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ABSTRACT 

Kate Gleason College of Engineering 

Rochester Institute of Technology 

 

Degree:  Master of Science 

 

Program:  Electrical Engineering 

 

Author:  Jeffrey Townsley Abbott 

 

Title:  Modeling the Capacitive Behavior of Coplanar Striplines and Coplanar Waveguides 

Using Simple Functions 

 

The coplanar waveguide (CPW) structure has been popular for Monolithic Microwave 

Integrated Circuit (MMIC) design due to the wide versatility of its designable impedance.  Since 

its introduction in 1969, it has been utilized in a wide range of applications and consequently has 

been analyzed extensively for its electrical characteristics.  Other planar structures with similar 

geometries have also received much attention, including the conductor-backed coplanar 

waveguide (CBCPW) and coplanar stripline (CPS).  A common approach for analyzing these 

planar structures, assuming quasi-TEM mode of operation, involves the use of conformal 

mapping techniques.  The traditional conformal mappings realize special functions allowing for 

problems of convergence, computation efficiency, and accuracy during implementation in CAD 

software. 

The focus of this thesis is modeling the capacitive behavior of planar devices including the 

conductor-backed interdigital coplanar waveguide (CBICPW), CPS, and finite-width conductor-

backed coplanar waveguide (FWCBCPW) in an infinite well under a quasi-TEM mode of 

operation.  Continuously differentiable, simple functions are used in place of special functions to 

improve the performance of models within CAD environments.  New conformal mapping 

techniques are introduced that use only simple functions. Combined with other approximations, 

one can formulate expressions with arbitrary accuracy.  A new iterative expression is presented 

for evaluation of the elliptic integrals ratio, K/K’, commonly used in standard expressions for 

planar structures.  The new expression, based on a continuously differentiable function, exhibits 

a relative error on the order of 10
-11

 with reduced computational complexity.  Results from the 

new models are compared to the simulated results of a commercial electromagnetic field solver.  

Experimental results that were available for the CBICPW structure indicated good 

correspondence to results calculated from the new model. 
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Chapter 1  

 

Introduction 

 

Transmission lines are an integral component for designing high-frequency circuits for both 

wired and wireless applications.  Four major classifications of transmission lines have become 

popular for designing Monolithic Microwave Integrated Circuits (MMICs) including the 

microstrip, slotline, coplanar waveguide (CPW), and coplanar stripline (CPS) [1].  Comparisons 

have been made between the four types of transmission lines with each type having their own 

benefits and drawbacks [1][2][3].  A summary of the reported designable range for the 

characteristic impedance, Z0, and ease of implementation can be seen in Table 1.  

The wide versatility in its designable impedance has made the CPW ideal for many 

microwave circuit designers.  Since its introduction in 1969 [4], the structure has been used for a 

 Lower Limit for 

Z0 (Ω) at  

30 GHz 

Upper Limit for 

Z0 (Ω) at  

30 GHz 

Parallel 

Component 

Integration 

Series 

Component 

Integration 

Microstrip 11 110 Poor Easy 

Slotline 35 250 Easy Difficult 

CPW 20 250 Easy Easy 

CPS 20 250 Easy Easy 

Table 1.  Comparison of properties of various transmission lines. 
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wide number of applications [5][6][7][8][9][10][11].  Other planar structures with similar 

geometries have received much attention as well, including the conductor-backed coplanar 

waveguide (CBCPW) and the interdigital capacitor (IDC).  A new device, the conductor-backed 

interdigital coplanar waveguide (CBICPW), has also been under investigation for uses with thin-

film silicon process technologies on glass [12] and will be discussed in this thesis. 

A basic representation of a CBCPW is illustrated in Fig. 1.1.  For most applications, a signal 

metal line is routed between two ground metal lines on top of a dielectric material.  A conductor 

backing below the dielectric material is optional but offers the improvement of mechanical 

strength and heat dissipation while enabling easy implementation of mixed coplanar/microstrip 

circuits [13].  A dielectric thickness twice to three times the width of the slots is recommended in 

conjunction with a high dielectric permittivity to permit proper propagation of the wave without 

being disturbed by an interface on the backside [4]. 

Simple analyses for the electrical parameters of planar structures assume a quasi-TEM mode 

where the propagating wavelength is much larger than the device dimensions, resulting in 

electric and magnetic fields transverse to the direction of the wave.  More rigorous methods use 

full-wave analysis techniques which allow for frequency dependence of phase velocity and 

characteristic impedance.  Under both of these conditions, the electrical parameters of the CPW, 

 

Conductor 

Backing

Ground

εr

Signal

Dielectric
 

 

Fig. 1.1.  A basic coplanar waveguide structure with conductor backing. 
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CBCPW, CPS, and IDC have been well characterized in the literature.  Various techniques 

include conformal mapping [12][14][15][16][17][18][19][20][21][22][23][24], 3D Finite 

Difference Time Domain (FDTD) Method [25][26][27][28], Spectral Domain Method 

[13][29][30], Integral Method [31][32], Transverse Resonance Technique [33], Relaxation 

Method [34], and Multilayer Perceptron Neural Networks (MLPNNs) [35].  Many of these 

methods result in accurate calculations of the desired electrical parameters with varying degrees 

of complexity, computation time, and ease of implementation.   

The bulk of the work in this thesis rests in modeling the capacitive behavior of planar 

devices including the CBICPW, CPS, and finite-width conductor-backed coplanar waveguide 

(FWCBCPW) in an infinite well under a quasi-TEM mode of operation.  Under this 

approximation, the relative permittivity, εr, phase velocity, vph, and characteristic impedance can 

be expressed as [1],  

ar
C

C
  (1.1) 

r

ph

c
v


  (1.2) 

a

rph CcCv
Z



11
0   (1.3) 

where c is the speed of light, C is the total capacitance, and C
a
 is the capacitance of the 

corresponding line with all the dielectrics replaced by air.  Therefore, with solutions for 

capacitance, the corresponding characteristic impedance and relative permittivity can be 

calculated. 
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1.1 The Need for a CBICPW and FWCBCPW Capacitance Model 

Thompson et al. has analyzed the quasi-TEM parameters of the non-conductor-backed 

interdigital coplanar waveguide (ICPW) using finite-element analysis [28].  The benefits 

reported by the authors for the ICPW include lower characteristic impedance for the same 

minimum feature size and overall line width, reduced high-frequency resistive loss, and greater 

reduction in ohmic losses for thickening the conductors as compared to the traditional CPW.  

These benefits, combined with those previously mentioned for conductor backing, offer promise 

for the CBICPW and provide motivation for characterizing its behavior.   

Previous work in modeling interdigital devices for their capacitance has been in the field of 

IDCs.  A simple top-down view of a set of interdigital fingers is shown in Fig. 1.2(a).  The most 

common approach assumes a uniform cross-sectional field for the length of the fingers, resulting 

in the cross-sectional view in Fig. 1.2(b).  This assumption allows for the use of two dimensional 

equations to calculate the capacitance per unit length of the cross section and then multiply it by 

the length of the finger to calculate a capacitance.  Additional capacitance contributions from the 

finger ends and outermost fingers are added to account for the non-uniform fields at the finger 

ends and on the outside edges of the device [19][23].  This technique offers accurate results with 

a wide range of physical device sizes and multiple substrates; the latter calculated using the 

Finger Plane 1

Finger Plane 2

εr

Finger Plane 1

Finger Plane 2

(a) (b)  
Fig. 1.2.  Example of interdigital fingers showing (a) top-down view and (b) cross-sectional view 

along length of the fingers. 
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partial capacitance technique [17][24].  The accurate results come at the cost of a fair amount of 

complexity added with determining the contributions of the finger ends and outermost fingers.  

