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Abstract

Boost converters are very important circuits for modern devices, especially battery-

operated integrated circuits. This type of converter allows for small voltages, such

as those provided by a battery, to be converted into larger voltage more suitable for

driving integrated circuits.

Two regions of operation are explored known as Continuous Conduction Mode

and Discontinuous Conduction Mode. Each region is analyzed in terms of DC and

small-signal performance. Control issues with each are compared and various error

amplifier architectures explored. A method to optimize these amplifier architectures

is also explored by means of Genetic Algorithms and Particle Swarm Optimization.

Finally, stability measurement techniques for boost converters are explored and

compared in order to gauge the viability of each method. The Middlebrook Method

for measuring stability and cross-correlation are explored here.
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Chapter 1

Introduction

Modern mobile integrated circuits contain many different sub-circuits with varying

degrees of power requirements [1]. Likewise, these circuit are typically designed to

be high-performance and thus require fast and stable power supplies in order to

guarantee proper operation [2]. Because of these requirements, Switched DC-DC

Boost Converters have become commonplace in such integrated circuits due to their

ability to ‘boost’ the small voltage of a battery coupled with their high efficiency [3–6].

In order to guarantee the commercial viability of a Boost Converter, the circuit

itself must be well understood. This includes understanding the impact of non-ideal

components on the DC and transient responses of the system, as well as understanding

the regions that a converter may operate in. Understanding these effects helps to

illustrate different regions that may cause instability in a DC-DC Boost Converter

and, thus, gives important information to the designer as to what type of component

tolerances and values are acceptable.

1.1 Importance of Stability

For low-performance circuits, converter stability may not be as important as other

design criteria such as output voltage range or output power dissipation capabilities;

however, for mobile integrated circuits, especially those used for display purposes,

stability is a very important factor [7].

Maintaining a highly stable power supply for a display, such as an LCD, helps
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to guarantee that pixel brightness exhibits little variation from the expected ideal

value. This is a very important design consideration since the human eye perceives

brightness on a non-linear scale, known as luminance. This means that there exist

levels at which the change in voltage or current is very slight, yet the change in

luminance is large. As such, it is important for a mobile-integrated-display-circuit

power-supply to be very stable as any ringing could cause perceivable changes in

pixel brightness which lowers the quality of the product [8].

An unfortunate reality for integrated display-circuits is that they typically have to

function properly for a multitude of different display backplanes which, in turn, alters

the load requirements for the circuit power supply [9]. In addition, these displays can

have vastly different numbers of pixels which, yet again, alters the load requirements

for the supply. In every one of these conditions, the need for stability (due to the

luminance concerns addressed earlier) is of the utmost importance. Thus, the ability

to accurately measure stability as well as understanding what areas of the converter

are likely to cause instability is paramount to ensuring a commercially viable product.

1.2 Thesis Organization

To begin the discussion of Boost Converter Stability, the DC performance is ana-

lyzed and discussed in Chapter 2. Two different Boost Converter operating modes

are explored, known as Continuous-Conduction Mode (CCM), and Discontinuous-

Conduction Mode. Each mode of operation is explored in terms of voltage conversion

ratios, duty-cycle requirements, efficiency and output ripple. These results are then

compared to determine the trade-offs of operation in either region. The efficiency of

the converter is analyzed in terms of sensitivity to two primary sources of non-ideal

power-loss in order to develop an understanding of their effects on DC performance.

Chapter 3 covers the small-signal analysis of a Boost Converter in order to develop

accurate models that help to form an understanding of what conditions typically cause

instability. Again, both the CCM and DCM converters are explored. First, a small-

signal modeling technique known as State-Space Averaging is explored wherein the

Boost Converter is averaged and linearized around a given operating point [14]. As

a comparison, a technique known as Averaged PWM Modeling is performed which
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produces similar results with less overall work [18, 19]. The transfer functions for

both Boost Converters with ideal components and Boost Converters with non-ideal

components are then compared via Bode plots and transient step responses. An

approximation is presented wherein an non-ideal Boost Converter operating in DCM

can be approximated to that of an ideal Boost Converter operating in DCM, which

enables the simplification of various small-signal parameters.

Chapter 4 analyzes various error-amplifier control architectures for integrated cir-

cuits. These circuits utilize Operational Transconductance Amplifiers (OTAs) due to

high speed and low layout area cost. Various control schemes are analyzed and com-

pared via frequency response characteristics. Controller selection recommendations

are made based on converter requirements. Appendix A also explores error-amplifier

controller design via sophisticated high-dimensional optimization algorithms, specifi-

cally that of Genetic Algorithms and Particle Swarm Optimization Algorithms.

Chapter 5 deals with the full Boost Converter circuit from power conversion stage

all the way through the control stage. Here, various design methods are presented

based on converter region of operation (CCM or DCM) and the issues associated with

ensuring a stable converter explored. The different architectures are compared via

Bode plots and transient step response plots in order to better visualize the important

differences. The converters are also analyzed via the complex plane in order to better

visualize pole-zero placement and the effects on converter stability.

Chapter 6 introduces various Switched DC-DC Converter stability measurement

techniques. These include ubiquitous step response plots as well as Bode plots. An-

other measurement technique explored utilizes the cross-correlation of input noise

and the output waveform in order to extract a Bode plot mathematically. These

stability test methods are explored and potential test implementations are presented.

Recommendations are made based on the benefits of each test setup.
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Chapter 2

Boost Converter DC

Characteristics

A boost converter (shown in Figure 2.1) has two primary modes of operation: Con-

tinuous Conduction Mode (CCM) and Discontinuous Conduction Mode (DCM). As

these names would indicate, they are defined by whether or not the converter is

continuously or discontinuously conducting; specifically, whether or not the inductor

current saturates or drops to zero within one switching period. This is explained

graphically in Figure 2.2. In this chapter, the DC equations for voltage transfer func-

tion, output ripple voltage, and efficiency will be derived for both CCM and DCM.

These equations will be compared in order to better determine the benefits of using

either conduction method.

Figure 2.1: Ideal Boost Converter Circuit
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Figure 2.2: Inductor Current in Boost Converter for CCM and DCM

2.1 Continuous Conduction Mode (CCM)

In order to begin analysis, it is important to observe the converter behavior without

any added parasitics (switch resistance, inductor resistance, diode forward voltage

drop, et cetera). Thus, Figure 2.1 will be used for the ideal derivations.

2.1.1 Ideal Converter

During steady-state operation when the switch is closed, the voltage across the ca-

pacitor causes the diode to become reverse-biased since the anode will be grounded.

Thus, the voltage across the inductor, VL is equal to the source voltage, VS. Since the

voltage across an inductor is equal to LdiL
dt

and the inductor current is approximately
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constant (in that it is increasing linearly), it can be said that (taking dt = DTS):

∆iL,closed =
VSD

LFS
(2.1)

Next, it is necessary to open the switch. Since current through an inductor can-

not change instantaneously and the diode is the only device which can provide a

conduction path for the inductor current, the diode must become forward-biased. As

such, the voltage across the inductor becomes VS −VO. Since the switch is open, and

referring to the inductor current graph for CCM shown in Figure 2.2, dt = (1−D)TS.

Rearranging the equation for voltage in an inductor yields:

∆iL,open =
(VS − VO)(1−D)

LFS
(2.2)

In steady-state, the total change in inductor current must equal zero, thus by

using (2.1) and (2.2):

0 = ∆iL,closed + ∆iL,open

0 =
VSD

LFS
+

(VS − VO)(1−D)

LFS

0 = VSD + VS(1−D)− VO(1−D)

Rearranging the above equation to solve for the DC output-to-input transfer function

yields:
VO
VS

=
1

1−D
(2.3)

Output Ripple

To solve for the output ripple voltage, it is important to consider how the charge

is changing within the output filter capacitance. Consider the period for which the

switch is closed, that is during the interval DTS. Since the diode is reverse biased, the

capacitor discharges in order to provide current to the load resistance. Thus, since

the voltage at the output is positive and maintaining the convention that current
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flows into positive nodes,

IC = −IR = −IO

Thus, for this interval the change in capacitor charge is given by the product of the

current and the interval, or:

∆Q = −IODT = −IOD
FS

Because the charge in a capacitor is equal to the product of both the voltage and the

capacitance, it can be said that:

∆Q = ∆V C

∆V =
∆Q

C

which yields the output ripple voltage equation of:

∆VO =
DIO
CFS

(2.4)

Efficiency

To find efficiency, a simple relation between input and output power can be estab-

lished. Since there are no loss mechanisms in the circuit using the ideal diode model,

all power delivered by the source will be absorbed in the load. Therefore the efficiency

will be 100% for an ideal boost converter.

2.1.2 Non-Ideal Converter

Figure 2.3 shows the boost converter circuit with parasitics added in.

In order to derive the output voltage of the non-ideal boost converter in CCM,

the concept of energy-conservation [10] is used wherein:

PS = PO + PLoss

Thus it is necessary to observe what mechanisms will cause power loss in the non-ideal
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model. Unfortunately, Figure 2.3 doesn’t provide a completely accurate picture as

to what will cause power loss as it ignores the dynamic switching losses in both the

transistor switch and the diode. Since both the switch and diode have parasitic ca-

pacitances associated with them, during each switching cycle they need to be charged

and discharged. Doing so provides a momentary short to ground and there will be

non-negligible power loss as a result, given by (2.5).

PCSW =
1

2
CSWV

2
swFS (2.5)

In the worst-case situation, the voltage across the switch, Vsw, will be equal to the

output voltage plus at least the forward voltage drop of the diode, or VO + VD. The

parameter CSW is device-specific but typically has a range between 10 pF to 200 pF

(commonly shown as COSS on datasheets). Figure 2.4 shows a plot for the normalized

power consumption of all parasitic components.

There is one noticeable characteristic of Figure 2.4: operation in DCM is far more

dependent on the dynamic switching loss than operation in CCM. The explanation

is rather simple: in CCM, the current through the inductor never goes to zero, thus

during the period in which the switch is open there is a continuous amount of power

loss through the inductor and diode which ends up contributing to far more loss than

the switching elements. In DCM, however, there is a period in which no current

flows (Figure 2.2) and thus the power losses through the inductor and diode are much

smaller in value. Because of this, the loss due to the switch capacitance becomes far

more noticeable. Note that during the portion of the time there is no current flow in

Figure 2.3: Non-Ideal Boost Converter Circuit
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DCM

Figure 2.4: Normalized Power Loss in CCM and DCM

the DCM operating mode, the switch capacitance will charge to VS. This is because

the diode must stop conducting which means there is no path for current from the

input source, VS, so the node on the positive side of the diode will charge to VS. Over

time, the total voltage change at the switch will be approximately equal to VO rather

than VS and this will cause a discontinuity at the CCM/DCM boundary for efficiency

calculations [11].

Now, consider the silicon diode as it begins to switch from reverse-biased to

forward-biased. Here, the depletion region begins to decrease in width which, in

turn, increases the depletion capacitance. However, there is also an increase in dif-

fusion capacitance due to the minority charge located near the junction [12]. This

diffusion capacitance will contribute to dynamic switching losses similar to that of

the transistor. As a result, silicon diodes are commonly replaced by Schottky diodes

in switched power systems because Schottky diodes do not store minority charge and,

hence, do not exhibit diffusion capacitance [12]. The only capacitance they will have

is due to the depletion region and will be quite small in comparison to the capac-

itance of a silicon diode, for example. This is an added benefit of using Schottky

diodes in switched DC-DC converter circuits as increasing that capacitance causes a

corresponding linear increase in power consumption as evidenced by plugging (2.6)
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into (2.5).

CSW = COSS + CD (2.6)

Assuming that the diode ON-resistance is small and that the forward voltage drop

will be the primary source of static loss in the diode (which is valid except for large

load currents in CCM operation), the total power loss can be given as,

PLoss = PrL + PSW + PD

where PSW is equal to both the conduction loss due to the switch, PrSW , as well as

the dynamic switching losses, PCSW and PD is equal to the conduction loss due to the

diode.

Since the current through the inductor is always IL by definition, the power ab-

sorbed by the inductor’s series resistance is simply rLI
2
L. Since the switch resistance

will only absorb power when the switch is on, that is during time interval DT , and the

current through it will be equivalent to IL, it’s clear that the static power absorbed by

the switch will be DrSW I
2
L whereas the dynamic power consumption is 1

2
CSWV

2
OFS.

Likewise, since the diode is only conducting for the time interval of (1 − D)TS, the

average power absorbed by the diode is just (1−D)VDIL. This yields the equation:

PLoss = rLI
2
L +DrSW I

2
L +

1

2
CSWV

2
OFS + (1−D)VDIL (2.7)

Since,

PS = PO + PrL + PSW + PD

∴ VSIS = VOIO + rLI
2
L +DrSW I

2
L +

1

2
CSWV

2
OFS + (1−D)VDIL (2.8)

Since current through the diode is equal to (1−D)IL, and all of the DC component

of the diode current must be delivered to the load, the following relationship can be

established and then solved for IL:

(1−D)IL = IO
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IL =
IO

(1−D)
(2.9)

Dividing (2.8) through by IL and plugging (2.9) into IL yields:

VS = (1−D)VO + rL
IO

1−D
+DrSW

IO
1−D

+
1−D
IO

CSWV
2
OFS + (1−D)VD

Plugging VO
R

in for IO and solving for VO then results in the following expression for

output voltage of a Boost Converter in CCM with parasitics:

VO

[
(1−D) +

rL
R

1

1−D
+
R(1−D)

2
CSWFS +

D

1−D
rSW
R

]
= VS − (1−D)VD

VO =
VSR(1−D)− VDR(1−D)2

R(1−D)2 + rL +DrSW + 1
2
(1−D)2R2CSWFS

(2.10)

To check this answer, simply set all of the parasitics equal to zero and it’s clear

that (2.10) will yield the ideal expression shown in (2.3).

Output Ripple

The ripple voltage at the output due to the capacitor is the same in the non-ideal case

as it is in the ideal case which is given in (2.4). However, there is an additional ripple

voltage caused by the capacitor’s series resistance. When the capacitor is charging,

the current will be decreasing at the same rate as the changing inductor current, ∆iL,

thus the largest peak current is IL,max which can be expressed as a sum of the average

inductor current (2.9) and ∆iL
2

.

First, an expression for ∆iL needs to be derived for the non-ideal converter. The

process is similar to that of the ideal case wherein the voltage across the inductor is

found and then solved for ∆iL. Referring to Figure 2.3, when the switch is closed it’s

clear that:

VL = VS −∆iL(rL + rSW )

L
∆iL
DTS

= VS −∆iL(rL + rSW )
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Rearranging and solving for ∆iL yields (2.11).

∆iL =
DVS

LFS +D(rL + rSW )
(2.11)

Since IL is given in (2.9), IL,max can be found as per (2.12).

IL,max = IL +
∆iL

2

IL,max =
IO

(1−D)
+

DVS
2LFS + 2D(rL + rSW )

(2.12)

Since the ripple voltage due to the capacitor’s ESR can be expressed in (2.13) and

∆iC = IL,max, (2.12) can be plugged into (2.13) for ∆iC to yield (2.14).

∆VO,esr = ∆iCrC (2.13)

∆VO,esr =

[
IO

(1−D)
+

DVS
2LFS + 2D(rL + rSW )

]
rC (2.14)

In a worst-case situation, the ripple peaks due to the capacitor and ESR coincide

and thus will need to be summed in order to produce a correct expression for output

voltage ripple. In realistic circuits, these peaks will rarely be at the exact same spot,

so (2.15) is a worst-case expression for total output voltage ripple.

∆VO,total =
DIO
CFS

+

[
IO

(1−D)
+

DVS
2LFS + 2D(rL + rSW )

]
rC (2.15)

Efficiency

The efficiency in a boost converter can be modeled as shown in (2.16). Here, the

power loss, PLoss, has already been derived in (2.7) where IL is given in (2.9). Using

these two relationships, it can be shown that PLoss is equivalent to the expression in

(2.17).

η =
PO

PO + PLoss
(2.16)

PLoss = IO

[
rLIO +DrSW IO + VD(1−D)2

(1−D)2

]
+

1

2
CSWV

2
OFS (2.17)
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Since PO is simply the power absorbed by the load, the efficiency of the non-ideal

converter in CCM can be expressed as (2.18) after plugging in for IO.

ηCCM =
R(1−D)2

R(1−D)2 + rL +DrSW + 1
2
CSWFSR(1−D)2 + VD

VO
R(1−D)2

(2.18)

2.2 Discontinuous Conduction Mode (DCM)

Similar to the process involved in deriving the DC equations for CCM, the ideal

DCM converter will be considered before addition of parasitics. From a theoretical

standpoint, the derivation is nearly identical to that of CCM with the exception of

needing to find an expression for D1 in place of (1−D) (refer to Figure 2.2).

2.2.1 Ideal Converter

When the switch is closed in the circuit shown earlier in Figure 2.1, the same thing

happens in DCM as CCM so ∆iL,closed is the same as (2.1). When the switch is open,

however, there is a slight difference due to the fact that the inductor current goes to

zero before the switching cycle. This difference can be attained by simply replacing

the (1−D) term in (2.2) with D1, as shown in (2.19).

∆iL,open =
(VS − VO)D1

LFS
(2.19)

Since the sum of the change in inductor currents over one period must equal zero,

adding (2.1) with (2.19) and solving for VO results in an ideal DC output voltage

equation shown in (2.20).

