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Abstract

The topological anomaly detection (TAD) algorithm differs from other anomaly de-
tection algorithms in that it does not rely on the data’s being normally distributed.
We have built on this advantage of TAD by extending the algorithm so that it gives
a measure of the number of anomalous objects, rather than the number of anomalous
pixels, in a hyperspectral image. We have done this by identifying and integrat-
ing clusters of anomalous pixels, which we accomplished with a graph-theoretical
method that combines spatial and spectral information. By applying our method,
the Anomaly Clustering algorithm, to hyperspectral images, we have found that our
method integrates small clusters of anomalous pixels, such as those corresponding
to rooftops, into single anomalies; this improves visualization and interpretation of
objects. We have also performed a local linear embedding (LLE) analysis of the TAD
results to illustrate its application as a means of grouping anomalies together. By per-
forming the LLE algorithm on just the anomalies identified by the TAD algorithm, we
drastically reduce the amount of computation needed for the computationally-heavy
LLE algorithm. We also propose an application of a shifted QR algorithm to improve
the speed of the LLE algorithm.
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Chapter 1

Introduction

A hyperspectral image, in general, has hundreds of spectral bands in contrast to a

multispectral image which has one to ten spectral bands. A normal digital image

can be viewed as having three spectral bands (blue, red, and green), but in hyper-

spectral images a more complete part of the light spectrum is represented [11]. A

regular digital image can be viewed as a collection of three-dimensional spectral vec-

tors, each representing the information for one pixel. Similarly a hyperspectral image

can be viewed as a collection of d-dimensional spectral vectors, each representing the

information for one pixel. Hyperspectral images include spectral bands representing

the visible, near infrared (0.7-1.0 micrometers), and short-wave infrared (1.0-3.0 mi-

crometers). In Figure 1.1, a representation of the light spectrum is shown with the

approximate coverage of a hyperspectral image.
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Figure 1.1: Electromagnetic Spectrum showing the visible, near-infrared, and
shortwave infrared

Thus, hyperspectral images are favored over multispectral images for some applica-

tions such as forestry and crop analysis, as well as military exercises. The spectrum

of vegetation, for example, is quite different from that of man-made objects even if

painted to camouflage in with local vegetation. In This case, a simple photograph

would not be able to pick out the man made objects as well as a hyperspectral image.

A hyperspectral image can produce a traditional red-blue-green image by resampling

the image using the human visual response.

Hyperspectral images are collected with special detectors that can be placed on high

structures, flown in planes, or contained in satellites. The images used in this paper
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were collected by a plane flying above the scene and reading hyperspectral data from

the ground one line at a time for all the required bands. As the plane traveled, it

recorded many lines and these were later assembled, with necessary smoothing done

to remove effects from the uneven travel of the plane, into a complete hyperspectral

image. The sensor aboard the plane worked by collecting the emitted solar radiation

that is reflected off the ground or object on the ground. As the solar radiation enters

the atmosphere, it is altered by the presence of water molecules and other particulate

matter in the atmosphere as shown in Figure 1.2. The same effect happens once the

solar radiation is reflected off the ground or object. The data that are recorded by the

sensor are known as the radiance spectrum. The reflectance spectrum for a particu-

lar band is the ratio of the reflected radiation at that band to the incident radiation

at that band, and can be recovered from the collected radiation spectrum by using

atmospheric correction equations [7]. Throughout the paper we have chosen to use

radiance images as they offer a uniform starting point for analyzing hyperspectral

images since there is no one agreed-upon method for deriving reflectance spectra.

Clustering is the grouping of like pixels from an image based on their characteristics,

typically their spectral response. The level of cluster differentiation is a choice of the

user. For example, the user can choose to cluster all trees into one group or have a

cluster of elms, pines, and oak trees. An anomalous pixel, for this research, is one

that has some degree of dissimilarity from the rest of the pixels in the image. In more

classic applications of anomaly detection Gaussian statistics are used - this however,

from a theoretical aspect, requires that the image’s pixels be normally distributed.
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Figure 1.2: The path of solar radiation from the sun to the hyperspectral sensor (in
this case on a satellite) [7]

For a naturally-occurring image, i.e., one that is not artificially created, this will not

be the case as can be seen in Figure 1.3.

The most popular detection algorithms, which we will briefly describe in the next

chapter, is the RX algorithm [7] which relies on Gaussian statistics. In Chapter

3, we will discuss the Topological Anomaly Detection (TAD) algorithm [2] which

does not share this shortcoming. The output of the TAD algorithm, however, only

declares anomalous pixels, it does not give a true count of the number of anomalous
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objects in an image. For example, it may be advantageous to have all the anomalous

pixels making up a camouflage net grouped and regarded as a single anomaly. The

extension to the TAD algorithm discussed in Chapter 4 does this. It improves the

visualization of anomalies by differentiating between point anomalies and those that

belong to larger groups. In Chapter 5, we will discuss the use of local linear embedding

to accomplish a similar goal. In Chapters 6 and 7, we will discuss the results and

further work in this area.

Figure 1.3: On the left a hyperspectral image shown with approximate red, blue, and
green bands. On the right a scatter plot of the pixels from the image. Note how the
data fails to fall into the ellipses centered at the mean [1].
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1.1 Images

1.1.1 Cooke City

The image of Cooke City, Montana, in Figure 1.4, was collected in July of 2006 using

a HyMap sensor operated by HyVista. It is an 800 × 280 pixel image that contains

126 spectral bands and has approximately 3 meter resolution[12]. In the image, there

is a small town with several buildings, roads, cleared fields, and vehicles; the rest of

the image is forest.

Figure 1.4: ENVI rendering of Cooke City image using approximate red, blue, and
green bands

1.1.2 Copperas Cove

The image of Copperas Cove, Texas (sometimes referred to as URBAN in the liter-

ature), in Figure 1.5, was collected using a HYDICE sensor. It is a 307 × 307 pixel
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image that contains 210 spectral bands, and has approximately 3 meter resolution.

In the image we can see a large store with parking, a small housing division, and a

large open field. For some of the analysis we used an 80× 180 pixel subsection of the

scene.

Figure 1.5: On the left ENVI rendering of Copperas Cove image using approximate
red, blue, and green bands. On the right the image subset.

1.2 Software

We used ENVI 4.5, IDL 7.02, and MATLAB 2008B. We used ENVI 4.5 to display

hyperspectral images and apply appropriate color mappings. We used IDL 7.02 to

program the algorithms discussed in this thesis. To verify several of the outputs

obtained in IDL 7.02, as well as for general computation, we used MATLAB 2008B.
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1.3 Hardware

All of the calculations that we discuss in this thesis were done on a computer with a

2.0 GHZ Dual Core Intel processor with 1 GB of RAM running Windows XP.
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Chapter 2

RX Algorithm

The RX algorithm developed by Reed and Yu [8] finds the mean of the data and

identifies any pixels that have some greater than δ distance away from the mean as

anomalies. Each pixel is surrounded by a sliding box that is centered on that pixel.

The covariance of the data inside the box is then calculated. The rank of the pixel

is the number of standard deviations by which that the pixel differs from the back-

ground; alternatively, the background model can be based on the entire image. The

algorithm works well as long the image can be assumed to have normally-distributed

data. Hyperspectral images, even after dimensionality reduction (mapping higher

dimensionality data to lower dimensionality data but still preserving the most promi-

nent features of the original high dimensionality data), frequently do not follow a

Gaussian distribution. Another complication of the RX algorithm is determining the

size of the sliding box without knowing the locations of the anomalies ahead of time.
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2.1 Theorems and Definitions

Definition 2.1.1. The expected value of a real valued discrete random variable X,

E(X), is the weighted sum of its expected outcomes or
∑

i xip(xi) where p(xi) is that

X = xi [5].

Definition 2.1.2. The mean spectrum, µ(X), for a set of spectral vectors

X = {X1, X2, . . . , Xn}, where Xi is the spectrum of the ith pixel, is µ(X) = 1
n

∑n
i=1Xi.

Definition 2.1.3. Covariance is a measure of how much two real-valued random

variables, X, Y , vary together, the covariance is defined as,

cov(X, Y ) = E((X − E(X))(Y − E(Y ))) [5].

Definition 2.1.4. A covariance matrix is a matrix representing the pairwise covari-

ances of a vector of real valued discrete random variables. For a hyperspectral image

V , with a set of spectral vectors X = {X1, X2, . . . , Xn} and spectral mean µ the

covariance matrix will be represented as Σ = 1
N

∑N
i=1 (Xi − µ) · (Xi − µ)T .

2.2 Algorithm

2.2.1 Step 0

Let a hyperspectral image, V , with N pixels and d spectral bands, be represented as

a N × d matrix X whose ith row, Xi, is the spectra of a pixel i.
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2.2.2 Step 1

For pixel Xi we define R(Xi) to be

R(Xi) = (Xi − µ)TΣ−1(Xi − µ),

where µ is the mean spectrum and Σ is the spectral covariance matrix. The inverse

of the spectral covariance matrix is a change of basis into a new coordinate system

where the variance of the data is one in every direction. When we calculate R(Xi)

we are finding the standard deviation in a multivariate sense.

2.2.3 Step 2

A threshold value, δ, is used to determine whether R(Xi) is an anomaly or part of the

background. If R(Xi) < δ then x is part of the background, if R(Xi) ≥ δ then x is

an anomaly. In the final output, pixels are assigned brightness values corresponding

to the function defined in Step 1, the brighter the pixel the more anomalous it is.

2.3 Algorithm Results

In Figure 2.1, the RX algorithm (from ENVI) was run on the Cooke City and Cop-

peras Cove images. It can be noted that in both sets of images that the algorithm
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was able to find some of the anomalies but missed others. For example, in Cooke City

some of the buildings are regarded as background while others are marked as anoma-

lies, and in the cleared field not all the bare earth spots are marked as anomalous. In

the Copperas Cove image, the RX algorithm does not perform well and marks several

roof top pixels as anomalous.
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Figure 2.1: Top is the original Cooke City image. Middle is the RX algorithm ren-
dering of the Cooke City image. Bottom left is the original Copperas Cove image,
and bottom right is RX rendering of the Copperas Cove image.
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Chapter 3

Topological Anomaly Detection

Algorithm

The Topological Anomaly Detection algorithm [2] differs from the RX algorithm in

that no assumption about the distribution of the data is made. It has been shown to

perform better and more consistently than statistically-based anomaly detection algo-

rithms such as the RX algorithm [3]. The algorithm has also been shown to perform

particularly well as a method for characterizing the backgrounds of images. The TAD

algorithm works by constructing a graph of the data and characterizing components

of the graph, based on their sizes, as part of the background or as anomalies.

14



3.1 Theorems and Definitions

The following definitions are referenced from [4].

Definition 3.1.1. A graph G = (V,E) is a finite nonempty collection of objects, V ,

called vertices together with a set of pairs of distinct vertices, E, called edges.

Definition 3.1.2. A graph H = (V ′, E ′) is a subgraph of a graph G = (V,E), H ⊂ G,

if V ′ ⊂ V and E
′ ⊂ E.

Definition 3.1.3. For a graph G = (V,E) with u, v ∈ V a path between u and v is a

set of unique vertices w1, w2, . . . , wk ∈ V such that

(u,w1), (w1, w2), . . . , (wk−1, wk), (wk, v) ∈ E.

Definition 3.1.4. A walk is an alternating sequence of vertices and edges; it removes

the vertex (and edge) uniqueness that a path requires.

Definition 3.1.5. A graph G = (V,E) is connected if for all u, v ∈ V there exists a

path between u and v.

Definition 3.1.6. A component of a graph, G, is a connected subgraph such that the

vertex set and the edge set of the subgraph are proper subsets of the vertex set and

edge set of graph, respectively.