To use a similar approach for the CBICPW, the FWCBCPW in an infinite well can be used 

to calculate the cross-sectional capacitance per unit length.  Two major limitations exist with this 

approach, however.  The capacitance of the FWCBCPW in an infinite well, represented in 

Fig. 1.3(a), has not been modeled analytically due to its asymmetry, though the infinite-width 

CBCPW has been analyzed, Fig. 1.3(b), using conformal mapping techniques [12].  Assuming 

small gaps compared to the lateral conduction plane widths, the infinite-width equation can be 

used with minor error while limiting the devices dimensions that are applicable.  An approximate 

capacitance model for the FWCBCPW in an infinite well will be introduced in this thesis but not 

used in conjunction with the CBICPW. 

The second limitation arises with the ratio of hyperbolic tangents in the expression for the 

infinite-width CBCPW, displayed in (1.4), losing value at a lateral conductor width to dielectric 

thickness ratio of 24.3 for a standard PC using 64-bit double-precision floating-point variables.   

 

(a) (b)

w
w+2g

-∞ ∞

εr

w

εr

∞ ∞

2w+2g

 
Fig. 1.3.  Cross-sectional view of (a) FWCBCPW in an infinite well and (b) CBCPW with 

infinite lateral conduction planes. 
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(1.4) 

Consequently, for a thin-film device where this ratio can easily exceed 1000, this equation 

will lose value.  As a result, to model the capacitance of the CBICPW, an expression for the 

capacitance of the FWCBCPW in an infinite well has to be established and must be capable of 

evaluation for all dielectric thicknesses.  This thesis will approximate an expression for the 

capacitance of the CBICPW and provide a blending function for continuous evaluation with 

moderate accuracy. 

 

1.2 The Need for Simple Function Evaluation 

One of the most popular ways to develop analytical solutions for the electrical parameters of 

planar structures is to use conformal mapping techniques [12][14][15][16][17][18][19][20] 

[21][22][23][24].  These expressions, in the form of analytical solutions, are ideal for computer-

aided design (CAD) orientated software.  In addition, the dependency of the electrical parameters 

on various physical dimensions is clearly seen with a closed-form expression. Resulting 

expressions are easily differentiated, making them ideal for sensitivity analysis and predicting 

process variation.  Many approximations show that these expressions can also be accurate up to 

frequencies of 20 GHz [17], comparable to full-wave techniques.   

It is common to use Schwarz-Christoffel conformal mapping due to its ability to map the 

real axis of the complex plane onto the exterior of a simple polygon [36].  The upper half plane is 

correspondingly mapped to the interior of the polygon.  This mapping is useful for solving the 
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electric and magnetic fields of complex geometries by mapping to simpler geometries such as 

infinite strips, parallel plate bounded geometries, and other known trivial solutions. 

Mapping to a rectangular region, as depicted in Fig. 1.4, is ideal for two-conductor planar 

geometries to solve Laplace’s equation for the electric field.  The line-to-line capacitance, 

characteristic impedance, and relative permittivity can then be easily derived.  Nonetheless, the 

device widths in this new simple region require the evaluation of the complete elliptic integral of 

the first kind, a special function, and its complement.  For evaluation of parameters in CAD-

orientated software, this special function often has to be specifically implemented allowing for 

potential problems with poor convergence and reduced computation efficiency and accuracy.   

Hilberg published estimations in 1968 for the ratio of the complete elliptic integral of the 

first kind to its complement, K/K’, based on simple function conformal mappings [37].  The 

expressions use two regions of calculation with only simple functions resulting in a maximum 

relative accuracy of 3∙10
-6

.  The precision of the expressions and simple implementation have 

made it a standard in calculating microstrip electrical parameters with references made in many 

popular text books [1][38].   

The downside to these expressions is the need for two regions of calculation, resulting in a 

discontinuous derivative at the boundary with respective to the input physical dimensions.  In 

addition, the steps followed to derive the expressions are not easily understood and offer little 
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Fig. 1.4.  Simple representation of a Schwarz-Christoffel transformation to a rectangular region. 
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help for further improvements.  The evaluation of K/K’ will be addressed in this thesis by using 

new simple function conformal mappings and other approximations.  The new conformal 

mappings utilized are then applied to the FWCBCPW in an infinite well to demonstrate their 

flexibility. 

 

1.3 Thesis Overview 

The theory and simulations for capacitive modeling of the CBICPW are described in 

Chapter 2.  Chapter 3 focuses on the experimental verification of the developed CBICPW model 

including the measurement technique.  Chapter 4 describes the conformal mapping techniques 

used in place of a Schwarz-Christoffel Conformal Map and provides a computation comparison 

to other techniques available in the literature.  Chapter 5 investigates similar conformal mapping 

techniques to those described in Chapter 4 to establish an approximate expression for the 

capacitance of the FWCBCPW in an infinite well.  Finally, Chapter 6 provides an overall 

discussion of the work performed and offers suggestions for future work. 
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Chapter 2  

 

Capacitive Modeling of CBICPW 

 

As mentioned in Chapter 1, there is a need for a capacitive model for the interdigital 

capacitance of the conductor-backed interdigital coplanar waveguide (CBICPW).  The initial 

strategy in this work was to empirically fit polynomial equations to simulated capacitance data 

from the finite difference field solver Ansoft MAXWELL™.  The expressions derived from this 

effort provided accurate results to the range of physical dimensions simulated but provided 

incorrect calculations for dimensions outside the simulated range.  The second approach, 

outlined in this chapter, seeks to use analytical expressions derived from first principles and 

previous research and extend it to the CBICPW. 

 

2.1 General Overview and Definitions 

Cross-sectional and top-down views of the CBICPW are shown in Fig. 2.1(a) and 

Fig. 2.1(b), respectively, with the physical device parameters shown.  From Fig. 2.1, the height 

of the interface dielectric material is defined as h, the interface dielectric relative permittivity is 

εr, the width of the fingers is w, the spacing or gap between the fingers is g, the length of the 
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fingers is l, and the number of fingers is N.  The CBICPW is placed upon a thick layer of glass 

(Fig. 2.1(a) is not drawn to scale), though no charge is assumed to be under the substrate 

conduction plane.  The glass can therefore be ignored for the charge exchange of the system as 

there is no electric field in this region due to the infinite-width substrate conduction plane. 