VO = VS

(
D +D1

D1

)
(2.20)

However, (2.20) doesn’t really say much since D1 is currently unknown. Solving

for this is important and also fairly easy; since the ∆iL is zero before any switching

cycle starts (as this is what defines DCM operation), the maximum current, and thus

the height of the triangular waveform in Figure 2.2, can be given by ∆iL,closed in

(2.1). From here, consider the average current through the diode. Since the diode

only conducts during the D1 cycle (as it is reverse-biased when the switch is closed
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as described in Section 2.1.1), the average current through it is given by:

ID,avg =
1

TS

(
1

2
ImaxD1TS

)
ID,avg =

1

2
ImaxD1

When the diode is conducting, all of its current is delivered to the load, such that,

ID,avg = IO =
VO
R

After substituting (2.1) in for Imax and solving for D1 yields (2.21):

D1 = IO

(
2LFS
VSD

)
=

(
VO
VS

)(
2LFS
RD

)
(2.21)

From here, equation (2.21) can be plugged into (2.20),

VO
VS

=
D +

(
VO
VS

) (
2LFS
RD

)(
VO
VS

) (
2LFS
RD

)
0 =

(
VO
VS

)2(
2LFS
RD

)
−
(
VO
VS

)(
2LFS
RD

)
−D

∴ 0 =

(
VO
VS

)2

−
(
VO
VS

)
− RD2

2LFS

Solving this quadratic for VO
VS

yields the final DCM output votlage expression shown

below in (2.22).

VO =
VS
2

(
1 +

√
1 +

2D2

τL

)
(2.22)

where

τL =
LFS
R

(2.23)

Output Ripple

The derivation for output ripple is the same as that of CCM since the output current

waveform is identical for the period when the switch is on. Because of this, the change
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in charge in the output filter capacitor is −IODTS, thus the output ripple for both

CCM and DCM is given by (2.4).

Efficiency

As was the case for CCM, all of the input power must be delivered to the load due

to the absence of loss mechanisms in the ideal DCM converter. Thus, efficiency must

be 100%.

2.2.2 Non-Ideal Converter

In the Non-Ideal CCM converter, power loss was observed in order to obtain an

output voltage expression and the same technique is used here for the Non-Ideal

DCM Converter. The same parasitic losses in CCM operation contribute loss in

DCM such that,

PLoss = PrL + PSW + PD

PS = PO + PLoss

Unlike the CCM derivation, however, it is not accurate to simply state that PS =

VSIS. In DCM, and as Figure 2.2 shows, there is a period of time during each switching

cycle that the inductor current goes to zero. Since the switch is open, current can

only flow from the source, through the inductor and diode, and then into the load.

However, since there is no current in the inductor, there cannot be any current from

the source which implies no power is being supplied by the source during that period.

Thus, it’s clear that,

PS = (D +D1)VSIS

Again, since the inductor only conducts during DTS and D1TS, its series resistance

only absorbs power during that time. The rest of the loss mechanisms are similar to

that of the CCM converter where the switch resistance absorbs power during DTS

while the diode only absorbs during D1TS. Using this knowledge, (2.24) can be
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constructed in order to derive an expression for the output voltage.

(D +D1)VSIL = VOIO + (D +D1)rLI
2
L +DrSW I

2
L +

1

2
CSWV

2
OFS +D1VDIL (2.24)

Since the output current is the same as the inductor current during the D1 cycle,

IO can be said to be the same as D1IL. Solving for IL and plugging into (2.24) yields:

DVS +D1VS = D1VO +
D

D1

rLIO + rLIO +
D

D1

rSW IO +
D1

2IO
CSWV

2
OFS +D1VD

From here, a few re-definitions are needed in order to keep the resulting equation

manageable. First, recalling that D1 is given as
(

2LFs
DR

) (
VO
VS

)
in (2.21) and τL = LFS

R

in (2.23), redefine:

M =
VO
VS

(2.25)

rX =
rL + rSW

R
(2.26)

κ =
VD
VS

(2.27)

τsw = RCSWFS (2.28)

Thus, D1 becomes 2τL
D
M and the above parameters can be plugged into the power

conservation equation which results in,

M2
[
1 +

τsw
2

]
+M

[
DrL
2RτL

+ κ− 1

]
+

[
D2(DrX − 2τL)

(2τL)2

]
= 0

Solving this quadratic equation for M and plugging VO
VS

back into M yields the

final output voltage equation for a Non-Ideal converter in DCM as shown in (2.29).

VO = VS

[√
2D2(τsw + 2)(2τL − rX) + 4τL(κ− 1)2

[
τL +D rL

R

]
+
(
D rL

R

)2

2τL(τsw + 2)
· · ·

· · · −
2τL(κ− 1)− rL

R

2τL(τsw + 2)

]
(2.29)

Obviously, (2.29) is rather vague due to the re-definitions from (2.25)-(2.28), but
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it lends itself well to solving via software such as MATLAB R©. In order to check the

answer, eliminate all of the parasitics (κ, rX , τsw, and rL). This process yields:

M =

√
8τLD2 + 4τ 2

L + 2τL
4τL

VO =
VS
2

(
1 +

√
8τLD2

4τ 2
L

+
4τ 2
L

4τ 2
L

)

∴ VO =
VS
2

(
1 +

√
1 +

2D2

τL

)
X

which verifies the ideal converter equation in (2.22).

Output Ripple

Just like in the ideal case, the output ripple due to the capacitor is identical to that

of a converter operating in CCM (2.4). The ripple due to the ESR, however, does

have a slight change: (1−D) in equation (2.12) is replaced with D1. Plugging in for

D1 with (2.21) yields the following new expression for IL,max in DCM:

IL,max =
DVS
2LFS

+
DVS

2LFS + 2D(rL + rSW )
(2.30)

Thus, by utilizing the expression for the ESR ripple voltage found previously in (2.13),

the ESR ripple in DCM is determined by (2.31) where the worst-case total output

ripple voltage is given by (2.32).

∆VO,esr =

[
DVS
2LFS

+
DVS

2LFS + 2D(rL + rSW )

]
rC (2.31)

∆VO,total =
DIO
CFS

+

[
DVS
2LFS

+
DVS

2LFS + 2D(rL + rSW )

]
rC (2.32)

Efficiency

To find the efficiency of the Non-Ideal converter in DCM, equation (2.16) is employed

where PLoss is given by (2.33).

PLoss = (D +D1)rLI
2
L +DrSW I

2
L +

1

2
CSWV

2
OFS +D1VDIL
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PLoss =
D

D2
1

rLI
2
O +

1

D1

rLI
2
O +

D

D2
1

rSW I
2
O +

1

2
CSWV

2
OFS + VDIO

PLoss =
V 2
O

R

[(
D

2LFS

)2(
VS
VO

)2

RDrL +
DrL
2LFS

(
VS
VO

)
· · ·

· · ·+
(

D

2LFS

)2(
VS
VO

)2

DrSW +
1

2
RCSWFS +

VD
VO

]
(2.33)

Plugging (2.33) into (2.16) results in an expression for the efficiency of a Non-Ideal

converter in DCM given in (2.34).

ηDCM =
1

1 + D3R
(2LFS)2

(
VS
VO

)2

[rL + rSW ] + DrL
2LFS

(
VS
VO

)
+ 1

2
RCSWFS + VD

VO

(2.34)

2.3 CCM vs. DCM

Being able to compare the different parameters for CCM and DCM is important to

develop understanding of the design trade-offs involved. However, comparison isn’t

as straight-forward as it initially may seem since operation in either mode depends

on a number of parameters (L, FS, IO, etc.). In order to properly compare the two

modes, the realistic operation needs to be compared to the converter ONLY in CCM

and the converter ONLY in DCM (despite there being regions where the equations

are invalid). To do so, the boundary between CCM and DCM needs to be defined.

Refer to Figure 2.2. Since DCM operation is defined by the inductor current

reaching zero before the end of the switching cycle, the transition between CCM and

DCM must occur when D +D1 = 1. Thus,

1 = D +

(
VO
VS

)(
2LFS
RD

)
L =

R(D −D2)VS
2FSVO

Since VO
VS

= 1
1−D given in (2.3):

Lcrit =
(1− VS

VO
)V 2

S

2FSVOIO
(2.35)
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Figure 2.5: Output Voltage versus Duty Cycle Comparison for DCM and CCM

So if L > Lcrit, that implies that the converter is operating in CCM whereas in any

other case the converter is operating in DCM. Using this definition allows relatively

seamless transition between modes, as shown in Figure 2.5. Note that the following

parameters were used in all examples in this section: L = 18µH, C = 4.7µF ,

VS = 3.5V , FS = 350 kHz, rL = 1 Ω, rSW = 0.3 Ω, rC = 0.1 Ω, VD = 0.3V ,

COSS = 50 pF , and CD = 10 pF with an ideal VO = 5.5V and IO varying as 1mA,

15mA, and 35mA. The load resistance, R, was simply calculated by taking the ideal

VO value and dividing by each defined load current.

Figures 2.6 and 2.7 show the converter efficiency and ripple voltage. As mentioned

in Section 2.1.2, the discontinuity in the efficiency plot can be attributed to the

approximation that in DCM the switch capacitance charges and discharges to VO

rather than VS [11].

Sensitivity to Parasitics

Observing the sensitivity that different parasitics have on the DC operation of the

converter is important to develop an understanding of which parameters contribute

most to the non-ideal behavior. Figures 2.8, and 2.9 depict the sensitivity of the

converter efficiency in both CCM and DCM with respect to rL and CSW , respectively.

The inductor resistance, rL exhibits similar sensitivity effects for both CCM and

19



Figure 2.6: Efficiency versus Output Current Comparison for DCM and CCM

Figure 2.7: Output Ripple Voltage versus Duty Cycle Comparison for DCM and CCM

DCM with the DCM plot being slightly more affected. For large resistances (10 Ω or

higher), the sensitivity of the efficiency plots approaches −1 which implies that an rL

of those sizes would essentially render the converter unusable (since efficiency, at best,

can be 1). Typical inductor series resistance values fall in the mΩ range, and thus

have a much smaller impact on efficiency (as indicated in Figure 2.8). However, the

slope of the sensitivity in this range is quite large, thus any small variations in rL can
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Figure 2.8: Sensitivity of Efficiency to Changing rL for CCM and DCM

Figure 2.9: Sensitivity of Efficiency to Changing CSW for CCM and DCM

result in a rather substantial decrease in efficiency. Another problem associated with

this is that typically an inductor’s series resistance will have a positive temperature

coefficient so as the inductor’s temperature begins to increase, the resistance will

increase, and thus the efficiency will decrease. The equation for this sensitivity plot
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is found in (2.36) and (2.37).

SηCCMrL
=

−rL
R(1−D)2 + rL +DrSW + 1

2
CSWFSR(1−D)2 + VD

VO
R(1−D)2

(2.36)

SηDCMrL
=

−rL
[

D3R
(2LFS)2

(
VS
VO

)2

+ DR
2LFS

(
VS
VO

)]
1 + D3R

(2LFS)2

(
VS
VO

)2

[rL + rSW ] + DrL
2LFS

(
VS
VO

)
+ 1

2
RCSWFS + VD

VO

(2.37)

The plot in Figure 2.9 is almost comical in that the converter in CCM seems to

be totally unaffected by increasing the CSW value, whereas the converter in DCM has

a nearly linear relationship with increasing this value. It should be noted that if the

graph were to be extrapolated into the µF range that the curve resembled something

more along the lines of Figure 2.8. For switch capacitance values less than 1nF ,

the sensitivity of the DCM converter will increase by 0.005 for roughly every 100 pF

increase in capacitance. The sensitivity equations for CCM and DCM are given in

(2.38) and (2.39), respectively.

Overall, the capacitance has a significantly smaller impact on the efficiency than

that of the inductor series resistance. It may not be a negligible amount, but it’s fairly

clear the inductor series resistance poses a very large threat to converter operation.

SηCCMCSW
=

−1
2
RCSWFS(1−D)2

R(1−D)2 + rL +DrSW + 1
2
CSWFSR(1−D)2 + VD

VO
R(1−D)2

(2.38)

SηDCMCSW
=

−1
2
RCSWFS

1 + D3R
(2LFS)2

(
VS
VO

)2

[rL + rSW ] + DrL
2LFS

(
VS
VO

)
+ 1

2
RCSWFS + VD

VO

(2.39)

Final Thoughts

It’s rather difficult to state which mode is “better” since each have their own merits.

Operating in DCM allows for the inductor size to be smaller since it doesn’t need

to maintain a current through each switching cycle. However, DCM is affected far

more by the dynamic switching power loss mechanisms as discussed previously and

as evidenced by Figure 2.6. As Figure 2.5 shows, as the output current decreases,

the dynamic switching loss begins to have a large impact on the converter efficiency

and is much worse in the case of the DCM converter. However, despite the apparent
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shortcomings of operating a Boost Converter in DCM, there is increased controllabil-

ity which is important to maintain a stiff, regulated output. This will be discussed

in detail throughout Chapter 3.
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Chapter 3

Small-Signal Analysis

A conventional DC switched converter consists of three main components: DC Con-

verter, Error Amplifier, and PWM Generator. This architecture is shown in block

diagram form in Figure 3.1.

The DC characteristics of the converter block have already been discussed in

Chapter 2. The purpose of this block is simply to take a DC voltage, VS, and con-

vert it to a different, scaled, voltage. This block can assume a number of different

architectures (Buck, Boost, Buck-Boost, etc.), but the boost architecture is what is

specifically focused on within the contents of this thesis. That said, Figure 3.1 is a

general form that can be used for any DC-DC converter.

The Error Amplifier block is simply an amplifier that serves to minimize the

steady-state error of the converter. This is typically done with a resistive voltage

divider that is fed from the output of the Converter block to the input of an Op-Amp

or OTA. The various Error Amplifier architectures are explored more thoroughly

throughout Chapter 4.

Figure 3.1: Regulated DC Converter Block Diagram (Adapted from [13])
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Finally, the last major block within a regulated DC-DC converter is the PWM

Generator. This takes the error signal produced by the amplifier, Vc, and converts it

to a digital signal in order to properly drive the switch within the converter. Based on

the DC level of Vc, the PWM Generator will modulate the pulse-width which results

in a varying duty-cycle.

Understanding the role of each of these blocks is incredibly important because

the system is, inherently, a feedback network. This requires careful consideration to

be taken in regards to small-signal performance has the system as the potential to

become unstable and create an oscillator instead of a steady, regulated output voltage.

This chapter will illustrate the analytic techniques used for deriving small-signal

models and transfer functions for a Boost Converter in CCM and DCM operation.

The PWM Generator block transfer function will also be derived. Since the Error

Amplifier is observed in more detail within Chapter 4, the small-signal analysis of

that block will be deferred.

3.1 PWM Generation

Figure 3.2 depicts the conventional circuit used for PWM generation. The amplified

error signal, Vc, is fed into the inverting terminal on the comparator and a voltage

ramp operating at the switching frequency, FS, is fed into the non-inverting terminal.

When the error voltage matches the value of the input ramp, the comparator triggers

Figure 3.2: PWM Generation Circuit
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Figure 3.3: PWM Generation Circuit Waveforms

high (causing the switch to open) which, with a varying error signal, will cause a

modulation of the duty cycle in the output digital waveform. Modulation of this

duty cycle is what controls the output voltage of the converter block. This process is

depicted schematically in Figure 3.3.

Since the input to the PWM block is Vc and the output is d, it is necessary to

find the small-signal transfer function d
Vc

. Doing so is rather straight forward by

observation of the waveforms in Figure 3.3: the duty cycle will simply be equal to

the ratio of the error signal to the ramp voltage peak (as Vc increases, the duty cycle

follows linearly). Thus,

P (s) =
d

Vc
=

1

Vpeak
(3.1)
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3.2 State-Space Averaging

The idea of using State-Space Averaging (commonly shortened to SSA) as a way to

model switched converters was first introduced by R.D. Middlebrook and Slobodan

Ćuk [14]. Since then, it has widely been used as a way to extract various small-signal

and averaged DC transfer functions [15–17].

The basic premise is simple: by obtaining averaged values for each relevant node

voltage and current, a model can be developed which effectively ignores the effects of

the high-frequency switching which, in turn, allows for a linear small-signal model to

be developed. In order to properly obtain a small-signal model for a given converter,

the following steps must be performed:

1. Obtain equations for each state (closed/open).

2. Average the equations over one switching period.

3. Perturb the average equations so that each variable has a DC and AC compo-

nent.

4. Take Laplace Transform.

5. Place new equations into matrices.

6. Extract desired transfer function.

To illustrate this process, an ideal Boost Converter operating in CCM will be used.

State 1: Switch Closed

The first state under consideration where the switch is closed is shown schematically

in Figure 3.4. Using KVL along the left-hand loop, it’s clear that:

VS = VL

VS = L
diL
dt

∴
diL
dt

=
VS
L

(3.2)
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Applying KCL along the right-hand loop yields:

IC = −IR

C
dvo
dt

= −vo
R

∴
dvo
dt

= − vo
RC

(3.3)

State 2: Switch Open

The next state is when the switch is open, as shown schematically in Figure 3.5.

