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Abstract

Many mathematical models relevant to osteoporosis have been developed and studied.

Although osteoclasts and osteoblasts are the crucial variables in bone resorption and bone

formation, PTH can cause changes in the ratio of these cells and therefore should be

studied more closely. Some of the current models for osteoporosis will be analyzed in this

thesis as well as amended to account for the phenomenon that occurs with various methods

of PTH administration. By administering PTH in either pulsatile or continuous doses,

we obtain very different results. When administered in a continuous fashion, the body

experiences a net bone loss over time, but given in daily, pulsatile doses, we increase bone

mineral density. By developing a model that incorporates PTH administration, we hope

to provide the building block for a broader model that is able to determine the efficacy of

various osteoporotic treatments.
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Chapter 1

Introduction

Bone is living tissue, constantly adjusting its structure to provide the necessary skeletal

architecture for everyday movement. The structure is adjusted by replacing old bone with

newly formed bone in the process of remodeling. Through remodeling, the bone matrix

is protected from premature deterioration and maintains its strength. Remodeling is a

complex process that is the fundamental result of the interaction between osteoblasts and

osteoclasts. This interaction between osteoblasts and osteoclasts is known as coupling.

Osteoblasts are the cells responsible for synthesizing the bone matrix, whereas osteoclasts

resorb the mineralized bone, as seen in Figure 1.1. When these cells interact in a proper

way, a balance between bone gain and bone loss exists and the bone structure is main-

tained.

If there is a dysfunctional connection in coupling, the potential for various bone diseases

arises. This dysfunctional connection could result in not enough new bone formation or in

too much resorption of the mineralized bone. The most common bone disease is known as

osteoporosis. Osteoporosis is the thinning of bone tissue and the decrease of bone density

over time. (Figure 1.2) It is estimated that one in every five women over the age of fifty

12
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NEW BONE MATRIX 

BONE LINING 

BONE STRUCTURE 

OSTEOBLASTS 
(cells that rebuild bone) 

OSTEOCLASTS 
(cells that break down bone) 

BONE STRUCTURE 

BONE LINING 

 

Figure 1.1: Diagram depicting the fundamental functions of osteoclasts (top) and os-

teoblasts (bottom); osteoblasts are responsible for constructing new bone matrix and

osteoclasts resorb already existing bone.

in the United States has osteoporosis [4]. Even though only one in five are diagnosed as

having osteoporosis, about half of all women over the age of fifty [4] will suffer from a

severe fracture of their hip, wrist, or vertebra, the most common areas for brittle bones.

1.1 Bone Remodeling at its Core

Currently, we have discussed the basic functions of osteoblasts and osteoclasts. However,

the process of becoming an active osteoblast or active osteoclast, in itself, is an intricate

process (Figure 1.3).

There are several stages of cell maturation and differentiation in the osteoblastic lineage [9].
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Figure 1.2: Pictorial figure showing the difference between normal and osteoporotic bones.

Osteoporotic bones are more porous and therefore more vulnerable to fracture, most com-

monly wrist, hip, or vertebrae fractures. [4].

The source of this lineage is a collection of uncommitted mesenchymal progenitors that

have the capability of becoming osteoblasts. Once these progenitors commit to the os-

teoblastic lineage, they enter a pool that Lemaire et al. have called responding osteoblasts.

Although responding osteoblasts are not a specific cell type, all members of this pool

share common characteristics. Through cell-to-cell contact, these responding osteoblasts

are persuaded to differentiate into active osteoblasts under the influence of PTH and trans-

forming growth factor beta (TGF-β)). As the active osteoclasts resorb bone, TGF-β is

released from the skeleton into the bloodstream and thus stimulates osteoblastic recruit-

ment. It should also be noted that RANKL (receptor activator of NF-κB ligand) is found

on the surface of osteoblasts. RANKL will ultimately affect the osteoclastic lineage and

is regulated by osteoprotegerin (OPG).

These active osteoblasts are the cells that are responsible for synthesizing new bone matter,

and thus are fundamental cells in bone remodeling. However, the collection of active
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osteoblasts is controlled by the pool of osteoclasts. Eventually these active osteoblasts die

or transform to either lining cells or osteocytes.

Similarly, the osteoclast lineage consists of various stages beginning with hematopoietic

progenitors [9]. These progenitors have RANK (receptor activator of NF-κB) on their

surfaces and through cell-to-cell contact with osteoblasts, RANK and RANKL will bind,

causing an increase in osteoclasts as the precursors differentiate to active osteoclasts. Ac-

tive osteoclasts resorb bone at a rate proportional to the current number of osteoclasts.

The final stage of the osteoclastic lineage is apoptosis, which is induced by TGF-β present

in the bloodstream. Since TGF-β enters the bloodstream as bone is resorbed by osteo-

clasts, it is partly responsible for maintaining the balance between active osteoblasts and

active osteoclasts. This is why more osteoclasts die when there is more TGF-β present.