15



3.2 Algorithm

3.2.1 Step 0

Let X be a finite collection of k dimensional pixels.

3.2.2 Step 1

Construct the graph, Gr, where r ∈ R+ is some threshold. For Gr let X be the vertex

set, and define the edge set, E, such that for u, v ∈ X, uv ∈ E if and only if the

spectral distance from pixel u to v is less than r.

3.2.3 Step 2

Let H be a component of Gr. Each component of Gr should represent a different type

of material (for example grass, steel, trees) that is found in the image. If H contains

at least p%, defined as the background percentage, of the total pixels then it is part

of the background of the image. We place the pixels contained in H into a set B.

Typically, we let p = 2.

16



3.2.4 Step 3

We now calculate the rank of each pixel by summing the distances to its third, fourth,

and fifth closest neighbors that are contained in B. This rank will be the measure of

the anomalousness of each pixel. The final output will assign a scalar brightness to

each pixel, the larger the scalar value the more anomalous the pixel is.

3.2.5 Run Time

The TAD algorithm can be run on a modern laptop, with a reasonable data set (∼ 106

pixels), in approximately two minutes.

3.3 Algorithm Results

In Figure 3.1, the TAD algorithm was run on the Cooke City and Copperas Cove

images. It can be noted that in both sets of images, that the algorithm was able

to find considerably more of the anomalies than the RX algorithm. For example, in

Cooke City scene all buildings are marked as anomalies, as well as the bare earth

spots and concrete circles outside of the city. In the Copperas Cove image, the TAD

algorithm performs much better than the RX algorithm as it properly designated the

buildings as anomalies, but marks the large shopping center as more anomalous. It

also registers very few anomalous pixels on the cleared field.

17



Figure 3.1: Top is original Cooke City image. Middle is TAD algorithm rendering of
Cooke City image. Bottom left is original Copperas Cove image and bottom right is
TAD algorithm rendering of Copperas Cove image.
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3.4 Comparison of Performance in Relation to Other

Algorithms

In Enhanced Detection and Visualization of Anomalies in Spectral Imagery [3], Basener

showed by a range of examples that the TAD algorithm not only out performed the

RX algorithm, but many of the variants of the RX algorithm (RXD, RXD local means,

subspace RX, local RX, RXUTD, RXUTD local mean, RXD-UTD, and RXD-UTD

local mean). In the comparison, five, hyperspectral images were used with more

than 80 targets identified. Then by analyzing the findings using Receiver Operator

Characteristic (ROC) curves (graphs that compare the probability of detection vs

the probability of false alarm), Basener showed that TAD outperforms RX and its

variants a majority of the time; some of these results can be seen in Figure 3.2. Based

on these results, we have chosen to use TAD to produce the anomalous pixel sets used

as a starting point for the algorithms discussed in the next two chapters.

Figure 3.2: Shows the probability of detection at a 0.1 probability of false alarm in
order from highest mean score to least mean score for 5 hyperspectral images [3].
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Chapter 4

Anomaly Clustering Algorithm

We seek to improve the TAD algorithm by differentiating between point anomalies

and anomalies consisting of several pixels. Challenges arise because of the uncertainty

of the environment in which the image was taken - for example anomalies that we

would like to group can have drastically different shapes (lines, polygons, etc.), and

can be split between encompassing a whole pixel and part of a pixel. The anomaly

clustering (AC) algorithm [6] extension works by post-processing the results of the

TAD algorithm and building clusters of anomalous pixels that are both spatially

contiguous and spectrally similar.
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4.1 Theorems and Definitions

Definition 4.1.1. The adjacency matrix [4] A for a graph G = (V,E) with V =

{v1, v2, . . . , v|V |}, is a |V | × |V |, 0− 1 matrix that is populated such that

A(i, j) =


1 if (vi, vj) ∈ E

0 otherwise

.

Theorem 4.1.2. For a graph G = (V,E) with V = {v1, v2, . . . , vk}, the number of

distinct walks between vi and vj in t steps is equal to A(i, j)t where A is the adjacency

matrix for G and t ≥ 1.

Proof. We shall denote this statement as P (t) and proceed by using induction on t.

For t = 1, P (1) equates to At = A, which is the adjacency matrix and thus the

number of walks between vi and vj is either 1 or 0 depending if they are connected

which is the definition of A(i, j).

Assume that P (t) is true. By the inductive hypothesis At(i, j) represents the number

of distinct walks between vi and vj in t moves. We now calculate At+1 = (At)(A).

By using a counting argument we can see that At+1(i, j) gives the number of distinct

walks between vi and vj in t + 1 moves. Denote the ith row of At by α and the jth

column of A by β. So At+1(i, j) = α · β = α1 × β1 + α2 × β2 + . . . α|V | × β|V |. For

any 1 ≤ l ≤ |V | we notice that αl is the number of distinct walks between vi and

vl in t steps and βl is a 0, 1 scalar denoting whether vl and vj are connected. So by

computing αl×βl we are computing the number of distinct walks of length t+ 1 that

start with vi and end with vlvj. α ·β gives the total number of distinct walks of length
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t + 1 between vi and vj in t + 1 steps. Thus P (t + 1) is true, and by induction the

result is shown.

Corollary 4.1.3. The total number of distinct walks between vertices vi and vj in at

most r steps is
∑r

l=1A
l(i, j).

Proof. By the content of Theorem 4.1.2 we saw that At gave the total number of

distinct walks of length t; it is obvious that these walks cannot be repeated for any

other t since they would not be of length t so we have
∑r

l=1A
l(i, j) as the number of

distinct walks between vertices vi and vj in at most r steps.

Corollary 4.1.4. For a graph with a full set of self-loops ((vh, vh) ∈ E ∀vh ∈ V ))

there exists a walk between vertices vi and vj of length at most r, where r = |V |, if

A(i, j)r 6= 0.

Proof. If there exists a walk of at most r length then this is trivial by the above

Theorem 4.1.2. If there exists a walk of length ρ > r, then since there are only r

vertices at least one the of the vertices is visited twice. Let this vertex be vg, and

represent the walk of length ρ as vi, vρ,1, . . . , vg, . . . , vρ, . . . , vj. This walk, though, can

be shortened to vρ,i, vρ,1, vρ, . . . , vj and it will still connect the same two endpoints.

This can be repeated until we only have walks of length at most r. If there exists of

walk of length α < r then this walk will be represented as a walk of length r with

r − α self-loops of vi at the start.
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4.2 Algorithm

4.2.1 Step 0

Let X be a finite collection of d-dimensional pixels. Let X ′ be the results of the TAD

algorithm performed on X.

4.2.2 Step 1

For each pixel value x ∈ X ′ we know that x ∈ [0, 1]. The larger the value of x, the

more anomalous the pixel is. Let N be a subset of X containing only pixels whose

corresponding value in X ′ are greater than some δ ∈ (0, 1). This allows us to pick out

only the most anomalous pixels, and thus those that will be most interesting in the

final analysis. For our work we typically used δ = 0.4 as it gave good performance

and allowed for quick runtime. Let k be the size of N .

4.2.3 Step 2

Let M be a k × k matrix, where each ith row and column is associated with the ith

pixel contained in N , we will call it our detection matrix. Let i, j ∈ N . We define

M(i, j) = 1 if i and j are connected. Here, we define connected as pixels that are

spatially adjacent and within γ spectral radians (in spectral angle). Other metrics
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for connectedness can also be developed, but we have not used any here. We define

spatially adjacent strictly to mean pixels that share a common edge in the image.

Otherwise M(i, j) = 0. Note that M(i, i) = 1.

4.2.4 Step 3

We now calculate M t and reduce all nonzero entries to 1 and call this Mt or the tth

iteration matrix. For our purposes, we care only if there is a path between points i and

j (not the number of paths). We iterate until we have reached solution equilibrium,

that is until the Mt = Mt+1.

4.2.5 Step 4

In the ith row of Mt, any non zero entries will belong to the same anomaly cluster

as the ith pixel of N since they can be reached in a finite number of moves from

pixel i. This means that they are anomalous compared with the background but

are connected, and estimated to be the same material based on the spectral angle

measure. By identifying the pixels in the same anomaly group with a unique scalar,

we color these groups accordingly. Unlike other detection algorithms, the scalar in

the AC algorithm output, does not rank the pixels’ anomalousness, it only serves to

identity them as belonging to the same group. We will call the algorithm return the

completed anomaly clustering map (though an uncompleted anomaly clustering map

can be looked at for each iteration of Step 3).

24



For results see Chapter 6.

4.2.6 Runtime

The AC algorithm can be run on a modern laptop computer, for a reasonably-sized

set of pixels (∼ 106 pixels), in approximately five minutes.

4.3 Example

The following simple example demonstrates how the AC algorithm works. For this

example, let the following four-pixel-by-four-pixel grid (taken directly from an image

preserving all pixel adjacencies) represent pixels we have determined to be anomalies

and the values displayed be calculated spectral measures. Let γ = 0.01.
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We now construct the detection matrix, designating the pixels in the grid from left

to right, top to bottom:

M = M1 =



1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0
0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1



which gives us the first iteration matrix. Since no two the rows of M1 are identical,

we cannot group any of the pixels together in this iteration, as seen in the following

figure (first iteration anomaly clustering map).

26



 

We now calculate M2:

M2 =



2 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0
2 3 0 0 0 2 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 0 0 0 2 1 0 0 1 0 0 0
1 2 0 0 0 3 0 0 1 2 0 0 0 0 0 0
0 0 0 0 0 0 2 2 0 0 0 1 0 0 0 0
0 0 0 0 0 0 2 3 0 0 0 2 0 0 0 1
0 0 0 0 2 1 0 0 4 2 0 0 2 0 0 0
0 1 0 0 1 2 0 0 2 3 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 2 0 0 0 3 0 0 1 2
0 0 0 0 1 0 0 0 2 1 0 0 2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 1
0 0 0 0 0 0 0 0 0 0 0 1 0 2 3 2
0 0 0 0 0 0 0 1 0 0 0 2 0 1 2 3



,

and then by reducing all nonzero entries to 1 in M2 we get the detection matrix for

the second iteration:
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M2 =



1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0
1 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1
0 0 0 0 1 1 0 0 1 1 0 0 1 0 0 0
0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 1 0 0 1 1
0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1
0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1



.

Since no two the rows of M2 are identical we cannot group any of the pixels together

again; as seen in the next figure (second iteration anomaly clustering map).
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Seeing that M1 6= M2, similarly we calculate M3:

M3 =



4 5 0 0 0 3 0 0 0 1 0 0 0 0 0 0
5 7 0 0 0 6 0 0 1 3 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 4 1 0 0 6 3 0 0 3 0 0 0
3 6 0 0 1 7 0 0 3 6 0 0 1 0 0 0
0 0 0 0 0 0 4 5 0 0 0 3 0 0 0 1
0 0 0 0 0 0 5 7 0 0 0 6 0 0 1 3
0 1 0 0 6 3 0 0 10 7 0 0 6 0 0 0
1 3 0 0 3 6 0 0 7 7 0 0 3 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 3 6 0 0 0 7 0 1 3 6
0 0 0 0 3 1 0 0 6 3 0 0 4 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 4 5 3
0 0 0 0 0 0 0 1 0 0 0 3 0 5 7 6
0 0 0 0 0 0 1 3 0 0 0 6 0 3 6 7



,

and then by reducing all nonzero entries to 1 we get the third iteration matrix, M3,

29



M3 =



1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0
1 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 1 1 0 0 1 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0
0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1
0 0 0 0 0 0 1 1 0 0 0 1 0 0 1 1
0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 1
0 0 0 0 1 1 0 0 1 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1
0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1
0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 1



.

