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ABSTRACT

Optical character recognition is useful in many aspects of business. However, the use
of conventional computers to provide a solution to this problem has not been very effective.
Over the past two decades, researchers have utilized artificial neural networks for optical
character recognition with considerable success. One such neural network is the
neocognitron, a real-valued, multi-layered hierarchical network that simulates the human
visual system. The neocognitron was shown to have the capability for pattern recognition
despite variations in size, shape or the presence of deformations from the trained patterns.
Unfortunately, the neocognitron is an analog network which prevents it from taking full
advantage of the many advances in VLSI technology. Major advances in VLSI technology
have been in the digital medium. Therefore, it appears necessary to adapt the neocognitron to

an efficient digital neural network if it is to be implemented in VLSL.

Recent research has shown that through preprocessing approximations and definition
of new model functions, the neocognitron is well suited for implementation in digital VLSL
This thesis uses this methodology to implement a large scale digital neocognitron model. The
new model, the digi-neocognitron, uses supervised learning and is trained to recognize ten

handwritten numerals with widths of one pixel.

The development of the neocognitron and the digi-neocognitron software models, and
a comparison of their performance will be discussed. This is followed by the development and
simulation of the digital model using the VHSIC Hardware Description Language (VHDL).
The VHDL model is used to demonstrate the functionality of the hardware model and to aid
in its design. The model functions of the digi-neocognitron are then implemented and

simulated for a 1.2 pm CMOS process.
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CHAPTER 1
1.0 Introduction

1.1 What are Artificial Neural Networks?

The task of pattern processing is present in many real-world problems. This problem
set includes areas such as image processing, speech processing, natural language processing,
planning, forecasting, and optimization. Such problems deal with large amounts of data with
mutually interacting factors. They also require that the information to be processed be
precisely specified. Due to these two factors, conventional computers are not well suited for
such types of problems. However, artificial neural networks (ANNSs) or parallel distributed
processing (PDP) models addresses both problems. These networks attempt to simulate the

functionality of natural, biological brains in solving pattern processing problems.

ANNSs are parallel signal processing networks comprised of a large number of
processing elements or neurons which interact via weighted connections. These weighted
connections are representative of the biological synapses in the neural system; they can be
excitatory, causing the neurons to become active, or inhibitory, suppressing the neurons'
outputs. Altering the value of the weights associated with the connections enables the
network to adapt to changes in the environment. This procedure is referred to as learning and

can be either supervised or unsupervised.

During supervised and unsupervised learning, numerous sets of training patterns are
repeatedly presented to the network until it develops the ability to recognize those patterns.
Typically, in supervised learning, the trainer presents a pair of patterns to the network
consisting of an input pattern and the target output. The network then adjusts the weights of
the processing elements based on a «calculated error value. This is usually the difference
between the expected output and the computed output of each processing element. In
contrast, unsupervised learning attempts to classify the input patterns with no information

about the expected output. The network detects the patterns' regularities and the grouping for
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each to produce a consistent output. This type of model is referred to as biological model,

and the process described above is known as "self-organization" {1].

A 4

zWiji

Figure 1-1 : A single processing element of a neural network and the non-linear function used to limit
its response to the interval [0, 1].

A trained neural network recalls patterns based on information derived from the
associations established between the input and output patterns during training. The activation
of a processing element either induces or hinders the activation of the neurons to which it is
connected, depending on whether the interconnections are excitatory or inhibitory.
Consequently, the response of a processing element indicates the degree of confidence that its

associated feature is present in, or absent from the input pattern.

During training and the pattern recognition task, the output of each neuron is passed
through a non-linear function called an activation function. This function typically limits the
response of the neuron to a particular interval. An example of an activation function that

limits the neuron's output to the interval [0,1] is illustrated in Figure 1-1 [2].

1.2 Optical Character Recognition and the Neocognitron

The pattern processing task that this thesis investigates is optical character recognition

(OCR). In OCR, a character must be recognized from its image pixels. This task can be fairly
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straightforward or extremely difficult, depending on the nature of the image. For images
consisting of cleanly printed, fixed-point symbols, simple template matching would suffice.
However, when using multiple fonts or when the images are noisy, more sophisticated
techniques such as neural networks are required. In handwritten character recognition the
images can vary significantly, making this task very difficult even for neural networks. To
solve the difficult task of handwritten character recognition, Fukushima designed an artificial
neural network called the cognitron [3]. This neural network had the ability for hand-written
character recognition, but its accuracy was dependent on the position of the stimulus pattern
on the input plane. In essence, the same pattern presented at different positions on the input
plane were judged to be different by the cognitron. Several years later, he extended the
concept of the cognitron to develop what he called the neocognitron [4]. In its original
design, the neocognitron is a real-valued, multi-layered self-organizing network which when
trained, recognizes visual patterns with a high degree of accuracy. Unlike the cognitron, the
neocognitron is not affected to some degree by deformations, scaling or shifting of the input

patterns.

1.3 Digital vs. Analog VLSI Artificial Neural Networks

Due to their intrinsic parallelism, the regularity of the processing elements, and the size
of typical networks, ANNs are well suited for hardware implementation. Even though a
neural network can comprise thousands of processing elements, each element is relatively
simple and identical in all stages of the network. Therefore, a single processing element of
each type can be constructed and replicated, leaving the greatest construction difficulty to be
the interconnections of these components. Unfortunately, the hardware implementation is
normally analog and does not take full advantage of the benefits and major advances in VLSI
technologies. To do so, ANNs must be adapted to facilitate an all digital VLSI

implementation.

Using digital VLSI to implement artificial neural networks offers many advantages

over analog implementations. High density circuits with high speeds are possible with analog
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implementations. However, analog circuits are susceptible to noise and temperature changes,
and unavoidable inter-chip variations make manufacturing functionally equivalent circuits very
difficult. In addition, the need for long-term storage for the connection weights requires
special fabrication techniques. The largest shortfall however, is that the construction of such
systems typically requires several integrated circuits (ICs). In such cases, care must be taken
to guarantee the compatibility of the off-chip electrical environments. It is extremely difficult,
if not impossible, to match board-level capacitive loads and time constants to their on-chip
counterparts. Even though analog VLSI is well suited for parallel processing using locally
connected networks, the system interface difficulties make it cumbersome for multi-chip

ANNs [5].

In contrast, using digital VLSI to implement ANNs can be much easier because digital
circuits are more tolerant of intra-chip and inter-chip variations, and are easily manufactured
to be functionally identical. Also several devices such as static RAMs, EPROMs, EEPROMs
and ROMs are available to enable long-term weight storage. Most neural networks utilize a
convolution-like operation to compute the output of the neurons. Digital VLSI elements have
been widely used to perform similar convolution operations, and with the locally connected
architecture of the neocognitron, this convolution-like operation suggests construction using
time-division multiplexing. 1/O bottlenecks may also exist in ANN solutions, but they are
better resolved by digital techniques than analog. The use of input buffers, shift registers and
pipelining to process the data also offer significant advantages relative to performance and the

need for external storage [6], [7].

One concern with digital VLSI implementations of neural networks 1is the
multiplication and division that must be performed on fixed-point digital values. These
circuits consume a significant amount of silicon area which has a negative impact on
performance. In addition to the multiplication and division operations, the neocognitron also
requires square and square-root operelltions. The digital implementation of the neocognitron

overcomes these potential problems by implementing the square and square-root functions
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using look-up tables, and by using shift operations to perform multiplication and division.

Hence, the neocognitron model implemented is ideal for digital VLSIL.

This thesis utilizes the procedure described by White and Elmasry [8] for adapting a
neocognitron to a digital neocognitron model. The network implemented consisted of nine
stages with the last stage containing ten processing elements representative of the ten digits to
be recognized. Unlike, the model described in [4], this neocognitron model utilized

supervised training (learning with a teacher) to reinforce the modifiable synapses or weights of

the network.
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CHAPTER 2

2.0 Theory of the Neocognitron Neural Network

2.1 The Neocognitron Model Functions

Unlike most ANNs which tend to have general purpose architectures, the
neocognitron was designed primarily for handwritten character recognition, even though it has
been applied to a variety of pattern recognition tasks. The neocognitron is a multi-layered
hierarchical network consisting of several layers of neuron-like cells intended to simulate the
human visual system. Its architecture is based on research performed by Hubel and Wiesel on
the functionality and structure of the visual nervous system [9] - [11]. Figure 2-1 shows the
relation between the Hubel and Wiesel model and the neocognitron [4]. Similar to the human
visual system, upon completion of training, the neocognitron recognizes patterns with a high
degree of generalization relatively independent of shifts in position, changes in size or shape,
or the presence of deformations from the learned patterns. The neocognitron consists of a
cascaded connection of a number of modular structures preceded by an input plane. The input
plane, denoted by u,, is a two-dimensional photoreceptor array of cells corresponding to the
lateral geniculate body (LGB) shown in Figure 2-1.  Each of the remaining modular

structures in the network is composed of two layers of cells connected in cascade.

The first layer of the module consists of S-cells which correspond to simple cells or
lower-order hypercomplex cells. This is called the S-layer, and is denoted by u5 representing
the S-layer in the /* module. The second layer of the module consists of C-cells and
correspond to complex or higher-order hypercomplex cells. This is referred to as the C-layer,

and the C-layer in the / module is denoted by uc;..

The S-cells and C-cells in a layer are alternately arranged into subgroups according to
the stimulus features of their receptive field. Each subgroup is a two-dimensional array and is
referred to as a cell-plane.  Consequently, S-planes and C-planes represent cell planes

consisting of S-cells and C-cells, respectively. All the cells in a single cell plane have input
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synapses of the same spatial distribution, and only the positions of the presynaptic cells are
shifted in parallel from cell to cell. Therefore, all the cells in a single cell plane have receptive
fields of the same function, but at different positions. The layer of C-cells at the highest stage
of the network, is the recognition layer representing the final result of the pattern recognition

task. Figure 2-2 illustrates the architecture of the neocognitron model implemented.

| VA— . P
k visual area v association area

reting —» LGB —» simplex —» complex —» Jower-order — higher-order —» ?— grandmother cells

\.r‘\lrv E E l\ypercolnmlex hypluunmhx ! !
| | | | | L
Uy USI )Ucl DUsz )Ucz {>Us3 ;Uc3 DU“ >Uc4‘"“
~J) modifiahle synapses
— unmodifishle synapses

Figure 2-1 : Correspondence between the model by Hubel and Wiesel and the neocognitron neural network.