The charge exchange of the system can be modeled using a hybrid-pi capacitance model, 

represented in schematic form in Fig. 2.2.  The charge on each plane can be calculated, 
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g
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(b)

w
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Fig. 2.1.  (a) Cross-sectional view of CBICPW and (b) top-down view of CBICPW. 
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where Cij is the hybrid-pi capacitance between conduction plane i and plane j, Qi is the charge on 

conduction plane i, and Vi is the potential of conduction plane i.  The two finger planes are 

assumed to be symmetric (N is even) resulting in the capacitances C13 and C23 being equivalent 

and simplified to C3. The interdigital capacitance between the two lateral conduction planes, CID, 

in terms of the hybrid-pi capacitance values can be expressed as C12 in parallel with the series 

combination of C13 and C23, 

2

3
12
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2313
12

C
C

CC

CC
CCID 


  (2.2) 

This definition of the interdigital capacitance assumes that the substrate conduction plane is 

floating with respect to the applied voltage across the lateral conduction planes with no net 

charge on the substrate conduction plane (Q3=0).  Under this assumption, the potential of the 

substrate conduction plane, V3, can be derived by applying a voltage, Vo, across the lateral 

conduction planes, 
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Fig. 2.2.  Hybrid pi capacitance model for CBICPW. 
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The charge exchange can be calculated by using (2.1), 

 
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o

o




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 (2.4) 

Therefore, the potential V3 may be solved for using Q3=0 resulting in, 

2
3

oV
V   (2.5) 

To model the interdigital capacitance, a unit cell capacitance per unit length will be derived 

and multiplied by an effective length. 

 

2.2 Unit Cell Development 

The cross section of the CBICPW can be comprised of unit cells, due to the symmetry 

created by the repeated structure.  Fig. 2.3(a) and Fig. 2.3(b) display the cross-sectional views of 

the CBICPW and FWCBCPW in an infinite well, respectively.  A simulated potential field 

distribution for a cross section of a CBICPW is illustrated in Fig. 2.4.  Magnetic walls can be 

placed along electric field lines to isolate regions, depicted in the plot by dashed lines.  

Therefore, placing multiple FWCBCPW in an infinite well in parallel, the cross section of the 

CBICPW is formed.  The fringing effects from the outermost fingers will be accounted for using 
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w g
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(b) (c)

w
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Fig. 2.3.  Cross-sectional view of (a) CBICPW, (b) FWCBCPW in an infinite well, and 

(c) CBCPW with infinite width lateral conduction planes. 
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the derived effective length of the finger planes in the next section. 

As previously mentioned in Chapter 1, the capacitance of the FWCBCPW in an infinite well 

has not been modeled due to its asymmetry.  Ghione et al. has published a closed-form 

expression based on conformal mapping for the capacitance per unit length of a CBCPW with 

infinite-width conduction planes [14], however, with a cross-sectional view shown in Fig. 2.3(c). 

The total capacitance per unit length, C’∞, is computed as the sum of the capacitance of the air 

above and the dielectric layer below the finger plane,  
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(2.6) 

where 0 is the permittivity of free space, w is the width of the line, g is the gap, h is the height of 

the interface dielectric, K(k) is the complete elliptic integral of the first kind and 21' ii kk  . 

Lateral Conduction 

Plane 1

Lateral Conduction 

Plane 1

Lateral Conduction 

Plane 2

Substrate Conduction Plane 3

 
Fig. 2.4.  Simulated potential distribution of the CBICPW cross section with magnetic walls 

inserted. 
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In a later publication [15], Ghione et al. proposed an adjustment for the capacitance per unit 

length due to the air in the upper half plane, C’air, for finite-width lateral planes as seen in (2.7), 

though no adjustments could be found for the capacitance due to the dielectric in the lower half 

plane. 
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To estimate the change in capacitance of the lower half plane for finite-width lateral 

conduction planes, the CBCPW can be analyzed in terms of its hybrid-pi capacitance values.  For 

small dielectric thicknesses, the majority of the interdigital capacitance is the contribution of the 

series capacitance between the upper conduction planes and the substrate conduction plane, C3/2 

in (2.8).  The fringing capacitance, C12, can be ignored during this case. 

2
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C
C ID

h
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
 (2.8) 

As the interface dielectric thickness approaches zero, the electric field lines emanate 

uniformly in the dielectric region, terminating on the substrate conduction plane similar to an 

ideal parallel plate capacitor.  Consequently, the capacitance per unit length due to the dielectric 

in the lower half plane, C’3, can be simply calculated by the width of the lateral conduction 

plane, w, over the height of the dielectric thickness, h.  The total interdigital capacitance per unit 

length, C’ID, can therefore be calculated as, 
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For infinite-width lateral conduction planes, the hybrid-pi capacitances are not symmetric.  

The interdigital capacitance per unit length is therefore expressed in its original form, 
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Taking conduction plane 2 to be infinite, and therefore C’23 to be infinite as well, the 

interdigital capacitance per unit length, C’ID_∞, can be expressed, 
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 (2.11) 

Using (2.9) and (2.11), the finite-width lateral conduction plane capacitance per unit length 

can be estimated as half that of the infinite lateral conduction plane, 
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Therefore, (2.6) can be modified using (2.7) and (2.12) to estimate the total cross-sectional 

capacitance per unit length for finite-width lateral conduction planes leading to, 
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(2.13) 

To verify the validity of the expression in (2.13), 2D field simulations were performed on 

the FWCBCPW in an infinite well in Ansoft MAXWELL™ for parameter values displayed in 

Table 2.  Plots of the percentage error relative to the simulated data for both (2.13) and (2.9) are 

seen in Fig. 2.5.  The gap dimensions used are small compared to the widths in order for the 
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infinite-width conduction plane estimation to hold true.  Notwithstanding, the high error in 

Fig. 2.5 for (2.13) is the result of the gap becoming significant as compared to the finger width. 

The parameter ratio w/h (finger width to dielectric thickness) is chosen for the x-axis to 

show the transition for the majority of the capacitance moving from the fringing capacitance, 

C’12, to the series combination of the capacitance through the substrate conduction plane, C’3/2.  

The w/2h estimation shows an estimation for C’3/2 specifically, where at small w/h ratios the 

total capacitance is greatly underestimated.  This underestimation is due to the fringing 

capacitance C’12 being the largest source of capacitance in the overall expression.  As the w/h 

Parameter Value (µm) 

w 50, 100, 150 

g 5, 10, 20 

h 0.25, 0.5, 1, 2, 5, 10,20, 30, 40, 50, 60, 70, 

80, 100, 150, 200, 300 

Table 2.  Various device parameters used for 2D field simulation of  

FWCBCPW in an infinite well. 
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Fig. 2.5.  Percentage error of the expressions in (2.9) and (2.13) to simulated data from 

MAXWELL™ with percentage error versus w/h for parameter values shown in Table 2. 
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ratio increases, the majority of the capacitance is due to C’3 and the w/2h estimation becomes 

quite accurate.   