Using the third iteration matrix, we find third iteration anomaly clustering map:

 

Note how we can now see the initial formation of anomaly groups. Since M3 6= M2,

we now calculate M4:
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M4 =



16 20 0 0 0 13 0 0 1 5 0 0 0 0 0 0
20 29 0 0 1 25 0 0 5 14 0 0 1 0 0 0
0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 17 5 0 0 25 14 0 0 13 0 0 0
13 25 0 0 5 30 0 0 15 25 0 0 5 0 0 0
0 0 0 0 0 0 16 20 0 0 0 13 0 0 1 5
0 0 0 0 0 0 20 29 0 0 0 25 0 1 5 14
1 5 0 0 25 15 0 0 44 30 0 0 25 0 0 0
5 14 0 0 14 25 0 0 30 31 0 0 14 0 0 0
0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0
0 0 0 0 0 0 13 25 0 0 0 30 0 5 14 25
0 1 0 0 13 5 0 0 25 14 0 0 17 0 0 0
0 0 0 0 0 0 0 1 0 0 0 5 0 16 20 13
0 0 0 0 0 0 1 5 0 0 0 14 0 20 29 25
0 0 0 0 0 0 5 14 0 0 0 25 0 13 25 30



,

and then by reducing all nonzero terms to 1, we get the fourth iteration detection

matrix, M4:
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M4 =



1 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0
0 0 0 0 0 0 1 1 0 0 0 1 0 0 1 1
0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 1
1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 1
0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1
0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 1
0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 1



.

Using the fourth iteration matrix the fourth iteration anomaly clustering map is

produced:

 
.

Again, note how the pixels are beginning to become grouped together. Comparing

the fourth iteration anomaly map to the third iteration anomaly map we can see that
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the larger groups are growing in size. Since again M4 6= M3, we must calculate M5:

M5 =



21 30 0 0 1 25 0 0 5 14 0 0 1 0 0 0
30 46 0 0 5 44 0 0 16 30 0 0 5 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 5 0 0 26 15 0 0 45 30 0 0 25 0 0 0
25 44 0 0 15 51 0 0 35 46 0 0 15 0 0 0
0 0 0 0 0 0 21 30 0 0 0 25 0 1 5 14
0 0 0 0 0 0 30 46 0 0 0 44 0 5 15 30
5 16 0 0 45 35 0 0 81 60 0 0 45 0 0 0
14 30 0 0 30 46 0 0 60 56 0 0 30 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 25 44 0 0 0 51 0 14 30 45
1 5 0 0 25 15 0 0 45 30 0 0 26 0 0 0
0 0 0 0 0 0 1 5 0 0 0 14 0 21 30 25
0 0 0 0 0 0 5 15 0 0 0 30 0 30 46 44
0 0 0 0 0 0 14 30 0 0 0 45 0 25 44 51



,

and then by reducing all nonzero terms to 1, we get the fifth iteration detection ma-

trix, M5:
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M5 =



1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0
0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 1
0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 1
1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 1
1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0
0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 1
0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 1
0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 1



.

Using the fifth iteration matrix, the fifth iteration anomaly clustering map is pro-

duced:

 .

Since M5 6= M4 we continue and calculate M6:
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M6 =



51 76 0 0 6 69 0 0 21 44 0 0 6 0 0 0
76 120 0 0 21 120 0 0 56 90 0 0 21 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
6 21 0 0 71 50 0 0 126 90 0 0 70 0 0 0
69 120 0 0 50 141 0 0 111 132 0 0 50 0 0 0
0 0 0 0 0 0 51 76 0 0 0 69 0 6 20 44
0 0 0 0 0 0 76 120 0 0 0 120 0 20 50 89
21 56 0 0 126 111 0 0 231 176 0 0 126 0 0 0
44 90 0 0 90 132 0 0 176 162 0 0 90 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 69 120 0 0 0 140 0 44 89 126
6 21 0 0 70 50 0 0 126 90 0 0 71 0 0 0
0 0 0 0 0 0 6 20 0 0 0 44 0 51 76 69
0 0 0 0 0 0 20 50 0 0 0 89 0 76 120 120
0 0 0 0 0 0 44 89 0 0 0 126 0 69 120 140



,

and then by reducing all nonzero terms to 1, we get the sixth iteration detection

matrix, M6:
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M6 =



1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0
0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 1
0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 1
1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 1
1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0
0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 1
0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 1
0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 1



.

Using the sixth iteration matrix, the sixth iteration anomaly clustering map is pro-

duced:

 .

Since M6 6= M5 we continue and calculate M7:
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M7 =



127 196 0 0 27 189 0 0 77 134 0 0 27 0 0 0
196 316 0 0 77 330 0 0 188 266 0 0 77 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
27 77 0 0 197 161 0 0 357 266 0 0 196 0 0 0
189 330 0 0 161 393 0 0 343 384 0 0 161 0 0 0
0 0 0 0 0 0 127 196 0 0 0 189 0 26 70 133
0 0 0 0 0 0 196 316 0 0 0 329 0 70 159 259
77 188 0 0 357 343 0 0 659 518 0 0 357 0 0 0
134 266 0 0 266 384 0 0 518 470 0 0 266 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 189 329 0 0 0 386 0 133 259 355
27 77 0 0 196 161 0 0 357 266 0 0 197 0 0 0
0 0 0 0 0 0 26 70 0 0 0 133 0 127 196 189
0 0 0 0 0 0 70 159 0 0 0 259 0 196 316 329
0 0 0 0 0 0 133 259 0 0 0 355 0 189 329 386



,

and then by reducing all nonzero terms to 1, we get the seventh iteration detection

matrix, M7:
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M7 =



1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0
0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 1
0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 1
1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 1
1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0
0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 1
0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 1
0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 1



.

We now see that M7 = M6 so we no longer iterate. The anomaly clustering map found

in iteration six is the final iteration anomaly map, and the algorithm will return it

with appropriate scalar markings of the anomaly clusters. The algorithm was able

to show that the pixel grid has two large anomalies (likely composed of the same

material), one with six pixels and the other with seven, and it has three single-pixel

anomalies as well. This was far more information then was known before running the

algorithm, so we can judge from this example that the AC algorithm was a success

and worth the run time.
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Chapter 5

Local Linear Embedding

Local Linear Embedding (LLE) [10, 9] is a nonlinear manifold-based approach to

clustering. This differs from the previously mentioned RX algorithm which relies

upon linear boundaries between clustered regions of pixels. Real-world hyperspectral

data does not form linear regions of pixels, so a method that does not rely on this

assumption offers many advantages. LLE relies on the fact that if there is enough

data so that each point in the data set will lie with its neighbors close to a locally

linear patch of the manifold. A drawback to LLE is the requirement of calculating

the inverse of the covariance matrix, for each pixel as well as the full spectrum of a

matrix that has dimensions of the total number of pixels in the image. Both of these

make LLE computation costly. By performing LLE only on the anomalous pixels

detected by the TAD algorithm, one can reduce the computation involved drastically

as compared to performing LLE on the whole image. We also offer a method to
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reduce the amount of computation that goes into calculating the spectrum.

5.1 Theorems and Definitions

Definition 5.1.1. A manifold is a topological space that is locally Euclidean, in other

words for every point there is a neighborhood that is homeomorphic to an open sphere

in RN .

Definition 5.1.2. The QR factorization of a matrix A ∈ Rn×n is A = QR where Q

is an n× n matrix of orthonormal columns and R is a n× n upper triangular matrix

which are formed by:

a1 = r11q1

a2 = r12q1 + r22q2

...

an = r1nq1 + r2nq2 + · · ·+ rnnqn

where ai, qi is the ith column of A and Q respectively and rjk = R(j, k) [13].
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Definition 5.1.3. The QR algorithm applied to a matrix A is as follows:

A(0) = A.

For k = 1, 2, . . .

Q(k)R(k) = A(k−1)

A(k) = R(k)Q(k),

where B(t) is the tth iteration of matrix B [13].

5.2 Algorithm

5.2.1 Step 0

Let X = {X1, X2, . . . , XN} be a set of vectors with Xi ∈ Rn.

5.2.2 Step 1

Calculate the k nearest neighbors for each x ∈ X using the Euclidean metric (though

other metrics could be used). We will denote these nearest neighbors in a n× k + 1

matrix M such that M(i, 1) = Xi and M(i, 2),M(i, 3), . . . ,M(i, k + 1) are the k

nearest neighbors of Xi.
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5.2.3 Step 2

We now calculate the reconstruction weights for each Xi. By using the cost function:

E(W ) =
∑N

i=1 |Xi −
∑

j 6=iWi,jXj|2

we can calculate the squared difference between each point and its neighbors. To find

W (i, j), the cost function is minimized subject to W (i, k) = 0 if Xk is not a neighbor

of Xi and
∑N

k=1W (i, k) = 1. By forcing the weights to sum to 1 we are removing the

effects of translations of points. The use of the cost function ensures that points are

not dependent upon rotations and rescaling. Now the set of weights will represent

the underlying geometric properties of the data set.

5.2.4 Step 3

Now by use of a similar cost function we will map each Xi to a lower dimensional Yi.

The cost function mentioned is:

Φ(Y ) =
∑N

i=1 |Yi −
∑

j 6=iWi,jYj|2,

and we minimize it by fixing W (i, j) and optimizing Yj. We now find the L + 1

smallest eigenvalues, λ1 ≤ λ2 ≤ · · · ≤ λL+1, and their corresponding eigenvectors,

V1, V2, . . . , VL+1. We reject the smallest eigenvector as it is the unit vector with eigen-

value 0. Now we use the remaining eigenvectors to project X from n dimensions to
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L dimensions: Xi 7→ (V2(i), V3(i), . . . , VL+1(i)).

For results see Chapter 6.

5.2.5 Modifications

For our purposes we will start with a Step 0 where a hyperspectral image V with a set

of spectral vectors Z. We will let Z ′ be the results of the TAD algorithm performed

on Z. Now let X be the spectral vectors in Z that have corresponding values in Z ′

greater than some threshold δ ∈ (0, 1). We will now proceed to Step 1 and use the

set X which we have defined.

5.3 Improved Calculation of Embedding Eigenvec-

tors

Utilizing LLE with hyperspectral images we would like to project down from N di-

mensions to three: one each for red, blue, and green. Since only the four smallest

eigenvalues and corresponding eigenvectors are required in this case, we offer an ap-

plication of the QR algorithm [13] to quickly calculate these eigenvalues and eigen-

vectors. By only calculating these eigenvalues instead of the complete spectrum we

save dramatically on computation time.
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5.3.1 Step 1

The matrix for which we want to find the four smallest eigenvalues and corresponding

eigenvectors we will denote M . Run the QR algorithm on M until |R(k)(1, 1) −

R(k+1)(1, 1)| < δ for a suitably small δ ∈ R+. Let ω = Rk+1(1, 1). Since the QR

algorithm can be shown to produce the same output step for step as the power method

and the power method finds the largest eigenvalue we know ω is the largest eigenvalue

in the spectrum. We will use ω to shift the spectrum so the smallest eigenvalues are

now the greatest eigenvalues. It should be noted that if δ is not chosen to be small

enough then the estimate of ω will not be accurate enough to produce the correct

shift.

