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ABSTRACT

The primary goal of this thesis was to emulate the function of the biological eye in

silicon. In both neural and silicon technologies, the active devices occupy approximately 2

percent of the space, wire fills the entire remaining space.The silicon retina was modeled

on the distal portion of the vertebrate retina. This chip generates, in real time, outputs that

correspond direcfly to signals observed in the corresponding levels of the biological

retinas. The design uses the principles of signal aggregation. It demonstrates a tolerance

for device imperfection that is characteristic of a collective system. The digital computer

is extremely effective at producing precise answers to well-defined questions. The

nervous system accepts fuzzy, poorly conditioned input, performs a computation that is
ill-

defined, and produces approximate output.
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1.0 INTRODUCTION

Living Systems are made from three-dimensional soft cells, however computers are

constructed of rigid inorganic matter in flat, two-dimensional sheets. Living systems are

powered by metabolic bio-chemistry, while computers are powered by electrical energy

from the power mains. The destruction of a few percent of the cells in a brain will cause

no discernible degradation in performance, but the loss of even a single transistor may

cause complete loss of functionality.

A close look reveals some degree of similarities between the two kind of systems.

They both process information. Signals are represented as differences in electrical

potential, and are conveyed on wires formed by surrounding a conducting path with an

excellent electrical insulator. Active devices cause electrical current to flow in a second

output conductor due to potential in a first input conductor. A power supply maintains a

near-constant average difference in electrochemical potential across the active devices.

The active devices are formed of extremely thin energy barriers that prevent the flow of

current between two electrical nodes. The passage of current is mediated by the potential

on a third control electrical node. That current varies exponentially with the potential on

the control node. Neurons perform Boolean AND and OR operations on the way to firing

off a nerve pulse to the next stage of computation.

The visual system of a single human being does more image processing than do the

entire world's supply of supercomputers. The digital computer is extremely effective at

producing precise answers to well-defined questions. The nervous system accepts fuzzy,

poorly conditioned input, performs a computation that is ill-defined, and produces

approximate output.

Perhaps the most important aspect of analog computation is the extent to which

the elementary computational primitives are a
direct consequence of fundamental laws of

physics. We will see that a single transistor can take at its gate a voltage type signal and



produces at its drain a current type signal that is exponential in the input voltage. This

exponential function is a direct result of the Boltzmann distribution. We will see that the

addition and subtraction of currents follows directly from the conservation of charge.

The complexity of a computational system derives not from the complexity of its

component parts, but rather from the multitude of ways in which a large collection of

these components can interact. Even if we understand in elaborate detail the operation of

every nerve channel and every synapse, we will not by so doing have understood the

neural computation as a system. It is not the neural devices themselves that contain the

secret of thought. It is rather, the organizing principles by which vast numbers of these

elementary devices work together.

Two barriers have historically blocked the way from creating a nervous system in

silicon,

(1) Neural systems have far greater connectivity than has been possible in standard

computer hardware. Many early attempts to create neural systems failed simply

because no workable technology existed for realizing systems of the requisite

complexity.

(2) Sufficient knowledge of the organizing principles involved in neural systems was

not available.

The rapidly developing technology of very large scale integrated circuits has given

us a medium in which it is possible to fabricate tens of millions of devices interconnected

on a single silicon wafer. In terms of discovering neural organizing principles, we are less

well off. Although a great deal of progress has been made in recent years, there is still no

global view of the principles and representations on which the nervous system is

organized. Many hypothesis have been proposed about the way computation is performed

in these systems. To date, it has proved difficult if not possible either to verify or to

disprove any given hypothesis concerning the operating principles of even the simplest

neural system.



A new approach is adopted, in the sense that we know all the elementary

operations found in the nervous system can be realized in silicon. Also neural areas are

thin sheets, and carry two-dimensional representations of their computational space. The

retina is the most obvious example of this organization. In both neural and silicon

technologies, the active devices occupy no more than 1 to 2 percent of the space, wire fills

the entire remaining space. Thus the limitation of connectivity will force the solution into

a particular form.

The constraints on our analog silicon systems are similar to those on neural

systems; wire is limited, power is precious and robustness and reliability are essential. We

shall in later chapters describe the relevant aspects of neural netware at the level of

abstraction where we will be working. We will then develop the operations that are

natural to silicon, and examine how they can be used to implement certain known neural

functions.

It is a general belief that the ability to realize simple neural functions is strictly

limited by our understanding of their organizing principles, and not by difficulties in

implementation. Ifwe really understand a system, we will be able to build it. Conversely,

we can be sure that we do not fully understand a system until we have synthesized and

demonstrated a working model. The success of this venture will create a bridge between

neurobiology and the information sciences, and will bring us a much deeper view of

computation as a physical process.



2.0 INTRODUCTION TO NEURAL NETWORKS

Neural networks provide a unique computing architecture whose potential has only

begun to be tapped. Used to address problems that are intractable or cumbersome with

traditional methods, these new computing architectures inspired by the structure of the

brain, are radically different from the computers that are widely used today. Neural

networks are massively parallel systems that rely on dense arrangements of

interconnections and surprisingly simple processors.

Artificial neural networks attempt to model the networks of nerve cells in the

brain. Although a great deal of biological detail is eliminated in these computing models,

the artificial neural networks retain enough of the structure observed in the brain to

provide insight into how biological neural processing may work.

Neural networks provide an effective approach for a broad spectrum of

applications. They excel at problems involving patterns: pattern mapping, pattern

completion, and pattern classification. Neural networks may be applied to translate

images into keywords, to translate financial data into financial predictions, or to map

visual images to robotic commands. Noisy patterns, those with segments missing, may be

completed with a neural network that has been trained to recall the completed patterns.

For example, a neural network might receive an input of the outline of a vehicle that has

been partially obscured, and produce an outline of the complete vehicle.

Possible applications for pattern classification abound: Visual images need to be

classified during industrial inspections; medical images, such as magnified blood cells, need

to be classified for diagnostic tests; sonar images may be input to a neural network for

classification; speech recognition requires classification and identification of words and

sequences of words. Even diagnostic problems, where results of tests and answers to

questions are classified into appropriate diagnosis, are promising areas for neural

networks. The process of building a successful neural network application is complex, but

the range of possible applications is impressively broad.



Neural networks utilize a parallel processing structure that has a large number of

processors and many interconnections between them. These processors are much simpler

than typical central processing units (CPU's). In a neural network each processor is linked

to many of its neighbors (typically hundreds or thousands ) so that there are many more

interconnects than processors. The power of the neural network lies in the tremendous

number of interconnections.

2. 1 TRADITIONAL VERSUS NEURAL NETWORK ARCHITECTURE

Neural network architectures are strikingly different from traditional single

processor computers. Traditionally Von Neumann machines have a single CPU that

performs all of its computations in sequence. A typical CPU is capable of a hundred or

more basic commands, including adds, subtracts, loads, and shifts, among others. The

commands are executed one at a time, at successive steps of a time clock. In contrast, a

Neural Network (NN) processing unit may do only one or, at most, a few calculations. A

summation function is performed on its inputs and incremental changes are made to

parameters associated with interconnections. This simple structure nevertheless provides

a NN with the capability to classify and recognize patterns, to perform pattern mapping,

and to be useful as a computing tool.

The processing power of a NN is measured mainly by the number of

interconnection updates per second; in contrast, Von Neumann machines are benchmarked

by the number of sequential instructions that are performed per second by a single

processor. Neural Networks, during their learning phase, adjust parameters associated

with the interconnections between neurons. Thus, the rate of learning is dependent on the

rate of interconnection updates.

Neural Network architectures depart from typical parallel processing architectures

in some basic respects. First, the processors in a NN are massively interconnected. As a

result, there are more interconnections than there are processing units. State of the art



parallel processing architectures typically have a smaller ratio of interconnections to

processing units. In addition, parallel processing architectures tend to incorporate

processing units that are comparable in complexity to those of Von Neumann machines.

Neural Network architectures depart from this organization scheme by containing simpler

processing units, which are designed for summation of many inputs and adjustment of

interconnection parameters.

2.2 BIOLOGICAL NEURAL SYSTEMS - THE ORIGINAL NEURAL NET

Neural Network architectures are motivated by models of our own brains and

nerve cells. Although our current knowledge of the brain is limited, we do have much

detailed anatomical and physiological information. The basic anatomy of an individual

nerve cell or neuron is known, and the most important biochemical reactions that govern

its activities have been identified.

-SS'SLV.S?'-

Figure 2-1 : Schematic drawing of a biological nerve cell.[ 13]



The processes happening inside biological neurons are not known in detail.

Nevertheless, there are a number of ways in which the electronic model of the neuron

approximates the behavior of neural cells. As shown in figure 2-1 , a living neuron receives

multiple inputs from other neurons via branching input paths called dendrites. The

combined stimuli from these input signals activate a region called an axon hillock, where

an outgoing tendril called an axon connects to the cell body. The axon then transmits the

neuron's output to still other neurons through their dendrite. Or, in some cases, the output

that the neuron transmits along its axon goes directly to muscle or gland cells in order to

activate or inhibit the functions that those cells perform.

The gap between an axon of one neuron and the input dendrites of another is the

location of the synapses. Information transfer across a synapse is controlled by

biochemical agents, a process that is modeled in electronic neurons by the changing of

synaptic weights.

Figure 2-2: A biological neuron magnified 400X with the dendritic tree in the

foreground^ 13]

Apart from their function in receiving and transmitting nerve impulses, neurons are

more or less like other cells of the body. Unlike other body cells, however, most neurons

do not reproduce. Similarly, their metabolic functions are largely taken care of by



attendant glial cells that transport nutriments and waste products to and from the neurons,

regulate their chemical environment, and remove and digest the neurons when they are

dead or damaged.

The neuron shown in figure 2-2, was photographed from a tissue culture of

embryonic nerve cells. Although the axon is hidden, the dendritic tree is apparent. The

many larger fibers in the foreground are dendritic branches; the smaller fibers that

crisscross in thebackground are axons that synapse onto the dendrites, bringing incoming

pulses from other neurons.
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Figure 2-3: A golgi-stained preparation from the visual cortex of a two year old child [13]

Figure 2-3, shows a typical network of neurons, traced from the human visual

cortex. These neurons appeared when a thin section of the cortex was impregnated with a

Golgi stain, which is taken up by only 2% of the neurons. The resulting picture indicates

the nature of the biological NN present, with densely placed neurons and myraid

intersecting nerve branches. The actual biological network is much more dense than that

shown in the figure because of the sparsity of cells that take up the Golgi stain. This



picture exemplifies the vast interconnected arrays of neurons that appear in biological

neural networks.

Figure 2-4: Major structures of the human brain. [14]
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Figure 2-4, depicts the human brain. The brain is a dense neural network in which

the neurons are highly interconnected. The total number of neurons in the human brain is

estimated at 100 billion. Each neuron is connected to perhaps 10,000 other cells, meaning

such biological neuron can send impulses that may be received by as many as 10,000

targets cells.

Figure 2-5, and 2-6, shows a comparison of different biological nervous systems

with artificial neural networks[14]. Speed, in term of interconnections processed per

second, is plotted against storage, measured in terms of interconnections. The shaded

area represents neural network sizes that are within the reach of today's artificial NN

simulations. The leech and worm, relatively primitiva invertebrates, have nervous systems

that appear within the range of existing simulators having fewer than
10s interconnections.

10



More complex organisms, such as the fly, bee, cockroach, and aplysa (a sea slug), have

nervous systems with considerable more speed and storage capacity. They appear to

exceed the computational capabilities presently available in simulations. The human

nervous system is far larger than the other systems plotted, and would appear beyond the

top right of the graph.

2.3 ARTIFICIAL NEURAL NETWORKS - THE BASIC STRUCTURE

The figure 2-7, depicts an example of a typical processing unit for an artificial

neural network. On the left are the multiple inputs to the processing unit, each arriving

from another unit, which is connected to the unit shown at the center. Each

interconnection has an associated connection strength, given as wl, w2, . . ., w . The

processing unit performs a weighted sum on the inputs and uses a nonlinear threshold

function, f, to compute its output. The calculated result is sent along the output

connections to the target cells shown at the right. The same output value is sent along all

the output connections.

The neural network shown in figure 2-8, has three layers of processing units, It is the

typical organization for the neural net paradigm known as back-error propagation. The

first layer of input units assume the values of a pattern, represented as a vector, that is

input to the network. The middle, "hidden", layer of this network consists of "feature

detectors", units that respond to particular features that may appear in the input pattern.

Sometimes there is more than one hidden layer. The last layer is the output layer. The

activities of these units are read as the output of the network. In some applications,

output units stand for different classification of patterns.

ll
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Figure 2-7: Schematic processing unit from an artificial neural network [16]
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Figure 2-8: An artificial neural network with three fully interconnected layers. [16]
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A larger neural network, in which each layer is organized as a two - dimensional slab of

neurons, is shown in figure 2-9. Neural networks are not limited to three layers, and may

utilize a huge number of interconnections.

OUTPUT PATTERNS

AAA

INPUT PATTERNS

Figure 2-9: A multilayered network with slabs of processing

units that are interconnected with adjacent layers. [16]
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Each interconnection between processing units acts as a communication route.

Numeric values are passed along these interconnections from one processing unit to

another. These values are weighted by a connection strength when they are used

computationally by the target processing unit. The connection strengths that are

associated with each interconnection are adjusted during training to produce the final

neural network.

