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Forward

While working at Corning, Incorporated, I had the good fortune of being able to

work with several highly skilled senior statistical engineers, from whom I learned a great deal

about various statistical techniques. One such statistician, Charles Comer, introduced me to

an article by L. S.
Nelson1

which succinctly detailed the technique of using an
analysis-of-

variance-type approach to detect variance heterogeneity. Sometime later, when I learned

about the analysis ofmeans (ANOME) technique, I thought it would be interesting to use

ANOME to analyze variance heterogeneity and then compare the results to the ANOVA

approach outlined by L. S. Nelson.



Abstract

When n replicates are available from a factorial experiment, several methods exist for

testing the validity of the assumption of equal variances within the
"cells"

or treatment

combinations of the experiment. A new test is proposed for variances of random samples

believed to be from normal populations. This new test combines both the familiar graphical

analysis ofmeans for treatment effects (ANOME) and the analysis of the logarithms of the

within-group variances to produce a graphical display of the test for variance homogeneity.

To determine robustness of the proposed test against departures from the underlying

normality assumption, this new test is also evaluated for non-normal populations.

Another analysis-of-means-type test was developed byWludyka and Nelson which

utilizes Dirichlet distributions and specially constructed tables. The new test, proposed

herein, has an advantage in that it relies solely on critical values developed for the
analysis-

of-means procedure. As an added simplification, only those critical values corresponding to

infinite degrees of freedom are required.

A In ANOME analysis ofNelson's data (used to demonstrate the In ANOVA

procedure) yielded the same conclusion. Also, simulation results indicate thatwhen the

underlying assumption of normality is not feasible, the In ANOME procedure demonstrated

equivalent or superior Type-I error-rate stability and power among tests which rely on that

assumption. However, when the underlying assumption of normality is tenable, Bartlett's

test performs the best of all homogeneity-of-variance tests studied in maintaining stable

Type-I errors and power.

rn
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Introduction

In many statistical analyses, the statistician is interested in testing the hypothesis of

homogeneity of variances of two or more populations. Often these populations represent

the
"groups"

in an analysis of variance, and it is desirable to test the validity of the

assumption of equal "wi
thin-group"

variances. However, at times, we are interested in only a

direct comparison of the variability, or spread, among several candidate populations (i.e.

suppliers, measurement devices, etc.). In the latter situation, the variances can be thought of

as those of random samples from populations represented by the
"groups"

or cells in a one

way or higher analysis of variance. Hence, our discussion will focus on the general case of

variances of random samples from populations constituting the
"groups"

or
"cells"

in the

analysis of variance.

Suppose we have a sample of n observations from each of k populations.We shall

denote the random sample from population i by {Y;i, Y,,, . .

., Yin} with sample mean

n

Y,
=- (1)

and sample variance

(Y3-Yi)S

s.2=^-

Then the hypothesis we would wish to test would be of the form

H0:
a2

=a22=- = al, (3)



where C^ represents the variance of the
ith

population. We would then test this against the

alternate hypothesis

HA: Not Hn for at least one O? . (4)
xo

When these populations are thought to be normally distributed, there exist several

well-established techniques commonly accepted as appropriate tests of this hypothesis.

Among these are the common F-test (for two variances), and Bartlett's test.

An approximate test, presented by Bartiett and Kendall3, involves performing the

usual analysis ofvariance on the logarithms of the
"within-group"

sample variances. Bartiett

and Kendall point out that the variance of In
S2

is independent of G2, and that a known

theoretical error term is available which depends on only the number of replicates, n, for

each treatment combination. An approximation to this theoretical error term given by L. S.

Nelson1

is of the following form:

Var(lnS2),-^ (5)

A more precise approximation of this error term is given byWludyka and
Nelson2

as

2 2 4 16
Var(lnS2)= + - +

r (6)v
n-1

(n-1)2 3(n-l)3 15(n-l)5 w

For n > 5 replicates per subgroup, the logarithms of the subgroup variances are

approximately normally
distributed. Thus the test of the null hypothesis in (3) above is

essentially transformed into a test on means. This test relies on the fact
,
as

Scheffe4

indicates, that "the analysis of variance [procedure] is fairly insensitive to the shape of the

distributions of the estimated
means."

Lorenzen and Anderson add that it does not matter



ifwe use loge (natural logarithm) or log1(l for this test, since both log functions are scale

related and ANOVA is scale invariant.

For dealing with variances from non-normal but continuous distributions, Levene's

test was modified by Brown and
Forsyfhe7

from it's original form to serve as a
non-

parametric test of variances. The proposed procedure (that does analysis of means on the

natural logarithms of the subgroup variances) will be compared to Bartiett and Kendall's

approximate ANOVA test,
Bartlett's8

test, and a modified version ofLevene's test due to

Brown and Forsythe. The comparison will be made under varying conditions.

ANOME of In
S2

Decision Limits forANOME

In the usual analysis ofmeans for treatment effects (ANOME) from a factorial

experiment, E. G.
Schilling9

gives the following formula for the upper and lower decision

limits,

0deha^> (7)

where N = total number of observations in the experiment,

q
= degrees of freedom for the effect tested (same as ANOVA), and



k = number of points plotted (number ofmeans to compare).

The values for ha differ depending on whether the effect of interest is a main effect or an

interaction effect. For main effects, the decision limits can be exactly specified as

h=H-Vrh' (8)

since in the case of testing main effects, Ha is exact. For interaction effects, ha
= ha ,

where

the
ha*

are Sidak factors tabulated in Table A.9 in E. R. Ott and E. G. Schilling10, as

suggested by L. S.
Nelson11

Ha critical values for a = 0.10, 0.05, 0.01, and 0.001 and infinite

degrees of freedom are given in Appendix A-l . E. G.
Schilling9

justifies the use of Sidak

factors with the statement,

"For interactions and nested factors,
ha*

is used because of the nature of the correlation

among points
plotted."

For one-way layouts, it may by desirable for ANOME on log-variances to be

constructed so that
"effects"

are centered about their average log-variance instead of about

zero. One would then be able to easily retrieve the original subgroup variances from the

"main
effects"

as S; =e
n

'

.

Procedure forANOME on In
S2

To adapt the ANOME procedure to the analysis of the logarithms of variances, we

take the following steps:

Step 1. Compute the subgroup variances, and take their natural logarithms.



Step 2. Calculate the treatment effects for the main effects as the

Main Effects forFactorA:

A,=
lnS2 InS2

Main Effects for FactorB:

B,=
lnS2 InS2

(9)

(10)

Repeat this for each factor in the experiment.

Step 3. Calculate the treatment effects for the interactions as the difference between

the average log-variance for each treatment combination of the factors and

the grand average of all the log-variances, less any previously estimated

lower-order effects. (See below for two-factor example.)

Interaction Effects for theAB Interaction:

AB
=
InS2 InS2

A, B,
(11)

Repeat this for each interaction in the experiment.

Step 4. Calculate the theoretical error variance, and take it's square root for use in

computing the decision limits. Regard this estimate as having infinite degrees

of freedom.

Approximation to the TheoreticalError Variance.

d>=_2_+_2_+_! 16_ (12)
e

n-1
(n-1)2 3(n-l)3 15(n-l)5

(!,, = Joe with degrees of freedom

Step 5. Compute the decision limits for main effects:

Decision Limits forMain Effects:



Note that by adding the average overall mean back into the treatment effect,

we could essentially center the effects about the overall
average. However,

the decision limits for the main effects centered about zero would be

computed as follows:

oWirw' (,3)

which reduces to

o.hJ.
(14)

For a one-way analysis, N k, so the limits are given by

06eHa.
(15)

(N k for a one-way analysis, since after taking the natural logarithm of the

subgroup variances, there is effectively only one replicate per cell.)

Step 6. Compute the decision limits for interaction effects

Decision Limits for Interaction Effects:

The decision limits for interaction effects centered about zero are computed

as follows:

0dXi^' (16)

where N = total number of treatment combinations in the experiment,

q
= degrees of freedom for the interaction effect tested, and

h^
= Sidak factor for k means and infinite degrees of freedom.



The next section presents a worked example to further illustrate the technique.

Example ofANOME on In
S2

An example of the ANOME on In
S,2

(henceforth called In ANOME) procedure is

now presented using the same data given by L. S.
Nelson1

to illustrate ANOVA on In S 2.

