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ABSTRACT

Mechanisms are means of power transmission as well as motion transformers. A four-

bar mechanism consists mainly of four planar links connected with four revolute joints.

The input is usually given as rotary motion of a link and output can be obtained from

the motion of another link or a coupler point. Straight line motion from a four bar

linkages has been used in several ways as in a dwell mechanism and as a linkage to

vehicle suspension.

This paper studies the straight line motion obtained from planar four-bar mechanisms

and optimizes the design to produce the maximized straight line portion of the coupler-

point curve. The equations of motion for four different four-bar mechanisms will be

derived and dimensional requirements for these mechanisms will be obtained in order

to produce the straight line motion. A numerical procedure will be studied and

computer codes that generate the coupler curves will be presented. Following the

numerical results study, a synthesis procedure will be given to help a designer in

selecting the optimized straight line motion based on design criteria.
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1. INTRODUCTION

One of the main objects of designing a mechanism is to develop a system that

transforms motion in a specific way to provide mechanical advantage. A typical

problem in mechanism design is coordinating the input and output motions. A

mechanism designed to produce a specified output as a function of input is called a

function generator. Such a function generator which is capable of producing a straight

line output has found a wide variety of applications.

A system that transmits forces in a predetermined manner to accomplish specific work

may be considered a machine. A mechanism is the heart of a machine. It is a device

that transforms one motion, for example the rotation of a driving shaft, into another,

such as the rotation of the output shaft or the oscillation of a rocker arm. A mechanism

consists of a series of connected moving parts which provide the specific motions and

forces to do the work for which the machine is designed. A machine is usually driven

by a motor which supplies constant speed and power. It is the mechanism which

transforms this applied motion into the form demanded to perform the required task.

The study of mechanisms is very important. With the tremendous advantages made in

the design of instruments, automatic controls, and automated equipment, the study of

mechanisms takes on new significance.

Once a need for a machine or mechanism with given characteristics is identified, the

design process begins. Detailed analysis of displacements, velocities and

accelerations is usually required. Kinematics is the study of motion. The study of

motions in machines may be considered from the two different points of view generally

identified as kinematic analysis and kinematic synthesis. Kinematic analysis is the

determination of motion inherent in a given mechanism. Kinematic synthesis is the



reverse problem: it is the determination of mechanisms that are to fulfill certain motion

specifications.

1.1 A Brief History of the Development of the Kinematics of Mechanisms

The history of kinematics, the story of the development of the geometry of motion, is

composed of evolvement in machines, mechanisms and mathematics. The recent

investigation of mechanism design by mathematicians and engineers have been

stimulated in part by the increase in operating speeds of machines and in part by the

expectation of evolving more logical approaches to the development of mechanisms.

Franz Reuleaux was the first scientist who systematically analyzed mechanisms,

deviced machine elements, studied their combinations, and discovered those laws of

operation which constituted the early science of machine kinematics. His now classical

"Theoretische
Kinematik"

of 1875 presented many views finding general acceptance

then that are current still and his second book,
"

Lehrbuch der
Kinematic"

(1900),

consolidated and extended earlier notions. Reuleaux's comprehensive and orderly

views mark a high point in the development of kinematics. He devoted most of his work

to the analysis of machine elements.

In the one hundred years that followed Reuleaux, the contributions of such scientists

as W. Hartmann, H. Alt, F. Wittenbauer and L Burmester developed the science of

constructing mechanisms to satisfy specific motions, namely, kinematic
synthesis. The

techniques they used were based on mechanics and geometry.

It was not until 1940 that Svaboda developed numerical methods to design a simple

but versatile mechanism known as four-bar linkage (Fig. 1.1) to generate a desired

function with sufficient accuracy for engineering purposes. The input crank is OaA and
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Figure 1.1 A Basic Four-Bar Mechanism

the output crank is OgB. The scale to input crank indicates the values of the parameter

of a function, and that on the output crank indicates the result of the function. Naturally,

this four-bar linkage can generate only a limited number of functions because of the

nature of the linkage itself. In 1951, the publication by Hrones and Nelson of an
"atlas"

containing approximately 10,000 coupler curves offered a very practical approach for

the design engineers. The Kinematics of mechanisms has gradually become a

popular field for scholarly and engineering investigation.



1. 2 Four-Bar Mechanism

A four-bar linkage is a versatile mechanism that is widely used in machines to transmit

motion or to provide mechanical advantage. Four-bar linkages can also be used as

function generators. Their low friction, higher capacity to carry load, ease of

manufacturing, and reliability of performance in spite of manufacturing tolerances

make them preferable over other mechanisms in certain applications. It is also the

most fundamental linkage mechanism, and many more complex mechanisms contain

the four-bar linkage as elements. Therefore, a basic understanding of its

characteristics is essential.

A four-bar mechanism (Figure 1.2) consists of four rigid members: the frame or fixed

member, to which pivoted the crank and follower, whose intermediary is aptly termed

coupler. These members are connected by four revolute pairs. A point on the coupler

M

0

'////.
B

Figure 1.2 A Four-Bar Linkage With Coupler Point on AB



is called the coupler point, and its path when the crank is rotated is known as a coupler

point curve or coupler curve and the number of such curves are infinite. By proper

choice of link proportions and coupler point locations useful curves may be found. A

curve's usefulness depends on the particular shape of a segment, for example, an

approximate straight line or a circular arc, or on a peculiar shape of either the whole

curve or parts of it. The coupler point because of its motion characteristic, is now the

output of the linkage.

Four-bar mechanism has wide range of applications such as in the pantograph,

universal drafting machine, Boehm's coupling, Poppet-valve gear, Whitworth quick-

return mechanism and Corliss Valve-gear. A straight line output from a four-bar

mechanism has been used in several ways and a few such applications are linkage

for vehicle suspension, linkage for posthole borer, in textile industries and in material

handling devices.

This work studies mechanisms and, in particular, the four-bar mechanisms. Four

popular planar four-bar mechanisms that are capable of generating straight line

motion will be analyzed. The equation of the coupler curve for these four-bar

mechanisms will be derived and dimensional requirements for these mechanisms will

be obtained in order to produce the straight line motion.

Kinematic analysis will not be complete without graphical tools for the designer to

examine the output of the mechanisms. A numerical procedure will be studied and

computer codes that generate the coupler curves will be presented. Following the

numerical results study, a synthesis procedure will be given to help the designer in

selecting the optimized straight line
motion based on design criteria.



2. MECHANISM AND ITS COMPONENTS

Configurations of mechanisms have been incorporated into machines for centuries. In

the last forty years, the kinematics of mechanisms has emerged as an engineering

science and consistent terminology and definitions were necessitated to assist

research and communication. A mechanism has been defined by Reuleux as a

combination of rigid or resistant bodies so formed and connected that they move upon

each other with definite relative motion. It is the device that transforms one motion, for

example the rotation of a driving shaft, into another, such as the rotation of the output

shaft or the oscillation of a rocker arm. A linkage or linkwork might be called the

universal mechanism, since almost any conceivable motion can be produced by this

device. A linkage, as applied to mechanisms, means a combination of a number of

pairs of elements, such as levers, cranks, slides, etc., connected by rigid pieces or

links, all the parts being connected by pin or pivoted joints allowing relative motion

between the parts. All the parts must be so connected that when any one part is

moved, definite motion is imparted to all the other parts. A few terms of particular

interest to the study of kinematics and dynamics of mechanisms are defined below.

Link

A link is one of the rigid bodies or members joined together. The term rigid link or

sometimes simply link is an idealization used in the study of mechanisms that does not

consider small deflections due to strains in machine members. A perfectly rigid or

inextensible link can exist only as a textbook type of
model of a real machine member.

For typical machine parts, maximum dimension changes are of the order of only a
one-

thousandth of the part length. It is justified to neglect this small motion when

considering the much greater motion characteristic of most mechanisms. The word link

is used in a general sense to include cams, gears, and other machine members in



addition to cranks, connecting rods, and other pin-connected components.

Frame

The fixed or stationary link in a mechanism is called the frame. When there is no link

that is actually fixed, one link may be considered as being fixed and determine the

motion of the other links relative to it. A frame is the reference from which all motions of

the mechanisms are accounted for. In an automotive engine, the engine block is

considered the frame, even though the automobile may be moving.

Joint or Kinematic Pair

The connections between links that permit relative motion are called joints. An

unconstrained rigid body has a mobility of six degrees of freedom. Each joint reduces

the mobility of a system. The joint between a crank and connecting rod, for instance, is

called a revolute joint or pin joint. The revolute joint has one degree-of-freedom in that

if one element is fixed, the revolute joint allows the other only to rotate in a plane. A

sphere joint has three degrees-of-freedom. Some of the practical joints are made up of

several elements. Examples include universal joint; ball and roller bearings that are

represented by the revolute joint; ball slides represented by the cylindrical joint; and

ball screws represented by the helix.

Lower and Higher Pairs

Connections between rigid bodies can be categorized as lower and higher pairs of

elements. The two elements of a lower pair have theoretical surface contact with one

another, while the two elements in the higher pair have theoretical point or line contact

(if we disregard deflections). Lower pairs include revolutes or pin connections - for

example, a shaft in a bearing or the wrist pin joining a piston and connecting rod.

Examples for higher pair include a pair of gears or a disk cam and a follower.



Kinematic Chain

A kinematic chain is an assembly of links and joints. In a closed kinematic chain, e

link is connected to two or more other links.

Mechanism

A mechanism is a kinematic chain in which one link is considered fixed for the purr.

of analysis, but motion is possible in other links. As noted above, the link design

as the fixed link need not actually be stationary relative to the surface of the eart

kinematic chain is usually identified as a mechanism if its primary purpose is

modification or transmission of motion.

Linkage

If kinematic chains are needed to be examined without regard to its ultimate use

assemblage of rigid bodies connected by kinematic joints of lower pairs are iden

as a linkage. Thus, both mechanisms and machines may be considered link.

However in general, the term linkage is restricted to kinematic chains made

lower pairs.

Planar Motion and Planar Linkages

If all points in a system moves in parallel planes, then that system undergoes /

motion. All the links in a planar linkage have planar motion. This work w

concerned only with planar linkages. A skeleton diagram of a planar linkage (e.c

Fig. 2.1) is formed by connecting the pin centers by straight lines and projecting

these centerlines on one of the planes of motion. The linkages in which motion (

be described as taking place in parallel planes are called spatial or three-dimer

(3D) linkages.

8



Link 2

1 '////.

Link 3

3 '////.

Fig 2.1 A Skeleton Diagram of a Planar Linkage

Cycle and Period

A cycle represents the complete sequence of positions of the links in a mechanism (all

points attained between two identical positions). In a four-stroke-cycle engine, one

thermodynamic cycle corresponds to two revolutions or cycles of the crankshaft but

one revolution of the camshaft and, thus, one cycle of motion of the cam followers and

valves. The time required to complete a cycle of motion is called the period.



