition in the DSC of 

poly[4(5)-vinylimidazole] in the temperature range between 50 and 200°C.   

 

 
Figure 25. Heating cycle scans in DSC of poly[4(5)-vinylimidazole]. 

Figure 26 displays DSC heating cycle scans of poly[4(5)-VIm/VIm+TFSI] in the 

temperature range from -150°C to 100°C.  There is an apparent glass transition, 

Tg-(mid), at around -50°C.  

 

Figure 26. Heating cycle scans in DSC of poly[4(5)-VIm/VIm+ TFSI] 
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Figure 27 shows DSC cooling cycle scans for the poly[4(5)-VIm/VIm+ TFSI].  Scans 

2 and 3 are nearly identical and differ from the first cooling scan.  One can see that 

there is an exothermic peak, reminiscent of a recrystallization event, at about 10°C in 

the second and third cooling scans.  The origin of this exothermic peak is not known.   

 

Figure 27. Cooling cycle scan in DSC of poly[4(5)-VIm/VIm+TFSI] 

In the series of figures which follow, DSC heating and cooling curves for 

composite films cast from DMF solutions of poly[(4(5)-VIm/VIm+TFSI] and PVdF 

are displayed.  The features in the DSC thermograms of the composites are analogous 

to those of pure PVdF, i.e., a melting endotherm at about 167°C and a recrystallization 

exotherm peaking at about 125°C. 

 
Figure 28.  

Heating cycle scans in DSC of 3/1 film 
Figure 29. 

Cooling cycle scans in DSC of 3/1 film 
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Figure 28 displays stack plots of the melting peaks from the first, second and third 

heating cycle scans for PVdF/poly[(4(5)-VIm/VIm+TFSI](3/1)V. The melting 

temperature of the first scan is slightly higher than that of the second scan, and the peak 

of the first scan is a broader.  After the membrane had been heated to 200°C, the 

crystals that reformed were smaller, resulting in a lower melting point and narrower 

peak width.  Figure 29 displays stack plots of the recrystallization peaks from the first, 

second and third cooling cycle scans for PVdF/poly[(4(5)-VIm/VIm+ TFSI](3/1)V . No 

differences were observed between the first and second scan for the recrystallization 

peaks. 

The characteristic features of heating and cooling scans in the DSC thermograms 

of the 4/1 and 8/1 composites were analogous to those described for the 3/1 composite.  

Figures 30–33 display DSC thermograms for the 4/1 and 8/1 composites. 

  
Figure 30 

Heat cycle scans in DSC of 4/1 film 
Figure 31 

Cooling cycle scans in DSC of 4/1 film 

 

 
 

Figure 32. 
Heat cycle scans in DSC of 8/1 film 

Figure 33. 
Cooling cycle scans in DSC of 8/1 film 

 



 

31 

DSC thermograms of composite films doped with 0.1% by weight of 

dibenzoylperoxide were similar to those of peroxide-free PVdF/poly[(4(5)-VIm/VIm+ 

TFSI] films.  Figures 34-39 display the respective heating and cooling curves for the 

composites containing 0.1% by weight of dibenzoylperoxide. 

 

 

Figure 34. 
Heat cycle scans in DSC of 3/1 film 

with dibenzoylperoxide 

Figure 35. 
Cooling cycle scans in DSC of 3/1 film 

with dibenzoylperoxide 

 

Figure 36. 
Heat cycle scans in DSC of 4/1 film with 

dibenzoylperoxide 

Figure 37. 
Cooling cycle scans in DSC of 4/1 film with 

dibenzoylperoxide 
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Figure 38. 
Heat cycle scans in DSC of 8/1 film with 

dibenzoylperoxide 

Figure 39. 
Cooling cycle scans in DSC of 8/1 film 

with dibenzoylperoxide 

 

Crystallinity of these composites was tabulated and compared. The data is shown in 

Table 4. 

