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Abstract 

The purpose of this paper is to make the concepts of reliability theory manageable even for those 

without an extensive mathematics background. This paper will break down the types of systems, 

explore the aspects of probability distributions which are important in reliability theory, as well 

as examine some concepts regarding the differences between system lifetimes and lifetimes of 

components. The goal of this paper is to allow the reader to gain an understanding of some of the 

key concepts explored in this theory, to provide examples for the reader to try, and to include 

proofs that have been broken down for clearer comprehension.  
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Chapter One 

Introduction 

 

1.1 Systems  

Reliability theory is based on the concept of understanding the reliability of systems and their 

individual components. We are analyzing the probability of the lifetimes for the individual 

components as well as the system as a whole, i.e. the probability of the system functioning. In 

order to do this we must first assume that we have a sensible system; this means it functions so 

long as its components function. We also assume that if the system is non-functioning, turning a 

component off will not turn the system on. With this idea, it is important to recognize we 

consider that such a system has a structure function which is increasing and, therefore, 

considered monotone. We can use the term sensible, or coherent, for this type of system.  

 In order for a system to function we must consider what kind of component structure is 

established. We have the following types of structures:  

 series system – in order for the system to function, all components must be functioning 

 parallel system – in order for the system to function, at least one of the components must 

be functioning  

 k-out-of-n system – in order for the system to function, at least k components out of the 

n total components must be functioning 

It is a fact that any sensible system can be expressed as a parallel system of series subsystems or 

as a series system of parallel subsystems! Below are pictorial examples of each type of system. 
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Parallel System: 

 

 

 

 

Notice here that since at least 1 component must function, this is a 1-out-of-n system. 

 

A k-out-of-n system with     and    : 

 

 

 

Notice that at least 2 out of the 3 components must be functioning in order to have a system that is functioning. 

 

 

Series System:  

         1        2       …                

 

Notice that since ALL components must be functioning, a series system is an n-out-of-n system.  

 

 

 

 

 

 

 

 

 

Parallel System: 

            

            

            

 

 

 

A parallel system is a 1-out-of-n system. 
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3 
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1.2 Structure Functions and Notation 

Before we get into determining whether or not a system functions, we must first describe the 

state of each component. In reliability theory, we use the vector               , our state 

vector, to indicate which of the components are functioning and which components have failed. 

If a component is still functioning, we give it a value of 1. If a component has failed, we give it a 

value of 0. It is defined in this manner: 

   {
                                     
                                         

 

Once we determine whether or not the components themselves are functioning, we can use this 

information to determine if the system as a whole is functioning. We will use      and call this 

our structure function defined as follows: 

     {
                                                         
                                                             

 

Let’s examine the structure function for our series, parallel, and k-out-of-n systems. For a 

series system, it is understood that in order for the system to be functioning as a whole, every 

single component must be functioning as well. So our structure function has the following 

mathematical expression: 

                     ∏  

 

   

 

This structure is sensible in that if any component has failed, it will have a state of 0. If you take 

the product of the states for all components, if the result is 0, then the system has failed. So long 

as the product is 1, this ensures that all components are functioning; each component has a state 
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of 1. To be clear, it is necessary, in a series system, for all components to have a state of 1 in 

order for the system to be functioning. If even one component has a state of 0, then the system 

will not be functioning.  

For a parallel system, we discussed that in order for the system to be functioning at least 

one of the components must be functioning. The structure function is mathematically expressed 

as: 

                          ∏      

 

   

 

The last result is derived by the concept regarding binary variables where we can simply take the 

product of the cases where the components are not functioning (i.e. where we have the     ) 

and subtract that quantity from 1 to ensure system functioning. Taking the max value of the 

states should make sense in that if at least one of the components works, it will have a state of 1 

regardless of the states of all other components. We are taking the max value of all of the states 

in a vector of 1s and 0s. If the max is 1, the system is working. If the max is 0, the system has 

failed. Essentially, any one component out of the n possible components must have a state of 1. 

Regardless of the states of all other     components, if at least that one component has a state 

of 1, then our system is functioning.  