 

Figure 1.3: Osteoblastic and Osteoclastic Lineage [7]
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1.2 Current Mathematical Models

Lemaire et al. [9] published a model of the interaction between osteoblasts and osteoclasts

in bone remodeling. Lemaire et al.’s model has served as a centerpiece for this area of

interest. Many others such as Peterson and Riggs [10], Raposo et al. [12], and Potter et

al. [11] have studied this model as a basis for their own work. Komarova et al. [7], [6]

worked parallel to Lemaire et al. and developed a model that examines the role of autocrine

and paracrine regulation as it relates to osteoblast and osteoclast formation. Raposo

et al. also developed a model for calcium homeostasis relating the concentrations of

calcium, parathyroid hormone (PTH), and calcitriol which influence and are influenced

by various glands and organs–the parathyroid, bones, kidneys, and intestines [12]. While

the aforementioned models focused on the interaction of osteoblasts and osteoclasts in

bone remodeling, they also incorporated parameters to account for PTH. However, when

they incorporated PTH into their models, they did not include a mechanism that shows

the influence of PTH on osteoblast apoptosis. This mechanism helps to demonstrate how

various methods of administration play an important role in remodeling.

Kroll et al. [8] and Potter et al. [11] focused on the acknowledged effects of PTH in

their models; when administered in a continuous way, PTH causes a catabolic effect, thus

resulting in bone loss, but if administered in sporadic intervals, an anabolic response is

evident [3]. Here, catabolic refers to the destructive process that causes a decrease in bone

mineral density and anabolic refers to the the synthesis occurring in forming new bone.

Bellido and co-workers have proposed a mechanism for the anabolic effect of pulsatile

administration of PTH based on PTH interfering with the signaling cascade for osteoblast

apoptosis [1]. We wish to also produce our own model that demonstrates the effects of

PTH administration, and we look to Bellido’s model for the basic idea that PTH interferes

with osteoblast apoptosis. As previously stated, others have already made models that
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include PTH. However, these models are not as concise as the model produced by Lemaire

et al. In making a more concise model, it will allow for faster computations and ultimately

be easier to incorporate into a much larger, more intricate model.

While we are working in the footsteps of Lemaire et al.’s model, we realize that their

model was not intended to include the aforementioned effects of PTH. First we shall

mathematically analyze the model set forth by Lemaire et al., as no one has previously

done so. We will focus on proving the existence of a unique equilbrium, the bounds on

the the different populations, and prove that our unique equilibrium is, in fact, a global

attractor. Then we will amend the current model to incorporate equations for the signaling

protein, which regulates the apoptosis rate for active osteoblasts and demonstrates this

PTH phenomenon.
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Chapter 2

Lemaire et al.’s Model

Lemaire et al. have set forth a concise model describing the interaction between osteoblasts

and osteoclasts in bone resorption and bone formation (Figure 2.1).

2.1 The Model

As noted previously, the responding osteoblasts enter the population once progenitors

commit to the osteoblastic cycle. The rate at which these progenitors commit to this par-

ticular cycle is dependent upon the current concentration of active osteoclasts. Since these

osteoclasts release calcium and TGF-β into the bloodstream, the osteoclast population has

a strong control on the number of responding osteoblasts. However, the responding os-

teoblast population only loses members through differentiation into active osteoblasts.

This rate is also determined by the amount of TGF-β in the bloodstream. Since our

body needs to maintain a balance (as to prevent diseases such as osteoporosis) more ac-

tive osteoblasts must be produced to aid in this balance, thus diminishing the responding

osteoblast population.

19
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Figure 2.1: Diagram representing the basic structure of Lemaire et al.’s model [9]. It

depicts how certain cell types interact with other cells and the chemicals given off or needed

in the process of specific cell lineages. The dark solid lines represent the interaction of

cells, whereas the light solid lines show the chemicals given off by typical cell functions.

The dashed lines show the bonds formed between chemicals.

Thus, differentiation from responding osteoblasts is the only source for increase in the

active osteoblast pool. Similarly, active osteoclasts are created when they differentiate

from their precursor stages. The osteoclast lineage consists of at least four different types

of cells, beginning with the precursors and culminating in active osteoclasts. Lemaire et

al. have chosen not to include the precursor or responding osteoclast stages in their model

because it would cause a drastic increase in the complexity of the model and they sought

to create a concise, simplistic model.

Both active osteoblasts and active osteoclasts experience apoptosis and die at a natural

rate, thus removing members of each class respectively. Clearly, their death rates rely upon
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the current number of their members. However, the population of the opposing cells also

affects this rate. In Lemaire et al.’s model, it is assumed that responding osteoblasts do not

experience apoptosis. They must differentiate into active osteoblasts, thus differentiation

is the only way the responding osteoblast population loses members. For the purposes of

Lemaire et al.’s model, it should be noted that there is no movement from osteocytes to

osteoblasts. In other words, once a cell has left the active osteoblast collection, it is no

longer capable of forming new bone and thus leaves our model completely.

With the interactions described in the above paragraphs, Lemaire et al. have created a

system of differential equations accounting for the interaction between each of these cell

populations in time units of days:

dR

dt
= DRπC −

DB

πC
R (2.1)

dB

dt
=
DB

πC
R− kBB (2.2)

dC

dt
= DCπL −DAπCC (2.3)

where DB = f0 ·dB, πC(C) = C+f0Cs

C+Cs , and πL(R,B) = k3
k4
· KP

L πPB

1+
k3K
k4

+
k1

k2kO
·(
KP
O

πP
R+IO)

·(1+ IL
rL

).