3. FOUR-BAR MECHANISM AND ITS CLASSIFICATIONS

An important property of a classification system would be the aid it could furnish a

designer in finding the forms and arrangements best suited to satisfying certain

conditions. The planar four-bar mechanism which consists of four pin-connected rigid

links gains its importance as a basic mechanism because it is one of the simplest of

all mechanisms to produce. The four-bar linkage derives its renown from the fact that

the members of a three bar linkage are incapable of relative motion and a linkage

composed of more than four bars has indeterminate motion with a single input.

Though it may assume many forms, often with little resemblance to the usual

representation, a four-bar linkage consists of two members in pure rotation about fixed

axes, called the driving and follower crank; a coupler in combined motion, which joins

the moving ends of the cranks; and a fixed frame, which establishes the relative

position of the stationary crank centers.

3. 1. Classifications and the Grashof Criteria

There are two main classes of four bar mechanisms based on the rotational and

dimensional limitations of its links called Grashof's criterion, which are:

1. Grashof mechanisms, which is comprised of:

crank rocker mechanism

drag link mechanism

double rocker mechanism

crossover-position or change point mechanism

2. Non-Grashof Mechanisms, which includes

double rocker mechanisms of the second kind or triple rocker mechanisms.

10



A Grashof mechanism is a four bar linkage in which one link can perform a complete

rotation relative to the other three. This criterion would be considered if we plan to

drive a linkage with a continuously rotating motor. It will be shown that the Grashof

criterion is met if:

-max
+ Lmin ^ La + Lb (3.1)

where link lengths are measured between bearing centers, Lmax is the length of the

longest link, Lmjn that of the shortest link, La and Lb are the lengths of the remaining

links.

Fig. 3.1 Crank Rocker Mechanism

11



A Grashof mechanism in which the drive crank is the shortest (and Lmax + Lmjn < La

+ Lb) will act as a crank rocker mechanism. In Figure 3.1, the skeleton diagram

represents a crank rocker mechanism where link 0 represents the frame, links 1 and 3

are the side links and link 2 is the coupler. The smallest side link, link 1, often acts as a

driving crank. The rocker link (link 3) will oscillate while the crank (link 1) is rotated

continuously in one direction.

Fig. 3.2 Drag Link Mechanism

12



A Grashof mechanism in which the fixed link is the shortest ( and Lmax + Lmjn < La +

Lb) will act as a drag link mechanism, (see Figure 3.2). The drive crank will rotate

through
360

along with the coupler and follower crank.

A Grashof mechanism in which coupler, the link opposite to the fixed link, is shortest

and Lmax + Lmjn < La + Lb will act as a double rocker mechanism, (see Figure 3.3).

This is sometimes called double rocker of the first kind. Although the coupler can rotate

360, neither crank can rotate through 360. In a linkage of this type, the coupler can

be used as the drive member.

Figure 3.3 A Double Rocker Mechanism

13



A Grashof mechanism in which Lmax+ Lmjn = La + Lb may be considered a

crossover-position or change point mechanism. Relative motion of a crossover

position may depend on inertia, spring forces, or other forces when links become

collinear.

Any of the above classes of linkages may be driven by rotation of the coupler (the link

opposite the fixed link), although the range of coupler in some cases may be very

limited. The coupler effectively provides a hinge with a moving center. The coupler-

driven linkages may be called polycentric.

Four-bar mechanisms that do not satisfy the Grashof criterion, Lmax + Lmjn < La + Lb

are called double rocker mechanisms of the second kind or triple rocker mechanisms.

In this case no link can rotate through 360.

3. 2. Proof of Grashof Criteria

To show the validity of the Grashof criteria, we may begin by examining a crank rocker

mechanism. Referring to Figure 3.1
, we observe that the range of motion of link 3 is

limited. The limiting positions of link 3 occur when links 1 and link 2 are collinear. The

linkage arranges itself in the form of a triangle. Using the triangle inequality, we obtain

the required relationships between lengths of the crank rocker mechanism.

First, using Figure 3.4, we have an inequality relating the length of the fixed link to the

others:

L0 < L2
-

Li + L3 (3.2)

14



Figure 3.4 A Limiting Position of Crank Rocker Mechanism

Next, a similar expression is obtained for follower crank 3:

L3 < L2
-

Li + Lq (3.3)

Figure 3.5 Another Limiting Position of Crank Rocker Mechanism

15



From Figure 3.5, The length of link 1 added to link 2 is related to the others to form

inequality:

Lt + L2 < Lq+ L3 (3.4)

Combining inequalities 3.2, 3.3 and 3.4, we have

L1+ IL2-L3I < L0 < L<\ + L3 (3.5)

Actually, there are three additional possible inequalities based on the triangle formed

in Figure 3.5, but these three inequalities are redundant.

Inequalities 3.2 and 3.3, respectively, may be written in the following form:

L-| < -

L0 + L2 + L3 (3.6)

1-1 < L0 + L2
"

L3 (3.7)

In this from, the inequalities may be added to obtain

2 L-| < 2 L2 or L-j < L2 (3.8)

Similarly using inequality 3.2 and 3.4, we have

Li < L3 (3.9)

Using 3.3 with 3.4, we have

16



L1 < L0 (3.10)

Thus, if the driver crank (which we label link 1) is the shortest link in a four-bar

mechanism, we may have a crank rocker mechanism. If inequalities 3.2, 3.3 and 3.4

are satisfied for the given mechanism, the identification of the mechanism as a crank

rocker mechanism is then positive; link 3 will oscillate as link 1 rotates continuously.

Substituting Lmjn for L-| and Lmax for each of Lq, L2, and L3 in turn, in inequality 3.5,

we see that it is identical to the more concise requirements for a crank rocker

mechanism: (a) Lmax + Lmjn < La + Lb and (b) the crank is the shortest link. If link 0,

the fixed link, is shortest, as in the drag link mechanism, we may substitute Lq for L-j,

L-| for L2 , L2 for L3 and L3 for Lq in inequality 3.2 to obtain

L0 + ll_-| -L2I < L3 < L-|
-

L0 + L2 (3.11)

If link 2, the coupler link, is shortest, as in a double rocker mechanism, by similar

permutation, we obtain

L2 + IL3-L0I < L-l < L3
-

L2 + L0 (3.12)

Substituting as we did in inequality 3.5 we see that in equalities 3.1 1 and 3.12 satisfy

the Grashof inequality:

Lmax + Lmin < La + Lb (3-13)

Each of these mechanisms may be considered as inversion of the others. Four-bar

17



linkages that violate the Grashof criteria are triple rocker mechanisms. Each Grashof

mechanism has two assembly configurations. The positions attainable in one

assembly configuration are not attainable in the other. A summary of the results is

given in Table 3.1.

Table 3. 1. Summary of the Criteria of Motion for Each Class of Four-Bar

Linkages

l-min:

Lmax:

La and Lb:

shortest link;

longest link;

links of intermediate links

Type of Mechanism Shortest Link Relationship Between Links

GRASHOF Any -max + Lmin - La + Lb

Crank rocker Driver crank Lmax + Lmin < La + Md

Drag link Fixed link Lmax + Lmin < La + Lb

Double-rocker Coupler Lmax + Lmin < La + Lb

Crossover-position Any Lmax + Lmin = La + Lb

NON-GRASHOF

Triple-rocker Any Lmax + Lmin > La + Lb

18



4. SPECIAL FOUR-BAR MECHANISMS FOR APPROXIMATE

STRAIGHT LINE OUTPUT

One of the special applications of four-bar linkages is as function generators. The

atlas, Analysis of the four-bar linkage, by Hrones and Nelson, contains a few coupler

curves with approximate straight lines that have been useful for practical design

problems. Four well-known four-bar linkages which are capable of generating straight

line motion will be introduced in this chapter. However, those mechanisms given by

the atlas are inflexible in design, and only occasionally they fit the problems the

designers face in practice; in most cases to suit particular needs mechanisms for

straight line motions needed to be developed. In this chapter, these four mechanisms

will be categorically defined and their mobility will be investigated.

4. 1. Evans Linkage

Evans Linkage is a crank rocker mechanism in which the crank L-| rotates through a

Fig 4.1 Evans Linkage

19



complete rotation and thus used as the input link (See Figures 4.1 and 4.2). The output

motion is obtained from the point M which is located on the extension of the coupler

link L2. Here L0 is the fixed link or frame. The Grashof condition for this linkage can be

stated as

Lmax + Lmjn < La + Lb (4.1)

and the crank should be the smallest link. Since this is a crank rocker mechanism, the

crank is free to rotate through a complete rotation with respect to the frame.

Figure 4.2 Another Position of Evans Linkage

20



4. 2. Chebyshev Linkage

Chebyshev Linkage is a four-bar double rocker mechanism where the coupler rotates

through 360. Figure 4.3 shows a schematic diagram of the Chebyshev linkage. In

Chebyshev's Linkage either the crank or the coupler can be used as the input link. The

output is obtained from the point M located at the middle of the coupler. The limiting

positions of the crank in relation to the frame for this mechanism are shown in Figures

4.4 and 4.5.

Figure 4.3 Chebyshev Linkage

The conditions for Chebyshev's Linkage is same as the Grashof's criteria:

Lmax + Lmin < La + Lb (4.2)

and the smallest link is the coupler L2.

The limiting angles between the crank and the frame for Chebyshev's Linkage are

calculated using cosine law (refer Figure 4.4).

21
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Figure 4.4 Limiting Angle of Chebyshev Linkage

By cosine law:

(L3
- L2)2 = |_02

+ Li
2 - 2 L0 L^ cos 0min

=> Qmin = cos-1

{ [
L02

+ L^ -(L3- L2)2 ]/2 L0 L-\ } (4.3)

Figure 4.5. Another Limiting Angle of Chebyshev Linkage

Similarly to calculate 0max from Figure 4.5,

22



=>

(L3 +
L2)2 = L02 + L-|2-2 Lq L-| cos 6max

6max = cos-1{[L02 + L12-(L3 + L2)2]/2L0L1} (4.4)

4. 3. Watts Linkage

A pictorial representation of Watts Linkage (refer Figure 4.6) resembles that of the

Chebyshev's. But it differs from Chebyshev's by the fact that it is not a double rocker

mechanism which means no link in this mechanism rotates through 360. The limiting

positions of the crank for this mechanism are shown in Figures 4.7 and 4.8.

Figure 4.6 Watts Linkage

Being a non-Grashof mechanism, Watts Linkage does not satisfy the Grashof Criteria.

The condition for this kind of link mechanism is,

Lmax + Lmin > La + Lb (4.5)

23



Figure 4.7 Limiting Position of Watts Linkage

Figure 4.7 will show that the limiting angle emax for Watts Linkage can be calculated

as same way as that of Chebyshev's.

(I_3 +
L2)2

= L02 + Li
2 - 2 Lq L<[ COS 6max

=> emax = COS-1{[L02 + L12-(L3 + L2)2]/2LoL1} (4.6)

and in this case,

fynin -
~

^max (4.7)

Figure 4.8 The Other Limiting Position of Watts Linkage

24



4. 4. Roberts Linkage

Roberts Linkage is a mechanism of triple rocker kind in which none of the links rotate

through 360. Figure 4.9 shows a Roberts mechanism.

