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Mathematical modeling is an effective tool when maximizing revenue in hotels. With
over 120,000 different combinations of variables and elements to consider when maximiz-
ing revenue, the process of finding the most lucrative combination can be time consuming
and costly to hotels. An effective mathematical model assists in reducing the guesswork
involved. This study will demonstrate how the implementation of discounts reduces rev-
enue loss by forcing pre-payment and increasing occupancy levels.

In an effort to reduce revenue loss, hotels have implemented many strategies such as
using credit card guarantees, demanding pre-payment, and offering discounts, all of which
are used to reduce the no-show rate. A careful balance must be found, as offering a large
discount to reduce the no-show rate can result in as much revenue loss as a high no-show
rate. A mathematical model, used in combination with good judgement and managerial
expertise, can assist in finding the discount necessary to maximize a hotels daily revenue.
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1 Introduction

The purpose of our paper is to develop a mathematical model which can be used to
maximize revenue in hotels by exploring the effects of discounts on no-show rates and
occupancy levels. In an article by Weatherford and Bodily, the authors calculated an ex-
traordinary 124,416 combinations of variables and elements to consider when maximizing
revenue. [1]. The large number of combinations makes it necessary for a hotel to limit
the variables being considered and to estimate the values to assign to these variables.
Estimated values can be changed and recalculated to determine their relative effects on
revenue outcome. This process can be time consuming and costly to hotels until the most
lucrative combination is found. Mathematical models assist in reducing the guesswork
involved. Our mathematical model will enable manipulation of discounts, and will study
the effect that these manipulations have on other interdependent elements, to determine
their optimal values in maximizing hotel revenue. We think that using the techniques of
discounts to reduce the no-show rate and increase occupancy levels can reduce revenue
loss.

When a customer does not show up at the hotel in spite of having reserved a room
(such a customer is called a no-show) and when a customer departs earlier than he had
indicated when he made his reservation, (such a customer is called an early departure)
the hotel loses revenue.

In order to prevent revenue loss, hotels have implemented strategies such as using credit
card guarantees, demanding pre-payment, offering discounts to reduce the no-show rate,
and overbooking. The use of credit card guarantees allows a customer to cancel within
a limited time period prior to his reservation date. Credit card guarantees may only allow
the hotel to charge the customer for one night, not multiple nights, if the renter does not
fulfill the reservation as expected. However, research has shown that the implementation
of credit card guarantees has had a positive effect on the no-show rate. Credit card guar-
antees have resulted in a reduction in the no-show rate from an average of 15 percent to
an average 4 percent [1]. A pre-payment is a discounted payment generally made 2 to
3 weeks in advance that cannot be refunded. Overbooking occurs when a hotel reserves
or offers more rooms than it has available. Overbooking is often necessary to compensate
for the existence of no-shows. A stayover is a hotel guest who remains in his room one
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or more nights beyond the checkout date he specified when he reserved the room. There
are also laws and industry standards that certain hotels follow. For example, most state
laws maintain that on a day when a hotel has been overbooked, the customers who stay
over will have access to hotel rooms before new arrivals, even if the new arrivals have
reservations. [1].

Although the afformentioned strategies have been effective in decreasing the no-show
rate and revenue loss, hotels are still seeking a more effective method to minimize rev-
enue loss and maximize profit. In addition, some hotels may be offering a discount to fill
up their rooms, not necessarily to overbook their rooms. Therefore, in order to balance
a profitable business with laws, guidelines, and customer satisfaction, the creation and
implementation of revenue models has become more prevalent in the hotel industry.

2 An Overbooking Model: Rex S. Toh and Frederick

Dekay

One such model is proposed by Toh and Dekay [1] in an article in the Cornell Hotel and
Restaurant Administration Quarterly’ titled ’Hotel Room Inventory Management: An
Overbooking Model. The authors hypothesize that an overbooking model is necessary to
maximize hotel revenue. Toh and Dekay make two assumptions in the creation of their
model. The first is that their model could be defined as Bernoulli, which considers two
situations; either the guest shows up (success), or the guest does not (failure). In addition,
the authors assumed that the sampling distribution of no-shows and early departures is a
normal distribution, given that the sample size is significantly large (Toh and Dekay used
a sample size of 40 days). This is a result of the Central Limit Theorem, which holds that
if the size of the sample is sufficiently large (it is general practice that the sample size
be greater than 30), then it is conceivable that the distributions of the mean values will
be approximately normal. [1] This allows Toh and Dekay to use the concept of z-scores
mentioned in their model. The variables used in the model are described below:

1. The variable σ is the standard error of proportion for no-shows or early
departures. The formula for the standard error of proportions is

√
pq
n

.

2. The variable p is either the probability of a stayover or an expected
arrival, as the authors calculate and account for both situations.

3. The variable q equals 1 − p, the probability that a stayover or expected
arrival does not occur.

4. The variable n is how many people are expected to arrive or stayover.
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5. The variable C is the working inventory of rooms, which is the number
of rooms a hotel has, less the unexpected stayovers. The unexpected
stayovers must be subtracted because they take precedence over any
new arrivals, even if those arrivals have reservations.

6. The variable z is the z-score that corresponds to the customer satisfaction
rate and indicates the number of standard deviations a value is above or
below the mean in the normal distribution. The authors have stated
that the z-score will be 1-tailed, as the hotel only cares about protecting
against the lower proportion of no-shows to prevent overselling. As a
result, a 90 percent customer satisfaction rate indicates that 90 percent
of the data falls below the corresponding z-score of 1.28.

7. The variable X is the authorized booking level, which is the outcome
after all other variables are plugged in. For this model, X essentially
represents how many rooms the hotel can book. If the hotel has 1000
rooms available, X may be 1010, indicating that it is safe, within a certain
level of confidence or customer satisfaction, to overbook by 10 rooms.

Because the authors assume that the probability distribution is normal as well as Bernoulli,
they have used the formula for expected value to determine X. Their model is listed be-
low.

(1− [p− z ·
√
pq

n
]) ·X = C (1)

Using mathematical transformations, the authors rewrote equation 1 as:

(1− p)2X3 − [2C(1− p) + z2pq]X2 + C2X = 0 (2)

However, we found several errors in their calculations. The first was that the variable
n existed in the original model, but there was no such variable in the ending model. In
addition, in order to make the model have an X3 as its first term, we had to multiply
all values by X, therefore making an additional root of zero that would eventually be
factored out. Even so, we manipulated equation 1 to be:

(1− p)2X3 − [2C(1− p) + z2X
pq

n
]X2 + C2X = 0 (3)

In our first attempt, we noted that our model mirrored the authors model as long as X/n
turned out to be 1.
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After contacting the authors of the paper, Toh and Dekay indicated that there was an
error, and that σ should have been represented by

√
pq
X

not
√

pq
n

. Therefore, we were able
to confirm equation 2 by performing the following manipulations:

(1− [p− z
√

pq
X

])X = C

(1− p+ z
√

pq
X

)X = C

(X(z
√

pq
X

))2 = (C −X(1− p))2
Xz2pq = C2 − 2CX(1− p) +X2(1− p)2

0 = X2(1− p)2 −X[2C(1− p) + z2pq] + C2

At this point we noted that in order to create Toh and Dekay′s exact model, which
was equation 2, we would have to multiply through by X, and would obtain (1 − p)2 ·
X3[2C(1 − p) + z2pq]X2 + C2X = 0. Although this now matched the authors′ revised
model, we still were unsure as to why the original model went from having one solution
(as there was only one X) to three solutions, one of which was zero. In the paper, the
authors state that after factoring out the X, and using the quadratic equation, as well as
the idea of the discriminant, that we will now have two distinct real roots, but that only
one root satisfies the original equation. [1] Although we were able to verify their model, it
is our belief that the same result could be accomplished using a more effective approach.
We were able to find the one value of X that we were seeking without discarding any
roots. This work is demonstrated below.

(1− [p− z
√

pq
X

])X = C

[(1− p) + z
√

pq
X

]X = C

(1− p)X + z
√
pq
√
X = C

(1− p)X − C = −z√pq
√
X (4)

Therefore, we can see that the solution to equation 4 will be the intersection of a line
with slope (1p) and y-intercept of C, and the lower portion of a parabola, or quadratic
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function, (z
√
pq
√
X). The graph below models this situation.

Figure 1: Shows the intersection of the linear function (1− p)X −C with the square root
function −z√pq

√
X

When we substituted the values used by the authors for p, C, z, and q into equation 2, we
were able to confirm the data, which showed that with 786 rooms in their inventory, the
hotel can assume 813 rooms used with expected arrivals. When the authors allowed p to
be the probability of a stayover as opposed to expected arrivals, the resulting X was 809.
In both situations, they took the 786 available rooms and divided that number by the
number of expected arrivals/stayovers to obtain a probability representing the number of
rooms a hotel must remove from its working inventory.

For example, when C = 786 in the stayover model, the resulting X was 809 rooms
to use with stayovers included, giving a value of .972. Therefore, .972 of a room must be
removed from the working inventory of rooms for every one stayover booked. So, rather
than remove one entire room, the hotel will only remove .972 of a room. Likewise, for
the expected arrival model, the number of rooms removed for expected arrivals is now
786 out of 813, or .967. So, .967 of a room will be removed from the working inventory
for every one expected arrival. However, what happens to X if the no-show rate can be
reduced from 4 percent to a lower percentage? This concept will be explored later in the
paper, but it seems relevant at this point to test this theory in the paper′s model. There-
fore, we will plug .03, .02, and .01 in for p (and .97, .98, and .99 in for q, respectively)
in order to find how many rooms a hotel should set aside as the no-show rate gets reduced.

Since our only goal in plugging in different values of p is to see what happens to X,
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and therefore to the number of rooms removed from the working inventory, we will only
examine equation 2 for expected arrivals. The resulting value of X will be the same as the
model describing expected stayovers, as we are using the same value of p in both scenar-
ios. After plugging p = .03 into the model for number of expected arrivals, the result was
X = 803.93. The number 786 (the working inventory) was divided by X = 803.93 to get
.978. So, at a 3 percent no-show rate, the hotel should be prepared to remove .978 of a
room from its working inventory. Likewise, p = .02 was plugged into the model, resulting
in X = 796.88. After dividing 786 by this value of X, it was found that the hotel should
set aside .986 of a room from its working inventory when the no-show rate is reduced to
2 percent. The last no-show rate to consider, 1 percent, yielded an X value of 790.32,
which when divided into 786 gave a result of .995. So, if the no-show rate is 1 percent,
the hotel should set aside .995 of a room from its working inventory for every one arrival.