The term πP represents the fraction of occupied PTH receptors given by πP = P̄+P 0

P̄+P s
with

P̄ = IP
kP

, P 0 = SP
kP

, and P s = k6
k5

.

This model clearly has many variables and parameters which are defined as follows with

the corresponding units in parenthesis:

? R(t) : the concentration of responding osteoblasts at time t (pM)

? B(t) : the concentration of active osteoblasts at time t (pM)

? C(t) : the concentration of active osteoclasts at time t (pM)

? Cs : the value of C to get half differentiation flux (pM)
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? DA : the rate of osteoclast apoptosis caused by TGF-β (day−1)

? dB : the differentiation rate of responding osteoblasts (day−1)

? DC : the differentiation rate of osteoclast precursors (pM day−1)

? DR : the differentiation rate of osteoblast progenitors (pM day−1)

? f0 : fixed proportion (no units)

? IL : the rate of administration of RANKL (pM day−1)

? IO : the rate of administration of OPG (pM day−1)

? IP : the rate of administration of PTH (pM day−1)

? K : fixed concentration of RANK (pM)

? k1 : the rate of OPG-RANKL binding (pM−1 day−1)

? k2 : the rate of OPG-RANKL unbinding (day−1)

? k3 : the rate of RANK-RANKL binding (pM−1 day−1)

? k4 : the rate of RANK-RANKL unbinding (day−1)

? k5 : the rate of PTH binding with its receptor (pM−1 day−1)

? k6 : the rate of PTH unbinding (day−1)

? kB : the rate of elimination of active osteoblasts through apoptosis (day−1)

? KP
L : the maximum number of RANKL attached on cell surface (pmol/pmol cells)

? kO : the rate of elimination of OPG (day−1)

? KP
O : the minimal rate of production of OPG per cell (pmol day−1/pmol cells)
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? kP : the rate of elimination of PTH (day−1)

? rL : the rate of RANKL production and elimination (pM day−1)

? SP : the rate of synthesis of systemic PTH (pM day−1)

The values of the aforementioned parameters can be found in Appendix A. For simplicity,

we will write πL as σB
γ+R where σ = k3

k4
· k
P
LπP k2k0πP
k1kPO

·(1+ IL
rL

) and γ = (1+ k3K
k4

+ k1IO
k2kO

)· k2kOπP
k1kPO

,

both of which are positive values. For the purposes of the following proofs, note that all

parameter values are nonnegative.

2.2 Analysis of the Model

Since no one has previously analyzed Lemaire’s system, we will perform a mathematical

analysis and provide proofs that correspond to the claims stated in their work. Lemaire

et al. have stated that their system admits only one fixed point (equilibrium) in the

parameter space and that this point is stable. In this thesis, we will focus on proving the

existence of a unique equilibrium, the bounds on the the different populations, and prove

that our unique equilibrium is, in fact, a global attractor. In the process of doing so, we

will also perform a local linear analysis of the system.

2.2.1 Local Linear Analysis of the Model

Although we wish to prove that the equilibrium is a global attractor, we will perform a

local analysis to ensure that at the local level, our equilibrium is, in fact, a sink. In order

to perform a local analysis, we must first find the Jacobian matrix and then evaluate it

at our equilibrium point (R,B,C) = (0.0007734, 0.0007282, 0.0009127) (all in pM). Our
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Jacobian matrix will take on the following form
∂Ṙ
∂R

∂Ṙ
∂B

∂Ṙ
∂C

∂Ḃ
∂R

∂Ḃ
∂B

∂Ḃ
∂C

∂Ċ
∂R

∂Ċ
∂B

∂Ċ
∂C



Case I: πC and πL as Constants

Since our system is nonlinear, we will first consider the linear case where πC and πL are

constant. This system is irrelevant to the biological model, but this may help with the

analysis of the nonlinear model. In the case where πC and πL are constant, the Jacobian

can be easily found. 
−DB
πC

0 0

DB
πC

−kB 0

0 0 −DAπC


The above matrix is clearly a constant lower triangular matrix, which means the eigen-

values are simply the entries along the diagonal. Our eigenvalues are then −DB
πC

, −kB,

and −DAπC . Because all of our parameter values are positive, it is obvious that these

three entries are all negative for any given equilibrium. Thus, when considering the case

of constant values for πC and πL, our system is a sink and therefore locally stable.

Case II: πC and πL as Functions

Although the above linearization was simple, it unfortunately does not prove anything

about the realistic system we are dealing with. We must find the Jacobian in the case

where πC and πL are not constants and evaluate it at the aforementioned equilibrium

point. Due to the nonlinearity of our system, our Jacobian looks much more complex
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than the previous. 
−DB
πC

0 DRπC
′ + DBRπC

′

π2
C

DB
πC

−kB −DBRπC
′

π2
C

− DCBσ
(γ+R)2

DCσ
γ+R −(DAπC +DACπC

′)


where

πC
′ =

Cs(1 + f0)

(C + Cs)2
.

Because of the nonlinear nature of this matrix, it was extremely difficult to find the

eigenvalues analytically. Instead, we opted to find them numerically once we evaluated the

matrix at the system’s equilibrium point. We knew the values of all the parameters with

the exception of f0. Varying the value of f0 causes a drastic change in the eigenvalues.