Figure 4.9 Roberts Linkage

From the limiting positions illustrated by Figure 4.10, by cosine law,

L32 =
L02 + (Lt +

L2)2 - 2 L0 (Li + L2) cos emin

=> emin =
cos-1

{ [
L02 + (Li +

L2)2 - L32
] / 2 L0 (Li + L2) } (4.8)

25



Figure 4.11 The Limiting Positions of Roberts Linkage
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and 0max is calculated as,

(L2 +
L3)2 = Lq2 + Li2 - 2 Lq Li cos 6max

=> max = cos-1

{ [ Lq2 + L^
-

(L2 +
L3)2

] / 2 L0 Li } (4.9)

27



5. POSITION ANALYSIS OF A BASIC FOUR-BAR MECHANISM

When mechanisms are analyzed both graphical and analytical methods can be useful.

When position of a point or set of points are to be determined for a single linkage

position, graphical methods are usually more convenient. Analytical methods are more

practical when a sequence of positions of a mechanism must be analyzed. The use of

a computer permits a detailed study of a full cycle of motion. Once the initial

programming is completed, little effort is required to examine the effect of design

changes. On the other hand, if we were to use graphical methods, each linkage

position would require a separate plot and each change in length of a link would

require a new sequence of plots.

This chapter deals with the analytical method of determining the positions of the links

relative to one another. Methods of vector analysis are important tools, which could be

used for mechanism analysis and synthesis.

5.1 Vectors

Vectors provide graphical and analytical means to represent motion. A quantity

described by its magnitude and direction can be considered a vector and can be

graphically represented by an arrow. The length of the arrow is proportional to the

magnitude of the vector quantity and the direction of the arrow is the direction of the

vector quantity. Graphical and analytical vector methods can be applied to linear

displacements, velocities, accelerations and forces, and to torques and angular

velocities and accelerations. Vectors will be identified in this study by boldface type

to distinguish from scalar quantities.

28



In general, a vector of unit magnitude can be called a unit vector. Thus, A^ = A / A is a

unit vector in the direction of A, where A = IAI is the magnitude of vector A. A

coordinate system in which the axes are mutually perpendicular is called a rectangular

coordinate system. Unit vectors i, j, k parallel to the x, y, z coordinate axes,

respectively, are particularly useful, since we are going to use only rectangular

coordinate system throughout this work. These unit vectors are also called rectangular

unit vectors. A vector may be described in terms of its components along each

coordinate axis.

When we use vectors to describe the motion of a linkage, it is advisable to make a

sketch of the linkage adjacent to vector diagrams so that vector directions can be

referred to linkage orientation.

5. 1. 1 Solution Of Planar Vector Equations

Consider the planar vector equation

A + B + C = 0

or in terms of unit vectors (Au etc.) and magnitudes (A etc.),

AU A + BU B + CU C = 0

If the magnitude and direction of the same vector are unknown, then the solution is

easily obtained. If C is unknown, we use

C = - ( Ax + Bx ) i - ( Ay + By ) j

or

C = -(Ai + B i ) i
- (Aj + B * j ) j

If the magnitudes of two different vectors are unknown, a vector elimination method

may be used. Suppose, for example,
magnitudes A = I A I and B = I B I are unknown in
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the vector equation AU A + BU B + Cu C = 0. We take the dot product of each term

with BU x k noting that
Bu ( bu x k ) = 0 since vector BU is perpendicular to vector

BU X k. Thus, we obtain

AUA(BUXk) + C-(BUXk) = 0

from which the magnitude of vector A is given by

-C(BUXk)

A=
(5.1)

AU.(BUXk)

Similarly, the magnitude of B is given by

- C ( AU x k )
B = ( 5.2 )

BU ( AU X k )

If the vector directions Au and Bu are unknown but all vector magnitudes are known,

the solution to the equation A + B + C = 0 is more difficult. The results in this case,

as given in Reference 1 0, are

A = _{B2 -[(c2 + B2-A2)/2C]2}(1/2) (CUXk)

+ { [
(C2 + B2 - A2)/2C ] - C } CU (5.3a)

or A = + {B2
-[(C2 + B2-A2)/2C]2}(1/2)

(CU X k )

+ { [
(C2 + B2 - A2)/2C ]

- C } CU (5.3b)

and B = + {B2 - [ (
C2 + B2 - A2 )/2C ]2 }(1/2) (Cu x k )

+ [
(C2 + B2 - A2)/2C ] CU (5.4a)

or B =
-{B2

-[(C2+ b2-A2)/2C]2}(1/2)
(C" X k )

+ [
(C2 + B2 - A2)/2C ] CU

(5.4b)
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When the magnitude of A and the direction of B are unknown, A and B may be found

by the following equations:

A = { - C AU V B2 -

[ C ( AU X k )]2 }
AU

B = -

[ C ( AU X k) ] ( AU x k) V B2 - [ C ( AU X k )]2 } AU

(5.5)

(5-6)

The above approach uses vector notation throughout, unlike alternate methods that

use vector analysis to derive scalar equations. When the above method is used for

computer-aided analysis and design of mechanisms, computer subroutines will be

incorporated to handle the conversion from vector to scalars. The above equation will

be applied to the analysis of planar linkages.

Figure 5.1 A Basic Four-Bar Planar Linkage
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5. 2 The Four Bar Linkage

A graphical layout of a four bar linkage can be easily constructed. We only require to

know the position of one link be given in relative to the frame and the link lengths. One

such layout for the simplest four bar mechanism is given in Fig. 5.1. Analytical formulas

are to be developed to determine all the link positions needed to write a computer

program.

The following analysis provides an analytical solution for a simple mechanism shown

as vector notations in Fig. 5.2 and this can be modified to suit the different kinds of four

bar mechanisms in the later parts of this chapter. Note that there are two different

modes of assembly possible for a non-Grashof mechanism. (Refer Chapter 3).

Figure 5.2 Vector Representation of a Planar Four-Bar Linkage
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5. 2. 1 Position Analysis Using Vector Cross Product

Equations 5.3 and 5.4 may be used to find linkage displacements. These equations

apply when directions of vectors A and B are unknown. The four bar planar linkage of

Fig. 5.2 is described by the vector equation

r0 + n + r2 + r3 = 0

or

rd = - ( r2 + r3 )

where the diagonal is given by

rd = r0 + ri

If the lengths of the links are specified and orientation of link 1 is given, then the

following substitution may be made in equations 5.3 and 5.4:

A = r2

B = r3

C = rd= r0 + ri

yielding, if the linkage is assembled so that the vector loop r2r3rd is clockwise as in

Fig. 5.2,

r2 = -{r32 -
[(r32-r22 +

rd2)/(2rd)]2}1/2 (rduXk)

+
[(r32-r22 + rd2)/(2rd)

-

rd ] rdu (5.7)

r3
=
+{r32 _

[(r32_r22 +
rd2)/(2rd)]2}1/2 (rduXk)

-
[(r32-r22 + rd2)/(2rd)

-

rd ] rdu (5.8)

and if the vector loop r2r3rd is counterclockwise as in Fig. 5.3,
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Figure 5.3 Vector Representation of a Four-Bar Linkage

(Alternative Mode of Assembly)

r2
= +{r32 - [(r32-r22 +

rd2)/(2rd)]2}1/2 (rduXk)

+
[(r32-r22 + rd2)/(2rd)

-

rd ] rdu (5.9)

r3
=
-{r32 -

[(r32-r22 +
rd2)/(2rd)]2}1/2 (rduXk)

-
[(r32-r22 + rd2)/(2rd)

-

rd ] rdu (5.10)

In order to be used in a computer program, analytical formulas are to be developed for

different link positions. These formulas can be developed using the concepts of vector

operations and incorporating them.
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6. EQUATION OF COUPLER CURVE OF A GENERIC FOUR BAR

LINKAGE

In order to investigate algebraically the function generated by a coupler point, a

generic equation of this coupler curve should be obtained. The equation of the coupler

point curve for a four-bar linkage was first derived by Samuel Roberts by using analytic

geometry. The equation will be written in Cartesian coordinates, with x axis along the

line of centers OaOb and the y axis perpendicular to that line at Oa (See Fig. 6.1). Let

(x-|,yi), (x2,y2), and (x,y) be, respectively, the coordinates of points A, B and coupler

point M; then

x-| = x
- b cos 9 yi

= y
- b sin e

and x2 = x-acos(e + y) y2 = y-asin (6 + y) (6.1)

Since A and B describe circles (or arcs of circles) about centers Oa and Ob,

respectively,

Xl2 +
yi2 = r2 and (x2

- p)2 +
y22 = s2 (6.2)

Substituting the values of x-|,yi and x2,y2 into the last two equations yields,

(x - b cos e)2 + (y
- b sin 6)2 =

r2

and [x-acos(e +
y)-p]2 + asin(e +

y)]2 =
s2 (6.3)

which, by application of trigonometric identities, ordering of terms and simplification,

become:
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B

Figure 6.1 A Graphical Layout of a Generic Four-Bar Linkage
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x cos 0 + y sin 0 = (x2 + y2 + b2 -

r2) / 2 b

and [ (x -

p) cos y + y sin y ] cos 0 -

[ (x
-

p) sin y
-

y cos y ] sin 0

= [(x-p)2 + y2 + a2-s2]/2a (6.4)

The equation of the coupler-point curve may now be obtained by elimination of 0

between the last two equations. Solving these equations for cos 0 and sin 0 and

substituting the values obtained into identity
cos2 0 + sin2 0 = 1 yields the general

four-bar coupler curve equation:

{ sin a [(x -

p) sin y
-

y cos y ]
(x2 + y2 + b2 -

r2)

+ y sin p [(x - p)2 + y2 + a2 - s2]}2

+ { sin a [(x -

p) cos y + y sin y ] (x2 +
y2 + b2 -

r2)

- x sin (3 [(x - p)2 + y2 + a2 - s2]}2

= 4 k2 sin2 a
sin2 p

sin2

y [x (x -

p)
- y2 -

p y cot y
]2 (6.5)

In this, k is the constant of the sine law applied to the triangle ABM,

a b c

sin a sin p sin y

This equation is of the sixth degree because one of its property is that a straight line

will intersect it in no more than six points. In the following sections the equation of

motion of specific four-bar mechanisms will be derived in a similar approach.
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7. FOUR-BAR MECHANISMS THAT GENERATE SYMMETRICAL

COUPLER CURVES

Symmetrical curves generated by a four-bar mechanism have received a great deal of

attention due to their wide applications. In this chapter conditions for a four-bar

mechanism to produce a symmetrical coupler curve will be discussed. The following

theorem and proof were presented by Berzak (Reference 8 and 9).

Symmetrical Coupler Curves

Let a symmetrical four-bar mechanism be defined as a four-bar mechanism for which

the length of the crank and the length of the rocker are equal.

Theorem 1: In a symmetrical four-bar mechanism, any point in the

coupler plane which lies on the perpendicular bisector of the coupler,

generates a symmetrical curve, with the perpendicular bisector of the

frame as a line of symmetry.