The k-out-of-n system is interesting in that we have to have at least k components 

working in order for the system to be functioning. The structure function looks like the 

following: 
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{
 
 

 
      ∑     

 

   

    ∑     

 

   

 

 

This simply states that the sum of all the components’ states must be greater than or equal to the 

 -component requirement for the system to be working. In other words, at least   components 

must have a state of 1 in order for the system to function. Additionally, it doesn’t matter which   

components are functioning so long as that condition is satisfied.   

Let us look at a couple examples where we have to determine the structure function for a 

specific system. Let’s say we are given the following diagram: 

Diagram1: 

 

 

 

 

What may help at first is to identify which components must be working in order for the system 

to function. We see that either component 1 can work or component 3 can work, but that 

components 2 and 4 must work in order for the system to function. Notice that we have a 

combination here of parallel and series systems. We can write the structure function as follows:  

                   

                  

2 

3 

4 

1 
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This concept becomes clearer when we look at the reliability of the system and interpret based on 

probabilities of functioning for each component. 

Let us now try to write the structure function corresponding to the following diagram: 

Diagram 2: 

 

 

 

We see from this diagram that component 1 has to work no matter what, then either 2 and 4 work 

or 3 and 5 work, but that 6 must work no matter what as well. Therefore, the structure function 

can then be written as: 

                        

                          

The above function can be verified by looking at the inclusion-exclusion concepts in probability 

related topics. 

 

1.3 Minimal Path Sets and Minimal Cut Sets  

In reliability theory, we examine the ideas of minimal path sets and minimal cut sets. First, let’s 

discuss what it means to be a minimal path set. Examine the following diagram: 

 

1 

2 4 

6 

3 5 
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Diagram 3: 

 

 

 

 

When we say minimal path set we mean a non-redundant set of components so that when these 

are on the system is functioning. This should imply naturally that if we were to turn off one of 

the components on any of these direct paths, then the system would turn off. The minimal path 

sets are essentially defined the exact same way we defined our structure functions for each of our 

practice examples. Looking at diagram 3, we see that there are four minimal path sets: {1,3,4}, 

{2,4}, {1,3,5}, {2,5}. When we find our structure function for a diagram like this, we would 

define it as: 

                            

                              

 Minimal cut sets are the opposite of minimal path sets. What we are looking for here is 

the answer to the question, “Which components, if turned off, will leave the entire system non- 

functioning?” Obviously, if we turn off all of the components in the sensible system then it will 

not function. By using the term minimal, we want to find a non-redundant set of components 

which, if turned off, would leave the system non-functioning. Let’s examine the following bridge 

diagram: 

 

1 

2 

3 4 

5 
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Diagram 4: 

  

 

 

 

We can find what the minimal path sets are by taking any of the paths that will lead to the system 

functioning. These are {1,4}, {1,3,5}, {2,3,4}, {2,5}. Now let’s examine the minimal cut paths. 

If we turn off component 1, we won’t be able to use either minimal path set containing 

component 1, but we can still access the other two paths. However, if we shut off both 

components 1 and 2, we have successfully shut off the system. We can also easily notice that if 

we shut off components 4 and 5 we also successfully shut off the system. These are not the only 

minimal cut sets! One might think shutting component 3 off would ensure the system is off, but 

there are ways to get around component 3. With this being said, the last two minimal cut sets are 

{1,3,5} and {2,3,4}. What might help to understand this is to start by shutting off a component, 

say component 1, and then following the path containing component 2. At this point, notice that 

to block you from continuing, you have to shut off both components 3 and 5 in order to prevent 

you from moving forward in turning the system on. Let’s try an example where we have to find 

both the minimal path sets and the minimal cut sets. Take a look at the following diagram and 

write down what you believe to be the minimal path and minimal cut sets: 

 

 

2 

1 

3 

4 

5 
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Diagram 5: 

 

 

 

 

We can identify the minimal path sets as {1,2,3}, {1,4,7}, {1,2,5,7}, {1,4,5,3}, {6,7}, 

{6,4,2,5,7}, {6,4,2,3}, and {6,5,3}. Using a tree diagram to illustrate the minimal path sets, we 

have: 

 

Now we can identify the minimal cut sets as well. First we notice that if we cut off components 1 

and 6 we can’t have a functioning system. Similarly, we can cut off components 3 and 7 and we 

will never have a functioning system. Everything in between gets to be a bit more interesting. 