In Figure 2-2 each of the large tetragons represents an S-layer or a C-layer, and the
interior tetragons are S-planes or C-planes, respectively. The labeling below each layer
indicates the dimensions of each cell-plane and the number of cell-planes in that layer. For
example, 19x19x12 is interpreted as 12 cell-planes of dimension 19x19 pixels. In the
neocognitron, S-cells and C-cells receive afferent connections from cells in its receptive field

in the layer preceding it. This is indicated by the areas enclosed by the ellipses.

The S-cells of the neocognitron are feature extracting cells. These cells receive input
from the preceding layer, detect the presence of specific features, and pass them to the
following layer of C-cells. The input connections of the S-cells are variable and are modified
during training, while those to‘ the C-cells are unmodifiable and determined by the
architecture. Through training, the S-cells come to extract features from the input patterns

presented at the input layer. At lower stages of the network, the S-cells extract lines at
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different orientations, and at higher stages they extract higher-order features of the training
patterns. Eventually, the complete pattern is recognized by the last layer of the network. The
layer of C-cells following each S-layer is in¢luded in the neocognitron's architecture to allow
for variability in the position of the features extracted by the S-layer. Each C-cell receives
input from a group of S-cells that extract a specific feature from the stimulus pattern from
slightly different positions. At least one cell in this group being active is sufficient to activate
the corresponding C-cell. This reduces the dependence on the position of the feature

detected, which is further reduced as the number of stages in the network increases.

Tx7x32
11x11x8 11x11x38

0 = — ‘::::,
| ] Nl & !
T alinYe |
| | I i i I
19x19 ! E“’é % E’—I’
1 snl B W—_—_/f /
HETE

19x19x12

Figure 2-2 : The architectural organization of the neocognitron neural network.

Not shown in Figure 2-2 are the inhibitory Vc-cells and Vs-cells of the neocognitron.
These cells are included in the neocognitron to provide a shunting affect to reduce the

likelihood of the excitatory S-cells and C-cells responding to irrelevant features.

The output of the four cell types of the neocognitron are determined by the proceeding
numerical expressions [8]. In these equations n=(x,)) is the two-dimensional coordinate
representing the cell's location, & is the current cell plane, and / represents the current layer.
u, is the input plane of the neocognitron, and the output of a cell in this plane is denoted by

usn). us and uy represents the S-layer and C-layer, respectively, in the * module of the
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network. However, in layer 1, u is equivalent to u,, the input plane. The corresponding
inhibitory cells, Vc-cells and Vs-cells are denoted by v¢ and vg, respectively. The output of

an S-cell in the &” S-plane of the /* module is described mathematically as follows:

Ko
1+ > > a(k,v,k) ug (K, n+v)
ug(k,n)=r, - ® Kizlveds r -1], (1)
1+ 1+Ir, 'b,(k)~vc,(n)
where
x (x20)

(0] = 2

[x] {O (x<0) @)

In Equation (1), ayX,v,k) and b,(k) represents the strength of the variable excitatory and
inhibitory connections from the preceding stage. During training the modifiable weights
associated with an excitatory S-cell are reinforced only when its output is larger than the

neighboring cells in its competitive region. = When this occurs, the excitatory synapses

a(k,v,k) and inhibitory synapses b,(k) which are afferent to the S-cells of the IAc"' S-plane are

reinforced by

Aa,(K,v,lz) =gq, -c,(v)-uc,_](K,r: + v), 3)
and

Ab(k) = ¢, -va,(A) | @)
where

ci(v) represents the efficiency of the unmodifiable excitatory weights and is a
monotonically decreasing function with respect to |v|, and

q is a positive constant that determines the speed at which the excitatory and
inhibitory synapses are reinforced. This parameter is commonly referred to as
the learning rate.
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This procedure implements a form of Hebbian learning that was first introduced in [3] to train

the original cognitron. The representative S-cell selected for reinforcement is denoted by

usi( k , ), where k is the cell plane being trained, and 7 is the two-dimensional coordinate
representing the cell's location on the plane. Another important parameter in Equation (1) is
the selectivity parameter, 7,, which controls the intensity of the inhibition. A large value for 7;
makes the S-cells’ response more selective to a specific feature or pattern, and endows the
network with a high ability to discriminate between patterns of different classes. However, this
increase in selectivity also reduces the network’s ability for deformation independent pattern
recognition. Therefore, the value of 7, must be chosen at a point of compromise between
these two contradictions. A detailed discussion on selecting values for ; can be found in

[12] and [13].

To facilitate the approximations required for the digital neocognitron model,
modification of the neocognitron’s inhibitory Vc-cell output was required. In the
neocognitron described by Fukushima, the c,(¥) fixed weights which are usually taken as two-
a dimensional Gaussian such that

Ky Yev)=1, (5)

VEA;
was changed so that
c(0) =1. 6)

This change in the normalization provides a consistent range of values for the c¢,(v) fixed
weights but it requires division by the value csum in the Vc-cell output equation. This ensures
that the Vc-cell output remains unaffected by the normalization, and that the output of a V-
cell is consistent with the original neocognitron. The new Vc-cell output equation of the
neocognitron model is a weighted root-mean-square average of the preceding level C-cells’

output over the same connection area 4,, and is given by

Vor () :\/ L S e (m) -, (K ) )

CSUM k_1yey,

10



A VHDL Model of a Digi-Neocognitron Neural Network for VLSI

where

Ky

csum= Y > c(v). (8)

K=1ve4,

With the normalization requirement of Equation (6), the first learning rule shown in Equation

(3) becomes

AaI(K,v,I/;) =q,- cl(v) 'uCI—l(K’;l +V). (9)
csum

The excitatory C-cells of the neocognitron have a shunting-type inhibitory input, vs(n), similar
to S-cells, but their outputs show a saturation characteristic. The output of a C-cell in the &*

C-plane of the I module is given by

1+ Kzsj,(K, k)> d,(v)-ug(k,n+v)

u k,n -y k=1 veD, -1 , 10
o) 1+vg(n) (19
where W[ ] is the threshold characteristic of the C-cell defined by
X
x >0),
Y[x]=<a, +x (x=0) (11)
0 (x <0).

This function limits the response of the C-cells to the interval [0,1]. The dj(v) term in
Equation (10) is a two-dimensional Gaussian similar to ¢,(¥), and denotes the strength of the
fixed excitatory connections. The normalization change of Equation (6) is also applicable to
the dyv) fixed weights. The term ji(K,k) is used to indicated how the S-planes which extract
similar features are combined for input to a C-plane. ji(K,k) takes on a value of one or zero
depending on whether or not the syndptic connections really exist from the X” S-plane to the
k" C-plane. Finally, the parameter o, in Equation (11) is a positive constant which specifies

the degree of saturation of the C-cells.

11
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In Equation (10), vs(n) is the output of the inhibitory Vs-cells defined as a weighted
average of the S-cells' output of the preceding stage within the receptive field of n. The Vs-
cell provides a form of lateral inhibition and are optional in the neocognitron. Typically, only

the final layer in the neocognitron contains Vs-cells. The output of a Vs-cell is given by the

following equation:

K¢y

S d (Vg (K, 1+ v) (12)

1
vgy(n) = —
KSI K=lveq

2.2 The Digi-Neocognitron Model Functions

To implement the neocognitron neural network using digital VLSI, the model
functions and fixed weight values described in the previous section were modified. This
resulted in a new neural network model that the authors of [8] called the digi-neocognitron
(DNC). In the DNC model, multiplications and divisions are replaced with shift operations by
converting the multiplication and division factors to powers of 2. This is a significant benefit
since shifters are easily implemented in digital hardware; as such, they require less silicon area
and reduce the propagation delays associated with multipliers. The complex functions, square
and square root, of the neocognitron are replaced by look-up tables, and can be implemented

with simple combinatorial logic or memory arrays.

To understand the DNC model functions, a discussion on performing power of 2
representations and the notations used in these functions is necessary. The DNC model uses a
single-term power of 2 approximation in all cases except one, for which a two-term
approximation is required. The notation used to describe the DNC model functions is similar

to that used in [14], with modifications to accommodate positive values and fractions.

The set of admissible values in a single-term power of 2 representation is denoted as

P,,={2",2"" .. 2" 2"} where m and n are integers and m < n. Also,

’<x>2"'.2";b (13)

12
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denotes rounding x to the nearest term in the representation P,,, with bias & € [0,1] to

n
rounding up. If the value of x is outside the range of the representation, the appropriate
endpoint is chosen as the approximation. A bias of 0.0 selects the power of 2 that is less than
or equal to the number; a bias of 1.0 selects that which is greater than or equal, and a bias of

0.5 selects the closest power of 2. These representations are denoted by the following set of

equations.
(x>2"',2";le = (x>2"',2";oo (x>2'".2".ge = (x>2"',2";14o (14)

<x>2’".2" = <x>2"',2";o.5

An extension of the concepts for a single-term power of 2 representation is used to define the

set of possible values for the two-term power of 2 approximations. The representation used is
P2, ={yly=2"+s-2"y>0}

where m and n are integers, with m <n, p, k € {m, m+1, ., n-1,n} ands € {-1, 0, 1}

The rounding used to determine the nearest value for x in the representation P°,,  is

S (15)
with the usage of the bias equivalent to that for the single-term approximation.

Following is a summary of the preprocessing performed on the neocognitron model
functions to obtain the output functions for the digi-neocognitron model. A detailed
discussion of the steps described below can be found in [8]. The bit ranges of the inputs and
outputs of the four cell types are represented with 4 bits to the right of the binary point. In
cases where the output of a cell is more than four bits it is truncated. This restriction also
requires a change in the lower level C-cells or the input layer. In the input pattern, each pixel
is represented by four bits to the right of the binary point, resulting in 0.0000 (0.0) for a zero
pixel and 0.1111 (0.9375) for a one pixel, where zero indicates a white pixel and one a black
pixel. Also, the s-cell’s output is represented as seven bits (with 4 binary places) allowing

outputs up to 8. This provides a safety margin because the digi-neocognitron model

13
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approximation of the modifiable weights as powers of 2 can result in S-cell outputs greater
than 1 if the excitatory weights are rounded up, and the inhibitory weights are rounded down.

