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Abstract 

This thesis furthers the development of Genetic Algorithms (GAs) and their application to the 

design of multi-mission radar waveforms.  An application was developed with the goal of 

developing a waveform suite that finds the Pareto optimal solutions to a multi-objective 

optimization radar problem.  Utilizing the Strength Pareto Evolutionary Algorithm 2 (SPEA2) a 

series of radar parameters are optimized along the fitness metrics of interest.  This implementation 

builds upon the previous work to develop an application that is capable of analyzing longer more 

realistic scenarios by using a distributed grid computer to spread the computational load across 

multiple CPUs.  It also advances the previous research by solving for the Pareto optimal front of a 

simultaneous Synthetic Aperture Radar (SAR) and Moving Target Indication (MTI) mission.  

These results are presented to validate the performance of the new distributed application against 

previous work and introduce results of larger more realistic scenarios for a multi-mission radar 

suite. 

 

Previous Work 

This initial work of this thesis was presented at the 2012 International Waveform Diversity & 

Design Conference.  “A Distributed Object-Oriented Multi-Mission Radar Waveform Design 

Implementation” written by Dr. Vincent Amuso and Brent Josefiak and was presented by Dr. 

Amuso
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1. Introduction 

Waveform diversity seeks to optimize the performance of a radar system by tailoring the 

operating parameters to suit a particular mission and spectral allocation.   Many radar systems 

have been shown capable of performing multiple missions, such as SAR and MTI, but they 

cannot do them simultaneously [2].   Designing a waveform capable of adequately performing 

multiple missions simultaneously would offer significant advantages in cost and risk.  However, 

this design problem is non-trivial as it requires a solution that balances complementary and 

competing design parameters. 

There are various techniques available to solve the multiple objective problem proposed by a 

multi-mission radar waveform, but evolutionary computing has proven an effective tool [2]. 

 Genetic algorithms, with their ability to correlate waveform mission parameters to generic fitness 

metrics, offer a way to effectively search a radar waveform’s multi-dimensional solution space. 

 Previous work in this area created a waveform design suite capable of proving that the Strength 

Pareto Evolutionary Algorithm 2 (SPEA2) could effectively optimize both SAR and MTI 

missions [1].  The suite encoded radar parameters, such as center frequency, azimuth angle and 

number of pulses per coherent pulse interval, as genetic information, would be used to run 

through a scenario and measure its fitness.  Mission performance was measured across different 

objective functions for the SAR and MTI scenarios, but these were then mapped to the generic 

fitness values used by SPEA2. 

The initial work done in this area proved its feasibility, but the implementation was limited in 

scalability and could not complete larger scenarios.  Bringing more computational capacity to 

bear on this problem would allow for multi-second scenarios that would be directly applicable to 

real-world applications.  To this end, the SPEA2 multi-mission radar suite was rewritten as a C++ 

application that could be run on a Linux based multi-core grid computer.  The significant number 

of two dimensional Inverse Fast Fourier Transforms required to measure the performance of a 

SAR waveform can gain significant speed boosts when run in the parallel grid environment. 

This paper proposes the continued application of SPEA2 to the multi-mission radar problem, 

but by utilizing a more computationally efficient and extensible framework.  This new 

implementation will be examined in detail to explain how some of the design trade-offs were 

chosen and how to best refine it into a more powerful waveform design suite.  The performance of 
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the new C++ radar suite will be validated by reconstructing the SAR and MTI scenarios described 

in “SPEA2 applied to simultaneous multi-mission waveform design” [1].  Optimizations to the 

algorithm’s implementation will allow for scenarios that simulate a larger SAR mission with 

higher resolution PSL and ISL.   

The performance gained by utilizing the Message Passing Interface (MPI) to parallelize the 

processing of population members will also be examined.  This was the primary speed-up that 

allowed for a combined large scale MTI and SAR mission to be examined.   

2. C++ Class Implementation and Functionality 

+Evaluate()

+CalculateObjectiveVectors()
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-mChromosomes

-mObjectiveVectors
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Figure 1 C++ Radar Waveform Design Suite Class Diagram 

 

 Figure 1 is a UML diagram laying out the relationship between the Genetic Algorithm, its 

population members (Genomes) and the helper functionality supporting them. At the lowest 

level, there are the Genome and BaseGa classes[14].  The specific algorithm implementations, 

such as SPEA2, which inherit from the BaseGa, will contain populations of Genomes to act 
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upon.  The Genome class contains the genetic information required for a given problem, but not 

the ability to interpret the encoded information; that task is left to a derived class. 