Although all eigenvalues have a negative real parts, some values of f0 would give us

three real eigenvalues while others would give us one real eigenvalue and two imaginary

eigenvalues.

When we attempted to find the point of bifurcation, it was not as simple as expected. It

doesn’t seem as though there is a set limit for f0 for which the eigenvalues go from being

all real to being mixed between real and imaginary values. However, all eigenvalues had a

negative real part, thus showing that our equilibrium is locally stable. There is currently

no proof to show that this is true, however.

We can see in Figure 2.2 that although we change our initial values quite drastically, we

still end up at the same equilibrium point in all three cases presented here. This leads us

to believe that our system is a global attractor. The following analysis provides the basis

for a global attractor proof.
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Figure 2.2: Graphs of the numerical solution to Lemaire et al.’s model at various

initial conditions [R0, B0, C0]: [0.033, 0.05, 0.09] (top), [0.0046, 0.0033, 0.007] (middle),

[0.00086, 0.0009, 0.0004] (bottom). As the initial values vary, we still find the same equi-

librium point, giving reason to believe there exists a unique equilibrium.
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2.2.2 Bounds on Variables

Positivity

Since this model represents a realistic scenario, we wish for its limits to also maintain

realistic values. Thus, we want to prove that this model maintains realistic, positive

values for all positive initial conditions.

Theorem 1. If R0, B0, C0 > 0, then R(t), B(t), C(t) > 0 for all t where R(0) = R0,

B(0) = B0, and C(0) = C0.

Proof. Assume there exists T > 0, where T is the smallest value of t for which at least

one of the following is true:

? R(t) = 0

? B(t) = 0

? C(t) = 0

where 0 < f0 ≤ πC ≤ 1. This inequality follows directly from πC(C) = C+f0Cs

C+Cs as

0 ≤ C <∞.

First, assume R(t) = 0 at t = T . Then dR
dt = DRπC ≥ DRf0 > 0. Since R0 > 0 and

dR
dt > 0 for all t < T , there exists ε > 0 such that dR

dt > DRf0
2 for T − ε < t < T + ε.

On this interval, R(t) > 0 and dR
dt >

DRf0
2 so it follows that R(T ) − R(t) > DRf0

2 (T − t).

Rearranging this, we find that R(T ) > R(t) + DRf0
2 (T − t) > R(t). Thus, R(T ) > R(t)

and we have that R(t) 6= 0 for any value of t.

Using the above bounds for R(t), we can then find bounds for B(t) followed by bounds

for C(t).
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Therefore, Lemaire’s system is restricted to the positive octant, given nonnegative initial

values. �

2.2.3 Unique Equilibrium

As previously mentioned it can be helpful to first consider the case in which πC and πL

are constants. In this case, the equilibrium exists at

(R,B,C) =

(
DRπ

2
C

DB
,
DRπC
kB

,
DCπL
DAπC

)
.

However, in the realistic case where πC and πL are not constants, we wish to prove that

there is a unique equilibrium solution and eventually that it is a global attractor. Again,

we will write πL as σB
γ+R where σ = k3

k4
· k
P
LπP k2k0πP
k1kPO

·(1+ IL
rL

) and γ = (1+ k3K
k4

+ k1IO
k2kO

)· k2kOπP
k1kPO

,

both of which are positive values.

Theorem 1. There exists a single, unique equilibrium in the dynamical system defined by

Equations (2.1), (2.2), and (2.3).

Proof. Since the equilibrium in the constant case depended upon πC , the equilibrium

points for R and B become functions of πC in the realistic scenario.

R =
DRπ

2
C

DB
and B = DRπC

kB

Since πC is a function of C we must solve for the equilibrium of C using the above

equilibrium points for R and B:

dC

dt
= DCπL −DAπCC

=
DCσDBDR

kB(DBγ +DRπ2
C)
−DaC
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Setting the above equation equal to zero and solving for C will give us the equilibrium.

⇒ C =
DCσDBDR

DAkB(DBγ +DRπ2
C)

Define a new function,

F (C) = C − DCσDBDR

DAkB(DBγ +DRπ2
C)
.

We can now study this F (C) equation further to help us determine equilibrium solutions.

Since we have previously proven that C is bounded below by zero, we must study F (C)

for only nonnegative values of C. If we can prove that F (C) = 0 for one and only one

value of C, then it follows that R and B both also only have one value since they functions

of C.

We find that F (0) = − DCDRDBσ
DAkBDBγ+DAkBDRπ

2
C
< 0 and limC→∞ F (C) = ∞. Since this

function starts as a negative value and is continuous to ∞, it is necessary to prove that

F (C) = 0 at some value of C. In other words, we wish to show that F (C) is a strictly

increasing function.

F ′(C) = 1 + 2
DCD

2
RDBDAkBπCπ

′
Cσ

(DAkB(DBγ +DRπ2
C))2

≥ 1

This is sufficient to show that F (C) is a strictly increasing function. Since we know that

F (C) is negative for small values of C and strictly increasing to ∞, F (C) must equal zero

at one and only one value of C.

Thus, there exists a single equilibrium point for our system. �

2.2.4 Global Attractor

Although I haven’t yet proven the equilibrium to be a global attractor, I have made

progress towards finding such a proof and have shown various methods that are not useful
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for this system.