The minimal cut sets are {1,6}, {3,7}, {2,4,6}, {2,5,7}, {1,4,5,7}, {3,4,5,6}. To verify these are 

accurate minimal cut sets, start by assuming all elements were on except those elements in a 

proposed minimal cut set. If you were to turn on any one component in any set, the system 

would then function. 

  

1 

2 
3 

5 7 

4 
5 3 

7 

6 

4 2 
3 

5 7 
5 3 

7 

7 6 

4 3 

2 

1 5 
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Chapter Two 

Reliability 

 

2.1 Notation 

Now that we have covered how to write appropriate structure functions of coherent systems, it is 

time to examine the reliability of systems of independent components. Let us define   , the state 

of the     component, as a random variable with the following properties: 

 {    }         {    } 

This is saying that our component has a probability,   , of functioning and that is the same as 1 

minus the probability of that component failing. That probability,   , is known as the reliability 

of the ith component. We can take this a step further and define the reliability of the system 

using the letter,  , as follows: 

   {       }                      

Since the components are independent, we can express the reliability of the system as a function 

of the reliabilities of its components: 

                            

Since we established the fact that our components are independent, we can now just use the fact 

that      is our reliability function! Going back to our initial types of systems, we can establish 

the reliability functions for our series, parallel, and k-out-of-n systems. 
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Series System: 

       {       } 

            {                      } 

            ∏  

 

   

 

Parallel System: 

       {       } 

            {                       } 

              {                      } 

              ∏      

 

   

  

This formula may seem like a strange way to determine the reliability of a parallel structure 

unless you keep in mind that in order to ensure a system with a parallel structure functions, we 

can simply find the probability that it won’t function and subtract that from 1. This takes care of 

all the possible minimal path sets in a parallel structure system without having to go through 

each and every single one of them! In other words, it can be easier to obtain the probabilities of 

the minimal cut sets versus the minimal path sets and simply subtract that probability from 1.  

k-out-of-n system (with equal probabilities): 

We will first state that we can say each component has the same probability of functioning such 

that                       . Then our reliability function is as follows: 
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           {       } 

                      {∑    

 

   

} 

                      ∑(
 

 
)           

 

   

 

For this system, we are simply adding up the probabilities of all the possible cases that satisfy the 

condition of needing a minimum k out of a possible n components functioning. This is essentially 

the calculation of at least k successes out of n Bernoulli trials. 

 

2.2 Reliability Functions and Duplication on Component vs. System Level 

Let’s look at a system where we have 3 components and we only need 2 components to function 

and each component has its own probability of functioning: 

                                      . So, the reliability function is given by: 

       {       } 

            {         }    {         }    {         }   {         } 

                                                      

                                    

Let us now consider a system where we have five components and the system will ONLY 

function if components 1, 2, and 3 are functioning and at least one of the last two components are 

functioning. Its reliability function is as follows: 
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       {                           } 

            {    } {    } {    } {            } 

                                   

Another way to compute      is to notice that since it is a Bernoulli random variable (it 

consists of either 0s or1s) we can simply find its expectation. So the reliability of the system 

based on the probability of its independent components functioning is the same as the 

expectation of the individual components functioning. 

       {      }          

A property that is crucial in remembering is what was declared in the very beginning of 

this paper. The fact that since we are working with a sensible, coherent, system it is reasonable to 

understand that we are working with an increasing function. Specifically,      is the reliability 

function of a system of independent components and is therefore an increasing function of  . 

This is a way of saying that we are working with a system that makes sense. It wouldn’t make 

sense to be able to turn the system on (if it had been off) by turning a component off (had it been 

on). So, the reliability of the system should only increase given that more components are turned 

on. 

When considering the reliability of a system, it is often questioned as to whether or not it 

would make sense to duplicate components in a system or to duplicate systems of components to 

obtain greater reliability. Logically speaking, it seems that working with the parts of a system 

and improving their reliability would be much more effective than duplicating an entire system 

in order to improve its reliability. We can actually show this to be correct mathematically with an 

example. 
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 Consider having a system with two of each type of n different components. If we build 

two separate systems our probability of having a functioning system is as follows: 

 {                                           }

    {                               } 

                              [(      ) (       )] 

We can see that      is the reliability function of the first system, and        is the reliability 

function of the second system. Now let’s look at how it is written when we are duplicating on the 

component level (not the system level). Consider that since      is the reliability function of the 

probabilities of the components             , then we have: 