In the model implemented, the S-cell’s output was always less than 2.

Table 2-1 : Preprocessing approximations for the fixed weight connections.

Fixed Weight Fixed Weight
¢y di Zl7d_l
Interval Approximation Interpretation
[0.0,0.1) 0 Force 0
[0.1,0.4) 1/4 Shift 2 R
[0.4, 0.75) 1/2 Shift 1 R
[0.75, 1.0] 1 Shift 0

To obtain the output of the inhibitory Vc-cell, the normalization change of Equation
(6) is required. This change provides a consistent range of values for the ¢, fixed weights to
enable approximations by values restricted to zero and powers of 2. These approximations
shown in Table 2-1 are used to replace the multiplication by a shift operation in the Vc-cell

output function. With these approximations, Equation (8) now becomes

Keoy -
C; = Z ch(v) , (16)
k=1ve4,;

where the overbar indicates a power of 2 approximation. The division in Equation (7) is then

replaced by a shift operation using a power of 2 approximation of Equation (16) according to

the following rules:

- {<C2>1,2048,le, I=1

C. = 17
g 1>1 (a7

£/1,2048,ge,

where [ represents the layers of the network.

14
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Table 2-2 : Power of 2 approximation for squaring the output of a c-cell.

Input ;; (binary) Input ;; (decimal) Power of 2 (;C—) Shift Control
0000 0.0000 Force O
0001 0.0625 Force 0
0010 0.1250 Force O
0011 0.1875 Shift 2 R
0100 0.2500 Shift 2 R
0101 0.3125 Shift 1 R
0110 0.3750 Shift 1 R
0111 0.4375 Shift 1 R
1000 0.5000 Shift 1 R
1001 0.5625 Shift 0
1010 0.6250 Shift 0
1011 0.6875 Shift 0
1100 0.7500 Shift 0
1101 0.8125 Shift 0
1110 0.8750 Shift 0
1111 0.9375 Shift 0

With the preprocessing approximations described above, the Vc-cell output of the

DNC model is given by

1 KCI—I 2

T(n) = \/E'_— > > a(v)-ug (K, n+v) (18)

T K=1ved,

In this equation, the square of the C-cell output is obtained by using a power of 2
approximation of ;; as shown in Table 2-2, to control the shift operation eliminating the
need for a multiplier. A shifter is used here as opposed to a look-up table because the square
operation is done for every term in the summation and can be calculated in parallel using some

form of pipelining.” Also, in this instarice a shifter requires less area than a look-up table.

15
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Table 2-3 : Square root approximation for the output of a Vc-cell.

Input Input Output Output
(decimal) (binary) (binary) (decimal)
0.0000 0.0000 0.0011 0.1875
0.0625 0.0001 0.0100 0.2500
0.1250 0.0010 0.0110 0.3750
0.1875 0.0011 0.0111 0.4375
0.2500 0.0100 0.1000 0.5000
0.3125 0.0101 0.1001 0.5625
0.3750 0.0110 0.1010 0.6250
0.4375 0.0111 0.1011 0.6875
0.5000 0.1000 0.1011 0.6875
0.5625 0.1001 0.1100 0.7500
0.6250 0.1010 0.1101 0.8125
0.6875 0.1011 0.1101 0.8125
0.7500 0.1100 0.1110 0.8750
0.8125 0.1101 0.1110 0.8750
0.8750 0.1110 0.1111 0.9375
0.9375 0.1111 0.1111 0.9375

However, because the square root is computed once for each Vc-cell, it is

implemented using the look-up table shown in Table 2-3.

To obtain the S-cell output function for the DNC model, the modifiable weights

a(k,v,k) and byk) are approximated by powers of 2. To improve alignment with the power of

2 representation, it is suggested that these weights be scaled by a factor f; as shown in the

equations below. The weight factor r;-by(k)/(1+ r) from Equation (1) is approximated by

one or two power of 2 terms defined by

r- b](k)/(l+r1) = <f1 b bl(k)/(l+rl)>1,54

or

n-a0 (1) =((f, - 50 /(11).

16
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At lower levels, a single-term approximation is sufficient, however, at higher levels, a two-
term power of 2 approximation is required to avoid significant loss of precision due to

rounding. The approximation for the a, weights is done after scaling by £ using the following

equation:
— <f,-a,> fi-a Zi
a, = %t T T 16 (21)
0 Otherwise.

r;, which is multiplied by the function ®[x] in Equation (1), is also represented by a power of

2 approximation. This is obtained using

ni= sy - (22)

which selects the closest power of 2 representation in the range, but rounds up if 7, is in the

upper two-thirds of the range and down otherwise. Applying these approximations to

Equation (1), the digi-neocognitron’s S-cell output is given by

(23)

ug(k,n) = 7 (I)[E — IC}

1+1IC

where

The excitatory term E, is given by

Kea

E=Y Y a(Kvk)u, (Kn+v), (24)

x=1 ve4;

and the inhibitory term IC, is given by

IC=r1,-b(k)/(1+71) ve(n). (25)

17
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The function 1/(1 + J¢) in Equation (23) is approximated by the function 1/;-, where IC2 is a
power of 2 as defined in Table 2-4. The resulting S-cell output function is
- {E -IC

— |y
usz(k s n) =% IC2
0 Otherwise.

} E>IC 26)

The output of the optional Vs-cells, which provides a form of lateral inhibition to the
C-cells, is given by

vS,—(n):K;ﬁ > d(v)- ug(K,n+v). (27)

81 k=1veD,

Table 2-4 : Power of 2 approximations for 1/(1+]) inhibit function for the S-cells and C-cells.

IC, IS 1C2, IS2
Interval Approximation Interpretation
<0.5 1 Shift 0
[0.5,2.0) 2 Shift 1 R
[2.0,4.5) 4 Shift 2 R
[4.5, 10.0) 8 Shift 3 R
[10.0, 21.0) 16 Shift 4 R
>21.0 32 Shift 5 R

As with the ¢(v) modifiable weights, the d(v) fixed weights are two-dimensional Gaussian

and use the same normalization, d(0) = 1. The approximation for dy(v) is identical to that
used for ¢,(v) as shown in Table 2-1. K represents the number of S-planes in the previous

level, and is approximated using

KSI = <KSI >l,64;le (28)

so that the division 1/ky; can be replaced by a shift operation.

18
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The power of 2 approximation required for the C-cell output is performed on the di(v)

fixed weights as discussed above, and on the saturation parameter o; by

a, = <a1>y JLle” (29)

32

The resulting C-cell output equation is

CJE-IS
acrl) = xp[ ekt } (30)

where the excitatory term E, is defined as

E=S (kKT A0 ugknty), 6D

x=1 veD;

and the inhibitory term IS, is given by

1§ = vS,(n). (32)

Similar to the S-cell output, the function 1/(1 + 15) in Equation (30) is approximated by the

function 1/;5,, where IS2 is a power of 2 as defined in Table 2-4. This results in the following

output equation for the C-cells:

[E—]S
ucl(k:n) =

¥ ————} E>1IS
152

0 Otherwise.

(33)

The final output of the C-cells is obtained by approximating the saturation function ‘¥[x],
which is implemented using the look-up table shown in Table 2-5. This function is redefined

for the digi-neocognitron model as

z

H[x]=—, z=x/a,. (34)

1+2z
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Table 2-5 : Z/(1+Z) look-up table for the output of a C-cell.

Input Input Output Output

(decimal) (binary) (binary) (decimal)
0.00 00.00 0.0000 0.0000
0.25 00.01 0.0011 0.1875
0.50 00.10 0.0101 0.3125
0.75 00.11 0.0111 0.4375
1.00 01.00 0.1000 0.5000
1.25 01.01 0.1001 0.5625
1.50 01.10 0.1010 0.6250
1.75 01.11 0.1010 0.6250
2.00 10.00 0.1011 0.6875
2.25 10.01 0.1011 0.6875
2.50 10.10 0.1011 0.6875
2.75 10.11 0.1100 0.7500
3.00 11.00 0.1100 0.7500
3.25 11.01 0.1100 0.7500
3.50 11.10 0.1100 0.7500
3.75 11.11 0.1101 0.8125
> > 0.1111 0.9375
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CHAPTER 3

3.0 Software Models for the Neocognitron and the Digi-
Neocognitron

Prior to designing the digital VLSI version of the neocognitron neural network model,
some preliminary steps were required. The basic neocognitron model was constructed,
trained, simulated and subsequently used to develop the digi-neocognitron. This also provides
a comparative tool for the DNC model, which is necessary to determine if the pattern
recognition capability of the digi-neocognitron is similar to that of the neocognitron.
Constructing a DNC model is a viable alternative to an neocognitron model only if its
capability for pattern recognition is similar to that of the neocognitron model. Both the

neocognitron and digi-neocognitron were implemented using the C-programming language on

a SUN SPARCStation 20.

3.1 Converting from a Neocognitron to a Digi-Neocognitron Model

To obtain the digital version of the neocognitron with similar pattern recognition
capability, White and Elmasry developed a procedure for converting a neocognitron model to
a digi-neocognitron [8]. However, this method utilizes the inherent fault tolerant
characteristics of the neocognitron, and its unsupervised learning capability to compensate for
inaccuracies that result from implementing the required approximations. Because the model
implemented utilized supervised learning, some modifications to this methodology were

required. The procedure developed consists of the following steps.

1) Do unconstrained simulation, including learning, with the neocognitron
model in order to get something that works for the particular problem. If
there is not already an existing neocognitron model also incorporate step 2.

2) Change the neocognitron model to use the approximate fixed weights in
Table 2-1. If feasible, also use appropriate powers of 2 for the selectivity ()
and saturation (o) parameters. This recognizes that some of the DNC model
preprocessing approximations can be treated as just another set of
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neocognitron model parameters. Repeat simulation, including learning, with
the neocognitron model and adjust the learning rate (g;) to develop weights

that are appropriate for the DNC representations, as in Equations (19), (20)
and (21).

3) Preprocess level 1 to create level 1 DNC model approximations.