To show the gap influence on the accuracy of the expressions, Fig. 2.6 plots percentage 

versus g/h (gap size to dielectric thickness).  For the limiting case where the gap size is much 

larger than the dielectric thickness, g/h>>1, there is little fringing between the conductors.  The 

electric field below the conductors is resultantly uniform, validating the w/2h estimation of the 

substrate coupling capacitance.  For the dielectric thickness being much larger than the gap size, 

g/h<<1, the modified Ghione expression is most accurate due to the assumption made for a small 

gap size in (2.13) being validated.  At the transition between these limiting cases, g/h~1, the 

inaccuracy of the expression in (2.13) can be attributed to a significant amount of fringing 

capacitance where the gap size is not small compared to the finger width. 
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Fig. 2.6.  Percentage error of the expressions in (2.9) and (2.13) to simulated data from 

MAXWELL™ with percentage error versus g/h for parameter values shown in Table 2. 
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Also from the simulation results, Fig. 2.5, it can be seen that the expression in (2.13) is 

unable to be calculated at a w/h ratio greater than 24.3 using 64-bit double-precision floating-

point variables.  At this point, the ratio of hyperbolic tangents in the calculation of the parameter 

k1 in (2.13) approaches unity and precision is lost.  Fortunately, the estimation in (2.9) is 

reasonably valid, allowing for a continuous calculation of the cross-sectional capacitance, C’, on 

the unit cell using a blending function.  The blending function chosen is plotted in Fig. 2.7 and 

the total capacitance is calculated as, 
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 (2.14) 

where k0 and k1 are given in (2.13). 
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Fig. 2.7.  Blending function used to allow continuous evaluation of the unit cell capacitance per 

unit length. 
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2.3 CBICPW Model Development 

To obtain the total interdigital capacitance, the effective length of the interdigital fingers can 

be computed and used with the derived unit cell capacitance in (2.14).  Two effective lengths are 

needed, one for the region using the modified Ghione et al. expression, and the other for the w/2h 

approximation.  Assuming a uniform electric field, an approximation can be made for the 

capacitance of the CBICPW as the dielectric thickness approaches zero using the area of the 

finger planes over the thickness divided by two for the equal capacitance in series, 
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where N is the number of fingers.   

Factoring out a factor of w/2h results in an effective length, leff_G23, for the region of w/h 

greater than 24.3, 
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For the region of w/h less than 24.3, the general centerline length, cl, of the structure can be 

calculated, 
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To arrive at an accurate effective length, 3D electromagnetic field simulations were 

performed in Ansoft MAXWELL™, pictured in Fig. 2.8, for finger lengths of 0.1, 5, 10, 15, 40, 

75, 150, 200, and 350 µm with a finger width of 25 µm, gap size of 5 µm, and dielectric 

thicknesses ranging from 0.1 µm to 50 µm. Smaller simulations for finger width values ranging 

from 25 µm to 400 µm and gap size from 5 µm to 40 µm were also performed to more clearly 
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show their dependencies on the overall capacitance.  With starting equations of (2.17) and (2.16), 

the effective length for small w/h was empirically determined to have the form of, 
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where a0 is an empirically derived coefficient.  The coefficient a0 was varied with percentage 

error calculations made using the simulated data set.  A coefficient value was determined to 

minimize the mean error to the data set resulting in the effective length for small w/h to be, 

2

3

2
839.023_

gl
wgNl Leff 








  (2.19) 

Using (2.16) and (2.19) with (2.14), the resulting equation for the interdigital capacitance is 

expressed as  

 
Fig. 2.8.  Three dimensional model of CBICPW in MAXWELL™. 
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Fig. 2.9 shows the percentage error for (2.15) and (2.20) to the simulated data samples of the 

CBICPW structure.  The inset shows detail of the percentage error for small w/h where the three 

distinct lines are the result of three different gap sizes for varying the w/h ratio.  For the 
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Fig. 2.9.  Percentage error of the expressions in (2.15) and (2.20) to simulated CBICPW data 

from MAXWELL™. 
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expression in (2.20), the mean error is three percent to the simulated data, with a maximum of 

eleven percent at the transition between calculation regions.  The relatively low percentage error 

across a wide range of input device parameters is demonstrated by the plot, specifically the wide 

range of dielectric thicknesses.  The constraint of small gaps compared to finger widths is still a 

limitation placed upon the model.  The best accuracy is obtained for either a large or small 

dielectric thickness as compared to the finger width and gap dimensions. 
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Chapter 3  

 

CBICPW Measurements and Verification 

 

In the previous chapter, the need for an analytical capacitance model for the CBICPW was 

addressed.  This chapter seeks to verify the derived model with experimental evidence from 

fabricated structures.  A brief overview of the fabrication of the CBICPW structures and the 

device dimensions is offered, followed by a derivation of the measurement theory.  Finally, 

experimental results are presented and discussed in relation to the previously derived model. 

 

3.1 CBICPW Device Fabrication 

 CBICPW structures were designed using layout tools within the Cadence environment. 

Structure layouts were sent to Corning, Inc. for fabrication on glass approximately 1 mm thick.  

The substrate and lateral conduction planes were formed with Aluminum, Al, and silicon 

Parameter Dimensional Value (µm) 

N 6, 10, 50 

w 4, 25, 100, 200 

g 30, 50, 100 

l 50,000, 1,000, 50 

h 0.060, 0.192, 0.536 

Table 3.  Various device parameters for fabrication of CBICPW. 
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dioxide, SiO2, was used for the interface dielectric.  Five wafers were fabricated with varying 

dielectric thickness, although only three were usable for measurements.  Table 3 displays the 

physical dimensions used for the structures. 

The fabricated dielectric thicknesses are significantly smaller than the width and gap 

dimensions, indicating from Chapter 2 that the capacitive coupling through the substrate 

conduction plane constitutes the majority of the capacitance.  A picture of the h=536 nm wafer 

can be seen in Fig. 3.1.  To visualize the glass, a picture of a wafer without a dielectric interface 

or conductor backing is shown in Fig. 3.2.  This second wafer was only utilized for experimental 

verification. 

 
Fig. 3.1.  Fabricated CBICPW 536 nm wafer on glass 
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3.2 Measurement Theory 

 The capacitance of the CBICPW structures were measured on an Agilent B1500A 

Semiconductor Device Analyzer.  The capacitance measurement unit (CMU) in the B1500A uses 

a two-terminal nulling node technique for isolating the device under test (DUT) and accurately 

 
Fig. 3.2.  IDC wafer on glass without conductor backing or dielectric interface. 

 

 

Cmeas

Vs A

Iin
Iout

C10 C20

 
Fig. 3.3.  Schematic representation of the CMU. 
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measuring the applied voltage and resultant current, represented in schematic form in Fig. 3.3.  

Voltage measurements are made on the input to the DUT and the current is measured by a 

transimpedance amplifier on the return path.  With this configuration, parasitic capacitances, 

represented by C10 and C20, are shorted to a small signal ground and do not affect the 

measurement.   

A photograph of the Cascade Microtech high-frequency probe station used for the capacitive 

measurements is displayed in Fig. 3.4. A wafer with the test structures is placed on the chuck as 

shown in the middle of the photograph.  Two dc point probes (brass arms), establish the actual 

connection to the test structure and are connected to the B1500A (not shown) using coaxial 

cables.  A third coaxial cable connects the chuck to the B1500A’s reference ground.  The 

distributed parasitic capacitances from the coaxial leads are removed from the measurements by 

 
Fig. 3.4.  Probe station used for capacitive measurements. 
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performing open and short calibrations at the measuring frequency of 100 kHz.  100 µm by 

100 µm probe pads were provided to contact minimum size test structure terminals. 