Some neural network applications have fixed interconnections weights;

these network operate by changing activity levels of neurons without changing the

weights. Most networks, however, undergo a training procedure during which the

network weights are adjusted. Training may be supervised, in which case the network is

presented with target answers for each pattern that is input. In some architectures,

training is unsupervised, the network adjusts its weights in response to input patterns

without the benefit of target answers. In unsupervised learning, the network classifies the

input patterns into similar categories.

2.4 NEURAL NETWORK CHARACTERISTICS

Neural networks are not programmed; they learn by example. Typically, a neural

network is presented with a training set consisting of a group of examples from which the

network can learn. These examples, known as training patterns, are represented as

vectors, and can be taken from such sources as images, speech signals, sensor data,

robotic arm movements, financial data, and diagnosis information.

The most common training scenarios utilize supervised learning, during which the

network is presented with an input pattern together with the target output for that pattern.

The target output usually constitutes the correct answer, or correct classification for the

input pattern. In response to these paired examples, the neural network adjusts the values

of its internal weights. If training is successful, the internal parameters are then adjusted

to the point where the network can produce the correct answers in response to each input

14



pattern. Usually the set of training examples is presented many times during training to

allow the network to adjust its internal parameters gradually.

Because they learn by example, neural networks have the potential for building

computing systems that do not need to be programmed. This reflects a radically different

approach to computing compared to traditional methods, which involve the development

of computer programs. In a computer program, every step that the computer executes is

specified in advance by the programmer, a process that takes time and human resources.

The neural network, in contrast, begins with sample inputs and outputs, and learns to

provide the correct outputs for each input.

Figures 2-10a, and 2- 10b, contrast two different approaches to a pattern

classification problem. The task here is to classify pictures of a cat, a dog, and a rabbit.

Figure 2-10a illustrates the traditional approach, and is compared to a neural network

approach shown in figure 2- 10b. In the traditional approach, preprocessing of the image

is performed, followed by a human analysis of the data to identify the important features.

Human resources are then utilized in developing algorithms and programs that make use

of those features to identify the cat, dog, and rabbit. The result is a program that may

classify the three types of pictures, or three different programs that each recognize a single

picture type. The same programs cannot then be used to classify new types of pictures.

Figure 2-10b, illustrates the neural network approach. A single neural network is

drawn three times in the figure. The net has already been implemented as a simulation,

and may use special purpose hardware to accelerate its computations. Preprocessing of

the image data is recommended. The network is presented with the picture of the cat as

an input, and with the text string
"cat"

as an output. The weights are readjusted

automatically. The same network is then presented with the picture of a dog as an input,

and
"dog"

as an output, and the picture of a rabbit, with
"rabbit"

as the output. After each

presentation the weights are again readjusted automatically. This training procedure is

repeated many times. After training, the same network can identify all three types of
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pictures. The same neural network can then be retrained to classify additional picture

types, or a completely new set of pictures.
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Figure 2-10: (a) Traditional approach to pattern classification.

(b) Neural Network approach. [16]

The neural network approach does not require human identification of features, or

human development of algorithms and programs that are specific to the classification

problem at hand, suggesting that time and human effort can be saved. There are

drawbacks to the neural network approach, however. The time to train the network may

not be known ahead of time, and the process of designing a network that successfully

solves an application problem may be difficult. The potential of the approach, however,

appears significantly better than past approaches.
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Neural network architectures encode information in a distributed fashion.

Typically the information that is stored in a neural net is shared by many of its processing

units. This type of coding is in stark contrast to traditional memory schemes, where

particular pieces of information are stored in particular locations of memory. Traditional

speech recognition systems, for example, contain a lookup table of template speech

patterns (individual syllables or words) that are compared one by one to spoken inputs.

Such templates are stored in a specific location of the computer memory. Neural

networks, in contrast, identify spoken syllables by using a number of processing units

simultaneously. The internal representation is thus distributed across all or part of the

network. Furthermore, more than one syllable or pattern may be stored at the same time

by the network.

Distributed storage schemes provide many advantages, the most important being

that the information representation can be redundant. Thus a neural network system can

undergo partial destruction of the network and may still be able to function correctly.

Although redundancy can be built into other types of systems, the neural network has a

natural way to organize and implement this redundancy; the result is a naturally fault or

error tolerant system.

It is possible to develop a network that can generalize on the tasks for which it is

trained, enabling the neural network to provide the correct answer when presented with a

new input pattern that is different from the inputs in the training set. To develop a neural

network that can generalize, the training set must include a variety of examples that are

good preparation for the generalization task. In addition, the training session must be

limited in iterations, so that no
"overlearning"

takes place. Thus, special considerations in

constructing the training set and the training presentations must be made to permit

effective generalization behavior from a neural network.

A neural network can discover the distinguishing features needed to perform a

classification task. This discovery is actually a part of the network's internal self-

17



organization. The organization of features, for example, takes place in back-propagation.

A network may be presented with a training set of pictures, along with the correct

classification of these pictures into categories. The network can then find the

distinguishing features between the different categories of pictures. These features can be

read off from a "feature
detection"

layer of neurons after the network is trained.

A neural network can be
"tested"

at any point during training. Thus it is possible

to measure a learning curve for a neural network. All these characteristics of neural

networks may be explained through the simple mathematical structure of the neural net

models. Although we use broad behavioral terms such as learn, generalize, and adapt, the

neural network's behavior is simple and quantifiable at each node. The computations

performed in the neural net may be specified mathematically, and typically are similar to

other mathematical models already in use. Although large neural network systems may

sometimes act in surprising ways, their internal mechanisms are neither mysterious nor

incomprehensible.

2.5 AMARI AND HOPFIELD NETWORKS

2.5.1 AMARI NETWORK

In the early seventies, Amari proposed two self-organizing random networks [16],

a Non-recurrent network for association and a Recurrent network for concept formation.

The recurrent network, shown in figure 2- 11 a, is a sequential network containing n

bistable elements (neuron pools) {vi(t), V2(t), ..., vn(t)}. Each element, shown in figure

2-1 lb, consists ofmutually connected neurons. The outputs of the network are connected

to its inputs. The bistable element can be in one of the two states: vi(t) = 1 (firing state) if

many neurons in the pool are active and vj(t) = 0 (resting state) if many of the neurons in

the pool are off. Each element vj(t) receives weighted input signals from all the elements

at time t. After summing the weighted inputs and comparing
with a threshold fy, the state

of the element vi(t + 1) at time t + 1 is determined by,
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v,(*+ l) = *(27^,(0 -ft,)
j=i

where Ty is the weight (synaptic interconnection strength) from element j to element i and

g(x) is the activation function defined by

g(x)
= l if x>0

0 if x<0

which is a step function. The stable states are reached if

vi(t+l) = vi(t) for i = 1, 2, ..., n.

Figure 2-11: Amari recurrent network (a) Recurrent network (b) Bistable element [16]
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Since the weight Ty is nonzero, all the elements of the network have feedback.

The recurrent network was actually derived from the McCulloch-Pitts formal neuron, the

simplest form of neural network.

2.5.2 THE BINARY HOPFIELD NETWORK

2.5.2.1 BASIC STRUCTURE

The binary Hopfield net [16] has a single layer of processing units. Each

processing unit has an activity value, or
"state"

that is binary - one of the two possible

values. Here we use the binary states 0 and 1 ( the network works the same way if values

of +1 and -1 are used but slight changes in the equations are required).

The entire network is considered to have a
"state"

at each moment. The state is a

vector of O's and l's. Each entry in the vector corresponds to an individual processing

units in the network. Thus at any given moment, the state of the network is represented

by a state vector such as:

U = ( ul, u2, ..., un) = ( + + + + )

This vector reflects a network of n processing units, where element i has state u[. In this

notation, a
'+'

represents a processing unit with the binary value 1, and a
'-'

represents a

processing unit with the value 0. Figure 2-12 shows a diagram of the processing units in a

Hopfield network, together with an example state. The state of the network can change

over time as the values of individual units change.
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Figure 2-12: A binary Hopfield network [16]

Figure 2-13: Fully interconnected one-layered networks, with connections

in both directions between each pair of processing units. [16]
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The processing units in the Hopfield network are fully interconnected - each unit

is connected to every other unit. In fact, the connections are "directed", and each pair of

processing units has a connection in each direction, as shown in figure 2-13. This

interconnection topology makes the network
"recursive"

because the outputs of each unit

feed into inputs of other units in the same layer. It will be seen that this recursive

organization will allow the network to relax into a stable state in the absence of external

input

Each interconnection has an associated weight. This weight is a scalar value,

considered intuitively to be the connection strength. Let Tjj denote the weight to unit j

from unit i. In the Hopfield network, the weights Tji and Tjj have the same value,

therefore

Tji^Tij

Mathematical analysis [16] has shown that when this equality is true, the network

is able to converge - that is, it eventually attains a stable state. Convergence of the

network is necessary in order for it to perform useful computational tasks such as

optimization and associative memory. Many networks with unequal weights ( Tjj * Tjj )

also converge successfully.

2.5.2.2 CONVERGENCE

Each state of the Hopfield network has an associated
"energy"

value. This value is

defined by [16],

z =
-\YLTrW <2"3)
2

j '
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The equation is referred to as "energy", although it does not represent the real energy of

any physical system. The energy function in the equation is an objective function that is

minimized by the network.

The successive updating of the Hopfield network provides a
"convergence"

procedure whereby the energy of the overall network gets smaller and smaller. Eventually

the network goes into a stable state, at this stable state, the energy is at a minimum. This

minimum may be local or global.

It is possible to prove that each time a processing unit is updated, the energy of the

network either stays the same or decreases. As a result, this updating procedure will

always allow the energy of the network to converge to aminimum.

There is also an argument that the updating procedure either decreases the energy

of leaves it the same. Suppose that unit j is the next processing unit to be updated. Then,

the portion of E affected by processing unit j is given by:

Ej=-\xUTiW (2-4)

which rearranges to

;
=

".jO_7>' (2-5)

When unit j is updated, if there is no change in its state, then energy Ej remains the

same. If there is a change in its state, then the difference in Ej is:

AEi=Ei -E,
= A,TT..Mi where Am, =. -w,(2-6)

J Jnew Joid O J ^^ J1 ' J Jnew Jold

If
uj
changes from 0 to 1, then Auj

= 1 and J^k,. > 0 after updating. Plugging
i

these nonnegative values into Eq. (2-6), we get AE, < 0
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If
uj changes from 1 to 0, then Am ,

= -1 and ^ T^k. < 0

i

after updating, by (2-2). Plugging these two negative values into (2-6), we get NE, < 0

Since AEj is the product of three negative numbers. Thus, the change in E is always

negative or 0 no matter what change there is in the state of unit j upon updating. The

network is guaranteed to converge, with E taking on lower and lower values until the

network reaches a steady state.

2.6 A DISCRETE NEURAL NETWORK FOR VISION

To deal with visual problems, we use several multi-dimensional neural networks.

For illustration purposes, we present only a one-dimensional network. It is noticeable that

since images are two-dimensional data, even if we use one neuron to represent each image

pixel, then a huge number of neurons are needed to represent the whole image. For

instance, for a 256 x 256 image, a total of 65, 536 neurons are needed. If each pixel needs

multiple neurons, say m neurons, then a total of 65, 536 x m neurons are required. Figure

2-1 la, shows a 1-D neural network.

2.6.1 A DISCRETE NETWORK

The network consists of n mutually interconnected binary neurons {vl, v2, ..., vn}.

Each neuron takes the value 0 for resting and 1 for firing. Let Ty denote the strength

( possibly negative ) of the interconnection between neuron i and neuron j. The

interconnections are assumed to be symmetric

Ty
=

Tj4 for 1 < i, j < n

and the self-connection is not necessarily zero, the self-connection could be non zero

TU
,- 0.
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The non zero self-connection means there is a self-feedback for each neuron. In this

network, each neuron (i, k) synchronously, or randomly and asynchronously receives

inputs Tyvj from all neurons including itself and a bias input Ij.
n

ui=2Xivi+Ii (2-7)
j

Each neuron u[ is fed back to corresponding neurons after either thresholding or maximum

evolution

Vi
= g(ui) (2.8)

where g(xj) is an activation function whose form is taken either as (2.8) for thresholding

or

g(xj) = 1 if xi
= max(xk; VA: e Q( ) (2.9)

0 otherwise

for maximum evolution, where 2,'s are disjoint subsets of index set Q. = {1, 2, ..., n }

and [JQ, =Q, and i eQr The synchronous updating scheme uses information about the

old states of all the neurons. By contrast, the asynchronous updating scheme uses the

latest information about the states of the other neurons to update the state of the present

neuron, which means that any state change in a neuron will immediately affect the state of

all the neurons.

2.6.2 DECISION RULES

As mentioned above, this network has a self-feedback, Tjj * 0. As a result of

having the self-feedback, this network does not always converge to stable states. This can

be explained as follows. Let E denote the energy function of the network. According to

Hopfield [14], by setting thresholds {hj} to zero the energy function of the network can be

found as,
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=4XXV.v;-__>. (2-iq)

Let the state change of neuron i be,

new
, ,
old

i
'

i

and the energy change of the network be,

AE =
E"ew

-

EoU

2.6.2.1 CASE 1: STEP FUNCTION

For simplicity of analysis, we assume that at each step, only one neuron changes its

state either from 1 to 0 or from 0 to 1. When a step function is used as the activation

function, the energy change AE due to a state change Avj of neuron i is given by

AEzz-C^T^+I^Av^^iAvf (2.11)

By (2.7), AE can be written as

AE = (2.12)

When uj is greater than zero, vj changes its state from 0 to 1 and hence Avj = 1 which

leads to

AE = -u,--Tu (2.13)
,

2
...

