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Abstract

Einstein’s theory of general relativity has radically altered the way in which we per-
ceive the universe. His breakthrough was to realize that the fabric of space is de-
formable in the presence of mass, and that space and time are linked into a con-
tinuum. Much evidence has been gathered in support of general relativity over the
decades. Some of the indirect evidence for GR includes the phenomenon of gravita-
tional lensing, the anomalous perihelion of mercury, and the gravitational redshift.
One of the most striking predictions of GR, that has not yet been confirmed, is the
existence of gravitational waves. The primary source of gravitational waves in the
universe is thought to be produced during the merger of binary black hole systems,
or by binary neutron stars. The starting point for computer simulations of black hole
mergers requires highly accurate initial data for the space-time metric and for the
curvature. The equations describing the initial space-time around the black hole(s)
are non-linear, elliptic partial differential equations (PDE). We will discuss how to
use a pseudo-spectral (collocation) method to calculate the initial puncture data cor-
responding to single black hole and binary black hole systems.
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Chapter 1

Introduction

The purpose of this project is the numerical computation of solutions to partial

differential equations (PDE) that are required for simulations of black hole dynamics

in general relativity. Einstein’s theory of General Relativity (GR) has radically altered

the way in which scientists perceive the universe. Einstein theorized that space is

deformable in the presence of mass and that space and time are one intertwined

entity, called space-time.

Over the last 90 years there has been much experimental evidence that verifies

predictions of GR. Moreover, some of the results of GR are used by many people in

their everyday routine, as GR is fundamental in the operation of Global Positioning

Systems (GPS). One of the most astonishing predictions, which has not yet been con-

firmed, is the existence of gravitational radiation, which ripples through the universe

like waves on a pond. Gravitational wave astronomy is a new frontier of twenty-first

century physics. Once gravitational radiation is successfully detected, scientists will

able to better understand some of the dynamics of the universe, such as how stars

die, the birth of black holes, and how the universe evolved into what it is today.

Most importantly, detecting gravitational waves would be a dramatic confirmation

that Einstein’s General Theory of Relativity is correct.

The LIGO (Laser Interferometer Gravitational Wave Observatory) project is ded-

icated to detecting gravitational waves. From ground based instruments, data is
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collected and compared to waveforms derived from numerical relativistic simulations.

Conclusively matching the observational data to a computationally predicted gravi-

tational waveform would confirm the existence of gravitational waves. It is expected

that a primary source of gravitational radiation is from a coalescing black hole binary

system [5]. Hence much effort has been expended into solving the equations of GR

involving solutions with black hole mergers. The first fully relativistic simulations

of a coalescing binary black hole system were performed for the first time in 2005.

Calculating the starting point for relativistic simulations is the focus of this thesis.

There is an exceptional amount of computer resources needed to simulate a system

that exhibits gravitational radiation. This is due to the field equations of GR, which

consist of ten coupled nonlinear PDEs. A necessity for numerical relativity is finding

accurate initial data to begin the simulation. Unlike in classical Newtonian physics,

where the initial data consists of initial positions and velocities, in GR we need to

initially specify the space-time metric and curvature. The equations for initial data,

which encompass the space-time metric and curvature at time zero are nonlinear,

elliptical PDEs of the form

∆u = ρ(u), (1.1)

whose domain is all of three-space, R3, omitting the puncture(s) at the position

of the black hole(s). Unlike other initial data PDEs in GR, there are many more

mathematical and computational challenges that arise in an initial puncture data

PDE. In the case of a single black hole with spin and linear momentum, the elliptic

equation has a C2 singularity at the position of the black hole, which can only be

resolved through clever coordinate transformations that compactifies R3 into a single

rectangular patch. Solving (1.1) in the case of a binary black hole system is much

more arduous, as two punctures need to be resolved. This is accomplished in [1]

with the aid of an ingenious coordinate transformation that simultaneously renders

the punctures smooth, C∞, and maps them to the boundary of a single rectangular

computational domain. This is a big improvement over previous methods that map

the physical domain onto multiple computational domains and then match them with
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overlap and compatibility conditions. Using a single-domain numerical method is

much more effective in terms of accuracy and cost [2]. In this thesis our focus is using

a single-domain spectral method for finding the initial puncture data for black hole

systems with linear momentum and spin in vacuum space-times. Since it is critically

important to find highly accurate initial data, numerically a spectral scheme is most

logical.

Spectral methods have been utilized successfully in numerous areas such as nu-

merical relativity, elasticity, and fluid mechanics [3],[6],[7]. Spectral methods involve

a high order expansion of the solution in terms of orthogonal basis functions, and

generally yield exponential convergence for smooth solutions (u ∈ C∞). Finite differ-

ences, on the other hand, provide only algebraic convergence at best, and are therefore

not appropriate for problems where high accuracy is desired.
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Chapter 2

Spectral Methods For Ordinary

Differential Equations

We will present the basic framework of Chebyshev and Fourier pseudo-spectral meth-

ods for various ordinary differential equations in this section.

2.1 Chebyshev Pseudo-Spectral Method for Lin-

ear ODEs

Suppose we wish to solve the following linear ordinary differential equation,

a(x)u′′ + b(x)u′ + c(x)u = f(x), (2.1)

with boundary conditions, u(−1) = α, u(1) = β. In performing a spectral method,

we assume a solution in the form of a finite sum over some orthogonal basis functions,

φk, which we call the trial functions,

u(x) =
N∑
k=0

ũkφk(x). (2.2)

Typically these polynomials are eigenfunctions of a Sturm-Liouville differential opera-

tor, such as Legendre Polynomials, Hermite Polynomials, or Chebyshev Polynomials.
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The next step is to substitute our spectral solution into the ODE:

a(x)
d2

dx2

(
N∑
k=0

ũkφk(x)

)
+ b(x)

d

dx

(
N∑
k=0

ũkφk(x)

)
+ c(x)

(
N∑
k=0

ũkφk(x)

)
= f(x).

Then we multiply both sides of the equation by a function χm(x), which we call the

test function,

χm(x)

(
a(x)

d2

dx2

(
N∑
k=0

ũkφk(x)

)
+ b(x)

d

dx

(
N∑
k=0

ũkφk(x)

)
+ c(x)

(
N∑
k=0

ũkφk(x)

))
= χm(x)f(x).

Now we integrate both sides of the above equation over the domain in which the ODE

is defined,

∫ 1

−1

χm(x)

(
a(x)

d2

dx2

(
N∑
k=0

ũkφk(x)

)
+ b(x)

d

dx

(
N∑
k=0

ũkφk(x)

)

+c(x)

(
N∑
k=0

ũkφk(x)

))
dx =

∫ 1

−1

χm(x)f(x)dx. (2.3)

The choice of test functions, χm(x), and trial functions, φk(x), determines what

kind of spectral method is implemented. In a Galerkin Method one chooses the test

functions to be the same as the trial functions. For self-adjoint differential operators,

one can integrate by parts and the Galerkin method gives rise to a symmetric matrix

system.

In this thesis we focus on a Pseudo-spectral Method, or Collocation Method. In

this spectral method, one will choose the test functions to be delta functions centered

at collocation points, {xn}Nn=0:

χm(x) = δ(x− xm). (2.4)
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Substituting Eq.(2.4) into Eq.(2.3) yields

N∑
k=0

ũk

(
a(xm)

d2φk(xm)

dx2
+ b(xm)

dφk(xm)

dx
+ c(xm)φk(xm)

)
= f(xm),

where m = 0, 1, . . . , N. We have arrived at a system of N+1 linear algebraic equations

for the N + 1 unknowns, uk.

For the Pseudo-spectral method, the way in which one chooses what kind of trial

functions to use, depends on the structure of the problem. For periodic problems, it

makes sense to use Fourier series as the trial functions, since Fourier series inherently

are periodic functions. For problems that are not periodic, Chebyshev polynomials

are often a suitable choice of trial functions,

φk(x) = Tk(x). (2.5)

The properties of the Chebyshev Polynomials are given in Appendix A. We choose

the collocation points to be the critical points of the nth degree Chebyshev polynomial

with the endpoints of the domain:

xm = cos

[
π

N

(
m+

1

2

)]
, m = 0, 1, . . . , N (2.6)

Therefore since we assume a spectral solution over the Chebyshev bases,

u(x) =
N∑
k=0

ũkTk(x),
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the spectral coefficients can be obtained by solving the following matrix equation:

(−1)0 (−1)1 (−1)2 · · · (−1)N

A10 A11 A12 · · · A1N

A20 A21 A22 · · · A2N

... · · ·

AN − 1, 0 AN−1,1 AN−1,2 · · · AN−1,N

1 1 1 · · · 1





ũ0

ũ1

ũ2

...

ũN

0


=



α

f(x1)

f(x2)
...

f(xN−1)

β


.

The entries of the matrix A are

Amk = a(xm)
d2Tk(xm)

dx2
+ b(xm)

dTk(xm)

dx
+ c(xm)Tk(xm),

for all m 6= 0, N and k = 0, 1, . . . N. The first and last rows of A account for the

boundary conditions of the ODE, u(−1) = α and u(1) = β.

2.1.1 Example: u′′ = f(x)

Consider the following ordinary differential equation

u′′ = sinx+ cosx,

with the following boundary conditions,

u(−1) = 0,

u(1) = 0,

By solving the above ODE analytically we find that the solution is

u(x) = − sinx− cosx+ x sinx+ cos(1).

Numerically solving this linear ordinary differential equation using our Chebyshev

pseudo-spectral method, we find that it does in fact show exponential convergence.
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This is seen in Figure(B-1). Note the error calculated is the L2 Norm between the

spectral solution and the exact solution. Also when using only 10 grid points, we

achieve high accuracy, with an L2 error of roughly 10−10.

2.2 Chebyshev Pseudo-Spectral Method for Non-

linear ODEs

In this section we will show what the procedure for implementing a pseudo-spectral

method for solving a non-linear ordinary differential equation. To illustrate method

we will assume the non-linear ODE is of the form

a(x)u′′ + b(x)u′ + u2 = r(x),

where u = u(x), and with boundary conditions u(−1) = b0 and u(1) = b1.

As in the linear ODE case, we first construct a vector of the collocation points,{
xk
}N
k=0

where each is a zero of the kth Chebyshev polynomial, as seen from Eq.(2.6).

Similarly to the linear ODE case once again, we assume the solution u(x) can be

written as a finite sum over the Chebyshev basis,

u(x) =
N∑
i=0

ũiTi(x).

By discretizing the ODE, we obtain

N∑
i=0

ũi

(
a(xk)

d2Ti(xk)

dx2
+ b(xk)

dTi(xk)

dx

)
+

(
N∑
i=0

ũiTi(xk)

)2

= r(xk),

for k = 0, 1, . . . , N. However, in this case of a non-linear ODE we cannot write a

linear equation such as A~̃u = ~b, to solve for the coefficients
{
ũi
}N
i=0
. Instead we will
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implement the Multivariate Newton’s Method:



ũ0

ũ1

ũ2

...

ũN



n+1

=



ũ0

ũ1

ũ2

...

ũN



n

− J−1F n
k , (2.7)

where ũi,n is the nth iterated coefficient ũi, J
−1 is the inverse of a Jacobian matrix,

and F n
k is an nth iterated vector of functions set equal to zero.

We must build the vector F n
k This vector is comprised of N+1 functions of the

coefficients
{
ũi,n
}i=N
i=0

. Each component of F n
k will have the following form,

F n
k (ũ0,n, ũ1,n, . . . , ũN,n) = 0, (2.8)

where k = 0, 1, . . . , N and corresponds to each collocation point.To fill in this vector,

we first look at the collocation points x0 = b0, and xN = b1, corresponding to the

boundary. We will implement the boundary conditions as follows:

F n
0 =

N∑
i=0

ũi,nTi(x0)− b0,

F n
N =

N∑
i=0

ũi,nTi(xN)− b1.

Note that F n
0 and F n

N have the form of Eq.(2.8). To fill in the remaining components

of F n
k , for k = 1, 2, . . . , N − 1, we substitute our spectral solution into the functional

described in Eq.(2.8) and set it equal to zero. Then we evaluate it at every collocation

point within the boundary, or more explicitly,

F n
k (ũ0, ũ1, . . . , ũN) =

N∑
i=0

ũi,n

(
a(xk)

d2Ti(xk)

dx2
+b(xk)

dTi(xk)

dx

)
+

(
N∑
i=0

ũi,nTi(xk)

)2

−r(xk),
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for k = 1, 2, . . . , N − 1.

We must now construct the Jacobian matrix Jn = Jn(k, i). The Jacobian Jn will

be of size (N+1)×(N+1). It will have the form:

Jn =


∂F0

∂ũ0

∂F0

∂ũ1
· · · ∂F0

∂ũN

∂F1

∂ũ0

∂F1

∂ũ1
· · · ∂F1

∂ũN
...

. . .

∂FN
∂ũ0

∂FN
∂ũ1

· · · ∂FN
∂ũN

 .

The top row of the matrix corresponds to the collocation point x0 = −1 and the

bottom row corresponds to the collocation point xN = 1. Explicitly writing out the

components of those rows we see

Jn(0, i) =
∂F n

0

∂ũi
= Ti(x0),

Jn(N, i) =
∂F n

N

∂ũi
= Ti(xN),

recalling the definitions of F n
k . The rest of the matrix components will fill in similarly,

as follows

Jn(k, i) =
∂Fk
∂ũi

= a(xk)
d2Ti(xk)

dx2
+ b(xj)

dTi(xk)

dx
+ 2 Ti(xk)

(
N∑
i=0

˜ui,n Ti(xk)

)
.

Finally, to find the coefficients ũi, we must first give an initial guess for the coffi-

cients,
{
ũi
}N
i=0

. This will allow us to begin the iterations. By using the Multivariate

Newton’s Method algorithm,

~̃un+1 = ~̃un − J−1
n F n

k ,

we can find the coefficients
{
ũi,n
}N
i=0

to complete our numerical solution.

Let the chosen error tolerance be ε when using the Newton’s method. The algo-

rithm stops iterating when the L2 norm between the coefficient vector of two successive
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iterations is smaller than ε. Explicitly, the Newton’s algorithm stops iterating when

the following condition is satisfied

|~̃un+1 − ~̃un|2 < ε.

Hence, we will have the coefficients
{
ũi,n
}N
i=0

and then can use the solution as

u(x) =
N∑
i=0

ũi,n Ti(x),

within the given error tolerance ε for the coefficients.

2.2.1 Example: u′′ + u2 = f(x)

Consider the following nonlinear ordinary differential equation

u′′ + u2 = ex + e2x,

with the following boundary conditions,

u(−1) = e−1,

u(1) = e1.

By solving the above equation analytically, we find the solution is

u(x) = ex.

Numerically solving this nonlinear ordinary differential equation using our Cheby-

shev pseudo-spectral method, we find that it does in fact exhibit exponential conver-

gence. The convergence plot can be seen in Figure(B-2) Note the error calculated is

the L2 Norm between the spectral solution and the exact solution. .

The error when N ≥ 15 is due to the error tolerance on our Multivariate Newton’s

Method, which was set at ε = 10−12.
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2.3 Fourier Pseudo-Spectral Method for Linear ODEs

In this section we will show the procedure for implementing a pseudo-spectral method

for solving an equation of the form:

a(x)u′′ + b(x)u′ + c(x)u = f(x),

with periodic boundary conditions u(0) = u(2π) and u′(0) = u′(2π).

Since this problem has periodic boundary conditions, it alludes to using the Fourier

basis functions, which are inherently periodic. Recall the Fourier modes are periodic

on some interval [a,b]. They can be written in exponential form as the following,

φn = e
i2πnx
b−a . (2.9)

First we must create a vector of the collocation points. Since we are working in the

Fourier basis, our collocation points will be the zeros of the N th Fourier sine functions.

Because the ODE is defined on [0, 2π], we note that the Fourier basis functions are

of the form: einx. Therefore we easily find that the set of collocation points {xk}, are

found as

xk =
2πk

N
, (2.10)

where N is the number of Fourier Collocation points.

We assume the spectral solution, u(x), has the form of a finite sum over the Fourier

basis,

u(x) =

n=N
2
−1∑

n=−N
2

+1

ũne
inx.

