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Abstract 

Assessment of cardiac function of a patient is very important for understanding a patient’s 

physiological state. Remote measurements of the cardiac pulse can provide comfortable 

physiological assessment by minimizing the amount of wires and cables and allowing for near 

continuous measurements. It has been found that state-of-the-art algorithms based on independent 

component analysis (ICA) suffer from a sorting problem which hinders their performance. This 

effect is demonstrated in this work. The automated pulse detection techniques are applied to RGB 

color video recordings of the facial region of a person being monitored for cardiac function in a 

remote sensing environment. Automated face tracking is employed to locate the region of interest 

and address motion artefacts. 

 This work proposed and evaluates a novel algorithm based on constrained source separation, 

aka, constrained independent source separation (cICA) to accurately estimate the pulse rate of a 

patient by solving the sorting problem observed in the ICA based approach. The constrained 

optimization problem incorporates prior information and additional requirements in the form of 

constraints. A reference signal with a single tone frequency corresponding to a possible heart rate is 

fed to the cICA algorithm. This forces the output signal to match the reference signal embodying 

prior knowledge about an underlying IC. It is also shown that with this algorithm a near 

photoplethysmography (PPG) signal corresponding to the variations in blood volume in the body 

can be extracted. An IRB approved study encompassing 45 subjects resulted in Bland-Altman 

analysis with an FDA-approved finger blood volume pulse (BVP) sensor demonstrating that the 

proposed algorithm provides significantly improved accuracy.  
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Summary of Contributions 

The following is a list of contributions presented in this work. 

 Algorithm Implementation: The proposed constrained Independent Component Analysis 

(cICA) algorithm was implemented and optimized in Matlab and was used to analyze 45 

video streams captured in a study. State of the art algorithms using the traditional ICA 

approach were implemented as well to form a basis for comparison via Bland-Altman plots.  

 Publication: G. R. Tsouri, S. Kyal, S. Dianat, L. K. Mestha, “Constrained-ICA Approach to 

Non-Obtrusive Pulse Rate Measurements”, published in SPIE Journal of Biomedical Optics, 

Vol. 17(7), and August 2012. 

 Patent: L. K. Mestha, S. Kyal, G. R. Tsouri, S. Dianat, Xerox Corp., "Estimating Cardiac 

Pulse Recovery From Multi-Channel Source Data Via Constrained Source Separation", US 

13/247,683 Patent Pending, Sept. 2011. 
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1 Background - ICA 

ICA is a widely used technique in blind source separation, feature extraction and signal detection. It 

transforms a multivariate random signal into a signal having mutually independent components. It 

assumes that the observed signals  ( )  are the instantaneous linear mixture of independent 

sources ( ), i.e. 

                        ( )      ( )                 (1) 

where,  ( )     ( )  ( )  ( ) 
   ( )      ( )  ( )  ( ) 

  are vectors and   is a 3x3 square 

matrix (considering three sources are mixed) containing the mixture coefficients. In this case, the 

number of sources is equal to the number of observations. ICA aims at extracting the original 

sources  ( ) by estimating the demixing matrix W which is an approximation of the inverse of the 

original mixing matrix  .  

       ( )      ( )                                                                (2) 

 ( ) is an estimate of the underlying source signals  ( ). The overall ICA process is described as 

follows: 

 

Figure 1: Source separation using Independent Component Analysis 

 

According to central limit theorem, under given certain conditions, distribution of the 

mixture of independent and identically distributed (i.i.d.) random variables converges to the 
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Gaussian distribution as number of sources increases (refer figure 2). Estimating independent 

components corresponds to finding a demixing matrix W such that each entry of      is as non-

gaussian as possible. This implies that to recover independent source signals,   should maximize 

non-gaussianity of each source. A cost function which measures the non-gaussianity is maximized 

iteratively. Negentropy is used to separate ICs from their mixtures since the sources considered in 

source separation usually have non-gaussian distributions.  

 

Figure 2: Central Limit Theorem 

In the framework of pulse rate measurements, the periodic variation in color due to the 

pulsating blood flow beneath the skin surface controlled by the heart is the point of interest. Other 

sources, such as movement of the subject, distance of the camera from the subject or fast variations 

in ambient light, are mixed with the pulsating heart and acts as interference in the pulse rate 

measurements. 

It has been observed that the standard ICA technique suffers from the sorting problem. That 

means the interested component could be present in any of the ICA output channels. This sorting 

problem was recognized in [2, 3] and solved either by selecting the second component always [2] or 

by selecting the peak frequency of the IC with the highest power [3]. Moreover, in the latter case, 

the selected component would vary for different measurements.  

 

 

 

n=1 n=2 n=5 n=1

0
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2 Previous Work 

 2.1 Heart rate measurement based on a time-lapsed image [1] 

In this work, the pulse rate was measured using a time-lapsed image acquired from a CCD camera. 