Using KVL along the left-hand loop, and KCL along the right-hand loop (as was

done previously), it’s clear that:

VS = VL + vo

VS = L
diL
dt

+ vo

∴
diL
dt

=
VS
L
− vo
L

(3.4)

Figure 3.4: Ideal Boost Converter with Switch Closed

Figure 3.5: Ideal Boost Converter with Switch Open
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And,

IC = iL − IR

C
dvo
dt

= iL −
vo
R

∴
dvo
dt

=
iL
C
− vo
RC

(3.5)

Averaging the State Equations

Because the converter is assumed to be operating in CCM, the switch will be closed

for the duration of some time dTS while it will be open for some time (1 − d)TS

(where d is the duty-cycle and TS is the switching period). Thus, the averaged state

equations can be determined by adding (3.2) with (3.4) and (3.3) with (3.5) such

that:

˙iL =
1

TS

[
dTS

(
VS
L

)
+ (1− d)TS

(
VS
L
− vo
L

)]
˙iL =

1

L
VS −

1− d
L

vo (3.6)

And,

v̇o =
1

TS

[
dTS

(
− vo
RC

)
+ (1− d)TS

(
iL
C
− vo
RC

)]
v̇o =

1− d
C

iL −
1

RC
vo (3.7)

Perturbation and Laplace Transformation

In order to derive small-signal models, the averaged equations must contain small

signal variables. This is done by replacing each variable with both a DC and AC

value such that a variable x would be equated to X+ x̂. Performing this perturbation

to the variables iL, vo, and d yields:

d(IL + îL)

dt
=

1

L
VS −

1−D − d̂
L

(VO + v̂o)

d(VO + v̂o)

dt
=

1−D − d̂
C

(IL + îL)− 1

RC
(VO + v̂o)
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After expanding the above equations and eliminating both pure DC quantities and

quantities containing multiples of AC quantities (since two small numbers multiplied

by each other yield an even smaller number), the following equations are produced:

ˆ̇iL =
d̂

L
VO −

1

L
v̂o +

D

L
v̂o (3.8)

ˆ̇vo =
1−D
C

îL −
d̂

C
IL −

1

RC
v̂o (3.9)

Taking the Laplace Transform of (3.8) and (3.9) and rearranging such that the state

variables îL and v̂o end up on the right-hand side of each equation yield:

d̂VO = sLîL + (1−D)v̂o (3.10)

d̂IL = (1−D)îL −
(
sC +

1

R

)
v̂o (3.11)

Matrix Creation

Creating the state matrices is straight forward by observation of (3.10) and (3.11):
VO

IL

 d̂ =


sL (1−D)

(1−D) −
(
sC + 1

R

)


îL

v̂o


Since the goal is to obtain a transfer function for v̂o

d̂
, the inverse of the A-Matrix

(that is, the 2 × 2 matrix on the right-hand side of the above equation) must be

pre-multiplied on each side and the variable d̂ must be divided by each side such that

the expression in (3.12) results,

1

d̂


îL

v̂o

 =


sL (1−D)

(1−D) −
(
sC + 1

R

)

−1 

VO

IL

 (3.12)

Taking the inverse of the A matrix can be tedious, especially as the matrix dimen-
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sions begin to increase. As such, it’s wise to use a program such as MATLAB R© in

order to eliminate any potential mistakes that are likely to arise in a hand-derivation.

The inverse of the A-matrix is shown in 3.13. Thus, it’s clear that the expression in

3.14 is the correct small-signal control-to-output transfer function.

A−1 =
1

s2RLC + sL+R(1−D)2


sRC + 1 R(1−D)

R(1−D) −sLR

 (3.13)

v̂o

d̂
=

VO
1−D

[
−sL+R(1−D)2

s2RLC + sL+R(1−D)2

]
(3.14)

In a more general form, this transfer function can be expressed as:

v̂o

d̂
= Gd0

(1− s
ωz,1

)(1 + s
ωz,2

)

s2

ω2
0

+ s
Qω0

+ 1
(3.15)

Gd0 =
VO

1−D
(3.16)

ωz,1 =
R(1−D)2

L
(3.17)

ωz,2 =∞ (3.18)

ω0 =
1−D√
LC

(3.19)

Q = R(1−D)

√
C

L
(3.20)

SSA is a very nice way to generate switched-converter transfer functions; however,

they’re quite tedious. Any time the converter topology changes or components are

added to the circuit (parasitics, for example), all of the state equations and pertur-

bations need to be repeated.

3.3 Average PWM Model

As a solution to the problems associated with State-Space Averaging, Vatché Vorpérian

introduced the idea of an averaged PWM Switch model [18,19]. Since the only switch-
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ing components within a converter are the diode and switch itself, Vorpérian reasoned

that an equivalent circuit model for this switch/diode combination would be simpler

than SSA as a single, general model could be generated and placed in any converter

topology [18].

The circuit used to generated the equivalent circuit for both CCM and DCM oper-

ation is shown in Figure 3.6. There are three terminals: active, passive, and common.

The active node is the node which connects to only the switch, the passive connects

only to the diode, and the common connects to both (as Figure 3.6 indicates). Once

the equivalent PWM Switch circuit is derived, it can be used in any configuration in

any converter topology; in essence, it only needs to be derived once.

The PWM Switch can be derived in three different ways, depending on the ori-

entation of the switch. Regardless of which configuration used, the resultant circuit

model will be the same. Since the analysis up to this point has focused solely on boost

converter topologies, the switch will be assumed to be in a common-active configu-

ration for all derivations, as shown in Figure 3.7. This nomenclature refers to which

node is connected to the common point on the circuit, typically ground. Thus, three

orientations can be used: common-active, common-passive, or common-common.

3.3.1 PWM Switch in CCM

The analysis of the PWM Switch in CCM is rather straight forward under the assump-

tion that the current through the inductor is constant. Consider the active current,

Ia. When the switch is on, during time interval dTS, Ia = Ic. When the switch is

Figure 3.6: PWM Switch (adapted from [18] and [19])
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Figure 3.7: Ideal Boost Converter with Common-Active PWM Switch

Figure 3.8: Common-Active PWM Model in CCM (a) direct equation-to-circuit model
(b) transformer model

closed, the active node is floating and, thus, Ia = 0. Averaging these conditions over

the entire switching period, TS, results in (3.21). Likewise, during the interval dTS,

the common-passive voltage, Vcp will be the same as the active-passive voltage, Vap

since in this state Vc = Va. When the switch is opened, Vc = Vp, thus, Vcp = 0.

Averaging Vcp over the entire switching period results in (3.22).

Ia = dIc (3.21)

Vcp = dVap (3.22)
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These equations are then perturbed, similar to the process used in the State-Space

Averaging technique explained earlier. After perturbation of the variables Ia, d,

Vcp, and Vap (along with the cancellation of higher-order small-signal terms), the

small-signal parameters of îa and v̂cp can be derived, as shown in (3.23) and (3.24),

respectively.

îa = Dîc + d̂IC (3.23)

v̂cp = Dv̂ap + d̂VAP (3.24)

Figure 3.8a shows the average PWM Model in CCM with (3.23) and (3.24)

dropped right into the circuit while Figure 3.8b shows the circuit with a 1 : D ideal

transformer used to replace the Dîc voltage source and Dv̂ap current source.

3.3.2 PWM Switch in DCM

To begin analysis, it is necessary to consider both switching events; that is when the

switch is open, dTS, and when the switch is closed, d1TS. By defining the currents at

each node of the PWM switch as always entering a node, the following can be said

of the average voltages and currents during the ”on” state:

Ic = −Ia = IL

IL,avg =
IL,max

2

∴ Ia = −dIL,max
2

(3.25)

Since the change in inductor current, ∆iL, in DCM will go from zero to some

maximum value during one switching cycle, the change will just end up equaling that

maximum value. Since IL,max = ∆iL, it is clear that:

Vac = −VL = −L∂iL
∂t

Vac = −L∆iL
∆t

34



Vac = −LIL,max
dTS

(3.26)

During the “off” state, it is clear that the same process can be used to derive expres-

sions for Ip and Vcp such that,

Ic = −Ip = IL

IL,avg =
IL,max

2

Ip = −d1
IL,max

2
(3.27)

Likewise, since this is a small-signal derivation, VS = 0V which implies:

Vcp = −VL = −L∂iL
∂t

Vcp = −L∆iL
∆t

Vcp = −LIL,max
d1TS

(3.28)

From these equations, the following relationships between terminal currents and

voltages can be derived:

−IL,max
2

=
Ip
d1

=
Ia
d

and

−LIL,max
TS

= dVac = d1Vcp

Therefore, it’s clear that:

Ia = Ip
d

d1

(3.29)

Vac = Vcp
d1

d
(3.30)

Rearranging equations (3.25) and (3.26) and plugging it into (3.28) and (3.27),
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respectively, yields

Vcp =
2LIaFS
(d)(d1)

and

Vac =
2LIpFS
(d)(d1)

∴ d1 =
2LFS
d

Ia
Vcp

=
2LFS
d

Ip
Vac

(3.31)

This expression for d1 can then be plugged into (3.30) to yield:

Vac =
2LFS
d

Ia
Vcp

(
1

d
)Vcp

Vac =
2LFS
d2

Ia
Vcp

Vcp

∴ Vcp =
d2

2LFS

Vcp
Ia
Vac

and

Vac =
2LFS
d

Ip
Vac

(
1

d
)Vcp

Vac =
2LFS
d2

Ip
Vac

Vcp

∴ Vcp =
d2

2LFS

Vac
Ip
Vac

Thus,

Vcp = µVac (3.32)

where

µ =
d2

2LFS

Vcp
Ia

=
d2

2LFS

Vac
Ip

=
d

d1

(3.33)

Now, by taking the expression for d1 in (3.31) and substituting it into (3.29), the

following relationship appears:

Ia = Ipd(
d

2LFS
)(
Ia
Vcp

)
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Ia =
d2

2LFS
(
Ia
Vcp

)Ip

∴ Ia = µIp (3.34)

Using the average equations derived in the previous section, a small-signal model

can be derived by perturbing each node current and voltage as well as the duty-cycle.

To perform this perturbation analysis, the following relationships must be established:

Ia = IA + îa

Ip = IP + îp

Vac = VAC + v̂ac

d = D + d̂

The first step will be to substitute these values, which contain steady-state and

small-signal components, into both (3.34) and (3.31) (and ignoring higher-order small-

signal quantities),

IA + îa =
D + d̂

d1

(IP + îp)

d1 =
2LFS

D + d̂

IP + îp
VAC + v̂ac

∴ IA + îa =
D + d̂

2LFS
D+d̂

IP+îp
VAC+ ˆvac

(IP + îp)

IA + îa =
DVAC +Dv̂ac + d̂VAC

2LFS
(D + d̂)

∴

(
IA
VAC

)(
2LFS
D2

)
(IA + îa) = IA +

IA
VAC

v̂ac +
2IA
D
d̂

From (3.30), VAC = D1

D
VCP , therefore:(

1

D1

)(
IA
VCP

)(
2LFS
D

)
(IA + îa) = IA +

IA
VAC

v̂ac +
2IA
D
d̂
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From (3.31), D1 = 2LFS
D

IA
VCP

, so the term on the left-hand side of the equation cancels

leaving:

îa =
IA
VAC

v̂ac +
2IA
D2

d̂

From here, the coefficients to the small signal parameters can be defined as:

gi =
IA
VAC

(3.35)

ki =
2IA
D

(3.36)

∴ îa = giv̂ac + kid̂ (3.37)

Next it is necessary to perturb equation (3.30) in order to obtain a relationship for

the small-signal current at the passive terminal, îp:

VAC + v̂ac =
d1

D + d̂
(VCP + v̂cp)

VAC + v̂ac =
2LFS

D2 + 2Dd̂

(
IPVCP + IP v̂cp + îpVCP

VAC + v̂ac

)
V 2
AC + 2VAC v̂ac

2LFS
=
IPVCP + IP v̂cp + îpVCP

D2 + 2Dd̂

(IP + îp)VCP =
V 2
AC + 2VAC v̂ac

2LFS
(D2 + 2Dd̂)− IP v̂cp

IP + îp =
1

2LFS

[
V 2
ACD

2

VCP
+

2V 2
ACDd̂

VCP
+

2D2VAC v̂ac
VCP

]
− IP
VCP

v̂cp

From (3.30), VAC
VCP

= D1

D
, therefore:

IP + îp =
D1

2LFS
[DVAC + 2VAC d̂+ 2Dv̂ac]−

IP
VCP

ˆvcp

∴ IP + îp =
IP

DVAC
[DVAC + 2VAC d̂+ 2Dv̂ac]−

IP
VCP

ˆvcp

îp =
2IP
D

d̂+
2IP
VAC

v̂ac −
IP
VCP

v̂cp
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Figure 3.9: Equivalent Circuit for Small-Signal PWM Switch in DCM

Thus, the following parameters can be defined:

k0 =
2IP
D

(3.38)

g0 =
IP
VCP

(3.39)

gf =
2IP
VAC

(3.40)

which results in a final expression for the small-signal current at the passive node as:

îp = gf v̂ac + k0d̂− g0v̂cp (3.41)

Now, since expressions for both the small-signal currents at the active and passive

nodes have been derived, a small-signal circuit model can be created for the PWM

switch as shown in Figure 3.9. Note that this model is in agreement with those derived

by both by Vorpérian in [19] and by Reatti and Kazimierczuk in [20].

3.4 Transfer Functions

In order to derive the small-signal transfer functions for the boost converter in both

CCM and DCM, the derived models (Figures 3.8 and 3.9, respectively) will be placed
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into the boost architecture and then analyzed. Using State-Space Averaging, the

ideal CCM transfer function was derived in (3.14) but will be re-derived in order to

illustrate the accuracy of the PWM Model. Parasitics will be added to the circuit

as well in order to observe their impact on small-signal performance (specifically, the

inductor resistance and capacitor resistance).

3.4.1 CCM: Ideal Transfer Function

By taking the CCM small-signal model for the PWM Switch derived earlier and

placing it into the boost converter circuit, Figure 3.10 can be created. This circuit

is now a linear small-signal model which can be analyzed to find any given transfer

function (control-to-output, input-to-output, etc). Since the control-to-output, v̂o
d̂

, is

the transfer function of concern here, the small-signal source vi is set to 0.

In order to simplify analysis, the circuit shown in Figure 3.10 can be modified, as

explained in [21]. This simplification involves moving the voltage source and current

source to the other side of the transformer and connecting the capacitor and load

resistance to the common, as opposed to passive, terminal. The resultant circuit is

shown in Figure 3.11.

From here, nodal analysis can be used to derive the proper transfer function.

First, observe that v̂p = v̂o. Since v̂cp = Dv̂ap, due to the transformer’s 1 : D turns

ratio, the value for v̂c can be derived as follows:

v̂c − v̂o = −Dv̂o

Figure 3.10: Equivalent Small-Signal Boost Circuit in CCM
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Figure 3.11: Equivalent Small-Signal Boost Circuit in CCM After Transformation Given
in [21]

v̂c = v̂o(1−D) (3.42)

Using nodal analysis, and plugging VO in for VP and plugging VO
R(1−D)

in for IC

results in the following expression,

−VO
R(1−D)2

d̂ =
v̂c − VOd̂

sL
+

sCv̂c
(1−D)2

+
v̂c

R(1−D)2

−VO
R(1−D)2

d̂ =
(1−D)

sL
v̂o −

VO
sL
d̂+

sC

1−D
v̂o +

1

R(1−D)
v̂o

After rearranging and finding a common denominator, the following expression emerges,

v̂o

[
s2RLC + sL+R(1−D)2

sLR(1−D)

]
= d̂VO

[
R(1−D)2 − sL
sLR(1−D)2

]
thus, v̂o

d̂
is given as:

v̂o

d̂
=

VO
1−D

[
−sL+R(1−D)2

s2RLC + sL+R(1−D)2

]
X

which verifies the answer found in (3.14).
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Figure 3.12: Equivalent Small-Signal Boost Circuit in CCM with Non-Idealities Included

3.4.2 CCM: Non-Ideal Transfer Function

By adding in the non-ideal inductor and capacitor series resistances, as shown in

Figure 3.12, a more accurate (and, unfortunately, more complex) transfer function

can be derived. The same process used in the ideal derivation will be used here. Since

v̂c = v̂o(1−D) from the previous derivation, it’s clear that:

− VO
R(1−D)2

d̂ =
(1−D)v̂o − VOd̂

sL+ rL
+

sC

(srCC + 1)(1−D)
v̂o +

1

R(1−D)
v̂o

Rearranging the above equation so that the v̂o and d̂ terms are separated and above

common denominators yields:

v̂o

[
R(srCC + 1)(1−D)2 + s2RLC + sRrLC + (sL+ rL)(srCC + 1)

R(sL+ rL)(srCC + 1)(1−D)

]
· · ·

· · · = d̂VO

[
R(1−D)2 − (sL+ rL)

R(sL+ rL)(1−D)2

]
After solving for v̂o

d̂
and expanding the terms in both the numerator and denominator,

the small-signal non-ideal transfer function for a boost converter in CCM was found

as shown in (3.43).

v̂o

d̂
=

VO
1−D

[
−s2 rC

R
L+ s(rC(1−D)2 − L

RC
− rCrL

R
)− rL

RC
+ 1

C
(1−D)2

s2L( rC
R

+ 1) + s[rC(1−D)2 + rL + rCrL
R

+ L
RC

] + rL
RC

+ (1−D)2

C

]
(3.43)
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Figure 3.13: Bode Plot for Ideal Boost in CCM with L = 180µH, C = 4.7µF , FS =
350 kHz, and VO

VS
= 2.5.

Alternatively, the transfer function can be expressed in the more general form given

in (3.15) with:

Gd0 =
VO

1−D
R(1−D)2 − rL
R(1−D)2 + rL

(3.44)

ωz,1 =
R(1−D)2 − rL

L
(3.45)

ωz,2 =
1

rCC
(3.46)

ω0 =
1√
LC

√
R(1−D)2 + rL

R + rC
(3.47)

Q =
√
LC

√
(R + rC)(R(1−D)2 + rL)

RrCC(1−D)2 +RrLC + rCrLC + L
(3.48)

Ideal and Non-Ideal Comparisons

Figure 3.13 shows the Bode plot for the ideal transfer function given in (3.14). Figure

3.14 shows the Bode plot for the non-ideal transfer function given in (3.43). The

parameters used were: L = 180µH, C = 4.7µF , FS = 350 kHz, VO
VS

= 2.5, rL = 0.8 Ω,

and rC = 0.1 Ω.
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Figure 3.14: Bode Plot for Non-Ideal Boost in CCM with L = 180µH, C = 4.7µF ,
FS = 350 kHz, VO

VS
= 2.5, rL = 0.8 Ω, and rC = 0.1 Ω.

A notable feature of Figure 3.13 is the resonant peak that occurs for large load

resistances. The explanation for this is rather simple: as the load resistance increases,

the load current must decrease. Since the diode is reverse-biased during the interval

when the switch is closed, the load current must be supplied by the capacitor. Since

load current is small, the RC time constant is large indicating that it will take a large

amount of time for the capacitor to fully discharge. Since this is the case, there is

a large amount of energy still stored in the capacitor at the time where the switch

opens. This, along with the energy stored in the inductor, causes resonance if the

switch is modulated at an appropriate frequency. The location of this peak can easily

be predicted by (3.19) and is 2.2 kHz for the ideal transfer. In the non-ideal case,

the peak exhibits a slight decrease in frequency due to the series resistances of the

inductor and capacitor as shown in (3.47).