New population members are constructed through a GenomeFactory class, which isolates 

the algorithm from the problem specific genome implementation.[14] This factory is provided to 

the algorithm as part of the initialization. Radar data and functions are contained in the 

RadarGenome class that is derived from the base Genome. The radar members contain the ability 

to translate their generic genetic information into radar specific parameters (azimuth angle, 

center frequency, etc). 

The GenomeHelper interface provides a layer of abstraction that manipulates the inner 

workings of multiple genomes.  This prevents the genetic algorithm from needing to understand 

the inner workings of its genomes when it desires operations involving two or more genomes. An 

excellent example of this is uniform crossover, where the algorithm provides the helper with two 

genomes and, based on the scenario's crossover probability (provided as part of the scenario 

initialization), the helper function handles the swap of genetic information. The other helper 

functions in this class fall into this category of acting upon two or more genomes. 

SPEA2_ST is the single threaded SPEA2 implementation derived from the BaseGa, 

which implements and validates the original waveform design suite algorithm in C++. The 

SPEA2 implementation acts upon two genome sets, the new member population and archive 

pools.  It contains the functionality required to calculate the raw fitness, strength and final 

ranking of the populations.   

SPEA2_MPI is the MPI compatible implementation of SPEA2, which re-implements the 

algorithm to distribute genetic information from the master algorithm to a set of slave genomes. 

These slaves are distributed across multiple cores so that the computationally intensive 2D IFFTs 

required to calculate PSL and ISL can be run in parallel.  When the current set of slave genomes 

have yielded their fitness data, 0.0 to 1.0 values representing the success of that particular 

member, it is transmitted back to the master.  The master process then continues to calculate the 

remainder of the algorithm as if the fitness had been calculated locally.   
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This functionality was overridden by the 

MPI implementation.  It is here that data 

is distributed to Slave processes. 
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Figure 2 SPEA2 ExecuteAlgorithm 

 Figure 2 and 3 highlight the changes to the Execute Algorithm and Calculate Objective 

Vectors functions that were overridden from the original single threaded implementation. 

Calculate Objective Vectors now distributes the members of both the archive and new population 
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pools off to the genome slaves.  The total number of slaves is configurable at run-time and can 

utilize as many cores as are available on a given grid implementation. 

Member 
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Figure 3 MPI Calculate Objective Vectors - Parallel Computation Distribution and Result 

Recovery 

 For a population of size Np and archive of size Na, an optimal number of processors 

would be Np + Na + 1 = Copt. This allocates a core for every population member and one for 

the master algorithm.  The current software suite will not yield any benefit when there are more 

cores available than combined population and archive members.  See sections 6 and 7 for a 

detailed analysis of the MPI performance improvement.  

 It should be noted that two different MPI transmission mechanisms are used when 

transmitting gene data verses the returning slave generated fitness data.  When the master is 

distributing information to the various tasks it utilizes MPI_Isend, which is the non-blocking 

send.  As each slave process is known to be waiting at this point, the master can send the 

information to each immediately without waiting for an acknowledgement back.  This readiness 

can be assured because synchronization occurs when the slave process calls MPI_Send (the 

blocking call) to return the fitness data.  As soon as the slave has returned its fitness data, it is 

available to begin processing a new set of genetic information. 
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3. Scenario and Algorithm Configuration 

 A run of the test suite requires two files for configuration parameters, one that sets the 

general genetic algorithm parameters and one to configure the scenario specific radar parameters. 

These parameters are stored in human readable text files that are provided as arguments when the 

program is launched.  General configuration information required by the BaseGa is listed in 

Table 1, along with the description of each parameter. 