Proof of Theorem 1 Using Analytical Geometry

The equation of the coupler curve generated by point M of the four bar mechanism

shown in Fig. 7.1 is given by the equation 7.1. This equation was first derived by

Samuel Roberts and is presented with slight modifications. The derivation of this

equation is explained in Chapter 6.

The equation is written in Cartesian coordinates with origin at the center of rotation of

the crank Oa, and x-axis along OaOb, where Ob is the center of rotation of rocker.
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Figure 7.1 Graphical Layout of a Four-Bar Mechanism
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{ sin a [(x -

p) sin
y-

y cos y]
(x2 + y2 + b2 -

r2)

+ ysinp
[(x-p)2 + y2 + a2-s2]}2

+ { sin a [(x -

p) cos y+ y sin y ] (x2 + y2 + b2 -

r2)

-xsinp
[(x-p)2 + y2 + a2-s2]}2

= 4k2sin2a sin2

p sin2Y [x (x-p) -y2 -p y cot
y]2

(7.1)

In this, k is the constant of the sine law applied to the triangle ABM,

a b c

k = = =

sin a sin p sin y

All angles in this are positive when measured in the counter clockwise direction. A

special four-bar mechanism is shown in Fig. 7.2. For this mechanism:

r = s (7.2)

In view of the choice of point M, triangle ABM is isosceles. Therefore:

a = b

and a = p (7.3)

From the condition that the sum of the angles in a triangle is
180

together with

equation 7.3 the following conditions are obtained.

sin a = sin 2p (7.4a)

cos a = cos 2p (7.4b)

Substituting these into equation 7.1, we get
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Figure 7.2 A Symmetric Linkage
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{ sin p [ ( x -

p ) sin 2 p + y cos 2 p ] (
x2 + y2

+
b2 - r2

)

+ y sin p [ ( x -

p
)2 + y2 + b2 - r2

]
}2

+ { sin p [ ( x -

p ) ( - cos 2 p ) + y sin 2 p ] (
x2 + y2 + b2 - r2

)

- x sin b [ ( x -

p
)2 + y2 + b2 - r2

]
J2

= 4k2sin4psin22p[x(x-p)-y2 + pycot2p]2 (7.5)

Now if we will transform the equation to a new X,Y coordinate system. The origin of this

coordinate system is at the center of the frame. The X-axis coincides with the x-axis,

and X,Y coordinate system is also right-handed.

The transformation equations are defined by the equations:

x = X + p/2

and y = Y (7.6)

Substitution of these transformation into equation 7.5 results in,

X6
sin22p +

X4
[
p2

sin2p (1-3 cos2p ) + 2 sin22p (
b2 - r2

)

-4
b2

sin22P sin2p ] - 2 X* Y p sin2p sin 2p + 3 X* Y2
sin22p

+
X2

[ ( p4 / 4 ) sin2p (1-3 sin2p )
- 2 p2

(
b2 - r2

) sin2p + (
b2 - r2 )2

sin22p

+ 2 b2 p2

sin2p sin22p ] +
X2 Y { p sin 2p [ sin2p (

p2 - 4 b2 + 4 r2

)

-8
b2 cos 2P sin2p j } +

X2 y2 [ 2
p2

sin4p

- 8 b2
sin2p sin22p + 4 (

b2 -
r2

) sin22p ]
- 4 X2 y3

p sin 2p sin2p

+ 3 X2 Y^ sin22p +
Y6

sin22p
- 2 Y5

p sin 2p sin2p

+
Y^

[ 2 sin22p (
b2 - r2 ) +

p2

sin2p ( 1 + cos2p ) - 4 b2
sin2p sin22p]

+ Y3 [ p sin 2P sin2p ( -
p2 - 4 b2 + 4 r2

)
- 8 b2 p sin 2P sin2p cos 2p ]
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+Y2[(p4/4)sin2p(1+sin2p + (b2-r2)2sin22p + 2p2(b2-r2)sin2p

- 4 b2 p2

sin2p (1-6 cos2p + 6 cos4p ) ]

+Y{(p/2)sin2psin2P[-p4/4-4(b2-r2)2-2p2(b2-r2)]

+ 2 b2 p3 sin 2p cos 2p sin2p }

+ p2 sin4p [ ( p4 / 1 6 ) + ( b2 - r2 )2 + ( p2 / 2 ) ( b2 - r2 ) ]

- ( 1 / 4 ) b2 p4 sin22p sin2p = 0 (7.7)

A close examination of the above equation will show that all coefficients of odd powers

of X are zero, which follows that the Y-axis coincides with the line of symmetry of the

coupler curve.

The following theorem and proof are presented by Hartenberg and Denavit, in

Reference 1.

Theorem 2: Coupler curves that are symmetrical about an axis may be

generated by a four bar linkage with a coupler base AB and follower OgB

of equal length. The coupler point must lie anywhere on the circle

centered at B and passing through A (refer figure 7.3).

Since BOb = BA = BM, the above circle also passes through Ob and the inscribed

angle AObM satisfies the relation

<AObM = <ABM/2 = p/2 = constant. (7.8)

Consider now the linkage in two positions OaA-|B-|Ob and OaA2B2Ob for which

points Ai and A2 are symmetrical with respect to the line of fixed centers OaOb

(Figure 7.4). For these positions, triangles ObA-|Bi and ObA2B2 are equal, since
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corresponding sides are equal, whence pi = P2.

0
B

Figure 7.3 A Four-Bar Mechanism That Generates Symmetrical Coupler

Curves
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Figure 7.4 Two Positions of a Four-Bar Corresponding to Symmetrical

Points M-\ and M2 on the Coupler Curve
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Now, the isosceles triangles ObB-|Mi and ObB2M2 are equal,

ObMi = ObM2
(7.9)

and the midnormal c to MiM2 passes through Ob and bisects the angle M1ObM2,

whence

8 + y = a + p/2
(710)

Since the angles OaObAi and OaObA2 are also equal (A-| symmetric to A2 with

respect to OaOb),

Y+ a = p/2 + 8 (7.11)

Adding the last two equations yields

Y
= 0/2

(712)

The midnormal c to M-|M2, therefore makes a constant angle with the line of fixed

centers OaOb, whence it is an axis of symmetry for the coupler curve generated by

point M. It should further be noted that symmetric points on the coupler curve

corresponds to symmetric positions of the crank with respect to the line of fixed centers

OaOB-
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8. ANALYSIS OF FOUR-BAR LINKAGES GENERATING

STRAIGHT LINE COUPLER CURVE

When James Watt built a steam engine in 1769, he had to design a linkage to guide a

pin along a straight line path, since there were no machine tools at that time capable of

producing straight metal slides of sufficient precision. Since then straight line

mechanisms have found numerous applications.

Straight line mechanisms are not of historic interest alone, however, since four bar

mechanisms have their own advantages over the conventional slides. Many four-bar

mechanisms that generate approximate straight line motion, have been designed in

the past. Although they have proven to be very useful for practical design problems,

these
"ready-made"

straight line motions only occasionally fit the design problems in

practice; in most cases the designer must develop straight line motion to suit his/her

particular needs.

This chapter derives the necessary condition to obtain a straight line output from four

bar mechanisms, in order to aid the designer in designing his/her mechanism for

straight line motion to fit his/her needs.

8. 1 Evans Linkage

A schematic layout of symmetrical Evans linkage is shown in Fig. 8.1. From Chapter 7,

we are now aware that for a symmetric coupler curve in the standard Evans linkage

(refer Fig. 4.1) the values of s , a and b must be equal and the Fig. 8.1. is shown as

such. The x-axis is drawn along the frame OaOb and the y-axis perpendicular at Oa-

Let (x-i.yi), (x2,y2) and (x,y) be respectively, the coordinates of points A, B and the

coupler point M; then
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Figure 8.1 Graphical Layout of Symmetrical Evans Linkage
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x-| = x - 2 a cos 6
yi = y

- 2 a sin 6

and x2 = x - a cos 9
y2 = y

- a sin e

Since A and B describe circles (or arcs of circles) about centers Oa and Ob,

respectively,

X12 + yi2 = r2
and (X2

_ p)2 + y22 = a2

Substituting the values of x-|,yi and x2,y2 in these two equations gives,

(x-2acos0)2 + (y-2asin9)2 = r2

and (x - a cos 0 - p)2 + (y - a sin 8)2 = a2

Expanding and solving these two equations for cos 9 and sin 0 yields,

4 a2 - r2 + x2 + y2 p2 - 2 p x + x2 + y2

cos 0 = -

4 a p 2 a p

( p - x ) ( 4
a2 - r2 + x2 + y2

) x ( p2 - 2 p x +
x2 + y2)

sin 0 =
-

4apy 2 apy

Substituting these values in the trigonometric identity cos20 + sin20 = 1, and

simplifying we get the equation of the coupler curve:

16 a4 p2 - 8 a2 p2 r2 + p2 r4 - 32 a4 p x+ 16 a2 p3 x + 16 a2 p
r2 x -

4 p3 r2 x - 2 p
r4 x + 16 a4 x2 - 40 a2 p2 x2 + 4 p4 x2 - 8 a2 r2 x2 +
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10 p2 r2 x2 + r4 x2 + 32 a2 p
X3 - 12 p3 x3 - 8 p

r2 x3 - 8 a2 x4 + 13 p2 x4 +

2 r2 x4 - 6 p
x5 + x6 + 16 a4 y2 - 24 a2 p2 y2 + 4 p4 y2 - 8 a2 r2 y2 +

2 p2 r2 y2 + r4 y2 + 32 a2 p x y2 - 12 p3 x y2 - 8 p
r2
x y2 - 16 a2 x2 y2 +

18 p2 x2 y2 + 4 r2 x2 y2 - 12 p
x3 y2 + 3 x4 y2 _ 8 a2 y4 + 5 p2 y4 + 2 r2 y4 _

6pxy4 + 3x2y4 + y6 = o (8.1)

Now, to find the coordinates of the points where the output curve would meet the Y

axis, substituting x = p equation 8.1 and simplifying results in,

y2(-4a2 + p2-2pr + r2 + y2)(-4a2 + p2 + 2pr+r2 + y2) = 0 (8.2)

whose non-zero, non-negative solutions of y are,

y = {(4a2-p2 + 2pr-r2)1/2. (4 a2-p2 -2 p
r- r2 )1/2 } (8.3)

Differentiating the equation of coupler curve with respect to x yields (
y'

= dy/dx),

-32
a4

p + 16 a2 p3 + 16 a2 p
r2 - 4 p3 r2 - 2 p

r4 + 32 a4 x - 80 a2 p2 x +

8 p4 x -16
a2 r2 x + 20 p2 r2 x + 2 r4 x + 96 a2 p

x2 - 36 p3 x2 - 24 p
r2 x2 -

32 a2 x3 + 52 p2 x3 + 8 r2 X3 - 30 p
x4 + 6 x5 + 32 a2 p

y2 - 12 p3 y2 -

8 p
r2 y2 - 32 a2 x y2 + 36 p2 x y2 + 8 r2 x y2 - 36 p x y2 + 12 x3 y2 _ 6 p

y4 +

6 x y4 +
y'