Polymer blends Crystallization 
temperature(°C)

∆H for 100% 
crystalline 

polymer( J/g) 

Crystallinity 
(%) 

3/1 121.63 21.59 20.60 
3/1 with 

dibenzoylperoxide 125.42 24.63 23.50 

4/1 120.27 24.68 23.55 
4 to 1 with 

dibenzoylperoxide 122.77 25.25 24.09 

8/1 122.74 28.25 26.96 
8/1 with 

dibenzoylperoxide 123.95 37.64 35.92 

PVdF 127.43 27.25 26.00 

Table 4. Crystallinity of the composite films. 

All recrystallization temperatures were measured at their corresponding peak values.  

The theoretical latent heat for 100% crystallinity of Kynar®301 is 104.8 J/g.  From 

the Table 4, it appears that films doped with dibenzoyl peroxide have more crystallinity 

than films that did not contain peroxide.  It may be that dibenzoyl peroxide is acting 

as a classic nucleating agent.  One can also see that the 3/1 and 4/1 composites of 

PVdF/poly[(4(5)-VIm/VIm+ TFSI] have lower crystallinity that does pure PVdF.  

Given that the crystalline component is PVdF, this is not a surprise. 
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3. Thermal Gravimetric Analysis (TGA) 

Thermal Gravimetric Analysis (TGA) was employed to examine the thermal 

stability of the composite films. As specified in the experimental section, a typical 

running process for TGA was to first heat to 800°C at a rate of 10°C/min and then to 

hold the temperature at 800°C for 2 minutes.  Figure 40 shows the TGA spectrum for 

poly[(4(5)-VIm/VIm+TFSI]. One can see that the protonated poly[4(5)vinylimidazole] 

starts to decompose at around 350°C and that there is a change in the slope around 

450°C. Decomposition is complete at about 700°C with no residual mass. 

 

Figure 40. TGA of Poly[(4(5)-VIm/VIm+ TFSI]) 

Figure 41 shows the TGA spectra for pure PVdF. The material starts to decompose 

at around 400°C and asymptotes a residual mass of about 30% by weight at about 

500°C.  
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Figure 41. TGA of PVdF 

In Figure 42, the TGA spectrum for a film cast from the 3/1 

PVdF/poly[(4(5)-VIm/VIm+TFSI] solution with 0.1 % dibenzoylperoxide is shown. 

Decomposition starts at around 350°C. This is the same temperature at which the onset 

of decomposition was observed for poly[(4(5)-VIm/VIm+TFSI] in Figure 40. There is 

an increase in the slope of the weight loss curve at about 400°C. This corresponds to 

the start of decomposition of PVdF. At about 500°C, the slope of the weight loss curve 

decreased and, when the heating cycle was stopped at 800°C there was no residual 

mass.  The presence of poly[(4(5)-VIm/VIm+TFSI] in the composition clearly 

promotes the complete thermal decomposition of PVdF. 
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Figure 42. TGA of 3/1 PVdF/poly[(4(5)-VIm/VIm+ TFSI]  

TGA scans of the 4/1 and 8/1 PVdF/poly[(4(5)-VIm/VIm+ TFSI] composites, with 

and without 0.1% dibenzoylperoxide, were similar to those describe above for the 3/1 

composite.  Figure 43 shows the TGA scan of a film cast from a solution of the 4/1 

PVdF/poly[(4(5)-VIm/VIm+TFSI] composite with 0.1% dibenzoyl peroxide that had 

not been annealed at 200°C prior to TGA analysis. One can clearly see weight loss in 

the temperature range between 80°C and 150°C. This is the temperature range in 

which dibenzoylperoxide is decomposed. The major cause of weight loss in this 

temperature range, however, is the evaporation of residual DMF form a film dried at 

ambient temperature. 
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Figure 43. TGA of 4 to 1 film before crosslinking with dibenzoyl peroxide 

The rest of the decomposition process is almost the same as was observed in Figure 

44 which displays the TGA scan of a 4/1 PVdF/poly[(4(5)-VIm/VIm+ TFSI] composite 

with 0.1% dibenzoyl peroxide was annealed at 200°C prior to TGA analysis. 