The experimental design involved three factors (A, B, and C), with k = 3, 2, and 4 levels,

respectively. The entire experiment was replicated six times. The original data is shown

below.

Al A2 A3

CI

C2

C3

C4

Bl B2 Bl B2 Bl B2

53.0 49.8 53.0 51.7 51.3 53.2

52.1 53.2 52.5 50.1 48.9 51.9

55.9 51.3 50.4 52.9 51.7 53.1

53.0 52.6 51.5 49.8 53.4 49.6

55.0 51.7 52.6 52.3 52.6 54.1

52.0 53.7 53.5 51.9 50.1 53.1

59.3 52.3 55.0 54.1 51.5 57.5

51.4 56.4 57.0 54.7 56.4 55.0

58.0 53.5 55.6 54.7 51.3 52.3

54.1 54.2 50.3 56.7 49.4 54.1

58.3 53.7 51.4 54.4 55.4 50.8

56.1 51.8 57.5 53.2 53.1 53.1

55.7 55.3 58.9 48.2 57.7 54.3

53.5 55.9 57.0 56.5 61.9 54.6

55.4 54.7 58.0 59.0 49.6 54.7

54.5 54.1 57.7 52.9 57.0 56.7

53.5 55.2 57.3 54.5 56.6 57.6

59.4 59.3 52.2 56.8 56.8 58.1

54.0 59.3 62.0 57.5 57.2 56.8

54.7 59.5 58.5 58.1 62.4 60.3

57.9 55.7 57.9 56.3 63.1 60.9

58.8 56.9 59.7 63.4 56.5 52.3

59.1 58.4 60.8 54.6 60.7 61.0

64.8 56.1 57.3 56.9 55.1 61.1



Step 1. Compute the subgroup variances, and take their natural logarithms.

Var(Y) ln(Var(Y))

Al Bl CI 2.544 0.934

Al Bl C2 8.944 2.191

Al Bl C3 4.819 1.572

Al Bl C4 14.942 2.704

Al B2 CI 2.019 0.703

Al B2 C2 2.627 0.966

Al B2 C3 3.391 1.221

Al B2 C4 2.695 0.991

A2 Bl CI 1.259 0.230

A2 Bl C2 8.791 2.174

A2 Bl C3 5.619 1.726

A2 Bl C4 3.255 1.180

A2 B2 CI 1.527 0.423

A2 B2 C2 1.335 0.289

A2 B2 C3 14.331 2.662

A2 B2 C4 8.968 2.194

A3 Bl CI 2.691 0.990

A3 Bl C2 7.059 1.954

A3 Bl C3 15.700 2.754

A3 Bl C4 11.159 2.412

A3 B2 CI 2.508 0.919

A3 B2 C2 5.392 1.685

A3 B2 C3 2.800 1.030

A3 B2 C4 12.603 2.534

Average: 1.518

Step 2. Calculate the treatment effects for the main effects as the difference between the

average log-variance for each level of the factor and the grand average of all the log-

variances.

Main Effects forFactorA:

A, = InS,
InS2

Ai = (0.934 + 2.191 + 1.572 + 2.704 + 0.703 + 0.966 + 1.221 + 0.991)/8 - 1.518 = -0.108

A2 = (0.230 + 2.174 + 1.726 + 1.180 + 0.423 + 0.289 + 2.662 + 2.194)/8 - 1.518 = -0.158

A3 = (0.990 + 1.954 + 2.754 + 2.412 + 0.919 + 1.685 + 1.030 + 2.534)/8 - 1.518 = 0.266



Main Effects forFactorB:

B,=
lnSj

InS2

Bi - (0.934 + 2.191 + 1.572 + 2.704 + 0.230 + 2.174 + 1.726 + 1.180 +

0.990 + 1.954 + 2.754 + 2.412)/12 - 1.518 = 0.217

B2 = (0.703 + 0.966 + 1.221 + 0.991 + 0.423 + 0.289 + 2.662 + 2.194 +

0.919 + 1.685 + 1.030 + 2.534)/12 - 1.518 = -0.217

Main Effects forFactor C:

Cm=lnS^
InS2

C, = (0.934 + 0.703 + 0.230 + 0.423 + 0.990 + 0.919)/6 - 1.518 = -0.818

C2 = (2.191 + 0.966 + 2.174 + 0.289 + 1.954 + 1.685)/6 - 1.518 = 0.025

C3 = (1.572 + 1.221 + 1.726 + 2.662 + 2.754 + 1.030)/6 - 1.518 = 0.309

C, = (2.704 + 0.991 + 1.180 + 2.194 + 2.412 + 2.534)/6 - 1.518 = 0.484

Step 3. Calculate the treatment effects for the interactions as the difference between the

average log-variance for each combination of the factors and the grand average of all the

log-variances, less any previously estimated lower-order effects.

Interaction Effects for theAB Interaction:

AB
=

InS2 InS2

A, Bf

ABn = (0.934 + 2.191 + 1.572 + 2.704)/4- 1.518 - (-0.108) - (0.217) = 0.223

AB12 = (0.703 + 0.966 + 1.221 + 0.991)/4 - 1.518 - (-0.108) - (-0.217) = -0.223

AB2i = (0.230 + 2.174+ 1.726+ 1.180)/4- 1.518 - (-0.158) -( 0.217) = -0.249

AB22 = (0.423 + 0.289 + 2.662 + 2.194)/4 - 1.518 - (-0.158) - (-0.217) = 0.249

AB3! = (0.990 + 1.954 + 2.754 + 2.412)/4 - 1.518 - ( 0.266) - ( 0.217) = 0.026

AB32 = (0.919 + 1.685 + 1.030 + 2.534)/4 - 1.518 - ( 0.266) - (-0.217) = -0.026



Interaction Effects for theACInteraction:

AC,m=lnS2m
InS2

A, - Cm

ACn = (0.934 + 0.703)/2 - 1.518 - (-0.108) - (-0.818) = 0.226

AC, 2 = (2.191 + 0.966)/2 - 1.518 -

(-0.108) - ( 0.025) = 0.143

ACB = (1.572 + 1.221)/2 - 1.518 - (-0.108) -

( 0.309)
=
-0.323

ACu = (2.704 + 0.991)/2 - 1.518 - (-0.108) -

( 0.484)
=
-0.047

AC2i - (0.230 + 0.423)/2 - 1.518 - (-0.158) - (-0.818) = -0.215

AC22 = (2.174 + 0.289)/2 - 1.518 - (-0.158) - ( 0.025) = -0.153

AC23 = (1.726 + 2.662)/2 - 1.518 - (-0.158) - ( 0.309) = 0.525

AC2-1 = (1.180 + 2.194)/2 - 1.518 - (-0.158) - ( 0.484) = -0.157

AC, = (0.990 + 0.919)/2 - 1.518 - ( 0.266) - (-0.818) = -0.012

AC32 = (1.954 + 1.685)/2- 1.518 -(0.266) -(0.025)
= 0.010

AC33 = (2.754 + 1.030)/2 - 1.518 - ( 0.266) - ( 0.309) = -0.202

AC34 = (2.412 + 2.534)/2 - 1.518 - ( 0.266) -

( 0.484)
= 0.204

Interaction Effects for theBC Interaction:

BC,m=lnS2m
InS2

B, Cm

BCi, = (0.934 + 0.230 + 0.990)/3- 1.518 -(0.217) -(-0.818)
=
-0.199

BC12 = (2.191 + 2.174 + 1.954)/3 - 1.518 - ( 0.217) - ( 0.025)
= 0.346

BC13 = (1-572 + 1.726 + 2.754)/3 - 1.518 - ( 0.217) - ( 0.309)
=
-0.027

BC14 - (2.704 + 1.180 + 2.412)/3 - 1.518 - ( 0.217) -

( 0.484)
=
-0.121

BC21 - (0.703 + 0.423 + 0.919)/3 - 1.518 - (-0.217)
- (-0.818) = 0.199

BC22 = (0.966 + 0.289 + 1.685)/3 - 1.518 - (-0.217) - ( 0.025)
=
-0.346

BC23 = (1.221 + 2.662 + 1.030)/3 - 1.518 - (-0.217) - ( 0.309)
= 0.027

BC24 = (0.991 + 2.194 + 2.534)/3 - 1.518 - (-0.217) - ( 0.484)
= 0.121

10



Interaction Effects for theABCInteraction:

ABC =

lnS2m -

InS2
- A, B,-Cm-AB- AC,m-BC,m

ABCm =

ABCii2 =

ABC3 =

ABCi,4 =

ABC21 =

ABC122 =

ABC, 23 =

ABC124 =

ABC211

ABC212 =

ABC2,3 =

ABC214 =

ABC221 =

ABC222

ABC223 =

ABC224 =

ABC311 =

ABC3i2 =

ABC3i3 =

ABC3,4 =

ABC321 =

ABC322 -

ABC323 =

ABC324 =

(0.934) -1.518 -

(2.191) -1.518 -

(1.572) -1.518 -

(2.704) -1.518 -

(0.703) -1.518 -

(0.966) -1.518 -

(1.221) -1.518 -

(0.991) -1.518 -

(0.230) -1.518 -

(2.174) -1.518 -

(1.726) -1.518 -

(1.180) -1.518 -

(0.423) -1.518 -

(0.289) -1.518 -

(2.662) -1.518 -

(2.194) -1.518 -

(0.990) -1.518 -

(1.954) -1.518 -

(2.754) -1.518 -

(2.412) -1.518
-

(0.919) -1.518
-

(1.685) -1.518
-

(1.030) -1.518
-

(2.534)
-1.518-

(-0.108) -

(

(-0.108) -(

(-0.108) -(

(-0.108) -(

(-0.108)-(-

(-0.108) - (-

(-0.108) -(-

(-0.108) -(-

(-0.158) - (

(-0.158) -

(

(-0.158) - (

(-0.158) -(

(-0.158) - (-

(-0.158) - (-

(-0.158) - (-

(-0.158) -(-

( 0.266)
-

(

( 0.266)
- (

( 0.266)
- (

( 0.266)
- (

( 0.266)
- (-

( 0.266)
- (-

( 0.266)
- (-

( 0.266)
- (-

(0.217)-

(0.217)-

(0.217)-

(0.217)-

(-0.217)-

(-0.217)-

(-0.217)-

(-0.217)-

(0.217)-

(0.217)-

(0.217)-

(0.217)-

(-0.217)-

(-0.217)-

(-0.217)-

(-0.217) -

(0.217)-

(0.217)-

(0.217)-

(0.217)-

(-0.217) -

(-0.217)
-

(-0.217) -

(-0.217)-

(-0.818)
-

( 0.025)
-

( 0.309) -

( 0.484)
-

(-0.818)-

( 0.025)
-

-

( 0.309)
-

( 0.484)
-

(-0.818)-

( 0.025)
-

( 0.309) -

( 0.484)
-

(-0.818)-

( 0.025) -

( 0.309)
-

( 0.484)
-

(-0.818)-

( 0.025) -

( 0.309) -

( 0.484) -

(-0.818)-

( 0.025)
-

( 0.309) -

( 0.484) -

-

( 0.223)
-

( 0.223)
-

( 0.223) -

( 0.223)
-

- (-0.223)

(-0.223) -

- (-0.223) -

(-0.223) -

- (-0.249) -

(-0.249) -

(-0.249) -

(-0.249) -

- ( 0.249) -

( 0.249) -

( 0.249)
-

-

( 0.249) -

( 0.026) -

( 0.026) -

( 0.026) -

( 0.026) -

(-0.026) -

(-0.026) -

(-0.026) -

(-0.026) -

0.226)

0.143)-

0.323)

0.047)

0.226)

0.143)

0.323)

0.047)

-0.215)

-0.153)

0.525)

-0.157)

-0.215)

-0.153)

0.525)

-0.157)

-0.012)

0.010) -

0.202)
-

0.204) -

-0.012)

0.010)

0.202)

0.204)

- (-0.199)
=

( 0.346)
=

- (-0.027) =

-(-0.121)
=

-(0.199)
:

- (-0.346)
=

- ( 0.027)
:

-(0.121)
-

- (-0.199)
:

-

( 0.346)
=

- (-0.027) =

-(-0.121)
=

-(0.199)
=

- (-0.346)
=

- ( 0.027)
=

-(0.121)
=

-(-0.199)
=

( 0.346)
=

- (-0. 027)

(-0.121) =

-(0.199)
:

-

(-0.346) =

- ( 0.027) =

-(0.121)
=

-0.126

-0.174

-0.237

0.537

: 0.126

0.174

: 0.237

-0.537

= 0.135

-0.890

-0.409

-0.354

:
-0.135

:
-0.628

0.409

0.354

-0.009

-0.454

- 0.646

-0.183

0.009

0.454

-0.646

0.183
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Step 4. Calculate the theoretical error variance, and take it's square root for use in computing

the decision limits. Regard this estimate as having infinite degrees of freedom.

61= i- +
-lT

+_L^-
">

0.4903
6-1

(6-1)2 3(6-l)3 15(6-1)5

6e = y[&l
=V0.4903 = 0.70021

Step 5. Compute the decision limits for main effects (shown for a 0.05).

(k~

Decision Limits forMain Effects: 0 daH.|
e

aVN

A: k = 3 levels,H = Ho.os, 3, ~ = 1.91, N = 24. Hence,

fk"

I 3
0 a H
J

=> 0 0.70021*1.91* J => 0 0.4728

VN V24

B: k = 2 levels, Ha = Ho.os, 2, ~ = 1
.386,

N = 24. Hence,

fk"

[Y
0 a =>0+ 0.70021* 1.386*J => 010.2801

aVN V24

C: k = 4 levels, K^ = Ho.os, 4, ~ = 2.14, N = 24. Hence,

nr / 4
0 a
HJ

=>0 0.70021* 2. 14*J =>00.6116
e

aVN V24

Step 6. Compute the decision limits for interaction effects (shown for OC = 0.05).

AB: k = 3 * 2 = 6 levels, q
= ab-a-b + l = 6-3-2+l=2,

hlns c =2.631, N = 24. Hence, the decision limits are

fa"

HT
0 a h\ =>0 0.70021*2.631*J =>00.5317

e

aVN V24

AC: k = 3 * 4 = 12 levels, q
= ac-a-c+l

= 12-3-4+l = 6,

12



h005 12 M

= 2.858, N 24. Hence, the decision limits are

I n \f\

0 +
ah*

p-
=> 0 0.70021 * 2.858 *J => 0 1.0003

VN V24

BC: k = 2 * 4 = 8 levels, q
= bc-b-c + l = 8-2-4+l = 3,

h005 8 ,
= 2.727, N = 24. Hence, the decision limits are

0
6h"

-

=> 0 0.70021 * 2.727 * J => 0 + 0.6749

VN V24

ABC: k=3*2*4 = 24 levels, q
= abc - ab - ac - be + a + b + c - 1 = 6,

h005 24 oo 3.071, N = 24. Hence, the decision limits are

0ah' =>0+ 0.70021*3.071* =>0 1.0749
e a

^

N V24

Step 7. Construct the chart.

Note that the chart (next page) displays decision limits at the a
= 0.01 level, as well as at the

OC 0.05 level as calculated above.

As can be seen from the In ANOME chart, the variability differed for the different

levels of factor C. In particular, we see that the variability for the first level of factor C is

significantly less than the variability for the other three levels of factor C.

13



Figure 1: Example ofANOME on In S2.

1.5
Main Effects

0.5

c o
v

E
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Test of Homogeneity of Variance

Analysis of Means on In
S2

LDL and UDL shown for a = 0.05, and a = 0.01

Two-Way Interactions^ Three-Way Interaction

- 1.235

1.075
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0.473
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-fl.612
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ABC

-0 280

Tb

0 280

--0.368

-0 473

0.589

BC

A
ft

X

-0.818

-+ 0.612

0.746

^0 532

0 635
-0.675

-

-0.798

>^

Il-L 00

-1 .075

-1.235

A, B, and C

Bartiett & Kendall's

In ANOVA Test ofHomogeneity ofVariance

Bartiett and
Kendall's3

ANOVA-type test of homogeneity ofvariance involves first

computing the subgroup
variances and then computing their natural logarithms, as was

shown previously for the ANOME on In S . Next, the theoretical error variance is computed

based on the number of replications as shown in equation (12). Then the usual sum of

squares, degrees of freedom, and mean squares are computed for every term in the original

14



model. Usually, we would not have an error term for this situation, since there is now

effectively only one replicate of the entire experiment and the model would therefore be

completely specified. However, we make use of the theoretical error variance with infinite

degrees of freedom to compute values for the F-statistics and perform tests of hypothesis.