( 32
a4

y
- 48 a2 p2

y + 8 p4 y
- 16 a2 r2

y + 4
p2 r2

y + 2 r4

y +

64 a2 p x y -24
p3 x y

- 16 p
r2 x y

- 32 a2 x2

y + 36
p2 x2

y + 8 r2 x2

y
-

24 p
x3

y + 6
x4

y
- 32 a2 y3 + 20 p2 y3 + 8 r2 y3 - 24 p x y3 + 12 x2 y3 +

6 y5 ) = 0 (8-4)
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Substituting the two values of y from equation 8.3 in equation 8.4 successively and

solving for dy/dx results in,

dy/dx = 0, (8.5)

which means the slope of the coupler curve at both the points it crosses the axis of

symmetry (Y axis) is zero. From calculus, we know that the formula for radius of

curvature of the curve f (x
,y)

= 0 at any point is,

[1+( dy/dx)2 ]3/2

p
= (8.6)

d2y/dx2

Therefore, for a straight line the radius of curvature must be infinity which will happen

only if the second derivative of y (d2y/dx2) is equal to zero at that point. Differentiating

equation (8.4) again with respect to x gives (
y"

= d2y/dx2),

32 a4 - 80 a2 p2 + 8 p4 - 16 a2 r2 + 20 p2 r2 + 2 r4
+ 192 a2 p x - 72 p3 x -

48 p
r2 x - 96 a2 x2 + 156 p2 x2 + 24 r2 x2 - 120 p

x3 + 30 x4 - 32 a2 y2 +

36 p2 y2 + 8 r2 y2 - 72 p x
y2 + 36 x2 y2 + 6 y

4
+ 2

y'

( 64
a2

p y
- 24 p3 y

-

16 p
r2

y
- 64 a2 x y + 72

p2 x y + 16 r2 x y
- 72 p

x2

y + 24
x3

y
- 24 p

y3 +

24 x y3 ) +
y'2

( 32
a4 - 48 a2 p2 + 8 p4 - 16 a2 r2

+ 4 p2 r2 + 2 r4
+

64 a2 p x
- 24 p3 x - 16 p

r2
x

- 32 a2 x2 + 36 p2 x2 + 8 r2 x2 - 24 p
x3 +

6 x4 - 96 a2 y2 + 60 p2 y2 + 24 r2 y2 - 72 p x
y2 + 36 x2 y2 + 30 y4 ) +

y"

( 32
a4

y
- 48 a2 p2

y + 8 p4 y
- 16 a2 r2

y + 4 p2 r2

y + 2 r4

y +

64 a2 p x y
- 24 p3 x y

- 16 p
r2

x y
- 32 a2 x2

y + 36
p2 x2

y + 8 r2 x2

y
-

24 p
x3

y + 6
x4

y
- 32 a2 y3 + 20 p2 y3 + 8 r2 y3 - 24 p x y3 + 12 x2 y3 + 6 y5 )

= 0 (8-7)
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So for us to get a condition for a straight line coupler curve, substituting the values of x

and y in the equation 8.7 and setting d2y/dx2 = 0 and simplifying we get,

8 p ( p3 - 4 a2 r + 3 p2 r + 3 p
r2

+ r3 ) = 0

=> ( p3 - 4 a2 r + 3 p2 r + 3 p
r2

+ r3

) = 0
(8.8)

since p cannot be equal to zero.These dimensions are unique only to their ratio. So let

us set the value of r as 1 and solve for a,

[ 1 + 3 p + 3 p2 + p3 ]1/2

a =

(8.9)

Disregarding the negative value, and simplifying the condition for a straight line

coupler curve for a symmetrical Evans Linkage is given by,

(1+p)3/2

a =

(8 10)
2

8. 2 Chebyshev's Linkage

Although Chebyshev and Watts linkages may fall into different categories, their modes

of assembly are identical (refer chapter 4) which shows their equation of the coupler

curve would be the same. Fig. 8.2 shows a generic symmetric Chebyshev and Watts

Linkage. Note that these are symmetric about a vertical line, x = p/2 (Y axis) which is

essential to produce a symmetric coupler curve as explained in Chapter 7. This line

would be the line of symmetry for the coupler curve as well.
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Figure 8.2 Graphical Layout of Symmetrical Chebyshev Linkage
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The equation of the coupler curve is obtained as follows: From Fig. 8.2 the values of

coordinates of points A ( X1 , V1 ) and B ( x2 , y2 ) from M ( x , y ) can be written as

x-| = x - a cos 0
yi =

y
- a sin 0

x2 = x + a cos 0
y2 = y + a sin 0

The points A and B follows in a circle around centers 0A and 0B, respectively, which

means

x-|2 + yi2 = r2
and (x2 -p )2 + y22 = r2

From the values of x-| ,y-| and x2,y2 in terms of x and 0, these equations become,

(x-acos0)2
+ (y-asin0)2 = r2

( x + a cos 0 -

p
)2

+ ( y + a sin 0 )2 = r2

From these the solutions for cos 0 and sin 0 are found to be:

4 a2 - r2 + x2 + y2
p2-2px + x2 + y2

cos 0 = -

4a p 4a p

( p - x ) ( 4 a2 - r2 + x2 + y2 ) x ( p2 - 2 p x +
x2 + y2 )

sin 0 = -

4apy 2apy

Substituting these in the trigonometric identity cos20 + sin20 = 1 as before, we obtain

the coupler curve equation,
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a4p2-2a2p2r2 + p2r4-4a4px-2a2p3x + 8a2pr2x + 2p3r2x-

4 p
r4 x + 4 a4 x2 + 10 a2 p2 x2 + p4 x2 - 8 a2 r2 x2 - 10 p2 r2 x2 + 4 r4 x2 -

16 a2 p
x3 - 6 p3 x3 + 16 p

r2 x3 + 8 a2 x4 + 13 p2 x4 - 8 r2 x4 - 12 p
x5 +

4 x6 + 4 a4 y2 + 2 a2 p2 y2 + p4 y2 - 8 a2 r2 y2 - 6 p2 r2 y2 + 4 r4 y2 -

16 a2 p x y2 - 6 p3 x y2 + 16 p
r2 x y2 + 16 a2 x2 y2 + 18 p2 x2 y2 -

16 r2 x2 y2 - 24 p
x3 y2 + 12 x4 y2 + 8 a2 y4 + 5 p2 y4 - 8 r2 y4 - 12 p x y4 +

12x2y4 + 4y6 = 0 (8.11)

Equation 8.1 1 is the equation of the coupler point curve for symmetric Chebyshev and

Watts linkages. From this equation the non-zero, non negative values of y at x = p/2

are,

V-4a2 + 4ap-p2 + 4r2 V-4a2-4ap-p2 + 4r2

y= { , }

2 2

(8.12)

Differentiating the equation of the coupler curve 8.1 1 with respect to x yields ( dy/dx is

denoted as
y'

),

- 4 a4 p
- 2 a2 p3 + 8 a2 p

r2 + 2 p3 r2 - 4 p
r4 + 8 a4 x + 20 a2 p2 x + 2 p4 x -

16 a2 r2 x - 20 p2 r2 x + 8 r4 x - 48 a2 p
x2 - 18 p3 x2 + 48 p

r2 x2 + 32 a2 x3 +

52 p2 x3 - 32 r2 x3 - 60 p
x4 + 24 x5 - 16 a2 p

y2 - 6 p3 y2 + 16 p
r2 y2 +

32 a2 x y2 + 36 p2 x y2
- 32 r2 x

y2 - 72 p
x2 y2 + 48 x3 y2 - 12 p

y4 +

24 x y4 +
y'

( 8
a4

y + 4 a2 p2

y + 2 p4

y
- 16 a2 r2

y
- 12 p2 r2

y + 8 r4

y
-

32 a2

p x y
- 12 p3 x y + 32 p

r2 x y + 32
a2 x2

y + 36
p2 x2

y
- 32 r2 x2

y
-

48 p
x3

y + 24
x4

y + 32
a2 y3 + 20 p2 y3 - 32 r2 y3 - 48 p x y3 + 48 x2 y3 +

24y5) = 0 (8-13)
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Substituting the two sets of values of x and v from equation 8.12 in equation 8.13 gives

the solution to dy/dx as,

dy/dx = 0 (8.14)

for both points, which means the slope of the curve at both of these points are zero.

For the coupler point curve to be a straight line at any point, the radius of curvature at

that point is to be infinity, which is possible only when
d2y/dx2 = 0. When differentiated

again equation 8.13 becomes (
d2y/dx2 =

y"

),

8 a4 + 20 a2 p2 + 2 p4 - 16 a2 r2 - 20 p2 r2 + 8 r4 - 96 a2 p x - 36 p3 x +

96 p
r2

x + 96 a2 x2 + 156 p2 x2 - 96 r2 x2 - 240 p
x3 + 120 x4 + 32 a2 y2 +

36 P2 y2 - 32 r2 y2 - 144 p x y2 + 144 x2 y2 + 24 y4 + 2
y'

( - 32 a2 p y
-

12 p3 y + 32 p
r2

y + 64
a2

x y + 72 p2
x y

- 64 r2
x y

- 144 p
x2

y + 96
x3

y
-

48 p
y3 + 96 x y3 ) +

y'2

( 8
a4 + 4 a2 p2 + 2 p4 - 16 a2 r2 - 12 p2 r2 + 8 r4 -

32 a2 p x
- 12 p3 x + 32 p

r2 x + 32 a2 x2 + 36 p2 x2 - 32 r2 x2 - 48 p
x3 +

24 x4 + 96 a2 y2 + 60 p2 y2 - 96 r2 y2 - 144 p x
y2 + 144 x2 y2 + 120 y4) +

y"

( 8
a4

y + 4 a2 p2

y + 2 p4 y
- 16 a2 r2

y
- 12 p2 r2

y + 8 r4

y
- 32 a2 p x y

-

24 x4 y + 32 a2 y3 + 20 p2 y3 - 32 r2 y3 - 48 p x y3 + 48 x2 y3 + 24 y5 ) = 0

(8.14)

In the above equation, setting
d2y/dx2 = 0 at the points described by equation 8.12,

results in

2p(8a3+12a2p +
6ap2 + p3-8ar2)

= 0

or ( 8
a3 + 12 a2 p + 6 a

p2 +
p3 - 8 a r2

) = 0 (8.16)
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In order to make these dimensions true to its ratio, we set the length of the coupler

(which from the Fig. 8.2 is equal to '2a') as 1, which is done by giving the value of
'a'

as 1/2.

1 +3p +
3p2

+ p3-4r2 =0 (8.17)

From which the condition for a symmetric Chebyshev or Watts linkage for a straight

line coupler curve can be stated as:

V 1 +3p + 3p2 + p3

r = (8.18)

2

which can be rewritten as,

( 1 + p
)3/2

r = (8.19)

2

Note that this condition is identical to that for the Evans linkage.
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9. NUMERICAL GENERATION OF COUPLER POINT CURVES

If a mechanism is to be examined for its output, it is necessary to obtain all the

positions of the links to assure proper design, for which graphical methods of analysis

are convenient. Computers are excellent tools for graphical examination. This chapter

will discuss methods to generate coupler point curves for different types of

mechanisms.