As the no-show rate decreases, the number of available rooms will also decrease. There-
fore, the hotel must also reduce the number of rooms set aside for overbooking, as con-
firmed above. As far as a hotel is concerned, however, by reducing the no-show rate,
seemingly profit will rise. What is the effect of the reduction of no-shows rate on profit?
Is it possible for a hotel to obtain a maximum profit given all of these variables and con-
ditions?

3 Exploring the Role of Discounts in the Creation of

Revenue Models

One strategy that hotels have implemented is to offer a discount to those who pre-pay.
A pre-payment reduces the revenue lost if the customer does not show because the pre-
payment, although discounted, is non-refundable. One hotel, located in Miami FL, stated
that they gave their customers a 5 percent discount to pre-pay, and that 15 percent of
their customers took advantage of the offer. [3] Another hotel, located in Henrietta NY,
gave a 15 percent discount, with 5 percent taking advantage of the discount. [2] The
location of the hotels can account for the apparent discrepancy in the data. In Henrietta,
due to its location and business climate in upstate New York, the hotel may have to offer
a larger discount to fill up its rooms. In Miami, the rooms are more likely to fill up due
to vacationers and a warm, ocean-front location.

Based on the data given by the hotels, we began to create two separate models for Henri-
etta and Miami exploring the relationship between percent of customers taking advantage
of the discount (represented by x) and percent discount (represented by y). In order to
accurately graph the different situations with only one coordinate point known for each,
we worked under several assumptions. The first is that the plots were assumed to start
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at the coordinate point (0,0), as nobody would want a discount of 0 percent. In addition,
both plots were assumed to end at (1,1), working under the assumption that 100 percent
of the people would take a discount of 100 percent. As a result, the first thought was that
the function is linear. The following function demonstrates this idea:

Figure 2: All models comparing percent of customers who take the discount and the
discount offered are assumed to contain the point (0,0) (0 percent takes a 0 percent
discount), and (1,1) (100 percent of the customers take a 100 percent discount.)

The second assumption was that at a certain percentage off, regardless of location, a
significant number of people would take advantage of the discount. For both functions,
we made the assumption that 60 percent of people would take advantage of an 80 percent
discount and 75 percent of people would take advantage of a 90 percent discount. So, in
addition to the points (0,0) and (1,1) , the points (.75,.90) and (.60,.80) were added to
both plots. However, one plot (Miami) had the point (.15,.05), and the other plot (Hen-
rietta) had the point (.05, .15), as previously described. These points gave the following
two graphs.
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MIAMI PLOT 1

Figure 3: Data points (.60, .80) and (.75, .90) were assumed to be true for any hotel
model. The point (.15, .05) is a known point for the hotel in Miami, FL.

HENRIETTA PLOT 1

Figure 4: Data points (.60, .8) and (.75, .90) were assumed to be true for any hotel model.
The point (.05, .15) is a known point for the hotel in Henrietta, NY.
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In order to effectively fill in the rest of the points, several more assumptions were made
about each plot. In Miami we assumed fewer people took advantage of the discount in
the beginning and many people took advantage of the discount when a larger discount
was offered. We also assumed that somewhere near (.50,.50), the function changed from
concave up to concave down, and became S-like. Therefore, the points (.25,.10), (.40,.30),
and (.50,.50) were filled in. This plot is shown below.

MIAMI FINAL FUNCTION

Figure 5: Due to location and climate, it is assumed that more people will take advantage
of a smaller discount in Miami, FL.

In order to represent these data points as a function, we found a regression function that
passes through these data points. We found that the data points were most accurately
represented by the following function:

am(x) = −.71x4 − 2.22x3 + 4.49x2 − .57x+ .01 (5)

This regression function has an R2 value of .988. This function is graphed below with a
domain [0,1].
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MIAMI FINAL PLOT AS FUNCTION

Figure 6: The data points from Figure 5 are shown as a function based on equation 5.

The same approach was taken to complete the Henrietta function. This function was as-
sumed to be concave down for its entirety, therefore making it quadratic in nature. As a
result, the points (.25,.40), (.40,.60), and (.50,.70) were added. The function representing
Henrietta is below.

HENRIETTA FINAL FUNCTION

Figure 7: Due to location and climate, it is assumed that fewer people will take advantage
of a larger discount in Henrietta, NY.
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Again, using regression, we found the Henrietta function to be most accurately repre-
sented by the following function:

ah(x) = −1.22x4 + 2.44x3 − 2.29x2 + 2.04x+ .01 (6)

This regression function has an R2 value of .998. This function is graphed below under
the domain [0,1].

HENRIETTA FINAL PLOT AS FUNCTION

Figure 8: The data points from Figure 7 are shown as a function based on equation 6.

Given the two final functions, we wanted to study what would happen to the revenue
as we moved along each graph. After creating a function to represent how the revenue
was calculated, the revenue was then graphed based on that function. In order to do so,
we had to make the following assumptions:

1. Four percent of the customers would still be no-shows. However, the percentage of
people who took advantage of the discount was calculated before the four percent
no-show rate was deducted.

2. Based on the information given in the article, hotels set about two percent of their
rooms aside for stayovers. [1] As a result, we set the number of available rooms to
be 98 percent of the number of total hotel rooms, or .98H.
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3. The variables in the function are as follows: the variable H is the total number of
hotel rooms in that hotel, the variable C is the cost of the hotel room per night, the
variable x is the percentage of people that take advantage of the discount, and the
variable y is the percent discount given. The function r(x, y) is the revenue.

4. People renting the two percent of rooms that were set aside for stayovers will pay full
price, as will the rest of the customers who did not take advantage of the discount.
The four percent of no-shows will be considered lost revenue, and the percent who
take advantage of the discount will pay the discounted price.

Given this information, we came up with the following function:

r(x, y) = C(H − A ·H · x) + A ·H · x · (1− y) · C − C ·N · A ·H · (1− x) (7)

For equation 7, C(H −A ·H · x) represents those rooms that command full price. These
rooms include the two percent set aside for stayovers, as well as the rooms occupied by
those customers who did not book at a discounted rate. The section of the equation listed
as A ·H · x · (1− y) ·C represents rooms occupied by patrons who took advantage of the
discount. The section C · N · A · H · (1 − x) represents the 4 percent of no-show rooms
that remain vacant.

Note: In our case, the variable A = .98, as the hotel has set aside two percent
of its rooms for stayovers. If a hotel sets aside more or less than two percent,
then A should reflect that change as A = (1 - fraction of rooms set aside). In
addition, the variable N can be adjusted to reflect the no-show rate of the
particular hotel. For our purposes, N = .04.

Using equation 7, we plugged each of the points from the Henrietta final function and the
Miami final function into the equation for revenue. For the sake of simplicity, we assumed
each hotel had 1000 rooms. The given cost of the Miami hotel is $299.00 per night, while
the given cost of the Henrietta hotel is $119.00 per night. [2][3] The following graphs were
produced:
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MIAMI REVENUE AT EACH POINT ON ITS PLOT

Figure 9: Each coordinate value (x, y) in the graph representing fraction of customers who
take advantage of the discount and discount offered in Miami is substitued into r(x, y),
and the corresponding revenue is found.

HENRIETTA REVENUE AT EACH POINT ON ITS PLOT

Figure 10: Each coordinate value (x, y) in the graph representing fraction of customers
who take advantage of the discount and discount offered in Henrietta is substitued into
r(x, y), and the corresponding revenue is found.
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4 Using Pre-Payment Discounts to Reduce No-Show

Rates

As Figure 9 and Figure 10 show, the revenue is highest for each hotel when nobody takes
advantage of the discount. Therefore, if the no-show rate stays at 4 percent, it would
be more beneficial for the hotels to offer no discounts to their customers. However, it
seems reasonable that the no-show rate will reduce if pre-payment is utilized, because
some of those who may have been no-shows have now pre-paid, and will no longer count
as no-shows.

We began to consider what would happen if the no-show rate does go down as the dis-
count goes up. Given that each function, both for Miami (equation 5) and for Henrietta
(equation 6) , has eight points as shown in Figure 5 and 7, we reduced the no-show
rate by assuming that as the discount increased more people would take advantage of it.
Seemingly the people that would take advantage of it would come from both the people
who were going to show up, and the people who were not. For example, if a hotel has
1000 rooms with a no-show rate of 4 percent, then 960 rooms will pay full price, and 40
rooms will have been booked for which payment has not been made. Lets assume that a
discount of 25 percent is offered. This will entice some people to pre-pay. A pre-payment
does not guarantee that a customer will show. As far as hotel revenue is concerned, this
customer is no longer in the no-show category as the hotel has his/her money. Some of the
960 people who were paying full price will be enticed to take advantage of the discount,
as will some of the 40 original no-shows. Now let us assume that of the 960 people, 100
take advantage of the discount and pay at a discounted rate. Also, 5 of the 40 no-shows
now take advantage of the discount and pay at a discounted rate. Therefore, although 40
people may not show up, we still have only lost revenue for 35 people. This reduces the
no-show rate (the non-payment rate) from 4 percent to 3.5 percent.

Using this logic, as we moved along both the Miami function (Equation 5, Figure 5)
and the Henrietta function (Equation 6, Figure 7), and as the percent discount increased,
we also assumed that the no-show rate decreased. However, we were not comfortable
associating one point to one no-show rate. Since many assumptions are being made, we
felt it safer to say a 4 percent no-show rate could happen at (0,0), (in other words, no
discount is offered, so nobody has taken advantage of the discount, and as a result the
no-show rate stays at 4 percent), or it could happen at (.15,.05), (even though a 5 percent
discount is offered, and 15 percent of the people take it, this does not guarantee that the
no-show rate will reduce). However, there is a chance that at (.15,.05) the no-show rate
will in fact go down. Therefore, we also put the point (.15, .05) under a possibility of a
3 percent no-show rate. This practice of overlapping was used as we moved along both
functions. We also made the assumption that the only time a no-show rate of 0 percent
would occur is at the point (1,1), meaning that everybody has received a free room, and
therefore there will be no no-shows. The organization of the points that we associated

16



with each no-show rate is shown below.