 

Figure 44. TGA of 4 to 1 film after crosslinking with dibenzoyl peroxide 
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Analogous TGA profiles were observed in the spectra of films cast from 8/1 

solutions of PVdF/poly[(4(5)-VIm/VIm+ TFSI] composite with 0.1% dibenzoyl 

peroxide which were dried at ambient temperature and which were annealed at 200°C.  

Figures 45 and 46 display TGA scans of the annealed and non-annealed films, 

respectively. 

 

Figure 45 TGA of 8 to 1 film after crosslinking with dibenzoyl peroxide 
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Figure 46. TGA of 8/1 film before cross linking with dibenzoyl peroxide 

One should note that, as in the case of pure PVdF, residual mass remained after 

pyrolysis of the 8/1 composites.  There was not a sufficient amount of 

poly[(4(5)-VIm/VIm+TFSI] in the composite to promote complete decomposition.  

C. Proton conductivity 

Proton conductivity of composite films was evaluated by Dr Timothy Fuller at GM 

Fuel Cell Activities in Honeoye Falls, NY.  Three cross-linked composite films of 

PVdF/poly[(4(5)-VIm/VIm+ TFSI] after annealing at 200°C were evaluated.  The 

conductivity was tested in a fuel cell at 80°C with varied relative humidity.  The 

conductivity of Nafion®112 at 80° C as a function of % relative humidity was also 

measured as a comparison reference.  A plot of the humidity dependence of the 

conductivity of Nafion®112 at 80° C is shown in Figure 47. 
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Conductivity of Nafion 112 at 80C
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Figure 47. Humidity dependence of conductivity of Nafion®112 at 80° C. 

The data clearly shows that the conductivity increases with the increase of relative 

humidity, reaching its highest point (0.18 S/cm) at 100 % relative.  

A plot of the humidity dependence of the conductivity of the 3/1 

PVdF/poly[(4(5)-VIm/VIm+ TFSI] film at 80°C is shown in Figure 48. 

Conductivity (S/cm) vs % R.H. of 3/1 (22 mic) at 80C

0

0.005

0.01

0.015

0.02

0.025

0 20 40 60 80 100 120

%R.H.

C
on

d.
 S

/c
m

 
Figure 48. Humidity dependence of conductivity of a 3/1 
PVdF/poly[(4(5)-VIm/VIm+ TFSI] composite film at 80°C. 

One can see that the 3/1 PVdF/poly[(4(5)-VIm/VIm+ TFSI] composite film shows a 

high level of conductivity at 100% relative humidity with initial values greater that 
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0.02 S/cm. The conductivity only drops slightly at 80% RH.  

The humidity dependence of the conductivity of the 4/1 PVdF/poly[(4(5)-VIm/VIm+TFSI] 

composite film at 80°C is shown in Figure 49. 

Conductivity vs % R.H. at 80C of 4/1 (33 mic)
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Figure 49. Humidity dependence of conductivity of a 4/1 
PVdF/poly[(4(5)-VIm/VIm+ TFSI] composite film at 80°C. 

The 4/1 PVdF/poly[(4(5)-VIm/VIm+ TFSI] composite film exhibited a similar 

humidity dependence of conductivity to that of the 3/1 

PVdF/poly[(4(5)-VIm/VIm+TFSI] composite film.  Initial values of conductivity at 

100% relative humidity were in excess of 0.05 S/cm.  

The 8/1 PVdF/poly[(4(5)-VIm/VIm+ TFSI] composite film did not show any 

proton conductivity. At this low volume fraction of poly[(4(5)-VIm/VIm+ TFSI] there 

was not enough protonated poly[4(5)vinylimidazole] to form a continuous proton 

transport path. 

The implications of these initial proton conductivity measurements are quite 

exciting. However, there are significant questions that must be addressed before this 

work can be published. The first issue that must be addressed is the apparent instability 

or scatter of the conductivity data over time. The reason for this may be associated with 

some leaching of the protonated poly (4(5)vinylimidazole) from the films during the 

test. While mimimal loss of mass was measured in the water extraction experiments, 

those experiments were performed at ambient temperature.  It will no doubt be 
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necessary to prepare composite systems from which protonated 

poly[4(5)vinylimidazole] cannot be leached, even at 100°C.  In addition, proton 

conductivity measurements at low RH and at temperatures in excess of 100°C must be 

carried out. The thickness of the films employed in this initial round of experiments 

was ∼25 microns. Proton conductivity must be evaluated in thicker films, films ranging 

in thickness from 50 microns tob150 microns.  