The output current from the device in Fig. 3.3 can be expressed as, 

meas

s

out
Z

V
I   (3.1) 

where Vs is the applied voltage from the CMU, Iout is the output current, and Zmeas is the 

impedance of the measured capacitance.  The measured impedance is therefore simply, 

out

s
meas

I

V
Z   (3.2) 

A schematic representation of the measurement system with the CBICPW hybrid-pi 

capacitance model is shown in Fig. 3.5.  The additional capacitances C10, C20, and C30 represent 

parasitic capacitances and are referenced to ground.  Similar to the previous case, the parasitic 

capacitances C10 and C20 are shorted to small signal ground with the applied voltage source and 

transimpedance amplifier on the return.  However, a striking difference is the presence of a third 

terminal in the capacitive device structure under test. The capacitance C30 cannot be ignored and 

will induce a current (Iloss) to flow as the potential on the substrate conduction plane, Vx, is not 

Lateral Conduction 

Plane 1

Lateral Conduction 

Plane 2

Substrate Conduction 

Plane 3

C12

C13
C23

C10

C30

C20Vs

Vx

A

Iin Iout

Iloss

 
Fig. 3.5.  Schematic representation of CMU with CBICPW hybrid-pi capacitance model. 
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fixed.  With the capacitive coupling to the chuck on the probe station, this additional capacitance 

led to the misinterpretation of initial measurements.  After verifying the measurement system 

with two terminal devices, the additional third terminal was included in the measurement theory 

to properly interpret the data. 

From Chapter 2, it is expected that this voltage Vx will assume a value half that of the 

applied voltage Vs in order for the modeled capacitance to be measured.  Performing nodal 

analysis at the unknown voltage, Vx, results in  

13302313

111

Z

V

ZZZ
V S

x 
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


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



  (3.3) 

The expression in (3.3) can be simplified under the previous assumption that Z13 is 

equivalent to Z23 from the symmetry of the two finger planes and can be rewritten as Z3, 

3303
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  (3.4) 

Solving for Vx, 
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(3.5) 

The current out of the device, Iout, can be expressed as 

123 Z

V

Z

V
I sx

out   (3.6) 

Substituting the measured current of (3.6) into the expression for measured impedance in 

(3.2), 
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The expression in (3.5) may be combined with (3.7) to obtain an expression for the 

measured impedance, Zmeas, 
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Substituting in capacitance values, 
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Solving for Cmeas reduces (3.9) to 
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(3.10) 

From this final form, the measured capacitance is smaller than expected for a significant 

parasitic capacitance on the substrate conduction plane.  This loss of capacitance can be 

visualized by the Iloss current in Fig. 3.5.  The potential, Vx, is also reduced from the expected 

Vs/2 by its coupling to ground for large C30,  
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From Chapter 2, under the limiting case where the dielectric thickness approaches zero, 

resulting in C3 being large compared to C12, the total capacitance can be estimated using the area 

of the finger planes.  With (3.10), this relationship can be used and expressed as, 
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 (3.12) 

For smaller C3 capacitance values, however, a reduction may not be made and Cmeas can be 

solved for in terms of CID for C12 being insignificant, 

30

2
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CC

C
C

ID

ID
meas


  (3.13) 

 

3.3 Measurement Results 

To compare the derived model with measured data, both the interdigital capacitance, CID, 

and the parasitic capacitance on the substrate conduction plane, C30, were measured and used in 

(3.13).  To accurately characterize C30, the chuck on which the fabricated wafers were placed 

was grounded, represented in Fig. 3.6.  The parasitic capacitance could then be simply calculated 

as the capacitance between the substrate conduction plane through the glass dielectric to ground.  

The interface dielectric was etched away to expose the substrate conduction plane to allow 

measurement of the substrate conduction plane capacitance to ground.  An insulator was placed 

between the glass and the grounded chuck to reduce the measured C30 capacitance from 

approximately 1 nF without the insulator to 38 pF with the insulator. 
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With this value of 38 pF for C30, the expression in (3.13) was experimentally seen to be 

valid for calculations using interdigital capacitance values above 7 pF.  With smaller interdigital 

capacitance values, the contribution of C12 in (3.10) became significant, resulting in invalid 

calculations from (3.13). As noted, the two-terminal capacitance model assumed for the Agilent 

B1500A nulling measurement technique is not directly applicable for the CBICPW device 

structure. To compare laboratory measurements of CBICPW structures using a nulling node 

technique to a theoretical model for all capacitance values the individual hybrid-pi capacitances 

for the complete structure need to be considered.  

εr

Glass

1000µm

C30

Measurement of C30

Measurement of CID

Insulator

Chuck

 
Fig. 3.6.  Pictorial representation of measurements performed for CID and C30. 
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Fig. 3.7 displays the percentage difference of actual measured capacitance values to values 

calculated using (3.13).  The difference for larger capacitance values can be described as process 

variation, shown by the corresponding normal distribution of error. For decreasing capacitance 

values, however, the measured capacitance is underestimated due to the contribution of C12 in 

(3.10) making the measured capacitance much larger than that predicted by (3.13).  Overall, the 

capacitance values seen from the structures were mainly due to the series capacitance through the 

substrate conduction plane, with minimal fringing capacitance through either the dielectric layer 

or the air.  
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Fig. 3.7.  Percentage difference of the expression in (3.13) to measured CBICPW data. 
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Chapter 4  

 

Calculation of Elliptic Integrals Ratio 

 

Conformal mapping has been a popular technique in solving electric field distributions due 

to its definition of preserving angles [39].  With this preservation of angles, two orthogonal 

families of curves lying on a region, such as electric field lines and equipotential lines, will 

remain orthogonal after being mapped to another region.  A solution of Laplace’s equation on the 

second region is therefore applicable to the first.   

To demonstrate, if the mapping w=f(z) is an analytic function its derivative can be stated as 

[39], 

 zf
dz

dw
'  (4.1) 

and will not depend upon dz by definition.  Writing f’(z) and dz in polar form, 

   jj edsdzeMzf  ,'  (4.2) 

Equation (4.1) can therefore be solved for dw, 

    jedsMdzzfdw '  (4.3) 

From (4.3), the magnitude of dw is scaled by a factor M for any one point from the z plane.  

The magnitude M may change from point to point due to its functional dependence upon z.  
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Similarly, the direction of dw will be rotated by an angle µ that can vary from point to point as a 

function of z.  As a result, the local angles at every point are preserved but can be rotated and 

scaled by µ and M, respectively, as determined by f(z). 

To validate the equivalence of Laplace’s equation on both regions, Laplace’s equation for 

the potential field, φ, is expressed using rectangular coordinates on the first region as, 

0
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Using f(w), the second order partial derivatives on the first region can be expressed in terms 

of those on the second [40], 
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 (4.5) 

Therefore, unless f’(z)=0, the vanishing of the left-hand side implies the vanishing of the 

parenthesis on the right [40], and vice versa. 
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4.1 Schwarz-Christoffel Mapping of Coplanar Striplines 

The Schwarz-Christoffel transformation maps the real axis with points aj onto the exterior of 

a simple polygon with points Aj and interior angles αj, shown in (4.6) in differential form [36].  