A part of the subject’s skin (cheek) chosen as the region of interest (ROI) was constantly captured 

for 30 sec. The changes in the average image brightness of the ROI were measured using image-

processing software and processed by a series of operations. As sampling of the time-lapsed image 

was not conducted with a constant time interval, the measured illumination data were interpolated 

and regulated by up-sampling software. Different interpolation techniques including the cubic 

spline, the B-spline and the non-uniform rational B-spline were tested and the first two performed 

well. This was followed by operations involving first-order derivative, a low pass filter of 2 Hz and 

a sixth-order auto-regression spectral analysis on the interpolated data. Other spectral analysis like 

the fast Fourier transform and the wavelet transform were evaluated too. Using the wavelet 

transform and AR spectral analysis, a clear peak could be seen at appropriate heart rate frequency. 

Fourteen subjects participated in the experiment and a correlation coefficient of 0.90 was obtained 

for the measurement of heart rate.  

2.2 Non-contact, automated cardiac pulse measurements using video imaging 

and blind source separation [2] 

In this work, a new methodology was introduced which could be applied to color video recordings 

of the human face. This approach was based on blind source separation of the color channels into 

independent components.  

First, an automated face tracker was used to detect faces within the video frames which 

serve as the measurement region of interest (ROI) for each frame. The face detection algorithm 

developed by Viola and Jones, as well as Lienhart and Maydt, was used in this work. It involves a 
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cascade of boosted classifiers which uses Haar-like image features pre-trained from an enormous set 

of positive and negative images. When a face is detected, a box is defined around a face 

automatically and a central section of the box is selected as the ROI. The ROI is then separated into 

three RGB channels and spatially averaged over all pixels to yield a red, blue and green 

measurement point for each frame and form raw traces   ( ),   ( ) and   ( ) for each channel. The 

traces were subsequently processed using a 30 s moving window with 1 s increment. The raw RGB 

traces are normalized and then decomposed into three independent source signals using ICA. The 

joint approximate diagonalization of eigenmatrices (JADE) algorithm by Cardoso [10] is used to 

approximate statistical independence of the sources. JADE uses fourth-order cumulant tensors and 

involves the joint diagonalization of cumulant matrices. From the experiments, it was noticed that 

the second component, corresponding to the green channel, reportedly contained a strong 

plethymographic signal (PPG) and was selected as the desired source; otherwise the components 

were not ordered. The power spectrum was obtained by using the fast Fourier transform (FFT) on 

the selected source and the frequency at which highest power is achieved was used as the 

corresponding pulse frequency. The highest power was picked within an operational frequency band 

of 0.75-4 Hz corresponding to 45-240 bpm. The reference heart rate measurements from the 

recorded finger BVP signal was done in a similar way. Results from both the techniques were 

recorded and compared.  12 participants were tested in the experiment and a correlation coefficient 

of 0.98 while the root mean squared error (RMSE) of 2.29 was obtained for the measurement of 

heart rate.  

2.3 Advancements in non-contact, multiparameter physiological 

measurements using a webcam [3] 

In this work, the automated computation of heart rate from color video recordings of the human face 

in [2] is extended to extract multiple physiological parameters such as heart rate (HR), respiration 
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rate (RR) and heart rate variability (HRV). The blood volume pulse from the facial regions of a 

person is extracted by applying independent component analysis on the color channels.  

The raw traces formed by spatially averaging over all pixels for each frame were detrended 

using a smoothness priors approach [11] with the smoothing parameter λ = 10 corresponding to the 

cut off frequency of 0.89 Hz and normalized to zero mean and unit variance. This normalized traces 

are then decomposed into three independent components using JADE algorithm based ICA. Once 

again, the order in which it returns the independent components is random. To solve this sorting 

problem in ICA, the component for which the peak frequency has highest power is selected in this 

work. Same dataset of 12 videos as used in [2] were used to obtain a correlation coefficient of 1.0 

and a root-mean-squared error of 1.24 bpm for heart rate measurements.  

The separated source signal is processed further to refine the BVP peaks using a moving 

average filter and a band-pass filter. This processed signal is interpolated to a frequency similar to 

the FDA approved Flexcom sensor used to compare the respective results. The BVP peaks were 

detected to calculate the inter beat intervals (IBI). Ectopic beats or motion artifacts in the signal 

were taken into account by using a filter on the extracted IBIs. IBI mean over the time series is used 

to determine the heart rate using 60/   ̅̅ ̅̅ . 

2.4     Temporally constrained ICA-based fetal ECG separation [4] 

In this work, cICA was successfully used to extract an underlying signal of interest. Here, a weak 

signal of a fetal ElectroCardioGram (ECG) was extracted by removing the dominant maternal 

signal.  

In this method, using a prior knowledge of dominant maternal beat positions a pulse signal 

defined as the reference signal was generated whenever a QRS complex occurred. Peak detection 

algorithm was used to compute the maternal beats positions. This reference signals constraints the 
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cICA output to be similar and hence extracts a maternal ECG dominant signal free from both 

artifacts and foetal ECG. In the end, the output of cICA is eliminated from one of the abdominal 

ECGs that is most related to the output, to obtain the fetal ECG. This technique is depicted in the 

form of block diagram below.  