 {                                                 }

     {                                                

                              [      (    
 
)] 

Because we are referring to the reliability of the system, the probability of the system 

functioning, we must write this as: 

                 

The theory is that duplicating on the component level is much more effective in increasing 

reliability than is duplicating the system as a whole as expressed in the following inequality: 

                    [(      ) (       )] 

Let’s now compare the two sides of the inequality by using a numerical example. Suppose we 

want to build a series system of two different types of components from a stockpile containing 
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three of each kind of component. Essentially, we have type A and type B component, and we 

have 3 of each type. Let us say that the reliability of each component is 
 

 
. If we build two 

separate systems, the probability of having a functioning system is: 

   [(  (
 

 
) (

 

 
) (

 

 
))(  (

 

 
) (

 

 
) (

 

 
))] 

   [(  (
 

 
))]

 

 

   (
 

 
)

 

 

 
  

  
 

If we instead build a single system duplicating components, the probability of having a 

functioning system is: 

                    

 [  (  
 

 
) (  

 

 
)]

 

 

 [  (
 

 
) (

 

 
)]

 

 

 [  
 

 
]
 

 

 
  

  
 

It is clear that duplicating on the component level leads to a higher reliability than does 

duplicating systems! 
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Chapter Three 

Failure Rate 

 

3.1 Notation and Properties 

 We are now ready to discuss failure rate. In this final section, we will discuss some 

interesting concepts related to increasing failure rate (IFR) and increasing failure rate on average 

(IFRA). First, we must learn some of the notation involved with failure rate itself.  

Let   be a positive random variable of the continuous type with cumulative distribution 

function (cdf) defined by             and a probability density function (pdf)      

     . Essentially      is the probability that the lifetime of the system has lived to at least 

time  . The failure rate of this distribution,     , can be calculated by using the following 

formula: 

     
    

      
 (1) 

For small   , we notice that                   . Looking at   as the system lifetime, 

we can regard      as the conditional probability density that a t-year old system will fail. We 

can explore how to utilize this formula in our next example. 

 Suppose that   has the exponential distribution with parameter     and cdf: 

     {          
     

 

then by using formula (1), we obtain: 
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We see that the failure rate happens to be a constant in this case. This is indicative of the type of 

distribution function, the exponential distribution, which is the only distribution of the 

continuous type with constant failure rate. We should recall that the exponential distribution has 

the memoryless property in that the probability of the system continuing to function for 

additional time doesn’t depend on how “old” the system is. In other words, the distribution of the 

additional system lifetime doesn’t depend on the age of the components.  

                        

This may seem counterintuitive in the sense that as a system gets older, we expect the chances of 

failure become greater. Here’s an example where it will make the concept of the exponential 

distribution’s memoryless property clear. Let’s say you are a business owner. You decide to open 

up shop at 8 a.m. After 10 minutes you notice that no customers have arrived. If you wait an 

additional 2 minutes, does the chance of a customer arriving become greater? The answer is 

clearly no. It doesn’t matter how long the shop is open; the chances of someone walking in on 

the 11
th

 or 12
th

 minute is exactly the same as if no time had passed at all. Otherwise all 

businesses would thrive. This property is key in reliability theory in that it models the systems 

effectively in this way.  
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3.2 Exploring Differences between IFR and IFRA 

We can now take this a step further and notice that the distribution of   is said to be IFR 

if      is in an increasing function of  . Similarly, it will be DFR (decreasing failure rate) if      

is in a decreasing function of  .  

 Let us suppose that T has a gamma distribution with shape parameter     and scale 

parameter     with pdf: 

     {

 

      
     

 
 

     

                             

 

 

 

 

It can be easily proven that when    , the function has a DFR distribution, when    , the 

function has an IFR distribution, and when    , we are simply looking at the exponential 

distribution. 
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f
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A distribution is said to have Increasing Failure Rate on Average (IFRA) if 
    

 
 is nondecreasing 

on       where 

     ∫        
 

 
  (2) 

That is, the average failure rate on       is nondecreasing in t. (A DFRA distribution is defined 

similarly.) This leads us to our first question: Is every IFR distribution also IFRA? The answer to 

this question will be given through the following proof.  

Proposition: An IFR distribution is also IFRA. 