The upper half plane is correspondingly mapped to the interior of the polygon forming a 

bounded open region. 
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 (4.6) 

This mapping is ideal for solving the capacitance of two conductor planar structures.  

Placing the real axis along the common line of the conductors and assuming magnetic walls 

between the conductors, the problem can be split into the half plane regions above and below.  A 

Schwarz-Christoffel conformal mapping of the upper half plane to a rectangular parallel plate 

configuration allows for an easy solution for the electric field and solution of the capacitance.  A 

simple representation of this description is repeated from Chapter 1 in Fig. 4.1. 

The mapping depicted in Fig. 4.1 can be expressed from (4.6) in integral form noting that 

 

iwy

wxa1 a2 a3 a4

A1

A2 A3

A4
Schwarz-

Christoffel 

Conformal Map

izy

zx

 
 

Fig. 4.1.  Simple representation of a Schwarz-Christoffel transformation to a rectangular region. 

 



 

36 

 

the interior angles are π/2,  
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fz  (4.7) 

Liu published solutions for both asymmetric and symmetric conductors on the upper half 

plane and their corresponding electric field solutions based upon Schwarz-Christoffel conformal 

mappings [18].  Using a similar approach, a symmetric structure can be defined as in Fig. 4.2(a).  

The resultant mapping to a rectangular region, portrayed in Fig. 4.2(b), is expressed as, 
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where F is the incomplete elliptic integral of the first kind and k is the modulus as defined in 

Fig. 4.2(a). 

The points on the z-plane can be solved for by evaluating the points along the real axis, 
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 (4.9) 

where K(k) is the complete elliptic integral of the first kind evaluated using the modulus and 

K(k’)=K’(k) is the complement with 21' kk  .  The capacitance per unit length, C’, is solved 

for by the width of the plates on the z-plane divided by the spacing between the plates [4][18]. 
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Fig. 4.2.  Geometries of (a) two planar conductors on the upper half plane and (b) transformed 

conductors on the Schwarz-Christoffel rectangular region. 
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' 0  (4.10) 

This formula is important for many applications.  More elaborate geometries often map the 

conductors to the real axis and use similar Swartz-Christoffel transformations to map to a 

rectangular region.  Consequently, many solutions of the capacitance, relative permittivity, and 

characteristic impedance often utilize this ratio with its inverse defined as the elliptic integrals 

ratio, K/K’. 

A configuration that uses the solution is two coplanar striplines in an infinite well, seen in 

repeated structures such as the IDC.  Fig. 4.3(a) shows a scaled version of Fig. 4.2(a), though it 

should be noted that the capacitance does not scale, with Fig. 4.3(b) displaying the coplanar 

striplines in an infinite well.  To map the geometry from the infinite well to the configuration in 

Fig. 4.3(a), the mapping in (4.11) may be used with the capacitance per unit length, C’well, being 

calculated in (4.12) [16]. 
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Fig. 4.3.  Geometries of (a) CPS on the upper half-plane and (b) CPS in an infinite well. 
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4.2 Approximate Mapping of CPS using Simple Functions 

The CPS in an infinite well may be defined on a semi-infinite strip plane Z, represented in 

Fig. 4.4(a) with points of interest defined in (4.13).  The line segment 34¯¯ corresponds to an 

inserted conductor at the equipotential surface between the lateral conduction planes in 

Fig. 4.3(b) along the vertical axis. 


















 54321 ,

22
,

22
,

2
,0 Z

wg
iZ

wg
iZ

w
iZZ  (4.13) 

A hyperbolic cosine function is used to map the outside of the semi-infinite strip to the real 

part of the W plane, depicted in Fig. 4.4 (b) and (4.14) [19]. 
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The points of interest on the W plane are calculated,  
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(4.15) 

The conductors are geometrically normalized on the W plane by multiplying by A21  and 

are mapped symmetrically to the inside of the unit semi-circle using (4.16) and shown in 

Fig. 4.4(c).  It is important to note that the open upper half-plane is mapped inside the unit circle 

creating a bounded region. 
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The points of interest on the T plane are calculated and reduced,   
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(4.17) 

The inverse hyperbolic cosine function is found to approximate the inside of the unit semi-

circle with a bounded rectangular region on a semi-infinite strip, Fig. 4.4(d) and (4.18). 
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The length of the conductors is calculated,  
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The capacitance per unit length is determined by the ratio of the length of the conductors 

and the height of the strip, shown in (4.20).  The factor of 1/2 is the result of inserting the 
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Fig. 4.4.  Geometry for (a) CPS in an infinite well and the subsequent conformal mappings (b), 

(c), and (d). 
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conductor at the equipotential surface along the vertical axis in Fig. 4.3(b) to establish the 

structure in Fig. 4.4(a).  The parameter q is defined as the inverse of B for convenience. 
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(4.20) 

A graphical depiction of the conformal mappings is displayed in Fig. 4.5 with equipotential 

surfaces for an equal width and gap.  The gaps seen in the field for Fig. 4.5(b)-(d) would 

constitute the rest of the field on the Z plane, Fig. 4.5(a), which extends off to infinity. 
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Fig. 4.5.  Graphical depiction of simple conformal mappings showing equipotential surfaces on 

the (a) Z plane, (b) W plane, (c) T plane, and (d) Q plane. 
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4.3 Discussion of Approximation 

The approximation of the mapping in (4.18) is assuming that the hyperbolic cosine function 

maps vertical lines on a horizontal semi-infinite strip to semi-circles on the positive upper half 

plane. Indeed, the hyperbolic cosine function maps vertical lines on a semi-infinite strip to 

catenary curves which approach constant curvature the further the vertical line is from zero on 

the semi-infinite strip.  Consequently, the accuracy of the uniform field approximation is strictly 

dependent upon the width of the plates on the Q plane.   

To account for the field not included in the mapping of the T plane to the Q plane, shown in 

Fig. 4.6(a) and Fig. 4.6(b), the area of the additional space is considered.  For a rectangular 

region bounding a parallel plate configuration, the capacitance per unit length is proportional to 

the area of the region divided by the spacing between the two plates squared.  Similarly, the 

capacitance on the Q plane can be estimated by the area of the bounded region divided by the 

width of the strip squared. 

To estimate this area, the maximum real part of the curve on the Q plane, designated D1, 

may be solved for using the real and complex parts of the hyperbolic cosine with the inverse of 

(4.18), 

          xyxy QQiQQBQT sinhsincoshcos   (4.21) 
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Fig. 4.6.  Additional space considered with boundaries defined in the (a) T plane and (b) Q Plane. 
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The maximum on the Q plane, located at D1 + iπ, corresponds to the top of the unit semi-

circle on the T plane, 0 + i.  Therefore, D1 is solved for, 
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1
asinh1

 (4.22) 

The total area of the region is calculated as two trapezoids, with bases of D and D1 and 

height π/2, and divided twice by π
2
 to calculate the capacitance per unit length, 
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The expression in (4.23) can be simplified using a trigonometric identity, 
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4.4 Inspection of Iterative Function 

Additional accuracy is obtained for calculating the capacitance per unit length in (4.24) by 

adding inverse hyperbolic cosine functions to the already derived expression of a similar form.  