We then discretize the ODE to the following form:

n=N
2
−1∑

n=−N
2

+1

ũn

(
− a(xk)n

2 + ib(xk) + c(xk)
)
einxk = f(xk), k = 0, 1, . . . , N,
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where each function of x is evaluated at each collocation point,xk.

It is important to note that in the case −a(xk)n
2 + ib(xk) + c(xk) = 0 the spectral

method may not converge to the solution. For example, consider the equation y′′+y =

f(x) on the interval 0 < x < 2π with periodic boundary conditions. We wish to solve

this ODE using a Fourier Psuedo-Spectral method.

Proceeding with the numerical scheme, we assume our solution is of the form,

u(x) =

n=N
2
−1∑

n=−N
2

+1

ane
inx,

we then discretize the ODE. Upon discretizing the ODE as well as the right hand

side of the equation give:

n=N
2
−1∑

n=−N
2

+1

an

(
1− n2

)
einxk =

n=N
2
−1∑

n=−N
2

+1

c̃ne
inxk .

Analytically, we then see that

an(1− n2) = cn,

and hence if we know the right hand side’s coefficients, {cn}, we can deduce that our

solution’s coefficients will be

an =
cn

1− n2
.

It is clear that when n = −1, 1 there is a potential problem with the solution’s

coefficients, especially if c−1 6= 0 and/or c1 6= 0. In these cases where c−1 = 1 or

c1 = 1 we will have resonance in the solution, causing the solution not to be periodic.

Therefore we will not be able to achieve a numerical solution that is converging to

the true solution. Hence, implementing a Fourier Pseudo-Spectral method will not

work for this ODE.

In the event that if we had a different non-homogenous term that when expressed

as a Fourier series, did not have c−1 = c1 = 0, we would see convergence to the correct
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solution from the Fourier pseudo-spectral method.

Pseudo-spectral theory allows us to find the coefficients ũn by solving the following

linear equation

A~̃u = ~b,

where A is a (N − 1) × (N − 1) matrix, ~̃u is the coefficient vector, and ~b is a vector

describing the nonhomogenous term of the ODE.

To construct the vector ~b = [b0 b1 . . . bN ], we first consider the boundary condi-

tions. Since we are enforcing periodicity of the solution and its first derivative at

the boundary, unlike Chebyshev Pseudo-Spectral methods, and because the Fourier

modes are periodic themselves, we do not explicitly have to state boundary condi-

tions. The choice of Fourier basis functions will enforce periodicity automatically.

We will only evaluate the ODE on the interior points within the boundaries. To do

that we will implement for all bk, k = 1, 2, . . . , N − 1 that bk = f(xk). Note that

we obtain this result because we are using delta functions as our test functions in

spectral theory, hence

bi =

∫ b

a

f(x)δ(x− xk)dx = f(xk).

So the vector b will have the following form:

~b =



f(x1)

f(x2)

f(x3)
...

f(xN−1)


Now we will construct the matrix A = Akn using two for loops, where the outer

for loop runs over the interior collocation points, k = 1 : N − 1, and nested for loop

runs over the interval, n = 1 : N − 1. We then use the transformation

n = j −N/2
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to include the correct Fourier modes. For all interior points, the matrix will take on

the value

Akn =
(
− a(xk)n

2 + ib(xk) + c(xk)
)
einxk , for all k 6= 1, N − 1 and n = 1, 1, . . . N − 1.

We obtain this result similarly to the way we obtained the values of ~b, ie-

Akn =

∫ b

a

(
−a(x)n2+ib(x)+c(x)

)
einxδ(x−xk)dx =

(
−a(xk)n

2+ib(xk)+c(xk)
)
einxk .

We then have the following matrix equation to solve:

A11 A12 A13 · · · A1,N−1

A21 A22 A23 · · · A2,N−1

A31 A32 A33 · · · A3,N−1

... · · ·

AN−2,1 AN−2,2 AN−2,3 · · · AN−2,N−1

AN−1,1 AN−1,2 AN−1,3 · · · AN−1,N−1





ũ1

ũ2

ũ3

...

ũN−2

ũN−1


=



f(x1)

f(x2)

f(x3)
...

f(xN−2)

f(xN−1)


.

Hence, by inverting the matrix A, we will be able to attain the coefficients in the

vector ~̃u. We then need to create a method to interpolate each Fourier mode with its

respective coefficient.

Note that there are two ways we could have implemented the Fourier basis func-

tions, ie-

y =

n=N
2
−1∑

n=−N
2

+1

cne
inx or y =

N
2
−1∑

n=0

(
an cos(nx) + bn sin(nx)

)
.

Since we do not want to carry our final solution as a summation with imaginary

parts. We will convert our solution into the second form of the finite Fourier series.
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To do this, we realize that

cn =



a0 if n = 0

an−ibn
2

if n < 0

an+ibn
2

if n > 0

(2.11)

These relations can be derived using the identity eiθ = cos θ+ i sin θ. We then can

solve for the {an}Nn=0 and {bn}Nn=0 coefficients using Eq.(2.11). Therefore our final

numerical solution will be of the form

y(x) = a0+a1 cos(x)+b1 sin(x)+a2 cos(2x)+b2 sin(2x)+. . . =

N
2
−1∑

n=0

(
an cos(nx)+bn sin(nx)

)
.

Please note it is only because of numerical error that we must break apart the

complex coefficients cn into its real and imaginary parts rather than simply call our

final solution,

u(x) =

n=N
2
−1∑

n=−N
2

+1

ũne
inx.

2.3.1 Example: u′′ + u′ + u = f(x)

Consider the following ordinary differential equation

u′′ + u′ + u = ecosx
(

1− sinx− cosx+ sin2 x
)
,

with the following boundary conditions,

u(−π) = u(π), and

u′(−π) = u′(π).
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By solving the above ODE analytically we find that the solution is

u(x) = ecosx.

Upon solving this linear ordinary differential equation using our Fourier pseudo-

spectral method, we find that our numerical scheme does in fact exhibit exponential

convergence. Note that the error calculated is the L2 Norm between the spectral

solution and the exact solution. This can be seen in Figure(B-3).

2.4 Fourier Pseudo-Spectral Method for Non-Linear

ODEs

In this section we will describe the procedure for implementing a pseudo-spectral

method for solving an equation of the form:

a(x)u′′ + b(x)u′ + c(x)u2 = r(x),

with periodic boundary conditions u(0) = u(2π) and u′(0) = u′(2π).

As in the linear ODE case, we first construct a vector of the collocation points,{
xn
}N
k=0

where each is a zero of the nth Fourier sine function, as given by Eq.(2.10).

Since the ODE is defined on [0, 2π], we note that the Fourier modes are of the form:

einx.

Similarly to the linear ODE case once again, we assume a spectral solution over

the Fourier basis,

u(x) =

n=N
2
−1∑

n=−N
2

+1

ũne
inx,

18



because we are considering only solutions that are periodic.

We then discretize the ODE to the following form:

n=N
2
−1∑

n=−N
2

+1

ũn

(
− a(xk)n

2 + ib(xk) + c(xk)
)
einxk +

( n=N
2
−1∑

n=−N
2

+1

ũne
inx
)2

= r(xk),

where every function of x is evaluated at each collocation point xk. It is also important

to note that in the case −a(xk)n
2 + ib(xk) + c(xk) = 0 the spectral method may not

converge to the solution.

However, in this case of a non-linear ODE we cannot write a linear equation such

as A~̃u = ~b, to solve for the spectral coefficients
{
ũi
}N
i=0
. Instead we will implement

the Multivariate Newton’s Method. For our problem, our algorithm will look like the

following: 

ũ1

ũ2

ũ3

...

ũN−1



n+1

=



ũ1

ũ2

ũ3

...

ũN−1



n

− J−1F n
k , (2.12)

where ũi,n is the nth iterated coefficient ũi, J
−1 is the inverse of a Jacobian matrix,

and F n
k is the nth iterated vector of functions set equal to zero.

We must build the vector F n
k This vector is comprised of N-1 functions of the

coefficients
{
ũi
}i=N
i=0

. Each component of F n
k will have the following form

F n
k (ũ1, ũ2 . . . , ũN−1) = 0, (2.13)

where the index k = 1, . . . , N − 1 and corresponds to each collocation point. We

now define the following functional, To fill in the components of F n
k , we substitute

our spectral solution into the functional described in Eq.(2.13) and set it equal to

zero. Then we evaluate it at every collocation point within the boundary, or more

19



explicitly,

F n
k =

n=N
2
−1∑

n=−N
2

+1

ũn

(
− a(xk)n

2 + ib(xk) + c(xk)
)
einxk +

( n=N
2
−1∑

n=−N
2

+1

ũne
inx

)2

− r(xk) = 0.

for k = 1, 2, . . . , N − 1. Note that we still do not have to specify boundary conditions

when using the Fourier basis because of the Fourier modes’ inherent periodicity.

We must now construct the Jacobian matrix Jn = Jn(k, j). The Jacobian Jn will

be of size (N+1)×(N+1). It will have the form:

Jn =


∂F0

∂ũ0

∂F0

∂ũ1
· · · ∂F0

∂ũN

∂F1

∂ũ0

∂F1

∂ũ1
· · · ∂F1

∂ũN
...

. . .

∂FN
∂ũ0

∂FN
∂ũ1

· · · ∂FN
∂ũN


Explicitly writing out the components of those rows we see

Jn(k, j) =
∂Fk
∂ũi

=
(
− a(xk)n

2 + ib(xk) + c(xk)
)
einxk + 2

( n=N
2
−1∑

n=−N
2

+1

ũne
inx

)
einxk ,

recalling the definitions of F n
k .

Finally, to find the coefficients ũi, we must first give an initial guess for the coffi-

cients,
{
ũi,0
}N
i=0

. This will allow us to begin the iterations. By using the Multivariate

Newton’s Method algorithm,

ũn+1 = un − J−1
n fn,

we can find the coefficients
{
ũi,n
}N
i=0

to complete our numerical solution.

Let the chosen error tolerance be ε when using the Newton’s method. The algo-

rithm stops iterating when the L2 norm between the coefficient vector of two successive

iterations is smaller than ε. Explicitly, the Newton’s algorithm stops iterating when

20



the following condition is satisfied

(
N∑
i=0

(ui,n+1 − ui,n)2

)1/2

< ε.

Hence, we will have the coefficients
{
ũi,n
}N
i=0

and then can use the solution as

y(x) =

n=N
2
−1∑

n=−N
2

+1

ũne
inx,

within the given error tolerance ε for the coefficients.
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Chapter 3

Poisson’s Equation on a Bounded

Domain

We will present the basic framework of Chebyshev and Fourier pseudo-spectral meth-

ods for solving the Poisson-type Equations and Nonlinear Poisson-type Equations in

this chapter.

3.1 Poisson’s Equation on a Rectangle

In this section we will show the procedure for solving a Poission problem with a

pseudo-spectral method. We consider an equation of the form,

uxx + uyy = f(x, y),

where u = (x, y), and with boundary conditions u(−1, y) = u(1, y) = 0 and u(x,−1) =

u(x, 1) = 0. Note that we are considering the domain as [−1, 1]× [−1, 1] namely be-

cause we will use the Chebyshev basis functions in our numerical solution and they

are only defined between [−1, 1].

The numerical setup of this problem will be much like the numerical setup of a

Pseudo-Spectral Method for Linear ODEs; however, now we consider a 2 dimensional

problem. Not only will we have collocation points in the x direction, but we will also
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have them in the y direction as well. These collocation points will now define a 2

dimensional computational grid.

Since we are still using the Chebyshev polynomials as our basis functions, our

collocation points will be the zeros of kth degree Chebyshev polynomials, so we will

use Eq.(2.6) to determine them. We will call the collocation points in the x direction,

{xk}Nk=0, and the collocation points in the y direction, {yl}Nl=0.

Since we now are considering a 2 dimensional region, we define our computational

domain at the grid points (xk, yl) for k, l = 0, 1, . . . , N. For example, when N = 6 the

region is seen below. We see that the Chebyshev collocation points are not evenly

spaced along the interval, as the Fourier collocation points are. They are more dense

along the boundary of the domain. This is illustrated in Figure(B-4).

We then assume the solution u(x, y) has the form of a double finite sum using

Chebyshev functions as the basis functions,

u(x, y) =
N∑
i=0

N∑
j=0

ũijTi(x)Tj(y).

Upon discretizing the PDE, we see:

N∑
i=0

N∑
j=0

ũij

[
d2Ti(xk)

dx2
Tj(yl) + Ti(xk)

d2Tj(yl)

dx2

]
= f(xk, yl).

Recall that Pseudo-Spectral theory allows us to find the coefficients ũi in the ODE

case by solving the following linear equation

A~̃u = ~b,

where A is a (N + 1)2 × (N + 1)2 matrix, ~̃u is the coefficient vector, and ~b is a

vector describing the non-homogeneous term of the equation. We are able to use the

same approach in the PDE case; however, we must ”flatten” out matrices to vectors.

For example, it appears that instead of having a vector of coefficients, we will have
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a matrix, such as

~̃u =


ũ00 ũ01 · · · ũ0N

ũ10 ũ11 · · · ũ1N

... · · ·

ũ20 ũ21 · · · ũNN

 .

However since we wish to only have a vector of coefficients rather than a matrix,

we need to transform the (N+1)×(N+1) matrix above into an (N + 1)2 × 1 vector.

More explicitly we need


ũ00 ũ01 · · · ũ0N

ũ10 ũ11 · · · ũ1N

... · · ·

ũ20 ũ21 · · · ũNN

→



ũ00

ũ01

ũ02

...

ũij
...

ũNN


.

In order to flatten the matrix into the vector above, we will define a quantity

called r that will determine where each component ũij will go in the vector. We can

see that r can be defined as

r = i(N + 1) + (j + 1). (3.1)

So in our vector ~̃u, we see

ũr = ũij.

We will use this idea for all Pseudo-Spectral Methods used to solve PDEs. Now

we will construct the vector ~b = [b00 b01 . . . bij . . . bNN ], we consider the following. At

the boundary points, we want u(−1, y) = y(1, y) = u(x,−1) = u(x, 1) = 0, so at

the collocation points x0 = −1,xN = 1,y0 = −1, and yN = 1 we enforce that those

corresponding components of~b are zero.(Note that whenever k = 0, N or l = 0, N that
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bkl = 0). Next, since we are solving the PDE on the interior of 2D grid, we need

that for all bkl, k, l = 1, 2, . . . , N − 1 that bkl = f(xk, yl). Note we obtain this result

in an analogous way to those is Section(2.2); however, now we must perform a double

integral and use two trial functions. Since we are still implementing a pseudo-spectral

method, we again will use delta functions, ie- χk = δ(x− xk) and χl = δ(y − yl). By

performing the integrations we see,

bkl =

∫ 1

−1

∫ 1

−1

f(x, y)δ(x− xk)δ(y − yl)dxdy = f(xk, yl).

So the vector ~b will have the following form:

b =



b00

b01

...

b10

b11

b12

...

bkl
...

bNN



=



0

0
...

0

f(x1, y1)

f(x1, y2)
...

f(xk, yl)
...

0


Now we will construct the matrix A using four for loops, where the outer two

for loop runs over the collocation points, k = 0 : N and then l = 0 : N , and

the two innermost for loops run over the ith and jth Chebyshev polynomials from

i, j = 0, 1, . . . N . The matrix A will be of size (N+1)2×(N+1)2. Recalling Eq.(3.1),

we will construct another index, call it c, that has the exact same form as r. That is,

c = i(N + 1) + (j + 1) = r.

Since we can think of r as an index running over rows of a matrix, we can think
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of c as the index running over the columns of a matrix. Hence, the matrix A’s

components will be filled in as A = A(r, c). Similarly to how we constructed the

vector ~b, whenever our for loops running over an index of k = 0, N or l = 0, N , we

want to fill in those corresponding components of A as

A(r, c) = Ti(xk) Tj(yl).

To fill in the remaining components of A, that is for all k, l = 1, 2, . . . , N − 1 we

wish that the corresponding components of A to be

A(r, c) =
d2Ti(xk)

dx2
Tj(yl) + Ti(xk)

d2Tj(yl)

dx2
,

which we obtain from performing all the integrations analogous to (2.3), ie-

∫ 1

−1

∫ 1

−1

[d2Ti(x)

dx2
Tj(y) + Ti(x)

d2Tj(y)

dx2

]
δ(x− xk)δ(y − yl)dxdy

=
d2Ti(xk)

dx2
Tj(yl) + Ti(xk)

d2Tj(yl)

dx2
. (3.2)

We then have the following matrix equation to solve:

A~̃u = ~b.