4) Run the DNC model simulator on level 1 for all input patterns in the
training set and compare with level 1 neocognitron model outputs.

5) If necessary, repeat steps 2, 3, and 4 in order to obtain good weight
approximations, trying different scaling factors, changing the amount of
training, or adjusting the cell’s inhibitory input for each S-plane.

6) Use the level 1 outputs from the DNC model to retrain level 2 of step 2 in
the neocognitron Model. This is a critical because the level 2 feature detectors
must be developed with inputs from the lower levels that are representative of
what will be seen in the DNC model. Otherwise, there will not be enough
similarity between lower-level outputs and higher-level feature detectors to
have a robust conversion of the neocognitron model pattern recognition
capabilities to the DNC model.

7) Preprocess level 2 to create level 2 DNC model approximations.

8) Repeat this process for all levels in the architecture; e.g., if there are three
or more levels, next run the DNC simulator on level 2, and use these outputs
to retrain level 3 in the neocognitron model.

9) Use the DNC model to check final level outputs for all input patterns using
all levels in the neural network.

3.2 Implementation of the Neocognitron Model

The neocognitron model constructed consisted of four levels of S-cell and C-cell
planes, as shown in Figure 2-2. Also shown at the bottom of Figure 2-2 are the dimensions of
the cell planes in each layer. Though not shown, each layer contains a Vc-cell plane, which
provides inhibitory input to the S-cells. In addition, the last layer of the network which
represents the patterns to be recognized, contains a Vs-cell plane which provides a form of

lateral inhibition to the C-cells. The dimensions of these inhibitory planes are identical to the
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excitatory planes that receive their outputs. This network is similar to those described in [9]

and [10] with some modifications to the architecture and parameters.
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Figure 3-1 : A one-dimensional view of the interconnections between the cells of the different
layers in the neocognitron.

As shown in Figure 2-2, the neocognitron is interconnected in a cascaded manner in
which the size of the receptive field of a cell is dependent on the layer in which the cell is
located. The deeper the cell is in the network, the larger is the cell’s receptive field.
Consequently, the density of the cells in each plane decreases as the size of the receptive field
increases. Figure 3-1 shows a one-dimensional view of how the cell planes of each layer are
inter-connected. Only a single plane is shown for each layer since the connection scheme is
identical for all planes in the layer. Figure 3-1 also indicates the size of the receptive field of
each layer. This connection scheme must be followed if the neocognitron is to be effective in

its pattern recognition capability. The thinning out of the cell planes as the number of stages
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Increases is also necessary. This is required since the information in adjacent cells is almost

identical due to smearing of the S-cell outputs through the receptive field averaging.

To calculate the output of a neuron, a non-linear convolution-like operation is
performed on two 3x3 or 5x5 masks. However, edge pixels have a connection area that is
smaller than the mask size of the remaining pixels in the plane thus complicating this
convolution operation. Therefore, care must be taken when computing the output of pixels
on the edge of a cell plane to avoid loosing any feature detector outputs. To resolve this
dilemma, some planes are oversized to ensure that all cells in the plane have identical size
receptive fields. The outputs of these cells are always zero, therefore no computational time

is required. In Figure 3-1, these cells do not receive inputs from the preceding plane.

In a software implementation, the cost of oversizing the cell planes is negligible.
However, in a hardware implementation, a trade-off between the cost of oversizing, and the
cost of the additional circuitry that would be required to determine a cell’s receptive field must

be considered.

In performing the convolution operation, one of three different two-dimensional masks
is required, an @, ¢ or d mask. A mask is associated with each cell in the plane and, if
implemented in this manner, would require a substantial amount of memory. However, the
cells of each plane all extract the same feature from the input pattern and have an identical set
of connections. This can be easily exploited in a software simulation to reduce memory
requirements. In the model constructed, a different @ mask and a common ¢ mask is used for
each plane in an S-layer. For example, in layer us; there are 12 planes and one in the input
plane u,. Correspondingly, there are 12 different @ masks and one ¢ mask. A single ¢ mask is
required in all layers, but the number of @ masks depends on the number of S-planes in the
current stage and the number of C-planes in the preceding stage. Layer us, consists of 38
planes and u., contains 8 planes; therefore, the number of distinct @ masks required is 38x8.
Also, a d mask is associated with each C-plane and S-plane pair, but each mask is identical.

Therefore, like the ¢ mask, a single d mask is used for all cell planes in each C-layer.
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Critical to the training and the performance of the neocognitron is the selection of the
values for its parameters. The learning rate ¢, the saturation parameter, o, the selectivity
parameter 7, and the fixed excitatory weights, ¢,(¥) and dy(v), must be chosen carefully to

provide an acceptable balance between the training time, and the neocognitron’s pattern

recognition capability.

The learning rate g, determines the amount of reinforcement of the modifiable
synapses b,(k) and a,(k,v,k). For unsupervised training, the value chosen for the learning rate
is paramount if the network is to be trained successfully. However, for supervised training as
used in this implementation, g, is often chosen sufficiently large so that the training of each
layer can be completed in a single iteration. Since the primary purpose of constructing the
neocognitron is to facilitate the development of the digi-neocognitron, the learning rate for
each layer is chosen so that the final weight values will be similar to those of the digi-
neocognitron. The values utilized for the learning rate were ¢, = 45.0, g,= 175.0, g;= 285.0

and g,= 625.0.

The values chosen for the saturation parameter, o, were identical to those used for the
neocognitron described in [13]. The model implemented here was based on that described
by the authors of [13]. Therefore, these values were an appropriate starting point, which
proved adequate for this implementation. The values used were o; = o, = o3 = 0.25 and oy =

1.0.

The selectivity parameter was chosen as follows: r,=1.7,7,=5.0, ;= 1.5 and r,= 1.0.
This value determines the efficiency of the inhibitory inputs to the S-cells and controls the
selectivity during feature extraction. r,= 1.7 is chosen for us5, because the connection area for
this layer is 3x3. The S-cell will yield a non-zero output when the stimulus feature detected
contains up to two additive elements of noise, or one additive and one subtractive element.
However, the cell yields a zero output if the stimulus feature has two or more subtractive
elements of noise. With r,= 5.0 the S-cells’ output will be non-zero with up to one additive

or one subtractive element of noise, and zero with both. Such selectivity is necessary because
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the training patterns are specific portions of the 10 numerals to be recognized. In layers 3 and
4 the selectivity parameter is chosen to be r;= 1.5 and r,= 1.0. The s-cells’ selectivity should

not be too large, since these layers are trained on complete patterns and must be more tolerant

of deformations.

The exact values chosen for the fixed weights, ¢,(v) and dj(v), are not important as long

as Equation (6) is satisfied. The values for ¢,(v) is given by

¢(v) =y, (39)
where y,=v,=v;=0.7 and y,=0.6. dy(v) is given by

d(v)=6,-6" (36)

where 8, =6,=1.0, 5,=0.6 and 5, =0.3; §,= 0.7, 5,= 0.6, 5= 0.5 and 5, = 0.8. Both
equations are taken from [15] but are used with different parameters since the patterns to be
recognized and the architecture of this implementation differs from that described in [15]. In
Equations (35) and (36), |v| is the normalized distance between the cell located at the position

v and the center of the receptive field.

The software for neocognitron’s model functions are shown in Appendix A-1. These
functions utilizes two routines that are not included in the Appendix. The first, gefCfield(),
is utilized by the Vc-cell and S-cell output functions to determine the cell’s receptive field on
the C-planes in the preceding stage. Similarly, the function gerSfield() determines the

receptive field of a Vs-cell and C-cell on the S-planes in the preceding stage.

3.2.1 Training the Neocognitron

The neocognitron can learn to recognize a set of patterns via unsupervised or
supervised training. The latter training methodology was used to train the software model
constructed. Training of the neocoénitron was performed layer by layer, beginning at the
lowest level and proceeding to the highest level. A training pattern was presented to the input

layer and the layer to be trained was selected.  The inhibitory Vc-cell outputs are first
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computed since they are required in the S-cell computation. After the outputs of all S-planes
are calculated, the weight updates to the modifiable inhibitory and excitatory connections are

made according to Equations (4) and (9), respectively. The cell at the center of each cell

plane is always selected as the representative, ug(%, #i), for that plane. This requires that the
training pattern be centered on the input plane to ensure that the complete pattern is within the
receptive field of the representative cell. It is necessary to train only a single cell in each
plane since all the cells in a given plane have the same receptive field and extract the same
feature from the input pattern. For layers other than the first this training procedure is also
used. However, in those layers it is necessary to calculate the output of all preceding S-layers
and C-layers even though no updates to the weights are performed. This is possible since
these layers have already been trained and will recognize those features, for which they were

trained, that are present in the current training pattern.
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Figure 3-2 : Patterns used to 'trai'n the 12 cell planes of layer us;. How these planes are
combined-at the input stage of layer uc, is indicated on the right of the training patterns.
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The uy input plane is oversized to 21x21 as a result of the 3x3 receptive field of the
cell in layer us;. This photoreceptor array is the input to the 12-25x25 S-planes in layer us;.
The cell planes in this stage are oversized to accommodate the 5x5 receptive field of the cells
in the next stage. Shown in Figure 3-2 are the 12 patterns used to train layer us;. These 12 S-
planes, with a 3x3 connection area, extracts line components at different orientations
from the input pattern. Due to the similarity between some of these lines, they are combined
at layer uc; thus requiring only 8 C-planes in this stage. These 8 cell planes are thinned out
from the previous stage to 13x13 and have a 5x5 connection area. In this and the remaining
stages of the network, the value ji(k,k) in Equation (10) indicates how the S-planes are
combined for input to the C-planes. X indicates the current C-plane, and % is a one if the S-

planes are to be joined and zero otherwise.
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Figure 3-3 : Patterns used to train the 38 cell planes of layer us,. How these planes are
combined at the input stage of layer uc; is indicated on the right of training patterns.
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There are 38-17x17 S-planes in stage us, which receive input from the 8 C-planes in
layer uc; through a 3x3 connection area. Thinning out is not performed in this stage but, all
cell planes are oversized. Figure 3-3 illustrates the 38 sets of training patterns used to train
this stage. Due to the 2-to-1 thinning of the cells in layer uc, from us;, four patterns are
used to train each S-plane at this stage. Each training set consists of the identical pattern
presented at four different locations, by shifting it both vertically and horizontally on the input
plane. Training each cell plane using four patterns was necessary to ensure each plane's ability
to extract its assigned feature. How these 38 cell planes are combined for input to the 22 cell

planes in layer uc, is indicated to the right of the training patterns in Figure 3-3.
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Figure 3-4 : Patterns used to train the 32 cell planes in layer us;. How these planes are combined at the
input stage of layer uc; is indicated on the right of the training patterns.