MIAMI HENRIETTA

4 PERCENT NO SHOW RATE 4 PERCENT NO SHOW RATE
(0,0), (.15,.05), (.25,.10) (0,0), (.05, .15), (.25, .40)

3 PERCENT NO SHOW RATE 3 PERCENT NO SHOW RATE
(.15, .05), (.25, .10), (.40, .30) (.05, .15), (.25, .40), (.40, .60)

2 PERCENT NO SHOW RATE 2 PERCENT NO SHOW RATE
(.40, .30), (.50, .50), (.60, .80) (.40, .60), (.50, .70), (.60, .80)

1 PERCENT NO SHOW RATE 1 PERCENT NO SHOW RATE
(.60, .80), (.75, .90) (.60, .80), (.75, .90)

0 PERCENT NO SHOW RATE 0 PERCENT NO SHOW RATE
(1,1) (1,1)

By plugging the points in for x and y, and replacing the no-show rate with the per-
cent given, we were able to find revenues for each of these points using equation 7. For
each percentage there was a range of revenues, as there were sometimes three points con-
sidered at each no-show rate. The graphs representing the revenues associated with the
points are listed below.

MIAMI REVENUE AS NO-SHOW RATE DECREASES

Figure 11: Shows the relationship between the discount and its effect on the no-show rate
in Henrietta. These values were then plugged into the equation 7 and revenue was found.
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HENRIETTA REVENUE AS NO-SHOW RATE DECREASES

Figure 12: Shows the relationship between the discount and its effect on the no-show rate
in Miami. These values were then plugged into equation 7, and r(x, y), or revenue, was
found.

Figures 11 and 12 show that the highest revenue occurs at a 3 percent no-show rate with
a fairly small discount (5 percent for Miami and 15 percent for Henrietta) and with a
small percentage of customers taking advantage of the discount (15 percent for Miami
and 5 percent for Henrietta).

We also attempted to maximize revenue by minimizing the revenue loss. We simpli-
fied equation 7 through the following transformations:

r(x, y) = C(H − .98Hx) + .98H · x · (1− y) · C − C ·N · (.98H) · (1− x)

r(x, y) = CH[1− .98x+ .98x(1− y)− .98N(1− x)]

r(x, y) = CH[1− .98(x− x(1− y) +N(1− x))] (8)

At this point, we turned both x and N into functions of y because we considered the per-
centage of people who take advantage of the discount, along with the no-show rate, to be
dependent on the discount. This follows our previous assumptions that a larger discount
encourages more people to take advantage of it, a greater number of people to pre-pay
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and, therefore, a smaller number of no-shows. As a result, we set x equal to the function
a(y) (am(y) for Miami and ah(y) for Henrietta), and we set N equal to the function N(y)
(Nm(y) for Miami and Nh(y) for Henrietta). Now, the equation from above is as follows:

r(a(y), y) = CH[1− .98(a(y)− a(y)(1− y) +N(y)(1− a(y)))]

r(a(y), y) = CH[1− .98(a(y)(1− (1− y)) +N(y)(1− a(y)))]

r(a(y), y) = CH[1− .98(y · a(y) +N(y)(1− a(y))] (9)

In order to find a(y), we used the regression equations (previously labeled am(x) and
ah(x)) that we had already found for the functions comparing percentage of customers
who take advantage of the discount vs. percent discount for Miami and for Henrietta.
However, the original functions (equations 5 and 6) were in terms of x, so these new
regression functions were transformed to be functions in terms of y. Although these func-
tions are not completely accurate, they are a reasonable place to start when plugging in
for am(y) and ah(y). The regression functions of best fit, now functions in terms of y, are
listed below.

MIAMI

am(y) = .26y4 + 3.08y3 − 4.94y2 + 2.58y + .02 (10)

HENRIETTA

ah(y) = 3.42y4 − 5.97y3 + 3.65y2 − .10y + .0003 (11)

In order to find N(y) = N , which is the function comparing the no-show rate with the
percent discount, we used the premise that as the discount increases, more people will
take advantage of it, and more people will pre-pay, thereby decreasing the no-show rate.
Bascially, we split the graphs into four sections. As we move along the function and the
discounts increase, the no-show rates decrease. By using the same overlapping no-show
rates and discount rates as we did previously, we can create a new graph, and then find
a regression equation for that graph, which will then represent N(y).

By letting the independent variable be the discount, the dependent variable be the no-
show rate, and the function be N(percent discount) = no-show rate, we have the following
points to plot based on the previous graph.
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MIAMI HENRIETTA
N(0) = .04 N(0) = .04
N(.05) = .04 N(.15) = .04
N(.10) = .04 N(.40) = .04
N(.05) = .03 N(.15) = .03
N(.10) = .03 N(.40) = .03
N(.30) = .03 N(.60) = .03
N(.30) = .02 N(.60) = .02
N(.50) = .02 N(.70) = .02
N(.80) = .02 N(.80) = .02
N(.80) = .01 N(.80) = .01
N(.90) = .01 N(.90) = .01
N(1) = 0 N(1) = 0

The graphs for each city are shown below.

MIAMI REVENUE AS NO-SHOW RATE DECREASES - IN TERMS OF Y

Figure 13: This graph is used to assist in the creation of a function representing relation-
ship between the discount and its affect on the no-show rate in Miami in terms of the
discount offered.
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HENRIETTA REVENUE AS NO-SHOW RATE DECREASES - IN TERMS
OF Y

Figure 14: This graph is used to assist in the creation of a function representing relation-
ship between the discount and its affect on the no-show rate in Henrietta in terms of the
discount offered.

Using a cubic regression for Figures 13 and 14, N(y) was found to be the following for
each city:

MIAMI

Nm(y) = −.10y3 + .15y2 − .09y + .04 (R2 = .885) (12)

HENRIETTA

Nh(y) = −.02y3 − .01y2 − .01y + .04 (R2 = .879) (13)

Given the high R2 values, it is safe to say that these functions are an acceptable fit for
the data points. These functions are graphed below.
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MIAMI REVENUE AS NO-SHOW RATE DECREASES - AS A FUNCTION F(Y)

Figure 15: The data points from Figure 13 are graphed as equation 12

HENRIETTA REVENUE AS NO-SHOW RATE DECREASES - AS A FUNCTION F(Y)

Figure 16: The data points from Figure 14 are graphed as equation 13.
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Therefore, by using regression equations, we now know that we can plug in equations 10,
11, 12, and 13 for am(y), ah(y), Nm(y), and Nh(y), respectively.

Using these regression equations in conjunction with equation 9 representing r(a(y), y)
above, we now have specific equations to calculate the revenue for Miami and Henrietta.

MIAMI

r(a(y), y) = CH[1− .98(y · (.26y4 + 3.08y3 − 4.94y2 + 2.58y + .02)

+(−.10y3 + .15y2 − .09y + .04(1− (.26y4 + 3.08y3 − 4.94y2 + 2.58y + .02))))]
(14)

HENRIETTA

r(a(y), y) = CH[1− .98(y · (3.42y4 − 5.97y3 + 3.65y2 − .10y + .0003)

+(−.02y3 − .01y2 − .01y + .04(1− (3.42y4 − 5.97y3 + 3.65y2 − .10y + .0003))))]
(15)

Starting with Henrietta, we first minimized the revenue loss (represented by y · (3.42y4−
5.97y3+3.65y2− .10y+ .0003)+(−.02y3− .01y2− .01y+ .04(1−(3.42y4−5.97y3+3.65y2−
.10y + .0003)))), and maximized equation 15 to find at what y value the revenue will be
at its highest. We are letting C be $119.00 and H is set equal to 1000. To start, we sim-
plified both what needs to be minimized (revenue loss) and what needs to be maximized
(revenue) to read as follows:

MINIMIZE REVENUE LOSS
.06y7 − .06y6 + 3.43y5 − 6.09y4 + 3.88y3 − .25y2 − .002y + 0.04

MAXIMIZE REVENUE MADE

r(a(y), y) = −7345y7+7348y6−399864y5+710426y4−452007y3+29375y2+226y+114535
(16)

Both the minimization of the revenue loss and maximization of the revenue should pro-
duce the same value for y.

In order to minimize the revenue loss, the equation was graphed with a domain of [0,1].
In addition, we took the derivative and found the zeros between 0 and 1 to verify that
what the original graph had indicated was correct. This work is shown below.
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HENRIETTA - MINIMIZING REVENUE LOSS

Figure 17: The red point on the graph indicates that the least amount of revenue loss
occurs at a 5.2 percent discount in Henrietta.

It can be seen from the Figure 17 that the minimum amount of revenue loss will occur at a
y value of approximately .0519, which would imply that Henreitta will make its maximum
revenue when they offer a 5.2 percent discount. To verify this, we took the derivative of
what we were trying to minimize (.06y7− .06y6+3.43y5−6.09y4+3.88y3− .25y2− .002y+
0.04) and found it to be .44y6 − .38y5 + 17.14y4 − 24.37y3 + 11.63y2 − .50y − .002. We
then graphed this function from 0 to 1 to find its zeros. This graph is shown below.
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HENRIETTA - DISCOUNT WHERE DERIVATIVE IS EQUAL TO 0

Figure 18: The graph of the derivative of (.06y7− .06y6+3.43y5−6.09y4+3.88y3− .25y2−
.002y + 0.04) verifies that the optimal discount is 5.2 percent in Henrietta, NY.

Figure 18 verifies that a zero occurs at approximately .0519, indicating that the maximum
revenue will occur in Henrietta when a 5.2 percent discount is offered.
Now that we can see what the discount will be, we want to maximize the revenue to find
out how much money the hotel would make at the 5.2 percent discount. As a result, we
then maximized equation 16 by graphing it between 0 and 1 and finding its highest point.
The y value should remain the same at .052, but what is found for the r(a(y), y) will tell
us what the maximum revenue will be. This graph is shown below.

HENRIETTA MAXIMUM REVENUE

Figure 19: At 5.2 percent, this graph shows the maximum revenue to be $114, 568.00.

25



Figure 19 verifies that the y remained the same, and the maximum r(a(y), y) value for
Henrietta is $114, 567.71.

We will work with the Miami data in the same way, that is with the intention of mini-
mizing the revenue loss and maximzing the revenue. We will minimize the revenue loss
(represented by [y ·(.26y4+3.08y3−4.94y2+2.58y+ .02)+(−.10y3+ .15y2− .09y+ .04(1−
(.26y4 + 3.08y3 − 4.94y2 + 2.58y + .02)))]), and maximize the revenue represented by the
equation 14 when replacing C with $299.00 and H with 1000. Both equations have been
simplified to make subtitutions easier.

MINIMIZE REVENUE LOSS

.03y7 + .28y6 − .70y5 + 4.35y4 − 5.98y3 + 3.15y2 − .17y + .04

MAXIMIZE REVENUE MADE

r(a(y), y) = −7770y7−82350y6+206126y5−1274950y4+1752870y3−924298y2+50034y+287490
(17)

Just as in the case with Henrietta, in order to minimize the revenue loss, we graphed the
equation from 0 to 1. In addition, the derivative was found and the zeros between 0 and
1 were found to verify the results. This work is shown below.