Figures 3.15 and 3.16 depict the step responses for the ideal and non-ideal CCM

converters, respectively. As predicted by the Bode plot comparison, the non-ideal

converter is noticeably more stable. Likewise, stability begins to increase with an

increase in load current.

From a transient perspective, it’s clear that the loss mechanisms in the circuit

contribute to a decrease in the steady-state value of the converter. This is expected
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Figure 3.15: Step Response for Ideal Boost in CCM with L = 180µH, C = 4.7µF ,
FS = 350 kHz, and VO

VS
= 2.5.

Figure 3.16: Step Response for Non-Ideal Boost in CCM with L = 180µH, C = 4.7µF ,
FS = 350 kHz, VO

VS
= 2.5, rL = 0.8 Ω, and rC = 0.1 Ω.

from the equations derived in Chapter 2 that showed that the ideal CCM converter

has no load dependence in (2.3), while the non-ideal CCM converter does in (2.10).

This indicates that a controller used to try and maintain a fixed DC voltage for

varying loads not only has to compete with the inherent instability of the converter

(thanks to the conjugate pair pole in the system), but also needs to provide enough
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gain in order to maintain a regulated output.

3.4.3 DCM: Ideal Transfer Function

Using the circuit derived in Figure 3.9 and placing it into the boost converter model

results in the circuit shown in Figure 3.17.

In order to derive the control-to-output transfer function (ignoring all parasitics),

the small-signal source v̂i needs to be set to zero. Doing so allows for the following

equation to be developed using KCL at the control node:

0 =
vac
sL

+ vacgi + kid̂+ gfvac − vcpgo + kod̂

Since va = 0 and vp = v̂o, with some rearranging of terms, the following expression

for vc can be generated:

vc =
v̂osLgo + d̂[sL(ki + ko)]

sL(gi + gf + go) + 1
(3.49)

Next, it is necessary to develop an expression using KCL at the output node:

0 = vcpgo − gfvac − kod̂− vosC −
vo
R

Again, with some rearranging and by substituting va = 0 and vp = v̂o, another

Figure 3.17: Equivalent Small-Signal Boost Circuit in DCM
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expression for vc can be generated:

vc =
v̂o[sC + 1

R
+ go] + kod̂

go + gf
(3.50)

In order to obtain an expression for the transfer function v̂o
d̂

, (3.49) must be set equal

to (3.50):

v̂o
sC + 1

R
+ go

go + gf
+ d̂

ko
go + gf

= v̂o
sLgo

sL(gi + gf + go) + 1
+ d̂

sL(ki + ko)

sL(gi + gf + go) + 1

v̂o

[
sRC +Rgo + 1

R(go + gf )
− sLgo
sL(gi + go + gf ) + 1

]
= · · ·

· · · d̂
[

sLki + sLko
sL(gi + go + gf ) + 1

− ko
go + gf

]

v̂o

[
(sRC + goR + 1)(sL[gi + gf + go] + 1)− sLRgo(go + gf )

R(go + gf )(sL[gi + gf + go] + 1)

]
= · · ·

· · · d̂
[
sL(ki + ko)(go + gf )− sLko(gi + go + gf )− ko

(go + gf )(sL[gi + go + gf ] + 1)

]
Therefore, the small-signal control-to-output transfer function is:

v̂o
d

=
sLR[ki(gf + go)− kogi]− koR

s2LRC[gi + go + gf ] + s[RC + L(gi + go + gf ) + LRgogi] + goR + 1
(3.51)

Equation (3.51) verifies the findings reported in [20] by Reatti and Kazimierczuk for

the boost-converter control-to-output transfer function.

For a proper comparison, this transfer function can be manipulated in order to fit

the general form of (3.15). First, recall the definitions for gi, ki, k0, g0, and gf given in

(3.35), (3.36), (3.38), (3.39), and (3.40), respectively. By analyzing these parameters

and plugging in for known circuit quantities, the expressions can be manipulated as

shown in (3.52)-(3.56) where M = VO
VS

and τL = LFS
R

:

gi =
IA
VAC

=
D
D1

VO
R

D1VO
=
D

R

(
D

2τLM

)2

(3.52)
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g0 =
IP
VCP

=
VO
R

DVO
=

1

RD
(3.53)

gf =
2IP
VAC

=
2VO
R

D1VO
=
D

R

1

MτL
(3.54)

ki =
2IA
D

= −
2VO
R

D1

= −D
R

VO
MτL

(3.55)

ko =
2IP
D

= −
2VO
R

D
= −2VO

RD
(3.56)

After plugging the above equations into (3.51) and some algebraic manipulation, the

following parameters were extracted for the general transfer function in (3.15).

Gd0 =
2VO

1 +D
(3.57)

ωz,1 = − 2(MτL)2

D2 L
R

(
D
2

+ MτL
D

) (3.58)

ωz,2 =∞ (3.59)

ω0 =
2MτL√
LC

√
1 +D

D4 + 4D2MτL + 4M2τ 2
L

(3.60)

Q =
1

ω0

[
4(MτL)2(1 +D)

4RCDM2τ 2
L + L

R
(D4 + 4D2MτL + 4M2τ 2

L) + L
R
D3

]
(3.61)

3.4.4 DCM: Non-Ideal Transfer Function

Using Figure 3.18, the non-ideal DCM small-signal transfer function can be derived.

The process follows the same structure as the ideal derivation where nodal analysis

was utilized.

First, observe the currents at the v̂c node. Using KCL, the following expression
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can be created:

0 =
v̂c

sL+ rL
+ v̂cgi − kid̂+ v̂cpg0 + gf v̂c − k0d̂

Such that:

v̂c =
v̂og0(sL+ rL) + d̂(ki + k0)(sL+ rL)

(sL+ rL)(gi + g0 + gf ) + 1
(3.62)

Moving to the output of the converter and, again, utilizing KCL gives the following

expression:

0 = v̂pcg0 + gf v̂ac + k0d̂+
v̂osC

srCC + 1
+
v̂o
R

After rearranging terms and plugging (3.62) in for v̂c yields:

v̂o

[
s(RCrCg0 +RC + CrC) +Rg0 + 1

sRCrC +R
− g0(sL+ rL)(gf + g0)

(sL+ rL)(gi + gf + g0) + 1

]
= · · ·

· · · d̂
[

(gf + g0)(ki + k0)(sL+ rL)− k0(sL+ rL)(gi + gf + g0)− k0

(sL+ rL)(gi + gf + g0) + 1

]
Clearly, the resulting equation will be very long. Thus, in order to condense the

transfer function, the form of (3.63) is used where each parameter is given in (3.64)

through (3.69):

T (s) =
a2s

2 + a1s+ a0

b2s2 + b1s+ b0

(3.63)

Figure 3.18: Equivalent Small-Signal Non-Ideal Boost Circuit in DCM
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a2 = LRCrC [(gf + g0)ki − k0gi] (3.64)

a1 = RCrC [rL(gf + g0)ki − rLk0gi − k0] · · ·

· · ·+ LR[(gf + g0)ki − k0gi] (3.65)

a0 = RrL[(gf + g0)ki − k0gi]−Rk0 (3.66)

b2 = LRCrCgig0 + LC(R + rC)(gi + g0 + gf ) (3.67)

b1 = LRg0gi + L(gi + g0 + gf ) +RCrC(rLgi + 1) · · ·

· · ·+ (RC + rCC)[rL(gi + g0 + gf ) + 1] (3.68)

b0 = rL(gi + g0 + gf ) + g0giRrL +Rg0 + 1 (3.69)

These values verify the findings in [20]. Of course, to better compare to the

previous functions, it’s important to fit these values to the general equation given

in (3.15). Obtaining ω0 and Q are straight forward, but obtaining the zeros of the

transfer function are not quite as simple. The best approach is to place the numerator

into an A matrix and solve for the eigenvalues. The A matrix has a structure of:

A =
1

a0


−a1 −a2

a0 0


By plugging (3.64)-(3.66) into the A matrix and solving for the eigenvalues, λi, the

zeros of the function can be extrapolated as:

ωz,1 =
1

λ1

and ωz,2 =
1

λ2

After performing the aforementioned operations, the general-structure parameters

were found to be:

Gd0 =

2VO
D

+RrL

(
D2VO

2(MτL)2R2 − VO
R
− D2VO

RMτL

)
rL

(
1
DR

+ D3

4(MτL)2R
+ D

MτLR

)
+ 1

D
+ D2rL

4(MτL)2R
+ 1

(3.70)

ωz,1 = −rLD
3 + 2rLDMτL − 4R(MτL)2

LD3 + 2MτLLD
(3.71)
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Figure 3.19: Bode Plot for Ideal Boost in DCM with L = 18µH, C = 4.7µF , FS =
350 kHz, and VO

VS
= 1.6.

ωz,2 =
1

rCC
(3.72)

ω0 =
1√
LC

√
(1 +D)(rLD3 + 4R(MτL)2) + 4MτLrL(D2 +MτL)

D3rC + (R + rC)(D4 + 4D2MτL + 4(MτL)2)
(3.73)

Q =
rL[D2(D2 + 4MτL) + 4(MτL)2 +D3] + 4R(MτL)2(1 +D)

ω0Qd

(3.74)

Qd = L(D4 +D3 + 4MτLD
2 + 4(MτL)2) + rCC(rLD

3 + 4R(MτL)2) · · ·

· · ·+ (RC + rcC)[rL(D4 + 4MτLD
2 + 4(MτL)2) + 4DR(MτL)2] (3.75)

Ideal and Non-Ideal Comparisons

A comparison of the Bode plots for the ideal and non-ideal DCM transfer functions

is shown in Figure 3.19 and Figure 3.20, respectively. The parameters used were:

L = 18µH, C = 4.7µF , FS = 350 kHz, VO
VS

= 1.6, rL = 0.8 Ω, and rC = 0.1 Ω.

Besides the noticeable effects due to the additional zero given in (3.72) which,

ultimately, has little effect on the overall converter performance, there is a noticeable

decrease in open-loop gain as the current increases. Once the load resistance drops

below a certain range, 0.72 Ω for the parameters listed above, the open-loop gain

dips below 0 dB which renders the converter essentially inoperable (without external
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Figure 3.20: Bode Plot for Non-Ideal Boost in DCM with L = 18µH, C = 4.7µF ,
FS = 350 kHz, VO

VS
= 1.6, rL = 0.8 Ω, and rC = 0.1 Ω.

Figure 3.21: Step Response for Ideal Boost in DCM with L = 18µH, C = 4.7µF ,
FS = 350 kHz, and VO

VS
= 1.6.

control, that is).

Figures 3.21 and 3.22 show the step response for the ideal and non-ideal DCM

transfer functions, respectively. Here, two different loads were used, as indicated on

each figure, in order to see the transient behavior as a function of the load. The steady-

state behavior is a function of the load, as predicted in the DC voltage gain function
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Figure 3.22: Step Response for Non-Ideal Boost in DCM with L = 18µH, C = 4.7µF ,
FS = 350 kHz, VO

VS
= 1.6, rL = 0.8 Ω, and rC = 0.1 Ω.

in (2.22) in Chapter 2. This is a primary reason why feedback control is incredibly

important as the duty cycle (the only controllable parameter in the circuit) must be

modulated in order to maintain a given steady-state DC voltage for varying loads.

As shown previously, this is not the case for CCM; however, the two-pole behavior

of the system requires control in order to move the 0 dB crossing point such that the

converter is stable in all required operating conditions.

Another observation of these two step responses is that they look identical. This

indicates that the ideal and non-ideal transfer function may be approximately equal

which, in turn, also implies that the loss mechanisms present in the circuit have a

negligible effect on transient and small-signal performance. This will be discussed

more thoroughly throughout the next section.

3.5 Transfer Function Comparison

It’s difficult to compare the transfer functions for CCM and DCM since both are

defined by different operating regions. A function valid in DCM, by definition, cannot

be valid in CCM. Various parameters have to be carefully selected to guarantee that

the converter is operating in a desired region. This is why the CCM and DCM
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Figure 3.23: Open-Loop Gain Comparison for Varying Load Resistances with L = 18µH,
C = 4.7µF , FS = 350 kHz, and M = 1.6.

converters were generated with different parameters.

To alleviate this problem, it’s possible to observe the individual transfer func-

tion parameters as a point of comparison (referencing the general transfer function

equation given in (3.15)). Table 3.1 shows a comparison of the Open-Loop Gain

expressions for each transfer function while Figure 3.23 shows a comparison of the

open-loop gain values for varying load resistance. Here, the only parameter being

modified to achieve the correct region of operation is the duty cycle, D.

A very interesting feature of Figure 3.23 is that the open-loop gain for the converter

in DCM is very similar in both the ideal and non-ideal case across a large range of load

Table 3.1: Comparison of Transfer Function Open Loop Gain Equations

Gd0

CCM (Ideal) VO
1−D

DCM (Ideal) 2VO
1+D

CCM (Non-Ideal) VO
1−D

R(1−D)2−rL
R(1−D)2+rL

DCM (Non-Ideal)

2VO
D

+RrL

(
D2VO

2(MτL)2R2−
VO
R
− D2VO
RMτL

)
rL

(
1
DR

+ D3

4(MτL)2R
+ D
MτLR

)
+ 1
D

+
D2rL

4(MτL)2R
+1
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Figure 3.24: Open-Loop Gain DCM Approximation Error

resistances. This differs from the ideal and non-ideal curves for the CCM region of

operation in that the gain clearly begins to diverge at large output currents. Luckily,

the expression for the non-ideal CCM open-loop gain given in (3.44) is not very

complex when compared to the non-ideal DCM expression in (3.70). Because of the

complexity of the DCM expression, it is very attractive to try and approximate the

non-ideal gain to the ideal gain given in (3.57). Figure 3.24 shows the percent error

in doing so.

Approximating Gd0,nonideal to be ≈ 2VO
1+D

is perfectly valid for a small load currents.

However, the definition for a “small load current” varies on the DC gain of M = VO
VS

:

as Figure 3.24 clearly shows, an increasing DC gain causes the error to increase at

smaller load current (presented here as larger load resistances). That said, given that

operation in DCM is typically dictated by small load currents, this approximation

will hold true in most applications; however, it is always wise to verify that the

approximation will hold based on the application.

Table 3.2 shows the equations for ω0 for each transfer function while Figure 3.25

compares them graphically with a varying load resistance. Similar to the open-loop

gain comparison plot (Figure 3.23), the ideal and non-ideal DCM ω0 curves exhibit

almost identical behavior for large load resistances. Due to the complexity of the

non-ideal expression in (3.73), it would be very beneficial to be able to approximate
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Table 3.2: Comparison of Transfer Function Resonant Frequency Equations

ω0

CCM (Ideal) 1−D√
LC

DCM (Ideal) 2MτL√
LC

√
1+D

D4+4D2MτL+4M2τ2L

CCM (Non-Ideal) 1√
LC

√
R(1−D)2+rL

R+rC

DCM (Non-Ideal) 1√
LC

√
(1+D)(rLD3+4R(MτL)2)+4MτLrL(D2+MτL)

D3rC+(R+rC)(D4+4D2MτL+4(MτL)2)

Figure 3.25: Resonant Frequency Comparison for Varying Load Resistances with L =
18µH, C = 4.7µF , FS = 350 kHz, and M = 1.6.

ω0,nonideal to ω0,ideal. Thus, a graphical comparison is presented in Figure 3.26.

As was observed in the approximation error graph for Gd0 in Figure 3.24, the

approximation holds best for small load currents and small DC conversion ratios.

This behavior is also exhibited for the resonant frequency approximation in Figure

3.26.

Next, Table 3.3 compares the expression for the quality factor, Q, for each transfer

function while Figure 3.27 graphically compares them for varying load resistances.

The Q-factor is an important consideration for the small-signal response since it gives

an indication of how stable the system actually is. In canonical second-order systems,

the step-response can be plotted just through knowledge of ω0 and Q alone. When
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Figure 3.26: Resonant Frequency DCM Approximation Error

Q > 0.5, the system is said to be underdamped in that oscillations will occur when

the system is stepped, but they will die out after a certain interval. Conversely,

when Q < 0.5, the system is overdamped which causes the system to be slow, but

no ’ringing’ will occur. However, since the boost converter has second order zeros

associated with its transfer function, the step-response cannot be extracted as easily

(although the underlying canonical second-order effects are still observable). Despite

the added complexity due to the presence of ωz,1 and ωz,2, the general trend is still

the same for Q in that aiming for a value around 0.5 is most ideal (as it has the

fastest rise-time and settling-time). Unfortunately, it’s incredibly difficult to observe

the effects of various parameters on the value of Q due to the complexity (especially

for the non-ideal DCM case in (3.74)).

As with the previous parameters of Gd0 and ω0, the error introduced by approx-

imating Qnonideal to Qideal is displayed in Figure 3.28. Again, as with the previous

parameters, for small load currents the approximation is valid.

Finally, Table 3.4 compares the expression for the zeros of each transfer function

while Figure 3.29 graphically compares them for varying load resistances. Figure 3.30

shows the error in using an approximation of ωz,1,nonideal ≈ ωz,1,ideal. As was the case

for all previous parameters, the approximation is valid for small load currents.

The result of comparing each transfer function parameter is that for small load cur-
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Table 3.3: Comparison of Transfer Function Quality Factor Equations

Q

CCM (Ideal) R(1−D)
√

C
L

DCM (Ideal) 1
ω0

[
4(MτL)2(1+D)

4RCDM2τ2L+L
R

(D4+4D2MτL+4M2τ2L)+L
R
D3

]
CCM (Non-Ideal)

√
LC

√
(R+rC)(R(1−D)2+rL)

RrCC(1−D)2+RrLC+rCrLC+L

DCM (Non-Ideal) rL[D2(D2+4MτL)+4(MτL)2+D3]+4R(MτL)2(1+D)
ω0Qd

Figure 3.27: Quality Factor Comparison for Varying Load Resistances with L = 18µH,
C = 4.7µF , FS = 350 kHz, and M = 1.6.