Hence, by inverting the matrix A, we will be able to attain the coefficients in

the vector ~̃u, thereby creating a method to interpolate each Chebyshev polynomial

with its respective coefficient will give the final numerical solution. So finally, the

numerical solution is

u(x, y) = ũ00T0(x)T0(y)+ũ01T0(x)T1(y)+. . .+ ˜uNNTN(x)TN(y) =
N∑
i=0

N∑
j=0

ũijTi(x)Tj(y).
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3.1.1 Example: uxx + uyy = f(x, y)

Consider the following Poisson problem,

uxx + uyy = −π2 sin(πy)
[
2 cos(πx) + 1

]
with the following boundary conditions,

u(−1, y) = u(1, y) = 0,

u(x,−1) = u(x, 1) = 0.

By solving the above equation analytically, we find the solution is

u(x, y) = sin(πy)
(

cos(πx) + 1
)
.

By solving this linear partial differential equation using our Chebyshev pseudo-

spectral method, we find that it does in fact show exponential convergence. Note

the error calculated is the L2 Norm between the interpolated solution and the exact

solution. The convergence plot can be seen in Figure(B-5).

A plot comparing the interpolated solution and exact solution is found in Figure(B-

6).

3.2 Nonlinear Poisson Equation on a Rectangle

In this section we will show the procedure for solving a nonlinear Poisson-type problem

on a rectangle using a pseudo-spectral method. To illustrate the algorithm we will

consider the following nonlinear PDE,

uxx + uyy + u2 = r(x, y),

where u = (x, y), and with boundary conditions u(−1, y) = b1, u(1, y) = b2, u(x,−1) =

b3, and u(x, 1) = b4.
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The numerical setup of this problem will be much like the numerical setup of a

Pseudo-Spectral Method for Linear ODEs; however, now we must consider a 2 di-

mensional problem. Not only will we have collocation points in the x direction, but

we will also have them in the y direction as well. These collocation points will now

define a 2 dimensional computational region.

Since we are still using the Chebyshev polynomials as our basis functions, our

collocation points will be the zeros of kth degree Chebyshev polynomials, so we use

Eq.(2.6) to determine them. We will call the collocation points in the x direction,

{xk}Nk=0, and the collocation points in the y direction, {yl}N0 . Since we now are con-

sidering a 2 dimensional region, we will define our computational domain at the grid

points (xk, yl) for k, l = 0, 1, . . . , N. For N = 6, the region is seen in Figure(B-4).

We then assume the solution u(x,y) has the following form,

u(x, y) =
N∑
i=0

N∑
j=0

ũijTi(x)Tj(y).

Upon discretizing the PDE, we see:

N∑
i=0

N∑
j=0

ũij

[
d2Ti(xk)

dx2
Tj(yl)+ Ti(xk)

d2Tj(yl)

dx2

]
+

(
N∑
i=0

N∑
j=0

ũijTi(xk)Tj(yl)

)2

= r(xk, yl).

However, in this case of a nonlinear ODE we cannot write a linear equation such

as A~̃u = ~b, to solve for the coefficients
{
ũi
}N
i=0
. Instead we will implement the Mul-

tivariate Newton’s Method, as in the Nonlinear ODE case. For our problem, our

algorithm will look like the following:

ũ00,n+1

ũ01,n+1

...

ũN(N−1),n+1

ũNN,n+1


=



ũ00,n

ũ01,n

...

ũN(N−1),n

ũNN,n


− J−1fij,n, (3.3)
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where ũij,n is the nth iterated coefficient ũij, J
−1 is the inverse of a Jacobian matrix,

and fkl,n is an nth iterated vector of functions set equal to zero corresponding to

k, l = 1, 2, . . . , N . We must build the vector fkl,n This vector is comprised of

(N+1)2 functions of the coefficients
{
ũij
}i=N,j=N
i=0,j=0

. Each component of fkl,n will have

the following form

fkl,n = Fkl(ũ00, ũ01, . . . , ũ0N , ũ10, . . . , ũNN) = 0, (3.4)

where the indices k, l = 0, 1, . . . , N and correspond to each collocation point (xk, yl).

To fill in this vector, we first look at the collocation points xk=0 = −1,xk=N = 1,

yl=0 = −1, and yl=N = 1 corresponding to the boundary. We will implement the

boundary conditions as follows.

f0l,n =
N∑
i=0

N∑
j=0

ũij,n Ti(x0) Tj(yl)− b1,

fNl,n =
N∑
i=0

N∑
j=0

ũij,n Ti(xN) Tj(yl)− b2,

fk0,n =
N∑
i=0

N∑
j=0

ũij,n Ti(xk) Tj(y0)− b3,

fkN,n =
N∑
i=0

N∑
j=0

ũij,n Ti(xk) Tj(yN)− b4.

Note that f0l,n, fNl,n, fk0,n and fkN,n have the form of Eq.(3.4). To fill in the remaining

components of fkl,n, we set the differential equation equal to zero and then evaluate

it at every collocation point within the boundary, or more explicitly,

fkl,n = Fkl =
N∑
i=0

N∑
j=0

ũij

[
d2Ti(xk)

dx2
Tj(yl) + Ti(xk)

d2Tj(yl)

dx2

]

+

(
N∑
i=0

N∑
j=0

ũijTi(xk)Tj(yl)

)2

− r(xk, yl), (3.5)

30



To obtain the above result, consider the following function, where we are substi-

tuting our assumed solution into the PDE,

G(x, y, ~̃u) =
N∑
i=0

N∑
j=0

ũij

[
d2Ti(x)

dx2
Tj(y) + Ti(x)

d2Tj(y)

dx2

]

+

(
N∑
i=0

N∑
j=0

ũijTi(x)Tj(y)

)2

− r(x, y) = 0. (3.6)

As we did in deriving Eq.(2.3), we will multiply (3.6) by the delta test functions,

χk = δ(x− xk) andχl = δ(y − yl), and integrate over the domain we obtain,

∫ 1

−1

∫ 1

−1

G(x, y, ~̃u)δ(x− xk)δ(y − yl)dxdy

=
N∑
i=0

N∑
j=0

ũij

[
d2Ti(xk)

dx2
Tj(yl) + Ti(xk)

d2Tj(yl)

dx2

]

+

(
N∑
i=0

N∑
j=0

ũijTi(xk)Tj(yl)

)2

− r(xk, yl). (3.7)

for k, l = 1, 2, . . . , N − 1.

We must now construct the Jacobian matrix Jn = Jn(k, i). The Jacobian Jn will

be of size (N+1)2×(N+1)2. It will have the form:
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Jn =



∂F00

∂ũ00

∂F00

∂ũ01
· · · ∂F00

∂ũ0N

∂F00

∂ũ10
· · · ∂F00

∂ũNN

∂F01

∂ũ00

∂F01

∂ũ01
· · · ∂F01

∂ũ0N

∂F01

∂ũ10
· · · ∂F01

∂ũNN

...
...

...
...

...

∂F0N

∂ũ00

∂F0N

∂ũ01
· · · ∂F0N

∂ũ0N

∂F0N

∂ũ10
· · · ∂F0N

∂ũNN

∂F10

∂ũ00

∂F10

∂ũ01
· · · ∂F10

∂ũ0N

∂F10

∂ũ10
· · · ∂F10

∂ũNN

...
...

...
...

...

∂FNN
∂ũ00

∂FNN
∂ũ01

· · · ∂FNN
∂ũ0N

∂FNN
∂ũ10

· · · ∂FNN
∂ũNN


From our definitions of the functions Fkl, we see that at the collocation points cor-

responding to either k = 0, N or l = 0, N , the values in the Jacobian will be vastly

different from the others. We illustrate them below.

Jn(0l, ij) =
∂F0l

∂ũij
= Ti(x0)Tj(yl),

Jn(Nl, ij) =
∂FNl
∂ũij

= Ti(xN)Tj(yl),

Jn(k0, ij) =
∂Fk0
∂ũij

= Ti(xk)Tj(y0),

Jn(kN, ij) =
∂FkN
∂ũij

= Ti(xk)Tj(yN).
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The rest of the matrix components will fill in similarly, as follows

Jn(kl, ij) =
∂Fkl
∂ũij

=
d2Ti(xk)

dx2
Tj(yl) + Ti(xk)

d2Tj(yl)

dx2

+ 2 Ti(xk) Tj(yl)

(
N∑
i=0

N∑
j=0

ũijTi(xk)Tj(yl)

)
. (3.8)

Finally, to find the coefficients ũij, we must first provide an initial guess for the

coefficients,
{
ũij,0

}i,j=N
i,j=0

. This will allow us to begin the iterations. By using the

Multivariate Newton’s Method algorithm,

~̃un+1 = ~̃un − J−1
n
~fkl,n,

we can find the coefficients
{
ũij,n

}i,j=N
i,j=0

to interpolate the solution. Let the chosen

error tolerance be ε when using the Newton’s method. The algorithm stops iterating

when the L2 norm between the coefficient vector of two successive iterations is smaller

than ε. Explicitly, the Newton’s algorithm stops iterating when the following condition

is satisfied (
N∑
i=0

N∑
j=0

(uij,n+1 − uij,n)2

)1/2

< ε.

Hence, we will have the coefficients
{
ũij,n

}i,j=N
i,j=0

and then we will have our full

numerical solution as

u(x, y) =
N∑
i=0

N∑
j=0

ũij,n Ti(x) Tj(y),

within the given error tolerance ε for the coefficients.

3.2.1 Example: uxx + uyy + u2 = f(x, y)

Consider the following nonlinear Poisson problem,

uxx + uyy + u2 = −π2 sin(πy)
[
2 cos(πx) + 1

]
+
(

sin(πy)
(

cos(πx) + 1
))2
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with the following boundary conditions,

u(−1, y) = u(1, y) = 0,

u(x,−1) = u(x, 1) = 0.

By solving the above equation analytically, we find the solution is

u(x, y) = sin(πy)
(

cos(πx) + 1
)
.

By solving this nonlinear partial differential equation using our Chebyshev pseudo-

spectral method, we find that it does in fact show exponential convergence. Note the

error calculated is the L2 Norm between the interpolated solution and the exact so-

lution. This exponential convergence is illustrated in Figure(B-7).

A plot comparing the interpolated solution and exact solution is found in Figure(B-

8).

3.3 Nonlinear Poisson Equation on a Disk

In this section we will show the procedure for implementing a pseudo-spectral method

for solving a nonlinear Poisson-like problem in polar coordinates. The equation we

wish to solve is:

urr +
1

r
ur +

1

r2
uφφ + u2 = d(r, φ),

with boundary conditions

u(0, φ) = 0,

u(1, φ) = 0,

u(r, 0) = u(r, 2π), and
∂u

∂φ
(r, 0) =

∂u

∂φ
(r, 2π).

We will use a Chebyshev scheme to solve in the radial coordinate and a Fourier

Spectral Scheme to solve in the angular coordinate. However, since the Chebyshev
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polynomials are defined between [-1,1] and not [0,1], we have the option to either

transform the polynomials to be defined between [0,1] ,or we can perform a coordinate

transformation to define the PDE itself on [-1,1]×[0,2π] rather than [0,1]×[0,2π]. We

will do the latter.

We will use the following coordinate transformation to transform the PDE into

the appropriate domain,

A = 2r − 1 (3.9)

By applying the chain rule, we see

∂u

∂r
=
∂u

∂A

∂A

∂r
= 2

∂u

∂A
,

∂2u

∂r2
=
∂A

∂r

∂

∂A
(
∂u

∂A
) = 4

∂2u

∂A2
.

By using the above relation and Eq.(3.9), we see the PDE transforms to

4uAA +
2

A+1
2

uA +
1(

A+1
2

)2uφφ + u2 = d(
A+ 1

2
, φ),

or more simplified as

4uAA +
4

A+ 1
uA +

4

(A+ 1)2
uφφ + u2 = d(A, φ).

The numerical setup of this problem will be much like the numerical setup of a

Pseudo-Spectral Method for Nonlinear ODEs; however, now we must consider a 2

dimensional problem. Not only will we have collocation points in the A direction, but

we will also have them in the φ direction as well. These collocation points will now

define a 2 dimensional computational region.

Since we are still using the Chebyshev polynomials as our basis functions for

the A coordinate, our collocation points will be the zeros of kth degree Chebyshev

polynomials, so we will use Eq.(2.6) to determine them. We will call the collocation

points in the A direction, {Ak}NAk=0. The collocation points in the φ direction will
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be the zeros of the lth 2π periodic Fourier basis function, so we will use Eq.(2.10)

to determine them. We will call them {φl}
Nphi
0 . We will define our computational

domain at the grid points (Ak, φl) for k = 0, 1, . . . , NA and l = 1, 2, . . . , Nphi − 1. For

NA = Nφ = 7, the region is seen in Figure(B-9). Note that we need to define on our

computational domain on an odd number of Fourier Collocation points.

We then assume the solution u(x,y) has the following form,

u(A, φ) =

NA∑
m=0

n=
Nphi

2
−1∑

n=
Nphi

2
+1

ũmnTm(A)einφ.

By discretizing the PDE, we see:

NA∑
m=0

n=
Nphi

2
−1∑

n=
Nphi

2
+1

ũmn

[
4
d2Tm(Ak)

dx2
+

4

A+ 1

dTm(Ak)

dx
− 4n2

(A+ 1)2
Tm(Ak)

]
einφl

+

(
NA∑
m=0

n=
Nphi

2
−1∑

n=
Nphi

2
+1

ũmnTm(Ak))e
inφl

)2

= r(Ak, φl).

However, in this case of a nonlinear ODE we cannot write a linear equation such as

A~̃u = ~b, to solve for the coefficients
{

˜umn
}
. Instead we will implement the Multivariate

Newton’s Method, as in the nonlinear ODE case. For our problem, our algorithm will

look like the following:

ũ01,j+1

ũ02,j+1

...

ũN(N−2),j+1

ũN(N−1),j+1


=



ũ01,j

ũ02,j

...

ũN(N−2),j

ũN(N−1),j


− J−1fmn,j, (3.10)

where ũmn,j is the jth iterated coefficient ũmn, J−1 is the inverse of a Jacobian matrix,

and fmn,j is an jth iterated vector of functions set equal to zero corresponding to

m = 0, 1, 2, . . . , N and n =
−Nφ

2
+ 1,

−Nφ
2

+ 2, . . . , 0, . . . ,
Nφ
2
− 1 .
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We must build the vector fmn,j This vector is comprised of (NA+1)(Nphi-1) func-

tions of the coefficients
{
ũmn

}
. Each component of fmn,j will have the following form

fmn,j = Fkl
(
ũ01, ũ02, . . . , ũ0 Nphi−1, ũ11, . . . , ũNANphi−1

)
= 0, (3.11)

where the indices k,= 0, 1, . . . , NA and l = 1, 2, . . . , Nphi − 1 correspond to each

collocation point (Ak, φl). To fill in this vector, we first look at the collocation points

xk=0 = −1 and xk=N = 1 corresponding to the A-boundary. We will implement the

boundary conditions as follows.

f0l,n =

NA∑
m=0

n=
Nphi

2
−1∑

n=
Nphi

2
+1

ũmn,j
dTm(A0)

dA
einφl ,

fNl,n =

NA∑
m=0

n=
Nphi

2
−1∑

n=
Nphi

2
+1

ũmn,j Tm(A0)e
inφl .

Note that f0l,n and fNl,n have the form of Eq.(3.11). To fill in the remaining compo-

nents of fmn,j, we set the differential equation equal to zero and then evaluate it at

every collocation point within the boundary, or more explicitly,

fmn,j = Fmn =

NA∑
m=0

n=
Nphi

2
−1∑

n=
Nphi

2
+1

ũmn

[
4
d2Tm(Ak)

dx2
+

4

Ak + 1

dTm(Ak)

dx
− 4n2

(Ak + 1)2
Tm(Ak)

]
einφl

+

(
NA∑
m=0

n=
Nphi

2
−1∑

n=
Nphi

2
+1

ũmnTm(Ak)e
inφl

)2

− r(Ak, φl) = 0.

for k = 1, 2, . . . , NA − 1 and l = 1, 2, . . . , Nphi − 1.