5.3.2 Step 2

Let M ′ = M −ωI, where I is the identity matrix. Now perform the QR algorithm on

M ′ until |R′(l)(4, 4)−R′(l+1)(4, 4)| < ε for a suitably small ε ∈ R+. We expect δ > ε.
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5.3.3 Step 3

Now we remove the shift and let M ′′ = M ′ + ωI. Let λi and Vi be our desired

eigenvalue and corresponding eigenvector pairs for i = 1, 2, 3, 4. Then,

λ1 = R′(1, 1) + ω V1 = Q
′(l+1)
1

λ2 = R′(2, 2) + ω V2 = Q
′(l+1)
2

λ3 = R′(3, 3) + ω V3 = Q
′(l+1)
3

λ4 = R′(4, 4) + ω V4 = Q
′(l+1)
4

,

where Q′i is the ith column of Q.
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Chapter 6

Results

In Figure 6.1 we see the original image, the TAD output, and the AC output for Cook

City. As discussed previously the TAD algorithm did a far better job then the RX

algorithm in identifying all the roof tops as anomalies, as well as the cleared fields

and the cement circles. The AC algorithm builds on this by showing the buildings as

distinct anomalous objects instead of all looking similar. The AC algorithm groups

the anomalous pixels that make up the cleared field in the top middle of the image

correctly into one anomalous object (through a combination of Google Earth and

spectral properties of the pixels we determined that this should be considered one

object). It should be noted that there are several holes in the roof tops of the AC

algorithm output, and this is a result of the thresholding that was needed to allow

the algorithm to run in the desired time. For the image, the TAD algorithm identi-

fied 4951, anomalies but with the AC algorithm extension we learn that there are 67
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anomalous objects in the image.

In Figure 6.2, we again see the original image, the TAD output, and the AC output

for Copperas Cove. Similar to the Cook City image the TAD algorithm did a better

job than the RX algorithm in identifying the anomalies in the image. In this image,

we see the improvement of the AC algorithm more clearly. In the second column of

Figure 6.2, we see a small subsection of the image. It contains, which can be seen

partially in the RGB image, five houses along a road. The TAD algorithm correctly

identifies these houses as anomalies but it is difficult to discern if they are similar

or distinct to one another. The AC algorithm, however, clearly shows that these are

five distinct anomalous objects (houses), and even shows that they have driveways

that are distinct from the houses. For the image, the TAD algorithm identified 1271

anomalies but with the AC algorithm extension we learned that there are 44 anoma-

lous objects in the image.

In Figure 6.3 we see the Cooke City image at the top and the TAD rendering in the

middle. Thresholding the results of the TAD rendering and running LLE on these we

get results seen in the bottom of the figure. These results prove interesting because

LLE has classified most of the town and the cleared fields as blueish yellow except

for the four boxed areas where they are pink. In the Figure 6.4, we explore these four

subsections of the image and look at the spectral properties of the pixels that LLE

designated pink. Looking at the spectrum graphs in column three of Figure 6.4, we
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see that all four subsections have nearly identical spectral properties. Investigating

this further with the use of Google Earth we are able to determine that these houses

all have painted tin roofs. By running LLE only on the anomalies obtained from

the TAD algorithm, we are able to learn that these four anomalous objects were all

composed of the same material, and are vastly different in a spectral sense than the

rest of the scene.
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Figure 6.1: From top to bottom the original image, the TAD rendering of the image,
and the anomaly clustering algorithm of the original image
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Figure 6.2: Top is the subset of the Copperas Cove image and a further subset of the
top right of the image. Middle and bottom is the TAD and AC algorithm rendering
of the Copperas Cove subset image and with the same zoomed subset of the top right
part of the image, respectively.
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Figure 6.3: From top to bottom: RGB rendering of Cooke City, TAD rendering of
Cooke City, and LLE rendering of TAD results of Cooke City with 4 areas of interest
in red boxes
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Figure 6.4: From left the right the area of interest, the RGB rendering of the same
area, and a graph of the spectral vector for a pixel in the area.
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Chapter 7

Conclusions

The anomaly clustering algorithm demonstrated that it can create clusters of anoma-

lous objects that are spatially contiguous and have similar spectral signatures. It

made the differentiation between point anomalies and larger anomalies clearer. The

algorithm offered evidence that an algorithm that relies on combining spectral and

spatial information to make clustering determination is advantageous to just spatial

or spectral alone. This can facilitate the analysis of the image by giving a truer sense

of the relation of anomalies that are close together. For example, it allows an analyst

to see that a concentration of anomalies is actually two large objects that are com-

posed of different materials and several other small singular pixel anomalies as we

noted in the example in Chapter 4.3. Also if the analyst is looking for larger anoma-

lies, ones that encompasses more than one pixel, such as buildings, the algorithm can

reduce the number of anomalies that must be examined.
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From these results, we cannot say which algorithm works more efficiently for the

purposes of anomaly grouping. The anomaly grouping algorithm presented here does

well at differentiating between objects of different materials and those of the same

material that are not contiguous. LLE does well grouping anomalies based on their

material type, but makes it hard to pick out individual objects in a group of likely

constructed objects.
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Chapter 8

Further Work

To further this research, we would like to improve the speed and efficiency of the

algorithms mentioned, particularly the AC algorithm. There are many paths one can

pursue in doing this such as the application of the QR algorithm discussed in Chapter

5.3. One possible avenue is to use faster matrix operation algorithms that rely on

the symmetry inherent in the adjacency matrices. In relation to the AC algorithm

we would like to add the ability for the algorithm to decide to increase or decrease

the set threshold δ value in a local segment of the image. We would like to also make

both the constants (δ and γ) defined by attributes of the image, not by the user, in

a way that avoids the use of statistics.

Another realm of possible exploration is creating a hybrid algorithm that draws on the
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strengths of the AC algorithm and LLE. Whereas LLE is able to find pixels of common

materials throughout the image it loses the ability to construct anomaly groups. The

AC algorithm however does a nice job of grouping pixels based on spectral and spatial

similarity but cannot tell if two anomaly groupings are the same type of material.

A possible application of this hybrid algorithm would be for analyzing the vehicles

on an urban battle field. For instance, the algorithm would conceivably be able to

pick out a set of grouped anomalies that are all tanks and another set of grouped

anomalies that are all civilan vehicles.
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Chapter 9

Appendix

9.1 TAD.pro

1 function t ad r e l p r ime , in1 , in2
2 compi l e opt i d l 2
3
4 a = in1
5 b = in2
6 while (b gt 0) do begin
7 t = b
8 b = a mod b
9 a = t

10 endwhile
11 r e s = a eq 1
12 return , r e s
13 end
14
15 pro tad get sample , f i d=f id , dims=dims , pos=pos , sample s i z e=

samples i ze , sk ip=skip , base=base , o f f s e t=o f f s e t ,
t o p r o c e s s=to proce s s , $

16 pixelmask=pixelmask , cance l=cance l , samplevec=samplevec
17 compi l e opt i d l 2
18
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19 rows = long ( dims [4]−dims [3 ]+1)
20 columns = long ( dims [2]−dims [1 ]+1)
21 bands = n elements ( pos )
22
23 samplevec = f l t a r r ( bands , sample s i z e )
24 i f ( sk ip le 10) then begin ; we want more than 10% of the

p i x e l s , so read a whole l i n e at a time and p u l l out the
r e l e v a n t p i x e l s

25 prev row = −1 ;
26 for count = 0 , sample s i z e − 1 do begin
27 i f ( n e lements ( pixelmask ) ne 0) then $
28 p i x o f f s e t = where ( pixelmask eq ( count ∗ sk ip + sk ip )

) $
29 else $
30 p i x o f f s e t = count ∗ sk ip + sk ip − 1
31 row = p i x o f f s e t / columns
32 c o l = p i x o f f s e t mod columns
33 i f row ne prev row then begin
34 l i n e = e n v i g e t s l i c e ( f i d=f id , pos=pos , l i n e=row + dims

[ 3 ] , xs=dims [ 1 ] , xe=dims [ 2 ] , / bip )
35 prev row = row
36 e n v i r e p o r t s t a t , base , count + o f f s e t , t o p roc e s s ,

cance l=cance l
37 i f ( cance l ) then begin
38 e n v i r e p o r t i n i t , base=base , / f i n i s h
39 return
40 endif
41 endif
42 samplevec [∗ , count ] = f l o a t ( l i n e [∗ , c o l ] )
43 endfor
44 endif else begin ; we want l e s s than 10% of the p i x e l s , so

j u s t read the p i x e l s
45 for count = 0 , sample s i z e − 1 do begin
46 i f ( count mod 10 eq 0) then begin
47 e n v i r e p o r t s t a t , base , count + o f f s e t , t o p roc e s s ,

cance l=cance l
48 i f ( cance l ) then begin
49 e n v i r e p o r t i n i t , base=base , / f i n i s h
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50 return
51 endif
52 endif
53 i f ( n e lements ( pixelmask ) ne 0) then $
54 p i x o f f s e t = where ( pixelmask eq ( count ∗ sk ip + sk ip )

) $
55 else $
56 p i x o f f s e t = count ∗ sk ip + sk ip − 1
57 row = p i x o f f s e t / columns
58 c o l = p i x o f f s e t mod columns
59 samplevec [∗ , count ] = f l o a t ( e n v i g e t s l i c e ( f i d=f id , pos

=pos , l i n e=row + dims [ 3 ] , xs=col , xe=col , / bip ) )
60 endfor
61 endelse
62 e n v i r e p o r t s t a t , base , sample s i z e + o f f s e t , t o p roc e s s ,

cance l=cance l
63 i f ( cance l ) then begin
64 e n v i r e p o r t i n i t , base=base , / f i n i s h
65 return
66 endif
67 end
68
69
70 ; Note : A l l o p t i o n s are r e q u i r e d
71 pro tad , f i d=f id , dims=dims , pos=pos , sample s i z e=samples i ze ,

percent=percent , out fname=out fname , r f i d=r f i d ,
s a tu ra t e l ow=saturate low , $

72 s a t u r a t e h i g h=satura t e h igh , lownorm=lownorm , highnorm=
highnorm , normal ize=normal ize , m f id=m fid , m pos=m pos ,

pca=pca , c lusteranomaly=clusteranomaly , l l e=l l e , noplot
=noplot , bg percent=bg percent

73 compi l e opt i d l 2
74
75
76
77 ; e v e n t u a l l y make the number o f pcas a user input
78 n pcas = 12
79
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80 ; ;∗∗∗ added by jengo ∗∗∗ <begin>
81 ; catch , e r ror
82 ; i f ( e r ror ne 0) then beg in
83 ; e n v i e r r o r , [ ! e r r o r s t a t e . msg , ’ ’ , ! e r r o r s t a t e . sys msg

]
84 ; r e turn
85 ; e n d i f
86 ; ;∗∗∗ added by jengo ∗∗∗ <end>
87
88 ; D e f a u l t s f o r some o p t i o n a l parameters t h a t may not be

t h e r e
89 i f ( n e lements ( s a tu ra t e l ow ) eq 0) then s a tu ra t e l ow = 1
90 i f ( n e lements ( s a t u r a t e h i g h ) eq 0) then s a t u r a t e h i g h = 10
91 i f ( n e lements ( lownorm ) eq 0) then lownorm = 1
92 i f ( n e lements ( highnorm ) eq 0) then highnorm = 2
93 i f ( n e lements ( m f id ) eq 0) then m fid = −1
94
95 ; S e l e c t input f i l e and g e t r e l e v a n t s t a t s
96 rows = long ( dims [4]−dims [3 ]+1)
97 columns = long ( dims [2]−dims [1 ]+1)
98 bands = n elements ( pos )
99 sa t l ow = f l o a t ( s a tu ra t e l ow ) / 100

100 s a t h i g h = 1 − f l o a t ( s a t u r a t e h i g h ) / 100
101
102 e n v i r e p o r t i n i t , [ ’ Step 1 o f 2 : Charac t e r i z i ng Background

. . . ’ ] , base=base , t i t l e=’ Topo log i ca l Anomaly Detector (
TAD) ’ , / i n t e r r u p t

103
104 ; I f a mask i s s p e c i f i e d , determine s t a t i s t i c s based on

t h i s mask . Also , we remove rows or columns at the edges
t h a t are c o m p l e t e l y masked out

105 ; This c o s t s a l i t t l e b i t here but saves a bunch o f time /
work l a t e r