IfTi i < -2uj, then AE > 0. Similarly, when uj is less than 0, V[ changes its state from 1 to

0. The state change Avj is then -1 and

AE = ui--Tll (2.14)
'

2
'

If Tj j < 2uj, then AE > 0. Hence, whenever

Ty < -2 I ui I

we have AE > 0 which means that the energy changes are not always negative and

the energy function does not decrease monotonically with a transition. E is not a
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Lyapunov function and the network may not be stable. Consequently, the convergence of

the network is not guaranteed.

2.6.2.2 CASE 2: MAXIMUM EVOLUTION FUNCTION

When a maximum evolution function is used, a batch of m neurons [vk;k e Q, }is

simultaneously updated at each step. Since the maximum evolution function only allows

one neuron to be active and the others to be inactive, at most two neurons can change

their state at each step, the active neuron becomes inactive and one of the inactive neurons

becomes active. Suppose neurons i and
i'

change their states. The energy change AE due

to the state changes of neurons i and
i'

is then given by

A =
-(I^i+/i)Avr^/Avj2-(X7;/i+gAv,4^i(Av,)2-^/Avivr+Av1,vr)

(2.15)

r.
I,iv l' ^Xl '! 1

'' '
T

.=1
L

;'=1
*

Similarly, by (2.7), AE can be written as

AE =

_M;AVi
-rAv,, ~Tt ,(Av,

)2

-T^AvyT
+AvfvT ) (2-16)

xL J*

By properly setting Vi and v^, it is easy to show that the energy changes are not

always negative. To ensure convergence of the network to a rrunimum, one can design

some decision rules for updating the state of neurons. Depending on whether

convergence to a local minimum or a global minimum is desired, a deterministic or

stochastic decision rule can be used, respectively. In some cases, for example when the

energy function is convex, the deterministic decision rule will ensure that the
network will

converge to a global minimum.
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2.6.2.3 DETERMINISTIC DECISION RULE:

The deterministic rule is to take a new state
vf

of neuron i if the energy change

AE due to state change Avj is less than zero. If AE due to the state change is > 0, no state

change is affected.

2.6.2.4 STOCHASTIC DECISION RULE

A stochastic rule is similar to the one used in simulated annealing techniques. We

define a Boltzmann distribution by,

PoU

where pnew and Poij are the probabilities of the new and old global state respectively, AE

is the energy change and T is the parameter which acts like temperature. A new state
v"e"

is taken if

>1, orif E^<\ but 2**->l\
Pold PoU PoU

where 1% is a random number uniformly distributed in the interval [0,1].
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3.0 SIGNAL AGGREGATION PRINCIPLES

3.1 STATISTICAL COMPUTATION

Statisticians have various criteria by which, if a data point is sufficiently out of line,

its effect may be reduced. A common procedure is to develop some notion of reasonable

behavior. In an experiment, we often have sound theoretical reasons to believe that the

output should be some smooth function of some independent variable (the input). The

transistor curves and the amplifier transfer curves can be considered as examples. In both

cases, there is a voltage scale given by kT/(qK). (Where q is the charge, k is the

Boltzmann constant, T is the temperature and K is the process constant. kT is the thermal

energy per charge carrier and has units of potential, thus it is called Thermal Voltage, and

its magnitude is equal to 0.025 volt at room temperature. K is approximately equal to 0.7,

and it remains reasonably constant among transistors in a single fabrication batch. We will

treat this kT/(qK) term as the unit of voltage.) If we change the input less than this

amount, we do not expect the output to change abruptly. Hence, if we take several data

points within each kT/(qK) voltage interval, we have a great deal of redundancy in the

input. If the distance from a single data point to a smooth curve passing through the

average of other points in the neighborhood is relatively large, we should certainly check

out thatmaverick data point. Any such scheme relies on four important features,

We know the size of a "region of
smoothness"

within which, for some fundamental

reason, the data cannot change abruptly.

Many data points are available within the region of smoothness.

A method, consistent with the nature of the expected smoothness, is available for

fitting a smooth function through the data points.

Some method of estimating the average deviation of the data from the smooth function

is available.
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Once we have formulated a computation with these attributes, we can use it to

identify unexpected data points. These may be
"bad"

points, or they may be items of

exceptional interest. Sensory processing is replete with examples of spatially and

temporally smoothed signals. These smooth functions are used to provide a reference for

local computations. The most widely known example is the center-surround organization

ofmany visual areas, from retina to cortex.

3.2 FOLLOWER AGGREGATION

The simplest circuit for computing a smooth function is shown in the figure 3.1. It

consists of n follower stages, all driving the single wire labeled Vout. As shown in the

figure, the output of each individual amplifier is a current, whereas the output of the entire

aggregation is a voltage. That voltage is the outcome of a collective interaction of the

entire set of amplifiers.

There are n amplifiers, each responsible for the contribution of its Vi input to the

common output. Each amplifier has a transconductance: Gi for Ai , G2 for A2, and so on

to Gn for An. The G's are set by the current controls on the transconductance amplifiers.

By Kirchoffs current law the sum of all currents into the node Vout is zero-

>

DUt

1,

1 A /\ L \L\ JL /a \ /
1

1
1
|
it

Vi M> v. V|+i

1
1

1 a

Vn-1 Vn

Figure 3.1: Schematic of the follower-aggregation circuit. [1]
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The total current is the sum of the currents out of each amplifier. The current for

the first amplifier is Gi (Vi-Vout), that for the second is G2(V2-Vout) and for the nth is

Gn(Vn-Vout).

_g,.(^-ku,)

= o
i=l

Transferring the Vout terms to the other side of the equation and rearranging, we obtain,

Y GV

In other words, Vout is the weighted average of the Vi inputs, each input weighted by its

transconductance Gi.(Provided Gj = G2 = Gj)

3.3 ROBUSTNESS

The follower-aggregation circuit computes the weighted average of the input

voltages Vi, . . .
,
Vn. Up to this point, our analysis has assumed a linear relation

between input voltages and output current. The important thing to keep in mind is that

the follower implementation of a neural network has great robustness against bad data

points.

Transconductance amplifiers have a strictly limited current output. This limit is

evident in their tanh transfer characteristics. The robustness of collective networks made

with these circuits is a direct result of this current limitation. If any one input voltage is

way off scale, it does not matter. The off_scale voltage will not pull any harder on the

wire than would a voltage a few kT/(qK) different from the intended voltage of the wire.

As long as all inputs are close to the average value, Vout will assume an average, with the

inputs weighted by the current in their amplifier.

From a statistical viewpoint, the tanh characteristics changes the computation done

by the network. It implements what statisticians call a resistant transformation. The
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weighting assigned to outlying data points is reduced. For all signals close to Vout, we

have seen that the circuit computes a weighted average, or mean. Signal values that are

scattered by many kT/(qK) are treated as inputs to a weighted median calculation. In both

cases, the data are weighted by the transconductances of their respective amplifiers. To

ensure that no single amplifier contributes more than its share to the output, we use
wide-

range amplifiers to avoid theV^ problem.

3.4 RESISTIVE NETWORKS

The follower-aggregation performs well in computing an average that can be used

as a reference against which to measure exceptional events. There is a problem, however,

with this kind of average. The average is represented by the voltage on a single wire, and

that wire is a single electrical node. The average, therefore, will be a global average. It is

highly desirable in the visual systems to have a local average, one in which the contribution

of spatially distant inputs is less than that of inputs in close proximity to the point at which

the average is used. The illumination level within a visual scene often varies from one

point to another by several orders of magnitude. If the visual system used a global

average as a reference, details in very bright and very dark areas would be invisible.

A locally weighted average signal, from which local differences can be measured,

is computed by a layer of horizontal cells in the retina. These cells are linked together by

high resistance connections called gap junctions [17], and form an electrically continuous

resistive network just below the photoreceptors. Propagation of signals in resistive

networks is genetically referred to as the electronic spread.

3.4.1 ELECTRONIC SPREAD

The simplest example of electronic spread occurs in a long, straight, passive neural

process of constant diameter. We can model the process as a resistive ladder network, as

shown in the figure 3.2. The R resistances correspond to the axial resistance per unit
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length of the cytoplasm, and the G conductance represent the leakage conductance per

unit length through the membrane to the extracellular fluid. A potential Vq is generated

by an input at the left end of the process. The voltage V(x) generated by the input

decreases with distance x from the input, because some of the current injected by the input

is shunted to ground by the G conductance.

Figure 3.2: Resistive model of passive electronic spread in a neural process [17]

For Uniform, continuous networks, the voltage has the form

V =
V0e~aM

=
V0eL (3.1)

where a is the space constant and L is the characteristic length or diffusion length of the

process.

L

(3.2)

A signal injected into a linear resistive ladder network decays exponentially with

distance from the source. If a signal is injected into a node in the middle of a very long
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process, the influence of that input spreads out in both directions, not just in the +x

direction.

Figure 3.3: The exponent 7 as a function of L [17]

For discrete networks, the decay also is exponential. For a node n sections away

from the source, the voltage will be

V=y"V0 where 7
=%- = 1 +-^--Jl+-^

" ' '

Vn
2L2

LV 41}
(3.3)

where 1/L is equal to -JRG as before, but in the discrete case the values of R and G are

given per section rather than per unit length. A plot of 7 as a function of L is shown in

figure 3.3. For large values of L, 7 approaches 1, and the continuous approximation of the

equation is valid. For values of L less than about 10, the magnitude of the decrement per

stage given by the discrete solution differs markedly from that obtained from the

continuous approximation.

3.4.2 MULTIPLE INPUTS

Multiple signal inputs to a network can be provided in the form of either voltage or

current type signals. If we inject currents at many places, the network performs an
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automatic weighted average, the farther away the inputs are, the less weight they are

given, in accordance with equation 3.3. The voltage at any given point k due to a number

of inputs is just,

Vk =
2G,
1f-\

In other words, by the principal of superposition the voltage at any given point due

to a number of inputs is just the sum of the voltages that would have been measured at

that point had each input been presented individually, with all other inputs held at zero. A

convenient way to generate inputs to the network is to connect voltage sources in series

with the conductance, as shown in figure 3.4. Using the principle of superposition, we

need compute only the node voltage due to a single input. It is seen that the node voltage

Vj generated by a voltage source vj in the middle of a very long, uniform, discrete, one

dimensional network is,

V 1

J4L2+1

Figure 3.4: Electronic network in which input signals are supplied by voltage sources [ 1 7]
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As the effective length over which the network averages increases, the effect of

any given input decreases. For large characteristic lengths, the voltage due to any

particular input is proportional to 1/L. The total effect of a set of uniformly spaced inputs

included in one characteristic length is therefore constant, independent of the value of L,

because the number of inputs is proportional to L. Thus it is seen that, when the voltage

at all inputs is the same, the output voltage anywhere in the network is equal to the input

voltage.

3.5 DENDRITIC TREES & SYNAPTIC INPUTS

Many types of neurons have no axon whatsoever, so their primary role cannot be

to produce action potentials [17]. Many type of neurons, those with axons and those

without, have been shown to have synaptic outputs as well as inputs on their dendrites.

This finding suggests that much of the lateral communication in the nervous system is

extremely local, and is mediated by graded analog potentials rather than by more digital

nerve pulses. The dendrites convey two way information rather than merely collecting

current into the soma.

If enough current is injected into the dendritic tree, then the neuron will release

neurotransmitter from any output synapses it has on its dendrites. If the current into the

cell as a whole reaches a high enough level, the nerve can initiate pulses in its axon.

Depolarizing inputs cause the release of neurotransmitter from dendritic synapses and, if

sufficiently intense and prolonged, can cause the axon to fire as well. These inputs are

called excitatory. Inputs that hyperpolarize the neuron act to cancel out the effect of

excitatory inputs, they are therefore called inhibitory.

If the entire path from the leaves of the dendrites to the axon hillock is less than L

in length, the neuron is said to be electrically compact, such a cell can be assumed to be

equipotential throughout its dendrites, and therefore can be modeled as a wire. A neuron

with dendritic processes much longer than L can have very different potentials at different
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locations in the dendritic tree. The dendrites of such a neuron can be modeled as linear

resistive networks.

3.5.1 SHUNTING INHIBITION

We have used the voltage sources of figure 3.4 to model excitatory and inhibitory

input synapses to the network. Inputs also may be injected as currents, one sign of current

being excitatory and the other inhibitory. There is a third class of inputs, often called veto

synapses, that neither hyperpolarize nor depolarize the neuron, but instead partially
short-

circuit to ground any activity present in the process. This kind of inhibition is called

shunting inhibition.

The simplest realization of shunting inhibition is implemented directly by the

network of figure 3.4, we merely make one conductance, Gshunt, very large compared

with the others. This arrangement will attenuate a signal traveling in either direction in the

process. The attenuation suffered by a signal as it passes such a shunt is given by,

V =
-D%

G
1+- shunt

2G

Where V0 is the voltage that would have been present without the shunt. As Gshunt

becomes large compared with the network effective conductance G0, the operation

performed by such a synapse resembles a division by Gshunt-

3.6 TWO - DIMENSIONAL NETWORKS

The horizontal network in the retina is a flat mesh of dense processes that are

highly interconnected by resistive gap junctions. These interconnections are somewhat

random in number and direction. Any given cell is connected with many others, and there

is a great deal of overlap among
interconnected cells. In silicon, discrete two-dimensional
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networks are very useful, and generally are implemented in a regular array by

interconnection of nearest neighbors. We have mentioned that this kind of network

computes an average that is a nearly ideal way to derive a reference with which local

signals can be compared. In the figure 3.5, we see six resistors coming into each node. A

resistance R is connected between neighboring nodes, and a conductance G is connected

from each node to ground.