MIAMI - MINIMIZING REVENUE LOSS

Figure 20: The red point on the graph indicates that the least amount of revenue loss
occurs at a 2.9 percent discount in Miami.
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Figure 20 shows the maximum value of y occuring at approximately .0294, which would
imply that Miami should offer a discount of 2.9 percent in order to maximized its rev-
enue. To verify this result, we took the derivative of what we were trying to mini-
mize (.03y7 + .28y6 − .70y5 + 4.25y4 − 5.98y3 + 3.15y2 − .17y + .04) and found it to be
.19y6 + 1.69y5 − 3.52y4 + 17.40y3 − 17.95y2 + 6.31y − .17. At this point, we graphed this
function from 0 to 1 to find its roots. This graph is shown below.

MIAMI - DISCOUNT WHERE DERIVATIVE IS EQUAL TO 0

Figure 21: The graph of the derivative of .03y7 + .28y6− .70y5 +4.25y4−5.98y3 +3.15y2−
.17y + .04 verifies that the optimal discount is 2.9 percent in Miami, FL.

Figure 21 verifies that a zero occurs at approximately .029, and therefore the revenue
is maximized at 2.9 percent.

Now that we have found the 2.9 percent discount, we want to find the revenue of the
hotel at that discount. As a result, we maximized the function represented by equation
17 by graphing it between 0 and 1 and finding its highest point. This graph is shown
below.
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MIAMI MAXIMUM REVENUE

Figure 22: At 2.9 percent, this graph shows the maximum revenue to be $288, 205.68

It can be seen from Figure 22 that y remained .029, and the maximum r(a(y), y) value
for Miami is $288, 205.68.

Because the Miami functions am(y), Nm(y) and the Henrietta functions ah(y), Nh(y) were
different, there are different values for y when maximizing revenue. Since both the graph
for Miami and the graph for Henrietta took into account a declining no-show rate as the
discount increases, (this was done by the regression equations am(y), ah(y), Nm(y) and
Nh(y)), it seems reasonable to predict that a relatively small discount rate will maximize
revenue for both hotels.

Since working with equation 16 indicated that Henrietta′s revenue is maximized at 5.2
percent during a normal business week, it seems likely that they are offering a 15 percent
discount for reasons other than reducing the no-show rate. It is our assumption that this
inflated discount was implemented to fill up empty hotel rooms as a result of reduced
business.
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5 Manipulating Discount Levels to Optimize

Revenue

Next we wanted to consider what would happen to a hotel′s revenue when a certain per-
centage of customers take a specific discount. For example, let us say that a hotel offers
a 5 percent discount. What happens when 10 percent of the customers take the discount,
or 50 percent, or 100 percent? In order to do this, we assumed the following:

1. We let the cost of the hotel room be $299.00. However, the results will not change
based on the cost of the hotel.

2. As more customers take advantage of the discount, the no-show rate will decrease.
If an increased number of customers are paying a smaller rate, it seems reasonable to
assume that more customers will pre-pay. Therefore the amount of customers who
are considered no-shows, in other words customers who do not pay, will decrease.
If a person pre-pays, but still does not show up, this person is no longer a no-show
because the hotel has his/her money.

3. We decreased the no-show rate by one percentage each time we increased the percent
of customers who take advantage of the discount by 25 percent. For example, when
0 - 24 percent of the customers taking advantage of the discount, we assumed a 4
percent no-show rate. In addition, when 25 - 49 percent of the customers paying
the discounted rate, we assumed a 3 percent no-show rate, when 50 - 74 percent
we assumed a 2 percent no- show rate, and when 75 - 99 percent we assumed a 1
percent no-show rate. The only time we assumed a 0 percent no-show rate was if
every customer paid the discounted rate.

This process began by looking at what we considered to be a reasonable hotel discount.
Since most discounts are done in 5 percent increments, we looked at the discount val-
ues of 5 and 10 percent first. Given that Figures 19 and 22, representing Henrietta and
Miami, indicated that a smaller discount maximized their revenue (5.2 percent and 2.9
percent, respectively) we started by examining a 5 percent discount. After substituting
this discount and the different no-show rates into the function for r(a(y), y) (equation 9),
and then dealing solely with equation 14 representing Miami for the sake of simplicity, we
developed the following graph.
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REVENUE AT 5 PERCENT DISCOUNT RATE

Figure 23: At a five percent discount, the highest revenue occurs at y = .25.

Figure 23 illustrates that the highest revenues will occur when 25 percent of the customers
take advantage of the discount and when there is a 3 percent no-show rate, or when 50
percent of the customers take advantage of the discount and there is a 2 percent no-show
rate. The revenue at these points, again with a rate of $299.00 per night, was $288, 744.30.
It can be seen that this graph has a parabolic shape. From here we looked at a 10 percent
discount only to continue moving in increments of 5 percent. Again, we decreased the
no-show rate as the percent of customers taking advantage of the discount increased. The
following graph was produced.

REVENUE AT 10 PERCENT DISCOUNT RATE

Figure 24: At a ten percent discount, the graph indicates that the hotel makes the
most revenue if nobody takes advantage of the discount. A ten percent discount is not
advantageous to a hotel′s revenue.

30



Figure 24 clearly shows that it does not benefit the hotel to offer a 10 percent discount,
as the highest revenue of $287, 279.20 occurred when nobody took the discount. From
this point, we wondered at what percentage it became a disadvantage for a hotel to offer
a discount. For example, at a 5 percent discount the revenue increased, assuming that
the no-show rate decreased (as seen in Figure 23) . However, at 10 percent, it was not
advantageous for a hotel to offer a discount, regardless of the fact that the no-show rate
decreased (as seen in Figure 24). We tested discounts of 1 percent, 2 percent, etc. until
we were able to see at what percentage a discount was no longer advantageous to a hotel′s
revenue. We found that percentage to be an 8 percent discount. An 8 percent discount is
the first time, regardless of a decreased no-show rate, that a hotel′s revenue is maximized
when nobody takes advantage of the discount. We then graphed all of these graphs to-
gether on one graph to illustrate what discounts are advantageous to a hotel.

REVENUE AT VARYING DISCOUNT RATES

Figure 25: The pink line and the dark blue line directly below it indicate that at between 7
and 8 percent, it no longer benefits the hotel to offer a discount in the hopes of decreasing
the no-show rate to gain revenue.

The highest revenue occurs at a small discount with a large amount of customers taking
advantage of that discount. As the discount increased beyond this threshold, hotel rev-
enue decreased. As a result of Figure 25, the conclusion can be drawn that if a hotel is
trying to eliminate no-shows while keeping with the idea of maximizing revenue, the hotel
should offer no discount greater than 7 percent, because at 8 percent the hotel will start
to lose revenue if all rooms are booked. This seemed to verify what Figures 19 and 22
suggested; a smaller discount is more beneficial in maximizing revenue when the hotel′s
rooms are all filled.
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Because the results suggested that a significant discount would cause a hotel′s revenue
to decrease, we began to explore why the hotel in Henrietta would offer a 15 percent
discount. We also researched the highest discount offered by a hotel, finding that there
have been discounts offered as high as 60 percent [4]. It seems reasonable that hotels
offering such large discounts are not doing so in order to reduce their no-show rate, but
rather to fill up empty rooms during a slow business week.

6 Using Discounts to Increase Occupancy Levels

When a hotel needs to fill its rooms given that a certain percentage of rooms are already
filled, a hotel may offer a specific discount based on the percentage of rooms filled. Based
on the amount of the discount, a certain percentage of new customers will take advantage
of it, thereby filling up the empty rooms. As a result, we have assigned the following
variables:

Let N = the no-show rate
Let y = the decimal discount offered by the hotel
Let θ = the number of rooms booked at the discounted rate
Let z = the fraction of rooms that were originally filled

We will continue to assume that H is the number of hotel rooms that a hotel has available
to rent, and C is the cost of the room before any discount is given. To create a function
that can be used to calculate revenue, we assumed that N, z,H, and C are all constants
that a hotel would know. Of the remaining variables, y and θ, we have assumed that y
is the independent variable, and θ is dependent, as we believe that the number of rooms
booked at the discounted rate will depend on the size of the discount. It seems reasonable
to assume that as the discount increases, the number of rooms booked at that discount
will increase as well. Therefore, we have set θ = u(y) = ky. The value of the parameter
k may depend on the location of the hotel, among other factors. The function r(y), used
to calculate revenue, can be represented by:

r(y) = HC[z · (1−N)] + (1− z) · (u(y) = ky = θ) · (1− y) · C (18)

Using the model representing revenue, we took the derivative of r(y) in equation 18 and
set it equal to zero to find at what discount value of y the hotel will maximize its revenue.
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This work, and the resultant y, is shown below.

r′(y) = (1− z) · k · C − 2ky · (1− z) · C = 0
2ky · (1− z) · C = (1− z) · k · C

2y = 1

Therefore, the revenue is maximized at a discount of y = .5.

Using this information, we calculated the specific revenues for our two model cities, Mi-
ami, FL and Henrietta, NY. In order to find the function u(y) for each city, we assumed
that a hotel in Henrietta may be more inclined to offer larger discounts than one in Miami,
due to location. We also assumed that even though a hotel in Henrietta may offer a larger
discount, it would be more difficult to fill up vacant rooms than it would be for a hotel in
Miami, and that the discount would depend on what percent of the rooms are filled. For
example, if a hotel has filled only 30 percent of its rooms on a given night, its discount
would be higher than if it has already filled 60 percent of its rooms. We again assumed
that there were 1000 rooms in the hotel. Therefore, we filled in decimal percentages for
y, θ, and z accordingly:

MIAMI

If z = .3
y = .30, u(y) = 420
y = .25, u(y) = 350

For example, if 30 percent of the rooms in a Miami hotel are filled (which is 300 rooms
for our model), then they may offer a 30 percent discount, of which 60 percent of the
people may take advantage. This translates into 60 percent of the remaining 700 rooms
being filled at the discounted rate, or 420 rooms. The hotel may also offer a 25 percent
discount, for which 50 percent of the remaining 700 rooms may be filled at the discounted
rate, or 350 rooms. Although the discount may not be large, the hotel′s premium location
may encourage more people to take advantage of the discount.

If z = .4
y = .25, u(y) = 300
y = .20, u(y) = 240
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If z = .5
y = .20, u(y) = 200
y = .15, u(y) = 150

If z = .6
y = .15, u(y) = 120
y = .10, u(y) = 80

If z = .7
y = .10, u(y) = 60
y = .05, u(y) = 30

If z = .8
y = .05, u(y) = 20
y = 0, u(y) = 0

We also went under the assumption that, for both locations, a hotel may not offer any
discount if 80 percent or more of the rooms are filled.