The analysis of the example data from L. S. Nelson is shown below.

In ANOVA on L. Nelson's Data

Source DF Adj SS Adj MS F p

0.86224 0.43112 0.87925 0.4151

1.12867 1.12867 2.30188 0.1292

6.00366 2.00122 4.08141 0.0066
**

0.90023 0.45012 0.91800 0.3993

1.26216 0.21036 0.42902 0.8601

1.04869 0.34956 0.71291 0.5441

3.50764 0.58461 1.19229 0.3069

0.49033

Again we arrive at the conclusion that the variability differed for the different levels of factor

C. This time, however, further investigation is required to determine the nature of this

difference.

Bartlett's Test ofHomogeneity ofVariance

Bartlett's8

test of homogeneity of variance is a modification ofNeyman and

Pearson's12

generalized likelihood-ratio test (LI test, 1931). This modification involved

replacing the biased
maximum-likelihood estimators of the variances with unbiased

A 2

B 1

C 3

A*B 2

A*C 6

B*C 3

A*B*C 6

Error oo

15



estimators and substituting n,-l for n, in the weights. Bartlett's test is known to rely heavily

on the assumption of normality of the underlying distributions.

The value of the test statistic is determined from the data by first computing the

sample variances of each of the k subgroups and then computing the subsequent
pooled

sample variance as

IK-Ds,2

pooled

'='

N-k
(17)

Then base-10 logarithms are taken of each of the k sample variances and of the pooled

variance. Ultimately, the test statistic is given by

(N-k)log10s^oled-X(ni-l)log10s12

ll =2.3026
-

1 + -

1 ( k

3(k-l)

1 1

trX-i N-k
(18)

The value of %0 is then compared to the critical chi-square value with k-1 degrees of

freedom.

Levene's Test with Brown and Forsythe's Modification

Levene's6

test with Brown and Forsythe's modification is essentially a
non-

parametric test of homogeneity of variance. The test statistic is constructed as follows:

Let

Vii
= Y - Y

y
(19)
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where

Y- the
jth

observation in the
ith

group and

Yj
= the median of the

i'

group.

Then form the one-way ANOVA statistic

Zni(V,-y.)2

i=l

F(calc) =
k

k~l
, (20)

si^-v,.)2

N-k

where

%
v. =^-

(21)

V=J1
, (22)

j='

N

and

N = In,
i=l

(23)

is the total number of observations in the experiment. The value of the test statistic, F(calc),

is compared to a critical value of the F-distribution, with k-1 numerator degrees of freedom

and N-k denominator degrees of freedom.

17



Monte Carlo Simulations

Simulations provided the means for assessing, under controlled conditions, the ability of

these individual tests to reject correctly or incorrectly the null hypothesis. All simulations

involved a balanced, one-way layout. Seven cases were considered, as indicated in Table 1 .

Table 1 Cases Used ForMonte Carlo Simulation

Case Conditions Null Hypothesis

Case 1 o"i2 = 0"22

Case 2 cm2 =
<j2

Ck2

, X~Normal(p=50, <7=15)

OV2

, X~Weibull(CO=l, <t>=1.5)

Case 3 oV = a,2 = = ak2

^ X~Gamma(\|/=2.5, A.=2)

Case 4 d2 = Q22
- -

Ok-i2

, X~Normal(U=50, 0=15)

Ok2
not equal since, X~Normal(U=50, O"=20)

Case 5 <ji2 = C22 =
. . .

= Ck-i2

, X~Normal(Lt=50, C=15)

Ok2
not equal since, X~Normal(U=50, O=30)

Case 6 oV = G22 =
.. .

= ak-i2

,

X~WeibuU(CO= 1
, (|)=1.5)

CTk2
not equal since, X~Weibull(C0=2, <p= 1.5)

Case 7 oV = a22 =
.

= OVi2

, X~Gamma(\|/=2.5, X-2)

<Jk2
not equal since, X~Gamma(l|/=5.0, X.=2)

True (Assessment ofType-I

Error Rate)

True (Assessment ofType-I

Error Rate in Non-Normal

Situations)

True (Assessment ofType-I

Error Rate in Non-Normal

Situations)

False (Assessment ofType-II

Error Rate and Power)

False (Assessment ofType-II

Error Rate and Power)

False (Assessment ofType-II

Error Rate and Power in

Non-Normal Situations)

False (Assessment ofType-II

Error Rate and Power in

Non-Normal Situations)

To assess the Type-I error rate in Cases 1, 2, and 3, k = 2, 4, 6, 8, and 10 subgroups

were generated and compared, with n
= 2, 3, . .

.,
10 replicates each. The other four cases

assessed the power of the homogeneity ofvariance tests using comparisons of k = 2, 4, 6, 8,

and 10 subgroups with n = 2, 3, . .

.,
10 replicates.



One thousand simulations per condition (case, subgroup, and replicate combination)

were conducted in accordance with random-number-generating procedures
outlined by

Dodson and
Nolan13

These procedures make use of the fact that all BASIC-type

programming languages are capable of producing uniformly-distributed pseudo-random

numbers on the [0, 1] interval. These uniformly-distributed random numbers can be used to

generate other random numbers for almost any distribution. In the simplest form of

random-number generation, this is done by setting the cumulative distribution function of

the desired density function equal to the uniformly-distributed random number and then

solving for the random variable of the new distribution. An example of this procedure for

the two-parameterWeibull distribution is shown in Appendix A-3. When a closed form does

not exist for the cumulative distribution function, special algorithms must be employed. Two

such algorithms were used to generate Normal-distributed and Gamma-distributed random

numbers. The code for all random numbers generated is available in Appendix A-4.

The three Normal distributions chosen for this study are shown in Figure 2.

Figure 2: Normal Distributions Used for Simulations

Normal Distributions

90 100
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The two forms of theWeibull distribution used for simulations are shown in Figure 3.

Figure 3: Weibull Distributions Used for Simulations

Weibull Distributions

* = Shape Parameti

01 = Scale Paramete

0) = 1

* = 1.5

/
v

* = 1 5

fix) = -^x-'e

B

\

1.5 2 0 2.5 3.0 3.5

X

The two forms of the Gamma distribution (both Chi-Square, in this case, since A, 2) are

shown in Figure 4.

Figure 4: Gamma Distributions Used for Simulations

Gamma Distributions

V = Shape Paramec

^ = Scale Parana crei
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Once random numbers of the appropriate type were generated, the number of

rejections of the null hypothesis (out of one-thousand simulations) was recorded for each set

of conditions. This was done concurrently on the data for each of the following statistical

tests:

1 . the standard ANOVA for testing means,

2. the ANOVA on In
S,2

(In ANOVA) to test for homogeneity of variance,

3. the proposed ANOME on In S
2

(In ANOME) to test for homogeneity of

variance.

4. Bartlett's Test of homogeneity of variance,

5. the standard F-test (for k = 2 variances only), and

6. Levene's test with Brown and Forsythe's modification.

In situations were the null hypothesis of equal variances was true, the tests were

compared on the basis of their ability to maintain, over all conditions, the expected Type-I

error rate. When the null hypothesis was false (that is, when the last of k variances was not

equal to the other k-1 variances), the tests were compared on the basis of power. This is

more easily understood considering the following familiar diagram:

Figure 5: Types ofError In Hypothesis Testing

Types of Error:

Reject 1 1:

Simulation Conditions

Accept H:

Type-I

Error

a

Correct

Decision

Power (1-P)

Correct

Decision

Type-II

Error

P

H0 True H0 False

Casel
Case 5

Case 6

Case 7
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Simulation Results

The behavior of the tests of homogeneity of variance in conforming to the Type-I

error rate at the five percent level are presented in Tables 2, 3, and 4. Each of the tables that

follow display the number of rejections (at the a = 0.05 significance level) of the null

hypothesis of equal variances out of one-thousand simulations.