 

Figure 3: Block diagram of temporally constrained ICA based fetal ECG separation [4] 

 3 Proposed Algorithm 

In this contribution, the constrained Independent Component Analysis (cICA) algorithm is used to 

improve the accuracy of BVP measurements using a webcam. For the pulse rate measurement, 

cICA can be used to help avoid the sorting problem of ICA discussed above and extract the BVP as 

the source of interest even with the presence of other sources.  

 In this work, a cICA based algorithm is designed, implemented and tested for accurately 

measuring the pulse rate of a person. The performance of both ICA based and cICA based pulse 

measurement are compared and it is showed how the latter works better. Moreover, a comparative 

study between both the algorithms is performed over a larger dataset of 45 videos.  

 A functional block scheme of the proposed algorithm is depicted in the following figure.  
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Figure 4: Functional block of the proposed algorithm 

A video is captured using an RGB webcam along with face tracking for locating the entire 

face region as the Region of Interest (RoI) for pulse detection. The RGB traces from the RoI are 

pre-processed per trace by band-limiting to the expected heart rate range (45-240 bpm), whitened to 

uncorrelate the traces by linear transformation, shifted to zero mean and normalizing to unit 

variance to simplify the separation. For example, observed signal   is the fig. 5 (mixing of two 

signals    and    is considered here) is assumed to be already whitened and normalized. Then the 

problem is reduced to find an orthonormal matrix W such that components of      are as 

independent as possible. 

               Original x         Whitened x                          y 

Figure 5: Demixing using cICA 
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The three processed traces are fed as input signals to cICA optimization as described in (29)-

(30). The constrained optimization problem is solved using Newton-like learning [5] to incorporate 

prior information and additional requirements in the form of constraints. The reference signal fed to 

the cICA algorithm is a single tone with frequency corresponding to a possible heart rate in beats 

per minute (bpm). The peak frequency in the spectrum of the cICA output is compared to the 

frequency of the reference signal and the error is recorded as the absolute difference in frequencies. 

            This process is repeated while sweeping through frequencies of the reference signal within 

the expected range starting from 0.75 Hz to 4 Hz (which provides a wide pulse range of 45 to 240 

bmp) with an interval of     (   )  where,    = number of frames per second, N = total number of 

frames in the video sample. Note that this interval is changeable depending on the desired precision 

for the pulse rate. In this case it is 15/(2*900) = 0.00833 Hz or 0.5 beats per minute.  

            Here the operational range of pulse frequency, which is 0.75-4 Hz, is used as a priori 

information for the system. For each different reference signals the optimization algorithm is 

executed which tries to converge the one-unit constrained source separation output towards it. The 

reference frequency which results in the minimal absolute error is selected as the estimated pulse 

rate. 

3.1    cICA 

cICA is a useful extension to ICA which incorporates more assumptions and prior information 

available on underlying sources, avoiding local minima and increasing the quality of separation. In 

this optimization process, a single source close to the rough template or the reference signal 

available is successfully extracted (refer fig. 6). Thus, cICA is a more systematic and flexible 

approach that solves the ill-posed sorting problem of ICA.  
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Figure 6: Constrained ICA 
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The cICA constrained minimization problem [5] is framed as: 

Minimize:       ( )        (3) 

Subject to:          ( )           ( )                     (4) 

Where  ( )  denotes cICA contrast function, and  ( )  and  ( )  are inequality and equality 

constraints, respectively. Lagrange multiplier is used to optimize the above equation. 

Augmented Lagrangian function   is given by: 

         (       )    ( )      ( )   
 

 
   ‖ ( )‖      ̂( )   

 

 
   ‖ ̂( )‖                            (5) 

where  ̂( )    ( )                                                           (6) 

is used to transform the inequality constraints to equality constraints by introducing slack variable z. 

μ and λ are positive lagrange multipliers for inequality and equality constraints, respectively.   is 

the penalty parameter which is always positive and ‖ ‖ is the Euclidean norm.  

Elimination of slack variable ‘z’ according to ref [6]: 

Substituting  ̂( ) in equ (5),  

 (       )    ( )      ( )   
 

 
   ‖ ( )‖       ( )        

 

 
   ‖ ( )     ‖              (7) 

  needs to be minimized w.r.t. (W, z) for various values of μ, λ and  . 

min (     )    ( )      ( )  
 

 
   ‖ ( )‖ ⏟                  

                

           ( )        
 

 
   ‖ ( )     ‖  (8) 

          let,       and          ( )       
 

 
   ‖ ( )    ‖                              (9) 

To get to its global minimum, find the derivative of s and equate it to zero.  
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       ‖ ( )    ̂‖                                                    (10) 

          ̂     [
 

 
   ( )]                                    (11) 

Checking for minima/maxima:   
   