Defining a function for the argument seen in (4.24),  

    242 acoshexp1 qqqqf   (4.25) 

an additional term may be averaged in, 
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Using the same trigonometric identity as used to simplify (4.23) to (4.24), (4.26) may be 

simplified to the form 
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A generic formulation can then be stated as, 
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With growing iterations, the argument of the hyperbolic sine function increases significantly 

compared to unity with faster convergence obtained by approximating the hyperbolic function as 

a logarithm,  

     xxxx 2ln1lnasinh 2   (4.29) 

A final form for the capacitance per unit length of the CPS in an infinite well is expressed, 
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4.5 Calculation of Elliptic Integrals ratio 

In previous work [37], the elliptic integrals ratio has been calculated as, 
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The symmetry in (4.31) is a byproduct of definitions from elliptic theory.  As mentioned 

previously, the complement of the complete elliptic integral of the first kind, K’(k), has the 

relationship with the complement of the elliptic modulus, k’, 

   kKkK ''   (4.32) 

In addition, the definition of the elliptic modulus and its complement satisfies, 

1'22  kk  (4.33) 

Using (4.32) and (4.33), the elliptic integrals ratio can be manipulated to the form, 
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Defining a function, ς(k), as an estimation of the elliptic integrals ratio,  
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A second calculation of the elliptic integrals ratio may be formed from (4.34), 
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For k ranging from 0 to 21 , k’ ranges from 21  to 1, as seen in (4.33).  The symmetry 

about 21  in (4.31) is the result of the equivalent evaluation of the estimations of (4.35) and 

(4.36) at a value of k’=k= 21 . 

From the standard expression (4.12) and derived iterative expression (4.30), the elliptic 

integrals ratio may be solved for, 
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Using (4.36), a second expression for the elliptic integrals ratio is solved, 
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 (4.38) 

Fig. 4.7(a) and Fig. 4.7(b) illustrate a plot of the percentage error of the capacitance 

expression in (4.12) calculated using (4.37) and (4.38) for K/K’, respectively.  Results are 

displayed for four different values of n and for a conductor width-to-gap (w/g) ratio that spans 

over six orders of magnitude.  MATLAB™’s built in function EllipKe is used as the reference 

for error calculations.  The deviation from a smooth error curve for the calculations is attributed 

to convergence error bounds in the method of solution for the EllipKe function. 
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From the plots, it becomes clear that error is quickly driven out of the calculation with 

subsequent iterations.  The symmetry of the two calculations about a w/g of unity is the result of 

k=k’ = 21  at w/g=1. 
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Fig. 4.7.  Percentage error calculations of (4.12) using (a) (4.37) and (b) (4.38) using 

MATLAB™’s built in EllipKe function as a reference. 
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A simple conditional evaluation expression can be formed for n=1 similar to (4.31) using 

the symmetry from (4.37) and (4.38), 
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 (4.39) 

 

4.6 Calculation Comparisons 

Fig. 4.8 shows a plot of the percentage error of the capacitance expression in (4.12) 

calculated using the standard expression (4.31), the derived conditional expression (4.39), and 
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Fig. 4.8.  Percentage error calculations of (4.12) using the standard expression (4.31), the derived 

conditional expression (4.39), and the derived iterative expression (4.37) using MATLAB™’s 

built in EllipKe function as a reference. 
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the derived iterative expression (4.37) with n=4 for calculating K/K’.  The maximum error stated 

in Hilberg’s work [37], 3∙10
-4

 %, is seen at the peak of the error curve corresponding to a w/g=1 

with good correspondence.  The same region for k is used as defined from a w/g ratio spanning 

six orders of magnitude and MATLAB™’s built in function EllipKe is used as the reference for 

error calculations.  The iterative solution in (4.37) provides the best results throughout the region 

without the need for a conditional statement for evaluation. 

The calculation of capacitance in the derived iterative expression was compared to that of 

the commercial 2D field simulator MAXWELL™. The percentage error results are displayed in 

Fig. 4.9.  As expected from Fig. 4.7(a), with n=1, about 1 % error is seen at a w/g ratio of one 

thousandth.  Less than 0.2 % error is seen for (4.37) with n=2 and further iterations show no 

improvement due to the larger error bounds of the field simulator. The underestimation of 

capacitance evident in all simulations is attributed to the additional capacitance that is not 
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Fig. 4.9.  Percentage error calculations of the derived iterative expression (4.37) to simulated 

data from MAXWELL™.  
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accounted for by the finite conductor thickness. The staircase effect is induced by adjusting the 

conductor thicknesses at w/g ratios of 0.01 and 100. 
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Chapter 5  

 

Capacitive Modeling of FWCBCPW 

 

The finite-width conductor-backed coplanar waveguide (FWCBCPW) in an infinite well is a 

specific geometry found in repeated planar structures with conductor backing.  In doing research 

for modeling the CBICPW, it became apparent that no closed-form expressions were developed 

for the FWCBCPW due to its unique asymmetry in two dimensions.  With the development of 

the closed-form expressions for the CPS in Chapter 4, similar approximate mappings can be used 

for the FWCBCPW, although with less precision.  The derived expression is compared to 

simulated data using the MAXWELL™ field solver for a limited range of physical dimensions.  

 

5.1 General Overview and Definitions 

A cross-sectional view of the FWCBCPW in an infinite well is illustrated in Fig. 5.1 with 

w

εr

2w+2g

h

∞ ∞

Lateral Conduction Plane 1

Lateral Conduction Plane 2

Substrate Conduction Plane 3
 

Fig. 5.1.  Cross-sectional view of FWCBCPW in an infinite well.  
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the physical device parameters labeled.  The height of the interface dielectric material is defined 

as h, the interface dielectric relative permittivity is εr, the width of the conductors is w, the 

spacing or gap between the conductors is g, and therefore the total width of the infinite well is 

2w+2g.  For the three-conductor system, the charge exchange can be modeled using a hybrid-pi 

capacitance model, 
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(5.1) 

where C’ij is the hybrid-pi capacitance per unit length between conduction plane i and plane j, 

Q’i is the charge per unit length on conduction plane i, and Vi is the potential of conduction plane 

i.  The two lateral conduction planes are symmetric, resulting in the capacitances C’13 and C’23 

being equivalent and simplified to C’3.   

To create symmetry for the field distribution, the substrate conduction plane is assumed 

floating with respect to an applied potential, Vo, across the lateral conduction planes, resulting in 

a potential vector, 
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The charge exchange, and therefore the modeled capacitance, is simply, 
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From the symmetry of the applied potentials in (5.2), magnetic walls can be assumed, 

represented in Fig. 5.2(a) by dashed lines.  The fields above and below the lateral conduction 

planes are isolated due to the horizontal magnetic walls and therefore can be solved 

independently.  The capacitance of the field above is seen as the solution of two coplanar 

striplines in an infinite well with the expression (4.12) derived in Chapter 4.  The field below the 

lateral conductors can be reduced by inserting a conductor along the equipotential line that exists 

between the two conductors, displayed in Fig. 5.2(b), to form a final geometry of Fig. 5.2(c). 