Table 2: Results for Case 1, Normal Distribution with u = 50, and O = 15

(Number ofrejections ofthe null hypothesis out of 1000)

n

HOV Test k 2 3 4 5 6 7 8 9 10

In ANOVA 2 68 35 37 40 53 44 44 50 35

(Bartiett and Kendall) 4 108 63 47 48 45 46 50 69 71

6 113 65 56 58 45 51 42 47 38

8 120 69 56 46 44 53 57 55 41

10 116 50 55 56 48 51 69 51 69

In ANOME 2 68 35 37 40 53 44 44 50 35

(Volino) 4 119 70 50 49 46 52 53 70 66

6 142 82 66 77 54 53 46 65 47

8 172 98 85 66 75 77 67 62 50

10 177 92 93 88 70 72 94 64 76

Bartlett's Test 2 34 28 35 36 51 40 43 48 35

4 31 39 27 33 38 41 39 54 63

6 36 32 31 41 40 34 33 38 38

8 19 30 26 20 34 34 50 40 33

10 16 21 25 32 28 39 50 39 47

F-Test (Two Variances) 2 45 30 35 37 51 41 43 48 35

Levene's Test 2 0 49 7 46 9 32 18 33

1 0 59 1 30 9 31 15 40

6 0 55 0 25 10 31 12 23

8 0 50 0 27 6 53 15 17

10 0 58 0 27 6 42 14 36

Even though the assumption of approximate normality of In
S2

is stated in many

references as holding for k
> 5, the number of replicates within each cell was examined for k

< 5, as well as k
= 5, 6, . .

.,
10. In fact, "real

world"

experiments frequendy have fewer than

five replicates. It is of interest, therefore, to study the behavior of these statistics under less-

than-ideal conditions.
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Both the In ANOVA and In ANOME techniques are more apt to reject the

hypothesis of equal variances than is the F-test, Bartlett's test, or Levene's test. Between

In ANOME and In ANOVA, as k increases, In ANOME rejects slightly more often than

In ANOVA. This makes In ANOME in its present form less attractive than other

homogeneity-of-variance tests for k > 6 or 7. Bartlett's test, given the condition of normality,

performed closest to the expected nominal rejection rate of 50 out of 1000, or 5%.

Curiously, in Levene's test, there is a kind of
"odd-even"

effect that could be due to

the modification of
Levene's6

original test by Brown and
Forsyfhe7

(Briefmention of this

"odd-even"

effect was made in Conover, Johnson, and Johnson.14) For odd numbers of

replicates, the median is the value of the
"middle"

observation in terms ofmagnitude.

Considering deviations from the median, based on an odd number of replicates, one term in

equation (19) is always zero. Hence, averages of the Vtj are smaller making the test overly

conservative relative to the nominal Type-I rejection rate. In fact, for n = 3 replicates per

cell, the null hypothesis was never rejected! (Calculations from the simulation programs were

cross-checked frequently with the results obtained from both SAS andMINITAB, and all

test-statistics and p-values agreed.) For an even number of replicates, the results from

Levene's test were less conservative than results for odd numbers of replicates, but were still

below the nominal rejection rate of five percent.

The results for theWeibull and Gamma distributions show the dependence of all of

these tests, except Levene's, on the underlying assumption of normality. Type-I error rates

for all but Levene's test, which again gives evidence of an
"odd-even"

effect, are at times

more than triple or quadruple the norninal five percent rejection rate one would expect.
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Table 3: Results for Case 2,Weibull Distributionwith (0 = 1, and (

(Number ofrejections ofthe null hypothesis out of 1000)

1.5

n

ITOV Test k 0 3 4 5 6 7 8 9 10

In ANOVA 2 75 89 77 98 93 104 97 87 108

(Bartiett and Kendall) 4 123 101 73 112 104 137 112 140 140

6 152 130 91 137 138 153 151 173 176

8 186 163 96 145 149 174 197 191 196

10 201 163 104 170 182 207 205 227 238

In ANOME 2 75 89 77 98 92 104 97 87 108

(Volino) 4 118 104 66 106 92 137 111 119 134

6 154 136 78 133 148 149 162 152 165

8 211 172 77 137 135 152 183 150 143

10 225 186 95 172 169 168 177 184 182

Bartlett's Test 2 30 73 67 91 91 102 96 87 107

4 47 89 72 105 98 137 105 138 142

6 49 78 88 134 133 150 148 158 179

8 55 85 107 131 151 161 194 189 199

10 43 101 127 163 176 207 199 219 245

F-Tcst (Two Variances) 2 40 79 68 93 91 102 96 87 107

Levene's Test n 0 81 7 42 21 50 26 42

4 0 84 ? 52 21 26 17 50

6 0 98 4 38 14 37 19 40

8 0 84 4 51 10 42 15 24

10 0 86 2 48 7 28 10 30

For tests of equal variances in non-normal situations, only Levene's test, for even

numbers of replicates, yielded a Type-I rejection rate comparable to the nominal 5% rate. All

other tests resulted in greatly inflated Type-I error rates relative to the nominal. In the case

of an underlying Weibull distribution, In ANOME was comparable to or better than

In ANOVA and Bartlett's Test for n > 4 replicates per subgroup. Also, as the number of

variances, k, increased, In ANOME showed slightly better Type-I error rate stability than did

either In ANOVA or Bartlett's Test.
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Table 4: Results for Case 3, Gamma Distributionwith \(/ = 2.5, and X = 2

(Number of rejections ofthe null hypothesis out of 1000)

n

HOVTcst k 2 3 4 5 6 7 8 9 10

In ANOVA 2 88 75 89 105 109 116 117 139 127

(Bartiett and Kendall) 4 114 98 122 134 139 154 165 181 185

6 160 130 125 177 186 217 233 207 228

8 170 135 163 188 210 223 253 262 278

10 184 134 162 199 224 263 289 306 312

In ANOME 2 88 75 88 105 109 116 117 139 127

(Volino) 4 129 95 124 122 129 132 157 165 178

6 184 125 139 157 154 203 202 188 210

8 186 153 158 182 178 205 9->a 222 254

10 220 164 162 176 172 224 233 233 254

Bartlett's Test 2 49 61 83 99 103 111 112 134 122

4 58 84 110 124 139 156 165 180 187

6 63 103 115 176 197 231 232 225 234

8 68 111 170 204 217 246 277 292 286

10 67 124 195 232 242 283 315 329 329

F-Test (Two Variances) 2 59 67 84 99 104 111 112 134 122

I.cvcnc's Test n 0 82 5 46 24 38 29 49

4 0 109 5 44 15 43 19 43

6 0 98 7 43 16 48 12 40

8 0 83 2 47 9 41 20 22

10 0 93 4 37 12 33 18 30

The performance of the tests of homogeneity of variance in maintaining power (l-(3) at the

five-percent level are presented in Tables 5, 6, 7, and 8. Tables 5 and 6 show the results

under normality assumptions, while Tables 7 and 8 show the results under non-normality.

Table 5: Results for Case 4, Normal Distributionwith (I = 50, and Cm = C-2 :

(Number ofrejections ofthe null hypothesis out of 1000)

= fJk-i = 15, Ok = 20

n

IIOVTest k 2 3 4 5 6 7 8 9 10

In ANOVA 2 77 45 41 55 86 95 135 114 117

(Bartiett and Kendall) 4 99 75 51 58 68 91 106 98 103

6 115 65 56 76 73 71 107 82 111

8 105 68 46 56 77 63 72 99 100

10 133 57 51 50 72 63 79 67 108

In ANOME 2 77 45 41 55 86 95 135 114 116

(Vohno) 4 111 75 54 66 73 100 102 100 104

6 132 75 79 83 77 88 104 89 113

8 150 95 80 76 99 81 93 111 122

10 188 88 84 79 79 83 97 79 115

Bartlett's Test 2 37 30 37 51 81 87 133 110 116

4 31 47 37 58 76 93 98 101 109

6 27 30 29 61 71 78 99 94 125

8 27 36 32 44 73 71 67 102 106

10 40 23 27 47 63 61 83 76 110

F-Test (Two Variances) 2 47 35 38 51 81 88 133 110 116

Levene's Test 2 0 70 10 67 35 62 61 84

4 0 66 5 80 22 68 37 71

6 0 54 4 76 26 56 39 83

8 0 68 5 52 19 50 33 58

10 0 60 1 39 12 63 23 76
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From Tables 5 and 6, it is clear that all tests respond to the increase from 20 to 30 in the
k'

(J. In Table 5, all tests that rely on the normality assumption performed about equally well in

terms of power. However, the In ANOME test seemed to detect the difference in variability

of the
kth

group more readily than either In ANOVA or Bartlett's Test. The F-test results are

generally so close to those ofBartlett's test that there is little value in mentioning both.