Proof: 

Assume that      is increasing in  .  

Show that 
    

 
 is increasing.  

 

  
(
    

 
)  

           

  
 

          

  
 

 

Since      is nondecreasing, we see that: 

           

and therefore the derivative is nonnegative. This shows that every IFR distribution is also IFRA. 

 

 

 

 

 

 

     

  
  

     

          

The area of the rectangle,        is 

greater than the area under the 

increasing function. 
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Our next big question is: If the component lifetimes are IFR, is the system lifetime IFR as 

well? Before we answer this, we should provide some additional notation. Let    be the lifetime 

of component   and let    be its cdf. Note that for    ,  ̅                     which is 

the reliability of this component at time  . If   is the system lifetime and   is its cdf, then the 

reliability of the system at time   is  ̅     ( ̅      ̅        ̅    )   

Let us now consider a parallel system of     components with exponentially 

distributed lifetimes and respective failure rates      and     . Then, 

             

 ̅                       

                   

               

Examining the graph of      by computing formula (1), where 

     
    

      
 

               

             
  

we see that       is actually maximized when         √           and therefore the 

distribution of T is not IFR. 
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Our final big question is this: If the lifetimes of the components are IFRA, does this mean 

the system lifetime is also IFRA? In order to prove this, we need three lemmas. Additionally, we 

will consider a monotone system of   components whose lifetimes are independent random 

variables. Let    be the cdf of the lifetime of the     component and assume that    is IFRA for 

         . We will prove that if   is the cdf of the system lifetime, then   is IFRA.  

Lemma 1: 

Let   be the cdf of a positive random variable of the continuous type. Then   is IFRA if and only 

if  ̅     ( ̅   )
 
                  . 

Proof: 

  is IFRA if and only if 

     

  
 

    

 
                     

Since       
    

 ̅   
 we have 

          ̅    

so that 

     

  
 

    

 
 

can be written as 

     ̅            ̅    

which is equivalent to (by dividing out the negative and raising both sides of the inequality by 

base   : 

 ̅     ( ̅   )
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Lemma 2: 

If      ,      , and      , then 

                            

Proof: 

Consider the function   defined by                  Let 

      

      

     

              

We observe that  

      

             

The desired conclusion is equivalent to the statement that  

                         

This follows from the fact that the graph of   is concave down on      . 
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Lemma 3: 

If               is the reliability function of a monotone system of   components and  

     , then  

    
    

      
   (             )

 
  

Proof: 

The proof is by induction on  . Observe that the result is obvious if    . Now assume that the 

result holds for all monotone systems of     components and consider a monotone system of   

components having structure function  . By conditioning on whether or not the    component is 

functioning, we obtain 

Equation (3): 

    
    

      
     

     
    

        
          

      
    

        
     

Now consider a system of components           having a structure function  

                                

The reliability function of this system is given by  

                                    

By the induction process, we have 

    
    

        
     (                 )
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Similarly, by considering the system of components           with structure function 

                                

we have 

    
    

        
     (                 )

 
  

From equation (3), we obtain 

    
    

      
     

 (                 )
 

      
  (                 )

 
  

From Lemma 2, it then follows that 

    
    

      
   (                                             )

 
 

 (             )
 
  

We are now able to prove our main theorem.  

Main Theorem: If the component lifetimes are IFRA, is the system lifetime also IFRA? 

Proof: 

The distribution of the system lifetime is given by  ̅       ̅      ̅        ̅     . Since r is 

monotone and since each    is IFRA, it follows from Lemma 1 that:  

 ̅      ( ̅ 
      ̅ 

        ̅ 
    ) 

              ( ̅      ̅        ̅    )
 
                    

            ( ̅   )
 

 

Using Lemma 1 again, we now see that   is IFRA.  



25 
 

Chapter Four 

Conclusion 

 

In conclusion, we have seen a few of the different facets reliability theory has to offer. We have 

dissected different systems and learned how to calculate their structure and reliability functions 

which led us into being able to prove some interesting theorems regarding these systems and 

their components. We have seen visually why the exponential distribution is of such great 

importance in this field of study. Bearing witness to the difference in strictness of being IFR vs. 

being IFRA was the motivation for this paper ultimately bringing clarity to just some of the key 

concepts in reliability theory.  
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