Table 1 Base GA Configuration Format 

Parameter Description 

numPopulation Number of members in the Population 

numArchive Number of members in the Archive 

maxGenCnt Maximum number of generations to iterate 

numFitness Number of fitness vectors 

numMating Number of member pairs in the mating pool 

crossoverProbability 

Probability determining location of uniform 

crossover 

mutationProbability 

Probability of a bit in the genetic information 

flipping 

saveName File name to pre-pend to save information 

savePath File save path 

numGenPerSave How many generations to skip between saves 

 

Radar scenario parameterization is defined in a second file and loaded into a dynamic parameter 

map during runtime initialization.  This map allows each RadarGenome access to the scenario 

configuration by indexing based on the requested parameter. If a parameter is dynamic for a 

given scenario, it will contain all the potential values index-able by the genetic information of a 

population member. 

           The first parameter in the scenario file is the random number seed.  Saving the seed allows 

a scenario to be reproduced again in the future.  Given the same random seed value, a run of the 

algorithm will produce identical results, as all of the randomness in the algorithm is based on the 

pseudorandom “randn” functionality.  Changing this value is necessary to examine how different 

populations would respond to the same scenario.  

           Next in the scenario file is the total simulation time.  This straightforward parameter 
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determines the length in seconds the scenario will model.  Taken with Pulse Repetition 

Frequency (PRF) and pulses per interval, this value determines the number of Coherent Pulse 

Intervals (CPI) a waveform will transmit. 

           The next line in the configuration file currently contains 4 bits, which toggle the various 

fitness metrics on and off.  In order, these bits enable (1) or disable (0) the use of the Peak Side 

Lobe (PSL), Integrated Side Lobe (ISL), Average Revisit Time and Integrated Pulses fitness 

functions.  Any combination of these can be can be used, but the total number of enabled fitness 

functions must match the number provided to the base genetic algorithm.  Failure to match these 

parameters will cause the GA to use the first n fitness vectors, where n is the number specified 

within the GA’s configuration file. 

           The lines after this are the 22 configuration parameters that describe a radar scenario. 

Each line is a comma delimited string and contains a digit stating which parameter it is (0 -21), 

next a digit stating whether it’s an integer (0) or double (1) parameter, then the number of values 

that parameter can assume, and finally the values themselves.  Each parameter can assume 

between 1 and 2
32

 possible values in steps of powers of 2.  If only one value is provided, the 

parameter is considered static and not included in the genetic information of population 

members.  

           Parameters for the CPI (enumeration 0), Number of Apertures (enumeration 1), PRF 

(enumeration 6) and the total simulation time are used to determine the length of the genetic 

information of a given member.  When any of these parameters are dynamic, and thus contained 

in the genetic information, the number of alleles used by population members will vary.  When a 

population member is initially generated, all the dynamic parameters of a given CPI are 

randomized and it is pushed onto a vector.  After each CPI is generated, the time elapsed is 

checked, the number of pulses divided by the selected PRF, to ensure it does not exceed the total 

simulation time.  If the number of apertures is dynamic, the other dynamic parameters are 

repeated A times for a given CPI, where A is the number of active independently steerable 

apertures.  Despite the repetition of all dynamic parameters, each CPI in a multiple aperture 

scenario can only select one PRF and number of CPIs (if these parameters are dynamic).  This 

limits the multiple apertures to mainly altering the steering parameters.   

           The remainder of the parameters laid out in the scenario configuration file focus on 

defining the ROI, the target platform and the VPH processing that will occur.  The target 
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platform is the plane carrying the radar waveform, and its movement is defined as a line along 

the ROI cross range at a speed specified by parameter 14 in meters per second.  The 

perpendicular distance from the ROI is defined in meters by parameter 17. 
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Figure 4 Scenario Parameter Representation 

 The other scenario parameters highlighted in Figure 4 are the ROI region parameters, 

which define the total cross and down range (15/16) in meters, as well as the size of a pixel 

within that region (20/21).  Each one of these cells is made up of a VPH array of size defined by 

parameters 20 and 21, typically 128 x 128.  The final parameter required for the computation of 

PSL and ISL are the IFFT cross and down-range dimensions, which define the resolution and 

complexity of the 2D - IFFT calculation. 