Judging from Table 6, Bartlett's test seems to be the best at detecting true differences in

variability, followed by In ANOME. Hence, the faith ofmany authors in Bartlett's test when

a normality assumption is tenable seems justified.

Table 6: Results for Case 5, Normal Distributionwith u 50, and 0i = O2 :

(Number ofrejections ofthe null hypothesis out of 1000)

Ok.i = 15, ok = 30

n

HOV Test k 0 3 4 5 6 7 8 9 10

In ANOVA 2 80 95 114 197 264 318 419 436 504

(Bartiett and Kendafl) 4 108 88 121 183 257 314 392 436 504

6 129 95 114 161 226 308 364 404 451

8 145 95 94 131 210 226 366 365 417

10 151 95 102 133 167 219 305 333 398

In ANOME 2 80 95 114 197 264 318 419 436 504

(Volino) 4 122 72 132 179 286 343 402 457 512

6 142 104 140 177 272 334 406 451 516

8 184 110 115 170 254 295 439 471 509

10 194 134 122 184 241 293 397 456 519

Bartlett's Test 2 45 84 101 185 257 310 412 427 499

4 61 90 166 227 328 386 463 500 566

6 55 78 155 216 299 387 474 479 568

8 43 116 129 205 328 348 503 501 545

10 34 93 135 215 276 335 442 479 550

F-Test (Two Variances)
1 57 84 104 185 258 311 412 427 499

Levene's Test 2 0 102 25 151 106 268 192 308

4 0 158 55 237 165 326 282 389

6 0 140 48 198 180 305 299 407

8 0 134 43 191 142 351 310 407

10 0 146 41 198 125 302 278 398

For Cases 6 and 7, it was not possible in simulations to alter the variance of a group

without also changing the group's mean. This is due to the fact that for theWeibull and

Gamma distributions, both the mean and the variance of the population are direct functions
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of the parameters that describe these distributions. Nonetheless, the results are shown in

Tables 7 and 8 for k-1 groups from the same population and the
kc

group
different.

Table 7: Results for Case 6,Weibull Distributions with CO = 1, and <|> = 1.5 (First k-1 groups), CO = 2 (kIh
group)

(Number ofrejections ofthe null hypothesis out of 1000)

n

HOV Test k 2 3 4 5 6 7 8 9 10

In ANOVA 2 118 135 202 271 326 358 421 460 501

(Bartiett and Kendall) 4 167 152 163 278 342 394 479 510 535

6 155 175 202 276 346 426 456 508 577

8 93 205 235 313 373 425 507 528 573

10 145 221 240 298 350 422 456 542 574

In ANOMK 2 118 135 202 271 326 358 421 460 501

(Volino) 4 165 140 162 269 336 378 481 503 553

6 161 177 195 270 336 424 446 501 580

8 115 207 264 316 362 421 471 546 581

10 182 236 279 278 323 386 426 533 546

Bartlett's Test 2 48 107 188 260 317 351 410 456 494

4 92 168 195 305 379 435 509 549 583

6 80 193 258 320 411 491 503 568 633

8 38 201 272 393 435 494 573 598 646

10 69 205 297 359 443 506 549 610 629

F-Test (Two Variances) 2 60 117 191 262 318 352 413 456 494

Levene's Test 2 0 139 28 161 117 191 199 268

4 0 181 59 170 142 288 239 326

6 0 163 50 187 141 233 237 346

8 0 135 41 190 120 285 230 328

10 0 157 42 155 112 251 217 325

For the simulations ofCase 6, involvingWeibull-distributed data with the
kth

group

having mean and variance different from the other k-1 groups, the number of rejections of

the null hypothesis was on average double the rejection rate in the homogenous case (see

Table 2: all k groups the same). This was a fairly common phenomenon across all tests.

Bartlett's test was the most sensitive to the difference in the
kth

group, followed by Bartiett

and Kendall's In ANOVA. The results ofLevene's test once again revealed the
"odd-even"

effect mentioned earlier and, as usual, was the most conservative in declaring differences

among the within-group
variances.
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Note that the actual variance for the first k-1 Weibull-distributed groups was 0.376,

as opposed to a variance in the
k*

group of 1.503, detenriined by the formula forWeibull

variance, namely

=GJU

r r

L 0_

-ri+i

1 L *
(24)

Table 8: Results for Case 7, Gamma Distributionswith \|/ = 2.5, and X - 2 (1st k-1 groups), \|/
= 5.0 (klh

group)

(Number of rejections ofthe null hypothesis out of 1000)

n

IIOYTest k 2 3 4 5 6 7 8 9 10

In ANOVA -) 82 84 103 130 167 185 216 204 248

(Bartiett and Kendall) 4 124 113 145 175 190 240 234 267 305

6 136 105 183 181 249 265 282 302 335

8 152 134 166 219 253 303 300 349 364

10 189 174 199 245 274 301 389 397 409

In ANOME -> 82 84 103 130 167 185 216 204 248

(Volino) 4 132 111 129 162 166 218 232 264 287

6 152 116 176 179 211 245 261 280 300

8 171 137 165 204 226 254 270 299 305

10 217 185 197 206 232 238 309 311 317

Bartlett's Test 2 46 68 94 118 162 181 214 201 240

4 49 104 142 177 187 236 251 265 314

6 45 103 192 214 257 284 302 324 346

8 46 134 187 246 274 324 357 377 378

10 68 160 216 283 280 316 425 408 456

F-Test (Two Variances) 2 62 74 97 118 163 181 214 202 241

Levene's Test 2 0 86 13 70 44 93 81 110

4 0 107 19 80 34 103 65 112

6 0 99 10 72 33 74 55 99

8 0 113 10 51 24 81 48 84

10 0 95 9 69 33 73 50 73

In an examination of power (l-f3) of the tests performed on variances from Gamma

distributions, of tests that rely on normality (mcluding In ANOVA, In ANOME, and

Bartlett's test), Bardett's test again provided the most power when k > 4 and n > 3. In

ANOVA and In ANOME were nearly as powerful. Levene's test was conservative to the

extent that it was almost worthless as a test of equality of variances. Not surprisingly, this
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same test was much less powerful for an odd number of replicates than for an even number

of replicates.

Summary and Conclusions

An analysis-of-means-type test (In ANOME) for determining differences in

variability between subgroups from normal populations was presented. Its merits parallel

those of the usual analysis ofmeans in that the result of the test is a graphical representation

of the differences due to the various combinations of the variables. In ANOME has the

advantage of providing its own estimate of the error variances and of relying on the same

tables that are commonly available for the standard ANOME procedure.

In cases of normality, the In ANOME test, in its present form, is less able to

maintain stable Type-I error rates than is the commonly accepted Bardett's test. In cases of

non-normality, in terms of both Type-I error rate and power, In ANOME is comparable to

and sometimes better than other tests like Bartlett's test and In ANOVA. Moreover, the

results from this study suggest that the In ANOME procedure would allow for fewer than

the "n = 5
replicates"

cutoff that Bartiett and Kendall recommended for approximate

normality of In
S2

The expected Type-I and Type-II error rates were maintained for n = 4

replicates, and sometimes even for n
= 3 replicates.

Bartlett's test is usually preferred in the literature for comparing variances from

normal distributions. Results obtained in this investigation confirm that Bardett's test

provides good power when the assumption of normality is tenable. When that assumption is
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in doubt, In ANOME or In ANOVA may provide slighdy more stable error
rates of both

types.

Levene's test, with Brown and Forsythe's modification, is plagued by an
"odd-even"

effect in its ability to maintain both the Type-I error rate and power. For n=3 replicates, the

test never led to a rejection of the null hypothesis for any simulation. This test is an option

both in the MEANS statement ofPROC GLM in SAS and as part of the standard output in

MINITAB, so an understanding of its questionable performance is very important in its

application.