Some methods have been tried in proving it to be a global attractor.

? I have tried to find an appropriate Lyapunov function for Lemaire’s dynamical sys-

tem.

? I turned the nonlinear system into a system of polynomials to make it easier to

manage.

– I, again, tried to find the Lyapunov function for the system of polynomials.

? I began working on a “Nested Box” method [13].

Collaborative work with several colleagues has resulted in the developed proof continuing

off of the “boxing-in” method. This proof will appear in a paper to be published later by

Ross, Battista, Cabal, and Mehta [14].

2.2.5 Numerical Results

We implemented this system in MATLAB using the built-in ode45 function. We compared

our results to those of Lemaire’s in order to check that our code was working properly

before moving on with this research. Using the same values presented by Lemaire, we were

able to reconstruct the exact graphs from their paper (Figure 2.3). This ode45 function

uses a Runge-Kutta method with a variable time-step to find the best solution. Using

this function, we set an error tolerance of 10−9 to obtain the best results possible. The

values of the parameters using during numerical trials can be found in Appendix A. Also,

from this code we were able to determine the “average” osteoclast/osteoblast (OC/OB)

ratio which we will use later to determine the effects from incorporating PTH into our

model. The typical OC/OB ratio is found to be 1.248 so we expect to find a higher ratio
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Figure 2.3: Reconstructed graphs from Lemaire’s paper using our MATLAB code
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when administering PTH in a continuous fashion and a lower ratio when administering

it in daily pulses. The OC/OB ratio is commonly thought of as an indicator for bone

loss/bone gain. As the ratio varies from 1.248, we can determine if more resorption is

occurring (which could lead to bone diseases) or more bone formation is occurring.



Chapter 3

Signaling Protein Model

Parathyroid hormone (PTH) plays a crucial role in bone remodeling. This is the motivation

for my studying the effects of PTH. When looking at the effects of osteoporosis, it would

be beneficial to determine if PTH could somehow improve bone mineral density for those

affected by this disease. Since many pharmaceutical companies are concerned with the

effects of PTH in bone remodeling, it is important to demonstrate the phenomenon that

occurs when PTH is administered in different ways. Bellido and co-workers have proposed

a mechanism for the anabolic effect of pulsatile administration of PTH based on PTH

interfering with the signaling cascade for osteoblast apoptosis [1]. In our model, we add

in a signaling protein, similar to Bellido et al., which controls the apoptosis rate for the

active osteoblasts under the influence of PTH in the bloodstream. In order to exhibit the

phenomenon that occurs when administering PTH in various manners, we will amend the

previous model provided by Lemaire et al.

33
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3.1 The Model

Our model has the same basic parameters as Lemaire et al.’s model with a few additional

parameters. The most obvious alteration is the addition of two differential equations

representing the signaling protein and a signaling protein/PTH complex, respectively.

The signaling protein, S(t), is added into our model to control the apoptosis rate of active

osteoblasts. If more of the signaling protein is present, we have a higher apoptosis rate for

osteoblasts. Clearly a lower concentration of signaling protein in the bloodstream causes

a slower rate of death for active osteoblasts. As signaling protein varies in concentration,

it is obvious that a direct relationship exists between the amount of signaling protein and

the signaling protein/PTH complex, Q(t).

Our signaling protein model is as follows:

dR

dt
= DRπC −

DB

πC
R (3.1)

dB

dt
=
DB

πC
R− kB

eλ(S−1)

a+ beλ(S−1)
B (3.2)

dC

dt
= DCπL −DAπCC (3.3)

dS

dt
= kS(1− S)− kfP (t)S + kRQ (3.4)

dQ

dt
= kfP (t)S − kRQ (3.5)

where πC and πL are defined as above in Chapter 2. However, we now let

πP =
P (t) + P 0

P (t) + P s

with P 0 = SP
kP

, P s = k6
k5

, and P (t), a function with value greater than the value of P̄

previously used in Lemaire et al.’s model. This P (t) function represents the administration

of PTH. PTH is administered in the form of teriparatide, an osteoporosis treatment.

Because πP becomes a function of P (t) in this model and σ and γ were both dependent
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on πP in Lemaire et al.’s model, σ and γ must also become functions of P (t). Recall that

πL = σB
γ+R . Thus, πL is also a function of P (t).

We have also added the following parameters: kS , kf , and kR. kS is the rate at which the

signaling protein equilibrates, kf is the binding rate for the signaling protein and PTH,

and kR is the unbinding rate for the signaling protein/PTH complex.

We can now control the rate and type of administration of PTH into the bloodstream

by altering the function that represents P (t). For the purposes of this thesis, we sought

out functions of P (t) that would resemble the results found by Cosman et al. [2] in order

to experience an anabolic effect on bone mineral density. However, we also wanted to

demonstrate what occurs when PTH is administered in various ways. For this reason, we

will use both P (t) functions that strongly resemble those presented by Cosman et al. as

well as functions that represent a continuous administration of PTH to the bloodstream.

If we were to let P (t) = 0, we obtain the same results as those found using the model

provided by Lemaire et al.