Chapter 5 has given the solutions to the vector equations to the basic four bar

equations. If these equations to be used in a computer program to generate the

coupler curve, subroutines are necessary to convert the vector quantities to scalar

using the concept of vector operations. From these equations for the simple four-bar

mechanism, algorithms for specific mechanisms can be derived by making some

modifications.

9. 1 Conversion of Vector Solutions to Scalar

The vector representation of a simple four-bar mechanism is shown in Fig. 9.1. The

equations for the value of r2 obtained from the vector analysis in section 5.2.1

(Equation 5.7) can be decomposed into x and y coordinates as

""2x = (
r32 "

a2)1/2

rd2 + ( a
-

rd ) rd1 (9.1a)

r2y
= ~ (

r32 " a2 )1/2
rd1 + ( a

~

rd ) rd2 (9.1b)

where a= (
r32 - r22 +

rd2 ) / 2 rd (9.1C)

rdi = (ri coso
-

ro)/rd (9.1 d)

and rd2
= ( M sino)/rd (9.1e)
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Figure 9.1 Vector Representation of a Planar Four-Bar Linkage

Again if the vector loop r2r3rd is counterclockwise as shown in Fig. 9.2, the x and y

components of the solution to vector r2 given by equation 5.9 are,

"2x = - (
r32 ~ a2)1/2

rd2 + ( a
"

rd ) rd1

r2y
= (

r32 ~ a2 )1/2
rd1 + ( a

-

rd ) rd2

where a =
(r32-r22 + rd2)/2 rd

rdi
= ( ri cos o

-

ro ) / rd

and rd2 = ( H sin 0 ) / rd

(9.2a)

(9.2b)

(9.2c)

(9.2d)

(9.2e)
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Figure 9.2 Vector Representation of a Four-Bar Linkage

(Alternative Mode of Assembly)

9. 2. 1 Evans Linkage

A vector representation of the Evans Linkage is shown in Fig. 9.3. Evans linkage is

obtained from the simple four-bar mechanism by simply extending the coupler

(represented by the vector r2). Therefore the formula for the components of r'2 in

figure can be derived from equations 9.1 as

r'2x
= (r'2/r2)[(r32-a2)1/2rd2 + ( a

-

rd ) rd1 ]

r'2y
= (r'2/r2)[-(r32-a2)1/2rdi + (a-rd)rd2]

(9.3a)

(9.3b)
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Figure 9.3 Vector Representation of Evans Linkage

From which the coordinates of the output point M (x,y) are obtained as

and

x = r'2x + ri cos 0

y
=

r'2y + r1 sin 0

(9.4a)

(9.4b)

The coupler point curve for Evans linkage is obtained by substituting the value of 0

from
0

to
360

in small increments and plotting the positions of the coupler point

successively. Appendix B gives the the computer program that utilizes this algorithm
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and plots the output curve for a given set of dimensions of the links. Appendix A gives

some samples of plots thus obtained.

9. 2. 2 Chebyshev Linkage

A Chebyshev linkage is a crank-rocker mechanism in which the coupler rotates

through 360. A schematic representation of the Chebyshev's mechanism is shown in

Fig. 9.4. Since the output point M may lie anywhere on the coupler, the value of the

Figure 9.4 Vector Representation of Chebyshev Linkage
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vector r'2 is unchanged from that of r2 given by equation 9.11 except for its

magnitude. The components of vector r'2 is calculated as follows:

r 2x
= ( r'2 / r2 ) [ ( r32 - a2)1/2

rd2 + ( a -

rd ) rd ] (9.5a)

r'2y
= ( r'2 / r2 ) [ - ( r32 - a2 )1/2

rd1 + ( a -

rd ) rd2 ] (9.5b)

The position vector of the point can be obtained by the vector addition of vectors ri

and r'2-

x = r'2x + r-| cos 0 (9.6a)

and y
=

r"2y + r-\ sin 0 (9.6b)

The output curve can be obtained by by finding the position for small increments of 0

between 0max and 0mjn using. And in the same way the positions are calculated for

the second half rotation of the coupler using,

r'2x = ( r'2 / r2 ) [
- (

r32 - a2)1/2

rd2 + ( a
-

rd ) rd1 ] (9.7a)

r
2y

= ( r'2 / r2 ) [ (
r32 - a2 )1'2

rd1 + ( a -

rd ) rd2 ] (9.7b)

Chapter 4 explains these limiting angles 0max and 0min- and how to calculate them. A

computer code developed using the above algorithm to plot the coupler point curves

for Chebyshev Linkage is given in Appendix B and Appendix A contains the plots

obtained from the program.

9. 2. 3 Watts Linkage

Although Watts linkage looks similar to Chebyshev Linkage, it differs from it in the

sense that none of the links rotates through 360. The vector representation of the

watts linkage is shown in Fig. 9.5. The procedure for generation of the coupler curve
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Figure 9.5 Vector Representation of Watts Linkage

for Watts linkage is done the same way as that of Chebvshev's except that its limiting

angles are different. These limiting angles are explained in Chapter 4.

For the first half of the coupler curve, the positions for everv small increments of angles

between 0max and omjn are calculated using,

r'2x
= ( r*2 / r2 ) [ (

r32 -
a2)1/2

rd2 + ( a
-

rd ) rd1 ]

r'2y
= (r,2/r2)[-(r32-a2)1/2rdi + (a-rd)rd2]

(9.8a)

(9.8b)
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And for the second half using

r 2x
= ( r'2 / r2 ) [ - ( r32 - a2)1/2

rd2 + ( a -

rd ) rd1 ] (9.9a)

r'2y
= ( r'2 / r2 ) [ ( r32 - a2 )1/2

rd1 + ( a -

rd ) rd2 ] (9.9b)

where a, rdi and rd2 are calculated as before and the position vector of the point can

be obtained by the vector addition of vectors r<\ and r^.

x =

r'2X + M coso (9.10a)

and y =

r*2y + r-\ sin 0 (9.10b)

Appendix A contains some samples of the plots generated using computers and the

codes required to generate those plots can be found in Appendix B.

9. 2. 4 Roberts Linkage

The vector representation of a symmetrical Roberts Linkage is shown in Fig. 9.6. As we

have seen already the x and y components of the vector r2 can be calculated from

equations 9.1a through 9.1e. The coordinates (x-| ,y-| ) and (x2,y2) are calculated as

follows,

x-|
=

rt coso (9.11a)

y-l
= ri sino (9.11b)

x2
= xi+r2x (9.12a)

y2
=

yi+r2y (9.12b)
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Figure 9.6 Vector Layout of Roberts Linkage

To find the coordinates of the point M(x,y), from Figure 9.6, by the cosine law,

r2 _ r22 +
r2 _ 2 r r2 cos 6

=> 6 =
cos~1

[ r2 / 2 r ] (9.13)

and the angle

\\r =
sin"1

[ ( yi
-

y2 ) / r2 ] (9.14)

66



Finally the coordinates of the output point M are obtained by,

x =

xi + rcos (6 + \|0 (9.15a)

and y =

y-j -rsin (G + v) (9.15b)

These coordinates of the coupler point can be found for small intervals of 0 between

0mjn and 0max (see Chapter 4 on how to calculate them). The computer generated

plots and codes for Roberts Linkage are given Appendix A and Appendix B

respectively.
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10. SYNTHESIS PROCEDURE FOR DESIGNING A FOUR-BAR

LINKAGE TO GENERATE STRAIGHT LINE COUPLER CURVE

In the linkages studied, conditions have been developed for a mechanism to generate

a straight line and numerical and geometrical methods to study these outputs are also

discussed in detail. However it is a different task to start with a required straight line

motion and to try to proportion a mechanism to produce this motion. This procedure is

known as the synthesis of mechanisms. In the application of synthesis to design of a

mechanism
, the problem divides itself into two parts (a) the type of mechanism to be

used, (b) the proportions and lengths of the links necessary.

Analysis, as applied to mechanisms, implies that given the dimensions of a linkage it

is required to find its motion characteristics. Synthesis will be the exact opposite; the

motion characteristics are specified and it is needed to find the linkage that will

produce the specified motion. These design of linkages for specific applications relies

heavily on human judgment and ingenuity. This design process may be illustrated by

the flow chart given in Figure 10.1. This process of human interaction includes

creativity and possibly mathematical analysis and computation for which the

dimensional requirements that have been derived so far and the computer codes that

have been developed will be of immense help. While it is unlikely that human creativity

can be completely replaced, these tools and knowledge can be employed to relieve

the designer of many of the routine processes
that would be otherwise necessary.

This chapter gives the designer a synthesis procedure in order to help him/her to

select and design a four-bar linkage that will meet the design criteria and will provide

means to check its performance, and save some laborious trial and error processes.
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Design

Situation

Select Performance

Specifications (P. S.)

Reexamine

Design Situation

Select Design

Configuration

Set Dimensions

Analyze Proposed

Design

Yes

Acceptable

Design

Figure 10.1 The Design Process

69



10. 1 Kinematic Synthesis

As it was said earlier the synthesis of a four-bar linkage requires the designer to reach

decisions on (1) the form or type of mechanism, (2) the proportions (lengths) of the

links necessary to accomplish the specified motion transformation. The first phase is

called the type synthesis. Here the choice of the linkage mechanism is determined.

The other phase is dimensional synthesis, presents challenging problems, to which

the greater part of this work is addressed.

10. 1. 1 Type synthesis

The selection of the type of four-bar linkage needed to accomplish a purpose depends

to a great extent on consideration of usage, the coordination of input and output and

availability. If the mode of input is a motor, which often is, the choice of a crank rocker

mechanism (such as Evans linkage and Chebyshev linkage) would be appropriate,

since in this type of mechanism the input link is capable of complete revolutions. On

the other hand, if the input is from a rocker as in steam engine configuration, Watts

linkage or Roberts linkage could be useful. As the coupler curve plots in Appendix A

show that the coupler curve for Watts linkage has a double point on its output, it could

be used as the return mechanism as well.

With so many factors, there can be no scheme whereby a mechanism may be

uniquely determined on naming desired motion specifications. It will be necessary to

consider a line-up of possible combinations that could do the job, from which the "best

one"

for the particular application in view is chosen.

10. 1. 2 Dimensional Synthesis

By dimensional synthesis, it is meant determination of the dimensions of parts

necessary to create a mechanism that will effect a desired motion transformation. In
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considering the dimensional synthesis, it recognized that it has two aspects, called

approximate and exact. For approximate synthesis, Chapter 8 provides the

dimensional conditions for a four-bar linkage to produce a straight line coupler curve

as follows:

0
B

Figure 10.2 Evans Linkage for Symmetrical Coupler Curves

For a symmetrical Evans Linkage shown in Figure 10.2,

(1+p)3/2

a = (10.1)

where the length of the crank is considered as unity. The above condition is true to the

dimensional ratio of the links. This means any multiple of these dimensions will still

generate a straight line. It can be seen from the straight line plots given in Appendix A,

that the range x to y ration decreases as p increases. The designer may choose a p

value that suits his design and performance restrictions.
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Figure 10.3 A Symmetrical Chebyshev Linkage

In case of a symmetrical Chebyshev linkage as the one in Figure 10.3,

( 1 + p
)3/2

r = (10.2)
2

here the length of the coupler which can rotate completely is considered as one. As in

Evans Linkage, here any multiple of these dimensions will produce a straight line

coupler curve. The value of p is chosen to suit the needs then other dimensions are

determined as required by the condition 10.2.