    
 =   > 0                          (12) 

So,  ̂ is the solution to minimize ‘s’  

             Since,             ̂                            (13) 

                        Therefore,  ̂ can have two values i.e.,      {   [
 

 
   ( )]}           (14) 

Now, substituting   back in ̂( ):    ̂( )   ( )       ( )     

 ̂( )   ( )     {   [
 

 
   ( )]} 

      Denote,  (     )    ̂( )        ( )                                 (15) 

    (     )    ( )      ( )          ‖ ( )‖  ⏟                
 ( )

     (     )          ‖ (     ) ‖  ⏟                        
 ( )

 (16) 

 ( )         ( )          
 

  
 ‖      ( )       ‖  

  
 

  
            ( )        ‖       ( )     ‖   

  
 

  
             ( )      ‖      ( )     ‖   

  
 

  
                ( )           ‖        ( )       ‖   

Let,             ( )     
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 ( )   
 

  
             ‖    ‖   

  
 

  
                          

  
 

  
          

Therefore,  ( )   
 

  
           ( )                       (17) 

To summarize equation (5) after slack variable elimination: 

                           (     )    ( )    ( )    ( )                       (18) 

       where,  ( )      ( )   
 

 
   ‖ ( )‖              (19) 

and    ( )   
 

  
           ( )                        (20) 

The gradient of  (     ) is obtained by partially differentiating the objective function in equ (18): 

      (     )      ( )      ( )      ( )             (21) 

By partially differentiating above equation w.r.t. W, the Hessian matrix   
  (     )  can be 

obtained. Newton-like algorithm is used to optimize  : 

             ( )      (  
  )                                                 (22) 

where   is gradually decreased for stable convergence. Gradient ascent method is used to update μ 

and λ as follows: 

      ̂( )     (     )            ( )  
 
 ⁄   

              ( )                                       (23) 
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         and,       ( )                                                (24) 

Initialization: W is chosen as a uniform random vector, and μ and λ as zeros. With each iteration 

vector W, μ and λ are updated using equations (22), (23) and (24) until convergence. 

The parameters are selected and suitably adjusted to maintain the independence criteria and the 

constraint properties valid every time. The choice of the contrast function and the constraints used 

affects the algorithms consistency. The contrast function is chosen as any function whose 

optimization enables the estimation of independent components.  

Negentropy is used to separate the independent components. The negentropy of a signal is given by, 

      ( )    (  )    ( )                                                       (25) 

Where    is a gaussian random variable with same variance as the signal  . Since the gaussian 

signals have the maximum entropy of zero, the negentropy is always nonnegative. The contrast 

function of cICA is given by: 

                                ( )      ( )                                    (26) 

Large  ( ) means that   is far from Gaussian. Since the source distribution is not known, the value 

of  ( )  cannot be computed from its definition.  ( )  has to be estimated from observed data: 

 ( )      ( )          

So,   is estimated using an approximation described in ref [7] as follows: 

          ( )     (   ( )      ( )  )              (27) 

Where,   is a positive constant,   is a non-quadratic function and   is a zero mean unit variance 

gaussian variable.  ( )  can be any practical non-quadratic function to approximate the neg-

entropies of the sub-Gaussian or super-Gaussian signals.  
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 ( )       ( )  

 

Figure 7: Representation of Sub-Gaussian, Gaussian and Super-Gaussian signals. 

e.g.,      ( )    
  

     ( )           

f is chosen depending on whether our source signal of interest is super-gaussian or sub-gaussian. In 

real time, most of the signals are super-gaussian nature and so we set f as proposed in ref [7] as: 

                      ( )         (    (  ))                                            (28) 

where       . This  ( ) helps achieve a stable global solution at the global optima as its second 

derivative is negative. Optimization of (26) alone may cause different outputs estimate the same 

independent component. Therefore, the uncorrelation constraint is introduced to prevent that. The 

equality constraint in (4) is introduced as  ( )    ( (  )    )  to restrict each output to have unit 

variance while the inequality constraint in (4),  ( ) is introduced to guide the separation of ICs. 

 ( ) incorporates additional information available on the interested signals as a priori constraints. 

Traces of the interesting sources, referred to as the reference signals which are not identical to the 

corresponding sources, carry some information to separate the desired components. These 

constraints the ICA algorithm to extract ICs that are closest to the corresponding reference signals. 

Fig (6) shows an example where a specific independent component is extracted from its mixture 

whose rough template is available a priori:  

 
  

Subgaussian Gaussian Supergaussian 
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Choosing g(y) according to [7]: Some norm,  (   ), can be used to measure the closeness between 

the estimated output y and the corresponding reference signal r. The minimum value of the norm 

indicates that the estimated output is the desired IC which is closest to reference signal. Now, if the 

desired IC is the one and only closest to the reference r,  (    )     (    ) where y* is the output 

closest to r and y
o
 is the output with the next closest value of the norm. Thus, a constraint can be 

defined for the desired output component to have the closeness measure with r, which is less than or 

equal to a threshold parameter ξ. Thus,  ( )     (   ) –        and when        and none of 

the other (two in this case) sources corresponds to the reference r if the threshold ξ is chosen in the 

scalar range       (    )  (    )). The Mean Square Error (MSE) is used as a measure of 

closeness.  