106 or i g d ims = dims
107 i f ( m f id ge 0) then begin
108 pixelmask = bytarr ( columns , rows ) ;
109 for l inenum = dims [ 3 ] , dims [ 4 ] do begin
110 pixelmask [∗ , l inenum − dims [ 3 ] ] = byte ( e n v i g e t s l i c e (
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f i d=m fid , pos=m pos , l i n e=linenum , xs=dims [ 1 ] , xe=
dims [ 2 ] ) )

111 endfor
112 while ( t o t a l ( pixelmask [∗ , 0 ] ) eq 0) do begin
113 dims [ 3 ] += 1
114 −−rows
115 pixelmask = pixelmask [∗ , 1 : rows ]
116 endwhile
117 while ( t o t a l ( pixelmask [∗ , rows−1]) eq 0) do begin
118 dims [ 4 ] −= 1
119 −−rows
120 pixelmask = pixelmask [∗ , 0 : rows−1]
121 endwhile
122 while ( t o t a l ( pixelmask [ 0 , ∗ ] ) eq 0) do begin
123 dims [ 1 ] += 1
124 −−columns
125 pixelmask = pixelmask [ 1 : columns , ∗ ]
126 endwhile
127 while ( t o t a l ( pixelmask [ columns−1, ∗ ] ) eq 0) do begin
128 dims [ 2 ] −= 1
129 −−columns
130 pixelmask = pixelmask [ 0 : columns−1, ∗ ]
131 endwhile
132 p i x e l s = 0L ;
133 mask inc = l o n a r r ( columns , rows )
134 for pix = 0 , rows∗columns−1 do begin
135 p i x e l s += pixelmask [ pix ]
136 mask inc [ pix ] = long ( pixelmask [ pix ] ∗ p i x e l s )
137 endfor
138 i f ( p i x e l s eq rows∗columns ) then junk = temporary (

mask inc ) ; unde f ine mask inc
139 endif else begin
140 p i x e l s = rows∗columns
141 endelse
142
143 ; Determine the s a m p l e s i z e ( s ) to use
144 sk ip = long ( p i x e l s / sample s i z e )
145 while (˜ t a d r e l p r i m e ( skip , p i x e l s ) ) do −−sk ip
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146 sample s i z e = p i x e l s / sk ip
147 i f ( sample s i z e gt 2500) then begin
148 rad samp l e s i z e = 2500
149 rad sk ip = p i x e l s / rad samp l e s i z e
150 while (˜ t a d r e l p r i m e ( rad sk ip , p i x e l s ) ) do −−r ad sk ip
151 rad samp l e s i z e = p i x e l s / r ad sk ip
152 t o p r o c e s s = 4 ∗ sample s i z e + 3 ∗ r ad samp l e s i z e
153 endif else begin
154 rad samp l e s i z e = sample s i z e
155 rad sk ip = sk ip
156 t o p r o c e s s = 5 ∗ sample s i z e
157 endelse
158
159 ; Read in a sample and determine the r a d i u s . The r a d i u s

de terminat ion r e q u i r e s the p a i r w i s e d i s t a n c e between
every

160 ; two samples , so we keep the s a m p l e s i z e sma l l to moderate
f o r t h i s . Thus , the r a d i u s may only be an approximate ,
but

161 ; t h i s doesn ’ t e f f e c t the r e s u l t s much
162 tad get sample , f i d=f id , dims=dims , pos=pos , sample s i z e=

rad sample s i z e , sk ip=rad sk ip , base=base , o f f s e t =0,
t o p r o c e s s=to proce s s , cance l=cance l , $

163 samplevec=sample , pixelmask=mask inc
164 i f ( cance l ) then return
165 i f normal ize then begin
166 sample norm = s q r t ( t o t a l ( sample ∗ sample , 1 , /

p r e s e rv e type ) ) ;
167 s o r t i n d e x = s o r t ( sample norm ) ;
168 maxnorm = sample norm [ s o r t i n d e x [ long ( n e lements (

sample norm )∗ s a t h i g h + 0 . 5 ) ] ] ;
169 minnorm = sample norm [ s o r t i n d e x [ long ( n e lements (

sample norm )∗ sa t l ow + 0 . 5 ) ] ] ;
170 sample = TAD Normalize ( sample , minnorm , maxnorm , lownorm ,

highnorm )
171 endif
172 e n v i r e p o r t s t a t , base , 2∗ rad sample s i z e , t o p roc e s s ,

cance l=cance l
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173 i f ( cance l ) then begin
174 e n v i r e p o r t i n i t , base=base , / f i n i s h
175 return
176 endif
177 rad iu s = TAD Compute Radius ( sample , percent ) ;
178 e n v i r e p o r t s t a t , base , 3∗ rad sample s i z e , t o p roc e s s ,

cance l=cance l
179 i f ( cance l ) then begin
180 e n v i r e p o r t i n i t , base=base , / f i n i s h
181 return
182 endif
183
184 ; Determine the background . I f the sample used to compute

the r a d i u s was s m a l l e r than the r e q u e s t e d sample s i z e ,
the whole sample i s read in now

185 i f sample s i z e ne r ad samp l e s i z e then begin
186 tad get sample , f i d=f id , dims=dims , pos=pos , sample s i z e=

samples i ze , sk ip=skip , base=base , o f f s e t =3∗
rad sample s i z e , t o p r o c e s s=to proce s s , cance l=cance l ,
$

187 samplevec=sample , pixelmask=mask inc
188 ; we i n t e n t i o n a l l y don ’ t recompute maxnorm and minnorm ,

we want the s c a l i n g to be the same one used when
computing the r a d i u s

189 i f normal ize then $
190 sample = TAD Normalize ( sample , minnorm , maxnorm ,

lownorm , highnorm )
191 e n v i r e p o r t s t a t , base , 3∗ r ad samp l e s i z e + 2∗ samples i ze ,

t o p roc e s s , cance l=cance l
192 i f ( cance l ) then begin
193 e n v i r e p o r t i n i t , base=base , / f i n i s h
194 return
195 endif
196 endif
197 sample = TAD Separate Background ( sample , r ad iu s ) ;
198 e n v i r e p o r t s t a t , base , t o p roc e s s , t o p roc e s s , cance l=

cance l
199 i f ( cance l ) then begin
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200 e n v i r e p o r t i n i t , base=base , / f i n i s h
201 return
202 endif
203 a t r i a = NN Prepare ( sample ) ;
204 e n v i r e p o r t s t a t , base , t o p roc e s s , t o p roc e s s , cance l=

cance l
205 i f ( cance l ) then begin
206 e n v i r e p o r t i n i t , base=base , / f i n i s h
207 return
208 endif
209 e n v i r e p o r t i n i t , base=base , / f i n i s h
210 bg percent = f l o a t (100 ∗ n e lements ( sample ) ) / f l o a t ( bands

∗ sample s i z e )
211 print , ’The image i s est imated to conta in ’ + s t r i n g (

bg percent ) + ’ background ’
212
213 ; Now compute the rank ings
214 e n v i r e p o r t i n i t , [ ’ Step 2 o f 2 : Ranking Anomalies . . . ’ ] ,

base=base , t i t l e=’ Topo log i ca l Anomaly Detector (TAD) ’ , /
i n t e r r u p t

215 i f ( keyword set ( pca ) ) then r e s u l t = f l t a r r ( o r i g d ims [ 2 ] −
or i g d ims [ 1 ] + 1 , o r i g d ims [ 4 ] − or i g d ims [ 3 ] + 1 ,
n pcas +1) $

216 else r e s u l t = f l t a r r ( o r i g d ims [ 2 ] − or i g d ims [ 1 ] + 1 ,
o r i g d ims [ 4 ] − or i g d ims [ 3 ] + 1 , 1)

217 for l inenum = dims [ 3 ] , dims [ 4 ] do begin
218 e n v i r e p o r t s t a t , base , linenum − dims [ 3 ] , rows , cance l=

cance l
219 i f ( cance l ) then begin
220 e n v i r e p o r t i n i t , base=base , / f i n i s h
221 return
222 endif
223 l i n e = f l o a t ( e n v i g e t s l i c e ( f i d=f id , pos=pos , l i n e=

linenum , xs=dims [ 1 ] , xe=dims [ 2 ] , / bip ) )
224 i f normal ize then l i n e = TAD Normalize ( l i n e , minnorm ,

maxnorm , lownorm , highnorm )
225 ne ighbors = NN Search ( sample , a t r i a , l i n e , 5)
226 i f ( n e lements ( mask inc ) eq 0) then $
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227 r e s u l t [ dims [1]− or i g d ims [ 1 ] : dims [2]− or i g d ims [ 1 ] ,
linenum−or i g d ims [ 3 ] , 0 ] = f l o a t ( t o t a l ( ne ighbors
[ 2 : 4 , ∗ ] , 1) ) $

228 else $
229 r e s u l t [ dims [1]− or i g d ims [ 1 ] : dims [2]− or i g d ims [ 1 ] ,

linenum−or i g d ims [ 3 ] , 0 ] = f l o a t ( t o t a l ( ne ighbors
[ 2 : 4 , ∗ ] , 1) ) ∗ pixelmask [∗ , linenum−dims [ 3 ] ]

230 endfor
231 e n v i r e p o r t i n i t , base=base , / f i n i s h
232 r e s u l t [∗ , ∗ , 0 ] /= max( r e s u l t [∗ , ∗ , 0 ] )
233
234
235 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; LLE ADDITION ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
236 i f l l e eq 1 then begin
237
238 k=10 ; n e a r e s t n e i g h b o r s
239 ; numpix = rows∗columns
240 ; assume mat i s matrix wi th rows are dim v a l u e s and columns

are p i x e l s
241 ; matcor i s i s matrix wi th rows are p i x e l s and columns are x ; y

c o o r d i n a t e s
242
243 ; ; ; ; new ; ; ; ; ;
244 r =0.15
245 t a d r e s u l t=r e s u l t
246
247 anomcount=0 ;
248 mat=2 ;
249 xycord=2 ;
250
251 print , ’ s t a r t i n g to form mat ’
252
253 for rownum = 0 , rows −1 do begin
254 for colnum = 0 , columns − 1 do begin
255
256 i f r e s u l t [ colnum , rownum ] gt r then begin
257
258 i f mat [ 0 , 0 ] eq 2 then begin
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259 mat=[ e n v i g e t s l i c e ( f i d=f id , pos=pos , l i n e=rownum ,
xs=colnum , xe=colnum , / bip ) ]

260 xycord =[colnum , rownum ]
261
262 endif else begin
263 mat = [ [ mat ] , [ e n v i g e t s l i c e ( f i d=f id , pos=pos , l i n e