HENRIETTA

If z = .3
y = .60, u(y) = 210
y = .50, u(y) = 175

Due to location, in Henrietta a hotel may offer a larger discount, of which fewer customers
may take advantage. If 30 percent of the rooms in a Henrietta hotel are filled (300 rooms
filled, as we have assumed H = 0), then it may offer a 60 percent discount. This may
result in 30 percent of the remaining 700 rooms being booked. For the same reason, the
hotel coul also offer a 50 percent discount which may result in 25 percent of the remaining
700 rooms being booked.

If z = .4
y = .50, u(y) = 150
y = .40, u(y) = 120
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If z = .5
y = .40, u(y) = 100
y = .30, u(y) = 75

If z = .6
y = .30, u(y) = 60
y = .20, u(y) = 40

If z = .7
y = .20, u(y) = 30
y = .10, u(y) = 15

If z = .8
y = .10, u(y) = 10
y = 0, u(y) = 0

Therefore, u(y) = θ will be different for Miami and Henrietta. For Miami, using the above
assumptions, we have set u(y) = θ = 900y, and for Henreitta we have set u(y) = θ = 225y.

When we substituted these expressions for u(y) into the equations for Miami and Henri-
etta, we found the following:

MIAMI

r(y) = HC[z · (1−N)] + (1− z) · (900y) · (1− y) · C (19)

HENRIETTA

r(y) = HC[z · (1−N)] + (1− z) · (225y) · (1− y) · C (20)

Note: H,C, z, and N are all constants that are most likely known by the spe-
cific hotel.

As shown by the above calculation, regardless of k, the revenue for each city will be
maximized at a 50 percent discount.

Based on this information, we now utilized a 50 percent discount for the specific cases of
Miami and Henrietta. For Miami, we set C = $299.00, H = 1000, N = .04, and worked
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with the same z values and the same functions for θ that were used above, with a range
of .3 to .8.

For Henrietta, we set C = $119.00, H = 1000, N = .04, and used z values from .3 to
.8 again. As a result, maximum revenues for Miami and Henrietta were produced using
equations 19 and 20.

Once the maximum revenues were found, each was graphically confirmed to occur at
x = .5, or when a 50 percent discount is offered. We then compared these values with the
revenues gathered by the hotels in each city if no discount were offered. For example, if
40 percent of the rooms were filled in Henrietta which translates into a hotel making 40
percent of its maximum profit, the hotel′s revenue would be .4CH(1 − N), or based on
what we have been assuming, it would be .4CH(.96).

Therefore, we calculated the revenue with the formula r = z · C · H · (1 − N). After
comparing revenues, we found the percent change of the maximized revenues for different
discount values compared to the revenue when no discount is offered. These results are:

MIAMI

Z WITHOUT DISCOUNT WITH DISCOUNT PERCENT CHANGE

.3 $86, 112.00 $133, 204.50 54.7

.4 $114, 816.00 $155, 181.00 35.2

.5 $143, 520.00 $177, 157.50 23.4

.6 $172, 224.00 $199, 134.00 15.6

.7 $200, 928.00 $221, 110.50 10.0

.8 $229, 632.00 $243, 087.00 5.9

The graphs below illustrate the above data. The first graph compares the revenues.
The purple dots represent the revenues with a discount given to increase customer sales
in Miami. The blue dots represent a hotel′s revenue in Miami with no new reservations
at a hotel that is not fully booked. The second graph illustrates the percent change of a
hotels revenue as the fraction of empty rooms increases from .3 to .8.
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MIAMI COMPARING REVENUES - DISCOUNT VS. NON-DISCOUNT

Figure 26: When a discount is offered to fill up vacant rooms, the hotel′s revenue is higher
than if no discount is offered and the rooms remain vacant.

MIAMI PERCENT CHANGE - DISCOUNT VS. NON-DISCOUNT

Figure 27: Percent change in the revenue when a discount is offered to fill vacant rooms
and when a discount is not offered.
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HENRIETTA

Z WITHOUT DISCOUNT WITH DISCOUNT PERCENT CHANGE

.3 $34, 272.00 $38, 957.63 13.7

.4 $45, 696.00 $49, 712.25 8.8

.5 $57, 120.00 $60, 466.88 5.9

.6 $68, 544.00 $71, 221.50 3.9

.7 $79, 968.00 $81, 976.13 2.5

.8 $91, 392.00 $92, 730.75 1.5

Just as is the case with Miami, the graphs below illustrate the above data for Henri-
etta. The first graph compares the revenues, and the second graph illustrates the percent
change of a hotel′s revenue as the fraction of empty rooms increases from .3 to .8.

HENRIETTA COMPARING REVENUES - DISCOUNT VS. NON-DISCOUNT

Figure 28: When a discount is offered to fill up vacant rooms, the hotel′s revenue is higher
than if no discount is offered and the rooms remain vacant.
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HENRIETTA PERCENT CHANGE - DISCOUNT VS. NON-DISCOUNT

Figure 29: Percent change in the revenue when a discount is offered to fill vacant rooms
and when a discount is not offered.

We assumed in equation 18 that the relationship between the discount and the number
of people who take the discount was linearly proportional. This was an incorrect assump-
tion, as a 50 percent discount is considered high in the hotel industry. It seems likely that
at a 50 percent discount some customers will try to cancel their reservations, and then
re-book a room at the same hotel at the new, reduced rate. Therefore, this new scenario
must be examined. After completing some internet research, looking at several websites
that discussed cancellation fees and cancellation penalties, it seems that the following two
scenarios were the most common. [5]

1. A hotel offers a discount, but their cancellation fee is too high, and therefore cus-
tomers do not cancel and subsequently re-book their reservations. For example,
there is a window of time in which a hotel allows its patrons to cancel their reser-
vations at no cost. If the reservation is cancelled after the window has lapsed, then
the customer must pay either one or two night′s stay. This may be more costly to
the customer, and therefore the cancellation will not occur. However, these cus-
tomers may demand some sort of compensation from the hotel. In these situations,
hotels will often give a gift card, or a free meal, etc. for some given amount of
money. This amount of money will seemingly be related to the cost of the room. It
is important to note that the hotel demands that these customers pre-pay. If the
hotel does not demand a pre-payment, then customers could simply just not show
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up instead of cancelling, and then walk in and pay the discounted rate. By asking
for a pre-payment, even if the customer chooses not to honor his/her reservation,
the hotel still has the revenue from the pre-payment. Since pre-payment is required,
the hotel will not lose any revenue from those customers who do not show up, and
as a result there will not be a no-show rate.

2. A hotel will offer a discount, and this discount is offered within the amount of
time that the customer may have to pay either a small fee, or no cancellation
fee, for cancelling his/her reservation. Therefore, the customer cancels the existing
reservation, and then re-books at the reduced rate.

The models for each situation are described below.

SITUATION 1 - COMPENSATION GIVEN TO THE CUSTOMER

In situation 1, the customer did not want to cancel his/her reservation as it was not cost
effective. However, those who did not receive a discount may seek some sort of com-
pensation. As a result, we have introduced two new variables. The first is s, which is
the number of customers who will demand some sort of compensation. These are the
customers who would actually search for more cost effective rates on the internet, and
would find the new advertised discounted rate. The other new variable is G, which is the
fractional amount of money given back to the customer in the form of a gift card. This
situation is represented by the equation:

r(y) = HC[z · (1−N)− s ·G · z · (1−N)] +min{(1− z), θ} · (1− y) · C (21)

For equation 21, H ·C ·z · (1−N) represents the customers who paid the original rate and
booked early. The section H ·C ·s ·G ·z ·(1−N) represents those customers who found the
discounted rate but decided it was not in their best interest to cancel their reservations. As
a result, they demanded some sort of compensation. The section min{(1−z), θ}·(1−y)·C
represents those who booked at the discounted rate. This part of the function must be
represented as the minimum of θ and (1− z) because a certain number of customers will
seek out and find the discounted hotel room, regardless of how many rooms a hotel may
have available. For example, if 100 customers find the discount, and a hotel only has 10
empty rooms, the hotel will not offer the discount to all 100 customers, but rather to the
first 10 who book. However, if 100 customers find the discounted rate, and a hotel as 250
empty rooms, the hotel will offer the discounted rate to all 100 customers. As far as the
minimum function is concerned, when (1− z) > θ, then a hotel has filled up some empty
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rooms, but still has more available. When (1− z) < θ, then the hotel is overbooked and
has no more empty rooms to offer at the discounted rate. When (1−z) = θ, then the hotel
is completely booked, and offering a larger discount will only result in less revenue for the
hotel. To prevent overbooking by a significant amount, the minimum value function is
necessary.

Note: We set s = σ · y, where the parameter σ can change based on many factors,
such as discount, hotel chain, location, and time of year. Our thought process in making
s dependent on y was that the amount of people who look for and take advantage of the
discount will be related to how high or low the discount is.

A hotel does not want to overbook its rooms by a significant amount. If a hotel does
over- book, it seems reasonable that it will do so based on the model described in section
1 of this paper. However, as described above, when (1− z) < θ, the hotel is overbooked,
and may be overbooked by a significant amount. If 100 customers want the discount, and
10 rooms are available, our model will not allow the hotel to book 100 rooms at this new
rate, but only the 10 rooms that are available. Therefore, once (1 − z) = θ, our revenue
will be maximized as all rooms will be filled. So, for our model, we need only consider
when (1 − z) ≥ θ, as this describes when we are continuing to fill empty rooms or when
the hotel is completely booked.

Therefore, since θ is the minimum value, the general equation can be rewritten as:

r(y) = HC[z(1−N)− (s = σy) ·G · (1−N) · z] + (θ = ky) · (1− y) · C (22)

At this point, we will take the derivative of this function and set it equal to zero to try
to find the best discount to offer to maximize the revenue.

r′(y) = −CH · σ ·G · (1−N) · z + Ck − 2Cky = 0

−CH · σ ·G · (1−N) · z + Ck = 2Cky

y = k−H·σ·G·(1−N)·z
2k

y = .5− .5(H·σ·G·(1−N)·z
k

)

For the sake of simplification, we made a new parameter, γ, to represent H·σ·(1−N)·z
k

. We
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will discuss this parameter in greater detail at a later point in the paper.

Therefore, through substitution, we calculate that the revenue is maximized in situa-
tion 1 when y = 1

2
(1−Gγ).