Figure 3.5: Topology of a hexagonal network. [3]

This network is particularly interesting, because it has the highest symmetry and

connectivity of any regular, two dimensional structure. If we introduce a current into a

node of the network (let us call it node 0), the resulting voltage decays exponentially with

distance from that node. We can derive an approximate solution for the decay law in the

following manner. As we progress outwards from node 0 following a row of resistors, we

encounter nodes that are vertices of larger and larger hexagons centered on node 0. The

index of hexagon
'n'

(its radius) is just the number of resistors we must pass through on

the direct path from node 0 to a vertex. Our circular approximation assumes that all nodes

on the perimeter of a given hexagon have the same voltage. Under this approximation we

can write a finite difference equation for the current into hexagon n in terms of the voltage
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relative to that of hexagon n - 1 and to that of hexagon n + 1. We notice that there are 6n

nodes on the perimeter of hexagon n, and that there are 12n-6 resistors from hexagon n-1

to hexagon n, and 12n+6 resistors from hexagon n to hexagon n+1. The current I into

hexagon n is therefore,

7J12n-6)(^-y,)-(12i, +

6)(V,-^)_6||GVa ^
R

In steady state, this current must be zero. Simplifying the above equation for zero

current, we obtain the finite difference equation for the steady state node voltage.

(2+ l)V+1 -n(*G+4)V+(2n-l)V_1 =0 (3.5)

3.6.1 SOLUTION FOR THE HEXAGONAL NETWORK

The equation 3.5 relates the vertex voltages of three consecutive hexagons of the

network. Solving for Vn+i ,
we obtain the forward recursion relation,

_n(RG+4)Vn-(2n-i)Vn_1V"+1-

2^71
(3-6)

which produces the voltage on a given hexagon in terms of the voltages on the two

smaller concentric hexagons. If we know Vq, the voltage at the center of the network,

and Vi, the voltage at the first hexagon, we can solve for V2. We can now iterate this

procedure, given V^ and V2, we can determine V3, and so on.

Determining Vj for a given Vq is the hard part of solving the network. The

correct choice for Vj leaves Vn finite as n approaches infinity. Any other choice for Vi

causes Vn to diverge as n approaches infinity. The values for Vi/Vq as a function of L,

computed by evaluating the exact expression, are shown in figure 3.6. Once we know Vq

and Vi, we can use equation 3.6 to evaluate the next few Vn. Knowing Vq and Vi also
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allows us to compute the current through the six resistors radiating from node 0, and

hence to compute the input conductance of the network.
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Figure 3.6: Voltages of the first few hexagons as a function of L. [3]

For n larger than 2L, the successive iteration of equation is subject to rapid

erosion of numerical precision, and it is best to calculate Vn from the asymptotic relation,

V 2
V=Y"-7= where v = i

V^ l+VTTiF
(3.7)
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Figure 3.7: The value of V in equation 3.7 as a function of L. [3]
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Equation 3.7 is the two dimensional equivalent of the expression given in

equation 3.3 for the one dimensional network. The value of V in equation 3.7 is a

complicated function of L, and is plotted in figure 3.7.

3.6.2 ROUTING COMPLEXITY

It is seen that a resistive network computes a smooth average over a number of

neighbors, with the neighbors farther away contributing less to the average. If we were to

replace this network with a set of circuits that did a completely separate computation at

each location, the amount of wire required would proliferate enormously. For a

computation centered at a given point, we would need to run a wire to every signal source

that formed an input to the computation. A computation centered at a different location

would require wires back to its sources also. By the time we were done, we would have

duplicated many levels of wiring.

To obtain an efficient design, we must share as many signal paths as possible. In

that way, we avoid duplication ofwire, and also share the maximum amount of processing

circuitry. The resistive network is the ultimate example of a shared function. Every

location can put signals into the network, read voltages off of the network, and use the

same network to sense this weighted sum over its neighbors, including itself.

If we are willing to include the location itself in the average, letting it make the

greatest contribution to the average, then we can use a resistive network to compute this

kind of weighted average. This type of an arrangement might play an important role in

neural circuitry, because the computation is shared by every location, we need only one

network, and every location gets taken into account.

3.7 HORIZONTAL RESISTOR CIRCUIT

We will describe a resistor with a control input that allows us to set the resistance

electronically.
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Figure 3.8: Schematic of the resistive connection of the horizontal resistor circuit. [17]

The most elementary resistive connection is implemented by two pass transistors in

series, as shown in the figure 3.8. The gate voltage of each transistor is set at a fixed

value Vq above the input voltage Vj or V2. This bias voltage controls the saturation

current Iq of the Qi and Q2 pass transistors and therefore sets the effective resistance of

the connection. The current I through a transistor is,

I0e !{e -e d) = e
l
'(1-r ") (3.8)

where all voltages are expressed in units of kT/(qK). This equation is completely

asymmetrical under the interchange of source and drain terminals. For Vi greater than

V2, Vi acts as the drain ofQi, and the intermediate node Vn
acts as the source ofQi and

the drain of Q2. The current I is limited by Q2, and saturates for Vi-V2 much greater

than kT/q because the gate source voltage of Q2 is set by the
bias voltage. For V2 greater
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than Vi, the roles of Qi and Q2 are reversed, and I is negative. For Vi approximately

equal to V2, the circuit acts like a resistor.

The current through Qi must be negative of that through Q2. Writing equation

3.8 for Qi and Q2, and setting the currents equal and opposite, we obtain

/ = //* (_ - 1) =
70/*

(1 -
-

) (3.9)

From equation 3.9, we can determine the voltage Vn at the junction between the two pass

transistors,

2ev"=ev>+ev*

(3.10)

Substituting equation 3.10 into equation 3.9, we obtain,

T V, V,
I e

'
-e

2

where
/,=//'

(3.11)V.
, V,

""v"'

Asat
~

*0C

ha, e'+e

-(Vi+f2)

Multiplying top and bottom of equation 3.11, by e
2

and simplifying, we obtain the

final expression for the current,

V -V

I=Isaltmhiu-_L)

The slope of the tanh function at the origin is unity, therefore, the effective resistance R of

, , d, * r, 2kTlq
this kind of resistive connection is R .

sat

3.8 NETWORKS IN CMOS

The horizontal resistor circuit is the simplest element with which we can build an

electronic analog of the neuron's dendritic tree. Let us start implementing a one

dimensional network analogous to the linear arrangement of figure 3.4. Such a network is

shown in figure 3.9. Each local signal drives the network with a follower. The local

current into the network is thus proportional to the difference between the signal and the

local potential of the network.
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Figure 3.9: CMOS implementation of the abstract network of figure 3.4. [ 17]

The inputs to the transconductance amplifiers correspond to the voltage sources in

figure 3.4, the transconductance of the amplifiers corresponds to G in figure 3.4, and the

horizontal resistor circuits take the place of the resistors. The value of L is controlled by

the ratio of the current in the bias circuit of the horizontal resistor circuits to the current in

the transconductance amplifiers. Because the network voltage can be very different from

the input voltage, it is desirable to use wide range amplifiers for the followers in a network

of this type.

The structure shown in figure 3.9 can be used to implement two dimensional

networks like the hexagonal topology shown in figure 3.5. The horizontal resistor circuit

is ideal for networks in which many resistive connections converge on each node. Only

one biasing circuit is required per node, the node is connected to the voltage Vnode of the

biasing circuit. All pass transistors connected to that node have their gates connected to

the Vg output of the biasing circuit. The larger connectivity required by the hexagonal

network is thus achieved at low incremental cost. In addition to the bias circuit, each

node requires only one pass transistor per connection.
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3.8.1 SMOOTH AREAS

It is seen that the follower aggregation circuit computes node voltages that are a

smooth approximation to the input data, as long as each element is operating within its

linear range. The output of this computation is a single voltage.

The linear resistive network computes a set of node voltages from a set of input

voltages. A given node voltage is a weighted sum of the inputs, the weight of each input

decreases exponentially with the distance from the node in accordance with equation 3.3.

If we view the inputs and outputs as functions in one dimension, the node voltages are a

smooth approximation to the inputs. For small L, inputs within a small region around any

given output node contribute to the output value, and the smoothing will be minimal. For

larger L, proportionally more smoothing will occur.

Similarly, a two dimensional resistive network computes node voltages that are a

smooth approximation to a two dimensional set of inputs. We can think of the network

computing a smooth fit at each point to the data included in a region of diameter

approximately equal to L.

Smoothing in two dimensions is an important computation in image processing.

Often, objects in an image have some property, such as color or velocity, that is smooth

over the object but changes discontinuously at the boundary of the object. A two

dimensional horizontal resistor network can smooth a signal over a large region in a visual

image, even though a signal representing some property of the image changes by many

kT/(qK) voltage units over that region. The voltage difference between any two

neighboring nodes can be less than kT/(qK), even though the total difference across the

smooth areas of the image can be much greater. An abrupt discontinuity, however, as

occurs when we try to put many kT/q voltage units across one resistor,
will simply cause a

discontinuity in the network voltage. The current out of the horizontal resistor circuits

will limit at Isat, no matter how large the voltage drop across the resistive connection is.

So a horizontal resistor network computes a smooth
approximation to the inputs as long
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as the drop across any one element is less than approximately kT/q. It allows a larger

voltage discontinuities by limiting the current through each element.

3.8.2 SEGMENTATION

For signals larger than approximately kT/(qK), both the followers and the resistors

saturate. A small amount of saturation can be seen in the first data points in figure 3.10.

This saturation property leads to the same kind of robustness that we had observed for the

follower aggregation circuit.
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Figure 3.10: Segmentation due to saturation of resistive connections. [17]

In many situations, discontinuities are not only desirable but also necessary. An

image is made up of smooth regions separated by discontinuities. The discontinuities

carry the most information about the image. A network built of horizontal resistor circuits

allow arbitrarily large discontinuities. Suppose, for example, we have a high contrast edge

in an image. There is a set of signals pulling up on one part of the network, and another

set of signals pulling down on another part. Voltages at various positions in the network

will look like figure 3.10. A resistor on the high contrast edge cannot supply enough

current to keep the network within the linear range, there will be a big drop across that

resistor, and then the network voltage will go off smoothly on the other side, as shown in
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the figure. That kind of discontinuity cannot occur in a network made of linear resistors,

but it is a natural result of the non linear nature of a network of horizontal resistor circuits.

The resulting image is segmented into regions over which the property represented by the

input voltages V(x,y) is smooth. We can easily identify the boundaries of these regions by

finding the positions with voltage differences larger than kT/(qK). Computation of the

natural boundaries in an image is called segmentation. Thus it is seen that the physics of a

simple nonlinear circuit enables us to perform a complex computation in a simple way.

3.9 SINGLE STAGE OPERATIONAL TRANSCONDUCTANCEAMPLIFIER

The major problems in the realization of micro power operational amplifiers is that

of achieving reasonable speed and acceptable dynamic range. Battery operation allows

more relaxed requirements on power supply rejection, since all power noise is generated

on the chip and may be more easily filtered out at very low current.

5 ft Vl

in 1 T,

s
V

r

| in +
1 out

^7 I

o

Figure 3.1 1 : Simple OTA with differential input.

Assuming a ratio B ofmirror T4
- Tg, the total transconductance is

8ml
= B8ml(3) (3.12)
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The circuit, loaded by Cl, behaves essentially as an integrator with time constant

zz^L-

*U

omt

(3.13)

which is the inverse of the unity gain angular frequency cou. This corresponds to a

dominant pole at a very low frequency that depends on DC gain Aq, as shown below.

Figure 3.12: Frequency behavior of gain A.

Let us assume a single non-dominant parasitic pole with time constant Tp. This

time constant may be that of the output nodes of the differential pair (Tj
- T3). It may

also represent the effect of all parasitic poles in any amplifier, which can be shown to be

equivalent to a single pole,

co<-

2F

The open loop high frequency gain may thus be
expressed as

A = - (3.14)
-i_(i+-r,)

An opamp is usually used with
an amount of voltage feedback 1 > p 1 /\ .

The settling time Ts necessary to reach equilibrium with a residual error e after

application of a small unit step may be
calculated with the gain given by equation 3.14.
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TJ=(2rp+^)lne-1

(3.15)

For small bias currents (10 = 0.5 pA), 1/f noise usually still dominates in the audio

frequency range, even for large sized input transistors Ti and T3. However, in most

practical applications, noise bandwidth is larger than 100 kHz and white noise

predominates in the total noise power. The input referred equivalent noise bandwidth in

closed loop is

Af =]ztf (3.16)

which yields, with gain A given by,

(1+7T-)
[M

Af = (3.17)
4r

The noise bandwidth is independent of parasitic time constant rp. This can be

explained qualitatively by the fact that any reduction of noise at high frequencies due to an

increase of Tp is compensated by some peaking at lower frequencies.