Initially, ξ is chosen to be very small so as to avoid any local minima. It is then gradually increased 

within its range to converge to the global minima. To summarize, the overall cICA model looks as 

follows: 

Minimize:  

        (y) = -𝒥(y) ≈ -ρ(E{f(y)}-E(f(v)})
2
                                                        (29) 

Subject to:  

                        h(y) = (E{y
2
}-1)

2
 = 0 ; g(y) = ε(y,r) – ξ ≤ 0,                                                (30)   

 

Substituting C(y), H(y) and G(y) in equ (21): 

         (     )    [   ( ) 
 ]        ( )    

        ( ) 
               (31) 

 From (1):                 ( )      (   ( )   ( ( ) )  
 ( ) 

                                                                        ̂  ( )                          (32) 
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where,                                 ̂    (   ( )   ( ( ) )             (32a) 

From ():                                    ( )    
 ( )     (       )               (33) 

And,                                 ( )     
 ( )               (34) 

To get to      ( ), (  
  )   should be known according to equ (22). In order to avoid matrix 

inversion, the Hessian matrix   
   is approximated as: 

       
  (     )                        (35) 

where,        (     )     (        ⏟    
        

  )      ̂   ( )         ( )                   (36) 

or,               ̂   ( )         ( )             

and,         = Covariance matrix of input x 

Using Newton-like algorithm from equ (22): 

     ( )      (  
  )       

          (       )
                    (37) 

Applying the following relational properties: 

                                                                (    )                          I 

and,           (    )   ( )      (   )                                           II 

Using I:             ( )     (       
  )                 (38) 

Let,       
                          

      

Using II:        ( )        (   
      (     ))  

              (39) 
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Transforming the vector form back to matrix form: 

                                                     (   (     )   )    
                 (40) 

(Note:   is a scalar here). 

or,           (( [   ( ) 
 ]        ( )    

    [   ( ) 
 ])   )    

        (41) 

or,                                ( (     )    (     )    (     ))    
                                     (42) 

with,       (     )   [   ( ) 
 ]   ,                 (43) 

  (     )         ( )    
      ,            (44) 

  (     ))    [   ( ) 
 ]                (45) 

while updating μ and λ as in (23) and (24). 

3.2 Stability Analysis 

The suitable selection of the parameters of the cICA and the convergence stability is discussed in 

this section. With Newton-like learning, the algorithm is able to reach the minimum of the objective 

function and produce the optimum output    to extract the desired ICs. The threshold ξ decides the 

convergence of the cICA algorithm so it has to be suitably selected in the range ϒ discussed above. 

Any component c other than the desired source with the closeness measure  (   )      

corresponds to the local minima. One and only one desired IC is obtained as the optimum output at 

the global minimum if ξ is selected suitably in the range ϒ. However, if ξ is selected too small, the 

corresponding constraint  ( )      causes the learning unpredictable and hence no desired IC is 

produced. On the other hand, if ξ is selected above the upper bound of ϒ a different IC is produced. 

In real-time, ξ is selected to be small in the algorithm to avoid any local minima and is gradually 
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increased according to the range ϒ to converge at the global minima resulting in one and only one 

desired IC.  

The stability of the algorithm at the global optima is examined by testing if the Hessian 

matrix   
  (     ) is positive-definite. When the Hessian matrix is positive definite, the cICA 

algorithm converges stably. The approximated Hessian matrix in (35) is always positive-definite 

when the input covariance matrix     is non-singular and the element D is positive. The former 

condition is true in most of the cases when a large number of samples of the signal are available. 

Considering the first term   
 (     )      (  {   }   ) from (36): since the variance of y* 

approaches to one,   
 (     )      and as    is always positive the first term in (36) is also 

positive. Now, considering the second term   
 (  )       ̂     ( ) : The positivity of   

 (  ) is 

subject to Gaussianity of the signals. From the non-linear function  ( ) proposed in (28), it can be 

shown that     ( )    and the value  ̂    (   ( )   ( ( ) ) in (32a) is always positive for the 

optimal solution with the super-gaussian distribution. Therefore, the product   ̂  ( ) is positive for all 

super-gaussian signals. Considering the third term      (  ) which corresponds to the closeness 

between output and reference signals: In the inequality constraint, it is important to select a suitable 

distance as a closeness measure  (   ). The Mean Square Error (MSE), (   )      (   )  , 

being most simple and common measure can be used as a distance measure between estimated 

desired IC ‘y’ and the corresponding reference signal ‘r’. It is required that both ‘y’ and ‘r’ should 

be normalized to same mean and variance. Correlation can also be used, ε(   )       (      ) , 

with both the output signal and the reference signal normalized so that the correlation is bounded. 