Table 3.4: Comparison of Transfer Function Zero Frequency Equations

ωz,1 ωz,2

CCM (Ideal) R(1−D)2

L
∞

DCM (Ideal) − 2(MτL)2

D2 L
R

(
D
2

+
MτL
D

) ∞

CCM (Non-Ideal) R(1−D)2−rL
L

1
rCC

DCM (Non-Ideal) − rLD
3+2rLDMτL−4R(MτL)2

LD3+2MτLLD
1

rCC
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Figure 3.28: Quality Factor DCM Approximation Error

Figure 3.29: RHP Zero Comparison for Varying Load Resistances with L = 18µH,
C = 4.7µF , FS = 350 kHz, and M = 1.6.

rents the non-ideal DCM function can be approximated to the ideal transfer function

with the only change being ωz,2 = 1
rCC

as opposed to∞. Since DC-DC converters are

typically pushed into DCM operation due to small load currents, this approximation

will be valid for a wide range of loads, provided the DC conversion ratio is not very

large. The area in which the approximation is not valid will occur near the transition
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Figure 3.30: RHP Zero DCM Approximation Error

Figure 3.31: Pole Zero plot for Non-Ideal CCM and DCM Transfer Functions (RHPZs
Not Plotted)

between CCM and DCM. This result is somewhat similar to the modes of operation

in a MOS transistor in that the weak-inversion and strong-inversion equations are

rather simple but are invalid in a certain boundary between weak and strong [22].

Here, the transistor equations become far more complex and the transistor is said to

be in moderate inversion. Another similarity between the approximations for MOS

equations and boost transfer functions is that a MOSFET is typically used deep in
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strong-inversion or deep in weak-inversion. DC-DC converters, too, are either op-

erating deep in CCM or deep in DCM since the converter’s characteristics undergo

significant alterations when transitioning into either operation mode, as previously

shown.

The ability to approximate the non-ideal DCM boost converter to that of an ideal

one is very powerful, but can be very dangerous if analysis is not done to ensure that

the approximation is valid. At low DC conversion ratios, the approximation will be

able to hold for a larger range, but even small increases of said conversion ratio can

cause massive increases in error which limits the region at which the approximation

is valid.

Another important note is the increased controllability by operating a converter

in DCM. In Vorpérian’s paper on the Average PWM Model in DCM, he mentions

that in State-Space Averaging the transfer function for a converter in DCM is found

to be a first-order system. However, as was previously found, the system is clearly

second-order. The reason for the discrepancy, as discussed by Vorpérian, is that the

location of the second pole is far from the origin [19].

Figure 3.31 verifies this through observation of the pole/zero locations of both the

ideal and non-ideal CCM and DCM transfer functions. Here, the secondary pole in

the DCM case is located at a value much greater than that of the first pole. This

causes the value for Q to be small, as proven in Figure 3.27, since resonant peaks

are a direct effect of conjugate-pair poles. Since the converter in DCM does not have

conjugate-pair poles (directly observable in Figure 3.31), it does not have a resonant

peak.

The reason this point is important for controllability is that the DCM transfer

function acts like a first-order system for the given region of interest (frequencies less

than that of the switching frequency). This means the phase-margin will be greater

than in CCM (since the CCM transfer function clearly exhibits the effects of a second-

order system) which, in turn, means that the Error Amplifier in Figure 3.1 doesn’t

have to contribute a large phase-shift in order to guarantee stability. This is the

primary reason DCM is such an attractive region of operation for boost converters.
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Chapter 4

Converter Control

The reason control is important for switched DC-DC converters is to maintain a

stable output at various load conditions. Recall from the non-ideal DC equations

for CCM and DCM in (2.10) and (2.29), respectively, that each equation has a clear

dependence on the size of the load. Thus, in order to maintain a fixed voltage output,

the duty cycle must be modulated in order to supply said fixed voltage to varying

loads.

There are two control methods to perform such an operation: Voltage Mode

Control (VMC) and Current Mode Control (CMC).

Current Mode Control

Current Mode Control will not be analyzed in this thesis; however, it is a very popular

and well-documented technique for controlling switched power converters [25–29].

The topology is shown in Figure 4.1. The control method employs two feedback

loops: one for the output voltage and one for the inductor current. The operation is

rather simple in that the inductor current is monitored through the switch and when

it reaches a certain peak value, the switch is turned off.

The benefits of this type of control method are speed, large bandwidth, and simple

compensation requirements [24]. However, the cost is in complexity (due to the

existence of two feedback loops), and limited load regulation.
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Figure 4.1: Boost Converter with Current Mode Control (Adapted from [29])

Figure 4.2: Circuit Implementation of a Voltage-Mode Controlled Boost Converter

Voltage Mode Control

Voltage Mode Control can be implemented with the architecture shown in Figure 4.2,

and is the architecture that is dealt with throughout this thesis. While the benefits

of CMC are certainly tantalizing, the decreased load regulation performance when

compared to an equivalent VMC converter is undesirable for applications which need

a regulated output for a large range of loads. The downside is that the converter
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will be noticeably slower to respond when compared to CMC techniques and that

compensation will typically require more components [24].

4.1 Error Amplifiers

The first requirement of an Error Amplifier (in either the VMC or CMC case) is

a stable, load-invariant voltage reference that has little to no temperature variation

to serve as VREF . These requirements are usually met quite well by implementing

a bandgap reference. Since VREF will typically be different than that of VOUT , a

resisitive voltage divider is commonly used to divide the desired output voltage down

to the value supplied by VREF .

During operation, the error amplifier is attempting to compensate for small vari-

ations in the output voltage hence the loop gain must be very large; however, having

a large loop gain is not enough. In order to guarantee a stable output (in that the

converter does not begin to oscillate), the Barkhausen Stability Criterion states that

circuit cannot have any frequency that satisfies both of the following conditions:

1. The magnitude of the Loop Gain, |Aβ|, is = 1.

2. The shift in phase around the loop has a net change of 180◦ (noting that the

inverting terminal of the amplifier contributes to an additional 180◦ phase shift

around the loop).

The most common way to verify this criterion is to observe the Bode plot of the

system, which will be done in the next chapter. However, in the context of this chap-

ter, it’s important to understand what will cause Barkhausen’s Criterion to hold true

and, most importantly, how to ensure that it is satisfied with careful error amplifier

selection.

4.1.1 Op-Amps vs. OTAs

In most switched converter designs, Op-Amps are employed as the Error Amplifier

due to their availability as “off-the-shelf” parts. The different architectures associated

with them are very well documented [21,23]; however, while not ill-suited for the job,

Op-Amps are certainly unnecessary. Consider what the error amplifier is driving: an
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input pin of a Comparator. Since a comparator will have high input impedance, it

is completely unnecessary to drive it from a low-impedance source (in this case, the

Op-Amp).

For integrated circuits, utilizing an Op-Amp instead of an OTA is a very ill-advised

design choice. The result is an increase in required circuitry as well as a decrease in

response time due to the output voltage buffer. A further benefit to using OTAs is

that the gain of the amplifier can be easily set by varying the value of a resistive

load. In fact, for control circuitry built on ICs, OTAs are overwhelmingly used over

Op-Amps for all of these reasons [3, 4, 6, 28,29].

Since this focus of this work is on boost converters in an integrated circuit context,

the analysis of error amplifier architectures will focus around those utilizing OTAs.

Note that for all equations in this chapter,

K = gmRO
RB

RT +RB

(4.1)

4.1.2 Lag Compensation (Proportional-Integral)

The Lag Compensator is given in Figure 4.3 and has a transfer function given by (4.2).

The feature of this type of compensator is that it provides a phase “lag” at a given

peak frequency (determined by the geometric mean of the pole and zero frequency,

Figure 4.3: Lag Compensator Circuit
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√
fzfp [21]). The DC gain of the system is just the gain of the OTA, as shown in

(4.2), while the pole and zero locations are given in (4.3) and (4.4), respectively. Note

that for (4.2) to be true, RO � RZ .

Vc
Vo

= K

[
sRZCZ + 1

sROCZ + 1

]
(4.2)

|fp| =
1

2πROCZ
(4.3)

|fz| =
1

2πRZCZ
(4.4)

The benefit of using a lag compensator, also known as a proportional-integral (PI)

controller, is that it can be used to boost the gain of a system without affecting the

behavior near the 0 dB crossing point. As such, it’s ideal for converters that already

have a good phase margin, but just need the DC gain boost in order to eliminate

steady-state error.

The primary requirement when designing a lag compensator is to guarantee that

the controller’s zero frequency is greater than the pole frequency. This is easily done

by simply making RZ much smaller than RO. As previously mentioned, the frequency

at which the controller produces its minimum phase is given by the geometric mean of

Figure 4.4: Bode Plot for Lag Compensator Circuit with RO = 6 kΩ, CZ = 100nF ,
gm = −1S, RT = 2MΩ, RB = 500 kΩ and RZ swept with values of 100 Ω, 500 Ω, and 3 kΩ.
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the pole and zero frequency, or
√
fzfp. In terms of circuit parameters, this frequency

location is given by equation (4.5). Likewise, the total phase shift can be easily

calculated using equation (4.6). For example, for a ratio of RZ
RO

= 1
2
, the phase lags

by approximately 20◦. A decrease in the ratio by a factor of 2, however, increases the

phase lag by 15◦ (to 35◦) - a total change of 75%.

fmin =
1

2πCZ
√
RORZ

(4.5)

φmin = sin−1

(
RZ −RO

RZ +RO

)
(4.6)

4.1.3 Lag Compensation Plus Pole

By adding a capacitor, CC , in parallel with the series RC string, a high-frequency

pole can be added to the system, as shown in Figure 4.6. In terms of equations, this

circuit can be shown to have a transfer function equivalent to equation (4.7) where

RO � RZ and CZ � CC . Note that the only difference between this compensator

and the one shown previously in Figure 4.4 is the addition of the high frequency pole

at fp,2 = 1
2πRZCC

.
Vc
Vo

= K
sRZCZ + 1

s2RORZCCCZ + sROCZ + 1
(4.7)

The benefit of this circuit, rather obviously, is that is provides a high-frequency

pole which will help attenuate signals near the switching frequency of the circuit. For

this reason, it is a very popular choice in switched-converter controller design [3,21,29].

Figure 4.5: Lag Compensator Circuit
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Figure 4.6: Bode Plot for Lag Compensator Circuit Plus Pole with RO = 6 kΩ, CZ =
100nF , CC = 1nF , gm = −1S, RT = 2MΩ, RB = 500 kΩ and RZ swept with values of
100 Ω, 500 Ω, and 1 kΩ.

The sizing of CC will typically be chosen such that the high-frequency pole cancels out

the high-frequency zero caused by the ESR of the output capacitance of the converter.

This allows for switching frequencies and any sub-harmonic oscillations (a prominent

problem in Current-Mode Control [24, 29]) to be attenuated such that they have a

negligible effect on converter performance.

4.1.4 Lag Compensation Plus Pole with Feedback

A modification of the lag compensator with the high-frequency pole is shown in Figure

4.7. The modification is simply to take the RC string and connect it between the

inverting terminal of the OTA and the output. The benefit is that the capacitor sizes

can be reduced which, in an integrated circuit context, will help to save layout area.

The downside is that RZ needs to be made much larger than RO which will typically

require very large values.

The equation for this controller is shown in (4.8) with the relationship to the

compensator without feedback given in (4.9) and (4.10) where variables denoted by

the subscript fb indicate it is part of the feedback architecture while the subscript nfb

is for the architecture without feedback. Note that CC , RO, and gm are all assumed
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Figure 4.7: Lag Compensator Circuit with Feedback Zero

Figure 4.8: Bode Plot for Lag Compensator Circuit Plus Pole with RO = 6 kΩ, CZ =
250 fF , CC = 1nF , gm = −1S, RT = 2MΩ, RB = 500 kΩ and RZ swept with values of
40.7MΩ, 218MΩ, and 480MΩ.

to not change between the two architectures and are requirements for (4.9) and (4.10)

to hold true. A further assumption is that gmRO � 1.

Vc
Vo

= K
sCZRZ + 1

s2RORZCCCZ + s(RZCZ +ROCC − gmRO(RB‖RT )CZ) + 1
(4.8)
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RZ,fb = RZ,nfb

(
gmRO(RB‖RT )

RZ,nfb −RO

)
(4.9)

CZ,fb =
RZ,nfb

RZ,fb

CZ,nfb (4.10)

A Bode plot for this circuit is presented in Figure 4.8 and is identical to the

plot without feedback in Figure 4.6. The only circuit parameters to change were an

increase in RZ and a decrease in CZ . The reduction in CZ is particularly tantalizing

from a design standpoint because, as mentioned earlier, it can help to reduce layout

size. However, the massive increase in RZ can be problematic for processes that

lack highly resistive layers that can be used for resistors in the Meg-Ohm range. A

potential solution to mitigate this problem would be to move RZ off chip. Since the

value will typically be very large, any increased resistance due to external pin contacts

will be negligible.

4.1.5 Lead Compensation (Proportional-Derivative)

Lead compensation doesn’t have much use in switched converter circuits due to their

increase in gain at high-frequencies, but they’re worth talking about in order to

provide a complete overview of controller architectures.

The circuit used to implement a lead controller is shown in Figure 4.10. The

Figure 4.9: Lead Compensator Circuit
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Figure 4.10: Bode Plot for Lead Compensator Circuit with RO = 6 kΩ, C1 = 30 pF ,
CC = 10 pF , gm = −1S, RB = 500 kΩ, and RT swept with values of 2MΩ, 8MΩ, and
24MΩ.

transfer function for this circuit is given in (4.11).

Vc
Vo

= K

[
sRTC1 + 1

(s(RB‖RT )C1 + 1)(sROCC + 1)

]
(4.11)

The phase peak occurs at a frequency given by (4.12) while the total phase boost

is given in (4.13). The primary benefit to the lead controller is that it can provide a

phase boost at a given frequency which can help to either boost the phase margin, or

increase the bandwidth of the system. However, the cost is that higher frequencies

also see a boost in gain which is undesirable for switched converters since switching

noise and subharmonic oscillations can begin to affect the output voltage and have an

undesirable effect on EMI [23]. However, if output voltage quality can be neglected

in favor of speed, the lead controller is a solid controller choice.

fmax =
1

2πC1

√
(RB‖RT )RT

(4.12)

φmax = sin−1

(
RT

RT + 2RB

)
(4.13)
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Figure 4.11: Lag-Lead Compensator Circuit

4.1.6 Lag-Lead Compensation

(Proportional-Integral-Derivative)

The lag-lead compensator, as shown in Figure 4.11, does just as the name suggests:

first lags the phase, then leads it. This architecture is simply a merger of both the

lag and lead compensators shown in Figures 4.3 and 4.9, respectively. The transfer

function for this controller can be found below in (4.14). Note the familiar pole and

zero locations from the lag and lead transfer functions in (4.2) and (4.11), respectively.

It is assumed that RO � RZ .

Vc
Vo

=
gmRB

s(RB +RT )(CZ + CC)

(sRTC1 + 1)(sRZCZ + 1)

(sRZCZCC
CZ+CC

+ 1)(s(RT‖RB)C1 + 1)
(4.14)

The Bode plot for this controller is shown in Figure 4.12. As mentioned previously,

the point of this control scheme, as is evident from the graph, is to first lag the phase

and then boost it. The benefit to using a lag-lead controller is to obtain the high

low-frequency gain that’s indicative of a lag controller as well as the phase boost from

the lead architecture that allows for an increase in phase margin. The cost, rather

obviously, is that it increases the number of components required to implement a

controller and, less obviously, is far more sensitive to pole and zero locations.

In order for a lag-lead controller to be properly designed, |fp,1| < |fz,1| < |fz,2| <
|fp,2| where the pole and zero relationships are given in (4.15) through (4.19). The
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Figure 4.12: Bode Plot for Lag-Lead Compensator Circuit with C1 = 0.8 pF , CC = 2nF ,
gm = −10µS, RB = 500 kΩ, RT = 2MΩ, CZ = 300nF , and RZ swept with values of
100 Ω, 500 Ω, and 1 kΩ.

Figure 4.13: Pole-Zero Plot for Lag-Lead Compensator Circuit with C1 = 0.8 pF , CC =
2nF , gm = −10µS, RB = 500 kΩ, RT = 2MΩ, CZ = 300nF , and RZ swept with values
of 100 Ω, 500 Ω, and 1 kΩ.

third pole, fp,3 is less sensitive to its location as it is a much higher frequency than

the other values. Typically, this is placed at one half the switching frequency in order

to properly attenuate the noise caused by switching [30].

Figure 4.13 shows the pole and zero locations on an imaginary plane. Note the
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progression of pole→ zero→ zero→ pole from right to left, which is needed in order

for the lag-lead compensator to function correctly. Also, as mentioned previously,

there is a high-frequency pole that sits at a location that is far enough away from the

other poles and zeros where it will not have a heavy influence on the converter (other

than to attenuate events near the switching frequency).

fp,1 = 0 (4.15)

fp,2 =
1

2π(RB‖RT )C1

(4.16)

fp,3 =
CC + CZ

2πRZCZCC
(4.17)

fz,1 =
1

2πRZCZ
(4.18)

fz,2 =
1

2πRTC1

(4.19)

4.2 Controller Selection

Being able to determine what controller architecture is best suited for a given switcher

design is paramount in guaranteeing a stable and well-performing switched converter.

Each controller topology, like any circuit, has a series of advantages and disadvantages

associated with them that need to be weighed against device requirements. These

advantages and disadvantages have been discussed in each controller architecture

description, but to fully understand the implications it’s best to observe their use in

typical circuits.

As Basso describes in his book, the lag-plus-pole architecture is the most popular

as it provides good low-frequency gain as well as the ability to cancel the effect of

the zero due to the series resistance on the filter capacitor [21]. For example, con-

sider a converter in DCM with a zero caused by the aforementioned capacitor ESR.