Total equivalent input noise is then,

Vl=4kTRmAf =
?^

(318)
u

Now, by inspection RNt may be expressed as a function of total transconductance gmt

given by

Ru.
Y

VM (3.19)
8mt

where 7 is a factor ranging from nB when noise of pair Tl and T3 predominates to

n*(2B + 1 + B/C) at very low current. Combination of 3.19, 3.18, 3.13 and 3.12 yields,

^=7^ (3.20)

The amount of noise introduced by a single stage transconductance amplifier is

thus inversely proportional to load capacitance CL and independent of current (except for

small possible variations of 7 ).
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Total supply voltage Vr = 3 V

Total current !tot = 2.5 pA (I0 = 0.5 pA)

DC gain An = 97 dB

Unity gain frequency f.i = 135 kHz

Slew rate S.R. == O.lV/ps

Total noise above 10 Hz 60 ps

Noise corner frequency 30 kHz

Output swing 2.2 V

Dynamic range 82 dB

Input capacitance 0.7 pF

Current excess factor [28] CEF == 13

Noise excess factor NEF == 10 dB

Figure 3-13: Characteristics of a Transconductance Amplifier.

Noise can also be reduced by increasing CL/B
?

which will increase settling time Tg.

Examination of 3.15 shows that,

F T1
u
<

*S

p
lne"1

which can be introduced in 3.18 to give,

V,>-
kTRM

lne (3.21)

The minimum noise for a given settling time T depends on R^t and is thus

increased at low current. If current is fixed, according to 3.19, noise is minimum when the

input pair is in weak inversion. To achieve high value of voltage gain Aq, cascode

transistors must be added to output pair T7
- Tg.
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If low frequency noise is cumbersome, all noisy n-channel transistors can be

replaced by compatible bipolars. An equivalent input noisy density below 0.1 \iVl4Hz

for frequencies as low as 1 Hz has been obtained with tail current Iq = 2 pA and minimum

sized devices.
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Figure 3.13: Large signal settling time

Due to the weak inversion operation of its input stage, the amplifier is able to settle

within a short period of time inspite of its very low power consumption. This is only true

for small input steps. Calculation of settling time for large input step AVj and Tp ru/(3

yields,

Ts= -fin
sinh(AVi/2/n77.)

(3.22)
(3

""

sinh(eAV;/2[/7.)

This relation is plotted on figure 3.13. Settling time is increase by a factor 2 to 3

for AV;
= 1 V. Better power efficiency is obtained by means of amplifiers that operate in

class AB, and therefore able to supply additional current only when it is required.
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4.0 CIRCUIT IMPLEMENTATION

4.1 TRANSCONDUCTANCE AMPLIFIER

This is the most important circuit in the model, we will use it for almost everything

we do. The amplifier is a device that generates as its output a current that is a function of

the difference between the two input voltages, Vi and V2, and that difference is called the

differential input voltage. The circuit is called a differential transconductance amplifier.

An ordinary conductance turns a voltage difference across two terminals into a current

through the same two terminals. A transconductance turns a voltage difference

somewhere into a current somewhere else. In the transconductance amplifier, a voltage

difference between the two inputs creates a current as the output.

4.1.1 DIFFERENTIAL PAIR

Since many circuits take an input signal represented as a difference between two

voltages as shown in the figure 4.1, we will first analyze its characteristics and then show

how it is used in the transconductance amplifier.

The bottom transistor Qjj is used as a current source. Under normal

circumstances, its drain voltage V is large enough that the drain current lb is saturated at a

value set by the gate voltage V^,. The manner in which Iij is divided between Qi and Q2

is a sensitive function of the difference between Vi and V2, and is the essence of the

operation of the stage.

We know that the saturated drain current Isat is exponential in the gate and source

voltages,

'sal '0e

Applying this expression to Qi and Q2, we obtain

7,=//^
and

I2=I0ekV>-v

(4-1)

The sum of the drain currents must be equal to I^,
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/4=/1+/2=V-"(^+e..)

We can solve this equation for the voltage V,

I
I0ekV>+ekV> (4-2)

Substituting equation 4-2 into equation 4-1, we obtain expressions for the two drain

currents,

h=hb kV.
, kV,

e
'
+e

2

and /, = /,2 Ab kV.
,

kV.
e

'
+e

2
(4-3)

Figure 4.1: Schematic of the differential pair.

If Vi is more positive than V2 by many kT/(qK), transistor Q2 gets turned off, so

essentially all the current goes through Qi, Ii is approximately equal to Ij,, and I2 is

approximately equal to 0. Conversely if V2 is more positive than Vi by many kT/(qK),

Qi gets turned off, I2 is approximately equal to lb, and 1 1 is approximately equal to 0.

The two currents out of a differential pair are shown as a function of (Vi
- V2) in figure

4-2.
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Figure 4-2: Output currents of the differentiator as a function of diff. input voltage. [12]

The differential transconductance amplifier uses various kinds of current mirrors to

generate an output current that is proportional to the difference between the two drain

currents. This difference is,
kvx

_

kV,

h~h=h kVt'kv (4-4)
e

'

4-e
2

Multiplying both the numerator and denominator of equation 4-4 by e~{V:+v^ny we

can express every exponent in terms of voltage differences. The result is,

p*(V,-V,)/2_f-t(V,-V2)/2

h-h= h *(v,-v2)/2 *(n-v2)/2

= /,, tanh

e
' '

"""

+e

k{Vx-V2)
(4-5)

The tanh is one of the few functions which follows a normal behavior. It goes

through the origin with unity slope, becomes +1 for large positive arguments, and

becomes - 1 for large negative arguments. Let us observe as to what happens when only

small changes are made in Vj and V2. We increase Vi and decrease V2 such that V is

kept constant. The current through Q2 goes down exponentially and the current through

Q] goes up exponentially. The difference in voltages, however, is twice as large as V2

relative to V, or as Vj relative to V. That is why the curves of figure 4-2 take twice as

much voltage to saturate as do the single transistor curves.
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4.2 SIMPLE TRANSCONDUCTANCEAMPLIFIER

The schematic for the transconductance amplifier is shown in the figure 4.3. The

circuit consists of a differential pair and a single current mirror, which is used to subtract

the drain currents Ii and I2. The current Ii drawn out of Q3 is reflected as an equal

current out of Q4. The output current is thus equal to (Ij - 12), and is therefore given by

equation 4.5.

Figure 4-3: Schematic of the simple transconductance amplifier. [12]

The current out of the simple amplifier is plotted as a function of Vi-V2 in figure

4.4. The curve is very close to a tanh, as expected. The layout of the simple amplifier is

as shown in figure 4.5. We can determine the effective value of kT/(qK) by extrapolating

the slope of the curve at the origin to the two asymptotes. In terms of the circuit variables,

r -^hu,

G -

dVin 2kT/(qk)
(4-6)
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Amplifier.
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4.2.1 CIRCUIT LIMITATIONS

Deviations from ideal behavior are of two basic sorts,

(1) Mismatch between transistors

(2) Deviation of a transistor from perfect current - source behavior, this second

class of non-ideality is further classified into two ways as,

(a) Voltage limitations due to transistors coming out of saturation

(b) Finite slope of the drain curves in saturation

4.2.2 TRANSISTOR MISMATCH

In general all transistors are not equal, some have higher values of Iq than others.

The tanh curve is shifted by about 25 millivolts. In addition, the saturated current coming

out of Q4 is not the same as the current coming out of Q2. In other words, the negative

asymptote is not the same as the positive asymptote. In figure 4.4, the difference is about

6%.

The Q3
-

Q4 current mirror does not have 100 percent reflectivity. What we take

out of Q3 does not necessarily come out of Q4, because Q4 may have a slightly larger or

smaller value of Iq than does Q3. Differences of a factor of two between Iq values of

nominally identical transistors are observed in such circuits.

4.2.3 UPPER LIMIT

It is expected, that this device will not be able to put out a constant current at

voltages larger than Vrjo or smaller than zero. This limitation is important, for it means

that the circuit cannot generate a voltage for the next stage that is outside those limits. If

we raise the output voltage above Vprj, me drain of Q4 becomes the source, and we start

draining current out of the ammeter up through Q4 to Vrjrj. Q4 will be turned on,

because the voltage on its gate is less than Vpo, because that voltage is generated by Q3.

Even if Qi is turned off, the worst that can happen is that the voltage on the gate of Q4
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will approach VrjD. So, if Vout gets a few tenth's of a volt above VDD, we will start to

get an exponential negative increase in Iout.

4.2.4 LOWER LIMIT

We have to be a bit careful with the lower limit for Vout. Let us first consider the

case where Vi is greater than V2 by several kT/(qK). Under these conditions, V is

approximately equal to k(Vi - Vb), I2 is approximately equal to 0, and Iout is positive,

approximately equal to I4. As we lower the output voltage, all is well until Vout

decreases to less than V, after which the output node becomes the source of Q2, and the

V node becomes the drain. The interchange of source and drain of Q2 results in a reversal

of current through Q2. I2 becomes negative instead of positive. The reversal occurs

when Vout is equal to k(Vi
- Vb), but is not noticeable in the output current until Vout is

approximately equal to k(V2
- Vb), where I2 becomes comparable with Ii. A further

decrease in output voltage results in an exponential increase in Iout_, because the gate

source voltage of Q2 is increasing. This negative I2 is supplied by an increase in l\, which

results in an equal increase in output current through Q4. The output current thus

increases from two equal contributions of the same sign.

IfV2 is greater than Vi by several kT/(qK), the same effect can be observed. The

output current is negative, and V is equal to k(V2
- Vb). As we decrease the output

voltage, we make the voltage between the source and the drain of Q2 smaller and smaller,

Q2 comes out of saturation, and V begins to decrease. As both Vout and V decrease, the

gate source voltage of Q2 increases, causing Q2 to conduct more current. The voltage V

follows Vout more and more closely. There is a noticeable change in output current,

however, until V approaches k(Vi
- Vb), at which point the current through Qj becomes

comparable to lb- As we decrease the voltage at the output node further, Ij exceeds lb,

and V does not decrease as fast as does Vout. Once V is greater than Vout, the drain and

source of Q2 are interchanged, and the situation is exactly as it was for V2 greater than

59



vl- Transistor Q2 starts taking charge away from the V node, and the output current

increases exponentially.

This limitation on the operation of the simple transconductance amplifier imposed

by this behavior is sometimes referred to as the Vm[n problem. We can express the

minimum output voltage as the,

V^=*(minft,V2)-vJ (4-7)

In other words, the amplifier will work with its output voltage up to nearly Vrj>, and

down to Vb below the lowest input signal that we have applied to it, but not lower than

that.

We run into two walls, one on the top and one on the bottom. The wall on the top

side is not serious, all it does is to prevent us from going right up to VrjD- When Vi is

greater than V2, the current comes out of Q4, so, if we make the output node equal to

VdD' we wul not Set any current out. We cannot quite work up against the rail, but we

can get close. As long as we stay a few kT/(qK) below Vrjj> we are fine.

The bottom Vjtjjj, limit is much more serious. It is the biggest problem with this

circuit. It forms a hard limit below which the circuit does not work, and that limit depends

on the input voltage.

4.2.6 VOLTAGE OUTPUT

The transconductance amplifiers can also be used to take a difference in voltage at

the input, and turn it into a voltage at the output. Instead of measuring Iout with an

ammeter, we measure Vout with a voltmeter. The drain conductance of Q2 and Q4 are

used to convert the output current into an output voltage.

The drain current of a transistor is not completely independent of its drain voltage,

even in saturation. There is a finite slope of Ij versus Vj given by the Early effect [12].

This effect is responsible for the dependence of output current on output voltage seen

between the two limits in figure 4.6.

60



4.2.7 VOLTAGE GAIN

The voltage gain A is defined as 9Vout/3Vjn, where V^ is equal to V]
- V2. An

enlargement of the steep part of the V2 = 2.5 volt curve in figure 4-8 is shown in figure

4.9.
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Figure 4.6: Current out of Q2-Q4 output transistors as a function of output voltage. [ 1 2]

An enlargement of the intersection of the Q2 and Q4 drain curves in figure 4-6 is

shown in figure 4-9. For a certain input voltage difference, the curves are marked I2 and

I4. When the input voltage difference is increased by Av, both curves change. 12

decreases to I'2 and I4 increases to I4. Because the bias current lb is constant, an

increase AI in I4 due to a change in input voltage will result in an equal decrease AI in I2,

as shown. The total change in output current per unit change in input voltage difference

was defined in equation 4-6 as the transconductance Gm of the circuit.

When the output is open circuited, the total increase 2AI in output current due to

an increase AV in input voltage difference is compensated by an equal decrease in output

current due to the increase AV in the output voltage.

2A/ =Em
dV

-Av =
-

av,
-Av

(4-8)
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Figure 4.8: Expanded view of the center curve for V2 equal to 2.5 volts. [ 1 7]

4.3 WIDE RANGE AMPLIFIER

A simple transconductance amplifier will not generate output voltages below

V .
, which, in turn, is dependent on the input voltages. This limitation often is a source

of problems at the system level, because it is not always possible to restrict the range of

input voltages. We can remove this restriction, however, by a simple addition to the

circuit, as shown in the figure 4-9. The simulated result and layout is as shown in figure

4-10 and 4-11.
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Figure 4-9: Schematic of theWide-Range Transconductance Amplifier. [12]

Instead of feeding the output directly, the drain of Q~ is connected to the

current mirror formed by Q, and Q,. The current coming out of Q . and Qg now are just

the two halves of the current in the differential pair. We then reflect the Qfi current one

more time, through Q? and Q8> and subtract it from I. to form the output. As in the

simple circuit, the output current is just the difference between I. and L.

The major advantage of the wide range amplifier over the simple circuit is that

both the input and output voltages can run almost upto Vp^ and almost down to ground,

without affecting the operation of the circuit. In other words, the problem of V . seems

to be eliminated.