To obtain the above result, consider the following function, where we are substi-
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tuting our assumed solution into the PDE,

G(A, φ, ~̃u) =
NA∑
m=0

n=
Nphi

2
−1∑

n=
Nphi

2
+1

ũmn

[
4
d2Tm(A)
dx2

+
4

A+ 1
dTm(A)
dx

− 4n2

(A+ 1)2
Tm(A)

]
einφ

+

(
NA∑
m=0

n=
Nphi

2
−1∑

n=
Nphi

2
+1

ũmnTm(A)einφ
)2

− r(A, φ) = 0.

(3.12)

Analogously to (2.3), we will multiply (3.12) by the delta test functions, χk =

δ(A− Ak) andχl = δ(φ− φl), and integrate over the domain we obtain,

∫ 1

−1

∫ 1

−1

G(A, φ, ~̃u)δ(A− Ak)δ(φ− phil)dxdy

=

NA∑
m=0

n=
Nphi

2
−1∑

n=
Nphi

2
+1

ũmn

[
4
d2Tm(Ak)

dx2
+

4

Ak + 1

dTm(Ak)

dx
− 4n2

(Ak + 1)2
Tm(Ak)

]
einφl

+

(
NA∑
m=0

n=
Nphi

2
−1∑

n=
Nphi

2
+1

ũmnTm(Ak)e
inφl

)2

− r(Ak, φl) (3.13)

for k, l = 1, 2, . . . , N − 1.

We must now construct the Jacobian matrix Jn = Jn(k, j). The Jacobian Jn will

38



be of size (NA+1)(Nphi-1)×(Nphi-1)(NA+1). It will have the form:

Jn =



∂F01

∂ũ01

∂F01

∂ũ02
· · · ∂F01

∂ũ0(Nphi−1)

∂F01

∂ũ11
· · · ∂F01

∂ũNA(Nphi−1)

∂F02

∂ũ01

∂F02

∂ũ02
· · · ∂F02

∂ũ0(Nphi−1)

∂F02

∂ũ11
· · · ∂F02

∂ũNA(Nphi−1)

...
...

...
...

...

∂F0(NPhi−1)

∂ũ01

∂F0(NPhi−1)

∂ũ02
· · · ∂F0(NPhi−1)

∂ũ0(NPhi−1)

∂F0(NPhi−1)

∂ũ11
· · ·

∂F0(Nphi−1)

∂ũNA(Nphi−1)

∂F11

∂ũ01

∂F11

∂ũ02
· · · ∂F11

∂ũ0(NPhi−1)

∂F11

∂ũ11
· · · ∂F11

∂ũNA(Nphi−1)

...
...

...
...

...

∂FNA(NPhi−1)

∂ũ01

∂FNA(NPhi−1)

∂ũ02
· · · ∂FNA(NPhi−1)

∂ũ0(NPhi−1)

∂FNA(NPhi−1)

∂ũ11
· · · ∂FNA(NPhi−1)

∂ũNA(NPhi−1)


From our definitions of the functions Fmn, we see that at the collocation points

corresponding to either k = 0 or k = NA, the values in the Jacobian will be vastly

different from the others. We illustrate them below.

Jn(0l,mn) =
∂F0l

∂ũmn
= Tm(A0) e

inφl ,

Jn(NAl,mn) =
∂FNAl
∂ũmn

= Tm(ANA) einφl .

The rest of the matrix components will fill in similarly, as follows

Jn(mn, kl) =
∂Fmn
∂ũkl

=

[
4
d2Tm(Ak)

dx2
+

4

A+ 1

dTm(Ak)

dx
− 4n2

(A+ 1)2
Tm(Ak)

]
einφl

+ 2

(
NA∑
m=0

n=
Nphi

2
−1∑

n=
Nphi

2
+1

ũmnTm(Ak))e
inφl

)
Tm(Ak)e

inφl .
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Finally, to find the coefficients ũmn, we must first give an initial guess for the coffi-

cients,
{
ũmn,0

}
. This will allow us to begin the iterations. By using the Multivariate

Newton’s Method algorithm,

~̃uj+1 = ~̃uj − J−1
n
~fmn,j,

we can find the coefficients
{
ũmn,j

}
to interpolate the solution.

Let the chosen error tolerance be ε when using the Newton’s method. The algo-

rithm stops iterating when the L2 norm between the coefficient vector of two successive

iterations is smaller than ε. Explicitly, the Newton’s algorithm stops iterating when

the following condition is satisfied

(
NA∑
i=0

n=
Nphi

2
−1∑

n=
Nphi

2
+1

(umn,j+1 − umn,j)2

)1/2

< ε.

Hence, we will have the coefficients
{
ũij,n

}
and then can write our final numeric

solution as

u(A, φ) =

NA∑
m=0

n=
Nphi

2
−1∑

n=
Nphi

2
+1

ũmnTm(A)einφ,

within the given error tolerance ε.

Note: Recall that the original problem was in terms of r and not A. We simply

had to do a coordinate transformation from r to A in order to ensure we could use

the Chebyshev polynomials, which are defined on [−1, 1]. If we wish to transform our

solution back into terms of u(r, φ), then in our numerical solution, wherever there is

an A, we can then substitute A→ (2r − 1) so that you may enter values of r rather

than values of A.
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3.3.1 Example: urr + 1
rur + 1

r2uφφ + u2 = f(r, φ)

Consider the following Poisson problem,

urr +
1

r
ur +

1

r2
uφφ + u2

=

[
−4π2 cos[(2r − 1)π]− 2π

r
sin[(2r − 1)π] +

1

r2

(
sin2 φ− cosφ

)]
ecosφ

+

([
cos[(2r − 1)π] + 1

]
ecosφ

)2

,

with the following boundary conditions,

u(0, φ) = u(1, φ) = 0,

u(r,−π) = u(r, π), and
∂u

∂φ
(r,−π) =

∂u

∂φ
(r, π).

By solving the above equation analytically, we find the solution is

u(r, φ) =
[

cos[(2r − 1)π] + 1
]
ecosφ.

By solving this nonlinear partial differential equation using our Fourier pseudo-

spectral method, we find that it does in fact show exponential convergence. Note

the error calculated is the Sup Norm between the interpolated solution and the exact

solution. The convergence plot is found in Figure(B-10).

A plot comparing the interpolated solution and exact solution is found in Figure(B-

11) for Nr = Nφ = 10.
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Chapter 4

Poisson’s Equation on an

Unbounded Domain

In this Section we will present the basic framework of using Chebyshev and Fourier

pseudo-spectral methods in solving problems whose domain is all of R3.

4.1 Compactification of R3

In this section we will introduce the change of variables that will inherently compactify

all of R3 into a finite box. Upon doing so, we will present the spherical Laplacian in

compactified coordinates. Recall in spherical coordinates, (r, θ, φ), we consider,

r ∈ [0,∞)

θ ∈ [0, π]

φ ∈ [0, 2π)

We will use the following transformations to compactify all of R3 into the box,

[−1, 1]× [−1, 1]× [0, 2π),
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Ã = 2

[
1 +

m

2r

]−1

− 1,

B̃ =
2

π
θ − 1,

φ̃ = φ.

where Ã ∈ [−1, 1], B̃ ∈ [−1, 1], and φ̃ ∈ [0, 2π). The above transformations will com-

pactify the domain [0,∞]× [0, π]× [0, 2π)→ [−1, 1]× [−1, 1]× [0, 2π).

Now we wish to transform the Laplacian in spherical coordinates into the comac-

tified coordinates. Recall the Laplacian in spherical coordinates is,

∆u = urr +
2

r
ur +

1

r2 sin2 θ
uφφ +

1

r2 sin θ

[
d

dθ
(sin θuθ)

]
. (4.1)

To perform the change of variables we must compute all the necessary chain rules.

Upon doing so, we see

∂u

∂r
=

1

m
(1− Ã)2 ∂u

∂Ã
,

∂2u

∂r2
=

1

m2
(1− Ã)4 ∂

2u

∂Ã2
− 2

m2
(1− Ã)3 ∂u

∂Ã
,

∂u

∂θ
=

2

π

∂u

∂B̃
,

∂2u

∂θ2
=

4

π2

∂2u

∂B̃2
.

Substituting the coordinate transformations and the above relations into the

Laplacian in spherical coordinates, we find the Laplacian in compactified coordinates
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takes the following form,

∆u =
1

m2

(
1− Ã

)4

uÃÃ +
2

m2

(1− Ã)4

1 + Ã
uÃ

+
4

m2

(
1− Ã
1 + Ã

)2
 4

π2
uB̃B̃ +

2

π
cos

[
2

π
(B̃ + 1)

]
uB̃ +

uφφ

sin2
[

2
π
(B̃ + 1)

]
 . (4.2)

4.2 Radially Symmetric Problems

4.2.1 Example of slow convergence: urr + 2
rur = f(r)

Consider the following ordinary differential equation

urr +
2

r
ur = (r2 − 6)e−r

2

with the following boundary conditions,

du

dr

∣∣∣
r=0

= 0, and

u(r →∞) = 0.

Upon solving the above ODE analytically we find that the solution is

u(r) = e−r
2

.

By solving this linear ordinary differential equation using our Chebyshev pseudo-

spectral method, we find that it does in fact show exponential convergence; however,

the convergence rate is slow.The plot in Figure(B-12) compares the interpolated solu-

tion versus the exact solution. The plot in Figure(B-13) illustrates the exponential

convergence achieved by the pseudo-spectral method. Note the error that was calcu-

lated is the sup norm of the difference between the interpolated and exact solution.
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4.2.2 Example of fast convergence: urr + 2
rur = f(r)

Consider the following ordinary differential equation

urr +
2

r
ur =

8r2

(1 + r2)3
− 6

(1 + r2)2

with the following boundary conditions,

u(0) = 1, and

u(r →∞) = 0.

Upon solving the above ODE analytically we find that the solution is

u(r) =
1

1 + r2
.

By solving this linear ordinary differential equation using our Chebyshev pseudo-

spectral method, we find that it does in fact show exponential convergence. The plot

in Figure(B-14) compares the interpolated solution and the exact solution.

The plot in Figure(B-15) illustrates the exponential convergence achieved by the

pseudo-spectral method.Note the error that was calculated is the sup norm of the

difference between the interpolated and exact solution.

In comparison with the previous example we note that the convergence rate is

much faster in this case. This is because when compactifying the domain from

(0,∞) ⇒ (−1, 1), we find that Chebyshev polynomials will be better for converg-

ing to the solution if the true solution algebraically goes to zero. In the first example,

we find the solution decays exponentially whereas in the second example the true

solution decays algebraically.

4.2.3 Example: urr + 2
rur + 1

1+u = f(r)

Consider the following ordinary differential equation

urr +
2

r
ur +

1

1 + u
=

8r2

(1 + r2)3
− 6

(1 + r2)2
+

1 + r2

2 + r2
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with the following boundary condition,

u(r →∞) = 0.

Note that we will not explicitly impose a boundary condition at r = 0. Upon solving

the above ODE analytically we find that the solution is

u(r) =
1

1 + r2
.

By solving this nonlinear ordinary differential equation using our Chebyshev pseudo-

spectral method, we find that it does in fact show exponential convergence. The plot

in Figure(??) compares the interpolated solution versus the exact solution.

The plot in Figure(B-17) illustrates the exponential convergence achieved by the

pseudo-spectral method. Note the error that was calculated is the sup norm of the

difference between the interpolated and exact solution.

4.3 Axisymmetric Problems

4.3.1 Example of slow convergence: urr + 2
rur + 1

r2uθ + cot θ
r2 uθ =

f(r, θ)

Consider the following ordinary differential equation

urr +
2

r
ur +

1

r2
uθ +

cot θ

r2
uθ = 2e−r

2

r(2r2 − 5) cos θ

with the following boundary conditions,

u(0, θ) = 0,

u(r →∞, θ) = 0,

u(r, 0) = re−r
2

,

u(r, π) = −re−r2 .
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Upon solving the above PDE analytically we find that the solution is

u(r, θ) = r cos θe−r
2

.

By solving this linear partial differential equation using our Chebyshev pseudo-

spectral method, we find that it does in fact show exponential convergence. The plot

in Figure(B-18) compares the interpolated solution versus the exact solution.

The plot in Figure(B-19) illustrates the exponential convergence achieved by the

pseudo-spectral method. Note the error that was calculated is the sup norm of the

difference between the interpolated and exact solution.

4.3.2 Example of fast convergence: urr + 2
rur + 1

r2uθ + cot θ
r2 uθ =

f(r, θ)

Consider the following ordinary differential equation

urr +
2

r
ur +

1

r2
uθ +

cot θ

r2
uθ =

−2r(r2 + 5) cos(θ) sin(θ)

(1 + r2)3

with the following boundary conditions,

u(0, θ) = 0,

u(r →∞, θ) = 0,
∂u

∂θ

∣∣∣
(r,0)

= 0,

∂u

∂θ

∣∣∣
(r,π)

= 0.

The computational domain we consider is illustrated in Figure(B-20), where we

enforce the appropriate boundary conditions.

Upon solving the above PDE analytically we find that the solution is

u(r, θ) =
r cos θ

1 + r2
.
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By solving this linear partial differential equation using our Chebyshev pseudo-

spectral method, we find that it does in fact show exponential convergence. The plot

found in Figure(B-21) compares the interpolated solution versus the exact solution.

The plot in Figure(B-22) illustrates the exponential convergence achieved by the

pseudo-spectral method. Note the error that was calculated is the sup norm of the

difference between the interpolated and exact solution.

In comparison with the previous example we note that the convergence rate is

much faster in this case. This is because when compactifying the domain from

(0,∞) ⇒ (−1, 1), we find that Chebyshev polynomials will be better for converg-

ing to the solution if the true solution algebraically goes to zero. In the first example,

we find the solution decays exponentially whereas in the second example the true

solution decays algebraically.

We can also choose to omit one of the boundary conditions in the r-direction,

either at r = 0 or r → ∞. We will show examples of doing so, specifically what

boundary conditions we enforce, the computational grids, and the exponential con-

vergence plots associated with each trial.

Omitting the Boundary Condition at r = 0.

If we omit the boundary condition at the origin, then the only boundary conditions

we are enforcing are

u(r →∞, θ) = 0.
∂u

∂θ

∣∣∣
(r,0)

= 0,

∂u

∂θ

∣∣∣
(r,π)

= 0.

The collocation grid is found in Figure(B-23). We find the exponential con-

vergence to be the 2-cycle shown in Figure(B-24)
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Omitting the Boundary Condition at r →∞.

If we omit the boundary condition at infinity, the only boundary conditions we enforce

are

u(0, θ) = 0.
∂u

∂θ

∣∣∣
(r,0)

= 0,

∂u

∂θ

∣∣∣
(r,π)

= 0.

The collocation grid is found in Figure(B-25).

We find the exponential convergence to be the 2-cycle shown in Figure(B-26).

4.3.3 Example: urr + 2
rur + 1

r2uθ + cot θ
r2 uθ + 1

1+u = f(r, θ)

Consider the following partial differential equation

urr +
2

r
ur +

1

r2
uθ +

cot θ

r2
uθ =

−2r(r2 + 5) cos(θ) sin(θ)

(1 + r2)3
+

1 + r2

1 + r cos θ + r2

with the following boundary conditions,

u(r →∞, θ) = 0.

u(r, 0) =
1

1 + r2
,

u(r, π) =
−1

1 + r2
.

Note we do not explicitly impose a boundary condition at r = 0. The computational

domain we consider is illustrated in Figure(B-27), where we enforce the appropriate

boundary conditions.

Upon solving the above PDE analytically we find that the solution is

u(r, θ) =
r cos θ

1 + r2
.
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By solving this linear partial differential equation using our Chebyshev pseudo-

spectral method, we find that it does in fact show exponential convergence. The plot

in Figure(B-28) compares the interpolated solution versus the exact solution.

The plot found in Figure(B-29) illustrates the exponential convergence achieved

by the pseudo-spectral method. Note the error that was calculated is the sup norm

of the difference between the interpolated and exact solution.
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Chapter 5

Initial Data for a Single Puncture

In this chapter we will discuss the initial data problem in numerical relativity for

single black holes. First we will introduce the governing equations, then we will solve

them using a pseudo-spectral method.