In order to find the actual maximized revenue, we must then plug this y-value back
into the original equation, r(y). The function r(y) representing revenue for situation 1 is
listed as equation 22. The work to find r(1

2
(1−G · γ)) is shown below.

r(1
2
(1−Gγ)) =

HC[z(1−N)− (σ(1
2
(1−Gγ))) ·G · (1−N) · z] + (k(1

2
(1−Gγ))) · (1− (1

2
(1−Gγ))) · C

r(1
2
(1−Gγ)) = HC[z · (1−N)− [σ·G·(1−N)·z−σ·G2·γ·(1−N)·z

2
] + (k

4
− k·G2·γ2

4
) · C

At this point, we multiplied the function by k
k
, resulting in the k on the outside, and

dividing every term on the inside by k. Therefore, r(y) now becomes:

r(1
2
(1−Gγ)) = k[HCz(1−N)

k
− HCσG(1−N)z

2k
+ σG2γ(1−N)HCz

2k
+ C

4
− G2γ2C

4
]

Reminder: γ = H·σ·G·(1−N)·z
k

. Therefore, through substitution and factoring out a C, we
calculate that:

r(
1

2
(1−Gγ)) = kC(

γ

σ
− Gγ

2
+
G2γ

2
+

1

4
− G2γ2

4
) (23)

This above representation of r(1
2
(1−Gγ)) is the maximized revenue for scenario 1.

By analyzing the results from the first situation, we conclude the following:

1. As G→ 0, we notice that the hotel′s revenue is maximized when y = .5.

2. The hotel will make the most money overall when G = 0, as the hotel will not be
giving any compensation back to its customers. We can mathematically confirm
that the revenue is at its highest when G = 0. The expressions of r(1

2
(1 − Gγ)) =
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kC( γ
σ
− Gγ

2
+ G2γ

2
+ 1

4
− G2γ2

4
) that contain only Gs are (−Gγ

2
+ G2γ

2
− G2γ2

4
). We

factored out Gγ
2

, and the expression simplifies to be G·γ
2
· (−1 + G − G·γ

2
). Since

G will never be greater than 1, as the hotel will never give more back than full
compensation, we can confirm that G·γ

2
· (−1 + G − G·γ

2
) will always be negative,

unless G = 0, at which point the expression becomes 0. Therefore, the hotel will
always lose revenue unless G is set equal to 0.
However, this translates into poor customer service. Poor customer service could
result in lost customers, and therefore future revenue loss. It may not be in the
hotel′s best interest to refuse compensation to its customers who paid full price.

3. As G→ 1, we can see that y → 1
2
(1− γ).

4. As z → 0, implying that the hotel is relatively empty, then γ → 0, and y → 1
2
.

5. As z → 1, it seems reasonable that γ → 1. There are two reasons for this assump-
tion. The first is that (1 − N) = 1 as N = 0 because the customers must pre-pay.
The second reason is that the number of people who look for a discount and the
number of people who ask for compensation should be relatively equal, making that
ratio in γ approximately 1. Therefore, we have made the assumption that γ ≈ z.
So, as z → 1, and therefore γ → 1, y → 1

2
(1−G).

6. It is also safe to assume that 0 ≤ G ≤ .5, as a hotel will most likely not compensate
its customers for more than 50 percent of the cost of the room withouth losing
significant revenue.

7. As σ → 0, meaning nobody requests compensation, then the maximum revenue
occurs at CKzH(1−N)

k
+ Ck

4
.

8. As k → 0, which means that nobody booked at the original discounted rate (a

realistic situation), our model seems to break down at G2γ2

4
as r will then approach

−∞. However, the stipulation that θ ≤ (1 − z), or in other words that y = 1
2
(1 −

Gγ) ≤ (1−z)
k

, prevents this situation from occuring. The fractional discount, y, must
be positive. Therefore, we consider the first situation where y is not positive, which
occurs when y = 0. The discount y becomes 0 when Gγ = 1. If Gγ = 1, then
the 1

4
− G2γ2

4
will cancel out (as it becomes 1

4
− 1

4
), and the problem of the revenue

approaching −∞ no longer exists.

The maximum revenues for the equation 23 depend on G and γ. Therefore, when we
graphed the first scenario we had to consider a graph where G varied and γ was set, and
another where G was set and γ was varied.

As stated above, the revenue will be maximized when G is equal to 0, or when the
customer receives no compensation from the hotel, although this may lead to poor cus-
tomer service and future revenue loss. We expected our graphs to confirm this. However,
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we still wanted to consider the revenues at different values of G. Therefore, we varied G
from 0 to .5, as we felt comfortable assuming that a hotel would not give compensation
any greater than 50 percent of the cost of the room.

In order to set γ at a fixed value, we had to consider the percent of rooms filled, the
percent discount offered and number of customers taking advantage of that discount, and
the fraction of customers who may demand compensation. Due to the large number of
factors, we did not feel comfortable setting just one value of γ. Therefore, we made the
following assumptions:

1. We chose what we felt was a reasonable discount (15 percent), and assumed that
100 people would take advantage of that discount. Since θ = ky, and therefore
100 = k(.15), we set k = 700.

2. We assumed that the percentage of people who ask for compensation will depend
on the discount offered. For the sake of simplicity, we set σ = .5.

3. We varied γ based on the fraction of rooms filled, which we have assumed to range
from .3 to .8.

4. The number of hotel rooms, H, continues to be 1000.

The following γ values were produced as z varied from .3 to .8:

z = .3 γ = .214
z = .4 γ = .286
z = .5 γ = .357
z = .6 γ = .429
z = .7 γ = .500
z = .8 γ = .571

The graph will illustrate that as G increases, the hotel loses revenue. The varying γ val-
ues, based on the varying z values, are illustrated on the graph in different colors. This
graph is shown below:
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SCENARIO 1 - FIX GAMMA VALUES, GRAPH IN TERMS OF G

Figure 30: As G increases, the hotel will lose revenue. G represents the fraction of the
cost of the hotel room given back to the customer as compensation.

We also wanted to consider at what value the revenue becomes zero. Graphically, we
wanted to show where the quadratic functions intersected the G-axis. Therefore, we ex-
tended the G values until the revenue was shown to be 0. Algebraically, we used the
quadratic formula on the function r(1

2
(1−Gγ)) = kC( γ

σ
− Gγ

2
+ G2γ

2
+ 1

4
− G2γ2

4
) to see at

what values of G the roots would occur. Both the graphic and algebraic representations
are shown below:

SCENARIO 1 - FIX GAMMA/ADJUST G - REVENUE = 0

Figure 31: A compensation value between 1.5 and 2, depending on γ, translates into the
hotel making a revenue of 0. A hotel can give back more than 100 percent of the cost of
the room and still make money because of the customers who are paying full price.
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Figure 31 indicates that the zeros occur at G values between 1.5 and 2. This would mean
that the hotel has a revenue of 0 when it gives the customer compensation of 150 percent
to 200 percent of the cost of the hotel room.

Using the quadratic formula, we can see that the revenue is zero at the following val-
ues:

0 = kC( γ
σ
− Gγ

2
+ G2γ

2
+ 1

4
− G2γ2

4
)

0 = G2 · (γ
2
− γ2

4
) +G · (−γ

2
) + (1

4
+ γ

σ
)

G =
γ
2
±
√
γ2

4
−4·( γ

2
− γ2

4
)·( 1

4
+ γ
σ
)

2·( γ
2
− γ2

4
)

Through simplification, G is rewritten as:

G =
γ
2
±
√
γ2

2
− γ

2
− 2γ2

σ
+ γ3

σ

( 2γ−γ
2

2
)

Graphing equation 23 by fixing G and adjusting γ proved to be a much more difficult task.

We started this process by graphing the function for different values of G, which we
presumed would range anywhere from 0 to .6. We expected our result to be a quadratic
function, and this was confirmed. However, the revenues produced were a concern. For
the sake of simplicity, we chose C = $299.00. If all 1000 rooms were booked at $299.00
per night, the hotel′s revenue would be $299, 000.00. However, when the graph varying
γ was produced, the revenues were shown to be in the millions. In order to explain this
result, we again look at the function r(1

2
(1−Gγ)) = kC( γ

σ
− Gγ

2
+ G2γ

2
+ 1

4
− G2γ2

4
). Recall

that γ contains the value of k in its denominator. In order for γ to increase, k must
decrease. However, as γ increases along its axis, the k on the outside (r(1

2
(1 − Gγ)) =

kC( γ
σ
− Gγ

2
+ G2γ

2
+ 1

4
− G2γ2

4
)) remains constant. When there is a growth in γ, k should be

decreasing. Therefore, since the k on the outside is not properly adjusted to reflect the
growth of γ, the revenues blow up into unreasonable values. If k were to decrease, then
the graph would demonstrate acceptable revenues.

The graph below illustrates the large revenue values for reasonable values of γ, as well as
the quadratic nature of the equation 23 when graphed in terms of γ.
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SCENARIO 1 - FIX G, GRAPH IN TERMS OF GAMMA

Figure 32: Demonstrates the function as quadratic. The values of the revenue are un-
reasonable because as γ grows, the k on the outside of the function is not decreased to
reflect this change.

Figure 32 shows shows that as G increases, and the best value of γ is found, then the
revenue will eventually decrease for each different value of G. This can be confirmed
algebraically.

By taking the derivative of equation 23 in terms of γ, and setting that derivative equal
to 0, we can see at what value of γ the revenue will be maximized. This work is shown
below:

r′(1
2
(1−Gγ)) = kC( 1

σ
− G

2
+ G2

2
− 2G2γ

4
)

We set this equation equal to 0, and then solve for γ.

0 = kC( 1
σ
− G

2
+ G2

2
− 2G2γ

4
)

0 = 1
σ
− G

2
+ G2

2
− 2G2γ

4
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2G2γ
4

= 1
σ
− G

2
+ G2

2

γ = 2
σ·G2 − 1

G
+ 1

Therefore, when γ = 2
σ·G2 − 1

G
+ 1, the revenue is maximized.