By applying a basic lag architecture (with only one pole and zero), the converter

has a frequency response shown in Figure 4.14. Here, the ESR of the filter capaci-

tor causes the gain to level off at high frequency resulting in a crossover frequency

near 300 kHz which is near the frequency many switchers are typically operated at.

Clearly, this is not ideal as the switching noise will either be amplified by the system
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(for switching frequencies under 300 kHz) or just slightly attenuated (for frequencies

above 300 kHz).

To solve this problem, CC is added in parallel with RO on the controller to create

the lag-plus-pole compensator. Without modifying any other parameters in either

the boost circuit or compensator, CC can be chosen such that is cancels out the zero

caused by the boost ESR. In doing so, the crossover frequency is decreased down

to around 60 kHz with a −20 dB attenuation at the previous crossover frequency of

300 kHz which is a huge improvement for only adding in a 5nF capacitor (2000 times

smaller than that of CZ !).

The lag-lead compensation architecture is best suited for converters with conjugate-

pair poles such as the CCM boost converter. The primary reason for this is that it

provides the needed low-frequency gain boost that minimizes steady-state error while

also providing the higher frequency phase boost that increases phase-margin. How-

ever, designing a controller that guarantees CCM stability is still no trivial task.

The resonant frequency peak is still quite a problem as the large phase shift (180◦

worst-case) will require a large phase boost from the controller in order to achieve

any semblance of stability.

Since the controller in a switched converter has well defined architectures, as has

Figure 4.14: Bode Plot for Lag Compensator with DCM Boost with Gd0 = 5, CO = 10µF ,
RESR = 0.5 Ω, Q = 0.05, ω0 = 16 kHz, RO = 3 kΩ, RZ = 100 Ω, CZ = 10µF , gm = −1S,
RT = 2MΩ, and RB = 500 kΩ
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Figure 4.15: Bode Plot for Lag Compensator Plus Pole with DCM Boost with Gd0 = 5,
CO = 10µF , RESR = 0.5 Ω, Q = 0.05, f0 = 16 kHz, RO = 3 kΩ, RZ = 100 Ω, CZ = 10µF ,
CC = 50nF , gm = −1S, RT = 2MΩ, and RB = 500 kΩ

been shown throughout this chapter, the only real unknowns are which architecture

is best suited for a given converter, as well as what the optimum component values

are. As such, it’s possible to use AI techniques such as Genetic Algorithms in order

to optimize the design of a converter controller. This technique is discussed more in

Appendix A.

Choosing a controller topology is highly dependent on converter type as well as

operating mode, as shown. Component value selection is extremely critical in order

to ensure a robust and repeatable design that is accurate and stable in all operating

conditions.
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Chapter 5

Full Boost Converter Model

Analysis

Utilizing the models derived throughout the previous chapters, a full small-signal

model of a boost converter can be constructed. This will allow for a thorough in-

vestigation of what parameters have the largest impact on boost converter stability.

This, in turn, will allow for more comprehensive studies in ways to test said stability

as well as present useful debugging methods.

Throughout this chapter, both the CCM and DCM converters will be analyzed. A

baseline design will be presented and various parameters will be modified in order to

gauge the sensitivity of frequency response performance metrics to these parameters.

5.1 CCM Converter Model

As mentioned in Chapter 4 and outlined in various sources [15, 21, 23], due to the

conjugate-pair-pole intrinsic to CCM Boost Converters the only truly acceptable

control topology is that of a PID (a.k.a. Lag-Lead) controller. A full circuit im-

plementation is shown in Figure 5.1.

Table 5.1 lists the component values used in this design and the non-ideal com-

ponent values are as follows: rL = 0.8 Ω, and rC = 0.5 Ω.

From the previous analysis in Chapter 4, it’s possible to find the pole and zero
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Figure 5.1: Boost Converter with PID Control

locations of this converter. The equations for the poles are given in (5.1) [31].

s1, s2 =
f0

4πQ
(−1±

√
1− 4Q2) (5.1)

Based on the parameters given in Table 5.1 as well as the parasitic values presented

earlier, the values for f0, Q, and the pole/zero locations are shown in Table 5.2. The

value for Q is larger than 0.5 therefore there is a conjugate pole - as is expected for

a CCM converter. The frequency at which the pole exists is given in Table 5.2 as

2.68 kHz. Using (5.1), this occurs at −σ±jω = −7.2×103±j15.2×103 when plotted

on the complex plane. The Bode plot and pole-zero plot can be seen in Figures 5.2

and 5.3, respectively.

Table 5.1: CCM Boost Converter DC Specs

Parameter VS VO IO L FS C

Value 3V 6V 300mA 200µH 350 kHz 5µF

Table 5.2: CCM Boost Converter Pole and Zero Locations

f0 Q fp,1 fp,2 fz,1 fz,2
2.68 kHz 1.17 2.68 kHz 2.68 kHz 3.34 kHz 63.7 kHz
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Figure 5.2: CCM Boost Converter Bode Plot

Figure 5.3: CCM Boost Converter Pole-Zero Plot

In order to properly design this converter and to guarantee stability, the zeros

of the PID controller must be placed at or near the resonant frequency, f0, which

occurs at 2.68 kHz. To do so, the component values included in the equations 1
2πRZCZ

and 1
2πRTC1

(from (4.18) and (4.19)) must be chosen such that the ensuing frequency

occurs near f0.

First, the value for RT should be chosen. Since the value for this resistor is
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constrained by the need for the RT and RB string to divide down the output voltage

to the reference (which will be 1.3V used for this example), it’s given that RT =

3.583RB. In order to guarantee that the power consumption of the resistive feedback

string is minimized, the value for both RT and RB must be large. The choice of these

parameters is, ultimately, up to the designer so for this controller design the values

were selected as RB = 560 kΩ which yields RT = 2MΩ.

With the selection of RT , C1 can be determined to be C1 = 30 pF via (4.19)

which was presented again earlier in this section. Next, the values for RZ and CZ must

be selected. For this design example, it was decided that the second zero frequency

would be placed at 3 kHz which is slightly larger than the resonant frequency of the

converter, but still close enough such that dual-zero behavior would still be exhibited

near f0. By setting RZ = 200 kΩ, the capacitor value becomes CZ = 260 pF .

With the values that determine the controller’s zero frequency selected, the pole

frequencies must be calculated and shown to be valid (recall from Chapter 4 that fz1,2

must be less than fp2,3). Since fp,2 = RT+RB
2∗πRTRBC1

, it’s clear that this pole will be located

at 12 kHz. The last pole, fp,3 has some flexibility as to where it is placed. Because

there is a high-frequency zero from the converter due to the ESR of the filter capacitor,

it’s wise to place fp,3 such that it cancels this zero out. Since fp,3 = CC+CZ
2πRZCCCZ

,

CC = 13 pF .

Finally, the only parameter left is the transconductance of the amplifier itself, gm.

This value can be modified by changing the bias current of the OTA which allows for

the gain to be modified in order to achieve both a good phase margin and DC gain

(which eliminates steady-state error). In this example, gm = 1.03µS as it allows for

a decent phase margin of φM = 45◦ and DC gain of 40 dB. The Bode plot, root-locus

plot, and step-response are showed in Figures 5.4, 5.5, and 5.6, respectively.

As Figure 5.4 shows, just a slight increase in gain will result in instability due

to the large phase change near the converter’s resonant frequency. In fact, the gain

margin of the circuit is near 2 dB which is much smaller than what a commercial

design would require. Observation of the root-locus in Figure 5.5 confirms this as

it shows that by increasing the gain, the conjugate poles will transition to the RHP

which is a characteristic of system instability. However, by decreasing the gain any

further, the steady-state error will begin to noticeably worsen. Figure 5.6 shows the
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problems with low DC-gain: the converter struggles to reach steady-state.

5.1.1 Component Sensitivity

Observing the sensitivity of stability to various parameters is important in order to un-

derstand what types of component tolerances are acceptable in a switched converter.

Figure 5.4: CCM Boost Converter Bode Plot with PID Control; gm = 1.03µS, RB =
560 kΩ, RT = 2MΩ, RZ = 200 kΩ, CC = 13 pF , CZ = 260 pF , C1 = 30 pF .

Figure 5.5: CCM Boost Converter Root-Locus with PID Control
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Figure 5.6: CCM Boost Converter Step-Response with PID Control

Unfortunately, due to the complexity of the system, it’s rather tedious to mathemat-

ically derive general sensitivity equations. Even if said expressions were derived, the

relationship between the parameter values and stability parameters, such as phase

margin, would be difficult to ascertain. As such, a better approach is to observe how

these values change graphically.

To begin, the converter design from the previous section will be used again here.

First, the tolerances of various components will be defined. The best, nominal, and

worst-case values will then be used and plugged into back into the design and the

phase margin, gain margin, DC gain, and bandwidth recorded. The values that will

be modified are shown in Table 5.3.

Figure 5.7 shows how the phase margin, φM , changes with different parameter

combinations. Note that each division shown on the graph contains two further

unmarked corners from the value for L and gm. As the bars progress from left to

right in each load current division, L varies from minimum to nominal to maximum

while gm varies through its values each time per L value.

Table 5.3: CCM Boost Converter Parameter Corners

Component VS IO L gm
Tolerance ±40% ±50% ±15% ±10%
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Figure 5.7: CCM Boost Converter Phase Margin Over Parameter Corners. VS = [1.8V ,
3V , 4.2V ], IO = [150mA, 300mA, 450mA], L = [170µH, 200µH, 230µH], gm = [0.93µS,
1.03µS, 1.13µS].

From this graph, three general trends are readily apparent:

1. As the DC conversion ratio increases, the phase margin increases.

2. As the load current increases, the phase margin increases.

3. As the inductance increases, the phase margin decreases.

The most stable operation region is when VS = 4.2V (which translates to M =

1.4) and IO = 450mA. Here, φM hovers around the 80◦ mark regardless of the values

for either gm or L. However, this comes at a cost. Figure 5.8 depicts the bandwidth

of the converter across the same corners and, as can be seen, bandwidth decreases

with increasing phase margin. This is downside of requiring a fast converter: less

stability.

Figures 5.9 and 5.10 show the gain margin and the DC Gain of the converter,

respectively. The gain margin has a slightly different parametric relationship with

the load current when compared to the phase margin. Here, larger load currents

cause smaller values of gain margin. This is due to the fact that the phase margin is

only increasing because the zero-crossing frequency is being moved to a lower value

(i.e., lowering the bandwidth). The phase at these lower frequency values is located
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Figure 5.8: CCM Boost Converter Bandwidth Over Parameter Corners. VS = [1.8V , 3V ,
4.2V ], IO = [150mA, 300mA, 450mA], L = [170µH, 200µH, 230µH], gm = [0.93µS,
1.03µS, 1.13µS].

Figure 5.9: CCM Boost Converter Gain Margin Over Parameter Corners. VS = [1.8V ,
3V , 4.2V ], IO = [150mA, 300mA, 450mA], L = [170µH, 200µH, 230µH], gm = [0.93µS,
1.03µS, 1.13µS].

just before the ‘drop-off’ caused by the conjugate-pair pole and as can be observed in

the Bode plot back in Figure 5.4. Because there is a rather rapid decrease in phase
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Figure 5.10: CCM Boost Converter DC Gain Over Parameter Corners. VS = [1.8V , 3V ,
4.2V ], IO = [150mA, 300mA, 450mA], L = [170µH, 200µH, 230µH], gm = [0.93µS,
1.03µS, 1.13µS].

shortly after the zero-crossing, it’s conceivable that the phase will equal 0◦ before the

gain drops a sufficient amount to provide a large gain margin. The DC gain, in Figure

5.10, seems to be rather resilient to changes in parameter barring large load currents

at large conversion ratios. This is most easily explained by observing the gain of just

the switched converter block itself and ignoring the controller. The expression was

defined previously in Chapter 3 in equation (3.44). The expression is a function of

both the duty cycle and the load resistance. By plugging in conversion ratio into D

and the load current into R, (3.44) can be modified as follows in (5.2),

Gd0,CCM = MVO
VO − rLIOM2

VO + rLIOM2
(5.2)

It’s clear that as both IO and M increase, the gain of the converter block must

decrease since the denominator will become larger than the numerator. Likewise, the

larger M is, the smaller (5.2) will become which is why the effect is more prevalent

at the larger conversion ratio in Figure 5.10.

85



5.2 DCM Converter Model

The DCM Converter is shown in Figure 5.11 with a Lag-Plus-Pole Feedback OTA

(also considered a PI Controller). The specifications for the converter are shown

below in Table 5.4.

As shown in Chapter 3, the DCM boost converter does not have a conjugate pole

and thus is easier to control. Table 5.5 shows the locations of the poles and zeros for

the DCM converter. Again, because Q < 0.5, the converter does not have any poles

with imaginary components.

Figure 5.12 shows the Bode plot for the boost converter while Figure 5.13 shows

Table 5.4: DCM Boost Converter DC Specs

Parameter VS VO IO L FS C

Value 3V 6V 30mA 20µH 350 kHz 5µF

Table 5.5: DCM Boost Converter Pole and Zero Locations

f0 Q fp,1 fp,2 fz,1 fz,2
9.33 kHz 0.06 586Hz 150 kHz 298 kHz 63.7 kHz

Figure 5.11: Boost Converter with PI Control
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Figure 5.12: DCM Boost Converter Bode Plot

Figure 5.13: DCM Boost Converter Pole-Zero Plot (RHPZ Not Shown)

the pole and zero locations on the complex plane. The convenient reality of the DCM

boost converter is that it behaves like a single-pole system at frequencies less than

half of the switching frequency. Ideally, a controller would be designed that just raises

the DC gain of the system while not disturbing the crossover frequency.

To achieve such a design, the first pole of the controller should be placed at a low

frequency while the second pole should be placed such that it minimizes the effect
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of the converter zero due to the ESR. The zero of the controller should be placed

such that it cancels the pole from the converter so that the phase lag it produces can

be eliminated. The overall effect is that the controller frequency response becomes

more dominant than that of the converter frequency response. This indicates that

time constant RZCZ should be equal to 272µs. Choosing CZ = 100 pF results in

RZ = 1.7MΩ.

Choosing the pole locations, however, is not as simple. The complexity of the

transfer function for this type of controller, as given in (4.8) in Chapter 4 whose

denominator is reproduced below in (5.3), makes it more difficult to ascertain the

relationship between parameter values and pole locations. The easiest approach is to

plug in the known values of RZ and CZ as well as expected values for RO, gm, RT ,

and RB. As was the case with the CCM converter, RT is constrained to be 3.583RB

so by setting RB = 600 kΩ, it follows that RT = 2.15MΩ. Likewise, since RO

must be large and gmRO � 1, good estimates as to what those values will be can

be discovered. These parameters largely depend on the architecture of the OTA, but

RO = 1MΩ and gm = 10mS are not unreasonable.

0 = s2RORZCCCZ + s(RZCZ +ROCC − gmRO(RB‖RT )CZ) + 1 (5.3)

By taking those calculated values, the expression in (5.3) reduces to:

0 = s2(270CC) + s(106CC + 0.4) + 1

By choosing a secondary pole frequency of 6 kHz, the value for CC emerges when the

magnitude of the above expression is solved for 0 (plugging jω in for s). This yields

CC = 44nF . The choice of the secondary pole location is somewhat arbitrary as it

just needs to help attenuate high-frequency signals. Here it was also used to move

the crossover frequency to a slightly lower value in order to achieve a better phase

margin.

Figure 5.14 shows the Bode plot of the whole system. The crossover freqeuncy

occurs near the secondary pole of the PI Controller at 6 kHz with a phase margin

equal to φM = 60◦. The root locus of the system is shown in Figure 5.15 and

never crosses the imaginary axis which indicates that the system is inherently stable.
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However, the poles of the controller can end up ‘colliding’ on the real-axis causing

them to breakaway and become a conjugate pair pole. This is easily controllable

by not allowing the gain of the controller to exceed a certain value (most OTAs

will be naturally constricted to some operating range anyway). The step response in

Figure 5.16 verifies the stability of the system by showing very little oscillation (much

different than the CCM step response in Figure 5.6), as would be expected from a

Figure 5.14: DCM Boost Converter with PI Control Bode Plot

Figure 5.15: DCM Boost Converter with PI Control Root Locus
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Figure 5.16: DCM Boost Converter with PI Control Step Response

system with a phase margin of 60◦.

5.2.1 Component Sensitivity

As was done with the CCM with PID Control Converter, the sensitivity of various

frequency-domain measurements will be graphically observed in relation to varying

parameters. Table 5.6 shows the tolerances used for various components.

Figure 5.17 shows how the phase margin changes when each component is varied.

Unlike in the CCM case, it’s clear that as the load current increases, the phase margin

decreases. However, the change is very slight as it takes an 80% increase in the load

current to drop the phase margin by only 15◦. Likewise, this value is very resilient to

changes in conversion ratio and inductor size as the only major value shift is due to

the load current.

Since the phase margin decreases with increasing load current, it follows that the

bandwidth is likely increasing which is verified in Figure 5.18. Again, as was the case

with the phase margin, the bandwidth is relatively immune to changing any other

Table 5.6: DCM Boost Converter Parameter Corners

Component VS IO L gm
Tolerance ±40% ±80% ±25% ±20%
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Figure 5.17: DCM Boost Converter Phase Margin Over Parameter Corners. VS = [1.8V ,
3V , 4.2V ], IO = [6mA, 30mA, 54mA], L = [15µH, 20µH, 25µH], gm = [8mS, 10mS,
12mS].

Figure 5.18: DCM Boost Converter Bandwidth Over Parameter Corners. VS = [1.8V ,
3V , 4.2V ], IO = [6mA, 30mA, 54mA], L = [15µH, 20µH, 25µH], gm = [8mS, 10mS,
12mS].

parameter outside of the load current which is a testament to the robustness of the

VMC-DCM Converter.
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Figure 5.19: DCM Boost Converter Gain Margin Over Parameter Corners. VS = [1.8V ,
3V , 4.2V ], IO = [6mA, 30mA, 54mA], L = [15µH, 20µH, 25µH], gm = [8mS, 10mS,
12mS].