5.1 The Hamiltonian Constraint and The Momen-

tum Constraint

The Hamiltonian constraint in Numerical Relativity is an elliptic equation for the

scalar field, ψ,

∆ψ +
1

8
KabKabψ

−7 = 0. (5.1)

The Momentum constraint in Numerical Relativity is an equation in terms of the

extrinsic curvature, Kab,

∇aK
ab = 0. (5.2)

There are explicit solutions of Eq.(5.2) that characterize a single black hole with

a given momentum, P a, and spin, Sa. By letting na be the radial normal vector, ie-

na =
xa

r
,
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the solution for Kab is found to be:

Kab =
3

r2

(
P anb + P bna − (gab − nanb)P cnc

)
+

3

r3

(
(~S × ~n)anb + (~S × ~n)bna

)
, (5.3)

where gab = δab, the Kronecker delta.

We will now examine two cases- one where there is spin aligning in only the

x-direction with no momentum and one where there is only momentum in the x-

direction but no spin. Note that in the following discussion we will use the following

spherical coordinates:

x = r cos θ,

y = r sin θ cosφ, (5.4)

z = r sin θ sinφ.

These coordinates are illustrated in Figure(B-30).

5.1.1 Single Puncture with Spin

In this section we will use equations Eq.(5.1) and Eq.(5.3) to derive the equation gov-

erning the initial puncture data for a black hole with spin, but no linear momentum.

We let

~S = (Sx, 0, 0),

~P = (0, 0, 0),

~n =
(x
r
,
y

r
,
z

r

)
.

By using Eq.(5.3) we find that
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KSx =
3Sx
r5


0 −xz xy

−xz −2yz y2 − z2

xy y2 − z2 2yz

 (5.5)

Now performing the contraction on the extrinsic curvature KSx , we find

Kab
SxKSxab =

18S2
x

r6
sin2 θ. (5.6)

Substituting Eq.(5.6) into Eq.(5.1) we find

∆ψ +
9S2

x

4r6
sin2 θψ−7 = 0. (5.7)

5.1.2 Single Puncture with Linear Momentum

In this section we will use equations Eq.(5.1) and Eq.(5.3) to derive the equation

governing the initial puncture data for a black hole with linear momentum, but no

spin. We let

~S = (0, 0, 0),

~P = (Px, 0, 0),

~n =
(x
r
,
y

r
,
z

r

)
.

By using Eq.(5.3) we find that

KPx =
3Px
2r3


x+ x3

r2
y + x2y

r2
z + x2z

r2

y + x2y
r2

xy2

r2
− x xyz

r2

z + x2z
r2

xyz
r2

xz2

r2
− x

 (5.8)

Now performing the contraction on the extrinsic curvature KPx , we find
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Kab
PxKPxab =

9P 2
x

2r4

(
1 + 2 cos2 θ

)
. (5.9)

Substituting Eq.(5.9) into Eq.(5.1) we find

∆ψ +
9P 2

x

16r4

(
1 + 2 cos2 θ

)
ψ−7 = 0. (5.10)

5.2 Computation for Single Puncture with Spin

We will start with the following equation,

∆Ψ +
9S2

x

4r6
Ψ−7 sin2 θ = 0, (5.11)

which is in terms of the spherical coordinates defined in Eq.(5.4).

The solution for Ψ is known to be singular at the location of the black holes. To

ensure that our numerical scheme will exhibit the proper convergence to the solution,

we will break the solution into its singular part and an auxillary function, u. We

proceed in doing so by re-defining the function Ψ,

Ψ = 1 +
m

2r
+ u. (5.12)

We can then substitute this definition of Ψ into Eq.(5.11) to obtain an equation

in terms of u,

∆(1 +
m

2r
+ u) = ∆1 + ∆(

m

2r
) + ∆u = ∆u. (5.13)

Note that ∆(m
2r

) = 0 because 1
r

is an exact solution of the laplacian in spherical

coordinates. We then are left to solve the following non-linear, elliptic PDE in terms

of u,

∆u+
9S2

x

4r6

sin2 θ

(1 + m
2r

+ u)7
= 0. (5.14)
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Simplifying further we obtain,

∆u+
9S2

x

4r6

128 r7 sin2 θ

(2r +m+ 2ru)7
= 0, (5.15)

and then

∆u+ 288 S2
x r sin2 θ (2r +m+ 2ru)−7 = 0. (5.16)

5.2.1 Comfactification: (r, θ, φ)→ (Ã, B̃, φ)

In this section we will transform Eq.(5.14) from (r,θ,φ) to (A,θ,φ). The case when we

consider a single puncture with linear momentum follows analogously.

First we use the Laplacian in the compactified coordinates, as described in Section(4.1).

This transformation is necessary for two reasons. In the numerical sense, we must

compactify R3 into a computational box for our pseudo-spectral method to perform

accurately.

The other reason is more profound because the solution for u is found to be C2 at

the puncture, the location of the black hole. This is illustrated in Appendix(5.2.4).

To achieve exponential convergence to the solution from our spectral method, we

need the solution to be C∞ everywhere in the computational domain. We will use

the following coordinate transformation render the puncture smooth,

Ã = 2
[
1 +

m

2r

]−1

− 1, (5.17)

which is the compactification transformation we used in Section(4.1). By solving

for r, we find

r =
m

2

(
1 + Ã

1− Ã

)
. (5.18)
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Hence, by substituting Eq.(5.18) into Eq.(5.14), we obtain

∆u = − 9S2
x

4
(
m
2

(
1+Ã
1−Ã

))6

(
1 +

(
1− Ã
1 + Ã

)
+ u

)−7

sin2 θ = 0. (5.19)

Simplifying the above expression further we see

∆u = −144S2
x

m6

(1 + Ã)(1− Ã)6

[(1− Ã) + (1 + Ã)(1 + u)]7
sin2 θ (5.20)

Now recall the Laplacian in the compactified coordinates of Section(4.1),

∆u =
1

m2

(
1− Ã

)4

uÃÃ +
2

m2

(1− Ã)4

1 + Ã
uÃ

+
4

m2

(
1− Ã
1 + Ã

)2
 4

π2
uB̃B̃ +

2

π
cos

[
2

π
(B̃ + 1)

]
uB̃ +

uφφ

sin2
[

2
π
(B̃ + 1)

]
 . (5.21)

By putting Eq.(5.20) and Eq.(5.21) together, we see the equation we will be solving

with our spectral scheme will be

(
1− Ã2

)2

uÃÃ + 2(1− Ã)2(1 + Ã)uÃ

+ 2

 4

π2
uB̃B̃ +

2

π
cos

[
2

π
(B̃ + 1)

]
uB̃ +

uφφ

sin2
[

2
π
(B̃ + 1)

]


= −144w2 (1 + Ã)3(1− Ã)4

[(1− Ã) + (1 + Ã)(1 + u)]7
sin2 θ, (5.22)

where w = Sx
m2 .

5.2.2 Test Example: ∆u+ 9
16r6

sin2 θ

(1+ 1
r +u)

7 = f(r, θ, φ)

Before we solve the Single Puncture with Spin Initial Data PDE, we will consider

the following partial differential equation, which takes a similar form to the Single
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Puncture Initial data PDE but with a non-homogeneous term,

∆u+
9

16r6

sin2 θ(
1 + 1

r
+ u
)7 = −2r(r2 + 5) sin θ cosφ

(1 + r2)3 +
9 sin2 θ

16r6
(
1 + 1

r
+ r sin θ cosφ

1+r2

)7
which we want to satisfy the following boundary condition,

u(r →∞, θ) = 0.

Note that we do not explicitly impose boundary conditions at r = 0, θ = 0, or

θ = π. In the φ direction we note periodicity is enforced by our choice of periodic

basis functions. By solving the above PDE analytically we find that the solution is

u(r, θ) =
r sin θ cosφ

1 + r2
.

Also, this PDE has the same non-linear term as the Single Puncture Initial Data

PDE; however, it has been constructed so we know an exact solution to the prob-

lem. In solving this problem with our psuedo-spectral method, we assume a spectral

solution of the form,

u(Ã, B̃, φ) =

NA∑
l=0

NB∑
m=0

n=
Nphi

2
−1∑

n=
Nphi

2
+1

ũlmnTl(Ã)Tm(B̃)einφ.

Also we use the same compactification procedure as in Section(4.1). Note for this

example, we consider the case when m = 2 and Sx = 1.

The plot in Figure(B-31) illustrates the exponential convergence achieved by the

pseudo-spectral method. Note the error that was calculated is the absolute error of

the Sup-Norm between the interpolated solution and the exact solution.

59



5.2.3 The Physical Problem: ∆u = − 9
4r6

sin2 θ

(1+ m
2r +u)

7

Consider the following non-linear, elliptic PDE,

∆u = − 9

4r6

sin2 θ(
1 + m

2r
+ u
)7 ,

with the following boundary condition,

u(r →∞, θ) = 0.

We will solve this using a pseudo-spectral method, assuming a spectral solution

of the form,

u(Ã, B̃, φ) =

NA∑
l=0

NB∑
m=0

n=
Nphi

2
−1∑

n=
Nphi

2
+1

ũlmnTl(Ã)Tm(B̃)einφ.

We then solved this PDE for the case when w = Sx
m2 = 0.2. First we numerically solved

this problem on a computational grid with N = NÃ = NB̃ = 30 points and Nφ = 4

points. Then we compared other cases in which we vary N. Upon doing so we obtain

the convergence plot in Figure(B-32), which illustrates exponential convergence to

the solution.

Hence, we find that our pseudo-spectral code can successfully solve the single

puncture with spin initial data PDE.

5.2.4 Differentiability of u at r = 0.

Recall Eq.(5.16):

∆u+ 72 S2
x r sin

2θ (2r +m+ 2ru)−7 = 0.

Expanding the r
(2r+m+2ru)−7 in a Machlaurin Series, we see

∆u+
72 S2

x

m7
r sin2θ [1− 14

m
r (1 + u)] +O(r3) = 0, (5.23)
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Hence, we see that the leading order term is

∆u+ βr sin2 θ = 0, (5.24)

where

β =
72 S2

x

m7
.

We are interested in finding the leading term behavior of Eq.(5.24). Note: r sin2 θ

is continuous but not differentiable at x = 0. Therefore ∆u is continuous but not

differentiable and hence is C2. Recall in spherical polar coordinates:

r sin2 θ =
y2 + z2√
x2 + y2 + z2

.

Therefore we have an equation of the form

∆u = r sin2 θ =
y2 + z2√
x2 + y2 + z2

.

By setting x = 0 we see that

∆u =
y2 + z2√
y2 + z2

=
√
y2 + z2.

Hence, we verified that the above expression is differentiable but not continuous

and hence u ∈ C2.

5.3 Computation for Single Puncture with Linear

Momentum

We will start with the following equation,

∆Ψ +
9P 2

x

16r4
Ψ−7

(
1 + 2 cos2 θ

)
= 0, (5.25)
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in terms of the spherical coordinates defined in Eq.(5.4). The solution for Ψ is

known to be singular at the location of the black holes. To ensure that our numerical

scheme will exhibit the proper convergence to the solution, we will break the solution

into a singular part. We proceed in doing so by re-defining the function Ψ,

Ψ = 1 +
m

2r
+ u. (5.26)

We can then substitute this definition of Ψ into Eq.(5.11) to obtain an equation

in terms of u,

∆(1 +
m

2r
+ u) = ∆1 + ∆(

m

2r
) + ∆u = ∆u. (5.27)

Note that ∆(m
2r

) = 0 because 1
r

is an exact solution of the laplacian in spherical

coordinates. We then are left to solve the following non-linear, elliptic PDE in terms

of u,

∆u+
9P 2

x

16r4

1 + 2 cos2 θ

(1 + m
2r

+ u)7
= 0. (5.28)

5.3.1 Comfactification: (r, θ, φ)→ (Ã, B̃, φ)

In this section we will transform Eq.(5.28) from (r,θ,φ) to (A,θ,φ). First we use the

Laplacian in the compactified coordinates, as described in Section(4.1). This trans-

formation is necessary for two reasons. In the numerical sense, we must compactify

R3 into a computational box for our pseudo-spectral method to perform accurately.

The other reason is more profound because the solution for u is found to be C2

at the puncture, the location of the black hole. To achieve exponential convergence

to the solution from our spectral method, we need the solution to be C∞ everywhere

in the computational domain. The same coordinate transformation, Eq.(5.17), from

Section(5.2.1) will be used to render the puncture smooth.

Hence, by substituting Eq.(5.18) into Eq.(5.28), we obtain

∆u = − 9P 2
x

16
(
m
2

(
1+Ã
1−Ã

))4

(
1 +

(
1− Ã
1 + Ã

)
+ u

)−7 (
1 + 2 cos2 θ

)
= 0. (5.29)
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Simplifying the above expression further we see

∆u = −9P 2
x

m4

(1 + Ã)3(1− Ã)4

[(1− Ã) + (1 + Ã)(1 + u)]7

(
1 + 2 cos2 θ

)
. (5.30)

Now recall the Laplacian in the compactified coordinates of Section(4.1),

∆u =
1

m2

(
1− Ã

)4

uÃÃ +
2

m2

(1− Ã)4

1 + Ã
uÃ

+
4

m2

(
1− Ã
1 + Ã

)2
 4

π2
uB̃B̃ +

2

π
cos

[
2

π
(B̃ + 1)

]
uB̃ +

uφφ

sin2
[

2
π
(B̃ + 1)

]
 . (5.31)

By putting Eq.(5.30) and Eq.(5.31) together, we see the equation we will be solving

with our spectral scheme will be

(
1− Ã2

)2

uÃÃ + 2(1− Ã)2(1 + Ã)uÃ

+ 2

 4

π2
uB̃B̃ +

2

π
cos

[
2

π
(B̃ + 1)

]
uB̃ +

uφφ

sin2
[

2
π
(B̃ + 1)

]


= −9w2 (1 + Ã)5(1− Ã)3

[(1− Ã) + (1 + Ã)(1 + u)]7

(
1 + 2 cos2 θ

)
, (5.32)

where w = Px
m
.

5.3.2 The Physical Problem: ∆u = − 9
16r4

1+2 cos2 θ

(1+ m
2r +u)

7

Consider the following non-linear, elliptic PDE,

∆u = − 9

16r4

1 + 2 cos2 θ(
1 + m

2r
+ u
)7 ,

with the following boundary condition,

u(r →∞, θ) = 0.
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We will solve this using a pseudo-spectral method, assuming a spectral solution

of the form,

u(Ã, B̃, φ) =

NA∑
l=0

NB∑
m=0

n=
Nphi

2
−1∑

n=
Nphi

2
+1

ũlmnTl(Ã)Tm(B̃)einφ.

We then solved this PDE for the case when w = Px
m

= 0.2. First we numerically solved

this problem on a computational grid with N = NÃ = NB̃ = 40 points and Nφ = 4

points. Then we compared other cases in which we vary N. Upon doing so we obtain

the convergence plot in Figure(B-33), which illustrates exponential convergence to

the solution.
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Chapter 6

Initial Data For Two Punctures

In this chapter we will discuss the initial data problem in numerical relativity for

binary black hole systems. First we will introduce the governing equations. Next we

will explain the compactification scheme and then will solve the initial data PDEs

using a pseudo-spectral method.

6.1 The Hamiltonian Constraint and The Momen-

tum Constraint

Unlike the single black hole initial data problem, we now have two singularities located

at x = ±b, instead of one singular point at the origin. However, the governing

equation for the initial space-time still takes the form of the elliptic equation described

in, Eq.(5.1),

∆ψ +
1

8
KabKabψ

−7 = 0.

By using the Momentum Constraint, which is expressed in Eq.(5.2), we find that

the explicit solutions, Kab, that characterize a binary black hole system are given

in terms of the momentums, P a
1 and P a

2 , and spins, Sa1 and Sa2 , where the subscript

differentiates the black hole’s and the superscript denotes which respective component

of linear momentum or spin. By letting na1 and na2 be the radial normal vectors of
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each black hole, ie-

na1 =
xa1
r1

and na2 =
xa2
r2
,

the solution is found to be:

Kab =
3

r2
1

(
P a

1 n
b
1 + P b

1n
a
1 − (gab − na1nb1)P c

1n
1
c

)
+

3

r3
1

(
( ~S1 × ~n1)

anb1 + ( ~S1 × ~n1)
bna1

)
+

3

r2
2

(
P a

2 n
b
2 + P b

2n
a
2 − (gab − na2nb2)P c

2n
2
c

)
+

3

r3
2

(
( ~S2 × ~n2)

anb2 + ( ~S2 × ~n2)
bna2

)
,(6.1)

where gab = δab, the Kronecker delta.