24

o P [ o = [ B
(9 Y00k -
(O-010100 [oa | s 1

E
£

oo P s | B

At the third stage of the neocognitron, the 32-9x9 S-planes in layer us; receive input
from the 22 C-planes in layer #., through a 3x3 connection area. The training patterns for the

32 S-planes in this stage are shown in Figure 3-4. This training set consists of partial patterns
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and some of the actual patterns that are to be recognized by the network. Two or three
patterns of varying size, shape and deformations are used to train the 32 planes in this layer.
These 32 S-planes are combined as indicated to the right of the cell planes in Figure 3-4 for
input to the 30 uc; planes. Thinning out of the cells in the planes from those in the previous

layer is not performed at this stage but each plane is oversized.
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Figure 3-5 : Patterns used to train the 16 cell planes in layer us,. How these planes are combined
at the input stage of layer uc, is indicated on the right of the training patterns.

The patterns used for training the final S-layer, us,, are illustrated in Figure 3-5.
There are 16-3x3 cell planes in this layer, each with a 5x5 receptive field. Each of these cell
are trained using one or two complete patterns. The outputs of these 16 S-planes are the
inputs to 10 C-planes in layer uc,, each consisting of a single cell representing the 10

numerals to be recognized. How the 16 us, planes are combined for input to the 10 uc, planes
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is indicated at the right of the cell planes in Figure 3-5. Also, as in layer 3, no thinning of the

cells in this layer is performed.

3.2.2 Testing the Neocognitron

In testing the pattern recognition capability of the neocognitron network, the following
criteria was used. If the cell plane corresponding to the input character yields the largest
output of the 10 uc, planes, the response is judged to be correct. If no cell plane responds or
this value is identical to that of a different plane, the character is classified as unknown. This
will prevent the network from making incorrect guesses when it is uncertain.  Finally, a
wrong classification is used when the appropriate cell plane exhibit a weaker response than a

cell in another plane.
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Figure 3-6 : Sample patterns that were correctly classified by the neocognitron.
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Training the neocognitron as described in the previous section took approximately 4
minutes 36 seconds on a SUN SPARCStation 20 However, during the recognition phase
processing a single character took approximately 4 seconds. The model was tested with
numerals of different writing styles, with varying degrees of deformations from the training
patterns, and with patterns placed on different positions on the input plane. In addition,
testing was also conducted on the complete patterns utilized during training. These patterns
are illustrated in Figures 3-4 and 3-5. The neocognitron correctly classified all the patterns in
this test set. Other patterns that the neocognitron correctly classified are illustrated in Figure

3-6. Patterns that the neocognitron incorrectly classified or judged unknown are shown in

Figure 3-7.
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Figure 3-7 : Sample test patterns that the neocognitron failed to correctly classify.
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The variety. of patterns that can be recognized by the neocognitron is dictated by the
numbers of layers and planes in the network, and the varations of the training patterns. Since

this implementation has nine levels of C-cells and S-cells, increasing the number of layers is
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not necessary. It would suffice to increase the number of planes in layers two and three,
and/or the number and variations of the training patterns. These additional training patterns

should include partial and complete patterns of the new styles of patterns to be recognized.

3.3 Implementation of the Digi-Neocognitron Model

Architecturally, the digi-neocognitron is identical to the neocognitron model described
in Section 3.2. However, the learning rates and saturation parameters were changed in order
to improve the weights developed and to satisfy the required bit restrictions. Also, to
implement the DNC model functions as described in Equations (18), (26), (27) and (33),

modifications to the C-routines in section 3.2 were required.

Like the neocognitron, the learning rate varied for all the layers. However, these
values were developed during training to ensure that the computed weights adhered to the
digi-neocognitron’s bit-width restrictions. The final values for the learning rates were q; = 40,
q>= 135, g5 =185 and q, = 525. The procedure utilized to obtain these results is discussed in
Section 3.3.1. Also developed through training were the values for the saturation parameter.

These values were o,; = o, = o3 =0.125 and o, = 1.0.

The digi-neocognitron model functions required power of 2 approximations, the use of
look-up tables, and shifters to implement multiplications and divisions. With the exception of
the shift operations, all the required changes for converting the neocognitron to a digi-
neocognitron model were made. Shifters could not be used since the calculations are
performed on floating point values, and the C-compiler utilized did not allow bit-wise
operations on floating point values. The C-routines for the DNC model functions are shown

Appendix A-2.

3.3.1 Training the Digi-Neocognitron

With the inclusion of the procedure described in Section 3.1, training the digi-
neocognitron is identical to the training described for the neocognitron. Using the procedure

described in Section 3.1, the planes in the first layer of S-cell are trained. The neocognitron
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model is first used and the learning rate is adjusted to ensure that the weights are within the
prescribed limits. This is necessary since the approximations used by the DNC model assigns
the maximum allowable values if the results are greater than or equal to these limits. In such
a situation the excitatory weights will be rounded down even though the inhibitory weights are
increasing.  As a result the digi-neocognitron would loose its ability for pattern recognition.
It is preferable to develop excitatory weights with the neocognitron that are at the minimum
value required by the digi-neocognitron for rounding up. When this is achieved, two criteria
are used to determine if the weights computed achieves an acceptable pattern recognition
capability. First, the excitatory and inhibitory weights are compared with those for the
neocognitron and the learning rate is modified; and the simulation is repeated until an
acceptable correlation is obtained. Next, the pattern recognition capability of this layer is
tested using known good patterns. If the results of this test are unacceptable, the saturation
parameter is modified and the networks response is rechecked. If this also fails to yield an
acceptable response, the inhibitory input b;(%) is adjusted. The process is repeated until the
desired response is achieved or some compromise is reached. This procedure is used to train
all the layers of the network. Modification of the inhibitory inputs were not required for the

first layer in this model. However, it was required for the remaining layers in the network.

3.4 Performance Comparison of the Neocognitron and Digi-neocognitron
Models

Both the neocognitron and the digi-neocognitron neural network models were tested
using patterns from the training set, and patterns of different individual hand-writing styles.
These patterns varied in size, shape, the presence of deformations, and their position on the
input plane. Patterns that the neocognitron failed to recognized or classified as unknown
contained significant deformations from those in the training set, or were extremely similar
one of the other ten numerals. For the test set utilized, the neocognitron correctly classified
93% of the patterns, and classified "7% as unknown. In addition, for patterns that were

included in the training set the neocognitron correctly classified 100% of these patterns.
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As expected, the performance of the digi-neocognitron was lower than that of the
neocognitron. For patterns that were included in the training set, the digi-neocognitron
correctly classified 90% of the patterns, and classified 10% as unknown. For the complete set
of test patterns the digi-neocognitron’s classifications were 80% correct and 20% unknown.

Some of the patterns that were correctly classified by the digi-neocognitron model are

illustrated in Figure 3-8.

D0 53
SRS
2558

Figure 3-8 : Sample test patterns that the digi-neocognitron correctly classified.

The digi-neocognitron’s performance shortfall is due to the type of training method
used, the set of training patterns used, and the need for further refinement of the weight values

developed.

Using the supervised training methodology, each plane is trained to recognize a
specific feature from each pattern. If the power of 2 approximations are too gross, some of
the cell planes will not learn to recognize its assigned feature. These cell planes will either
learn to recognize a different feature or will fail to extract any features from the patterns on its
input planes. As this failure to recognize an assigned feature propagates to higher stages in

the network, the problem worsens and the pattern will be incorrectly classified.

The other problem with this DNC model was the set of patterns utilized during

training. The training patterns used to train the last two layers of the digi-neocognitron made
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it difficult to train these layers. Because the number of patterns used to train the cell planes in
these layers varied, it was difficult to control the inhibitory inputs to the S-cells. For the few
planes with more training patterns than the remaining planes in the layer, the inhibit output

would reach the maximum upper limit before adequate excitatory weights could be developed

for the remaining cell planes.

The original implementation of the digi-neocognitron model [8] utilized the inherent
fault tolerant characteristics of the neocognitron, and unsupervised training to compensate for
inaccuracies that are introduced as a result of the preprocessing approximations. In the
unsupervised training methodology, the digi-neocognitron has the freedom to determine what
features each cell plane will learn to recognize. This allows the digi-neocognitron to better
compensate for the inaccuracies resulting from the power of 2 approximation. Also, the DNC

model described in [8] was a much smaller model with a smaller character set.

The purpose of developing a digi-neocognitron model was to facilitate a digital VLSI
implementation of the neocognitron. From the DNC performance achieved in the model
constructed, this may appear to be a bad implementation choice. However, this is not
necessarily the case. In the VLSI model of digi-neocognitron, the training is performed off-
line. Also, the storage of the connection weights is implemented using either SRAMs,
EPROMs or EEPROMs. Therefore, once the desired architecture is established, the weight
values can be changed at a later date to utilize weights with a better character recognition
performance. Thus, the poor performance of this DNC model does not negate the benefits

that a digital VLSI implementation has to offer.
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CHAPTER 4

4.0 VHDL Implementation of the Digi-neocognitron

4.1 VHDL Overview

This section provides a brief overview of VHDL (VHSIC Hardware Description
Language) and it capabilities as found in [16]. It is not intended to be a comprehensive
overview of the language. However, it provides some of the basic terminology required to
understand the concepts that will be discussed in this chapter. For a complete discussion of

VHDL please refer to the text referenced.

Two concepts of importance are an entity and a component. An entity, as used in this
chapter, is a hardware abstraction of a digital system, and a component is an entity that is used
within another entity. VHDL provides several constructs to describe an entity, but the two of
significance are the entity declaration and the architecture body. An entity is modeled using
an entity declaration and an architecture body. The entity declaration is used to described the
external view of the entity, and the architecture contains the internal description of that entity.
The entity declaration contains the input and output signal names. These signals through
which an entity communicates with other models in its external environment are referred to as
ports. The architecture body that accompanies an entity can consist of a set of interconnected
components representing the structure of the entity, or a set of concurrent or sequential

statements that represent the behavior of that entity.