Depending on the form of the reference signal available, the selection of the closeness function can 

be different from one output to another. It can be seen that using any of the closeness measure 

discussed above, the term      (  )  is always positive for positive Lagrange multipliers μs. 

Therefore, when the non-linear function  ( ) in (28) is used for super-gaussian signals and MSE or 
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correlation as the closeness measure, the convergence of the learning algorithms in (42) is always 

stable. 

4 Experimental Study 

One minute color video recordings were made using a 2 Mega Pixel RGB Logitech camera at 15 

frames per second with pixel resolution of 320x240 and saved in WMV/AVI format. A total of 45 

participants between the ages of 18-45 years of both genders with varying skin colors and from 

various nationalities were enrolled in this study. The study was approved by the Internal Review 

Committee for Protecting Human Subjects at the Rochester Institute of Technology. An informed 

consent form was signed by participants prior to the start of each study session. During the video 

recording, participants were asked to sit still in a relaxed state. At the same time, a reference heart 

rate or a ground truth was measured using a BVP finger probe oximeter for validation. All videos 

were further processed offline using MATLAB. 

First, an automatic face tracker was used to detect the faces and locate the ROI within each 

video frame. Free Face Detection Toolbox version 0.21 using Local Binary Patterns and Haar 

features [9] were utilized. The Face Detection algorithm was mainly written in C and wrapped with 

a MATLAB interface. The ROI was then separated into three RGB channels by averaging all the 

pixels in a frame to obtain a single red, blue and green measurement point for each video frame and 

form the raw traces. Each video resulted in a block of three vectors of size 900 (30 sec x 15 fps) and 

is combined to form a 2-dimension matrix of size 3x900, with each row representing a channel. 

These raw traces were pre-processed by first using a band-pass filter of 0.75-4 Hz, assuming that 

the pulse lies within [45-240] bpm for a normal human, then whitened to uncorrelated the three 

sources and normalized to unit variance for simplifying the separation. The normalized traces were 

fed to the cICA algorithm with reference signal sweep, within the expected heart rate range of 0.75-

4 Hz, as described above to extract the BVP with a sweep resolution of 0.5 bpm. The MATLAB 
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periodogram function was used to extract the peak frequency with a hamming window to smoothen 

the signal for power spectral density estimation. All video streams were also used for cross 

validation with the ICA pulse rate measurement algorithms described in [2, 3]. The BVP 

measurements using both ICA techniques in [2, 3] were compared against state-of-the-art cICA 

algorithm to estimate the corresponding performances. An example of a video frame showing ROI 

selected using automated face tracker with raw traces extracted is shown in the figure below: 

              

 

Figure 8: (a) Video frame showing ROI and PPG sensor, (b) Signals from RGB channels.  

5 Measuring Similarity 

For combined graphical and statistical measurements of different pulse measurement techniques - 

Bland-Altman plots can be used. The differences between the estimated pulse rate from ICA/cICA 

algorithm and the BVP finger sensor are plotted against the averages of both the systems. The root 

mean squared error (RMSE) was also calculated to determine the performance of each system.  

6 Results and Discussion 

A representative video is selected to analyze the results. The error (in Hz) as a function of the 

reference signal frequency in bpm is depicted in figure 9. It can be observed from this plot that the 

Region of Interest 

(ROI) selected using 

face tracker 

PPG Sensor 

attached to earlobe 
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error for a single frequency, very close to the true pulse rate of 84 bpm (in this case), is almost zero 

and the error increases linearly as one move away from the True Pulse. Same behavior was 

observed for all other videos in the dataset. This implies that the proposed algorithm does not suffer 

from ambiguities associated with convergence to local minima.  

 

Figure 9: Error vs. frequency sweep in beats per minute (bpm). 

A photoplethysmography (PPG) signal is recorded using the MP36 biopac system with a 

sensor attached to the earlobe of the person at the same time the one-minute video recording was 

made. The cICA output signal when the minimum or zero error is achieved along with its 

corresponding reference signal is plotted against the PPG signal obtained via the biopac system in 

figure 10. The close resemblance between the signals is evident.  
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Figure 10: Photoplethysmography (PPG) sensor signal compared to cICA output signal. 