We examine multiple cases, where there is spin and momentum in only the x-

direction for each black hole, giving rise to axisymmetric systems, as well as various

combinations of other spins and momentums for each black hole.

Before we introduce each initial puncture data PDE, we will give a detailed de-

scription of the compactification scheme we will use for our pseudo-spectral method.

As in the singular case, each black hole will give rise to another singular point in the

domain; however, rather than only having to work with one singular point, there are

two in the binary case. We will assume that the black holes are located at x = ±b.

The distances to each puncture will be described as,

r1 =
√

(x+ b)2 + y2 + z2 and r2 =
√

(x− b)2 + y2 + z2. (6.2)

6.2 Compactification and Numerical Setup

In this section we will discuss the numerical setup of the initial puncture data problem

for two black holes. We will see that rather than numerically solving for the scalar

field,ψ, we will solve the PDE in terms of a function u. Also we will discuss an elab-

orate series of coordinate transformations used to compactify R3 into a rectangular

box, in hopes of rendering the punctures smooth to achieve exponential convergence

to the correct solution.

66



6.2.1 The Auxiliary Function u

We will start with the general form of an elliptic equation,

∆ψ = f(ψ), (6.3)

where we will assume the potentially nonlinear term, f(ψ), takes on a form corre-

sponding to an initial puncture equation for two black holes. As in the single puncture

case, the solution for ψ is known to be singular at the location of each black hole. To

ensure that our numerical scheme achieves the maximum convergence rate possible to

the solution, we will deconstruct ψ into its singular part and nonsingular counterpart.

We do this by defining ψ to be

ψ = 1 +
m1

2r1
+
m2

2r2
+ u, (6.4)

where the terms mi
2ri

take care of the singular part. Substituting this definition of ψ

into Eq.(6.3), we obtain an equation in terms of the auxiliary function u, ie-

∆ψ∆

(
1 +

m1

2r1
+
m2

2r2
+ u

)
= ∆1 + ∆

(
m1

2r1

)
+ ∆

(
m2

2r2

)
+ ∆u = ∆u.

Hence, we will be left to solve the nonlinear, elliptic initial puncture data PDEs

in terms of the auxiliary function u.

6.2.2 Compactification for Binary Black Holes

In this section we will describe the compacfication scheme for the initial data problem

of binary black holes. Compared to the compactification for the single puncture case,

it is much less self-explanatory. Recall that for the single black hole system, the

compactification consisted of going from spherical coordinates describing all of R3 to

a compact box by use of the single coordinate transformation,

Ã = 2
[
1 +

m

2r

]−1

− 1.
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We will follow the same compactification approach as in [1]. In their approach,

they use multiple transformations to get from the cartesian coordinates, x,y and z,

to the compactified coordinates, A, B̃, and φ, where

A ∈ [0, 1],

B̃ ∈ [−1, 1],

φ ∈ [−π, π)

To obtain to the compactified coordinates, we will perform the following series of

transformations:

(x, y, z)→ (x, ρ, φ)→ (X,R, φ)→ (ξ, η, φ)→ (A, B̃, φ).

These coordinate transformations will allow us to achieve regularity at both of the

punctures as well as compactifying R3 into a compact rectangular domain. Regularity

at both of the punctures in the compactified coordinates will allow our pseudo-spectral

method to exhibit exponential convergence to the solution.

First we consider the following cylindrical coordinates, (x, ρ, φ),

y = ρ cosφ, z = ρ sinφ, where φ ∈ [−π, π).

Now we will form the complex variable c,

c = x+ iρ. (6.5)

Now consider the Joukowsky mapping,

c =
b

2

(
C + C−1

)
, (6.6)

where C = X + iR. Note that the punctures are located at C = ±1, or c = ±b.

The key idea behind the Joukowsky transformation is that it will map lines to circles.
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In our case, it will map the line between the two punctures, from c = x = −b to

c = x = b, to a unit circle in the coordinates (X,R).

Before we compactify into a rectangular box, we consider the following polar

transformation,

C = eζ , where ζ = ξ + η, (6.7)

and ξ ∈ [0,∞) and η ∈ [0, π]. This transformation yields an infinite strip with respect

to positive ξ -values. Now if we write c in terms of this polar transformation we find

that

c =
b

2

(
C + C−1

)
= b

[
eζ + e−ζ

2

]
= b cosh ζ. (6.8)

By using Eq.(6.8) above we can recover the transformation from our original

cylindrical coordinates,

x = Re [cosh (ξ + iη)]

= b Re [cosh(ξ) cosh(iη) + i sinh(ξ) sinh(iη)]

= b cosh(ξ) cos(η). (6.9)

Similarly we obtain the following definition of ρ,

ρ = Im [cosh (ξ + iη)]

= b Im [cosh(ξ) cosh(iη) + i sinh(ξ) sinh(iη)]

= b sinh(ξ) sin(η). (6.10)

The definitions listed above for x and ρ, in Eq.(6.9) and Eq.(6.10) respectively,

map the prolate spheroidal coordinates (ξ, η) onto the cylindrical coordinates (x, ρ).

Note that constant values of ξ correspond to confocal ellipses, and constant η−values

correspond to confocal hyperbolas in the (x, ρ) plane. The focal points are located at

the two punctures, at (0, 0) and (0, π). Now we need to compactify to a rectangular

box in order to use our single-domain pseudo-spectral method to solve the PDE. The
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compacfication scheme we will use is

ξ = 2 arctanhA, (6.11)

η =
π

2
+ 2 arctan B̃. (6.12)

Note that the inverse hyperbolic tangent is defined between [−1, 1] and is unbounded.

By using Eq.(6.11), we will be able to compactify ξ ∈ [0,∞) to A ∈ [0, 1]. By using

Eq.(6.12) we are able to compactify η ∈ [0, π] to B̃ ∈ [−1, 1].

In these coordinates the two black holes get mapped to corners of a rectangle in

the (A, B̃) compactified coordinates. By using Eq.(6.7), we find the black hole located

at C = 1 gets mapped to (ξ, η) = (0, 0). Then using the transformations Eq.(6.11)

and Eq.(6.12), we see that black hole gets mapped to (A, B̃, φ) = (0,−1, φ). Similarly

we find the other black hole at C = −1 gets mapped to (A, B̃, φ) = (0, 1, φ). Moreover

the line connecting the black holes gets mapped to the A = 0 face. Note that because

of this, the numerical solution we obtain must obey the following symmetry relation,

u(A = 0, B̃, φ) = u(A = 0, B̃).

By putting all these transformations together, we recover the following mappings

from the compactified coordinates (A, B̃, φ) to the cartesian coordinates (x,y,z),

x = b
A2 + 1

A2 − 1

2B̃

1 + B̃2
, (6.13)

y = b
2A

1− A2

1− B̃2

1 + B̃2
cosφ, (6.14)

z = b
2A

1− A2

1− B̃2

1 + B̃2
sinφ. (6.15)

By using this compactification scheme, we will be able to use a single-domain

pseudo-spectral method. Note that in the actual code we perform one more linear

transformation on A to compactify from A ∈ [0, 1] to Ã ∈ [−1, 1]. We do this for

simplicity in that the Chebyshev polynomials are defined on [−1, 1].

We will now find the Laplacian in these compactified coordinates, (A, B̃, φ).
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6.2.3 Laplacian in Compactified Coordinates

By using Eqs.(6.13), (6.14), and (6.15), we will find the Laplacian in the compactified

coordinates. Because the coordinates x,y, and z are not functions themselves of any

single coordinate, A, B̃, or φ, we will use a Jacobian matrix approach to find the

necessary partial derivatives in formulating the Laplacian.

Recall that the Laplacian in cartesian coordinates is

∆u =
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
.

Before we can compute the 2nd derivative of u in these coordinates, we will have to

find its 1st derivatives, ie-

ux(A, B̃, φ) =
∂u

∂x
=
∂u

∂A

∂A

∂x
+
∂u

∂B̃

∂B̃

∂x
+
∂u

∂φ

∂φ

∂x
. (6.16)

However, we do not have any explicit formulas at this point to compute these partial

derivatives. The equations for ∂u
∂y

and ∂u
∂z

are similar. We will find all these partial

derivatives now.

First we begin by considering a differential change in x,

dx =
∂x

∂A
dA+

∂x

∂B̃
dB̃ +

∂x

∂φ
dφ. (6.17)

The above equation allows us to see how x changes infinitesimally with any infinites-

imal changes to A, B̃, or φ. Analogously, we obtain the following equations when

considering infinitesimal changes to y and z,

dy =
∂y

∂A
dA+

∂y

∂B̃
dB̃ +

∂y

∂φ
dφ, (6.18)

dz =
∂z

∂A
dA+

∂z

∂B̃
dB̃ +

∂z

∂φ
dφ. (6.19)

We can write Eqs.(6.17), (6.18), and (6.19) more compactly in the following matrix
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system: 
dx

dy

dz

 =


xA xB̃ xφ

yA yB̃ yφ

zA zB̃ zφ




dA

dB̃

dφ

 (6.20)

The matrix in the above system is the Jacobian matrix for the coordinates x,y, and z.

Now we can use Cramer’s Rule to find ∂A
∂x
, ∂A
∂y
, and ∂A

∂z
, as well as all other necessary

partial derivatives, ie-

∂A

∂x
=

yB̃zφ − zB̃yφ
|J |

,

∂A

∂y
=

xB̃zφ − zB̃xφ
|J |

,

∂A

∂z
=

xB̃yφ − yB̃xφ
|J |

,

where |J | is the determinant of the Jacobian matrix from Eq.(6.20). By substituting

the above partial derivatives into Eq.(6.16), we now we have ∂u
∂x

. We also find ∂u
∂y

and

∂u
∂z

in a completely analogous way.

To find the second partial derivatives, we note that the partial derivative operators

in these coordinates are defined as

∂

∂x
= Ax

∂

∂A
+ B̃x

∂

∂B̃
+ φx

∂

∂φ

∂

∂y
= Ay

∂

∂A
+ B̃y

∂

∂B̃
+ φy

∂

∂φ

∂

∂z
= Az

∂

∂A
+ B̃z

∂

∂B̃
+ φz

∂

∂φ

(6.21)
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Now we can find the second partials needed for the Laplacian, using Eq.(6.21), ie-

∂2u

∂x2
=

∂

∂x
ux(A, B̃, φ) =

(
Ax

∂

∂A
+ B̃x

∂

∂B̃
+ φx

∂

∂φ

)
ux(A, B̃, φ),

∂2u

∂y2
=

∂

∂y
uy(A, B̃, φ) =

(
Ay

∂

∂A
+ B̃y

∂

∂B̃
+ φy

∂

∂φ

)
uy(A, B̃, φ),

∂2u

∂z2
=

∂

∂z
uz(A, B̃, φ) =

(
Az

∂

∂A
+ B̃z

∂

∂B̃
+ φz

∂

∂φ

)
uz(A, B̃, φ),

(6.22)

Upon simplifying Eq.(6.22), we find the Laplacian can be written in the following

form:

∆u =
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
= γAA uAA + γA uA + γB̃B̃ uB̃B̃ + γB̃ uB̃ + γφφ uφφ, (6.23)

where the coefficients are found to be:

γAA =
(−1 + A2)4 (1 + B̃2)2

4b2
[
(1 + A4)(−1 + B̃2)2 + 2A2(1 + 6B̃2 + B̃4)

] , (6.24)

γA =
(−1 + A2)4 (1 + B̃2)2

4Ab2
[
(1 + A4)(−1 + B̃2)2 + 2A2(1 + 6B̃2 + B̃4)

] , (6.25)

γB̃B̃ =
(−1 + A2)2 (1 + B̃2)4

4b2
[
(1 + A4)(−1 + B̃2)2 + 2A2(1 + 6B̃2 + B̃4)

] , (6.26)

γB̃ =
(−1 + A2)2 B̃ (1 + B̃2)4

2b2(−1 + B̃2)
[
(1 + A4)(−1 + B̃2)2 + 2A2(1 + 6B̃2 + B̃4)

] , (6.27)

γφφ =
(−1 + A2)2 (1 + B̃2)2

4A2b2 (−1 + B̃2)2
. (6.28)
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6.3 Binary Punctures with S1x and S2x

In this section we will use Eqs.(5.1) and (6.1) to derive the governing initial puncture

data equation for two black holes with spins only in the x-direction. This leads to an

axisymmetric system. We let

~S1 = (S1x , 0, 0) and ~P1 = (0, 0, 0),

~S2 = (S2x , 0, 0) and ~P2 = (0, 0, 0).

By using Eq.(6.1) we find that

Kab =
0

(
−3Sx1x1z

r51
− 3Sx2x2z

r52

)2 (
3Sx1x1y

r51
+ 3Sx2x2y

r52

)2(
−3Sx1x1z

r51
− 3Sx2x2z

r52

)2 (
−6Sx1yz

r51
− 6Sx2yz

r52

)2 (
3Sx1(y2−z2)

r51
+ 3Sx2(y2−z2)

r52

)2(
3Sx1x1y

r51
+ 3Sx2x2y

r52

)2 (
3Sx1(y2−z2)

r51
+ 3Sx2(y2−z2)

r52

)2 (
6Sx1yz
r51

+ 6Sx2yz
r52

)2


(6.29)

Now performing the contraction on the extrinsic curavture, Kab, we obtain

KabKab =
18

r10
1 r

10
2

[
r10
2 Sx2

1

(
y2

1 + z2
1

) (
x2

1 + y2
1 + z2

1

)
+ r10

1 Sx2
2

(
y2

2 + z2
2

) (
x2

2 + y2
2 + z2

2

)
+ 2r5

1r
5
2Sx1Sx2

(
4y1y2z1z2 + x1x2 (y1y2 + z1z2) + y2

1

(
y2

2 − z2
2

)
+ z2

1

(
−y2

2 + z2
2

)) ]
,

(6.30)

where x,y, and z are the coordinates definitions derived in Section(6.2.2). Note that

x1 = x+ b, x2 = x− b, y1 = y2, and z1 = z2 because both black holes are located at

x = ±b.
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Upon substituting Eq.(6.30) into Eq.(5.1), we find

∆ψ =
9

4ψ7r10
1 r

10
2

[ (
r10
2 r

2
1Sx2

1 + r10
1 r

2
2Sx2

2

) (
y2 + z2

)
+ 2r5

1r
5
2Sx1Sx2

(
y4 + 2y2z2 + z4 + x1x2

(
y2 + z2

)) ]
. (6.31)

Finally, substituting Eq.(6.4) into Eq.(6.31), we obtain

∆u =
9

4r10
1 r

10
2

(
1 + m1

2r1
+ m2

2r2
+ u
)7

[ (
r10
2 r

2
1Sx2

1 + r10
1 r

2
2Sx2

2

) (
y2 + z2

)

+ 2r5
1r

5
2Sx1Sx2

(
y4 + 2y2z2 + z4 + x1x2

(
y2 + z2

)) ]
, (6.32)

which is the equation we will numerically solve using our pseudo-spectral scheme.

Note that in Eq.(6.32), we use the Laplacian operator derived in Section(6.2.3).

6.3.1 Computation of Binary Punctures with S1x
and S2x

Consider the following non-linear, elliptic PDE,

∆u =
9

4r10
1 r

10
2

(
1 + m1

2r1
+ m2

2r2
+ u
)7

[ (
r10
2 r

2
1Sx2

1 + r10
1 r

2
2Sx2

2

) (
y2 + z2

)

+ 2r5
1r

5
2Sx1Sx2

(
y4 + 2y2z2 + z4 + x1x2

(
y2 + z2

)) ]
,

with the following bounary condition

u(r →∞, θ, φ) = 0.

We will solve this using a pseudo-spectral method, assuming a spectral solution
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with the following form,

u(Ã, B̃, φ) =

NA∑
l=0

NB∑
m=0

n=
Nphi

2
−1∑

n=
Nphi

2
+1

ũlmnTl(Ã)Tm(B̃)einφ.