=rownum , xs=colnum , xe=colnum , / bip ) ] ]
264 xycord = [ [ xycord ] , [ colnum , rownum ] ]
265
266 endelse
267
268 anomcount=anomcount+1 ;
269
270 endif
271
272 endfor
273 endfor
274
275
276 print , ’ f i n i s h e d forming mat ’
277
278 mat = transpose ( double ( double (mat) /max(mat) ) )
279
280 numpix=anomcount
281
282
283
284 print , s i z e (mat)
285
286 print , ’ s t a r t i n g s tep 1 ’
287 ; s t e p 1
288 X 2 = double ( t o t a l ( double (matˆ2) ,2 ) ) ; v e c t o r wi th bands long
289 X 21 = double ( f l t a r r ( numpix , numpix ) ) ; nco ls , nrows
290 X 22 = double ( f l t a r r ( numpix , numpix ) )
291
292 ; r e p l i c a t i n g the matrix
293 for i t e r =0,numpix−1 do begin
294 X 21 [∗ , i t e r ]= double ( X 2 ) ; rows a l l same
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295 X 22 [ i t e r , ∗ ] = double ( t ranspose ( X 2 ) ) ; c o l s a l l same
296 endfor
297
298 X 23=2∗( double ( t ranspose (mat)##mat) )
299
300 d i s t anc e = X 21 + X 22 − X 23 ; bandsxbands
301
302 index = f l t a r r ( numpix , numpix ) ; bandsxbands
303
304 for i t e r =0,numpix−1 do begin
305 index [ i t e r ,∗ ]= s o r t ( d i s t ance [ i t e r , ∗ ] )
306 endfor
307
308 neighborhood = index [ ∗ , 1 : k ]
309
310 print , ’ f i n i s h i n g step 1 ’
311 print , ’ s t a r t i n g s tep 2 ’
312 ; s t e p 2
313
314 W=f l t a r r ( numpix , k )
315
316
317 for i t e r =0,numpix−1 do begin
318
319 temp = double ( f l t a r r (k , bands ) )
320
321 for i t e r j =0,k−1 do begin
322
323 temp [ i t e r j ,∗ ]= double (mat [ i t e r , ∗ ] ) ; c o l s a l l same ho ld p i x

v a l u e s f o r i t e r band c o l s=k
324
325 endfor
326
327 z= double (mat [ neighborhood [ i t e r ,∗ ] ,∗ ] − temp )
328 C=transpose ( z )##z
329 ones = r e p l i c a t e (1 , k , 1 )
330 W[ i t e r ,∗ ]= i n v e r t (C)##ones
331 W[ i t e r ,∗ ]=W[ i t e r , ∗ ] / ( t o t a l (W[ i t e r , ∗ ] ) )
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332 endfor
333
334 print , ’ f i n i s h i n g step 2 ’
335 print , ’ s t a r t i n g , s tep 3 ’
336
337 ; s t e p 3
338 M=f l t a r r ( numpix , numpix )
339
340 for i t e r =0,numpix−1 do begin
341
342 ww=W[ i t e r , ∗ ]
343 j j=neighborhood [ i t e r , ∗ ]
344 M[ j j , i t e r ] = M[ j j , i t e r ] − t ranspose (ww)
345 M[ i t e r , j j ] = M[ i t e r , j j ] − ww
346 M[ j j , j j ] = M[ j j , j j ] + ww##transpose (ww)
347 endfor
348
349 print , ’ f i n i s h i n g step 3 ’
350
351 ; embedding
352
353 print , ’ s t a r t i n g to f i n d e i g e n v e c t o r s ’
354 e i g e n v a l u e s = EIGENQL( double (M) , EIGENVECTORS = evecs ,

RESIDUAL = r e s i d u a l )
355
356 p o s i t i v e = where ( e i g e n v a l u e s gt 0)
357 p o s i t i v e = r e v e r s e ( p o s i t i v e )
358
359 ev = evecs [∗ , p o s i t i v e [ 0 : 2 ] ]
360
361 print , ’ f i n i s h i n g f i n d i n g e i g e n v e c t o r s ’
362
363 print , ’ s t a r t i n g re forming ’
364
365 l l e r e s u l t = f l t a r r ( columns , rows , 3)
366 for i t e r =0, numpix−1 do begin
367
368 l l e r e s u l t [ xycord [ 0 , i t e r ] , xycord [ 1 , i t e r ] ,∗ ]= ev [ i t e r , ∗ ]
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369
370 endfor
371
372 print , ’ f i n i s h i n g re forming ’
373
374 env i en t e r da ta , l l e r e s u l t
375
376 endif
377
378 ; ; ; ; ; ; Anomaly C l u s t e r i n g Algorithm Addit ion ; ; ; ; ; ; ;
379
380 i f c lusteranomaly eq 1 then begin
381 l e v e l = f l o a t ( . 1 2 5 )
382 counter = f l o a t (2 )
383 o l d r e s u l t = r e s u l t
384 g r i d s i z e =1
385
386 ; we w i l l make t h i s a 10 x10 g r i d why not
387
388 for bigCol =0, g r i d s i z e −1 do begin
389 for bigRow=0, g r i d s i z e −1 do begin
390
391 print , ’ runnning submatrix ’ + ’ ( ’ + s t r i n g ( bigCol ) + ’ , ’ +

s t r i n g ( bigRow ) + ’ ) ’
392
393 i f bigCol eq 0 then begin
394 c o l s t a r t = 0
395 co lend = ( bigCol +1)∗( columns/ g r i d s i z e )
396 endif else begin
397 i f bigCol eq g r i d s i z e −1 then begin
398 c o l s t a r t = bigCol ∗( columns/ g r i d s i z e )−1
399 co lend = ( bigCol +1)∗( columns/ g r i d s i z e )−1
400 endif else begin
401 c
402 o l s t a r t = bigCol ∗( columns/ g r i d s i z e )−1
403 co lend = ( bigCol +1)∗( columns/ g r i d s i z e )
404 endelse
405 endelse
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406
407 i f bigRow eq 0 then begin
408 rowstar t = 0
409 rowend = ( bigRow+1)∗( rows/ g r i d s i z e )
410 endif else begin
411 i f bigRow eq g r i d s i z e −1 then begin
412 rowstar t = bigRow∗( rows/ g r i d s i z e )−1
413 rowend = ( bigRow+1)∗( rows/ g r i d s i z e )−1
414 endif else begin
415 rowstar t = bigRow∗( rows/ g r i d s i z e ) − 1
416 rowend = ( bigRow+1)∗( rows/ g r i d s i z e )
417 endelse
418 endelse
419
420 smal lMatr ix = o l d r e s u l t [ c o l s t a r t : colend −1, rowstar t : rowend−1]
421
422 t=0 ; number o f anomolies
423
424 ; counts anomolies − not sure i f we need t h i s
425 for i = 0 , rows/ g r i d s i z e − 1 do begin
426 for j = 0 , columns/ g r i d s i z e −1 do begin
427 i f ( f l o a t ( smal lMatr ix [ j , i ] ) gt l e v e l ) then begin
428 t = t+1
429 endif
430 endfor
431 endfor
432
433 print , ’ found that the re were ’ + s t r i n g ( t ) + ’ anomolous

p i x e l s to in c lude ’
434
435 ; makes arrays
436 i f t > 0 then begin
437 dect = f l t a r r ( t , t ) ; anomolies by anomiles matrix
438 dectpos = f l t a r r (2 , t ) ; the p o s i t i o n s o f the anomiles in the

b i g p i c t u r e
439 dectcount = 0
440
441 ; r ecords anomolies
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442 for i = 0 , rows/ g r i d s i z e − 1 do begin
443 for j = 0 , columns/ g r i d s i z e −1 do begin
444 i f ( f l o a t ( smal lMatr ix [ j , i ] ) gt l e v e l ) then begin
445 dectpos [ 0 , dectcount ] = bigCol ∗( columns/ g r i d s i z e ) + j
446 dectpos [ 1 , dectcount ] = bigRow∗( rows/ g r i d s i z e ) + i
447 dectcount = dectcount + 1
448 endif
449
450 endfor
451 endfor
452
453 ; p r in t , ’ found anomolies ’
454
455 ; c r e a t e s d e t e c t i o n matrix − the 1 s t e p n e i g h b o r s matrix
456 for i = 0 , t−1 do begin
457 dect [ i , i ]=1
458 for j = i +1, t−1 do begin
459
460 i f ( ( dectpos [ 0 , i ] eq dectpos [ 0 , j ] AND ABS( dectpos [ 1 , i ] −

dectpos [ 1 , j ] ) eq 1) OR ( dectpos [ 1 , i ] eq dectpos [ 1 , j ] AND
ABS( dectpos [ 0 , i ] − dectpos [ 0 , j ] ) eq 1) ) then begin

461 l i n e 1 = e n v i g e t s l i c e ( f i d=f id , pos=pos , l i n e=dectpos
[ 1 , i ] , xs = dectpos [ 0 , i ] , xe = dectpos [ 0 , i ] , / bip
)

462 l i n e 2 = e n v i g e t s l i c e ( f i d=f id , pos=pos , l i n e=dectpos
[ 1 , j ] , xs = dectpos [ 0 , j ] , xe = dectpos [ 0 , j ] , / bip
)

463 dot = l i n e 1##Transpose ( l i n e 2 )
464 mag1 = SQRT( l i n e 1##Transpose ( l i n e 1 ) )
465 mag2 = SQRT( l i n e 2##Transpose ( l i n e 2 ) )
466 i f ( ACOS( dot /(mag1∗mag2) ) ∗ ( ! PI/180D) le . 001D ) then

begin
467 dect [ i , j ] = 1
468 dect [ j , i ] = 1
469 endif
470 endif
471 ; e n d i f
472 endfor
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473 endfor
474
475
476 ; performs dec t + dec t ˆ2 + dec t ˆ3 + . . . . . u n t i l t h e r e i s no

change
477 o lddec t=dect
478 boolean = 0
479 for i =0, t−1 do begin
480 print , s t r i n g ( i ) + ’ o f a p o s s i b l e ’ + s t r i n g ( t )
481 i f ( boolean eq 0) then begin
482 decttmp = dect ## olddec t
483 for j =0, t−1 do begin
484 for k=0, t−1 do begin
485 i f decttmp [ j , k ] ne 0 then decttmp [ j , k ] = 1
486 endfor
487 endfor
488 tmp = decttmp − o lddec t
489 boolean = 1
490 for j =0, t−1 do begin
491 for k=0, t−1 do begin
492 i f tmp [ j , k ] ne 0 then boolean = 0
493 endfor
494 endfor
495 ; p r in t , ’ i t e r a t i n g matrix u n t i l f a l s e = ’ + s t r i n g ( boo lean )
496 o lddec t=decttmp
497 endif
498 endfor
499
500 ; why??
501 dect=o lddec t
502
503 ; groups anomalies − i t e r a t e s through anomalies in order o f

dec tpos ( l e f t −>r i g h t up−>down)
504 for i = 0 , t−1 do begin
505 rowsum=0
506 i f dect [ 0 , i ] ne −1 then begin ; check f o r redundency
507 for i sub =0, t−1 do begin ; s e e s i f t h e r e i s more than one

anomaly in t h i s c l u s t e r
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508 rowsum = rowsum + dect [ isub , i ]
509 endfor
510
511 ; we need to check i f any p i x e l s have a l r e a d y been l a b e l e d

s i n c e we would want t h e s e in the same group
512
513
514 i f rowsum gt 1 then begin
515
516 s p l i t c o u n t = 0
517 s p l i t c o u n t t r u e=0
518 for i sub =0, t−1 do begin
519 i f dect [ isub , i ] eq 1 AND r e s u l t [ FIX( dectpos [ 0 , i sub ] )

, FIX( dectpos [ 1 , i sub ] ) ] gt 1 then begin
520 i f s p l i t c o u n t t r u e eq 0 then begin
521 s p l i t c o u n t t r u e = 1
522 s p l i t c o u n t = r e s u l t [ FIX( dectpos [ 0 , i sub ] ) , FIX(

dectpos [ 1 , i sub ] ) ]
523 endif else begin
524 r e s u l t s [ where ( r e s u l t s eq r e s u l t [ FIX( dectpos [ 0 , i sub ] )

, FIX( dectpos [ 1 , i sub ] ) ] ) ]= s p l i t c o u n t
525 endelse
526 endif
527 endfor
528
529 i f s p l i t c o u n t t r u e eq 1 then begin
530 r e s u l t [ FIX( dectpos [ 0 , i ] ) , FIX( dectpos [ 1 , i ] ) ] =

s p l i t c o u n t
531 endif else begin
532 r e s u l t [ FIX( dectpos [ 0 , i ] ) , FIX( dectpos [ 1 , i ] ) ] = counter
533 endelse
534
535 for i sub =0, t−1 do begin ; maybe i s u b=i +1????
536 i f dect [ isub , i ] eq 1 then begin
537 dect [ 0 , i sub ]=−1
538 r e s u l t [ FIX( dectpos [ 0 , i sub ] ) , FIX( dectpos [ 1 , i sub ] ) ]