VHDL supports several styles of modeling: structural, behavioral, dataflow and any
combination of these three. In structural modeling, an entity is described as a set of
interconnected components. It specifies the interface ports for the accompanying architecture
body which consist of component declarations in the declarative section, and component
instantiations in the statement section. This style of modeling maps directly to the hardware

(gate level) implementation, but can prove extremely difficult when attempting to determine
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the behavior of a very large model. An entity declaration and architecture body for a half

adder which demonstrates this modeling style is shown in Figure 4-1.

ENTITY half_adder IS
PORT(a, b : IN; sum, carry : OUT bit);
END half_adder,;

ARCHITECTURE structural OF half_adder IS
-- component declarations
COMPONENT xor2

PORT(x, y : IN bit; z : OUT bit);
END COMPONENT;
COMPONENT and2

PORT(l, m : IN bit; n : OUT bit);
END COMPONENT;

BEGIN -- component instantiations
x1: xor2 PORT MAP(a, b, sum);
a1 : and2 PORT MAP(a, b, carry);

END structural;

Figure 4-1 : Structural VHDL model of a half-adder circuit.

The next modeling style, behavioral modeling, specifies the behavior of an entity as a
set of sequential statements. These sequential statements are specified within a process
statement and specifies the functionality of the entity not its structure. This process statement
which appears within the architecture body is a concurrent statement even though its contents

are executed sequentially. Figure 4-2 illustrates a behavioral implementation of a half-adder

circuit.

ENTITY half_adder 1S
PORT(a, b : IN; sum, carry : OUT bit);
END half_adder;

ARCHITECTURE behavioral OF half_adder 1S
BEGIN
adder : PROCESS(a, b)
BEGIN -
sum <= a XOR b;
carry <= aAND b; -
END PROCESS adder;
END behavioral;

Figure 4-2 : Behavioral VHDL model of a half-adder circuit.
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In Figure 4-2, the list of signals in parentheses after the keyword process is termed the
sensitivity list. This process is invoked whenever there is an event on any of the signals in this
list. Also common to this style of modeling in the signal assignment operator, <=. Unlike the
variable assignment operator, :=, which assigns a value to a variable instantaneously, the

signal assignment operator assigns a value to a signal after a user-specified or the default delta

delay.

ENTITY half_adder IS
PORT(a, b : IN; sum, carry : OUT bit);
END half_adder;

ARCHITECTURE dataflow OF half_adder 1S
BEGIN

sum <= a XOR b AFTER 8 ns;

carry <= a AND b AFTER 4 ns;
END dataflow;

Figure 4-3 : Dataflow VHDL model of a half-adder circuit.

In the dataflow modeling style, the flow of data through an entity is expressed using
concurrent signal assignment statements. The structure of an entity which uses this modeling
style i1s not specified explicitly; however, it can be implicitly deduced from the set of

statements. Figure 4-3 demonstrates the half-adder circuit using the dataflow modeling style.

VHDL also allows combining these three styles of modeling in a single architecture to
describe an entity. This is referred to as mixed-style modeling. In an architecture body this
can be achieved through the use of component instantiations that represent structural
modeling, process statements which represent behavioral modeling, and concurrent signal
assignments that represent dataflow modeling. An example of mixed-style modeling is
demonstrated for a full-adder in Figure 4-4. Note the inclusion of signal and variable
declarations, and variable assignments. Signal declarations can only occur in an architecture

body, and variable declarations and assignments can occur only within a process statement.
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ENTITY full_adder IS
PORT(a, b, cin : IN bit; sum, cout : OUT bit):
END full_adder;

ARCHITECTURE mixed_style OF full_adder IS

COMPONENT xor2
PORT(a, b : IN bit; z : OUT bit);
END COMPONENT,;

SIGNAL s1 : bit;

BEGIN
x1 : xor2 PORT MAP(a, b, s1); -- structural modeling

PROCESS(a, b, cin) -- behavioral modeling
VARIABLE t1, t2, {3 : bit;
BEGIN
t1 :=a AND b;
t2 := b AND cin;
13 ;= a AND cin;
cout <=11 OR {2 OR {3;
END PROCESS;

SUM <=s1 XOR cin; -- dataflow modeling
END mixed_style;

Figure 4-4 : Mixed-style VHDL model of a full-adder circuit.

Also, with VHDL it is possible to exercise and verify the correctness of the hardware
model implemented using VHDL. This is performed by a test bench. The purpose of this test
bench is to generate stimulus (waveforms) for the simulation, to apply these stimulus to the
entity that is being tested, monitor the output responses, and to compare the output responses
with expected known values. The application of the stimulus to the entity-under-test is done
automatically by instantiating the entity in the test bench model and then specifying the
appropriate interface signals. A typical format of a test bench model is shown in Figure 4-5.
The test bench models used to verify the functionality of the digi-neocognitron model

functions are listed in Appendix A-4. .
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ENTITY test_bench IS
END test_bench;

ARCHITECTURE tb_behavior OF test_bench IS

COMPONENT entity_under_test
PORT (list-of-ports-their-types-and-modes);
END COMPONENT;

local signal declarations;

BEGIN
Generate-waveforms-using-behavioral-constructs;

Apply-to-entity-under_test;
EUT : Entity_Under_Test PORT MAP(port-associations);

BEGIN

Monitor-values-and-compare-with-expected-values;
END tb_behavior;

Figure 4-5 : Typical format of a VHDL test bench model.

4.2 Hardware Description of the DNC Model Functions

The cells of the digi-neocognitron were modeled using VHDL prior to implementing
these four processing elements in VLSI. These models were used to develop the required
timing sequences and verify the functionality of the processing elements, to validate the
functionality of the complete design, and subsequently to synthesize the gate and transistor
level circuits of the DNC model functions. VHDL is hardware description language that can
be used to model digital systems at various levels of abstraction. A design can be modeled
algorithmically, as with other high-level programming languages, or it can be modeled at the
gate level similar to what would be done using a circuit design tool. Like other high-level
programming languages, VHDL supports two design methodologies, top-down and bottom-
up, and it provides support for modeling a system hierarchically. It is possible to model a
system and its subsystems from the architectural level to the gate level. The model developed
for the digi-neocognitron used the behavioral style of modeling and a bottom-up design

methodology. A bottom-up approach was required in order to develop the timing sequences
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necessary for the model functions. These timing sequences were then utilized by the

controllers of the computation processes for the four cell types.
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Figure 4-6 : Block diagram for the Vc-cell output calculation of the digi-neocognitron.

Equations (16) - (34) describes the digi-neocognitron model functions. It was not
possible to implement these functions as would be done in hardware using the C programming
language; however, VHDL provides the facilities to model the hardware directly. The VHDL
models of the four output functions of the dig-neocognitron were carefully designed to

minimize the logic circuits that would be constructed in hardware. This is discussed in more
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detail in chapter 5. The VHDL models of the four functions described in this section are
listed in Appendix A-3.

The inhibitory Vc-cell output given by Equation (18) is implemented as shown in
Figure 4-6. At level 1, uc, represents the pixels in the input pattern. As indicated previously,
a 0 pixel is input as a 0.0000 binary and a 1 pixel is input as a 0.1111. The squaring of ¢ is
implemented by the POWER OF 2 block as defined in Table 2-2, and can be implemented using
simple combinatorial logic. Multiplication by ¢, and division by Cy are implemented using
shifters, the summation over the connection areas is performed by an accumulator (adder plus
register), and the square root is approximated by the look-up table shown in Table 2-3.

Similar to the square function, this look-up table can be implemented using combinatorial

logic.
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Figure 4-7 : Block diagram for the S-cell output calculation of the digi-neocognitron.
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The SHIFT blocks shown in Figure 4-6 were modeled as multiplexer-based right
shifters. These shifters are not clocked but they do require an enable signal to latch the

outputs. The ACC block represents a synchronous accumulator with an asynchronous reset.
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Figure 4-8 : Block diagram for the Vs-cell output calculation of the digi-neocognitron.

Figure 4-7 shows the implementation for the S-cell output function. The left hand side
of Figure 4-7 implements the inhibitory portion (/C) of Equation (25), and the excitatory
portion (E), given by Equation (24), is implemented by the right hand side. The accumulator
used to compute the inhibitory portion of the S-cell output is similar to that used in Vc-cell
calculation. However, an enable signal is required to limit the summation to the two terms
used for the approximation. In this implementation, the two terms used to approximate IC are
always positive, requiring only an adder. To compute the excitatory portion E requires both

an adder and subtractor, and a comparator. This accumulator calculates E, but performs the
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subtraction E - IC only if E > IC. The POWER OF 2 block can be implemented using
combinatorial logic. This block performs the approximation for the l/(m) inhibit function
shown in Table 2-4. The two remaining SHIFT blocks are right and left shifters, respectively.
With the preprocessing approximations, the Vs-cell output of the digi-neocognitron,
given by Equation (27), is implemented as shown in Figure 4-8. Both SHIFT blocks represent
right shifters and the accumulator (ACC) is similar to that used in the Vc-cell calculation. The
SEL block is used as a delay circuit for the inhibit output (IS) and the POWER OF 2 block
approximates '/q.. The final block which approximates IS2 occurs in the C-cell output
calculation. However, it is implemented here since this value contributes to the C-cell output

in the final layer only.
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Figure 4-9 : Block diagram for the C-cell output calculation of the digi-neocognitron.
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The final processing element of the digi-neocognitron, the C-cell, is implemented as
shown in Figure 4-9. The first two SHIFT blocks are right shifters and the third is a left
shifter. The ACC block is an accumulator similar to that used in the S-cell calculation; it
computes E - IC from Equation (33) if E > IC. The final block of Figure 4-9 implements
%/ 142y using the look-up table given by Table 2-5.

4.3 VHDL Simulation of the DNC Model Functions

The digi-neocognitron model functions were simulated using the Mentor Graphics
QuickVHDL simulation environment. Simulation at this stage was required for several
reasons: (1) to verify the functionality of the VHDL models implemented; (2) to develop the
timing information required by the components that controlled the computations, and (3) to
provide a comparative tool for the logic simulation of the circuit design of these model

functions.