We will solve this equation in the cases when b = 0.5 and

1. S1x = S2x = 1

2. S1x = 1, S2x = 0.5

3. S1x = 1, S2x = 0.05

These cases will illustrate the flexibility of the numerical method for black holes

with spins of different magnitude.

In each case we show it’s respective convergence plot, where we assume the exact

solution is a numerical spectral solution with N = NÃ = NB̃ = 60 and Nφ = 4. We

then compare cases for N < 60 to that spectral solution.

Also to illustrate that this solution obeys the constraints imposed by the com-

pactification, we show plots of the Ã = −1 face, the line connecting the black holes.

For our numerical solution to remain plausible, we need to see symmetry in the φ

coordinate. That is, the numerical spectral solution for u must satisfy the following

relation on the Ã = −1 face,

u(−1, B̃, φ) = u(−1, B̃).

The plots associated with the first case of Sx1 = Sx2 = 1 are found in Figures(B-

34) and (B-35).

The plots associated with the case of Sx1 = 1, Sx2 = 0.5 are found in Figures(B-36)

and (B-37).

The plots associated with the case of Sx1 = 1, Sx2 = 0.05 are found in Figures(B-

38) and (B-39).
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6.4 Binary Punctures with P1x and P2x

In this section we will use Eqs.(5.1) and (6.1) to derive the governing initial puncture

data equation for two black holes with linear momentum only in the x-direction. This

leads to an axisymmetric system. We let

~S1 = (0, 0, 0) and ~P1 = (P1x , 0, 0),

~S2 = (0, 0, 0) and ~P2 = (P2x , 0, 0).

By using Eq.(6.1) we can find the extrinsic curvature, Kab. Now performing the

contraction on the extrinsic curavture, Kab, we obtain

KabKab =
9

4

[
(Px1r

5
2x1 (r2

1 + x2
1) + Px2r

5
1x2 (r2

2 + x2
2))

2

r10
1 r

10
2

+
2(y2 + z2) (Px1r

5
2 (r2

1 + x2
1) + Px2r

5
1 (r2

2 + x2
2))

2

r10
1 r

10
2

+

(
Px1x1 (r2

1 − y2)

r5
1

+
Px2x2 (r2

2 − y2)

r5
2

)2

+

(
Px1x1 (r2

1 − z2)

r5
1

+
Px2x2 (r2

2 − z2)

r5
2

)2

+ 2

(
Px1x1yz

r5
1

+
Px2x2yz

r5
2

)2
]
, (6.33)

where x,y, and z are the coordinates definitions derived in Section(6.2.2), and x1 =

x+ b, x2 = x− b, y = y1 = y2, and z = z1 = z2 because both black holes are located

at x = ±b.
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Upon substituting Eq.(6.33) into Eq.(5.1), we find

∆ψ =
9

32ψ7

[
(Px1r

5
2x1 (r2

1 + x2
1) + Px2r

5
1x2 (r2

2 + x2
2))

2

r10
1 r

10
2

+
2(y2 + z2) (Px1r

5
2 (r2

1 + x2
1) + Px2r

5
1 (r2

2 + x2
2))

2

r10
1 r

10
2

+

(
Px1x1 (r2

1 − y2)

r5
1

+
Px2x2 (r2

2 − y2)

r5
2

)2

+

(
Px1x1 (r2

1 − z2)

r5
1

+
Px2x2 (r2

2 − z2)

r5
2

)2

+ 2

(
Px1x1yz

r5
1

+
Px2x2yz

r5
2

)2
]
. (6.34)

Finally, substituting Eq.(6.4) into Eq.(6.34), we obtain

∆u =
9

32
(

1 + m1

2r1
+ m2

2r2
+ u
)7

[
(Px1r

5
2x1 (r2

1 + x2
1) + Px2r

5
1x2 (r2

2 + x2
2))

2

r10
1 r

10
2

+
2(y2 + z2) (Px1r

5
2 (r2

1 + x2
1) + Px2r

5
1 (r2

2 + x2
2))

2

r10
1 r

10
2

+

(
Px1x1 (r2

1 − y2)

r5
1

+
Px2x2 (r2

2 − y2)

r5
2

)2

+

(
Px1x1 (r2

1 − z2)

r5
1

+
Px2x2 (r2

2 − z2)

r5
2

)2

+ 2

(
Px1x1yz

r5
1

+
Px2x2yz

r5
2

)2
]
, (6.35)

which is the equation we will numerically solve using our pseudo-spectral scheme.

Note that in Eq.(6.35), we use the Laplacian operator derived in Section(6.2.3).
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6.4.1 Computation of Binary Punctures with P1x
and P2x

Consider the following non-linear, elliptic PDE,

∆u =
9

32
(

1 + m1

2r1
+ m2

2r2
+ u
)7

[
(Px1r

5
2x1 (r2

1 + x2
1) + Px2r

5
1x2 (r2

2 + x2
2))

2

r10
1 r

10
2

+
2(y2 + z2) (Px1r

5
2 (r2

1 + x2
1) + Px2r

5
1 (r2

2 + x2
2))

2

r10
1 r

10
2

+

(
Px1x1 (r2

1 − y2)

r5
1

+
Px2x2 (r2

2 − y2)

r5
2

)2

+

(
Px1x1 (r2

1 − z2)

r5
1

+
Px2x2 (r2

2 − z2)

r5
2

)2

+ 2

(
Px1x1yz

r5
1

+
Px2x2yz

r5
2

)2
]
,

with the following bounary condition

u(r →∞, θ, φ) = 0.

We will solve this using a pseudo-spectral method, assuming a spectral solution

with the following form,

u(Ã, B̃, φ) =

NA∑
l=0

NB∑
m=0

n=
Nphi

2
−1∑

n=
Nphi

2
+1

ũlmnTl(Ã)Tm(B̃)einφ.

We will solve this equation in the cases when b = 0.5 and

1. P1x = P2x = 1

2. P1x = 1, P2x = −1

3. P1x = 0.05, P2x = −1

These cases will illustrate the flexibility of the numerical method for black holes

with linear momenta of different magnitudes and direction.

In each case we show it’s respective convergence plot, where we assume the exact
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solution is a numerical spectral solution with N = NÃ = NB̃ = 60 and Nφ = 4. We

then compare cases for N < 60 to that spectral solution.

Also to illustrate that this solution obeys the constraints imposed by the com-

pactification, we show plots of the Ã = −1 face, the line connecting the black holes.

For our numerical solution to remain plausible, we need to see symmetry in the φ

coordinate. That is, the numerical spectral solution for u must satisfy the following

relation on the Ã = −1 face,

u(−1, B̃, φ) = u(−1, B̃).

The plots associated with the first case of Px1 = Px2 = 1 are found in Figures(B-

40) and (B-41).

The plots associated with the first case of Px1 = 1, Px2 = −1 are found in

Figures(B-42) and (B-43).

The plots associated with the first case of Px1 = 0.05, Px2 = −1 are found in

Figures(B-44) and (B-45).

6.5 Binary Punctures with S1x and P2z

In this section we will use Eqs.(5.1) and (6.1) to derive the governing initial puncture

data equation for two black holes, one with spin only in the x-direction and the other

with linear momentum only in the z-direction. We let

~S1 = (S1x , 0, 0) and ~P1 = (0, 0, 0),

~S2 = (0, 0, 0) and ~P2 = (0, 0, P2z).

By using Eq.(6.1) we can find the extrinsic curvature, Kab. By performing the
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contraction on the extrinsic curavture, Kab, we obtain

KabKab =
9

4r10
1 r

10
2

[
8r10

2 r
2
1Sx2

1

(
y2 + z2

)
+ 8Pz2r

5
1r

5
2Sx1

(
r2
2

(
x1x2y + y3 + yz2

))
+ Pz2

2r
10
1

(
3r4

2z
2 + r4

2

(
2x2

2 + 2y2 + 3z2
)) ]

, (6.36)

where x,y, and z are the coordinates definitions derived in Section(6.2.2), and x1 =

x+ b, x2 = x− b, y = y1 = y2, and z = z1 = z2 because both black holes are located

at x = ±b.

Upon substituting Eq.(6.36) into Eq.(5.1), we find

∆ψ =
9

32ψ7r10
1 r

10
2

9

[
8r10

2 r
2
1Sx2

1

(
y2 + z2

)
+ 8Pz2r

5
1r

5
2Sx1

(
r2
2

(
x1x2y + y3 + yz2

))
+ Pz2

2r
10
1

(
3r4

2z
2 + r4

2

(
2x2

2 + 2y2 + 3z2
)) ]

. (6.37)

Finally, substituting Eq.(6.4) into Eq.(6.37), we obtain

∆u =
9

32
(

1 + m1

2r1
+ m2

2r2
+ u
)7

r10
1 r

10
2

9

[
8r10

2 r
2
1Sx2

1

(
y2 + z2

)

+ 8Pz2r
5
1r

5
2Sx1

(
r2
2

(
x1x2y + y3 + yz2

))
+ Pz2

2r
10
1

(
3r4

2z
2 + r4

2

(
2x2

2 + 2y2 + 3z2
)) ]

,

(6.38)

which is the equation we will numerically solve using our pseudo-spectral scheme.

Note that in Eq.(6.38), we use the Laplacian operator derived in Section(6.2.3).
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6.5.1 Computation of Binary Punctures with S1x
and P2z

Consider the following non-linear, elliptic PDE,

∆u =
9

32
(

1 + m1

2r1
+ m2

2r2
+ u
)7

r10
1 r

10
2

9

[
8r10

2 r
2
1Sx2

1

(
y2 + z2

)

+ 8Pz2r
5
1r

5
2Sx1

(
r2
2

(
x1x2y + y3 + yz2

))
+ Pz2

2r
10
1

(
3r4

2z
2 + r4

2

(
2x2

2 + 2y2 + 3z2
)) ]

,

with the following bounary condition

u(r →∞, θ, φ) = 0.

We will solve this using a pseudo-spectral method, assuming a spectral solution

with the following form,

u(Ã, B̃, φ) =

NA∑
l=0

NB∑
m=0

n=
Nphi

2
−1∑

n=
Nphi

2
+1

ũlmnTl(Ã)Tm(B̃)einφ.

We will solve this equation in the cases when b = 0.5 and

1. S1x = P2z = 1

2. S1x = 1, P2z = −1

3. S1x = 0.05, P2x = 1

4. S1x = 1, P2x = 0.05

These cases will illustrate the flexibility of the numerical method for a black hole

system in which one black hole has spin and the other has linear momentum.

In each case we show it’s respective convergence plot, where we assume the exact

solution is a numerical spectral solution with N = NÃ = NB̃ = 40 and Nφ = 10.

We then compare cases for N < 40 to that spectral solution. However, in the case

of Sx1 = Pz2 = 1, we assume a solution with N = NÃ = NB̃ = 50 and Nφ = 10 to
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illustrate greater accuracy in the convergence plot.

Also to illustrate that this solution obeys the constraints imposed by the com-

pactification, we show plots of the Ã = −1 face, the line connecting the black holes.

For our numerical solution to remain plausible, we need to see symmetry in the φ

coordinate. That is, the numerical spectral solution for u must satisfy the following

relation on the Ã = −1 face,

u(−1, B̃, φ) = u(−1, B̃).

The plots associated with the first case of Sx1 = Pz2 = 1 are found in Figures(B-

46) and (B-47).

The plots associated with the second case of Sx1 = 1, Pz2 = −1 are found in

Figures(B-48) and (B-49).

The plots associated with the first case of Sx1 = 0.05, Pz2 = 1 are found in

Figures(B-50) and (B-51).

The plots associated with the second case of Sx1 = 1, Pz2 = 0.05 are found in

Figures(B-52) and (B-53).

83



84



Bibliography

[1] M. Ansorg, B. Brugmann and W. Tichy, A single-domain spectral method

for black hole puncture data, Phys. Rev D 70(6), 2004.

[2] M. Ansorg, A multi-domain spectral method for initial data of arbitrary binaries

in general relativity, Class. Quantum Grav. 24, S1-S14, 2007.

[3] J.P. Boyd, Chebyshev and Fourier Spectral Methods, Dover Publications, 668

pages, 2001.

[4] S. Brandt and B. Brugmann, A simple construction of initial data for multiple

black holes, Phys. Rev Letters 78(19), 3606-3609, 1997.

[5] E. Flanagan and S. Hughes, The basis of gravitational wave theory,

arxiv:0501.0501041v3 [gr-qc] 12 Jan 2005.

[6] P. Grandclement and J. Novak, Spectral Methods for Numerical Relativity,

arXiv:0706.228v1 [gr-qc], 15 Jun 2007.

[7] L. Kidder and L.S. Finn, Spectral methods for numerical relativity: The initial

data problem, Phys. Rev D 62(8), 2000.

85



86



Appendix A

Chebyshev Theory

The Sturm-Liouville Chebyshev ODE of the 1st Kind:

(1− x2)y′′ − xy′ + n2y = 0.

We define the solutions to be Tn(x). They are defined through the trigonometric

relation:

Tn(x) = cos(n arccosx),

on the interval [−1, 1]. Note: when x = cos θ, we have solutions of the form:

Tn(cos θ) = cos(nθ).

The Sturm-Liouville Chebyshev ODE of the 2nd Kind:

(1− x2)y′′ − 3xy′ + n(n+ 2)y = 0.

We define the solutions to be Un(x). They are defined through the trigonometric

relation when x = cos θ:

Un(cos θ) =
sin((n+ 1)θ)

sin θ
,

on the interval [−1, 1].

87



Recurrence Relations:

Tn+1(x) = 2xTn(x)− Tn−1(x),

Un+1(x) = 2xUn(x)− Un−1(x).

Differentiation Relation:

dTn
dx

= nUn−1,

d2Tn
dx2

= n
nTn − xUn−1

x2 − 1
= n

(n+ 1)Tn − Un
x2 − 1

.

Orthogonality:

Both Tn and Un form a sequence of orthogonal polynomials. The polynomials of the

first kind are orthogonal with respect to the weight function, w1(x) = 1√
1−x2 , while

the polynomials of the second are orthogonal with respect to the weight function

w2(x) =
√

1− x2.

On the interval [−1, 1] we have the following relations:

∫ 1

−1

Tn(x)Tm(x)w1(x)dx =


0 if n 6= m

π if n = m = 0

π
2

if n = m 6= 0

,

and

∫ 1

−1

Un(x)Um(x)w2(x)dx =

 0 if n 6= m

π
2

if n = m
.
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Extrema at Endpoints:

Tn(1) = 1,

Tn(−1) = (−1)n.

Un(1) = n+ 1,

Un(−1) = (n+ 1)(−1)n.

First Few Polynomials of the First Kind:

T0(x) = 1,

T1(x) = x.

T2(x) = 2x2 − 1,

T3(x) = 4x3 − 3x,

T4(x) = 8x4 − 8x2 + 1,

T5(x) = 16x5 − 20x3 + 5x,

T6(x) = 32x6 − 48x4 + 18x2 − 1,

T7(x) = 64x7 − 112x5 + 56x3 − 7x,

Now we will expand two functions in the Chebyshev basis. We consider f(x) =

1
1+x2 and g(x) = e−x

2
for 0 ≤ x ≤ ∞. Note that f(x) goes to 0 algebraically as x→∞

and that g(x) goes to 0 exponentially as x → ∞. We will show that the Chebyshev

polynomials will be able to better approximate f(x) than g(x), as Chebyshev poly-

nomials are better for approximating functions that go to zero algebraically.

Before we expand either function in the Chebyshev basis, we will compactify the

domain from [0,∞) → [−1, 1]. We do this because the Chebyshev polynomials are

defined between [1, 1]. Using the following coordinate transformation,

A = 2

(
1 +

1

x

)−1

− 1,
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we find the functions become

f(A) =
1

1 +
(

1+A
1−A

)2 and g(A) = e−( 1+A
1−A)

2

.