= r e s u l t [ FIX( dectpos [ 0 , i ] ) , FIX( dectpos [ 1 , i ] ) ]
539 endif
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540 endfor
541 counter = counter + 1
542 ; p r in t , s t r i n g ( counter )
543 endif
544 endif
545 endfor
546 endif
547
548 ; o u t s i d e loop f o r s u b d i v i s i o n s
549 endfor
550 endfor
551
552 ; s c a l i n g the r e s u l t s
553
554 for c=0, columns−1 do begin
555 for r =0, rows−1 do begin
556 i f f l o a t ( r e s u l t [ c , r ] ) le f l o a t (1 ) then begin
557 r e s u l t [ c , r ] = 0
558 endif else begin
559 r e s u l t [ c , r ] = f l o a t ( f l o a t ( r e s u l t [ c , r ] ) / f l o a t ( counter ) )
560 endelse
561 endfor
562 endfor
563
564
565 bnames = ’TAD Anomaly C lu s t e r i ng Result ’
566 out bands = 1
567 def bands = 0
568 env i en t e r da ta , r e s u l t , bnames=bnames , d e f s t r e t c h=

st r e t ch , f i l e t y p e =0, i n h e r i t=i n h e r i t , r f i d=r f i d ,
de f bands=def bands

569 print , counter
570 endif
571
572 ; ; ; ; ; ; ; BACK TO TADPCA ; ; ; ; ; ; ; ; ; ;
573
574 i f l l e eq 0 AND c lusteranomaly eq 0 then begin
575
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576 ; This i s used to compute the d e f a u l t s t r e t c h , and a l s o to
b u i l d an anomaly mask i f pca i s be ing c a l l e d

577 h i s t = histogram ( r e s u l t [ dims [1]− or i g d ims [ 1 ] : dims [2]−
or i g d ims [ 1 ] , dims [3]− or i g d ims [ 3 ] : dims [4]− or i g d ims
[ 3 ] , 0 ] , nbins =16384 , omin=dmin , omax=dmax)

578 nbins = n elements ( h i s t )
579 b i n s i z e = (dmax − dmin ) / ( nbins − 1)
580 t o t h i s t = t o t a l ( h i s t )
581 cum hist = f l t a r r ( nbins )
582 for k = 0 , nbins−1 do cum hist [ k ] = t o t a l ( h i s t [ 0 : k ] ) /

t o t h i s t
583
584 ; Run PCA, i f reques ted , to c o l o r i z e the r e s u l t s
585 i f keyword set ( pca ) then begin
586 ; Jus t run PCA on the anomalies . Of course , i f the

degenera te case occurs where t h e r e are no anomalies ,
then run PCA on the whole image

587 ; b g p e r c e n t = 100.0
588 i f bg percent l t 100 .0 then begin
589 tmp bg percent = 1 − (1 − bg percent / 100 .0 ) ∗ p i x e l s

/ ( rows ∗ columns ) ; i f p i x e l s were masked out ,
t h i s a d j u s t s t h i n g s so the percentage comes out
r i g h t .

590 ;

i f

no

p i x e l s

were

masked

out
,
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then

tmp bg percent

=

b g p e r c e n t

591 d i f f = cum hist − tmp bg percent
592 index h igh = where ( d i f f ge 0 , num match )
593 index h igh = index h igh [ 0 ]
594 index low = max ( [ 0 , index h igh − 1 ] )
595 thresh = dmin + b i n s i z e ∗( index low + ( tmp bg percent −

cum hist [ index low ] ) / ( cum hist [ index h igh ] −
cum hist [ index low ] ) )

596
597 e n v i f i l e q u e r y , f i d , ns=ns , n l=nl , x s t a r t=xs , y s t a r t=

ys
598 sz = s i z e ( r e s u l t , / dimensions )
599 mask = bytarr ( ns , n l )
600 index = where ( r e s u l t [ ∗ , ∗ , 0 ] ge thresh )
601 ind = a r r a y i n d i c e s ( [ sz [ 0 ] , s z [ 1 ] ] , index , / dimensions )
602 for i = 0 , n e lements ( ind [ 0 , ∗ ] )−1 do mask [ o r i g d ims [1 ]+

ind [ 0 , i ] , o r i g d ims [3 ]+ ind [ 1 , i ] ] = 1
603 env i en t e r da ta , mask , r f i d=mask f id
604 env i do i t , ’ e n v i s t a t s d o i t ’ , f i d=f id , pos=pos , dims=

dims , mean=avg , eva l=eval , evec=evec , comp f lag =5,
m fid=mask f id , m pos =[0]

605 endif else i f n e lements ( mask inc ) ne 0 then begin
606 env i do i t , ’ e n v i s t a t s d o i t ’ , f i d=f id , pos=pos , dims=

dims , mean=avg , eva l=eval , evec=evec , comp f lag =5,
m fid=m fid , m pos=m pos

607 endif else begin
608 env i do i t , ’ e n v i s t a t s d o i t ’ , f i d=f id , pos=pos , dims=

dims , mean=avg , eva l=eval , evec=evec , comp f lag=5
609 endelse
610
611 env i do i t , ’ p c r o t a t e ’ , f i d=f id , pos=pos , dims=dims , mean
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=avg , eva l=eval , $
612 evec=evec , out dt =4, / in memory , out nb=n pcas , r f i d

=pca f id , / forward , / noplot ; , m f id=mask f id ,
m pos =[0] , mask va l=0

613 ; i f b g p e r c e n t l t 100.0 then e n v i f i l e m n g , id=mask f id ,
/remove , / d e l e t e

614
615 ; ∗∗∗∗ from Basener − This does a 2% s t r e t c h on the PCA

bands ∗∗∗∗∗∗
616 env i do i t , ’ s t r e t c h d o i t ’ , f i d=pca f id , pos

= [0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 ] , dims=dims , method=1, /
in memory , i min =0.5 , i max =99.5 , range by =0, out min =0,

out max=1, out dt =4, r f i d=p c a s t r e t c h f i d
617 for l inenum = dims [ 3 ] , dims [ 4 ] do begin
618 p c a l i n e = e n v i g e t s l i c e ( f i d=p c a s t r e t c h f i d , l i n e=

linenum−dims [ 3 ] , / b i l )
619 ; p c a c o l o r = p c a l i n e [ ∗ , 0 : 2 ] + (

[ [ 0 . 5 , 0 . 5 , 0 ] , [ 0 , 0 . 5 , 0 . 5 ] , [ 0 . 5 , 0 , 0 . 5 ] ] ## p c a l i n e
[ ∗ , 3 : 5 ] )

620
621 ; Normalize so the t o t a l PCA b r i g h t n e s s over the 12 bands i s

eau l to the TAD b r i g h t n e s s .
622 p c a c o l o r = p c a l i n e
623 r e s u l t [ dims [1]− or i g d ims [ 1 ] : dims [2]− or i g d ims [ 1 ] , linenum

−or i g d ims [ 3 ] , 1 : 1 2 ] = p c a c o l o r / (max( pca co lo r ,
dimension=2) # r e p l i c a t e (1 , n pcas ) ) $

624 ∗ ( r e s u l t [ dims [1]− or i g d ims [ 1 ] : dims [2]− or i g d ims [ 1 ] ,
linenum−or i g d ims [ 3 ] , 0 ] # r e p l i c a t e (1 , n pcas ) )

625
626 endfor
627 env i f i l e mng , id=pca f id , /remove , / d e l e t e
628 env i f i l e mng , id=p c a s t r e t c h f i d , /remove , / d e l e t e
629
630 ; ∗∗∗ from Basener − This attemps to p i c k good d e f a u l t pca

bands to op t imise s p a c i a l d i s c r i m i n a t i o n
631 pcas = r e s u l t [ ∗ , ∗ , 1 : n pcas ]
632
633 ; Threshold PC bands to i n c l u d e on ly top 2% and save as
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PC Spacia l Vectors
634 G = lon64ar r (1000)
635 H = lon64ar r (1000)
636 PC = f l t a r r ( columns , rows )
637 PC Spact ia l Vectors = f l t a r r ( columns , rows , n pcas )
638 for i =0 ,( n pcas−1) do begin
639 PC = reform ( r e s u l t [∗ ,∗ , i ] )
640 H = histogram (PC, nbins =1000 , min=min (PC) , max=max(PC) )
641 for j =0 ,999 do G[ j ]= t o t a l (H[ 0 : j ] )
642 th r e sho ld = min ( where (G gt rows∗columns∗ bg percent /100)

) /1000.0
643 index = where (PC ge th r e sho ld )
644 s i z e i n d e x = s i z e ( index )
645 i f ( s i z e i n d e x [ 1 ] EQ 3) then index = where (PC ge (max(

PC) /2) ) ; t h i s i s to avoid e r r o r s o f the t h r e s h o l d i s
too low .

646 PCout = db la r r ( columns , rows )
647 PCout [ index ] = PC[ index ]
648 PC Spact ia l Vector s [∗ ,∗ , i ] = PCout
649 endfor
650
651 ; Find the PCA band t h a t i s the most s p a t i a l l y d i f f e r e n t

from the o t h e r s . This w i l l be the f i r s t ( i e red ) PCA
band .

652 D = f l t a r r ( n pcas , n pcas )
653 i f ( t o t a l (WHERE(FINITE( r e s u l t , /NAN) ) ) NE −1) then r e s u l t

[WHERE(FINITE( r e s u l t , /NAN) ) ] = 0
654 for i =1, n pcas do begin
655 for j =1, n pcas do begin
656 D[ i −1, j−1]= t o t a l ( abs ( PC Spact ia l Vector s [∗ ,∗ , i−1]−

PC Spact ia l Vectors [∗ ,∗ , j −1]) )
657 endfor
658 endfor
659 print , t o t a l (D, 1 ) /max( t o t a l (D, 1 ) )
660 s r t = r e v e r s e ( s o r t ( t o t a l (D, 1 ) /max( t o t a l (D, 1 ) ) ) )
661 print , s r t
662 def bands=i n t a r r (1 , 3 )
663 def bands [ 0 ] = s r t [ 0 ]
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664
665 ; P r o j e c t PCA bands p e r p i n d i c u l a r to the f i r s t and p i c k a

second band ( i e green ) t h a t i s most s p a t i a l l y d i f f e r e n t
from the o t h e r s . ( Perhaps we shou ld make the second one
most d i f f e r e n t from the f i r s t , not the o t h e r s ?)