 

5.2 Approximate Mapping of FWCBCPW using Simple Functions 

The region below the lateral conduction planes may be modeled on the semi-infinite strip 

defined as the Z plane, depicted in Fig. 5.3(a) with points of interest defined in (5.4).  The line 

segment 12¯¯ corresponds to the inserted conductor at the equipotential surface between the lateral 

conductor planes, 45¯¯ represents lateral conduction plane 1, and 23¯¯ is the substrate conduction 

plane 3. 
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∞ ∞

(a) (c)(b)  
Fig. 5.2.  Reduction of FWCBCPW to simpler geometries showing (a) inserted magnetic walls, 

(b) lower half quadrant with inserted conductor on the equipotential line, and (c) final reduced 

geometry.  
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Using a function similar to Gevorgian et al. [19], the outside of the semi-infinite strip Z is 

mapped onto the real axis of the W plane by the hyperbolic cosine, with the mapping displayed in 

Fig. 5.3(b), 
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The points of interest on the W plane are calculated, 
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By applying a bilinear transformation, the two possibly asymmetrical conductors are 

mapped to conductors of equal width [18], expressed in Fig. 5.3(c) and (5.7). 
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Fig. 5.3.  Geometry for (a) FWCBCPW in an infinite well and the subsequent conformal 

mappings (b), (c), and (d). 
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The points of interest can be calculated on the T plane, seen in (5.8), with m being defined 

for convenience. 
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(5.8) 

From the T plane, an approximate mapping can be made to map the two conductors 

symmetrically to opposite sides of an infinite strip, shown in Fig. 5.3(d) and (5.9).   

   TTQ acosh  (5.9) 

The points on the Q plane are calculated, 
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The capacitance per unit length of the dielectric region below the lateral conduction planes 

in Fig. 5.1, C’below, is determined by the ratio of the length of the conductors and the height of the 

strip, 
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A graphical depiction of the conformal mappings is displayed in Fig. 5.4 with equipotential 

surfaces for w=g=h=1. 

The total capacitance for the FWCBCPW in an infinite well can be calculated as the sum of 

the capacitance of the air, using (4.12), and dielectric, using (5.11),  
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Fig. 5.4.  Graphical depiction of simple conformal mappings showing equipotential surfaces on 

the (a) Z plane, (b) W plane, (c) T plane, and (d) Q plane. 



 

58 

 

5.3 Calculation Comparisons 

The calculation of capacitance in the derived expression (5.12) was compared to that of the 

commercial 2D field simulator MAXWELL™.  The device dimensions w, g, and h were each 

varied from 1 to 10 creating a 10x10x10 matrix of 1000 simulations.  The percentage error 

results are displayed in Fig. 5.5.  Fig. 5.5(a) shows the percentage error of (5.12) to the simulated 

data versus h/g on a semilog plot.  Fig. 5.5(b) shows a three dimensional semilog plot of the 

percentage error versus the same h/g and, additionally, w.  The widest variation in error is seen 

for small conductor widths with large gaps compared to the dielectric thickness.  Using the rule 

of thumb where the substrate thickness should be twice that of the spacing or greater [4], the 

formula is seen to be approximately 3% accurate for the simulated set.   
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(b) 

Fig. 5.5.  Percentage error of the derived expression in (5.12) to simulated data from 

MAXWELL™ with (a) percentage error versus h/g and (b) percentage error versus h/g and w. 



 

60 

 

 

Chapter 6  

 

Conclusions and Future Work 

 

6.1 Conclusions 

An efficient compact device model is presented for the conductor-backed interdigital 

coplanar waveguide with a broad range of flexibility for the interface dielectric thickness and 

other physical dimensions.  Closed-form expressions were based on previous research for similar 

device structures with empirical variables directly extracted from data.  A continuously 

differentiable interdigital capacitance expression was developed using only continuously 

differentiable expressions.  The work extends previously developed expressions by Ghione et al. 

and provides a blending method for calculating capacitance where the w/h ratio exceeds 24, 

which is common for thin film dielectric structures.  The modeled behavior compares well with a 

broad range of simulated and measured data with expressions developed to account for the loss 

of current through the substrate conduction plane during laboratory experiments. 

Using simple function conformal mappings, a closed-form, iterative solution is derived for 

calculating the capacitance of the coplanar stripline.  The new solution provides comparable 

accuracy to standard closed-form expressions using only simple functions.  Capacitance 
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calculations from the solution are within 0.2 % of data from a commercial field solver for 

conductor width-to-gap ratios spanning six orders of magnitude.  Based on the solution, a new 

continuously differentiable, iterative calculation technique for computing the elliptic integrals 

ratio demonstrates 10
-11 

relative error across a wide region. 

The simple function conformal mappings for the CPS are extended to the finite-width 

conductor-backed coplanar waveguide in an infinite well to develop a closed-form solution for 

the capacitance.  The new solution shows 7% accuracy to simulated data from a commercial field 

solver for device dimensions varied across an order of magnitude.  For devices with a dielectric 

thickness which is twice that of the spacing, the resulting formula is 3% accurate for the 

simulated set. 

 

6.2 Future Work 

Future work for the CBICPW could extend into several areas.  Using the traditional method 

of modeling the cross-sectional capacitance and adding in contributions from the finger ends and 

outermost fingers would eliminate the need for minimizing residuals to simulated data and offer 

a more physical interpretation of the overall capacitance.  Modeling the individual hybrid-pi 

capacitance values through conformal mapping with different potentials would improve the 

usability of the model and allow the substrate to be set to a fixed potential rather than floating.   

The measurement results and theory would also become more accurate with the hybrid-pi 

capacitances modeled, with the loss of current through the measurement system being able to be 

properly predicted.  To compare measurements to theory more closely, physical dimensions that 

can be both simulated and fabricated could be utilized.  Isolating the substrate conduction plane 
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for each individual structure would greatly reduce the parasitic capacitance to the substrate 

conduction plane and allow for accurate measurements of even small capacitance values. 

The fast convergence of the iterative solution to the elliptic integrals ratio should be 

mathematically verified for convergence.  If the solution converges, the theory could be applied 

to calculate the elliptic nome function, which in turn is used to calculate many elliptic integral 

functions.  The theory could extend to the elliptic integrals in general and may offer new closed-

form solutions.  The relationship between the elliptic integrals ratio, the fast converging Landen 

transformation [37], and the iterative solution derived in this thesis could also provide insight 

into elliptic theory. 

Modeling the FWCBCPW in an infinite well could be modified to include other mappings 

with special functions to provide more accurate results.  Using an inverse Swartz-Christoffel 

mapping from the starting rectangular region to the real axis would eliminate the error seen and 

provide an exact solution.  The base set of mappings could also be applied to similar structures 

for simple solutions of their capacitance. 

 

6.3 Final Remarks 

Characterizing physical structures with mathematical expressions has been a problem faced 

by engineers since the beginning of the profession.  In order to predict and engineer the desired 

operation of a system, each subsequent level of complexity starting from the most basic must be 

analyzed and verified.  Within this compilation of work, methods have been employed to address 

the need for mathematical interpretations of planar physical structures most commonly used by 

microwave engineers.  With the growing developments of systems to come, the methods and 
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techniques explored could find their place in producing simple, efficient, and understandable 

expressions. 
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