The other nice thing about this circuit is that the current mirrors, such as Q~ and

Q,, hold the drain voltages of Q, and Q2 very nearly constant. In diode connected
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transistors, the current increases exponentially with the gate voltage, so the drain voltage

never gets very far below VDE). For that reason Q2 no longer has a problem associated

with its drain conductance, its source drain voltage is nearly equal to that of Q, . So the

drain conductance of Qj and Q2 are not critical in this circuit. The same thing is true of

Q6, Q7 is a diode connected transistor, it holds the drain voltage of Q6 very nearly

constant. The only transistors that work over a large voltage range are Q,, Q., and Q8,

and we can make their channels long to get a low drain conductance i.e. the output current

that is nearly independent of the output voltage. Because of their low output

conductance, long Q4 and Qg transistors give the circuit a high voltage gain. Such wide

range amplifiers have about 10 times the gain of the simple amplifier, and they work all the

way down to ground and all the way up toV^.

4.4 LOGARITHMIC AMPLIFIER

We know that a diode connected transistor creates a voltage that is proportional to

the logarithm of the input current. This voltage can be used to control the output currents

of other transistors, but it is below the range of usable inputs for circuits such as the

transconductance amplifiers. A voltage that is well within the operating range of these

circuits can be generated by two diode connected transistors in series, as show in the

figure 4- 12(a). The inverse operation, creating a current proportional to the exponential

as a voltage, is accomplished by the circuit of figure 4-12(b). The relationship between

voltage and current for these circuits is shown in figure 4-13.
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Figure 4-11: Layout of the Wide-Range Transconductance Amplifier.
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proportional to the logarithm of the input current. The voltage input version (b) generates

an output current that is exponentially related to the input voltage.
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For an n-channel transistor,

/ =Vni(--v--e-v') = /(l-e-v*)

We know that the saturated drain current Isat is exponential in the gate source

voltage Vgs,

Isat=he 'e
kV. -V

Applying this expression to QI and Q2, we obtain,

/ = //"' =V^-V' (4-10)

Taking logarithms of the last two terms,

From which we conclude,

2

k
'

/ e
lnrTTiv> (4-n)

In the ideal case where k is equal to one, equation 4-11 has the solution,

7 =V2

and we would expect the slope of the upper curve of figure 4-13 to be twice that of the

lower curve.

4.4.1 PHOTORECEPTOR CIRCUIT

The primary function of the photoreceptor is to transduce light into an electrical

signal. For intermediate levels of illumination, this signal is proportional to the logarithm

of the incoming light intensity. The logarithmic nature of the output of the biological
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photoreceptor is supported by psychological and electrophysiological evidence.

Psychological investigations of human visual sensitivity thresholds show that the threshold

increment of illumination for detection of a stimulus is proportional to the background

illumination over several orders of magnitude. Physiological recordings show that the

photoreceptor's electrical response is logarithmic in light intensity over the central part of

the photoreceptor's range, as are the responses of other cells in the distal retina. The

logarithmic nature of the response has two important system level consequences,

( 1 ) An intensity range ofmany orders ofmagnitude is compressed into a manageable

excursion in signal level.

(2) The voltage difference between two points is proportional to the contrast ratio

between the two corresponding points in the image. In a natural image, the

contrast ratio is the ratio between the reflectance's of two adjacent objects,

reflectance's which are independent of the illumination level.

The silicon photoreceptor circuit of a photoreceptor, which transduces light falling

onto the retina into an electrical photo current, and a logarithmic element, which converts

the photo current into an electrical potential proportional to the logarithm of the local light

intensity. Our photodetector is a vertical bipolar transistor. The base of the transistor is

an isolated section ofwell, the emitter is a diffused area in the well, and the collector is the

substrate. Photons with energies greater than the band gap of silicon create electron hole

pairs as they are absorbed. Electrons are collected by the n-type base of the pnp

phototransistor, thereby lowering the energy barrier from emitter to base, and increasing

the flow of holes from emitter to collector. The gain of this process is determined by the

number of holes that can cross the base before one hole recombines with an electron in the

base. The photodetector in this silicon photoreceptor produces several hundred electrons

for every photon absorbed by the structure.
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Figure 4-14: Measured response of a logarithmic photoreceptor.

The current from the photocurrent is fed into the two diode-connected MOS

transistors in series. It produces a voltage proportional to the logarithm of the current, an

therefore to the logarithm of the incoming intensity. We use two transistors to ensure

that, under normal illumination conditions, the output voltage will be within the limited

allowable voltage range of the resistive network. Even so, at very low light levels, the

output voltage of the photoreceptor may be close enough to Vrjrj that the resistor bias

circuit cannot adequately bias the horizontal resistive connections.

The voltage out of this photoreceptor circuit is logarithmic over four to five orders

of magnitude of incoming light intensity, as shown in the figure 4-15. The layout of this

circuit is as shown in figure 4-16.
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Figure 4-16: Layout of the Photoreceptor Cell.
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4.5 BIAS CIRCUIT

For the kind of resistive connection shown in figure 4-17(a), we have to find a way

to implement the Vq bias voltage sources. The bias voltage generator should adjust the

value of Vq such that the saturation current of the resistive connection can be set by an

external control, but not vary as the voltage level in the network changes.
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Figure 4-17: Schematic of the bias circuit for the horizontal resistor circuit. [17]

A biasing circuit that achieves these properties is shown in figure 4-17(b). The node

labeled Vno(je senses the network voltage at a network node, for example, V\, and the

circuit generates an output voltage Vg to bias the gates
of all pass transistors connected to

that node. This is nothing but an ordinary transconductance amplifier connected as a

follower, with the addition of the diode connected transistor Qd- Because of the follower

action, the voltage at the gate of Q2, which is connected to the source of Qd, follows the

node voltage Vnode- The output voltage Vg will follow the node voltage, but with a

positive offset equal to the voltage across Qd-
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Horizontal Resistor + Bios Circuit

Figure 4-19: Layout of the Horizontal Resistor Circuit.
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The diode connected transistor Qd has both its source and gate voltages equal to those of

the pass transistor. Half of the bias current I^, is flowing in Qd. Writing equation for Qd

in each of the bias sources, we obtain,

2

Thus, the saturation current of Qd will be the saturation current of the resistive

connection, independent of the node voltage. We have accomplished this without drawing

any current out of the network. The bias current I^ serves two purposes in this circuit.

First it enables the follower to operate, and second it biases the diode connected transistor

Qd- The voltage across Qd, and hence the gate source voltage of the pass transistor, is set

by the bias current. We therefore can use fy to control the conductance of the resistive

connection.

The measured current voltage curve for the horizontal resistor circuit is shown in

the figure 4-18. The layout for the horizontal circuit is as shown in figure 4-19. The

current is linear with voltage across the resistor for differential voltages less than

approximately 100 millivolts, and saturates at Isat for larger voltages. The negative

saturation current is not equal to the positive saturation current, due to the mismatch

between transistors in the bias circuit on the right. In spite of this mismatch, the current

flowing from one circuit to the other, except for leakage current of the source and drain

regions to substrate, is guaranteed to pass through zero at zero voltage. The leakage

currents usually are negligible compared with Isat.

The key processing elements in the outer- plexiform layer is the triad synapse,

which is found in the base of the photoreceptor. The triad synapse is the point of contact

among the photoreceptor, the horizontal cells, and the bipolar cells. We can describe our

model of the computation performed at the triad synapse in terms of the synapse's three

elements,
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( 1 ) The photoreceptor takes the logarithm of the intensity

(2) The horizontal cells form a resistive network that spatially and temporally averages

the photoreceptor output.

(3) The bipolar cell's output is proportional to the difference between the

photoreceptor signal and the horizontal cell signal.

4.6 HORIZONTAL RESISTIVE LAYER

The retina provides an excellent example of the computation that can be performed

using a resistive network. The horizontal cells in most species are connected to one

another by gap junctions to form an electrically continuous network in which signals

propagate by electronic spread. The lateral spread of information at the outer-plexiform is

thus mediated by the resistive network formed by the horizontal cells. The voltage at

every point in the network represents a spatially weighted average of the photoreceptor

inputs. The farther away an input is from a point in the network, the less weight it is

given. The horizontal cells usually are modeled as passive cables, in which the weighing

function decreases exponentially with distance.

Our silicon retina includes the passive resistive network, patterned after the

horizontal cells of the retina. Each photoreceptor in the network is linked to its six

neighbors with resistive elements, to form the hexagonal array shown in figure 3.5. Each

node of the array has a single bias circuit to control the strength of the six associated

resistive connections. The photoreceptors act as voltage inputs that drive the horizontal

network through conductance. This method of providing input to a resistive network is

shown in figure 3.9. By using a wide range amplifier in place of a bi-directional

conductance, we have turned the photoreceptor into an effective voltage source. No

current can be drawn from the output node of the photoreceptor, because the amplifier

input is connected to only the gate of a transistor.
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The horizontal network computes a spatially weighted average of photoreceptor

inputs. The spatial scale of the weighting function is determined by the product of the

lateral resistance and the conductance coupling the photoreceptors into the network.

Varying the conductance of the wide range amplifier or the strength of the resistors

changes the space constant of the network, and thus changes the effective area over which

the signals are averaged.

Both biological and silicon resistive networks have associated parasitic

capacitances. The integrated resistive element in our case have an unavoidable

capacitance to the silicon substrate, so they provide the same kind of time integration as

do their biological counterparts. The effects of delay due to electronic propagation in the

network are most apparent when the input image changes suddenly.

4.7 TRIAD SYNAPSE COMPUTATION

The receptive field of the bipolar cell shows an averse center surround response.

The center of the bipolar cell receptive field is excited by the photoreceptors, whereas the

surround is due to the horizontal cells. In this model, the center surround computation is a

result of the interaction of the photoreceptors, the horizontal cells, and the bipolar cells in

the triad synapse.
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Figure 4-20: Schematic Layout of the retina chip.

The output of the silicon retina is analogous to the output of a bipolar cell in a

vertebrate retina. Our triad synapse consists of two elements,

( 1 ) A wide range amplifier provides a conductance through which the resistive

network is driven towards the photoreceptor output potential.

(2) A second amplifier senses the voltage difference across the conductance, and

generates an output proportional to the difference between the photoreceptor

output and the network potential at that location.

The output of the bipolar cell thus represents the difference between a center

intensity and a weighted average of the intensities
of surrounding points in the image.
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Figure 4-21: Detailed schematic of all circuitry within an individual pixel of the retina [17]

4.8 IMPLEMENTATION

The floor plan for the retina is shown in figure 4-20. The chip consists of art array

of pixels, and a scanning arrangement for reading the results of retinal processing. The

output of any pixel can be accessed through the scanner, which is made up of a vertical

scan register along the left side of the chip and a horizontal scan register along the bottom

of the chip. Each scan register stage has a 1-bit of shift register, with the associated signal

selection circuits. Each register normally is operated with a binary 1 in the selected stage,

and binary 0's in all other stages. The selected stage of the vertical scan register connects

the out-bias voltage to the horizontal scan line running through all pixels in the

corresponding row of the array. The deselected stages force the voltage on their

horizontal scan lines to ground.
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Figure 4-22 Layout of the Pixel of the Retina

81



Data
o-

4>2
O

\J

Data'

O -I L
T

J<1 _T

s
-O Q

\-7

IT
T

10

\-J

JA _T

-O
Q'

O
12

Figure 4-23: Shift register used in the horizontal and vertical scanner.

Each horizontal scan line is connected to the bias control (V^) of the output

amplifiers of all pixels in the row. The output of each pixel in a selected row is

represented by a current, and this current is enabled onto the vertical scan line by the V^,

bias on the horizontal scan line. The current scale for all outputs is set by the outbias

voltage, which is supplied from offchip. A schematic diagram of all the circuits in the

pixel is as shown in figure 4-21.

4.8.1 SHIFT REGISTER

The schematic for the shift register is as shown in figure 4-23. It is made up of a

single pass transistor followed by a inverter, this in effect sums up to be a half bit shift

register. We thus need two identical blocks to get a 1-bit shift register. Input to the
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Figure 4-27: Layout of the Shift Register.
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comes on the data line, which is taken in on the positive half of the clock (Oi ) cycle. On

the negative half of the clock (02) cycle, the inverted signal from the output of the first

stage, is taken in and we thus get the final output of the 1 bit shift register after one clock

cycle. Both Oiand 0>2 are the opposite halves of the same clock pulse. The simulated

result and the layout of the shift register is as shown in figure 4-26 and 4-27.

4.8.2 HORIZONTAL & VERTICAL SCANNER

The circuit associated with driving a horizontal scan line and selecting data from a

vertical scan line are shown in figure 4-28. The current in a vertical scan line is connected

to one of the two output lines through a pair of complementary pass transistor analog

switches. If a binary 1 is stored in the corresponding stage of the horizontal shift register,

the vertical scan line is connected to the line labeled out. If a binary 0 is stored in the

stage, the vertical scan line is connected to the line labeled Vref. The current from the

selected column thus flows in the out line, and the current from all unselected columns

flows in the Vref line. The chip is designed to be used with the off-chip current sense

amplifier shown to the right of the broken line in figure 4-22. The out line is held at the

Vref potential by negative feedback from the amplifier output through the resistor. The

principal advantage of this arrangement is that all vertical scan lines, selected and

unselected, are held at the same potential. Thus, no transient is introduced as the vertical

scan line is selected. In addition, capacitive transients due to the charge in the pass

transistor channels are minimized by the complementary nature of the analog switches.