Figure 5.20: DCM Boost Converter DC Gain Over Parameter Corners. VS = [1.8V ,
3V , 4.2V ], IO = [6mA, 30mA, 54mA], L = [15µH, 20µH, 25µH], gm = [8mS, 10mS,
12mS].

The gain margin in Figure 5.19 exhibits a slightly different trend than seen with

the phase margin. Here, this value decreases with an increasing conversion ratio. At

the larger conversion ratio of M = 3.3, the gain margin decreases with increasing
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load current; however, for all other conversion ratios the gain margin stays relatively

constant. This is possible since the slight increase in phase margin indicates that

the zero frequency crossing occurs at a point with a small phase slope. It is likely,

therefore, that the zero crossing also occurs just before a rapid decrease in phase

(which would be caused by the high-frequency pole in this design). Since the phase

margin is hovering around a value of 50◦, the phase just needs to shift by that much to

hit the 0◦ phase point. Since the gain plot will not exhibit a decrease in gain due to a

pole until the phase has shifted by 45◦, this causes a low value for gain margin. That

said, the minimum gain margin shown for any corner in the DCM case is roughly

twenty times larger than the largest gain margin in the CCM case!

Finally, the DC Gain plot in Figure 5.20 shows an almost complete invariance

to component values and has a value in all instances around 55 dB. This shows the

versatility of the DCM converter in that it can achieve the same level of steady-state

error rejection over a wide range of operating regions.

5.3 Performance Comparisons

The difficulty of controlling a CCM converter presents many stability issues, as shown

throughout this chapter. It takes a lot of design effort to create a controller that can

achieve an acceptable amount of steady-state error rejection (DC Gain), speed (Band-

width), and stability (Phase/Gain Margin). Even with a very careful design and very

high tolerance controller components (which is unlikely in an integrated circuit), the

external component variations can have a detrimental impact on converter perfor-

mance which limits the effective operation range.

The DCM converter, in contrast, exhibits significantly less performance degra-

dation with parameter variation. In addition, the design of the controller itself re-

quires fewer components and is less susceptible to cause instability due to the simple

single-pole nature of the DCM converter itself. This makes VMC Boost Converters

significantly more desirable for mobile integrated circuit applications where external

components can have large tolerances and where the operating range must be rather

wide in order to function correctly in different conditions.
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Chapter 6

Stability Measurement Techniques

The ability to accurately measure the stability of a DC-DC converter is vital in not

only correlating hardware with simulation, but also in gauging the viability of design

inclusion in a commercial product. Unfortunately, traditional analytic methods of

measuring loop stability involve physically ‘breaking’ the loop and applying a test

signal to one end and calculating the return signal. In a switched DC-DC converter,

this is simple not possibly due to the large loop gain that serves to correct any vari-

ations from the steady-state value. By breaking the loop, the steady-state operating

point will become disturbed and the very small difference in operating points will

cause the high-gain controller to ramp up and saturate at its supply voltage, render-

ing the converter useless.

In 1975, Middlebrook proposed a method to deal with this problem [32]. Instead

of breaking the loop to apply the test signal, the signal would be injected at a point

where it would be functionally equivalent to breaking the loop. This will be described

more thoroughly in Section 6.2.

Middlebrook’s method for determining loop stability is very attractive, but it is

limited by the need for certain impedance assumptions to hold true. To circumvent

this, simple transient responses can be measured and the stability can be ascertained

from the step and/or impulse responses [33]. This transient behavior can also be

used to obtain freqeuency response characteristics by means of cross-correlation and

system identification [34,35].
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6.1 Step Response

Transient step responses are very important waveforms to observe when trying to

determine the stability of any closed-loop system, let alone a switched converter. The

reason is because unlike traditional AC-Analysis methods, it does not rely on circuits

operating in some linear region: it just shows you exactly how the circuit will behave

given some stimulus. As such, it’s an important type of measurement that should be

discussed before analyzing any other methods.

Switched DC-DC Converters are usually designed to operate within fairly large

regions. This may include a variety of input voltages, output voltages, load currents,

or any combination of all three. As such, there can be many different combinations

that could cause instability.

One of the simplest ways of testing supply stability is by stepping the load [33].

This is done by quickly changing the load current so as to put strain on the converter

and force it to rise back up to a stable state. This can be done quite easily with

modern test equipment, such as a Keithley 2400 SourceMeter SMU. By stepping the

load from some point near the minimum load operating range to the maximum load

current, a step response can be recorded on an oscilloscope and captured for analysis.

The type of step response that the converter exhibits offers some insight as to its

Figure 6.1: DCM Boost Converter Load Step from 10mA to 20mA with an Underdamped
Step Response
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stability. Figure 6.1 shows the response for a Boost Converter in what is known as an

underdamped condition (the thick waveform is due to the high-frequency-switching).

Intuitively, the more ‘ringing’ the waveform exhibits, the less stable the converter.

Figure 6.2 shows an overdamped case where there is no ringing and the converter

takes a longer time to increase to its steady-state voltage

Unfortunately, the amount of ringing that the converter exhibits is just about all

the information that can be garnered from a step response. While it offers insight into

the stability, it provides no insight as to what the phase margin may be nor what the

frequency response actually looks like. This requires the designer to manually observe

the response and deem it either acceptable or unacceptable in terms of stability

which is very difficult, if not impossible, for products meant for mass production. As

another downside to using this method, it is possible that the ringing exhibited by

the controller can be ‘buried’ in the switching noise from the converter. As such, at

a large voltage scale (on an oscilloscope), it’s possible that the converter response

appears stable when, in fact, there could be a significant amount of ringing.

Figure 6.2: DCM Boost Converter Load Step from 10mA to 20mA with an Overdamped
Step Response
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6.2 Frequency Response

The frequency response, unlike the step response, provides much more information

about the circuit under test. Characteristics such as resonant frequencies, phase

margin, and gain margin can all be extracted from a frequency response which allows

a quantitative measure of the stability of the system as opposed to simply comparing

waveform shapes or observing the number of peaks that a step or impulse response

has.

Unfortunately, the ability to accurately measure the loop gain and phase of a

switched converter is dependent on a few criteria:

• The feedback loop is not broken.

• Measurements are made with high-accuracy equipment.

• Injected signals do not alter the steady-state operation of the converter.

6.2.1 Injecting a Voltage

Injecting a voltage signal without disturbing the steady-state characteristics of the

converter was first described in Middlebrook’s paper in 1975 [32]. In normal AC

circuit analysis on a closed-loop system, a point within the loop is broken in order to

apply a test signal. The transfer function of the circuit is then characterized by the

ratio of the return signal, Vr, to injected signal, Vi. Since these two potentials exist

on either end of the point at which the loop was broken, as shown in Figure 6.3, it

can be said that T (s) = Vr
Vi

.

However, as previously mentioned, breaking the loop within a switching converter

(or any system with large loop gain) is not possible without disturbing the steady-

state operating point. To alleviate this problem, Middlebrook proposed injecting the

voltage in series with the loop, as shown in Figure 6.4. Since this voltage will still

have a potential at the injection node of Vi and a return potential of Vr, this method is

functionally equivalent to physically breaking the loop while keeping the steady-state

operation undisturbed (besides the injected signal, of course).

Unfortunately, there is a caveat to this approach: the equivalent impedance at

the positive injection node must be greater than the equivalent impedance at the
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Figure 6.3: Voltage Injection via Opening the Loop (Adapted from [32]).

Figure 6.4: Voltage Injection via Middlebrook’s Method.

negative injection node. This means that the return signal should be located at a

node that approximates to an ideal voltage source. Fortunately, such a point exists

on a switched converter between the output of the power conversion stage and the

input of the resistive feedback string. Being a voltage source, the output impedance

of the conversion stage is very low while the resistive feedback string is, typically,

on the order of Meg-Ohms of resistance. As such, it is the ideal place for voltage

injection via Middlebrook’s method.

6.2.2 Injecting a Current

In the same paper, Middlebrook also proposed current injection as opposed to voltage

injection. Similarly to the voltage injection method, the transfer function is charac-

terized by the ratio of the return signal, Ir, to the injected signal, Ii. Since this causes

a third current Ix, it’s possible to simply apply a known current as the test signal

at Ix and measure the current at the injection and return branches to extract the

transfer function. Again, however, there is a caveat : the impedance at the injection

branch must be much less than the impedance at the return branch. The reason for
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Figure 6.5: Current Injection via Opening the Loop (Adapted from [32]).

Figure 6.6: Current Injection via Middlebrook’s Method.

this, much like the reasoning for the voltage injection, is that the return branch must

approximate to a current provided by an ideal current source. As such, an adequate

injection point would be at the output node of an OTA which has very large output

impedance as it is, essentially, a voltage-controlled current source.

6.2.3 Response Measurement

The easiest way to measure the frequency response via Middlebrook’s Method is with

a Frequency Response Analyzer (FRA) [44]. These analyzers provide an oscillator

output that can sweep through frequency ranges and can make very precise voltage

measurements at the frequency being swept which allows for very accurate magnitude

and phase plots of the converter under test.

In order to apply the voltage injection, the source should be isolated from the

circuit through an isolation transformer. Since the positive and negative leads of the

source cannot be placed at the same node, it must be applied across some injection

resistor that is placed in series with the loop. This can be done in the resistive

feedback string of the switched converter with no penalty on converter performance

99



Figure 6.7: Voltage Injection Test Setup.

since the injection resistor will be in the tens-to-hundreds of Ohms range while the

feedback string value is orders of magnitude greater. Figure 6.7 shows the required

test set-up for frequency response analysis of a switched converter.

6.3 Frequency Response via Cross-Correlation

The idea of using Cross-Correlation as a way to extract the frequency response of

switched DC-DC converters is the subject of much research [34–41]. The idea is

attractive as it provides the ability to have a BIST circuit on chip which would allow

for automated frequency response testing. While the design and implementation of

such a circuit fall beyond the scope of this thesis, the underlying principles will be

described here.

6.3.1 Cross-Correlation

Cross-Correlation is a statistical process relating the correlation between two signals.

Autocorrelation is simply the cross-correlation of a signal with itself. For continuous
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systems, the cross-correlation of signals x(t) and y(t) are given as:

Rxy(t) =

∫ ∞
0

x∗(τ)y(t+ τ) dτ (6.1)

However, it is highly likely that the signals will be quantized before any cross-

correlation operation occurs so (6.1) must be modified in order to hold true for discrete

sets of data. Such an equation is given in (6.2).

Rxy[m] =
∞∑
n=1

x[n]y[n+m] (6.2)

In order to use the cross-correlation method of determining a system’s frequency

response, an assumption must be made that the converter is an LTI system for small

output disturbances. With this assumption, the sampled converter can be described

by (6.3) where h[k] is the converter’s sampled impulse response, x[k] is the control

signal, and v[k] is representative of any disturbances in the system, as reported in

[34,36])

y[n] =
∞∑
k=1

h[k]x[n− k] + v[n] (6.3)

Using (6.3) and plugging it in for y[n+m] in (6.2) yields the cross-correlation of

the control and output signals:

Rxy[m] =
∞∑
n=1

h[n]Rxx[m− n] +Rxv[m] (6.4)

If the assumption is made that the input control signal, x[k] is white noise, the

autocorrelation of this signal is given by an ideal delta function, δ[m] and the cross-

correlation of this noise with external disturbances must be zero since it implies

that x[k] and v[k] are statistically independent. Thus, using white noise as x[k], the

cross-correlation of x[k] and the converter output, y[k], is simply the discrete impulse

response of the system:

Rxy[m] = h[m] (6.5)

By taking the DFT of this cross-correlation, the transfer function of the system

can be extracted which allows for the loop gain and phase to be plotted.
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6.3.2 Pseudo-Random Binary Sequences (PRBS)

A popular way to generate noise, especially in digitally controlled converters, is

through the use of PRBS. These binary sequences have a length as a function of

how many bits they contain. For an n-bit converter, one period of the PRBS is given

by (6.6) where fk is the clock frequency of the PRBS circuit which is typically set

equal to the switching frequency of the DC-DC converter [36].

TPRBS =
2n − 1

fk
(6.6)

Figure 6.8 shows an example implementation of an 8-bit PRBS generation circuit

and Figure 6.9 shows the output waveform after start up for a small sampling of the

PRBS period.

As mentioned previously, white noise has an autocorrelation equivalent to that

of an ideal delta function. Therefore, in order for a PRBS implementation to be

Figure 6.8: 8-bit PRBS Circuit.

Figure 6.9: 8-bit PRBS Signal.
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Figure 6.10: Autocorrelation of (a) Single-Period 8-bit PRBS, and (b) Four-Period 8-bit
PRBS.

appropriate it must also have an autocorrelation that is approximately equal to a

delta function. This is proven in Figure 6.10a. Of course, the autocorrelation of

the PRBS can not be exactly equal to an ideal delta function since it does have

some periodicity, but it is a good approximation. The correlation ‘noise’ around the

approximate delta function in Figure 6.10a causes frequency response measurement

errors which negatively impact the accuracy of this type of modeling.

As a solution to this problem Botao Miao et al. proposed sampling the output of

the converter for a duration of N -PRBS periods and averaging the cross-correlations

in order to obtain a more accurate frequency response measurement [34]. The reason

this implementation is preferred is most easily explained by viewing Figure 6.10b

which shows the autocorrelation of four periods of an 8-bit PRBS. The amplitude is

noticeably larger than that of the single-period PRBS autocorrelation which provides

a better approximation to an ideal delta function which has an infinite amplitude.

In addition, the correlation ‘noise’ on each side of the approximate delta functions is

much smaller which, again, provides a better approximation to ideal delta functions

which have zero-amplitude at all locations besides the location of the impulse itself.

6.3.3 Implementation of a PRBS Cross-Correlation Method

In order to properly implement a stability test method that utilizes a cross-correlation

and PRBS, the PRBS circuit itself must be injected at a proper point. Since the goal

is to use the PRBS to modulate the duty cycle of the converter, the most logical place
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Figure 6.11: Injection Point for PRBS in a Switched DC-DC Converter

to inject the signal is into the input of the PWM Generator. This is done as per the

circuit in Figure 6.11

The digital PRBS can be superimposed on the analog Vc signal since all the PRBS

will do is slightly modify the error voltage at the input of the comparator. As far

as the converter itself is concerned, this just appears to be noise that is modulating

the duty cycle. The only requirement is that the amplitude of the PRBS signal

be constrained such that it does not alter the steady-state operating point of the

converter.

Once the PRBS signal is injected into feedback loop of the converter, providing

the ability to measure this signal is the required next step. If post-processing of data

is possible in a given test environment, the simplest approach would be to place a pin

at the output of the PRBS circuit as well as the output of the converter itself and

externally sample the signals.

If externally sampling the signals is a non-ideal approach given a particular test

environment, another option would be to stream the data to internal memory and use

dedicated circuitry to cross-correlate and possibly perform the required DFT as well.

From here, the information can be streamed to external measurement equipment.

This sort of implementation is rather costly in terms of required design effort as

well as in physical chip area. Designs that utilize this type of method are typically

done with FPGAs [34, 35, 37, 38] which are, rather obviously, impractical for mobile

integrated circuit applications.
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6.4 Stability Measurement Comparisons

The method of testing stability by way of cross-correlation is quite appealing due to

the ability to have on-chip BIST capabilities. The task of any external equipment

would be to simply sample the PRBS and output signal and perform the cross-

correlation and DFT. This form of measurement is very methodical and can easily be

automated which helps eliminate user error.

A large negative, however, is that the data must only be correlated across a known

number of PRBS periods. In addition, if the converter does not settle within one

PRBS period (which is a distinct possibility for low-bit PRBS circuit), the ensuing

frequency response data will be inaccurate.

Middlebrook’s method, however, simply measures the converter ‘as-is’. It does not

rely on correlation functions nor any form of transform; it simply sweeps the frequency

of an injected voltage, measures the return signal and plots the results. The obvious

downside is the lack of automation available since, ultimately, the waveform must be

manually captured and stored.

As mentioned earlier, the manual capture of data could have a negative impact

on testing time if the frequency response data is required for a product in mass

production. The benefit over cross-correlation, however, is the ease of implementation

and accuracy of the results.
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Chapter 7

Conclusion

Boost converters operated in VMC-CCM benefit from enhanced efficiency and are

able to handle larger loads, but suffer from a control standpoint due to the presence

of a conjugate pole in its small-signal transfer function. Boost converters operating in

VMC-DCM, on the otherhand, have a much simpler transfer function and are much

easier to control as a result.

An implication of the control issues associated with VMC-CCM boost converters

is that in order to achieve an acceptable DC-gain and phase margin, the crossover

frequency must be small, which results in a slow converter. This can be problematic

for applications that require high response speeds as the converter may never reach a

steady state before critical events occur which can result in circuit malfunction. Thus,

VMC-DCM boost converters become more palatable as a power conversion architec-

ture despite the limited load they can handle. By utilizing such an architecture, the

required control circuitry can be minimized and the converter as a whole can achieve

high DC-gains and large phase margins with a minimal impact on speed.

Ensuring the stability of the converter is important, and observation of the fre-

quency response is critical if stability in all operating regions must be guaranteed.

Observation of the step response provides some insight as to whether or not the

converter is stable, but it does not offer any quantifiable frequency-response data

that can be compared and validated against simulations. Measurement of loop gain

and phase can easily be done with external equipment, or with internal circuitry by

cross-correlating the output signal with injected white noise.
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7.1 Future Work

VMC-CCM boost converters have very non-ideal frequency response characteristics;

however, CMC-CCM boost converters behave similarly to VMC-DCM in that no

conjugate pole exists. As such, it may be possible to use a combined VMC/CMC

approach in order to design a boost converter that transitions seamlessly between

CCM and DCM with no performance degradation.