666 pro j e c t ed pca = f l t a r r ( columns , rows , n pcas )
667 for i =1, n pcas do begin
668 pro j e c t ed pca [∗ ,∗ , i −1] = PC Spact ia l Vector s [∗ ,∗ , i −1] −

PC Spact ia l Vector s [∗ ,∗ , s r t [ 0 ] ] ∗ ( t o t a l ( t ranspose (
PC Spact ia l Vector s [∗ ,∗ , i −1]) # PC Spact ia l Vector s
[∗ ,∗ , s r t [ 0 ] ] ) / $

669 ( t o t a l ( t ranspose ( PC Spact ia l Vectors [∗ ,∗ , i
−1]) # PC Spact ia l Vector s [∗ ,∗ , i −1]) ) )

670 endfor
671 i f ( t o t a l (WHERE(FINITE( pro j ec ted pca , /NAN) ) ) NE −1) then

pro j e c t ed pca [WHERE(FINITE( pro j ec ted pca , /NAN) ) ] = 0
672 for i =0 ,( n pcas−1) do begin
673 for j =0 ,( n pcas−1) do begin
674 D[ i , j ]= t o t a l ( abs ( p ro j e c t ed pca [∗ ,∗ , i ]− pro j e c t ed pca

[∗ ,∗ , j ] ) )
675 endfor
676 endfor
677 print , t o t a l (D, 1 ) /max( t o t a l (D, 1 ) )
678 s r t p r o j e c t e d = r e v e r s e ( s o r t ( t o t a l (D, 1 ) /max( t o t a l (D, 1 ) ) ) )
679 print , s r t p r o j e c t e d
680 def bands [ 1 ] = s r t p r o j e c t e d [ 0 ]
681
682 ; P r o j e c t PCA bands p e r p i n d i c u l a r to the second and p i c k a

second band ( i e green ) t h a t i s most s p a t i a l l y d i f f e r e n t
from the o t h e r s . ( Perhaps we shou ld make the t h i r d one

most d i f f e r e n t from the second , not the o t h e r s ?)
683 pro j e c t ed2 pca = f l t a r r ( columns , rows , n pcas )
684 for i =0 ,( n pcas−1) do begin
685 pro j e c t ed2 pca [∗ ,∗ , i ] = pro j e c t ed pca [∗ ,∗ , i ] −

pro j e c t ed pca [∗ ,∗ , s r t p r o j e c t e d [ 0 ] ] ∗ ( t o t a l ( t ranspose
( p ro j e c t ed pca [∗ ,∗ , i ] ) # pro j e c t ed pca [∗ ,∗ ,
s r t p r o j e c t e d [ 0 ] ] ) $

686 /( t o t a l ( t ranspose ( p ro j e c t ed pca [∗ ,∗ , i ] ) #
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pro j e c t ed pca [∗ ,∗ , i ] ) ) )
687 endfor
688 i f ( t o t a l (WHERE(FINITE( pro jec ted2 pca , /NAN) ) ) NE −1)

then pro j e c t ed2 pca [WHERE(FINITE( pro jec ted2 pca , /NAN)
) ] = 0

689 for i =0 ,( n pcas−1) do begin
690 for j =0 ,( n pcas−1) do begin
691 D[ i , j ]= t o t a l ( abs ( p ro j e c t ed2 pca [∗ ,∗ , i ]−pro j e c t ed2 pca

[∗ ,∗ , j ] ) )
692 endfor
693 endfor
694 print , t o t a l (D, 1 ) /max( t o t a l (D, 1 ) )
695 s r t p r o j e c t e d 2 = r e v e r s e ( s o r t ( t o t a l (D, 1 ) /max( t o t a l (D, 1 ) ) )

)
696 print , s r t p r o j e c t e d 2
697 def bands [ 2 ] = s r t p r o j e c t e d 2 [ 0 ]
698 def bands = def bands+1
699 print , de f bands
700
701 ; Save the r e s u l t
702 halfway = 1 .0 − f l o a t ( p i x e l s ) / f l o a t (2 ∗ rows ∗ columns )
703 d i f f = cum hist − halfway
704 index h igh = where ( d i f f ge 0 , num match )
705 index h igh = index h igh [ 0 ]
706 index low = max ( [ 0 , index h igh − 1 ] )
707 minstretch = dmin + b i n s i z e ∗( index low + ( halfway −

cum hist [ index low ] ) / ( cum hist [ index h igh ] − cum hist [
index low ] ) )

708 maxstretch = minstretch > 0 .5
709 s t r e t c h = e n v i d e f a u l t s t r e t c h c r e a t e (/ l i n e a r , va l1=

minstretch , va l2=maxstretch )
710 i n h e r i t = e n v i s e t i n h e r i t a n c e ( f i d , dims , / s p a t i a l )
711 i f keyword set ( pca ) then begin
712 bnames = [ ’TAD Result ’ , ’TAD PCA (R) ’ , ’TAD PCA (G) ’ , ’

TAD PCA (B) ’ , ’TAD PCA (R2) ’ , ’TAD PCA (G2) ’ , ’TAD PCA
(B2) ’ , ’TAD PCA (R3) ’ , ’TAD PCA (G3) ’ , ’TAD PCA (B3) ’

, ’TAD PCA (R4) ’ , ’TAD PCA (G4) ’ , ’TAD PCA (B4) ’ ]
713 out bands = n pcas+1
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714 endif else begin
715 bnames = ’TAD Result ’
716 out bands = 1
717 def bands = 0
718 endelse
719 i f keyword set ( noplot ) then junk = temporary ( de f bands ) ;

u n d e f i n e s d e f b a n d s
720 i f n e lements ( out fname ) gt 0 then begin
721 openw , wid , out fname , / g e t l u n
722 writeu , wid , r e s u l t
723 f r e e l u n , wid
724 env i se tup head , bnames=bnames , data type =4, fname=

out fname , i n h e r i t=i n h e r i t , de f bands=def bands ,
d e f s t r e t c h=st r e t ch , f i l e t y p e =0, i n t e r l e a v e =0, $

725 nb=out bands , ns=or ig d ims [2]− or i g d ims [1 ]+1 , n l=
or i g d ims [4]− or i g d ims [3 ]+1 , o f f s e t =0, /open , / write
, r f i d=r f i d

726 endif else begin
727 env i en t e r da ta , r e s u l t , bnames=bnames , d e f s t r e t c h=

st r e t ch , f i l e t y p e =0, i n h e r i t=i n h e r i t , r f i d=r f i d ,
de f bands=def bands

728 endelse
729 end
730
731 endif
732 end

9.2 TADGUI.pro

1
2 pro t a d g u i d e f i n e b u t t o n s , buttonIn fo
3 compi l e opt i d l 2
4
5 env i de f ine menu button , buttonInfo , event pro=’ tad gu i ’ ,

uvalue=’ none ’ , $
6 p o s i t i o n=’ a f t e r ’ , r e f v a l u e=’RX Anomaly Detect ion ’ , /

s i b l i n g , $
7 value=’ Topo log i ca l Anomaly Detector (TAD) ’
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8
9 end

10
11 pro tad gui , ev
12 compi l e opt i d l 2
13
14 ; S e l e c t input f i l e and g e t r e l e v a n t s t a t s
15 e n v i s e l e c t , f i d=f id , dims=dims , pos=pos , t i t l e=’ S e l e c t

Input F i l e ’ , /mask , m f id=m fid , m pos=m pos
16 i f ( f i d [ 0 ] eq −1) then return
17 rows = long ( dims [4]−dims [3 ]+1)
18 columns = long ( dims [2]−dims [1 ]+1)
19 p i x e l s = rows ∗ columns
20
21 ; TAD parameters and output f i l e s e l e c t i o n
22 base = widget auto base ( t i t l e=’TAD Parameters ’ )
23 s1 = widget base ( base , /column , / frame )
24 s2 = widget base ( s1 , /row )
25 param1 = widget param ( s2 , prompt=’ Sample s i z e : ’ , /auto ,

f l o o r =250 , d e f a u l t =1000 , c e i l=p i x e l s , dt =13, uvalue=’ s s ’
)

26 param2 = widget param ( s2 , prompt=’ Inc lude edges : ’ , /auto ,
d e f a u l t =10.0 , f l o o r =0.5 , c e i l =50.0 , dt=4, $

27 / percent , uvalue=’ edges ’ , f i e l d =1, increment =1. , x s i z e
=5)

28
29 s2 = widget base ( s1 , /row )
30 param3 = widget menu ( s2 , /auto , / exc lu s i v e , prompt=’

Co l o r i z e with PCA ’ , l i s t =[ ’No ’ , ’ Yes ’ ] , d e f a u l t p t r =0,
uvalue=’ pca ’ )

31
32 s2 = widget base ( s1 , /row )
33 param5 = widget menu ( s2 , /auto , / exc lu s i v e , prompt=’ Clus te r

Anomalies ’ , l i s t =[ ’No ’ , ’ Yes ’ ] , d e f a u l t p t r =0, uvalue=
’ c lusteranomaly ’ )

34
35 s2 = widget base ( s1 , /row )
36 param6 = widget menu ( s2 , /auto , / exc lu s i v e , prompt=’LLE ’ ,
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l i s t =[ ’No ’ , ’ Yes ’ ] , d e f a u l t p t r =1, uvalue=’ l l e ’ )
37
38
39 s2 = widget base ( s1 , /row )
40 param4 = widget menu ( s2 , /auto , / exc lu s i v e , prompt=’ Spec i f y

advanced opt ions ’ , l i s t =[ ’No ’ , ’ Yes ’ ] , d e f a u l t p t r =0,
uvalue=’ advanced ’ )

41 s1 = widget base ( base , /column , / frame )
42 woutf = widget outfm ( s1 , /auto , prompt=’ Enter output

f i l ename ’ , uvalue=’ out fname ’ )
43 r e s u l t = auto wid mng ( base )
44 i f ( r e s u l t . accept eq 0) then return
45 i f ˜ r e s u l t . out fname . in memory then out fname = r e s u l t .

out fname . name
46 sample s i z e = long ( r e s u l t . s s )
47 percent = r e s u l t . edges
48 pca = r e s u l t . pca
49 c lusteranomaly=r e s u l t . c lusteranomaly
50 l l e=r e s u l t . l l e
51
52 i f r e s u l t . advanced eq 1 then begin
53 base = widget auto base ( t i t l e=’TAD Advanced Parameters ’ )
54 s1 = widget base ( base , /column )
55 s2 = widget base ( s1 , /row )
56 param1 = widget menu ( s2 , /auto , / exc lu s i v e , prompt=’

Normalize ’ , l i s t =[ ’No ’ , ’ Yes ’ ] , d e f a u l t p t r =1, uvalue
=’ normal ize ’ )

57 param2 = widget param ( s2 , /auto , prompt=’ between ’ ,
f l o o r =0, d e f a u l t =1, c e i l =1e6 , dt=4, f i e l d =1, uvalue=’
lownorm ’ ) ;

58 param3 = widget param ( s2 , /auto , prompt=’ and ’ , f l o o r
=0.01 , c e i l =1.1e6 , d e f a u l t =2, dt=4, f i e l d =1, uvalue=’
highnorm ’ )

59 s2 = widget base ( s1 , /row )
60 param4 = widget param ( s2 , /auto , prompt=’ Ignore o u t l i e r s

when normal i z ing : lower (%) ’ , f l o o r =0, c e i l =50,
d e f a u l t =1, dt=4, f i e l d =1, uvalue=’ sa tu ra t e l ow ’ ) ;

61 param5 = widget param ( s2 , /auto , prompt=’ , upper (%) ’ ,
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f l o o r =0, c e i l =50, d e f a u l t =10, dt=4, f i e l d =1, uvalue=’
s a t u r a t e h i g h ’ )

62 r e s u l t=auto wid mng ( base )
63 i f r e s u l t . accept eq 0 then return
64 lownorm = r e s u l t . lownorm
65 highnorm = r e s u l t . highnorm
66 sa tu ra t e l ow = r e s u l t . s a tu ra t e l ow
67 s a t u r a t e h i g h = r e s u l t . s a t u r a t e h i g h
68 normal ize = r e s u l t . normal ize
69 i f ( r e s u l t . normal ize eq 1) && ( r e s u l t . lownorm gt r e s u l t .

highnorm ) then begin
70 e n v i e r r o r , ’The lower bound on the norma l i za t i on must

be l e s s than the upper bound . ’
71 return
72 endif
73 endif else begin
74 lownorm = 1
75 highnorm = 2
76 sa tu ra t e l ow = 1
77 s a t u r a t e h i g h = 10
78 normal ize = 1
79 endelse
80
81 ; Run TAD
82 tad , f i d=f id , out fname=out fname , sample s i z e=samples i ze ,

percent=percent , dims=dims , pos=pos , lownorm=lownorm ,
highnorm=highnorm , $

83 sa tu ra t e l ow=saturate low , s a t u r a t e h i g h=satura t e h igh ,
normal ize=normal ize , m f id=m fid , m pos=m pos , pca=pca
, c lusteranomaly=clusteranomaly , l l e=l l e

84 end
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