The scanners can be operated in one of the two modes, static probe or serial

access. In static probe mode, a single row and column are selected, and the output of a

single pixel is observed as a function of time, as the stimulus incident on the chip is

changed. In serial access mode, both vertical and horizontal shift registers are clocked at

regular intervals to provide a sequential scan of the processed image for display on a

television monitor. A binary 1 is applied at horizontal and is clocked through the
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horizontal shift register in the time required by a single scan line in the television display.

A binary 1 is applied at vertical, and is clocked through the vertical shift register in the

time required by one frame of the television display. The vertical scan lines are accessed

in sequential order via a single binary 1 being clocked through the horizontal shift register.

After all pixels in a given row have been accessed, the single binary 1 in the vertical shift

register is advanced to the next position, and the horizontal scan is repeated. The

horizontal scan can be fast because it involves current steering and does not require

voltage changes on the capacitance of a long scan wire. The vertical selection, which

involves the settling of the output bias on the selected amplifiers, has the entire horizontal

flyback time of the television display to settle, before it must be stable for the next

horizontal scan.

Vertical scan line

Q c-

Q'O-

1

-_E__-

"O Horizontal

Scan Line

H

Hi ^H

-O Out

-o v,

6

Out bias

(a)

Figure 4-26: (a) Schematic of the driver for the horizontal scan line.

(b) Schematic of amultiplexer for the vertical scan line.

The core of the chip is made up of rectangular tiles with
dimensions of 120x154 \i.

Each tile contains the circuitry for a single pixel, as shown in
figure 4-15, with the wiring
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Figure 4-28: Layout of the Driver Circuit for the Horizontal
Scanner
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Figure 4-30: Layout of the Multiplexer needed for the Vertical Scanner.
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Figure 4-32: Layout of the Vertical Scanner.
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Figure 4-34: Layout of the Horizontal Scanner.
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necessary to connect the pixel to its nearest neighbors. Each tile also contains the sections

of global wiring necessary to form signal nets for VrjD> the bias controls for the resistive

network, and the horizontal and vertical scan lines. The photoreceptors are located near

the vertical scan line such that alternating rows of left and right facing cells form a

hexagonal array. This arrangement allows the vertical scan wire to be shared between

adjacent rows, being accessed from the left by the odd rows, and from the right by even

rows. To protect the processing circuitry form the effects of stray minority carriers, the

entire chip has been covered with a solid sheet of second layer of metal, with openings

directly over the photoreceptors. This layer is used for distributing ground to the pixels.

4.8.3 PERFORMANCE

The experiments on the silicon retina have yielded results remarkably similar to

those obtained from biological systems. From an engineering point of view, the primary

function of the computation performed by the retina is to provide an automatic gain

control that extends the useful operating range of the system. It is essential that a sensory

system be sensitive to changes in its input, no matter what the viewing conditions. The

structure executing this gain control operation can perform many other functions as well,

such as computing the contrast ratio or enhancing edges in the image. Thus, the

mechanisms responsible for keeping the system operating over an enormous range of

image intensity and contrast have important consequences with regard to the

representation of data.

4.8.4 SENSITIVITY CURVES

The computation performed in the distal portion of the retina prevents the output

from saturating over an incredible range of illumination levels. By logarithmically

compressing the input signals, the photoreceptor takes
the first step toward increasing the

retina's dynamic range. The next step is a level normalization, implemented by means of
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the resistive network. The horizontal cells of the retina provide spatially averaged version

of the photoreceptor outputs, with which the local photoreceptor potential can be

compared. The triad synapse senses the difference between the photoreceptor output and

the potential of the horizontal cells, and generates a bipolar cell output from this

difference. The maximum response occurs when the photoreceptor potential is different

from the space-time averaged outputs of many photoreceptors in the local neighborhood.

This situation occurs when the image is changing rapidly in either space or time.

Figure 4-35: Intensity response curves shift to higher

intensities at higher background illuminations [17]

Figure 4-35, shows the shift in operating point of the bipolar cell output of both

biological and a silicon retina, as a function of surround illumination. At a fixed surround

illumination level, the output of the bipolar cell has a familiar tanh characteristic, it

saturates to provide a constant output at very low or very high center intensities, and it is

sensitive to changes in input over the middle of its range. Using the potential of the

resistive network as a reference centers the range over which the output responds on the

signal level averaged over the local surround. The full gain of the triad synapse can thus

be used to report features of the image without fear that the output will be driven into

saturation in the absence of local image information.
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In the retina, the operating point of the system is the local average of intensity as

computed by the horizontal cells. Because it uses a local rather than a global average, the

eye is able to see detail in both light and dark areas of high contrast scene, a task that

would overwhelm a television camera, which uses only global adaptation.

4.8.5 TIME RESPONSE

Time is an intrinsic part of an analog computation. In analog perception systems,

the time scale of the computation must be matched to the time scale of external events,

and to other real time parts of the system. The body and the eye movements are an

important part of the computation.

Figure 4-36, shows the response of a single output to a sudden increase in incident

illumination. Output from a bipolar cell in a biological retina is provided for comparison.

The initial peak represents the difference between the voltage at the photoreceptor caused

by the step input and the old averaged voltage stored on the capacitance of the resistive

network. As the resistive network equilibrates to the new level, the output of the amplifier

diminishes. The final value is a function of the size of the stimulus, which changes the

average value of the intensity of the image as computed by the resistive network. Having

computed a new average value of intensity, the resistive network causes the output of the

amplifier to overshoot when the stimulus is turned off. As the network decays to its

former value, the output returns to the baseline.

The temporal response of the silicon retina depends on the properties of the

horizontal network. The voltage stored on the capacitance of the resistive network is the

temporally as well as the spatially averaged output of the photoreceptors. The horizontal

network is like the follower integrator circuit, which weights its input by an amount that

decreases exponentially into the past. The time constant of integration is set by the bias

voltages of the wide range amplifier and the resistors. The time constant can be varied
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independently of the space constant, which depends on only the difference between these

bias voltages, rather than on their absolute magnitude.

-10

-2 0

-30

(a)

Figure 4-36: Temporal response to different sized test flashes. [17]

The form of time response of the system varies with the space constant of the

network. When the resistance value is low, 7 approaches one, and the network Is

computing the global average. A test flash of any limited size will produce a sustained

output. Conversely, when the resistance value is high, 7 approaches zero, and the triad

synapse is just a differentiator circuit, which has no sustained output.

4.8.6 EDGE RESPONSE

The outputs of the bipolar cells directly drive the sustained X-type retinal ganglion

cells of the mud puppy. The receptive fields of these cells are described as antagonistic

center-surround fields. Activation of the center of the receptive field stimulates the cell's

response, and activation of the surround produces inhibition. Cells with this organization

are strongly affected by discontinuities in intensity. The response of a sustained X-type

ganglion cell to a contrast edge placed at different positions relative to its receptive field
is

shown in figure 4-37(a). The spatial pattern of activity found in the cat is similar to the

response of our silicon retina to a spatial intensity step, as shown in figure 4-37(b).
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Figure 4-38: Illustration of the mechanism of generation

of pixel response to spatial edge in intensity. [17]

The way the second spatial derivative is computed is illustrated in figure 4-38. The

surround value computed by the resistive network reflects the average intensity over a

restricted region of the image. As the sharp edges passes over the receptive field center,

the output undergoes a sharp transition from lower than the average to above the average.

Sharp edges thus generate large output, whereas smooth areas of the image produce no

output, because the local center intensity matches the average intensity.
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4.8.7 MACH BANDS

In the visual systems of higher animals, the center-surround response to a local

stimuli is responsible for some of the strongest visual illusions. For example, Mach bands,

the Hermann-Hering grid illusion, and the Craik-O'Brian-Cornsweet illusion may all be

traced to simple inhibitory interactions among elements of the retina.

The response of a pixel to a ramp stimulus is plotted in figure 4-39. Because the

retina performs a second order filtering of the image, changes in the first derivative of

intensity are enhanced. Mach bands are illusory bright and dark bands that appear at the

edges of an intensity ramp. The positions of the illusory bands correspond to the positions

where the retinal output is enhanced due to changes in the first derivative of the intensity.
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Figure 4-39: (a) Ramp stimulus illustrates the function of a second order filter.

(b) Response of a pixel to ramp stimulus. [9]

The retina, as the first stage in the visual system, provides gain control and image

enhancement, as well as transduction of light into electrical signals. From an engineering

viewpoint, the retina greatly reduces the signal bandwidth required to transmit visual

information to the brain, thereby greatly reducing the size of the optic nerve and allowing

more effective computation at the next level.

100



5.0 PARAMETER EXTRACTION

5.1 PARASITIC RESISTANCE AND CAPACITANCE

Parasitic capacitance effects can be divided into two classes, intrinsic which is the

capacitance between a conduction layer and the base, and coupling which is the

capacitance between two different nets in the conduction layers. The two constituents of

intrinsic capacitance are body that is proportional to the area of the conduction geometry,

and fringe (sidewall) that is proportional to the perimeter of the conduction geometry.

There are three constituents for coupling capacitance. Crossover is the effect between

two different nets on two different layers which overlap each other. Crossover overlap

capacitance is proportional to the area of overlap and crossover fringe capacitance is

proportional to the perimeter of the overlap. When two conduction edges of two different

nets are coincident, there would be involved both crossover fringe capacitance between

the two nets and intrinsic fringe for each layer. The third coupling effect is near-body

capacitance which is between two different parallel nets on the same conduction layer. It

is proportional to the length of the opposing net edges and inversely proportional to the

distance separating them. The process parameters provide the proportionality constants

for capacitance. Intrinsic parameters may be specified for each conduction and base layer

pair. Crossover overlap parameters may be specified for each unique pair of conduction

layers, while crossover fringe parameters may be specified for each unique ordered pair of

conduction layers. Near.-body parameters may be specified for each conduction layer.

Shielding is a complication caused by the vertical ordering of the conduction

layers. When more than two conduction layers overlap, layers in-between shield the

capacitance effect between the outer layers. In figures 5.1 and 5.2, an example of

shielding and the corresponding capacitances is seen. It is noted that the poly is shielding

a portion of metal 1 from the base layers. The area of metal 1 has been split to contribute
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separately to C5 and C8. Also the area of poly has been split due to different base

materials for C2 and C3. All the capacitors may be calculated with different parameters

since they each deal with a unique effect and layer pair. In particular, C7 and C9 may

have different parameters because they have different ordered pairs of layers. The

parameters for C7 is a function of the thickness ofmetall, while the parameter for C9 is a

function of the thickness of poly.

metall

C7 c
8 C9

poly

C5 C6

C
1

C
2 C3 C4

basel | base2

Figure 5.1: Shielding Example.

Parasitic resistance has two constituents, sheet resistance and connection

resistance. Sheet resistance is present for current flowing within a conduction layer from

one boundary to another. It is measured by sheet resistivity, which is in units of Ohms per

square. Connection resistance is present for connection layers, such as contacts and via's,

which connect different conduction layers. To efficiently calculate resistance values, a net

on a conduction layer must be fractured into smaller elements. These smaller elements are

constructed such that good resistance approximations can be calculated using simple
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equations involving sheet resistivity. Once a net has been fractured and the resistance of

each element determined, the capacitance is calculated for each element These elements,

with their R and C value pairs, constitute a sub network of the original net. This sub

network can be reported in total or passed to an analysis/reduction function which reports

an equivalent RC pair for each path in the sub network. A path is a pairing of net's source

pin with a net's sink pin. Thus there are as many paths as there are sink pins.

NAME EFFECT LAYER1 LAYER2

Cl fringe poly basel

C2 body poly basel

C3 body poly base2

C4 fringe poly base2

C5 body metall base2

C6 fringe metall base2

C7 crossover fringe metall poly

C8 crossover overlap metall poly

C9 crossover fringe poly metall

Figure 5.2: Capacitance Effects.

Parasitic capacitance may be calculated, without regard to resistance, for
all or any

of the capacitance effects. These effects can be reported individually or summed to create

a lumped capacitance for each net. This lumped value may be back-annotated to a

schematic design. Based on the total areas and perimeters of the conduction layers for a

net, an approximate resistance can be calculated for a rectangle having the same area and

perimeter. The sum of this resistance plus connection resistances in the net yield an

approximate lumped resistance for each net. Using the lumped values for each net as
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selection criteria, threshold values may be specified to filter nets that are not to be

extracted for parasitic resistance.

5.2 DATA REDUCTION

In this method we process the extracted distributed parasitic circuits and reduce

the network to an equivalent network that provides a good approximation of behavior but

uses a significantly smaller number of parasitic circuit elements and nodes. Since circuit

simulation time is proportional to the number of nodes in the circuit, this reduction of

nodes will reduce that time.

c + c + c
1 2 1

c.+ c

R + R
1 2

C.+ -

Backward moving

0
R + R

~'

1 2

Capacitance Distribution and Gaussian elimination

R
C+! C
2

R+ R
'

1

Figure 5.3: Network reduction algorithm.
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This network reduction is necessary since the extracted circuit from layout may

contain many more RC parasitic elements than active ones, which causes unacceptable

overhead for simulation and other verification tools.

5.3 CIRCUIT LAYOUT AND CAPACITANCES

Before we can analyze the transient characteristics of MOS inverters, we must

know the actual physical dimensions of the transistors and their interconnections so that

the capacitances which limit switching speed can be calculated. For manual analysis,

device dimensions together with the capacitance per unit area for junctions and oxides

permit calculation of all capacitances. Circuit simulators such as SPICE usually require

entry of dimensions so that the program may calculate capacitances on circuit nodes.