First we will expand f(A) in the Chebyshev basis,

f(A) =
1

1 +
(

1+A
1−A

)2 =
N∑
j=0

cfnTn(A).
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We find the first 21 coefficients are:

cfn =



1/2

−0.5857864376269049

0

0.10050506308641538

0

−0.01724394270310834

0

0.002958592830277995

0

−0.0005076142786067245

0

0.00008709284132776829

0

−0.000014942769289455482

0

2.5637733918684735 ∗ 10−6

0− 4.3958425521850586 ∗ 10−7

0

7.450580596923828 ∗ 10−8

0

−1.4901161193847656 ∗ 10−8


Now we will expand g(A) in the Chebyshev basis,

g(A) = e−( 1+A
1−A)

2

=
N∑
j=0

cgnTn(A).
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We find the first 21 coefficients are:

cgn =



0.4576214719981695

−0.6049508714432735

0.06447710413504479

0.13911719569350045

−0.02771317319720939

−0.04768674673861184

0.005355469928721216

0.01892679043487716

0.0018286112131115854

−0.007221763902819989

−0.0028690061546408907

0.0021332622938663587

0.002008155684506298

−0.00016116484455153818

−0.0009638411127716323

−0.00034942688833108915

0.0002803853894068356

0.0002967858481988696

0.000017681890333687278

−0.0001308141723563444

−0.00007862613725924741

0.00001924200561773115


Plotting the logarithm of the nth coefficient versus n, it is clear that the coefficients in

f(A) decay much faster than those of g(A). This illustrates that Chebyshev functions

are better at approximating functions that decay algebraically than those that decay

exponentially. The plot is found in Figure(B-54).
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Appendix B

Figures

Figure B-1: Exponential convergence to the exact solution of the linear ODE, uxx =
sin(x) + cos(x), with Dirichlet boundary conditions on the interval [-1,1]. The error
is the norm of the difference between the computed solution and exact solution.
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Figure B-2: Exponential convergence to the exact solution of the nonlinear ODE,
uxx + u2 = ex + e2x, with boundary conditions u(−1) = e−1 and u(1) = e. The error
is the norm of the difference between the computed solution and exact solution.
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Figure B-3: Exponential convergence to the exact solution of the linear ODE, uxx +
ux+u = ecos(x)

(
1− sin(x)− cos(x) + sin2(x)

)
, with periodic boundary conditions on

[−π, π]. The error is the norm of the difference between the computed solution and
exact solution.
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Figure B-4: An example computational domain constructed with the Chebyshev
collocation points with Nx = Ny = 6.
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Figure B-5: Exponential convergence to the exact solution of the linear PDE, uxx +
uyy = −π2 sin(πy) [2 cos(πx) + 1] . with Dirichlet boundary conditions on the domain
[-1,1]×[-1,1]. The error is the norm of the difference between the computed solution
and exact solution.
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Figure B-6: Comparison of the computed solution (left) with the exact solution,
u(x, y) = sin(πy) (cos(πx) + 1), (right) for Nx = Ny = 12.
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Figure B-7: Exponential convergence to the exact solution of the nonlinear PDE,
uxx + uyy + u2 = −π2 sin(πy) [2 cos(πx) + 1] + (sin(πy) (cos(πx) + 1))2 with Dirich-
let boundary conditions on the domain [-1,1]×[-1,1]. The error is the norm of the
difference between the computed solution and exact solution.
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Figure B-8: Comparison of the computed solution (left) with the exact solution,
u(x, y) = sin(πy) (cos(πx) + 1), (right) for Nx = Ny = 12.
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Figure B-9: An example computational domain constructed with the Chebyshev
collocation points with Nx = Ny = 6.
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Figure B-10: Exponential convergence to the exact solution of the nonlinear PDE,
ur + 1

r
ur + 1

r2
uφφ + u2 = f , where f is the inhomogeneous term corresponding to the

exact solution u(r, φ) = [cos[(2r − 1)π + 1]] ecos(φ) with Dirichlet boundary conditions
on the boundary when r = {0, 1} and periodicity in the φ coordinate. The error is
the norm of the difference between the computed solution and exact solution.
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Figure B-11: Comparison of the computed solution (left) with the exact solution,
u(r, φ) = [cos[(2r − 1)π + 1]] ecos(φ), (right) for Nr = Nφ = 10.
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Figure B-12: Comparison of the computed solution (left) with the exact solution,
u(r) = e−r

2
, (right) for Nr = 10.
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Figure B-13: Exponential convergence to the exact solution of the linear ODE, urr +
2
r
ur = (r2 − 6)e−r

2
, with homogeneous mixed boundary conditions. The error is the

norm of the difference between the computed solution and exact solution.
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Figure B-14: Comparison of the computed solution (left) with the exact solution,
u(r) = 1

1+r2
, (right) for Nr = 10.
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Figure B-15: Exponential convergence to the exact solution of the linear ODE, urr +
2
r
ur = 8r2

(1+r2)3
− 6

(1+r2)2
, with u(0) = 1 and u(r → ∞) = 0. The error is the norm of

the difference between the computed solution and exact solution.
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Figure B-16: Comparison of the computed solution (left) with the exact solution,
u(r) = 1

1+r2
, (right) for Nr = 10.
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Figure B-17: Exponential convergence to the exact solution, u(r) = 1
1+r2

, of the

nonlinear ODE, urr + 2
r
ur + 1

1+u
= f with only the boundary condition of u(r →

∞) = 0. The error is the norm of the difference between the computed solution and
exact solution. Note the 2-cycle behavior in the convergence.

109



Figure B-18: Comparison of the computed solution (left) with the exact solution,
u(r, θ) = r cos θe−r

2
,(right) for Nr = Nθ = 10.
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Figure B-19: Exponential convergence to the exact solution, u(r, θ) = r cos θe−r
2
, of

the linear PDE, urr + 2
r
ur + 1

r2
uθ + cot θ

r2
uθ = f(r, θ), with u(0, θ) = u(r → ∞, θ = 0,

u(r, 0) = re−r
2
, and u(r, π) = −re−r2 . The error is the norm of the difference between

the computed solution and exact solution.
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Figure B-20: An example computational domain constructed with the Chebyshev
collocation points with Nx = Ny = 6. Note that we enforce Dirchlet homogeneous
boundary conditions in the r-coordinate and Neumann homogeneous boundary con-
ditions in the θ-coordinate.
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Figure B-21: Comparison of the computed solution (left) with the exact solution,
u(r, θ) = r cos θ

1+r2
,(right) for Nr = Nθ = 10.
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Figure B-22: Exponential convergence to the exact solution, u(r, θ) = r cos θ
1+r2

, of the

linear PDE, urr + 2
r
ur + 1

r2
uθ + cot θ

r2
uθ = f(r, θ), with u(0, θ) = u(r → ∞, θ = 0,

∂u
∂θ

∣∣∣
(r,0)

= 0, and ∂u
∂θ

∣∣∣
(r,π)

= 0. The error is the norm of the difference between the

computed solution and exact solution.
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Figure B-23: An example computational domain constructed with the Chebyshev
collocation points with Nx = Ny = 6. Note that we only enforce u(r →∞, θ) = 0 in
the r-coordinate and Neumann homogeneous boundary conditions in the θ-coordinate,
so there is no explicit boundary condition at r = 0.
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Figure B-24: Exponential convergence to the exact solution, u(r, θ) = r cos θ
1+r2

, of the

linear PDE, urr+ 2
r
ur+ 1

r2
uθ+ cot θ

r2
uθ = f(r, θ), with u(r →∞, θ = 0, ∂u

∂θ

∣∣∣
(r,0)

= 0, and

∂u
∂θ

∣∣∣
(r,π)

= 0. The error is the norm of the difference between the computed solution

and exact solution.
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Figure B-25: An example computational domain constructed with the Chebyshev
collocation points with Nx = Ny = 6. Note that we only enforce u(0, θ) = 0 in the
r-coordinate and Neumann homogeneous boundary conditions in the θ-coordinate, so
there is no explicit boundary condition at r →∞.
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Figure B-26: Exponential convergence to the exact solution, u(r, θ) = r cos θ
1+r2

, for the

linear PDE, urr + 2
r
ur + 1

r2
uθ + cot θ

r2
uθ = f(r, θ), with u(0, θ = 0, ∂u

∂θ

∣∣∣
(r,0)

= 0, and

∂u
∂θ

∣∣∣
(r,π)

= 0. The error is the norm of the difference between the computed solution

and exact solution.
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Figure B-27: An example computational domain constructed with the Chebyshev
collocation points with Nx = Ny = 6. Note that we enforce u(r → ∞, θ) = 0,
u(r, 0) = 1

1+r2
, and u(r, π) = −1

1+r2
.
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Figure B-28: Comparison of the computed solution (left) with the exact solution,
u(r, θ) = r cos θ

1+r2
,(right) for Nr = Nθ = 10.
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Figure B-29: Exponential convergence to the exact solution, u(r, θ) = r cos θ
1+r2

, of the

linear PDE, urr + 2
r
ur + 1

r2
uθ + cot θ

r2
uθ = f(r, θ), with u(r →∞, θ) = 0, u(r, 0) = 1

1+r2
,

and u(r, π) = −1
1+r2

. The error is the norm of the difference between the computed
solution and exact solution.

121



Figure B-30: Definition of spherical coordinates
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Figure B-31: Exponential convergence to the exact solution, u(r, θ) = r cos θ sin phi
1+r2

, of

the nonlinear PDE, ∆u + 9
16r6

sin2 θ

(1+ 1
r
+u)

7 = f(r, θ, φ), with u(r → ∞, θ, φ) = 0, and

periodicity in the φ-coordinate. The error is the norm of the difference between the
computed solution and exact solution.
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Figure B-32: Exponential convergence to the solution of the single puncture with
spin nonlinear, elliptic PDE, ∆u = − 9

16r6
sin2 θ

(1+m
2r

+u)
7 , with u(r → ∞, θ, φ) = 0, and

periodicity in the φ-coordinate. The error is the norm of the difference between the
computed solution and solution with NÃ = NB̃ = 30 and Nφ = 4.
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Figure B-33: Exponential convergence to the solution of the single puncture with lin-
ear momentum nonlinear, elliptic PDE, ∆u = − 9

4r4
1+2 cos2 θ

(1+m
2r

+u)
7 , with u(r →∞, θ, φ) =

0, and periodicity in the φ-coordinate. The error is the norm of the difference between
the computed solution and solution with NÃ = NB̃ = 40 and Nφ = 4.
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Figure B-34: Exponential convergence to the solution of the binary black hole case
with spins of Sx1 = Sx2 = 1, by imposing only a single boundary condition at infinity,
u(r → ∞, θ, φ) = 0, and assuming periodicity in the φ-coordinate. The error is the
norm of the difference between the computed solution and solution with NÃ = NB̃ =
60 and Nφ = 4.
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Figure B-35: Illustrating the solution in the binary black hole case with spins of
Sx1 = Sx2 = 1 obeys the symmetry requirements of the compactification scheme on
the Ã = −1 face, u(−1, B̃, φ) = u(−1, B̃).
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Figure B-36: Exponential convergence to the solution of the binary black hole case
with spins of Sx1 = Sx2 = 0.5, by imposing only a single boundary condition at
infinity, u(r → ∞, θ, φ) = 0, and assuming periodicity in the φ-coordinate. The
error is the norm of the difference between the computed solution and solution with
NÃ = NB̃ = 60 and Nφ = 4.
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Figure B-37: Illustrating the solution in the binary black hole case with spins of
Sx1 = 1, Sx2 = 0.5 obeys the symmetry requirements of the compactification scheme
on the Ã = −1 face, u(−1, B̃, φ) = u(−1, B̃).
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Figure B-38: Exponential convergence to the solution of the binary black hole case
with spins of Sx1 = Sx2 = 0.05, by imposing only a single boundary condition at
infinity, u(r → ∞, θ, φ) = 0, and assuming periodicity in the φ-coordinate. The
error is the norm of the difference between the computed solution and solution with
NÃ = NB̃ = 60 and Nφ = 4.

130



Figure B-39: Illustrating the solution in the binary black hole case with spins of
Sx1 = 1, Sx2 = 0.05 obeys the symmetry requirements of the compactification scheme
on the Ã = −1 face, u(−1, B̃, φ) = u(−1, B̃).

131



Figure B-40: Exponential convergence to the solution of the binary black hole case
with linear momentum of Px1 = Px2 = 1, by imposing only a single boundary con-
dition at infinity, u(r → ∞, θ, φ) = 0, and assuming periodicity in the φ-coordinate.
The error is the norm of the difference between the computed solution and solution
with NÃ = NB̃ = 60 and Nφ = 4.
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Figure B-41: Illustrating the solution in the binary black hole case with linear mo-
menta of Px1 = Px2 = 1 obeys the symmetry requirements of the compactification
scheme on the Ã = −1 face, u(−1, B̃, φ) = u(−1, B̃).
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Figure B-42: Exponential convergence to the solution of the binary black hole case
with linear momentum of Px1 = 1, Px2 = −1, by imposing only a single boundary con-
dition at infinity, u(r → ∞, θ, φ) = 0, and assuming periodicity in the φ-coordinate.
The error is the norm of the difference between the computed solution and solution
with NÃ = NB̃ = 60 and Nφ = 4.
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Figure B-43: Illustrating the solution in the binary black hole case with linear mo-
menta of Px1 = 1, Px2 = −1 obeys the symmetry requirements of the compactification
scheme on the Ã = −1 face, u(−1, B̃, φ) = u(−1, B̃).
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Figure B-44: Exponential convergence to the solution of the binary black hole case
with linear momentum of Px1 = 0.05, Px2 = −1, by imposing only a single bound-
ary condition at infinity, u(r → ∞, θ, φ) = 0, and assuming periodicity in the φ-
coordinate. The error is the norm of the difference between the computed solution
and solution with NÃ = NB̃ = 60 and Nφ = 4.
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Figure B-45: Illustrating the solution in the binary black hole case with linear mo-
menta of Px1 = 0.05, Px2 = −1 obeys the symmetry requirements of the compactifi-
cation scheme on the Ã = −1 face, u(−1, B̃, φ) = u(−1, B̃).
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Figure B-46: Exponential convergence to the solution of the binary black hole case
with Sx1 = Pz2 = 1, by imposing only a single boundary condition at infinity, u(r →
∞, θ, φ) = 0, and assuming periodicity in the φ-coordinate. The error is the norm of
the difference between the computed solution and solution with NÃ = NB̃ = 50 and
Nφ = 10.
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Figure B-47: Illustrating the solution in the binary black hole case with Sx1 = Pz2 = 1
obeys the symmetry requirements of the compactification scheme on the Ã = −1 face,
u(−1, B̃, φ) = u(−1, B̃).
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Figure B-48: Exponential convergence to the solution of the binary black hole case
with Sx1 = Pz2 = 1, by imposing only a single boundary condition at infinity, u(r →
∞, θ, φ) = 0, and assuming periodicity in the φ-coordinate. The error is the norm of
the difference between the computed solution and solution with NÃ = NB̃ = 50 and
Nφ = 10.
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Figure B-49: Illustrating the solution in the binary black hole case with Sx1 = Pz2 = 1
obeys the symmetry requirements of the compactification scheme on the Ã = −1 face,
u(−1, B̃, φ) = u(−1, B̃).
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Figure B-50: Exponential convergence to the solution of the binary black hole case
with Sx1 = 0.05, Pz2 = 1, by imposing only a single boundary condition at infinity,
u(r → ∞, θ, φ) = 0, and assuming periodicity in the φ-coordinate. The error is the
norm of the difference between the computed solution and solution with NÃ = NB̃ =
40 and Nφ = 10.
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Figure B-51: Illustrating the solution in the binary black hole case with Sx1 =
0.05, Pz2 = 1 obeys the symmetry requirements of the compactification scheme on
the Ã = −1 face, u(−1, B̃, φ) = u(−1, B̃).
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Figure B-52: Exponential convergence to the solution of the binary black hole case
with Sx1 = 1, Pz2 = 0.05, by imposing only a single boundary condition at infinity,
u(r → ∞, θ, φ) = 0, and assuming periodicity in the φ-coordinate. The error is the
norm of the difference between the computed solution and solution with NÃ = NB̃ =
40 and Nφ = 10.
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Figure B-53: Illustrating the solution in the binary black hole case with Sx1 = 1, Pz2 =
0.05 obeys the symmetry requirements of the compactification scheme on the Ã = −1
face, u(−1, B̃, φ) = u(−1, B̃).
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Figure B-54: Comparing the decay rate of Chebyshev coefficients for the function
f(x) = 1

1+x2 , which goes to zero algebraically, and g(x) = e−x
2
, which goes to zero

exponentially for 0 ≤ x ≤ ∞. We see that Chebyshev polynomials are better for
approximating functions that decay algebraically than those that goes to zero expo-
nentially.
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