Geometric methods can furnish, with superb accuracy, quick and dependable solution

to the problem of exact synthesis. Chapters 9 is dedicated to this method and

computer codes are given in Appendix B that are created to provide the designer the

graphical means. They give direct feeling for mechanical details which will be very

important in reducing a given solution to hardware and which may be obtained directly

on the drawing board without making use of sometimes unfamiliar or unavailable

analytical techniques.
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11. CONCLUSION

The objective of this work is to aid a designer with tools and knowledge to design a

four-bar mechanism to produce a straight line coupler curve that would meet his/her

design criteria.

In this work, mechanisms and in particular four bar linkages have been studied and

their components and classifications have been discussed. Four special four-linkages

that are capable of producing a straight line output are introduced and their mobilities

have been explained in detail.

The two conditions that are required for a four-bar mechanism to deliver a symmetrical

output have been provided along with their proofs. Two crank rocker mechanisms that

generate straight line coupler curve have been analyzed and the dimensional

requirements in order for them to generate straight lines have been derived.

Position analyses of all the links in a four-bar mechanism have been done using

vector algebra and based on this, separate algorithms to numerically generate the

coupler curves have been arrived at. Computer codes and the plots thus obtained are

added in appendices.

Finally, synthesis procedure for the designer to design a mechanism that would meet

his/her needs and ways to make finer adjustments to meet the performance criteria are

provided.

It has thus been shown that it is possible to synthesize a four-bar mechanism

analytically that could generate a straight line as part of its coupler curve. This work
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will help the designer to synthesize analytically, a four-bar mechanism with proper

selection of dimensions thereby saving the laborious task of choosing, by trial and

error, a mechanism that had already been designed which would rarely coincide the

requirements. With the help of the analytical tools presented the designer could also

make finer modifications to the design to meet exact design requirements. Finally, to

examine the output of the mechanism designed the graphical methods presented

would be an excellent tool.
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Figure A.2 Chebyshev Linkage
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Figure A.3 Watts Linkage
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Figure A.4 Roberts Linkage



p
=

2.00, r = 2.00, s = 2.00, a = 1 .00

b = 2.00

ROBERTS LINKAGE

p
= 3.00, r = 2.00, s

= 2.00, a = 1 .00

b = 1 .00

ROBERTS LINKAGE



p
= 3.00, r = 3.00, s = 3.00, a = 1 .00

b = 1 .00

ROBERTS LINKAGE

p
= 4.00, r

= 3.00, s
= 3.00, a = 1 .00

b = 1 .00

ROBERTS LINKAGE



p
= 4.00, r = 2.00, s = 2.00, a = 2.00

b = 3.00

ROBERTS LINKAGE

p
= 4.00, r

= 3.00, s
= 3.00, a = 2.00

b = 3.00

ROBERTS LINKAGE



&[P^IM0^

@I ? KMIKATTI



Evans.p Page 1

Friday, April 15, 1994 3:04:18 PM

program Evans; {A program that plots the coupler curve for any Evans Mechanism}

var

xl, yl: array[0..200] of real;

rO, M, r2, r3, k, w:real;

x, y, xmax, xmin, ymax, ymin, range: real;

i, xpos, ypos, cenl, cen2, cen3: integer;
crank: boolean;

capl, cap2, cap3: string;

data: text;

window, trect: rect;

procedure initialize (window: rect); {initializes the windows}
begin

setrect(window, 0, 20, screenbits.bounds.right, screenbits.bounds.bottom);

setdrawingrect(window);

showdrawing;

end ^initialize}

procedure readdata (var rO, r1, r2, r3, k: real); {reads data}
begin

readln(data, rO, r1, r2, r3, k);

end;{readdata}

procedure verify (var crank: boolean; rO, r1, r2, r3: real); {verifies if the data complies to be a crank

rocker mechanism}

var

lmax, It, la, lb: real;

begin

if (M < rO) and (r1 < r2) and (M < r3) then

crank := true

else

crank := false;
if crank then

begin

lmax := rO;

if (M > lmax) then

lmax := r1 ;

if (r2 > lmax) then

lmax := r2;

if (r3 > lmax) then

lmax := r3;

if (rO + M + r2 + r3 - 2
*

(lmax + r1)) > 0 then

crank := true

else

crank := false;

end;{if}

end;{verify}
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procedure iteration (var x, y: real; rO, r1, r2, r3, k, w: real);
var

rd, rd1, rd2, a, r2x, r2y: real;

begin

rd := sqrt(sqr(rO) + sqr(r1)
- 2

*

rO
*

r1
*

cos(w));

rd1 := (r1
*

cos(w)
-

rO) / rd;

rd2 := M
*

sin(w) / rd;

a := (sqr(r3) -

sqr(r2) + sqr(rd)) / (2
*

rd);

r2x := k
*

(sqrt(sqr(r3) -

sqr(a))
*

rd2 + (a -

rd)
*

rd1 );

r2y := k
*

(-sqrt(sqr(r3) -

sqr(a))
*

rd1 + (a -

rd)
*

rd2);

x := r2x + r1
*

cos(w);

y :=r2y + r1 *sin(w);

end;{iteration}

begin {main program}

initialize(window);

reset(data, 'data');

readdata(rt), r1, r2, r3, k);

verify(crank, rO, M, r2, r3);

if crank then

begin

fori :=0to 180 do

begin

w := i
*

0.034906585;

iteration(x, y, rO, M, r2, r3, k, w);

xl[i] := x;

yl[i] := y;

end;{for}

xmax :=xl[1];

ymax :=yl[1];

xmin :=xl[1];

ymin :=yl[1];

fori := 1 to 180 do

begin

if xl[i] > xmax then

xmax := xl[i];

if yl[i] > ymax then

ymax := yl[i];

if xl[i] < xmin then

xmin := xl[i];

if yl[i] < ymin then

ymin := yl[i];

clpU= stringofCp
= ', rO : 1 : 2, \ r = \ M : 1 :2, \ s-\ r3 : 1 :2, \ a = \r2:1:2);

cap2 :=
Stringof('

k is kept as ', k : 1 : 2);

cenl := 300 - stringwidth(cap1 ) div 2;

cen2 := 300 - stringwidth(cap2) div 2;

moveto(cen1, 300);

drawstring(capl);
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moveto(cen2, 325);

drawstring(cap2);
cap3 := stringofCEVANS LINKAGE');
cen3 := 300 -

stringwidth(cap3) div 2;

moveto(cen3, 400);

drawstring(cap3);
range := xmax -

xmin;

if (ymax - ymin > range) then

range := ymax -

ymin;

xpos := 175 + round(250
*

(xl[0]
-

xmin) / range);

ypos := 225 - round(250
*

(yl[0] -

ymin) / range);

moveto(xpos, ypos);

fori := 1 to 180 do

begin

xpos := 175 + round(250
*

(xl[i] -

xmin) / range);

ypos := 225 - round(250
*

(yl[i]
-

ymin) / range);

lineto(xpos, ypos);

end;{forj

end

else

begin

setrect(trect, 100, 125, 400, 175);

settextrect(trect);

showtext;

writeln;

writeln('Sorry! This is not a crank rocker mechanism!!');

end;{else}

end.{evans}
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program Chebyshev; {A program that plots the coupler curve for any Chebyshev Mechanism}

var

xl, yl: array[1 ..200] of real;

rO, M, r2, r3, w: real;

x, y, xmax, xmin, ymax, ymin, range: real;

i, xpos, ypos, cenl, cen2: integer;
crank: boolean;

capl, cap2: string;

data: text;

window, trect: rect;

procedure initialize (window: rect); {initializes the windows}

begin

setrect(window, 0, 20, screenbits.bounds.right, screenbits.bounds.bottom);

setdrawingrect(window);

showdrawing;

end ^initialize}

procedure readdata (var rO, r1, r2, r3: real); {reads data}
begin

readln(data, rO, M, r2, r3);

end;{readdata}

procedure verify (var crank: boolean; rO, r1, r2, r3: real);

{verifies if the data complies to be a double rocker mechanism}

var

lmax, It, la, lb: real;
begin

if (M < rO) and (r1 < r2) and (M < r3) then

crank := true

else

crank := false;

if crank then

begin

lmax := rO;

if (M > lmax) then

lmax := r1 ;

if (r2 > lmax) then

lmax := r2;

if (r3 > lmax) then

lmax := r3;

if (rO + M + r2 + r3 - 2
*

(lmax + r1)) > 0 then

crank := true

else

crank := false;

end;{if}

end;{verify}
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procedure iteration (var x, y: real; rO, r1, r2, r3, w: real);
var

rd, rd1,rd2, a, r2x, r2y: real;

r, x1,y1,x2, y2, t, p: real;
begin

rd :=
sqrt(sqr(rO) + sqr(r1 ) - 2

*

rO
*

r1
*

cos(w));
rd1 := (r1

*

cos(w)
-

rO) / rd;
rd2 := M

*

sin(w) / rd;

a := (sqr(r3) -

sqr(r2) + sqr(rd)) / (2
*

rd);
r2x := sqrt(sqr(r3)

-

sqr(a))
*

rd2 + (a -

rd)
*

rd1 ;

r2y :=
-sqrt(sqr(r3)

-

sqr(a))
*

rd1 + (a -

rd)
*

rd2;

x1 := r2x + M
*

cos(w);

y1 :=r2y + M *sin(w);
x2 := (M / 2)