3.2 Relevant Data

Cosman et al. have provided a detailed description of their findings through purely ex-

perimental evidence [2]. They successfully enrolled 155 postmenopausal women (64 years

or older) into this experiment, separating them into five groups over the six month pe-

riod. The groups were broken down by administration of teriparatide into the following

categories:

? a teriparatide patch with a 20− µg dose

? a teriparatide patch with a 30− µg dose
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? a teriparatide patch with a 40− µg dose

? a 20− µg dose of teriparatide that was injected daily, and

? a placebo.

The transdermal patch was a new idea that hoped to provide the rapid pulse that would

produce the desired outcome.

In their study, they found that the transdermal patch of teriparatide in postmenopausal

women with osteoporosis was safe and effective in increasing total hip and lumbar spine

bone mineral density over a six month period.

Along with Cosman et al., Finkelstein et al. had performed a similar experiment [5]. In

their experiment, they administered teriparatide (PTH) to both osteoporotic men and

women once daily. They administered PTH to their patients initially in months 6-30,

withdrew them from treatment for months 30-42, and began treatment again in months

42-54. Their results can be summarized in Figure 3.1.

Although they have shown an increase in bone mineral density, their experiments have yet

to show that this also causes a decreased likelihood of fracture. It is a common conception

that an increase in bone mineral density will eventually reduce the risk or fracture, but

their experiment specifically set out to show an increase in bone mineral density and not

make any statements about the risk of fracture.

3.3 Numerical Results

We developed the appropriate P (t) functions we were searching for and incorporated them

into our five-equation system to find the expected results. When placing these functions
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Figure 3.1: The results of Finkelstein et al. showing change in bone mineral density of the

posterior-anterior spine, lateral spine, femoral neck, and radius shaft during the various

stages of their treatment, withdrawal, and re-treatment experiment. [5]
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into our system, we also had to seek out parameter values which contributed to the correct

results. It should be noted that the parameter values we used were chosen purely because

they produced the desired results. Our system, with the new parameter values becomes

dR

dt
= DRπC −

DB

πC
R (3.6)

dB

dt
=
DB

πC
R− kB

e150(S−1)

1
6 + 5

6e
150(S−1)

B (3.7)

dC

dt
= DCπL −DAπCC (3.8)

dS

dt
= 1.5(1− S)− 0.19P (t)S + 0.719Q (3.9)

dQ

dt
= 0.19P (t)S − 0.719Q. (3.10)

Most importantly, when separating continuous and pulsatile administration, it was nec-

essary to ensure that we maintain the same cumulative dose over a daily 24-hour period.

This ensures that patients receive the same amount of PTH (thus eliminating the amount

administered from being the cause of a change) and proving that the method of adminis-

tration is, in fact, the determining factor for anabolic/catabolic results.

3.3.1 Constant Administration of PTH

When modeling the system with a constant adminstration of PTH, we used the function

(Figure 3.2)

P (t) =
Sp
kp

+ 350

√
π

2 ∗ 373/2
. (3.11)

With the above PTH function and given parameter values, we obtain an average OC/OB

ratio of 1.397, which is clearly higher than the stable ratio of approximately 1.248. Our

graph ends up looking similar to that of Lemaire et al.’s model with just a higher OC/OB

ratio (Figure 3.3). This causes a net bone resorption.

This net bone resorption can be mathematically explained. While P (t) is a constant,
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Figure 3.2: Our function P (t) for continuous administration of PTH over one day

0 20 40 60 80 100 120
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7
x 10

−3

Time

A
m

ou
nt

 (
pM

)

 

 

Responding Osteoblasts
Active Osteoblasts
Active Osteoclasts

Figure 3.3: Results of our system with a continuous administration of PTH
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equations (3.4) and (3.5) become linear functions where we can find the equilibrium to be

S = 1 and Q =
kfP (0)
kR

. As an extension of the global attractor proof provided by Ross et

al. when dealing with Lemaire’s system, this equilibrium can also be shown to be a global

attractor (although it will not be shown in this thesis.) As the baseline of PTH increases

to the constant P (t), it alters the concentrations of both osteoblasts and osteoclasts, and

then settles the signaling protein concentration to its baseline value. As it approaches the

signaling protein baseline value, the PTH level is still increased and thus a higher OC/OB

ratio occurs.

3.3.2 Pulsed Administration of PTH

Again, when we were in search of a function for the pulsed PTH administration, we

referenced the graphs that Cosman et al. had produced from their experiment [2]. Note

that their graph has different scalings so our values look different, but if converted to the

same units our graph matches theirs rather well. We use the function (Figure 3.4)

P (t) =
Sp
kp

+ 350
√
te−37t. (3.12)

In order to administer a pulse each morning, we use a modulus function to alter the time

so a pulse is given just once a day and it repeats the same pulse each following day. Using

this method and the above equation for pulsatile PTH administration, we find the results

we expected; the OC/OB ratio is lower, causing a net increase in bone mineral density

(Figure 3.5).

When we use this pulsatile method of PTH administration, the entire signaling protein

dynamical system must oscillate daily. As this system oscillates, it is clear that the sig-

naling protein concentration must also oscillate and in doing so, causes the apoptosis rate

eλ(S−1)

a+beλ(S−1) to respond differently with various concentrations of signaling protein. With

lower concentrations, the apoptosis rate reacts more actively than with higher concen-
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Figure 3.4: Our function P (t) for pulsatile administration of PTH over one day
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Figure 3.5: Results of our system with a pulsatile administration of PTH
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trations of signaling protein. This results in a higher concentration of osteoblasts than

osteoclasts and therefore the OC/OB ratio decreases.