The initial seemed to data say that the 4/1 PVdF/poly[(4(5)-VIm/VIm+TFSI] 

composite film was more conductive than the 3/1 film. If this is indeed true, the reason 

would have to be related to differences in morphology whereby more contiguous 

through-film, poly[(4(5)-VIm/VIm+TFSI] pathways are formed in the 4/1 composite 

than in the 3/1 composite.  

Summary and Next Steps 

Composite proton exchange membranes were fabricated by casting films of 

poly[(4(5)-VIm/Im+TFSI] and PVdF, from mixed dimethylformamide (DMF) 

solutions.  The phase, composition and morphology of these composites were 

examined by differential scanning calorimetry (DSC), and hot-stage polarized 

microscopy.  Thermal stability was evaluated by thermal gravimetric analysis (TGA). 

Proton conductivity was in a fuel cell test fixture evaluated at GM Fuel Cell Activities 

in Honeoye Falls, NY.   

DSC thermograms were characterized by a crystalline melt for the PVdF 

component at ∼169°C.  All composites displayed a well-form exothermic peak for 

recrystallization of PVdF at ∼121°C.  The melting and recrystallization characteristics 

of PVdF in the composites were substantially identical to those of pure PVdF.  In its 

homogeneous state, poly[(4(5)-VIm/VIm+TFSI] exhibited a glass transition 

temperature, Tg-mid, of -30°C.  Incoporation of benzoyl peroxide resulted in a slight 

increase in crystallinity of the 3/1 and 4/1 compositions and a substantial increase in 

crystallinity of the 8/1 composite.  Crystallinity increased slightly as the volume 

fraction of PVdF was increased. 

Classic crystalline spherulites were observed by polarized optical microscopy in 
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films cast from DMF and dried at temperatures below the melting point of PVdF.  On 

heating to 200°C on the hot-stage microscope, crystals melted to reveal a rather 

amorphous dark field with thin worm-like inclusions which were presumed to arise 

from the poly[(4(5)-VIm/VIm+TFSI] phase.  On cooling to ambient temperature, the 

background field became progressively brighter, however, no structure that might be 

associated with the reformation of crystallites was observed.  This was presumably a 

result of submicroscopic size of the crystallites. 

TGA spectra of the all composite films were characterized by two transitions, one at 

300°C corresponding to the decomposition of poly[(4(5)-VIm/VIm+TFSI], and one at 

450°C which corresponds to the decomposition of PVdF. Mass loss corresponded well 

with the mass fractions of the two components of the composite. 

Proton conductivity was measured as a function of relative humidity at 80°C.  

Conductivity (0.05 S/cm) approaching that exhibited by Nafion® 112 (0.18 S/cm) was 

realized in the 4/1, PVdF/poly[(4(5)-VIm/VIm+TFSI] composite film.  Substantial 

conductivity (0.02 S/cm) was also measured in the 3/1 composite films. No measurable 

proton conductivity was observed in films of the 8/1 composite.  We believe that this is 

the first instance in which such high proton conductivity levels have been realized in a 

polymer system where a Grotthuss mechanism of proton transport might be invoked.  

These results are very exciting and may point the way to the preparation of membranes 

exhibiting high levels of proton conductivity at elevated temperature and low relative 

humidity.  Much work, however, remains to be done before composite membranes 

that might actually be used in vehicular systems can be realized.  

Additional experiments that are outlooked include:   
– preparation of PVdF composite films from which poly[(4(5)-VIm/VIm+TFSI] 

cannot be leached, 
– evaluation of proton conductivity at temperatures in excess of 100°C, 
– visualization of the morphology and distribution of the 

poly[(4(5)-VIm/VIm+TFSI] component of the composites,  
– systematic variation of the level of prolongation with TFSI, and  
– preparation of composites with various PVdF copolymers. 
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