As discussed earlier in this chapter, it is possible to used VHDL to apply stimulus to
the component that is being tested. Consequently, test bench models were constructed for the
four output functions of the digi-neocognitron. These test bench models were used only to
supply stimulus to the components under test, and not to monitor or compare the results with
expected results. Such detailed test bench models were not required since the models being
tested were relatively small. Also, monitoring of the intermediate results were required which

would have made the test bench models excessively complicated.

The four models were first tested using arbitrary inputs to determine the correct
transitions points of the inputs and the results at each stage of the computations. The test
bench models were subsequently modified to utilize values that were calculated from the
previous stages for a given pattern. This aided in the verification of the computations
performed in the digi-neocognitron model. These models utilize a clock with a 10 ns period
and a 50% duty cycle. All signal ch'anges occur at clock boundaries and the synchronous

accumulators operate on the rising edge of the clock. The clock period utilized during
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simulations was extremely optimistic. However, due to the length of time required to perform

the simulations, a 10 ns clock period was beneficial during the debug stage.

ret

8n2

enl

erg

8_sun vel (3:0)
clk

ol (1:0)

coun(: Q)

ucl (g0

Figure 4-10 : Block diagram of the Vc-cell VHDL component.

A block diagram illustrating the component interface of the Vc-cell output calculations
is shown in Figure 4-10, and the simulation results for the Vc-cell computation of a single 3x3
receptive field is shown in Figure 4-14. To complete the computation for a single 3x3
connection area required 140 ns (14 clock cycles). With the exception of the first layer and
some of the C-planes, computations are performed over several connection areas of size 3x3
or 5x5 in the DNC model. However, summation over a single plane was sufficient to verify

the correctness of the model functions.

The test bench model listed in Appendix A-4 was used to provide the stimulus to the
Ve-cell component. Appendix A-4 also contains the listings of the test bench models for the

three remaining output functions of the digi-neocognitron.

The S-cell component was the second model to be simulated. The order of simulation
was important due to the desire to use the computed outputs in subsequent layers. This
helped significantly during the functional verification of the complete digi-neocognitron model

in which the order of the calculations is fixed.
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ret

eng

n2

eni

end
a_sun2
asunl
clk wl (6:0)
edd
ol{2:0>
{210
wel {3:0)
vel (3:8)

wgkfac(2:0)

Figure 4-11 : Block diagram for the S-cell VHDL component.

Shown in Figures 4-11 and 4-15 is the block diagram for the S-cell component and the
simulated results, respectively. The S-cell calculations were also performed using a 3x3
receptive field. Note that in the test bench models, the inputs from the preceding C-layer are
identical to those used in the Vc-cell calculation. This reflects what actually occurs in the
digi-neocognitron model. In addition, the inhibitory input from Figure 4-15 is utilized in the
S-cell output calculation. Similar to the Vc-cell model, the S-cell computation for a 3x3

connection required 14 clock cycles.

rst

o2

enl

and

o_sun {82¢2:10)
clk vl (150
dl:®

keb(2:0)

uzl (6:0)

Figure 4-12 : Block diagram for the Vs-cell VHDL component.
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The Vs-cell and C-cell functions were the last models simulated. The inputs that were
used to simulate these models were generated by the digi-neocognitron VHDL model. As
stated earlier, the objective during the simulation of the four models was to utilize realistic
input values. Therefore, it was necessary to compute the results for an entire Vc-plane and a
layer of S-planes. This process provided the desired inputs for testing the Vs-cell and C-cell

models, and simultaneously verified the computation models for the Vc-layer and the S-layer.

The Vs-cell computation was performed on a 3x3 receptive field. The component
block diagram containing the /O signals is illustrated in Figure 4-12, and the resulting
waveforms in Figure 4-16. However, for the C-cell calculation a 5x5 connection area was
used. This is the receptive field size of the first two layers of the network, and this was an
opportunity to assess the processing time required for a larger field size. The component
block diagram and simulation results of the C-cell components are shown in Figures 4.13 and
4.17, respectively. For the 5x5 connection area utilized in the C-cell test bench, the

calculation required 30 clock cycles.

rst

n2

eni

end

asn

olk wcl (3:9?
olphad2:0)

dii1:8;

ie2(2:8)

uwsl (585

val (150)

Figure 4-13 : Block diagram for C-cell VHDL component.
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Figure 4-18 : Architecture of the digi-neocognitron VHDL model.
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4.4 Architecture of the Digi-Neocognitron Model

The architecture of the digi-neocognitron VHDL model is illustrated in Figure 4-18.
This model consisted of four primary functional blocks: a scan buffer, a random access

memory , a system controller and a computation module.

SCAN BUFFER

This block reads the pixel data of the pattern to be recognized into the model. It requires
19 clock cycles to read a 19x19 character. This is accomplished by using a single bit (0
or 1) to represent each pixel, since at the input layer a white (off) pixel is represented as
0000 and a black pixel (on) is represented as 1111. Even though the input character is
read in 19 clock cycles, this data is not immediately available for processing. The scanner
module buffers the 19 scan lines then sequentially writes the data into the RANDOM
ACCESS MEMORY block. Consequently, after initialization, input data is not available for
processing until (19 x 19) + 19 clock cycles. However, this large initial delay is
dependent upon the method used to implement this model. In a hardware
implementation, a high speed memory block with its own internal clock can be used to
store the input data. Also, it is not necessary to wait until all the input data is read prior to
initiating the date store operation. The scan process was implemented in this manner so

that the u, input plane could be treated as just another C-layer.

RANDOM ACCESS MEMORY
This block contains three RAM blocks that are referred to as vVRAM, cRAM and sRAM.

The first character in the names of the memory module indicates the cell layers for which
they are used. The VRAM is used to store the output of the Vc-cell computations, the
cRAM stores the outputs of the C-cells and the input pattern, and the SRAM stores the
outputs of the S-cells. These RAM modules are modeled with an access time of 5ns. A 5
ns access time was used because the input data to the four model functions must be

available every-10 ns. This was due to the clock frequency chosen for the simulation.
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SYSTEM CONTROLLER
The function of the controller block is to provide the handshake signals that monitor the
calculations performed by the compute blocks of the four model functions. It enables the
computation for each layer in the network, and performs some post processing on the

results from the last layer of C-cells to provide the final resuit.

COMPUTATION MODULE

The computation block is where all the calculations and results storage are performed.
This is not a physical module, but a virtual module for grouping the four computation
modules of the digi-neocognitron: vcOutput, usOutput, vsOutput and ucOutput. Each of
these modules are organized as parallel processing elements with its own local weight
memory. These modules also have access to the shared RANDOM ACCESS MEMORY block

described above.

vcOutput

This module consisted of the c;v) weight memory, a block which initializes or
modifies this memory, a single Vc-cell output module, and a controller for computing

the output over a Vc-cell’s connection area in any layer of the network.

usQutput
The usOutput module consisted of the a)X,v,k) weight memory, a block which

initializes or modifies this memory, a single S-cell output module, and a controller

for computing the output over an S-cell’s connection area in any layer of the network.

vsOutput
The vsOutput module consisted of the dj(v) weight memory, a block which initializes

or modifies this memory, a single Vs-cell output module, and a controller for

computing the output over a Vs-cell’s connection area in any layer of the network.

ucQOutput
The ucOutput module consisted of the dj(v) weight memory, a block which initializes

or modifies this memory, a single C-cell output module, and a controller for

computing the output over a C-cell’s connection area in any layer of the network.
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The organization described above was chosen for the computation modules to increase
the use of parallelism. Even though the calculations in the modules that comprise the model
functions were pipelined, no parallelism was utilized during the calculations for the cell planes
of each layer. Processing the cell planes in parallel adds to the complexity of the VHDL

model, but it would significantly reduce the simulation time and the time required to process

each pattern.

4.5 VHDL Simulation of the Digi-Neocognitron Model

The VHDL model of the digi-neocognitron was simulated in stages. It was necessary
to verify that the calculations performed in the lower stages were correct before proceeding.
Also, as noted previously, the inputs to each stage are the results computed in the previous
stage. The exception to this is first layer of S-cells in which the inputs to this stage is the
pattern being processed. As with the model functions, the clock used to simulate the digi-

neocognitron had a period of 10 ns and a 50% duty cycle.

The first step of the simulation was to verify the initialization of the weights developed
through off-line training. The initialization of the weight memories of all four layers took
21,181 clock cycles. Since all cell types have their own local memory, it was possible to
initialize all of the weight memories concurrently.  Also performed concurrently with the
weight initialization was the storing of the pattern to be recognized to the input plane. Since
the time required to store all the weights was longer that the time required to store the input
pattern, this process was transparent to the system. However, with the architecture of this
model, it was not possible to input the next character until all processing required for the
current pattern was completed.  This occurs because the input plane was treated as just
another C-plane. In a hardware implementation, the input plane should be separate from the
C-planes. Then, the pattern to be processed could be stored immediately after the calculations
for the first S-layer is completed. Using this approach the overhead required for storing a

pattern would be incurred for the first pattern only.

In subsequent stages of the simulation process, each of the computation modules

shown in Figure 4-18 were simulated in the same sequence described for the software models.
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At the end of the simulation run for each of these blocks, a 3x3 or 5x5 area from one of the
computed planes was processed using one of the models for the four output functions. This
was used to verify that the functionality of the computation blocks.

Table 4-1 : Performance comparison of the digi-neocognitron for sequential vs. concurrent calculation of the
cell planes in each layer

Cell Layers Number of Cell Calculating Cell Calculating Cell
Planes Planes Sequentially | Plane Concurrently

(clock cycles) (ns)

Usi 12 62,292 5,191

Uci 8 31,349 3,919

us; 38 319,732 8,414

Uc; 22 36,008 1,637

Us; 32 263,552 8,236

Ucs 30 18,902 630

Usq 16 108,864 6,804

Ucy 10 150 15

As indicated previously, the calculations for the cell planes were performed
sequentially. This was done to simplify an already complicated model. However, with the
scaling of CMOS VLSI technologies and the possibility for a significant gain in performance
from concurrent calculation of the cell planes, this would not be the desired approach for a
VLSI implementation. The computation blocks were designed to facilitate parallel processing
of all the cell planes in a single layer. All the cell planes within a layer have an identical
number of connections from the cells in the previous stage. Therefore, rather than reading the
input data 12 times for 12 cell planes, it could be read once and all the cell planes could
simultaneously process the data. To enable concurrent calculation of the cell planes in each
layer would require a single computation block (vcOutput, usOutput, vsOutput or ucOutput)
for each plane in the layer and additional memory /O controller for reading the required
inputs from memory and storing the results to memory. Table 4-1 shows an estimate of the
performance that would be achieved by computing the outputs of the cell planes in parallel.