Cross-correlation by means of PRBS injection is a very promising stability analysis

technique that could be implemented in a BIST circuit for an integrated circuit. The

design and implementation in silicon would help to verify the viability of such a

technique as well as help to characterize some of its limitations.
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Appendix A

Use of Optimization Algorithms in

Controller Design

Switched DC-DC converters have many frequency response characteristics that must

be optimized in order to produce the best product and eliminate stability concerns.

As shown throughout Chapters 4 and 5, the design of the error amplifier is criti-

cal as it determines the steady-state accuracy, response time, and stability margins

(both gain and phase). Unfortunately, amplifier design is not trivial as improving

one performance metric will, typically, decrease another. For example, in order to

increase the phase margin of a system, one must typically lower the gain in order to

compensate. While this would improve stability, it would also decrease steady-state

accuracy.

Due to this complexity, switched converter controller design is well suited to solv-

ing via optimization algorithms. Electronics design via optimization algorithms is a

well-established field of research and shows promise in providing optimal solutions

for high-complexity design [49, 50, 53, 55, 57–62]. Two algorithms explored here are

Genetic Algorithms (GAs) and Particle Swarm Optimization (PSO).

Both algorithms attempted to optimize the transfer function of a controller by

iterating over the parameters RO, RT , the number of poles and zeros, and the co-

efficients of the transfer function. Both algorithms operated on the results of the

controller transfer function multiplied by the DCM Boost Converter transfer function

(presented previously in Chapter 3).
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A.1 Genetic Algorithms

The basic flow of a GA is to initialize a population with random values and evaluate

each member of the population against some fitness criteria. Once this is done, the

best performing members then ‘mate’ wherein random ‘genes’ are selected from each

participant and crossed over to produce children that populate the next generation.

During this crossover period, there is a a small chance of gene mutation which helps

to add variability into the gene pool which serves to eliminate localized convergence

problems.

There are many different GA implementations, but the one analyzed here is known

as the ‘Queen-Bee’ method [52, 59]. Figure A.1 shows the flow of a Queen-Bee-type

GA (abbreviated as QBGA).

Create Drones

Determine Initial 
Queen Bee

Mate Each Drone 
with Queen Bee

Extract Best Child as 
Virgin Queen

Extract best Virgin 
Queen

Compete Virgin 
Queen Against Nest 

Queen

Extract Best Queen 
as Nest Queen

End

Terminate?

Determine 
Crossover Genes

Mutate 
Gene?

Create Two Bees

Yes

No

Figure A.1: Block Diagram for a Queen-Bee Genetic Algorithm for Optimization of
Switched-Converter Controller Transfer Function.
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A.1.1 Queen-Bee Genetic Algorithm (QBGA)

The QBGA is an algorithm based around the interactions of bees in a hive. Essen-

tially, there exists a single queen with which all other bees, known as drones, mate.

Occasionally a female bee is produced that ousts the current queen and becomes the

new queen.

To implement this in software, drones are created with completely randomized

genes. As an initialization stage, each drone competes with each-other in a tournament-

style fashion and whichever is the best is selected as the queen.

Next, all of the drones mate with the queen and produce two offspring. To do

so, a set of genes are randomly selected from each bee’s chromosome and crossed

over. If the selected genes are grouped into a category called ‘A’ and the ones not

chosen are in ‘B’, one offspring will receive the ‘A’ group from the queen and the

other will receive it from the drone. The remaining genes are taken from group ‘B’ of

the opposite parent. These two offspring then compete with each other and the best

survives.

Once each drone mates with the queen, there should be N offspring for N drones.

Thee offspring then competes with each other and the best is selected as a ‘virgin

queen’. This virgin queen then competes with the current queen and whoever is the

best proceeds on to the next generation as the nest queen. This process then repeats

with randomized drones.

However, during gene crossover, it is not sufficient to only crossover the genes as

there must be some probability of gene mutation in order to guarantee variability

in the gene pool to avoid converging on local optima. To do so, most algorithms

implement a constant that determines the gene mutation probability [52, 53,59].

In order to speed up convergence, a variable mutation probability was used in

this implementation based on the age of the nest queen as an alternative to simply

choosing a constant. As the nest queen moves from generation to generation, it is

likely that the QBGA has either converged on the best solution or it could be stuck

on a local optima. By setting the mutation probability as a variable based on how

many generations the nest queen has existed for, more and more variability will be

introduced into the gene pool. The goal here is to attempt to push the algorithm out

of any potential locally optimal points. If the program has, in fact, found a global
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Figure A.2: Comparison of QBGA Convergence with a Varied and Constant Rate of
Mutation.

optimum, then an increased mutation rate should have no effect on the solution. The

pseudo-code for such a mutation algorithm is described below:

Algorithm A.1: Variable QBGA Mutation Based on Queen Age

for gene in crossover do

if rand() ≥ C*queenAge then
gene = mutate(gene);

end

crossover[i] = gene;

end

By setting C to some fractional value, it will eventually converge to have a 100%

mutation rate when 1
C

= queenAge. However, this value must not be set too high as

otherwise the GA will mutate too quickly and have difficulty converging on a solution.

It is recommended to set the value between 0.05 and 0.2 for best results.

A comparison of convergence rates for the QBGA with and without the variable

mutation rate is shown in Figure A.2. Here it takes only six generations for the varied

mutation rate implementation to converge while it takes twenty-one generations for

the constant rate of mutation implementation to converge to the same fitness value.

This indicates that the variable rate of mutation does, indeed, aid in convergence

speed as expected.
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A.1.2 Fitness Function

The biggest design challenge with GAs in particular is that of the fitness function

[45–47, 54]. Care must be taken to add in as many variables as possible in order to

eliminate the possibility of unwanted states (for example, a 90◦ Phase Margin but

10Hz Bandwidth). However, when more variables are added they will typically need

to be weighted in order to emphasize the more important parameters of the circuit.

A way to aide in the convergence of GAs is to add a penalty to the fitness function

[47, 48]. The idea is to decrease the value of the fitness function based on the region

that the variable is in. For example, in order for a circuit to be stable, φM must

be greater than 0◦. However, in real-world circuits, having a designed φM = 0◦ is

essentially equivalent to being unstable since components vary and can very easily

(and likely will) cause the circuit to oscillate. As such, the phase margin should

be designed so it is at minimum greater than 45◦, typically. The lower the phase

margin is, the more the circuit ‘rings’ before settling to its final value which is why

45◦ is typically chosen as a minimum accepted value. Thus, a penalty function could

produce a value for anything below this range to cause the fitness value to decrease

more rapidly the further it is away from this point.

A generalized fitness function equation with penalties is shown below in (A.1)

where α is a weighted constant for variable θ and P (θ) is a function that determines

the penalty associated with the solution presented by θ.

F =
N∑
i=1

αiθi − P (θi) (A.1)

For this GA implementation, the following variables were selected for the fitness

function:

• Phase Margin, φM

• Gain Margin, GM

• DC Gain, A0

• Bandwidth, BW
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Figure A.3: Comparison of Convergence Speeds for a) QBGA with NPFF and b) QBGA
with Linear Fitness.

Since each of these variables have varying sizes (φM will be in the sub-100 range

while BW will get into the 1000s range) it is wise to normalize them to some ideal

value such that the sum of all the ideal, normalized values is equal to the number of

parameters. This makes it significantly easier to determine the necessary values for

α that help to speed convergence.

In addition to normalizing all of the variables, each value was placed into a function

that transforms the linear data into parabolic data such that it has a maximum at

the ideal point. For example, if the ideal φM is chosen as 70◦, NφM = φM
70

and thus

f(θ(φM)) = −(NφM − 1)2 + 1. The constant scalar is there so that the maximum

value occurs at a value of 1 instead of 0.

Preliminary results show that the normalized parabolic fitness function, NPFF,

exhibits faster global optimum convergence than using only the normalized data alone

as shown in Figure A.3. Note that the fitness value in the linear case is, in fact, larger

than the NPFF case. This, however, is expected as values greater than the normalized

ideal parameter will subtract from the fitness value in the NPFF while it adds in the

linear case. As such, comparing the fitness values directly does not result in a good

comparison of fitness function strength. The only valid comparison is to compare the

number of generations it takes to converge.

As Figure A.3 shows, the NPFF takes a mere 4 generations to converge while it

takes 8 for the linear function. The simulation was run with 30 drones per generation

and a mutation rate of 0.1 · queenAge for both simulations. The values for α were
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Figure A.4: Step Responses of QBGA with NPFF for a) Generation 1 and b) Generation
10.

αφM = 3, αGM = 0.6, αA0 = 2, αBW = 1.8 and were determined experimentally.

Equation (A.2) shows the full NPFF used for this QBGA implementation.

F =
N∑
i=1

−αi(N(θi)− 1)2 + αi − P (θi) (A.2)

A.1.3 QBGA Results

The simulation of the QBGA was done on a machine with an Intel Q6600 CPU

running at 2.4GHz with 4GB of DDR800 RAM at a FSB rate of 1333MHz. During

the simulation, output wave-forms were written to a local 7200 RPM hard disk every

five generations. The QBGA had 30 drones per generation and was simulated for 50

generations which had an elapsed time of 130 seconds.

Figure A.4a shows the step response of the first generation. This response is

clearly non-ideal as it exhibits ringing for almost a full second. Figure A.4b shows

the step response after ten generations where it has fully converged on a solution. This

response exhibits great behavior as it has a large phase margin, large gain margin,

high DC gain, and adequate bandwidth.

A.2 Particle Swarm Optimization

Another type of optimization algorithm that is useful for high-complexity circuit

design is PSO. Using PSO as a circuit design optimization tool has been explored
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previously in [60,61].

This method is different from that of GAs in that there are a set number of

particles that have an associated position and velocity in N -dimensional space. Each

particle’s position is evaluated and each keeps track of its own best position. All of

the best positions for each particle are then evaluated and the best global position

is stored. Each particle has knowledge of its current position, current velocity, best

local position, and best swarm global position. As the swarm begins to move, the

velocity of the particles change based on those parameters in order to converge on a

solution.

In 2002, Maurice Clerc et al. introduced a new way to modify a particle’s velocity

in order to speed convergence to a solution in [51] and which was later explored more

in depth in [56]. This is done by use of constriction factor, χ, and weighted velocity

constants, C1 and C2. This constriction factor serves to limit the swarm to a smaller

search area as it converges on an optimal solution. The velocity coefficients of C1 and

C2 are used to provide more emphasis on a particle’s local best solution or the global

best solution, respectively. The velocity update equation can be seen in equation

(A.3) where βp is the best local particle position, Xp is the current particle position,

and G is the global best position. Equation (A.4) shows the equation to determine

the new particle position. Equation (A.5) shows the equation used to calculate the

constriction factor, χ.

Vp = χ(Vp + C1[U(0, 1) · (βp −Xp)] + C2[U(0, 1) · (G−Xp)]) (A.3)

Xp = Xp + Vp (A.4)

χ =

∣∣∣∣ 2

2− (C1 + C2)−
√

(C1 + C2)2 − 4(C1 + C2)

∣∣∣∣ (A.5)

The benefit of PSO over GAs is that it is significantly easier to implement as

there are no crossover probabilities, mutation probabilities, etc. that need to be dealt

with. However, the same issues exist with fitness function creation as described in the

Genetic Algorithms section which can cause a lot of design issues if not done properly.
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Figure A.5: Step Response PSO at a) Iteration 1 and b) Iteration 40.

A.2.1 PSO Results

The fitness function and dimensions simulated are identical in this PSO implementa-

tion to the previously described GA implementation and will not be repeated here.

The values C1 and C2 were determined, through experimentation, to be 2 and 1.9,

respectively. This results in χ = 0.95. Now these values differ from the results found

in [56], which provide an ideal C1 +C2 = 4. The reason that C1 +C2 was chosen to

be 3.9 was because after thorough investigation, it was discovered that any C1 + C2

value above 4 would result in convergence to a local optimum while values less than

4 would slowly converge towards an optimal solution. To fix this issue, the value of

3.9 was chosen as it stays close to the ideal value of 4 while still allowing additional

exploration which prevents convergence on a local optimum.

Figure A.5 shows a comparison between the step response in iteration 1 with

iteration 40. Here, all parameters are quite good and it’s clear that the PSO algorithm

has converged on an acceptable solution.

A.3 QBGA and PSO Performance Comparison

Figure A.6 shows a comparison in the convergence rate of both algorithms. As is

quite clear, the PSO algorithm takes much longer to converge than the QBGA. Both

converge to similar fitness values, but the PSO takes almost 5× longer to reach the

optimal value. This can be attributed in part to the constriction and velocity constant

chosen but is more a testament to the robustness of the QBGA with variable mutation

rate. As previously shown in Figure A.2, the constant mutation rate converges at
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Figure A.6: Fitness Value Convergence Comparisons for QBGA and PSO

Figure A.7: Step Response Comparisons Between a) QBGA and b) PSO for Full System

nearly the same speed as the PSO here which indicates that the variable mutation

has a significant effect on convergence speed.

As a further comparison, the step response of the full system is shown in Figure

A.7. As expected, both the QBGA and PSO converge to similar solutions with relative

differences of ∆A0 = 1.9%, ∆φM = 6.8%, ∆GM = 8.2%, and ∆BW = 0%.

It is clear, after thorough experimentation, that utilizing a Queen-Bee Genetic

Algorithm with variable mutation rates and a normalized parabolic fitness-function

is superior to both a PSO implementation and a QBGA implementation with a con-

stant mutation rate. The quick convergence to an optimal solution indicates that

it performs well in a high-dimensional search space. This type of algorithm could

benefit from additional research in order to improve functionality and efficiency.
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Appendix B

Power Supply Simulation Tutorial

with MATLAB R©

One of the primary issues with switched DC-DC converters is the simulation time

involved. There are many options outside of the classical circuit simulation software,

all of which do a fine job; however, having the ability to simulate a circuit quickly and

accurately within MATLAB R© is a very powerful tool for a Power Supply Designer.

In order to properly simulate a converter, the Simulink and SimScape toolboxes are

required. This tutorial will go over the creation of a Controlled Switched DC-DC

Boost Converter, but can easily be adapted for any converter topology.

1. To begin, type the command ‘powerlib’ into the MATLAB R© command line.

This initializes the tool used for circuit creation.

>> powerlib

2. An empty window should pop up along with an array of blocks that can be used

within the circuit, as shown in Figure B.1. Each block has elements associated

with it. For example, the ‘Electrical Sources’ block has such things as DC

voltage sources, Sinusoidal Sources, etc.

3. Open the ‘Elements’ box and click on ‘Series RLC Branch’ and drag it to the

circuit window, as shown in Figure B.2.
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Figure B.1: Powerlib Toolbar

Figure B.2: Series RLC Branch

4. Double-click on the Series RLC Branch. Here, the branch type can be changed

to R, C, L, or any combination of the three. This is also true for the ‘Parallel

RLC Branch’ within the ‘Elements’ box.

Select ‘L’ and enter the desired inductance value. The initial inductor current

can also be set in order to speed simulation time, but is not a necessary param-

eter. This is also true for the output filter capacitor (where it is recommended

to set the initial condition to the desired output voltage as this helps speed up

the transient simulation tremendously).

5. Next, add in all necessary passive components using the same ‘Series RLC

Branch’ used to generate the inductor. This includes the output filter capacitor,

resistive load, and resistive feedback branch. The diode and switch can be found

within the ‘Power Electronics’ box and the voltage supplies and grounds can be

found within the ‘Electrical Sources’ block, as was mentioned earlier. At this

point, the circuit should look similar to Figure B.4.
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Figure B.3: Changing Series RLC Branch Parameters

Figure B.4: Boost Converter in Powerlib (no Controller)

6. The next step is to add in the controller. Unfortunately, a model for the op-

amp is going to be needed in order to properly simulate the converter. To do

so, two voltage measurements are going to be needed (from the ‘Measurements’

box in the Powerlib tool pane) and an ‘Add’ block will be needed from the

Simulink→Math Operations library. This is the amplifier’s differential stage.
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7. Once the differential stage is implemented, the controller itself must be modeled.

The easiest method is to use one of the equations given throughout Chapter 4

to model the controller and implement it with a ‘Transfer Fcn’ block in the

Simulink→Continuous library. At the output of the transfer function, it’s wise

to play a ‘Saturation’ block to clamp the amplifier so that it doesn’t increase

(or decrease) to unrealistic values.

8. Finally, add in the ‘PWM Generator (DC-DC)’ block from the ‘Control and

Measurements’ Library within the Powerlib tool pane. The end circuit should

look like the circuit in Figure B.5.

Figure B.5: Boost Converter in Powerlib

9. Now that the converter has been entered schematically within Powerlib, mea-

surements must be set up in order to view the output waveforms as shown in

Figure B.6. To do so, first place down a ‘Voltage Measurement’ block near the

output of the converter and connected it between the output of the converter

and ground. Then place a ‘Scope’ block from the Simulink→Sinks library and

connect it to the output of the Voltage Measurement block. Finally, from the

Powerlib tool pane, place a ‘Powergui’ block anywhere within the circuit. This

is required for all Powerlib simulations.

10. In order to speed up the simulation as well as guarantee convergence, the simu-

lation solver needs to be changed to ode23tb. This is done by navigating to the
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Figure B.6: Boost Converter in Powerlib Output Measurement

‘Simulation’ menu on the menu bar in the Powerlib schematic editor and click-

ing on ‘Model Configuration Parameters’. This brings up a settings window, as

shown in Figure B.7. Change the solver to ode23tb (stiff/TR-BDF2). The

stop time can also be set within this window and was set to 50ms here.

Figure B.7: Powerlib Simulation Configuration Settings

11. At this point, the simulation can be run by either clicking the green ‘Run’ button

or by pressing Ctrl+T. The output waveform can be viewed by double-clicking
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the scope of interest. By navigating to the scope parameters within the scope

window, the data can be saved to any variable name in either a Structure or

Array format. This is a useful feature that makes post-processing of data very

easy.

The simulation for this particular converter took roughly 30 s to simulate 50ms.

This is significantly faster than conventional circuit simulation software which

can take 10× as long, if not longer, which is what makes supply simulation in

MATLAB R© a very attractive option for designers.
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