FutureWork

G. E. P.
Box15

suggested a stability adjustment for In ANOVA that calls for

randomly assigning replicates within the
"cells"

of the experiment to two or more

subgroups, and then computing their natural logarithms so as to have more than one In
S~

estimate per cell. He then recommended using these as the replicates of the experiment and

computing the error variance from these estimates as opposed to using the theoretical error

variance. Although this investigation did not explore such an approach, it could easily be

incorporated into the In ANOME procedure.

Also, more simulation work could be done for those cases studied in order to give a

broader, more complete coverage to differences between group variances. Then
empirically-

derived OC-curves could be constructed to better track the performance of In ANOME and

the other tests in this study.
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Finally, Bartiett & Kendall and L. S. Nelson all made mention of the fact that these

tests need not be only of the form In S2, but could also be based on In S, In Range, etc. It

would be interesting to investigate these other forms in the graphical setting of the ANOME

type.
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Appendix A-l

Exact Factors for One-WayAnalysis ofMeans, Ha

Note: Two-Sided, and for Infinite Error Degrees of Freedom

Table A-l. Exact Factors for One-Way Analysis ofMeans, Ha

Significance Level, a

k 0.10 0.05 0.01 0.001

2 1.163 1.386 1.822 2.327

3 1.67 1.91 2.38 2.92

4 1.90 2.14 2.61 3.17

5 2.05 2.29 2.75 3.33

6 2.15 2.39 2.87 3.43

7 2.24 2.48 2.94 3.52

8 2.31 2.54 3.01 3.59

9 2.38 2.60 3.07 3.65

10 2.42 2.66 3.12 3.69

11 2.47 2.70 3.17 3.73

12 2.51 2.74 3.20 3.76

13 2.55 2.77 3.23 3.80

14 2.57 2.79 3.26 3.83

15 2.60 2.83 3.28 3.85

16 2.63 2.86 3.31 3.87

17 2.66 2.88 3.34 3.90

18 2.68 2.90 3.35 3.92

19 2.70 2.92 3.38 3.93

20 2.72 2.94 3.39 3.96

The values in this table were obtained from Table A.8, E. R. Ott and E. G. Schilling12.



Appendix A-2

Sidak Factors for Analysis ofMeans for Treatment Effects, h0

Note: Two-Sided, and for Infinite Error Degrees ofFreedom

Table A-2. Sidak Factors for Analysis ofMeans for Treatment Effects, ha

Significance Level, a

k 0.10 0.05 0.01 0.001

2 1.645 1.960 2.576 3.291

3 2.114 2.388 2.934 3.588

4 2.226 2.491 3.022 3.662

5 2.311 2.569 3.089 3.719

6 2.378 2.631 3.143 3.765

7 2.434 2.683 3.188 3.803

8 2.481 2.727 3.226 3.836

9 2.523 2.766 3.260 3.865

10 2.560 2.800 3.289 3.891

11 2.592 2.830 3.316 3.914

12 2.622 2.858 3.340 3.935

13 2.649 2.883 3.362 3.954

14 2.674 2.906 3.383 3.972

15 2.697 2.928 3.402 3.988

16 2.718 2.948 3.419 4.004

17 2.738 2.966 3.436 4.018

18 2.757 2.984 3.451 4.031

19 2.774 3.000 3.466 4.044

20 2.791 3.016 3.480 4.056

24 2.849 3.071 3.528 4.099

30 2.920 3.137 3.587 4.150

40 3.008 3.220 3.661 4.215

60 3.129 3.335 3.764 4.306

The values in this table were obtained from Table A. 19, E. R. Ott and E. G. Schilling12.



Appendix A-3

Example ofGenerating Random Numbers (Two-Parameter Weibull)

The cumulative distribution function of the two-parameterWeibull density is given by

F{y) = l-e{'1 (A"3"1)

where

CO = Weibull Scale Parameter (Characteristic-Life), and

(j) = Weibull Shape Parameter.

Ifwe let r be a uniformly-distributed computer-generated random number on the [0, 1]

interval, we can set this equal to the c.d.f. of the two-parameterWeibull density to give us,

i*

r =
\-e^a> (A-3-2)

Then, we can solve for y as follows:

(A-3-3)

ln(l-r) =
- | (A-3-4)

1 r = e

f
y

y

j

7 y (A-3-5)

i

C7[-ln(l-r)]^=y (A-3-6)

But since 1-r is also uniformly distributed on the [0, 1] interval, we can further



simplify this expression by replacing 1-r with r to yield

i

y
= [-\n(r)f (A"3"7)

Therefore, the ability of the various versions ofBASIC-type prograrriming languages to

produce uniformly-distributed random numbers (with the RND function) allows us to

construct random numbers from theWeibull density (and many others).
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Appendix A-4

Visual Basic Subroutines for Simulations in Excel

Subroutines:

RandNormal: Generates a specified number ofNormal-distributed random numbers.

RandWeibull: Generates a specified number ofWeibull-distributed random numbers.

RandGamma: Generates a specified number ofGamma-distributed random numbers.

Bartiett: Computes Bardett's test statistic and p-value.

Levene: Computes Levene's test statistic and p-value.

ANOVA: Performs a one-way ANOVA, and computes the F-statistic and p-value.

InANOVA: Performs Bardett and Kendall's log ANOVA, and computes the F-statistic and p-

value.

Sub RandNormal (nVars As Integer, nRand As Integer, dblMean As Double, _

dblStandardDev As Double, rngOutput As Range, Optional nSeedAs Integer)

Dim i As Integer, j As Integer, Pi As Double

Pi = Application. Pi ( )

On Error GoTo StartOver

If nSeed <> 0 Then

Randomize (nSeed)

Else

Randomize

End If

For i 1 To nVars

For j 1 To nRand

StartOver:

If Rnd <= 0.499999 Then

rngOutput. Of fset (j 1, i 1) .Value _

(Sqr(-2
*

Log(Rnd))
* Cos(2 *

Pi
*

Rnd))
*
dblStandardDev + dblMean

'Debug.Print
"Cosine"

Else

rngOutput.Offset (j 1, i 1) .Value
_

(Sqr(-2 *
Log(Rnd))

*
Sin(2

*
Pi

*

Rnd))
*
dblStandardDev + dblMean

'Debug. Print
"Sine"

End If

Next j

Next i

End Sub
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Sub RandWeibull (nVars As Integer, nRand As Integer, dblScale As Double,

dblShape As Double, rngOutput As Range, Optional nSeed As Integer)

Dim i As Integer, j As Integer

On Error GoTo ReDo

If nSeed <> 0 Then

Randomize (nSeed)

Else

Randomize

End If

For i 1 To nVars

For j 1 To nRand

ReDo:

rngOutput.Offset (j 1, i 1) .Value

dblScale
*

(-Log (Rnd))
"

(1 / dblShape)

Next j
Next i

End Sub

Sub RandGamma (nVars As Integer, nRand As Integer, dblAlpha As Double,

dblBeta As Double, rngOutput As Range, Optional nSeed As Integer)

Dim i As Integer, j As Integer, nA As Integer, k As Integer

Dim dblProd As Double, dblA As Double, dblB As Double

Dim dblq As Double, dblRndyl As Double, dblRndy2 As Double

Dim dblz As Double, dblW As Double, dblXGamma As Double

'Note dblAlpha must be non-integer

On Error GoTo RepeatThis

If nSeed <> 0 Then

Randomize (nSeed)

Else

Randomize

End If

nA = Int (dblAlpha)

For i = 1 To nVars

For j 1 To nRand

RepeatThis:

dblProd = 1

For k 1 To nA

dblProd dblProd
*
Rnd

Next k

dblq
-

(Log (dblProd) )

dblA dblAlpha nA

dblB 1 dblA

TryltAgain:

dblRndyl = Rnd

dblRndyl = dblRndyl
*

[1 / dblA)

dblRndy2 = Rnd

dblRndy2 = dblRndy2
"

(1 / dblB)

If dblRndyl + dblRndy2 <= 1 Then

dblz dblRndyl / (dblRndyl + dblRndy2)

Else

GoTo TryltAgain

End If

dblW = Rnd

dblW = -(Log(dblW) )

dblXGamma (dblq + dblz *
dblW)

* (1 / dblBeta)

rngOutput .Offset (j 1, i 1) .Value dblXGamma

Next j
Next i

End Sub
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Function Bartiett (nGroups As Integer, nReplicates As Integer) As Double