SITUATION 2 - CANCELLATION FEE ASSESSED

In situation 2, the customer did cancel his/her reservation and rebooked at the discounted
rate, but was forced to pay a cancellation fee as a result. Similar to case one, s is used to
represent the fraction of customers who have found the new discount, have cancelled, and
then have re-booked their reservations. A new variable, F , is also introduced. F will be
used to represent the fee paid to the hotel by the customer for cancelling his/her existing
reservation. This fee may be as small as 0, but also could be as large as the hotel sees fit.
Therefore, the equation below is used to represent scenario number 2:

r(y) = HC[z · (1−N)− (s = σy) · z · (1−N) + (s = σy) · (1−N) · z · (1− y)]+

F · z · (1−N) ·H · (s = σy) +min{θ, (1− z)} · (1− y) · C
(24)

In the above equation, HC · z · (1 − N) represents the people who originally booked at
full price, HC · (s = σy) · z · (1 − N) represents those who cancelled their reservations,
HC ·(s = σy)·(1−N)·z ·(1−y) represents the same people who now have re-booked at the
new discounted rate, F ·z·(1−N)·H ·(s = σy) represents the customers who have re-booked
and now have to pay a fee F for their original cancellation, and min{θ, (1−z)}· (1−y) ·C
represents the customers who booked at a discounted rate. The last part of the function
includes a minimum value function for the same reason described in situation 1. We are
again just going to focus on the scenario when (1z) ≥ θ, as this describes when the hotel
is filling up empty rooms or is completely booked, but not overbooked.

NOTE: For scenario 2, it is important to note that if F ≥ (1 − y)C, then the cus-
tomers will not cancel their reservations, as they will not gain any money in the process.
However, if F < (1− y)C, then customers will be more inclined to cancel to save money.

Since θ is the minimum value when (1z) ≥ θ, the function now reads as follows:

r(y) = HC[z · (1−N)− (σy) · z · (1−N) + (σy) · z · (1−N) · (1− y)]+

F · z · (1−N) ·H · (σy) + (ky) · (1− y) · C
(25)

At this point, we will take the derivative of equation 25 and set it equal to zero to find
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the y value at which the revenue will be maximized.

r′(y) = −σHCz(1−N)+HCσz(1−N)−2σyHCz(1−N)+Fz(1−N)Hσ+Ck−2Cky = 0

Fz(1−N)Hσ + Ck = (2Ck + 2σHCz(1−N)) · y

y = Fz(1−N)Hσ+Ck
2Ck+2σHCz(1−N)

We divided each value in the fraction by C and k and factored out 1
2

to calculate the
following representation of y:

y = 1
2
(
1+F

C
z(1−N)Hσ

k

1+
σHz(1−N)

k

)

In scenario 1, we had identified a new variable γ, which we had set equal to z(1−N)Hσ
k

. We
will use the same representation of γ in scenario 2, and using substitution we calculate
that y can be represented by:

y =
1

2
(
1 + F

C
γ

1 + γ
) (26)

Reminder: This scenario only applies when θ ≤ (1− z), or if y < (1−z)
k

.

In order to find the actual maximized revenue, we began by manipulating r(y) to be-
come a simplified expression in terms of γ:

r(y) =
HC[z·(1−N)−(σy)·z·(1−N)+(σy)·z·(1−N)·(1−y)]+F ·z·(1−N)·H ·(σy)+(ky)·(1−y)·C

Multiply the above equation by k
k

r(y) = k · (H·C·z·(1−N)·σ
k

− H·C·z·(1−N)·σ·y
k

+ H·C·z·(1−N)·σ·y·(1−y)
k

+ F ·z·(1−N)·H·σ·y
k

+ k·y·(1−y)·C
k

)
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We now will replace all values of H·z·(1−N)·σ
k

with γ.

r(y) = k · (C·γ
σ
− C · y · γ · (1− y) + F · y · γ + C · y · (1− y))

This can be simplified to read:

r(y) = k · (C · γ
σ
− C · y2 · γ + F · y · γ + C · y − C · y2) (27)

To find the maximum revenue, we now replace all values of y in equation 27 with the
value of y listed in equation 26, and the expression is simplified:

r(
1

2
(
1 + F

C
γ

1 + γ
)) = k · (Cγ

σ
− (

F 2γ3

C
+ 2Fγ2 + Cγ + F 2γ2

C
+ 2Fγ + C

4(1 + γ)2
) + (

F 2γ2

C
+ 2Fγ + C

2(1 + γ)
))

(28)

The above representation of r(1
2
(
1+F

C
γ

1+γ
)) is the maximized revenue for scenario 2.

By analyzing the results from equation 28, we conclude the following:

1. As F → C, we notice that the hotel′s revenue is maximized when y = .5.

2. As F → 0, x→ 1
2
· (1 + γ).

3. As z → 1, it seems reasonable that γ → 1. There are two reasons for this assump-
tion. The first is that although N 6= 0 in scenario 2, it is still a reasonably small
value. We have assumed throughout the paper that the maximum N is N = .04.
Therefore, (1−N) ≈ 1. In addition, the number of people who look for a discount
initially and the number of people who cancel their existing reservations and re-book
at the discounted rate should be relatively equal, making that ratio in γ approxi-
mately 1. Therefore, we have made the assumption that γ ≈ z. So, as z → 1, then

γ → 1, which causes y →
F
C
+1

4
.

4. As z → 0, implying that the hotel is virtually empty, then γ → 0, and y → .5.

5. As σ → 0, meaning nobody cancels their reservations and re-books at the discounted
rate, then the maximum revenue occurs at C ·H · z · (1−N) + C

4
.
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6. As k → 0, which means that nobody originally booked at the discounted rate, then

the revenue is maximized at C ·H · z · (1−N) + F 2·H·z·(1−N)·σ
4

.

7. As F grows larger, the hotel′s revenue will increase.

The maximum values for equation 28 depend on F and γ. To graph equation 28, we
considered a graph where F was changing and γ was fixed, as well as one where F was
fixed and γ was changing. The revenue will increase as F increases, as the customer is
paying the hotel a greater fee to cancel. This hypothesis is confirmed by our graph. In
order to vary F , we considered a range of cancellation fees from $0 to $300. Given that
we are using $C = 299.00 as we did in scenario 1, we only graphed until F = $300 as a
customer will likely not cancel if the fee is higher than the room rate.

We set γ at the same fixed rates as we did in scenario 1 depending on the fraction of
rooms filled. As a reminder, these are listed below.

z = .3 γ = .214
z = .4 γ = .286
z = .5 γ = .357
z = .6 γ = .429
z = .7 γ = .500
z = .8 γ = .571

The graph below illustrates that as F increases, the revenue increases. The varying values
of γ based on the varying values of z are illustrated on the graph in different colors.

SCENARIO 2 - FIX GAMMA, GRAPH IN TERMS OF F

Figure 33: As F (cancellation fee) increases, the revenue increases.

51



Now that we have explained and analyzed the general equations for situation 1 and situ-
ation 2, we will apply these scenarios to our model cities, Miami and Henrietta.

Reminder: For Miami, θ = 900y, and for Henrietta, θ = 225y. For each city, we must
also make assumptions about the value of s, which as of now has only been represented
as σy.

In order to find an appropriate value for σ for both Miami and Henrietta, we assumed that
the percentage of people who book at the discounted rate will depend on the discount.
For the sake of simplicity in both scenarios, we let σ = .5.

The following equations represent the models for Miami and Henrietta after plugging
in the respective functions for s and σ.

SITUATION 1 - COMPENSATION GIVEN TO THE CUSTOMER

MIAMI

r(y) = HC[z(1−N)− (.5y)(G)(z)(1−N)] + (900y)(1− y)(C) (29)

HENRIETTA

r(y) = HC[z(1−N)− (.5y)(G)(z)(1−N)] + (225y)(1− y)(C) (30)

SITUATION 2 - CANCELLATION FEE ASSESSED

MIAMI

r(y) = HC[z(1−N)− (.5y)(z)(1−N) + (.5y)(1−N)(z)(1− y)]+

(F )(z)(1−N)(H)(.5y) + (900y)(1− y)(C)
(31)

HENRIETTA

r(y) = HC[z(1−N)− (.5y)(z)(1−N) + (.5y)(1−N)(z)(1− y)]+

(F )(z)(1−N)(H)(.5y) + (225y)(1− y)(C)
(32)

We can see that, for Henrietta, σ = .5 and k = 225, and for Miami σ = .5 and k = 900.
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Recall that for both scenario 1 and scenario 2, graphing the function in terms of γ was
problematic. However, if we work with the function before it was written in terms of γ, we
can find appropriate values for the revenue. Therefore, in order to maximize the revenue
for each city for equations 29 - 32, we just have to substitute the appropriate variables
and constants missing from each r(y).

SITUATION 1 - COMPENSATION GIVEN TO THE CUSTOMER
We assume that the discount offered depends on the fraction of rooms filled. We also
assume that the number of people taking advantage of the discount and the fraction of
people demanding compensation depend on the discount offered. Therefore, for each dif-
ferent value of z, we will adjust the values of σ, k, and y accordingly. These values will
then be substituted into the function, and a revenue produced. The values used are con-
sistent with those listed earlier in the paper for each of our model cities.

MIAMI

Regardless of the z value listed, H = 1000, C = $299.00, σ = .5, G = .15, and N = 0.

We then calculate the revenues using equation 29 given the following varying values of
z, y, and k.

z = .3 y = .275 k = 1400 Therefore, r(y) = $171, 308.31
z = .4 y = .225 k = 1200 Therefore, r(y) = $180, 147.50
z = .5 y = .175 k = 1000 Therefore, r(y) = $190, 705.94
z = .6 y = .125 k = 800 Therefore, r(y) = $203, 880.63
z = .7 y = .075 k = 600 Therefore, r(y) = $221, 745.87
z = .8 y = .025 k = 400 Therefore, r(y) = $241, 666.75

Note: Now that the k values are being properly adjusted, the revenues produced are rea-
sonable.

Once the revenues for Miami in scenario 1 were found, we then compared these val-
ues with the revenues gathered by the hotel in Miami if no discount was offered. We then
calculated the percent change of the revenue when no discount was offered to that of the
revenue in scenario 1. The table below shows this data.
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MIAMI

Z WITHOUT DISCOUNT WITH DISCOUNT PERCENT CHANGE

.3 $86, 112.00 $171, 308.31 98.9

.4 $114, 816.00 $180, 147.50 56.9

.5 $143, 520.00 $190, 705.94 32.9

.6 $172, 224.00 $203, 880.63 18.4

.7 $200, 928.00 $221, 745.87 10.4

.8 $229, 632.00 $241, 666.75 5.2

The graphs below illustrate the above data. The first graph compares the revenues before
and after discount. The second graph illustrates the percent change of the hotel′s revenue.

MIAMI SCENARIO 1 COMPARING REVENUES - DISCOUNT VS. NON-DISCOUNT

Figure 34: Within scenario 1 in Miami, when a discount is offered to fill up vacant rooms,
the hotel′s revenue is higher than if no discount is offered and the rooms remain vacant.
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MIAMI SCENARIO 1 PERCENT CHANGE - DISCOUNT VS. NON-DISCOUNT

Figure 35: Within scenario 1 in Miami, percent change is shown for the revenue when a
discount is offered to fill vacant rooms and when a discount is not offered.