5.4 LAYOUT EXAMPLE AND SPICE INPUT DATA

The essential features of a practical NMOS silicon gate inverter circuit layout are

shown in figure 5.4. As is usual in integrated circuits work, vertical dimensions are

exaggerated compared to horizontal dimensions so that small details is seen clearly. For

clarity, the final layer ofmetal interconnections is not shown in the figure.

We shall now examine several features of figure closely. The drain of the inverter

shares a common
n+ diffused region with the source of the load device. This saves area

over using a separated diffusions, each with its own contact. For the depletion load

circuit shown here, the gate of the load device must be connected to its source by metal.

The output of this inverter may be connected to the following circuitry using diffusion or

polysilicon or metal, since all of these are in contact with the output node. It should be

noted that the diffused and polysilicon conductors cannot cross, because the intersection

of these layers forms a transistor.

105



Contact to gate of Inverter

Source of Inv. <-

T
w,

Polysilicon Depletion Implant

?

Field

L

W

Drain of Inv.

(Output)

T

VDD

J ___

Polysilicon
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Figure 5.4: Layout of the NMOS Inverter

Figure 5.4 shows gate widths of 10 and 5 |im for inverter and load devices

respectively. These are the distances between the walls of the field diffusion and are

entered in SPICE as channel widthW. Also seen in figure are gate lengths of 7 and 12 (im

for inverter and load devices, respectively. These are assumed to be actual dimensions of

the polysilicon gate electrodes after fabrication, and are entered in SPICE as length L.

During fabrication, the n+ source and drain diffuse toward each other under the gate

electrode, resulting in an overlap of the nominally self-aligned gate above source and

drain, and an electrical channel length shorter than the gate length. For this example, we

assume 1 |J.m of lateral diffusion at each source. Gate-source and gate-drain overlap are 1

|im each.
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Depoiited oxide Otte of

inverter

Deposited oxide

Figure 5.5: Section view of the NMOS Inverter.

The SPICE program calculates all device capacitances provided the necessary data

is entered. The values for CJ and CJSW are entered, the zero bias capacitances for the

bottom and sidewalls of the source body and drain body junctions. The capacitance unit

area of an abrupt n+p junction is

C,r == m^=Cj
2*0

(5.1)

The sidewall capacitance per unit area is higher than CJ because n+
source and

drain about the p+ field diffusion. Unless other data are available, we assume that field

doping is 1 0 times higher than body doping, so sidewall capacitance per unit area is higher

by the square root of 10. Final SPICE requires that CJSW be given per unit of diffusion

perimeter. Therefore sidewall capacitance per unit area is multiplied by junction depth XJ

to obtain the value for CJSW to be entered into the MODEL file.

The built-in junction potential PB (<|>o) is given as,

<s?0zzvTm^
= PB (5.2)
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SPICE takes the same value of PB for bottom and sidewall junctions, causing only

a very minor error. It is required that TOX be entered in the MODEL file if SPICE is to

calculate the gate capacitances.

To summarize, the minimum set of data to enter in the MODEL file for MOS

devices comprises the dc parameters VTO, KP, and GAMMA, gate oxide thickness TOX,

and the capacitance parameters CJSW, and PB. Other parameters may take on default

values without any serious errors.

5.5 CAPACITANCE CALCULATION FOR HAND ANALYSIS

A number of simplifications are necessary to facilitate hand analysis ofMOS digital

circuits because of the many nonlinear dc parameters and nonlinear capacitances in even a

simple inverter.

Each MOS transistor has five separate voltage dependent capacitances coupling its

four electrodes. Manual analysis of MOS transistor circuits in which each capacitor is

considered individually is virtually impossible. However, approximate calculations of

switching times becomes feasible if all capacitance effects are lumped into a single total

capacitor Cx which is connected to the output node of each inverter or gate.

Voltage-dependent effects of junction capacitances are removed by defining

equivalent linear capacitances Ceq which require the same change in charge as the

nonlinear capacitors for a transition between two voltage levels Vi and V2.

WithV2>V!,

r
A8 Q(V2)-Q(Vl)_K r ,.-

The depletion layer capacitance per unit area Cjq is calculated according to

equation 5.1. Sidewall capacitances cannot be ignored for modern MOS processes. The
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sidewall capacitance per unit area is calculated as shown above. The dimensionless

parameter Kgq for an abrupt junction is,

^,=^l|tt>o-V2)"2-((t0-K)1/2] (5.4)

It is noted that the voltage applied to the junction is V2 =

-(Vol
- VBB) in tne

low state and V] = -(Vqh
- Vbb) in the high state. VBB is the (zero or negative) body

bias voltage applied to the body with respect to the sources of inverter transistors. By

convention, voltages applied to junctions are defined as positive for forward bias and

negative for reverse bias.

Figure 5.6 shows calculated values of Kgq as a function of supply voltage Vj)>

and body voltage VgB> on the assumption that Vql = 0. ^OH = ^DD an<^ 0 = 1V-

These data are used in calculating Cj. The result of the linearization of junction

capacitances using Kgq is a minor distortion of the shape of transient voltage waveforms

at circuit nodes.

Figure 5.6: Equivalent Capacitance calculation

Figure 5.7 shows how the device capacitances in a circuit comprising two

cascaded inverters can be lumped at the inverter output nodes. First, all capacitances
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across which there is no voltage change are ignored, since they have no effect on circuit

performance. The device capacitance which must be considered are shown in figure

5.7(a). In this figure, the capacitances CL represent the capacitances of interconnecting

wiring connected to inverter outputs.

The capacitance CTI is made up as follows,

Qi = Keq {Cm + Csb2 ) + Cgdl + Cgd2 + Cg3 + CL (5.5)

TransistorsMi andM2 are saturated or cut off during a large part of the switching

cycle. Hence capacitances Cg(j for these two devices are defined to include only the gate

overlap capacitances to the drain of each. The total gate capacitance Cg3 loads the output

of the first inverter, so it is included without breaking it into separate components.

The major consequence of lumping all capacitance to ground is that the effects of

capacitive coupling between input and output are ignored. This simplification is necessary

for hand calculations.

Specific values of all capacitances are found from calculated values of capacitance

per unit area and areas of nodes determined from the circuit layout at hand. In addition to

the planar areas which are obvious in figure 5.5, sidewall areas where source and drain

diffusions meet field doping (as seen in figure 5.4) are very significant in modem circuits.

Sidewall capacitance per unit area is typically 3 to 5 times greater than capacitance along

the bottom of the source-drain diffusion because the doping in the field regions is typically

10 to 25 times greater. Adequate accuracy is achieved by taking the sidewall area as the

product of diffusion perimeter and junction depth, neglecting the curvature of the sidewall

and the gradient in field doping. The capacitance for small areas of metal or polysilicon

outside transistor regions, including the gate-body overlap capacitance CGBO, may be

neglected.
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Figure 5.7: (a) Cascoded NMOS Inverters(Capacitance to be Calculated is shown only)

(b) Method of Lumping Capacitances to Inverter Output Nodes.

5.6 TRANSIENT ANALYSIS OF CMOS INVERTER

Transient analysis of CMOS inverters is carried out in very much the same way as

for the NMOS inverters. A single lumped linear load capacitance at each output node is

defined. Then the average currents available for charging and discharging are calculated.
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> Source ofNMOS

^ n diffusion

Figure 5.8: CMOS Inverter Layout

Capacitances may be calculated from a layout such as that shown in figure 5.8,

provided that information on junction depths and doping concentrations is available.

Either the NMOS or the PMOS device (sometimes both) must be formed in an

approximately doped well, since the devices require bodies of opposite conductivity type.

Figure 5.8 shows the NMOS in a p-type well, with the PMOS formed in the n-type

substrate. The well will always be more heavily doped than the substrate, because it must

be formed by overcompensating the initial substrate doping concentration. Consequently,

junction capacitances per unit area are higher for the devices formed in wells.

Channel widths and lengths W and L shown in the figure, are typical for a near

minimum size CMOS inverter. Wp/Lp must be about 2.5 times W^/L^r to obtain

approximately equal values of Kp and Kj^. This equality is often desired in order to

obtain equal rise and fall times when driving capacitive loads.
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In figure 5.9 are shown the results of two spice simulations of a cascade of two

CMOS inverters of the design shown in the layout of figure 5.8. One simulation used the

full SPICE capacitance model, including all nonlinearities. For the second simulation, all

model capacitances were forced to zero. Capacitive effects were calculated by hand and

lumped at the output node of each inverter in the manner described for NMOS circuits. It

is seen that the two simulations give similar results.

Figure 5.9: Spice Simulation of Transient Response of Two Cascaded CMOS Inverters.

The Two cases are: (a) Full Model & (b) Lumped Model.

5.7 Parasitic Effects on our Circuits

We will use the above mentioned lumped model for the calculation of our circuits.

Specifications for resistance and capacitance was taken from the MOSIS handout. The

value of a resistance was 0.05 Ohms/square and for capacitance it was 36 aF/um^- The

interconnect lengths between active devices being very small, gives us low values such as

3. 1 ohms for resistance and 1 .723 femto-farads for capacitance After substituting the RC

networks in the appropriate place, the circuit was re simulated and a negligible change in

response was observed as can be seen from the following waveforms.
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Figure 5-10: Schematic of the Simple Amplifier with Parasitic Effects.
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Figure 5-11: Simulated Result of a Simple Transconductance Amplifier.
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Figure 5-12: Schematic of the Wide-Range Amplifier with Parasitic Effects.
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Figure 5-13: Simulation Results for the Wide-Range Transconductance Amplifier.
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Figure 5-14: Schematic of the Photoreceptor Cell with Parasitic Effects.
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Figure 5-15: Simulation Results for the Photoreceptor cell.
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Figure 5-17: Simulation Results for the Horizontal Resistor Circuit.
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Simple Amplifier Wide Amplifier Photo-Receptor Horizontal Amp.

QI l=4u w=6u QI l=4u w=4u QI l=8u w=6u QI l=4uw=5u

Q2 l=4u w=6u Q2 l=4u w=4u Q2 l=6u w=6u Q2 l=4uw=5u

Q3 l=4u w=4u Q3 l=4u w=4u Q3 l=24u w=24u Q3 l=3u w=5u

Q4 l=4u w=4u Q4 l=28u w=4u Rl=2.0QCl=1.16ff Q4 l=4u w=5u

Qb l=12u w=3u Q5 l=4u w=6u R2=5.45fiC2=3.16ff Q5 l=4uw=5u

Rl=4.25.QCl=2.5ff Q6 l=4u w=6u Q6 l=6u w=5u

R2=4.85.QCl=2.81ff Q7 l=13u w=4u Rl=4.21QCl=2.43ff

Q8 l=4u w=4u R2=3.4QC2=1.97ff

Q9 l=28u w=4u R3=2.6QCl=1.45ff

Rl=7.15.QCl=4.14ff

R2=6.62 C2=3.82ff

R3=3.1QC3=1.79ff

R4=2.05QC4=1.18fif

R5=6.15QC5=3.56ff

Figure 5-18: Spice Parameters for different circuits used to make the pixel.
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6.0 CONCLUSION

The first and foremost problem encountered was the conversion of a single neuron

into an equivalent circuit. The transconductance amplifier which is the heart of every pixel

in the system, had to be very accurate and had to provide high gain and display the

characteristic tanh curve. Since our model assumes a hexagonal resistive mesh,

interconnection plays a very important role, in the sense that we try to share as many lines

as possible and try to conserve silicon area. Each pixel contains the sections of global

wiring necessary to form signal nets for Vrj>D the bias controls for the resistive network,

and the horizontal and vertical scan lines. The photoreceptors were located near the

vertical scan line, such that alternating rows of left and right facing cells form a hexagonal

array. This arrangement allows the vertical scan line wire to be shared between adjacent

rows, being accessed from the left by odd rows, and from the right by even rows.

All the individual circuits were designed and simulated separately and also the layout for

the same was carried out. Subsequently Layout versus Schematic checks were performed

on each cell and then on the entire circuit. The final step included the Back-Annotation,

here the parasitic capacitances and resistances were calculated by hand and were fed back

to the original circuit, to observe the effect of layout routing on the actual performance of

the design. It became evident that since the individual circuits were quite small, the

parasitic'

contribution was negligible.

We have taken the first step in simulating the computations done by the brain to

process a visual image. A medium was used, that has a structure in many ways similar to

neurobiological structures. Following the biological metaphor has led us to develop a

system that is nearly optimal from many points of view. The constraints on our silicon

system are similar to those on neurobiological systems. As in the biological retina, density

is limited by the total amount of wire required to accomplish the computation. The retina,

like many other areas of the brain,
minimizes wire by arranging the signal representation
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such that as much wire as possible can be shared. The resistive network is the ultimate

example of shared wiring. By including a pixel's own input in the average, we can

compute the weighted average over a neighborhood for every position in the image, using

the same shared structure.

It has become evident that the powerful organizing principles found in the nervous

system can be realized in our most commonly available technology, namely silicon

integrated circuits. Integrated circuit fabrication has evolved to the point where systems

of the scale of small, but identifiable parts of the nervous system can be emulated on a

single piece of silicon. The efficient mapping of a system onto its implementation

medium, be it neuron or silicon, is the essence of the design problem. Once we are able to

design systems of this kind, we will have extended our notion of computation into

application areas that are intractable for even the largest digital computers.
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