*

cos(w);

y2:=(M /2)*sin(w);
x := x2 -

rO;

y := y2;

r := sqrt(sqr(x) + sqr(y));

t := arcsin(y2 / r);

p :=arcsin((r0-x1)/r3);

x := r
*

sin(t + p);

y := r
*

cos(t + p);

end,{iteration}

begin {Main Program}
initialize(window);
reset(data, 'data');

readdata(rt), ri, r2, r3);

verify(crank, rO, M , r2, r3);

if crank then

begin

fori := 1 to 181 do

begin

w := i
*

0.034906585;

iteration(x, y, rO, M, r2, r3, w);

xl[i] := x;

yl[i] := y;

end;{for}

xmax :=xl[1];

ymax :=yl[1];

xmin :=xl[1];

ymin :=yl[1];

fori :=2to 181 do

begin

if xl[i] > xmax then

xmax := xl[i];

if yl[i] > ymax then

ymax := yl[i];

if xl[i] < xmin then
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xmin := xl[i];

if yl[i] < ymin then

ymin := yl[i];

end;{for}

capl := stringof('p = ', r3 : 1 : 2, ', r = ', rO : 1 : 2, ', s = ', r2 : 1 : 2, ', a = ', M : 1 : 2);

cenl := 300 -

stringwidth(capl) div 2;

moveto(cen1, 300);

drawstring(capl);

cap2 := stringof('CHEBYSHEV LINKAGE');

cen2 := 300 -

stringwidth(cap2) div 2;

moveto(cen2, 350);

drawstring(cap2);

range := xmax
-

xmin;

if (ymax - ymin > range) then

range := ymax -

ymin;

xpos := 175 + round(250
*

(xl[1]
-

xmin) / range);

ypos := 225 - round(250
*

(yl[1]
-

ymin) / range);

moveto(xpos, ypos);

fori :=2to 181 do

begin

xpos := 175 + round(250
*

(xl[i]
-

xmin) / range);

ypos := 225 - round(250
*

(yl[i]
-

ymin) / range);

lineto(xpos, ypos);

end;{forj

end

else

begin

setrect(trect, 100, 125, 400, 175);

settextrect(trect);

showtext;

writeln;

writelnj'Sorry! This is not a double rocker mechanism!!');

end;{else}

end.{evans}
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program Watts;

var

xl, yl: array[1..200] of real;

rO, M, r2, r3, w, d, x, y: real;

wmax, wmin, xmax, ymax, xmin, ymin, range: real;

i, xpos, ypos, cenl , cen2: integer;
crank: boolean;

capl, cap2: string;

data: text;

window, trect: rect;

procedure initialize (window: rect);

begin

setrect(window, 0, 20, screenbits.bounds.right, screenbits.bounds.bottom);
setdrawingrect(window);

showdrawing;

end ^initialize}

procedure readdata (var rO, r1, r2, r3: real);

begin

readln(data, rO, M, r2, r3);

end;{readdata}

procedure verify (var crank: boolean; rO, r1, r2, r3: real);

begin

if (M + r2 + r3) > rO then

crank := true

else

crank := false;
if (rO + r2 + r3) > M then

crank := true

else

crank := false;
if (rO + M + r3) > r2 then

crank := true

else

crank := false;
if (rO + M + r2) > r3 then

crank := true

else

crank := false;

end;{verify}

procedure iterationl (var x, y: real; rO, r1, r2, r3, w: real);

var

rd, rd1, rd2, a, r2x, r2y: real;

begin

rd := sqrt(sqr(rO) + sqr(r1 ) - 2
*

rO
*

M
*

cos(w));
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rd1 := (r1
*

cos(w)
-

rO) / rd;

rd2 := M
*

sin(w) / rd;

a := (sqr(r3) -

sqr(r2) + sqr(rd)) / (2
*

rd);

r2x := sqrt(sqr(r3)
-

sqr(a))
*

rd2 + (a -

rd)
*

rd1 ;

r2y :=
-sqrt(sqr(r3)

-

sqr(a))
*

rd1 + (a -

rd)
*

rd2;

x :=(r2x/2) + M *cos(w);

y := (r2y / 2) + M *sin(w);
end ^iteration}

procedure iteration2 (var x, y: real; rO, r1, r2, r3, w: real);

var

rd, rd1, rd2, a, r2x, r2y: real;

begin

rd := sqrt(sqr(rO) + sqr(r1 ) - 2
*

rO
*

r1
*

cos(w));

rd1 := (r1
*

cos(w)
-

rO) / rd;

rd2 := M
*

sin(w) / rd;

a := (sqr(r3) -

sqr(r2) + sqr(rd)) / (2
*

rd);

r2x :=
-sqrt(sqr(r3)

-

sqr(a))
*

rd2 + (a -

rd)
*

rd1 ;

r2y := sqrt(sqr(r3)
-

sqr(a))
*

rd1 + (a -

rd)
*

rd2;

x := (r2x / 2) + r1
*

cos(w);

y :=(r2y/2) + M *sin(w);

end;{iteration}

begin

initialize(window);

reset(data, 'data');

readdata(rt), M, r2, r3);

verify(crank, rO, M, r2, r3);

wmin :=
-arccos((sqr(rO) + sqr(r1 ) - sqr(r3 + r2)) / (2

*

rO
*

r1 )) + 0.0000001 ;

wmax := arccos((sqr(rO) + sqr(r1)
- sqr(r3 + r2)) / (2

*

rO
*

r1))
- 0.0000001 ;

if crank then

begin

d := (wmax -

wmin) / 90;

for i := 1 to 91 do

begin

w := wmin + (i - 1) *d;

iteration1(x, y, rO, M, r2, r3, w);

xl[i] := x;

yl[i] := y;

end;{for}

fori :=92to 182 do

begin

w :=wmin +
(182- i) *d;

iteration2(x, y, rO, r1, r2, r3, w);

xl[i] := x;

yl[i] := y;

end;{for}

xmax :=xl[1];

ymax :=yl[1];
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xmin :=xl[1];

ymin :=yl[1];

fori :=2to 182 do

begin

if xl[i] > xmax then

xmax := xl[i];

if yl[i] > ymax then

ymax := yl[i];

if xl[i] < xmin then

xmin := xl[i];

if yl[i] < ymin then

ymin := yl[i];

end;{for}
range := xmax -

xmin;

if (ymax -

ymin) > range then

range := ymax -ymin;

capl := stringof('p = ', rO : 1 : 2, ', r = ', r1 : 1 : 2, ', s = ', r3 : 1 : 2, ', a = ', r2 : 1 : 2);
cap2 := Stringof('WATTS LINKAGE');
cenl := 300 - stringwidth(cap1 ) div 2;
cen2 := 300 -

stringwidth(cap2) div 2;

moveto(cen1, 300);

drawstring(capl);

moveto(cen2, 350);

drawstring(cap2);
xpos := 175 + round(250

*

(xl[1]
-

xmin) / range);

ypos := 225 - round(250
*

(yl[1] -

ymin) / range);

moveto(xpos, ypos);

fori :=2to 182 do

begin

xpos := 175 + round(250
*

(xl[i]
-

xmin) / range);

ypos := 225 - round(250
*

(yl[i]
-

ymin) / range);

lineto(xpos, ypos);

end;{forj

xpos := 175 + round(250
*

(xl[1]
-

xmin) / range);

ypos := 225 - round(250
*

(yl[1]
-

ymin) / range);

lineto(xpos, ypos);
end{if crank}

else

begin

setrect(trect, 100, 125, 320, 175);

settextrect(trect);

showtext;

writeln;

writeln('Uh-huh! This is not gonna work!!');

end;{else}

end.{watts}
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program Roberts;

var

xl, yl: array[1..200] of real;

rO, M, r2, r3, r, t, w, d, x, y: real;

wmin, wmax, xmax, xmin, ymax, ymin, range: real;

i, xpos, ypos, cenl , cen2, cen3: integer;
crank: boolean;

capl, cap2, cap3: string;

data: text;

window, trect: rect;

procedure initialize (window: rect);

begin

setrect(window, 0, 20, screenbits.bounds. right, screenbits.bounds.bottom);

setdrawingrect(window);

showdrawing;

end ^initialize}

procedure readdata (var rO, r1, r2, r3, r: real);

begin

readln(data, rO, r1, r2, r3, r);

end;{readdata}

procedure verify (var crank: boolean; rO, r1, r2, r3: real);

var

lmax, It, la, lb: real;

begin

if (rO > r1) and (rO > r2) and (rO > r3) then

crank := true

else

crank := true;

if crank then

if (r1 + r2 + r3) > rO then

crank := true

else

crank := false;

end;{verify}

procedure iteration (var x, y: real; rO, r1, r2, r3, r, w: real);

var

rd, rd1 , rd2, a, r2x, r2y, x1 ,
y1 , x2, y2, p: real;

begin

rd := sqrt(sqr(rO) + sqr(r1 )
- 2

*

rO
*

M
*

cos(w));

rd1 := (r1
*

cos(w)
-

rO) / rd;

rd2 := r1
*

sin(w) / rd;

a := (sqr(r3)
-

sqr(r2) + sqr(rd)) / (2
*

rd);

r2x := sqrt(sqr(r3)
-

sqr(a))
*

rd2 + (a -

rd)
*

rd1 ;

r2y := -sqrt(sqr(r3)
-

sqr(a))
*

rd1 + (a -

rd)
*

rd2;
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x1 := M
*

cos(w);

y1 :=M *sin(w);
x2 := r2x + x1 ;

y2 := r2y + y1 ;

p :=arcsin((y2-y1)/r2);

t := arccos(r2 / (2
*

r));

x := x1 + r
*

cos(p
- 1);

y:=y1 +r*sin(p-t);

end;{iteration}

begin

initialize(window);

reset(data, 'data');

readdata(rt), M, r2, r3, r);

verify(crank, rO, M, r2, r3);
wmin := arccos((sqr(rO) + sqr(r1 + r2)

-

sqr(r3)) / (2
*

rO
*

(r1 + r2))) + 0.0000001 ;

wmax := arccos((sqr(r0) + sqr(r1)
- sqr(r3 + r2)) / (2

*

rO
*

r1))
- 0.0000001 ;

if crank then

begin

d := (wmax -

wmin) / 1 80;

fori :=1 to 181 do

begin

w := wmin + (i -

1) *d;

iteration(x, y, rO, r1, r2, r3, r, w);

xl[i] := x;

yl[i] := y;

end;{for}
xmax :=xl[1];

ymax :=yl[1];

xmin :=xl[1];

ymin:=yl[1];

fori :=2to 181 do

begin

if xl[i] > xmax then

xmax := xl[i];

if yl[i] > ymax then

ymax := yl[i];

if xl[i] < xmin then

xmin := xl[i];

if yl[i] < ymin then

ymin := yl[i];

end;{for}
capl := stringof('p = ', rO : 1 : 2, ', r = ', r1 : 1 : 2, ', s = ', r3 : 1 : 2, ', a = ', r2 : 1 : 2);

cap2 := Stringof('b = ', r : 1 : 2);

cenl := 300 -

stringwidth(capl) div 2;

cen2 := 300 -

stringwidth(cap2) div 2;

moveto(cen1, 300);

drawstring(capl);

moveto(cen2, 325);
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drawstring(cap2);
cap3 := stringof('ROBERTS LINKAGE');
cen3 := 300 -

stringwidth(cap3) div 2;

moveto(cen3, 400);

drawstring(cap3);
range := xmax -

xmin;

if (ymax - ymin > range) then

range := ymax
-

ymin;

xpos := 175 + round(250
*

(xl[1]
-

xmin) / range);

ypos := 225 - round(250
*

(yl[1]
-

ymin) / range);

moveto(xpos, ypos);

fori := 2 to 181 do

begin

xpos := 175 + round(250
*

(xl[i]
-

xmin) / range);

ypos := 225 - round(250
*

(yl[i] -

ymin) / range);

lineto(xpos, ypos);

end;{for}

end {if crank}

else

begin

setrect(trect, 100, 125, 400, 175);

settextrect(trect);

showtext;

writeln;

writeln('Uh-huh! This is not gonna work!!');

end;{else}

end.{evans}
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