Experiments were conducted at the laboratory of Rochester Institute of Technology and the 

sorting problem of the ICA based approach was clearly visible. The problem was resolved using the 

proposed cICA approach. Tab. 1 presents pulse detection results along with the heart rate measured 

by the finger probe oximeter (True Pulse) for a representative set of 45 videos. The detected pulse 

from each ICA component is presented for the ICA approach. For each video a different component 

provided a result closer to the True Pulse. This effect could be observed clearly from the first seven 

samples in the table. Moreover, the best ICA component is selected manually and appended in this 

table. The cICA algorithm provided a similar result in accuracy to the best result across all ICA 

components for most of the videos. Thus, with cICA algorithm there is no ambiguity regarding 

component selection and the estimated output is confirmed to be the desired pulse signal. Note that 

for videos 8, 9, 10 and 35 cICA performed better than all ICA components. One should also note 

that for videos 28, 29, 32, 33 and 38 none of the algorithms worked really well. The reason behind 

this could be that there may be multiple source signals mixed in the observed RGB signals whose 

frequency lie within the same pulse rate frequency range or the movement of the subject during the 

recording might influence the result. Moreover, the ICA or cICA model is assumed to be linear 

while the physiological changes in the blood volume due to motion could be non-linear.   
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TABLE I 

PULSE RATE SAMPLES FROM DATA SET IN [BPM] 

 

Video no True Pulse ICA component ICA best 

comp 

cICA 

1
st
 2

nd
 3

rd
 

1 60 49.0 58.0 45.9 58 58.6 

2 64 48.5 82.4 64.6 65 64.1 

3 72 71.6 70.5 51.0 72 71.6 

4 66 73.2 72.4 65.4 65 65.6 

5 76 81.1 45.5 81.7 82 81.1 

6 113 45.0 47.7 113.2 113 113.6 

7 49 49.4 56.4 49.6 49 50.1 

8 68 51.3 112.1 50.6 51 69.6 

9 78 45.7 66.3 60.1 66 72.3 

10 66 53.4 49.4 51.0 53 69.6 

11 84 65.0 60.4 84.3 84 84.7 

12 53 54.2 54.9 54.7 55 54.4 

13 63 62.6 69.6 63 63 63.1 

14 60 62.4 62.4 62.1 62 60.6 

15 83 62.6 81.2 62.6 81 81.7 

16 108 45.9 45.0 108.0 108 108.2 

17 61 48.5 58.8 60.6 61 61.0 

18 78 46.0 101.8 80.5 81 78.1 

19 60 60.0 60.4 56.7 60 60.6 

20 94 73.7 93.8 93.6 94 94.1 

21 53 45.0 53.2 53.2 53 53.6 

22 69 68.5 68.7 69.2 69 69.4 

23 63 66.3 60.9 62.8 63 63.1 

24 60 52.1 60.1 109.7 60 59.6 

25 83 45.2 82.6 82.3 83 82.9 

26 74 50.7 51.8 70.0 70 76.6 

27 57 53.8 56.8 73.0 57 56.6 

28 73 65.6 47.3 64.3 66 62.6 

29 68 60.2 60.2 57.6 60 60.1 

30 64 63.7 57.0 63.0 64 63.6 

31 69 45.0 45.0 68.1 68 68.6 

32 68 48.3 55.6 51.6 56 56.1 

33 66 45.3 45.0 72.5 73 72.6 

34 100 56.5 97.1 97.1 97 97.6 

35 96 45.2 55.1 56.7 57 91.1 

36 63 61.9 61.9 61.7 62 62.1 

37 82 64.3 53.4 83.0 83 82.1 

38 67 63.5 63.2 61.0 63 74.6 

39 76 78.8 79.0 76.4 76 76.6 

40 97 56.7 92.9 64.6 93 96.1 

41 62 49.2 63.7 61.3 61 66.6 

42 70 81.7 67.6 67.9 68 68.1 

43 86 53.1 84.3 84.8 85 84.6 

44 57 57.3 57.5 57.5 57 57.6 

45 72 48.1 70.0 69.8 70 70.1 
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Results for the entire data set are summarized in Fig. 11 using Bland-Altman plots discussed 

above for the ICA based algorithms depicted in [2,3], the impractical scenario where the ICA 

component providing pulse closest to True Pulse is chosen and the proposed cICA algorithm. From 

the comparison of the ICA algorithms of [2-3] (Fig. 11a) with the impractical a-posterior best 

component selection (Fig. 11b), it is clear that truly solving the sorting problem provides much 

better results. By comparing the result by best component selection (Fig. 11b) with the proposed 

cICA algorithm (Fig. 11c), it is evident that the cICA algorithm performs better than beyond solving 

the sorting problem. The Root Mean Square Error (RMSE) for the ICA algorithm across the set 

when selecting the second IC (ref. [2]) is 20.6 bpm and when selecting the component with 

maximum spectral peak (ref. [3]) is 9.5 bpm while the RMSE for the proposed cICA algorithm is 

3.5 bpm. Such inaccuracy is within the expected margin of error of the True Pulse reference 

measurement, implying that the proposed algorithm provides measurement accuracy similar to the 

BVP finger probe oximeter.   

 

Figure 11: Bland-Altman plots: (a) independent component analysis (ICA) algorithm, (b) best component of 

ICA, (c) constrained ICA (cICA) algorithm. 
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In order to prove the robustness and consistency of the proposed algorithm, another 

experiment was performed in which one 10 minutes long video was captured while the subject was 

asked to sit in a still position. At the same time the pulse rate was recorded using the finger probe 

oxymeter. The time series signal obtained after running the face tracker on the video was then 

segmented into 30 seconds each and processed using the proposed algorithm. Tab. 2 presents and 

compares the results of ICA best component with the cICA based pulse estimation for this 

experiment. Note that for the last 6 batches, which correspond to the last three minutes of the video, 

the result is noisy for both the cases. This is because of the motion artifacts as noticed in the video. 