The same process was repeated for Henrietta within the parameters of scenario 1.

Regardless of the z value listed, H = 1000, C = $119.00, σ = .5, G = .15, and N = 0.

We then calculate the revenues using equation 30 given the following varying values of
z, y, and k.

z = .3 y = .55 k = 350 Therefore, r(y) = $44, 535.75
z = .4 y = .45 k = 300 Therefore, r(y) = $54, 829.25
z = .5 y = .35 k = 250 Therefore, r(y) = $64, 706.25
z = .6 y = .25 k = 200 Therefore, r(y) = $74, 523.75
z = .7 y = .15 k = 150 Therefore, r(y) = $84, 638.75
z = .8 y = .05 k = 100 Therefore, r(y) = $95, 408.25

It is important to note that reasonable revenues are once again produced.

The percent change of the revenue when no discount was offered to that of the rev-
enue in scenario 1 was calculated. The table below shows this data.

55



HENRIETTA

Z WITHOUT DISCOUNT WITH DISCOUNT PERCENT CHANGE

.3 $34, 272.00 $44, 535.75 29.9

.4 $45, 696.00 $54, 829.25 20.0

.5 $57, 120.00 $64, 706.25 13.3

.6 $68, 544.00 $74, 523.75 8.7

.7 $79, 968.00 $84, 638.75 5.8

.8 $91, 392.00 $95, 408.25 4.4

The graphs below illustrate this data. The first graph compares the revenues before and
after discount. The second graph illustrates the percent change of the hotels revenue.

HENRIETTA SCENARIO 1 COMPARING REVENUES - DISCOUNT VS. NON-DISCOUNT

Figure 36: Within scenario 1 in Henrietta, when a discount is offered to fill up vacant
rooms, the hotel′s revenue is higher than if no discount is offered and the rooms remain
vacant.
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HENRIETTA SCENARIO 1 PERCENT CHANGE - DISCOUNT VS. NON-DISCOUNT

Figure 37: Within scenario 1 in Henrietta, percent change is shown for the revenue when
a discount is offered to fill vacant rooms and when a discount is not offered.

SITUATION 2 - CANCELLATION FEE ASSESSED

For situation 2, we again assumed that the discount offered depends on the fraction
of rooms filled, and that the number of people taking advantage of the discount, as well
as the fraction of people who cancel and re-book at the discounted rate, depends on the
discount. In addition, we have assumed that as the discount goes up, the cancellation fee
also goes up. This assumption was made because, at a high discount, a hotel would want
to discourage those customers who have already booked from cancelling and booking at
a reduced rate, by stipulating a high cancellation fee. Therefore, for each different value
of z, we will adjust the values of k, y, and F accordingly. The revenues listed below are
produced:
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MIAMI

Regardless of the z value listed, H = 1000, C = $299.00, σ = .5, G = .15, and N = 0.

We then calculate the revenues using equation 31 given the following varying values of
z, y, and k.

z = .3 y = .275 k = 1400 F = $225.00 Therefore, r(y) = $171, 308.31
z = .4 y = .225 k = 1200 F = $195.00 Therefore, r(y) = $180, 147.50
z = .5 y = .175 k = 1000 F = $165.00 Therefore, r(y) = $190, 705.94
z = .6 y = .125 k = 800 F = $135.00 Therefore, r(y) = $203, 880.63
z = .7 y = .075 k = 600 F = $105.00 Therefore, r(y) = $221, 745.87
z = .8 y = .025 k = 400 F = $75.00 Therefore, r(y) = $241, 666.75

Once the revenues for Miami in scenario 2 were found, they were then compared with
the revenues when no discount was offered, and the percent change was again calculated.
The table below shows this data.

MIAMI

Z WITHOUT DISCOUNT WITH DISCOUNT PERCENT CHANGE

.3 $86, 112.00 $175, 224.30 103.5

.4 $114, 816.00 $182, 889.50 59.3

.5 $143, 520.00 $191, 420.50 33.4

.6 $172, 224.00 $201, 901.00 17.2

.7 $200, 928.00 $215, 454.80 7.2

.8 $229, 632.00 $233, 195.50 1.6

The graphs below illustrate this data. The first graph compares revenues before and
after discount. The second graph illustrates the percent change of the hotel′s revenue.
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MIAMI SCENARIO 2 COMPARING REVENUES - DISCOUNT VS. NON-DISCOUNT

Figure 38: Within scenario 2 in Miami, when a discount is offered to fill up vacant rooms,
the hotel′s revenue is higher than if no discount is offered and the rooms remain vacant.

MIAMI SCENARIO 2 PERCENT CHANGE - DISCOUNT VS. NON-DISCOUNT

Figure 39: Within scenario 2 in Miami, percent change is shown for the revenue when a
discount is offered to fill vacant rooms and when a discount is not offered.

59



The same process was repeated for Henrietta within scenario 2.

HENRIETTA

Regardless of the z value listed, H = 1000, C = $119.00, σ = .5, G = .15, and N = 0.

We then calculate revenues using equation 32 given the following varying values of z, y,
and k.

z = .3 y = .555 k = 350 F = $225.00 Therefore, r(y) = $57, 216.74
z = .4 y = .45 k = 300 F = $195.00 Therefore, r(y) = $66, 753.03
z = .5 y = .35 k = 250 F = $165.00 Therefore, r(y) = $74, 249.53
z = .6 y = .25 k = 200 F = $135.00 Therefore, r(y) = $80, 584.50
z = .7 y = .15 k = 150 F = $105.00 Therefore, r(y) = $86, 636.24
z = .8 y = .05 k = 100 F = $75.00 Therefore, r(y) = $93, 283.01

The difference in revenues, as well as the percent change, was calculated for revenues
with and without discounts offered. The table below shows this data.

HENRIETTA

Z WITHOUT DISCOUNT WITH DISCOUNT PERCENT CHANGE

.3 $34, 272.00 $57, 216.74 67.0

.4 $45, 696.00 $66, 753.03 46.1

.5 $57, 120.00 $74, 249.53 30.0

.6 $68, 544.00 $80, 584.50 17.6

.7 $79, 968.00 $86, 636.24 8.3

.8 $91, 392.00 $93, 283.01 2.1

The graphs below illustrate this data. The first graph compares the revenues, and the
second graph illustrates the percent change of the hotels revenue.
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HENRIETTA SCENARIO 2 COMPARING REVENUES - DISCOUNT VS. NON-DISCOUNT

Figure 40: Within scenario 2 in Henrietta, when a discount is offered to fill up vacant
rooms, the hotel′s revenue is higher than if no discount is offered and the rooms remain
vacant.

HENRIETTA SCENARIO 2 PERCENT CHANGE - DISCOUNT VS. NON-DISCOUNT

Figure 41: Within scenario 2 in Henrietta, percent change is shown for revenue when a
discount is offered to fill vacant rooms and when a discount is not offered.
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Regardless of whether we are considering compensation, cancellation fees, re-booking, or
any combination, it can be concluded that the hotel will increase its revenue when a dis-
count is offered to increase occupancy levels.

7 Conclusion

The process of maximizing hotel revenue depends on many factors. Our goal was to
provide a mathematical model to reduce the guesswork involved. As stated in the intro-
duction, there are 124,416 combinations of variables and elements that need be considered
when maximizing revenue. The interdependent nature of these variables forced us to make
many assumptions throughout the paper.

We chose to focus our paper on the effect that discount strategies have on maximizing
revenue. Offering a discount impacts many other factors, such as how many customers
take advantage of the discount, how many customers ask for compensation, how many
customers cancel their reservations and then re-book at a discounted rate, how many
vacant rooms are filled, the no-show rate, customer satisfaction, etc. Our first model
indicated that revenue was shown to maximize at relatively small discount rates ranging
between 2 percent and 8 percent. These numbers vary based on factors such as location
and business climate. This model also indicates that requiring customers to pre-pay at
a discounted rate will reduce the no-show rate, thereby increasing revenue as there are
fewer instances of revenue loss.

We noted that hotels were offering discounts larger than 8 percent, which we assumed
was done as a strategy to fill up empty rooms. Our second model was created to study
the effects of this practce. Offering discounts to fill up vacant rooms also increases the
hotel′s revenue, as rooms that were empty are now filled, causing the revenue to grow.
We discussed that many customers have found creative methods to minimize money spent
on hotel rooms. We were then forced to consider two scenarios (compensation given to
the customer, or the customer cancels his reservation and re-books at a reduced rate)
when calculating the revenue generated by rooms that are no longer vacant. Regardless
of which scenario was considered, offering a discount to fill up vacant rooms proved to be
more lucrative to hotels than offering no discount at all. We noted that making a discount
available only to those who pre-pay may be necessary to eliminate revenue loss.

62



Based on our findings, we can make the following recommendations.

1. Offering a discount to reduce the no-show rate is beneficial to hotels that are not in
need of filling vacant rooms. The discount should be no more than 8 percent.

2. Offering a discount to fill up vacant rooms always increases revenue. When this
practice is used in combination with requiring pre-payment for said discount, the
effect is positive.

3. We recommend considering the effects of discounts on customer satisfaction. For
example, when there is no compensation given back to the customer, or when a hotel
requires a high cancellation fee, the hotel stands to make more money. However,
the long-term effects of such a decision can be detrimental.

4. When maximizing revenue, it is important to note that the amount by which a
hotel′s revenue increases depends on the effect that the discount has on:

(a) The number of people who book at the discounted rate.

(b) The number of people who cancel and re-book at the discounted rate.

(c) The number of people who request compensation for not being offered the
original discount.

(d) The amount of revenue loss.

5. Location and business climate greatly affect revenue, and should be considered when
offering discounts.

In addition, we would like to make the following recommendations for the expansion of,
or future study with, this paper:

1. We did not consider the effect that any of our assumptions have on customer sat-
isfaction. Customer satisfaction is an integral part of the process of maximizing
revenue, as poor customer service can translate into lost revenue.

2. There are many factors that we did not include in this paper, such as third party
booking (for example Priceline or Expedia), group rates, and the state of the econ-
omy, to name a few.

3. The paper could be improved with more data points. We only had two data points
from which to build our model (one from the hotel in Miami, FL and one from the
hotel in Henrietta, NY). The small number of data points forced us to make many
assumptions, some of which may be innacurate.
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In closing, this model demonstrates the positive effect that discounts have on maximizing
revenue. However, a mathematical model alone is not enough, as there are too many
factors for one model to consider. When used in conjunction with good judgement and
managerial expertise, our mathematical model can increases a hotel′s potential revenue
through the implementation of discounts.
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