This data is based on the VHDL simulation results using a 10 ns clock. To sequentially
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calculate the outputs of the cell planes of the S and C-layers of the digi-neocognitron took
340,669 clock cycles. This is in comparison to 34,846 clock cycles that could be achieved by
performing the calculations in parallel. To sequentially process a single pattern, the digi-
neocognitron took 889,786 clock cycles. If the calculations for the cell planes in the S and C-
layers are performed concurrently, this time drops to approximately 83,829 clock cycles. Tt is
clear from these processing times that despite the increase in silicon area, concurrently

calculating the cell planes of each layer if the preferred implementation choice.
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CHAPTER 5

5.0 Circuit Implementation of the Digi-Neocognitron Model
Functions

5.1 Synthesis and Simulation of the DNC Model Functions

The digi-neocognitron model functions are comprised primarily of datapath operators
(shifters, adders, subtractors and comparators) and combinatorial logic. This allows the digi-
neocognitron to benefit from many of the principles employed in a structured design

methodology. These include hierarchy, regularity, modularity and locality.

Generally, n-bits of data are processed enabling the use of n-identical circuits to
implement a function. Also, data operations are generally sequenced in time leading to the
idea of physically placing linked data operators adjacent to each other. Data can then be
arranged to flow in one direction, and control signals can flow in an orthogonal direction to
the dataflow. It is these features that makes the DNC functions ideal for logic synthesis.
Even though the digi-neocognitron model functions were implemented using behavioral
modeling, these models were carefully designed to facilitate logic synthesis. Great effort was
made to minimize the circuitry that would be synthesized for each of the logic blocks
contained in the models. In addition to the design efforts for optimizing the VHDL code,
Mentor Graphics’ AutoLogic was used to optimized the circuits for area and in some
instances speed (accumulators) prior to synthesis. AutoLogic was then used to synthesize the
logic and transistor level circuits for the cells of the digi-neocognitron to a 1.2 um CMOS

process.

5.1.1 Logic Synthesis of the DNC Model Functions

Figures 5-1 through 5-9 illustrates the circuit diagrams of the four model functions
generated by the AutoLogic synthesis tool, and the logic simulation results using the
QuickSim simulator. The function of the logic blocks in each of the schematic diagrams

shown are identical to those described in section 4.3. The external inverters shown are
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utilized to provide needed drive capability and to resolve fanout violations. Similar to the
VHDL models for these functions, all shifters were multiplexer-based shifters and were
constructed from 2:1 and 4:1 multiplexers. These logic blocks also contained a series of D-
latches to latch the shift result. Figure 5-1 shows the logic circuit for the shiftIvc block of the
Vce-cell output function illustrated in Figure 5-2. This is a 2:1 multiplexed-based right shifter.

The look-up tables (sqrz_tbl and psiluc) and power of 2 blocks (pow2vc and pow2vs)
consisted of simple combinatorial logic. The boolean equations that implemented these
functions were reduced prior to implementation. However, AutoLogic also performed logic
reduction on these equations during the optimization stage prior to synthesizing the circuit

diagrams.

The Vc-cell output function circuit diagram shown in Figure 5-2, the acclve block is a
16-bit accumulator.  This was implemented using a 16-bit full-adder with 2-bit carry-
lookahead units. Also required to implement this accumulator were 32-D flip flops (16 with

set and clear inputs) and 12 D-latches.

In addition to four multiplexer-based shift circuits, the S-cell output schematic shown
in Figure 5-4 required two adders, a subtractor, and comparator circuits for the VLSI
implementation. Implementing the accumulators that calculated the inhibitory (Vc-cell) and
excitatory inputs to the S-cell, each required a 16-bit adder with 2-bit carry-lookahead units.
Also needed to compute the excitatory input to the S-cell was a 16-bit unsigned comparator
with 2-bit carry-lookahead units. This comparator was used to implement the function E >
IC. Comparators were also needed to implement the power of 2 function (pow2us). Utilized
for this function was a 3-bit and a 9-bit unsigned comparator with 2-bit carry-lookahead units.
The S-cell also require 101 sequential components. These consisted of 41-D flip flops, 32-D
flip flops with set and clear and 38 D-latches.

To implement the circuit for the Vs-cell output function shown in Figure 5-6, a 16-bit
adder and five 11-bit unsigned comparators were synthesized for the accumulator (acclvs),
and the power of 2 (pow2vs) components, respectively.  Both of these circuits were

implemented with 4-bit carry-lookahead units. The select component (sel/vs) is simply a
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buffer circuit and was constructed using D-latches. Overall, the Vs-cell circuit required 32-D

flip flops (16 with set and clear inputs) and 41 D-latches.

Shown in Figure 5-8 is the circuit diagram for the C-cell processing element of the
digi-neocognitron. The shift circuits implemented here are similar to those used in the Vs-
cell, and the psiofc component is a look-up table made up of combinatorial logic. To
implement the accumulator (accluc) a 16 bit full-adder, a 16-bit subtractor and a 16-bit
unsigned comparator each with 4-bit carry-lookahead units were used.  The sequential
components that were required for the C-cell circuit were 32 D flip-flops (16 with set and

clear inputs) and 21 D latches.

5.1.2 Simulation of the Synthesized Circuits

The functionality of the logic circuits synthesized by AutoLogic for the DNC model
functions was verified using Mentor Graphics’ QuickSim simulator. These results are shown
in Figures 5-3, 5, 7 and 9. The test vectors used in the circuit simulation were identical to
those used to test the VHDL models of these functions. The results of the logic simulation
were consistent with those obtained for the VHDL models. This verified the functionality of
the circuits synthesized by AutoLogic. However, it does not verify the timing requirements
or consider the actual circuit delays. Therefore, the 10 ns clock period used in the simulation
is still quite optimistic. To verify the timing requirements of the synthesized circuits, a
transistor level simulation would be necessary. Also, the types of materials used for
interconnect in the circuit layout, and their dimensions should be used along with the

transistor level circuit models.

The circuit simulation results for these model functions were performed using the

following parameters:

temperature : 25°C

volts : S v ,
estimated net capacitance : 0.01 pF
unit load capacitance : 0.2 pF
default rise/fall time : 2.0 ns.
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A VHDL Model of a Digi-Neocognitron Neural Network for VLSI

CONCLUSION

This thesis discussed an artificial neural network model, the neocognitron, for hand-
written character recognition, and its adaptation to an all digital implementation for VLSI.
The new model, the digi-neocognitron, was derived from the neocognitron model through
preprocessing approximations and definition of new model functions. Multiplications and
divisions are eliminated by converting the factors to powers of 2, so that only shift operations
are needed. Also, complex functions, square and square-root, are replaced by look-up tables

which can be implemented with simple combinatorial logic.

A software model was developed for the neocognitron. This model demonstrated an
excellent pattern recognition capability for numerals O through 9 despite variations in size,
shape, position on the input plane, and the presence of deformations from the training
patterns. The neocognitron model was used to develop the digi-neocognitron model using the
conversion methodology presented. However, the digi-neocognitron model’s character
recognition capability was less than that achieved for the neocognitron. Since the digi-
neocognitron as a viable alternative to the neocognitron is dependent on it having comparable
performance; the DNC model developed would not be used as a replacement for the

neocognitron.

The poor performance obtained for the DNC was due to the supervised training
method used, the set of training patterns, and the need for further refinement of the weight
values developed. Because the weights are developed off-line, the DNC’s performance does
not negate the benefits offered by the digi-neocognitron for VLSI implementation. The digital
VLSI model can be implemented and the weight values, which are stored using RAMs,
EPROMs or EEPROMs, can be changed at anytime to utilize weights with a better pattern

recognition capability.

To demonstrate the feasibility of a VLSI implementation for the digi-neocognitron a
VHDL model was constructed. This model successfully demonstrated the digi-neocognitron’s

ability for hand-written character recognition, and highlighted opportunities for reducing the
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A VHDL Model of a Digi-Neocognitron Neural Network for VLS]

time required to process a character. By sequentially computing the planes in each layer, a
single character required approximately 8,898 ps using a clock with a period of 10 ns. A
significant improvement in processing speed is attainable if these calculations are done
concurrently.  Concurrently calculating the outputs of the cell planes in each layer would

result in approximately a processing time of 839 ps.

The model functions of the digi-neocognitron were synthesized using Mentor
Graphics” AutoLogic, for a 1.2 um CMOS process. These functions are comprised primarily
of datapath operators (shifters, adders, subtractors and comparators), making them ideal for
logic synthesis. The functionality of the synthesized circuits was verified using the QuickSim

logic simulator. Logic simulation was also used to gain confidence in the AutoLogic tool.

Despite the performance shortfall of the digi-neocognitron model, it is more suitable
for VLSI implementation than the neocognitron model. VHDL proved to be an invaluable
tool in the implementation of the digi-neocognitron model using digital VLSI. Many of the
architectural and design issues could be resolved in the simulation model prior to designing
any actual hardware. In addition, logic synthesis tools can utilize the VHDL models to
synthesize logic, transistor level and VLSI masks. With a reliable synthesis tool and properly

designed VHDL models, circuit synthesis can significantly improve the designed process.
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APPENDIX A

This section contains the source code that was required to implement and test the
neocognitron and digi-neocognitron model functions. Appendix A-1 and A-2 lists the C
source code for the neocognitron and digi-neocognitron model functions, respectively. In
section A-3 is the listings for the VHDL models required to implement the processing blocks
for constructing these cells in hardware. These processing blocks are described in Chapter 4.
Finally, section A-4 lists the VHDL test bench models that were used to verify the

functionality of the digi-neocognitron output functions shown in section A-3.
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