3.3.3 No PTH Administration

When there is no administration of parathyroid hormone, we obtain the same results found

in Lemaire et al.’s model, as expected. The OC/OB ratio is still approximately 1.248, and

the same equilibrium is found in this case.

3.4 Bone Mineral Density

I have proposed the addition of another equation relating to our system. This additional

equation represents bone mineral density (BMD) as a percent of the baseline and is defined

as
dBMD

dt
= κ(1.25

B

C
− 1) (3.13)

where 1.25 comes from the ”normal” OC/OB ratio and κ is simply a fixed proportion to

obtain accurate results. Because osteoblasts and osteoclasts are the main components in

bone formation/resorption, we have chosen to base our bone mineral density off of solely

their values.

However, I realize the simplicity of this equation and for future work, it would be beneficial

to more accurately develop this equation. For the purposes of this thesis, we will use this

equation as a rough outlook at the BMD for our two cases. Selecting κ to be 0.005, we have

found a simpler way of displaying the increase/decrease in bone mineral density. Figures

3.6 and 3.7 show the change in BMD over a 2-year period with pulsatile and continuous

administration of teraparitide.
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Figure 3.6: Bone mineral density over a 2-year period with daily pulsatile administration

of PTH
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Figure 3.7: Bone mineral density over a 2-year period with continuous administration of

PTH
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If we look at other results featured in Cosman et al.’s paper, we find that our increase

in bone mineral density in the hip and lumbar spine matches their data rather well [2].

Other areas of the body, however, do not seem to fit our model as well. These parts of

the body that do not match our results might be a better fit with other values of κ.



Chapter 4

Conclusion

In this thesis, we have done some analysis on Lemaire et al.’s model and determined that

not only does it represent biological information correctly, but it also coincides with the

laws of mathematics; given realistic initial conditions, we have proven that our solution

will always be a unique, realistic solution and we have set up the beginnings to prove that

our equilibrium is actually a global attractor. Lemaire et al. have successfully captured the

interaction of osteoblasts and osteoclasts in bone remodeling, which was their main focus.

Not only did their model provide a foundation by which we could verify the accuracy of

our MATLAB code, but it also provided the basis for our expanded dynamical system which

incorporated various methods of PTH administration.

Also, from the mathematical structure of our model, we were able to mathematically

determine how the various administration methods for PTH produce different results.

This was one of our main goals that we set out to do in the beginning. Many people such

as Bellido et al., were aware of the effects of different PTH administration techniques, but

previously the cause of these effects was not discussed. We have represented the outcome

numerically as well as discussed a short proposition as to why a particular outcome occurs.

45
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4.1 Future Work

Although we have constructed a model which correctly depicts the qualitative anabolic/catabolic

effects based on PTH administration, there is still more research to be performed behind

this model. Firstly, it must be further researched to determine if the parameters we have

chosen are actually good fits for the biological model, not just fitting the desired out-

come. These parameter values must be consistent with the biological happenings behind

the model, rather than chosen arbitrarily as we have done. Since these parameters were

chosen arbitrarily, our system agrees qualitatively, but not necessarily quantitatively. In

choosing biologically-relevant parameter values, our model might match the data better

quantitatively.

In addition to verifying parameter values, one might also want to consider defining different

PTH functions to mimic more of those found in Cosman’s experiment. As we have seen,

our model fits the 20 − µg treatment, but other PTH functions could be found to fit the

other treatments as well. Along with this, we could study the impact (if any) that the

shapes of these PTH functions play on bone mineral density.

Lastly, our work could be expanded into a broader model that incorporates Lemaire et

al.’s model, our model, BMD, and other elements that can be used to evaluate the efficacy

of various osteoporotic treatments.
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Appendix A

Parameter Values

Symbol Value Units

Cs 5× 10−3 pM

DA 0.7 day−1

dB 0.7 day−1

DC 2.1× 10−3 pM day−1

DR 7× 10−4 pM day−1

f0 0.05 No dimension

IL 0− 106 pM day−1

IO 0− 106 pM day−1

IP 0− 106 pM day−1

K 10 pM

k1 10−2 pM−1 day−1

k2 10 day−1

k3 5.8× 10−4 pM−1 day−1

k4 1.7× 10−2 day−1

k5 0.02 pM−1 day−1

k6 3 day−1

kB 0.189 day−1

KP
L 3× 106 pmol/pmol cells

kO 0.35 day−1

KP
O 2× 105 pmol day−1/pmol cells

kP 86 day−1

rL 103 pM day−1

SP 250 pM day−1



Appendix B

Code for Lemaire’s Model

function osteo(t, y)

R0 = 0.0007734;

B0 = 0.0007282;

C0 = 0.0009127;

Tstop = 100;

[T,Y] = ode45(@program5,[0 Tstop], [R0 B0 C0]);

x1 = Y(:,1);

x2 = Y(:,2);

x3 = Y(:,3);

figure(1);clf;

plot(T, x1,’b’);