Otherwise, it is clearly seen that cICA performs better than ICA when we compare the results for 

the overall video length. Also note that for the first batch the result is off by approximately 18 beats 

in both the cases. The reason for this is not clear but we assume that it is because of some other 

dominant signal with a slightly different frequency falls within the same band as that of the pulse 

frequency. Further work is required to understand various artifacts and other signals with similar 

frequencies present in the mixture; how to separate them efficiently.  

TABLE II 

PULSE RATE SAMPLES FOR 10 MINUTES LONG VIDEO IN [BPM] 

Batch no True Pulse ICA best 

comp 

cICA 

1 98 80.2 80 

2 101 46.4 101 

3 99 51.9 99 

4 100 99.5 100 

5 94 50.5 95 

6 97 98.4 98 

7 96 96.9 96 

8 98 58.9 97 

9 100 99.3 100 

10 98 60.9 98 

11 96 96.0 95 

12 98 75.1 98 

13 95 89.9 94 

14 97 97.1 97 
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Motion artifact is one of the major limitations of this study. Irrespective of the type of 

algorithm incorporated, the motion of subjects during video recording affected the accuracy for 

remote pulse rate measurement. An attempt to overcome this limitation was made by using face 

tracking algorithms which was efficient in locating the face within a ROI selected for processing. 

However, jitter in the processed RGB traces could be observed because of the positioning of the 

face within the ROI would alter slightly. In order to compensate for this effect the rate at which face 

tracking is performed was reduced from every frame to every 15
th

 frame. In these experiments, 

subjects were asked to sit still therefore the effect of such motion artifacts on presented results is 

minimal. The primary use of this methodology is limited to be in a home environment where this 

pulse rate measurement technology could be incorporated in personal computers. However in a real-

world application, non-obtrusive pulse rate measurement algorithms should be augmented with 

motion artifacts cancellation algorithms for it to work in a non-cooperative environment.  

Another important limitation of cICA approach over existing ICA approach is the 

processing time. The cICA approach requires more processing time than the ICA approach due to 

the sweep performed over the reference signal. The MATLAB runtime between the two algorithms 

were compared and it was found that the cICA algorithm takes 30 times longer to run. Remember 

that this result was obtained when the sweep was defined with intervals of 0.5 bpm. However, if the 

sweep is performed using an interval of 1 bpm, the processing time ratio is reduced to 15. Since 

pulse measurement is not expected to be performed continuously, processing time is not considered 

15 94 79.1 74 

16 

96 

92.9 85 

17 92 63.5 64 

18 90 94.5 90 

19 90 92.3 90 

20 92 45.3 67 
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to be a limited factor in practical implementation. Moreover, if embedded programming 

possibilities are considered the iterations in sweeping the frequency over the band range could be 

performed fasted thereby reducing the ratio of the processing time between the two approaches. 

7 Future Work 

The ability to extract a photoplethysmography (PPG) – like signal non-obtrusively using 

constrained ICA approach to RGB video data has the potential to revolutionize detection of various 

diseases as well. The proposed technique focused on cardiac pulse detection with PPG signal 

extraction. In future, the energy of this PPG signal could be used to detect cancerous liver in 

endoscopic video streams. Moreover, non-obtrusive detection of peripheral vascular disease caused 

by arteriosclerosis and acute ischemia of the heart during open heart surgery could be possible by 

extending this work.  

8    Conclusion 

A novel cICA algorithm for non-obtrusive cardiac pulse rate measurement from video recordings of 

the human face using a webcam was proposed and implemented. The proposed methodology was 

evaluated using a comparative study with state-of-the-art algorithms over a large data set. The 

results demonstrated how the ICA sorting problem was resolved by forcing the ICA optimization 

process to extract a single source closely related to the reference signal. The sweep of frequencies in 

the reference signal was used as an additional step in the cICA algorithm. While estimating the 

pulse rate of a human, the results also demonstrates how a photoplethysmography (PPG) equivalent 

signal could be successfully extracted using this low-cost automated technique. The estimation error 

of the proposed algorithm was shown to be within the estimation error of a commercially available 

finger-probe oximeter, suggesting that non-obtrusive pulse rate measurements could replace 

existing practices. This technology when combined with the existing motion artifacts cancellation 
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algorithms is very promising for extending and improving access to medical care. Although this 

contribution focused on addressing pulse rate measurement, the proposed cICA algorithm is likely 

to be useful for estimating other physiological parameters such as respiratory rate, heart rate 

variability, blood oxygen saturation, etc. or where an ICA sorting problem is evident. The basic 

requirement of this approach is the existence of prior knowledge on the parameter being estimated. 
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