Dim i As Integer, j As Integer, rngData As Range

Dim N As Integer, a As Integer

Dim ni() As Integer, Sums ( ) As Double, SumsSqO As Double

Dim SubVarO As Double, Subgroups!) As String, dblSPooled As Double

Dim q As Double, c As Double

Set rngData Worksheets ( "Data
Sheet"

) .Range ( "B2 :
"

& Chr(65 + nGroups) &

1 + nReplicates)

N nGroups
*
nReplicates

ReDim ni (nGroups) As Integer

ReDim Sums (nGroups) As Double

ReDim SumsSq (nGroups) As Double

ReDim SubVar (nGroups) As Double

For i 1 To nGroups

ni(i) = nReplicates

For j = 1 To nReplicates

Sums(i) Sums(i) + rngData (j, i) .Value

SumsSq(i) SumsSq(i) + (rngData(j, i) .Value)
"

2

Next j

Next i

For i 1 To nGroups

SubVar(i) (SumsSq(i) ((Sums(i)) "21 ni(i))) / (ni(i) 1)

dblSPooled dblSPooled + (ni(i) 1)
*
SubVar (i)

Next i

a nGroups

dblSPooled = dblSPooled / (N a)

For i 1 To a

q q + (ni(i) 1)
*
LoglO (SubVar (i) )

c c + 1 / (ni(i) 1)

Next i

q (N a)
*
LoglO (dblSPooled) q

c 1 + 1 / (3
*
(a 1) )

* (c 1 / (N a) )

Bartiett = 2.3026 *

q / c

BartlettTS = Bartiett

Bartlettp = Application.ChiDist (BartlettTS, a 1)

End Function
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Function Levene (nGroups As Integer, nReplicates As Integer) As Double

Dim i As Integer, j As Integer

Dim N As Integer, a As Integer

Dim ni ( ) As Integer, nTemp As Integer

Dim Subgroups!) As String, dblTemp ( ) As Double

Dim Medians!) As Double, GroupedData ( ) As Double

Dim Maxni As Integer, rngTemp As Range, dblTemp2 As Double

Dim Vij() As Double, VidotO As Double, Vdotdot As Double

N nGroups
*
nReplicates

a nGroups

ReDim ni (nGroups) As Integer

ReDim Medians (a) As Double

For i 1 To nGroups

ni(i) = nReplicates

Set rngTemp Worksheets ( "Data
Sheet"

) .Range ( "B2
:B"

& nReplicates + 1)

Medians (i) Application.Median (rngTemp.Offset (0, i 1))

Next i

ReDim Vij (nGroups, nReplicates) As Double

For i 1 To nGroups

For j = 1 To nReplicates

Set rngTemp Worksheets ( "Data
Sheet"

) .Range ( "B2
:B"

& nReplicates + 1)

Set rngTemp rngTemp.Of fset (0, i 1)

Vij(i, j) Abs (rngTemp.Range (
"A"

& j).Value Medians(i))

Next j

Next i

ReDim Vidot(a) As Double

For i 1 To nGroups

For j = 1 To nReplicates

Vidot(i) Vidot(i) + Vij(i, j)

Next j

Vdotdot = Vdotdot + Vidot(i)

Vidot(i) = Vidot(i) / ni(i)

Next i

Vdotdot Vdotdot / N

For i 1 To nGroups

Levene = Levene + nReplicates
*
(Vidot(i) Vdotdot)

~

2

Next i

Levene = Levene / (nGroups 1)

dblTemp2 = 0

For i = 1 To nGroups

For j = 1 To nReplicates

dblTemp2 dblTemp2 + (Vij(i, j) Vidot(i))
"

2

Next j

Next i

dblTemp2 = dblTemp2 / (N a)

Levene = Levene / dblTemp2

LeveneTS = Levene

Levenep Application. FDist (LeveneTS, a 1, N a)

End Function
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Function ANOVA(nGroups As Integer, nReplicates As Integer) As Double

Dim dblSSTr As Double, dblSSTO As Double, dblSSE As Double

Dim dblFStar As Double, Sums ( ) As Double, dblOSum As Double

Dim i As Integer, j As Integer, k As Integer, N As Integer

Dim rngTemp As Range, shtDataSheet As Worksheet

k = nGroups

N = k *
nReplicates

ReDim Sums(k) As Double

Set shtDataSheet = Worksheets ( "Data Sheet")

Set rngTemp shtDataSheet .Range ( "B2 :
"

& Chr(65 + nGroups) & nReplicates + 1)

dblOSum Application. Sum(rngTemp)

For i = 1 To k

Sums (i) Application. Sum (rngTemp. Columns (i) )

dblSSTr dblSSTr + (Sums(i)
*

2)

For j 1 To nReplicates

dblSSTO = dblSSTO + rngTemp (j, i)
"

2

Next j

dblSSTr

dblSSTO

dblSSTO

Next l

dblSSTr

dblSSTO

dblSSE

dblFStar

ANOVAp

ANOVA = dblFStar

End Function

/ nReplicates (dblOSum "2) / N

(dblOSum
"

2) / N

dblSSTr

(dblSSTr / (k D) / (dblSSE / (N-k))

Application. FDist (dblFStar , k 1, N k)

Function InANOVA (nGroups As Integer, nReplicates As Integer) As Double

Dim i As Integer, j As Integer, k As Integer, N As Integer

Dim rngTemp As Range, shtDataSheet As Worksheet

Dim dblErrorTerm As Double, SampVar ( ) As Double

Dim dblSSTr As Double

Dim dblFStar As Double, dblOSum As Double

k = nGroups

N = k *
1

ReDim SampVar (nGroups) As Double

Set shtDataSheet = Worksheets ( "Data Sheet")

Set rngTemp
= shtDataSheet -Range ( "B2 :

"

4 Chr(65 + nGroups) & nReplicates + 1)

For i 1 To k

SampVar(i) = Application.Var (rngTemp.Columns (i) )

SampVar (i) = Log ( SampVar ( i ) ) 'In si~2

dblSSTr = dblSSTr + (SampVar (i)
"

2)

dblOSum = dblOSum + SampVar (i)

Next i

dblSSTr = dblSSTr (dblOSum
"

2) I N

dblErrorTerm = 2 / (nReplicates 1) + 2 / ((nReplicates 1)
"

2) +
_

4 / (3
*
(nReplicates 1) "3) 16 / (15

*
(nReplicates 1)

"

5)

dblFStar (dblSSTr / 1)) / dblErrorTerm

InANOVAp Application. FDist (dblFStar, k 1, 100000000)

InANOVA dblFStar

End Function
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Appendix A-5

Type-I Error Rates forANOVA

While it was not the intent of this work to judge the robustness of the usual ANOVA for

testing means, these analyses were performed nonetheless to examine the effects of
non-

normality on the Type-I error rates. In each cell in the table below, the number of times out

of one thousand that the null hypothesis of equal treatment means was rejected at the

OC = 0.05 level was tallied and recorded. That ANOVA is robust in the face of departures

from the normality assumption is common knowledge. Not surprisingly, then, we see that

ANOVA has little trouble maintaining the Type-I Error rate (here versus the 50 out of 1000,

or the 5% level) for non-normal distributions.

Type-I Error Rate for ANOVA

k

n

Case 2 3 1 5 6 7 8 9 10

1 2 52 56 47 46 54 52 43 58 58

Normal 3 48 40 42 50 52 49 53 61 52

-1 35 55 57 40 53 54 42 49 54

5 58 44 46 47 55 56 51 54 62

6 63 47 50 39 47 43 46 48 60

7 44 54 55 41 44 45 47 52 49

8 50 50 64 53 53 43 61 54 47

9 46 54 53 49 51 51 54 59 47

10 64 55 46 47 54 54 41 40 54

2 2 51 57 46 44 41 43 55 47 47

Weibull 4 49 40 51 56 57 47 51 37 52

6 52 44 35 62 52 39 59 42 52

8 62 51 41 43 49 48 43 45 47

10 69 68 63 56 42 40 48 52 59

3 2 53 43 46 51 57 45 45 51 56

Gamma 4 54 51 58 30 39 38 54 52 41

6 52 39 38 35 51 46 41 40 44

8 51 44 39 41 52 59 50 63 35

10 48 48 51 60 47 46 49 44 45
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