49
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xlabel(’Time’);

ylabel(’Responding Osteoblasts’);

hold on;

plot(T, x2,’g’);

xlabel(’Time’);

ylabel(’Active Osteoblasts’);

hold on;

plot(T, x3,’r’);

xlabel(’Time’);

ylabel(’Active Osteoclasts’);

x1(end)

x2(end)

x3(end)

return

function yp = program5(t,y)

RR=y(1);

BB=y(2);

CC=y(3);

Cs = 5e-3;
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Da = 0.7;

db = 0.7;

Dc = 2.1e-3;

Dr = 7e-4;

f0 = 0.15;

IL = 0;

IO = 0;

Ip = 0;

K = 10;

k1 = 1e-2;

k2 = 10;

k3 = 5.8e-4;

k4 = 1.7e-2;

k5 = 0.02;

k6 = 3;

kb = 0.189;

klp = 3e6;

kO = 0.35;

kop = 2e5;

kp = 86;

rL = 1e3;

Sp = 250;

PiP = Sp*k5/(kp*k6);

% yp1 = dR/dt

% yp2 = dB/dt
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% yp3 = dC/dt

yp1 = Dr*(CC+f0*Cs)/(CC+Cs)-f0*db/((CC+f0*Cs)/(CC+Cs))*RR;

yp2 = f0*db/((CC+f0*Cs)/(CC+Cs))*RR-kb*BB;

yp3 = Dc*(k3/k4)*((klp*PiP*BB)/(1+((k3*K)/(k4))+(k1/(k2*kO))*

((kop*RR/PiP)+IO))*(1+IL/rL))-Da*(CC+f0*Cs)/(CC+Cs)*CC;

yp = [yp1; yp2; yp3];

return



Appendix C

Code for Signaling Protein Model

function osteosign3(t, y)

format long

R0 = 7.7381e-004;

B0 = 7.2865e-004;

C0 = 9.1298e-004;

S0 = 0.999999999836619;

Q0 = 0.768185787811278;

Tstop = 120;

options = odeset(’RelTol’, 1e-9,’AbsTol’, [1e-9 1e-9 1e-9 1e-12 1e-12]);

[T,Y] = ode45(@program5,0:0.01:Tstop, [R0 B0 C0 S0 Q0], options);

x1 = Y(:,1);

x2 = Y(:,2);

x3 = Y(:,3);

53
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x4 = Y(:,4);

x5 = Y(:,5);

figure(1);clf;

plot(T, x1,’b’);

xlabel(’Time’);

hold on;

plot(T, x2,’g’);

xlabel(’Time’);

hold on;

plot(T, x3,’r’);

xlabel(’Time’);

ylabel(’Amount (pM)’);

legend(’Responding Osteoblasts’,’Active Osteoblasts’,’Active Osteoclasts’);

figure(2);clf;

plot(T, x4,’y’);

xlabel(’Time’);

ylabel(’Signaling Protein’);

figure(3);clf;

plot(T, x5);

xlabel(’Time’);
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ylabel(’PTH / Signaling Protein Complex’);

x1(end);

x2(end);

x3(end);

x3(end)/x2(end)

return

function yp = program5(t,y)

RR=y(1);

BB=y(2);

CC=y(3);

SS=y(4);

QQ=y(5);

Cs = 5e-3;

Da = 0.7;

db = 0.7;

Dc = 2.1e-3;

Dr = 7e-4;

f0 = 0.05;

IL = 0;

IO = 0;

Ip = 0;
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K = 10;

k1 = 10^-2;

k2 = 10;

k3 = 5.8e-4;

k4 = 1.7e-2;

k5 = 0.02;

k6 = 3;

kb = 0.189;

klp = 3e6;

kO = 0.35;

kop = 2e5;

kp = 86;

rL = 10^3;

Sp = 250;

% yp1 = dR/dt

% yp2 = dB/dt

% yp3 = dC/dt

% yp4 = dS/dt

% yp5 = dQ/dt

%P changes based on which method of PTH administration we are looking at

P= Sp/kp+350*sqrt(mod(t,1)).*exp(-37*mod(t,1)); %pulsed PTH administration

%P = Sp/kp + 350*sqrt(pi)/(2*37^(3/2)); %continuous PTH administration

%P=Sp/kp; %no PTH administration

PiP = P / (P+(k6/k5)-(Sp/kp));

kS=1.5;
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kf=0.19;

kR=0.719;

lambda=150;

a=1/6;

b=5/6;

yp1 = Dr*(CC+f0*Cs)/(CC+Cs)-f0*db/((CC+f0*Cs)/(CC+Cs))*RR;

yp2 = f0*db/((CC+f0*Cs)/(CC+Cs))*RR-kb*exp(lambda*(SS-1))./(a+b*exp(lambda*(SS-1)))*BB;

yp3 = Dc*(k3/k4)*(klp*PiP*BB)/(1+((k3*K)/(k4))+(k1/(k2*kO))*

((kop*RR/PiP)+IO))*(1+IL/rL)-Da*(CC+f0*Cs)/(CC+Cs)*CC;

yp4 = kS*(1-SS)-kf*P*SS+kR*QQ;

yp5 = kf*P*SS-kR*QQ;

yp = [yp1; yp2; yp3; yp4; yp5];

return
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