 

4. Fitness Mapping 

 Other than the two configuration files defining algorithm and scenario parameters, there 

are files that define the behavior of the fitness maps.  Four fitness map files are used to define the 
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mapping between a scenario specific parameter and the 0.0-1.0 fitness metric used by the SPEA2 

algorithm.  Currently there are two formats for these files, which is stated in the first line of the 

file; 0 for an integer based mapping and 1 for a floating point implementation.  After the type is 

determined, the next line tells how many data points the file contains and the maximum value 

possible for the objective value.  Each of the subsequent lines then lists an objective value (in 

either integer or double format) and its corresponding fitness value.   When the radar member 

maps an objective to fitness value, if it does not match one of the points provided in the map, it 

takes the linear interpolation between the two closest objective values to determine the correct 

fitness value. 

 

4.1. Genetic Representation 

 Each base genome contains all the genetic information required for a given scenario and, 

once the member has been evaluated, its performance data.  Base genetic information is stored in 

an array of 32-bit values.  Each 32-bit allele will be used by the problem specific 

(RadarGenome) class to map to a scenario relevant value.  These alleles are capable of mapping 

up to 2
32 

different parameters, should the functionality be desired, but most parameters are kept 

to around 5-bits or 32 values. The one restriction on parameter mapping in the current 

implementation is that the scenario must use 2
N
 mappings exactly (where N is 0-32); non power 

of 2 mappings results in an invalid configuration.   This constraint was placed to prevent 

mutation from generating an allele without a valid parameter mapping. 

 

4.2. Uniform Crossover Operator 

           Uniform crossover is applied to each mating pair selected for the new population pool. 

 The crossover point is selected based on the smaller parent genome and the crossover 

probability, which is typically 0.5, so that any location is equally likely to be the crossover 

location[2].  A check for the smaller parent is required for situations when pulse per CPI or PRF 

are dynamic and can alter the total number of genes present in a given population member.  

Valid crossover points must be on allele boundaries, but are not constrained by where a CPI or 

aperture boundary may lie. 
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4.3. Binary Mutation Operator 

 The binary mutation operator works based on a probability of flipping provided by the 

configuration file and the number of bits per allele defined in the scenario configuration.  After 

the members of the mating pool have undergone uniform crossover, each is subjected to 

mutation.  This mutation operator iterates over each bit in the population member's genetic 

information; then a random number is generated and checked against the range defined by the 

GA's mutation probability.  If the value is in the specified percentage of the random range, then 

the bit is flipped by XORing the current allele with a 1 shifted to location of the current target 

bit. 

 

4.4. Radar Genome Mapping 

 The Radar Genome takes each allele to be an index into the scenario’s dynamic 

parameter map.  The total number of alleles in a given member must be a multiple of the number 

of dynamic parameters in a given radar scenario.   

            
             

                                           
  

 The radar member class uses the static scenario parameters as well as the dynamic values 

mapped to its genetic information to construct a coherent pulse interval timing sequence.  This 

sequence defines at what position the target platform initiates a given CPI, where it is aimed, and 

how many pulses are triggered at a given PRF, which defines at what platform location and times 

a waveform burst will be triggered. 

 

5. Radar Scenario Calculation.   

 Once this burst information is constructed, the platform location and antenna steering 

parameters are used to determine which cells of the region of interest (ROI) are illuminated in a 

given coherent pulse interval (CPI).   This information is stored in a 2 dimensional Pixel 

Illumination Vector where each ROI cell has a vector that is pushed back with new pulse timing 

each time it is illuminated.  After it is known which bursts illuminate a given ROI cell, the Video 

Phase History (VPH) can be filled in, and the MTI revisit time parameter can be calculated [1].   

 To illuminate the VPH, two factors come into play.  The cross range VPH cells are 

illuminated based on the pulse time, number of pulses and PRF, while the down range is based 
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on the bandwidth and number of apertures.  As highlighted in Figure 4, the VPH dimensions are 

defined by the down and cross pixel count.  When a single aperture is used, the down range, or 

column as seen in Figure 5, is fully illuminated.  Multiple apertures cause the down range 

dimension (rows) to be divided up so that the bandwidth is allocated evenly amongst sub-

apertures as seen in Figure 6.  The cross range illumination is determined by the following 

equations: 

         
                  

    
 

 

     
         

   
  

           

    
 

 

                    

Where      is the total simulation time and       is the time a given CPI begins to illuminate the 

ROI.  The         and       variables are used to index into the VPH and determine which 

cross range (columns) are illuminated by the current CPI, as can be seen in Figure (x, y). 
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Figure 5. Single Aperture Illumination. 
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Figure 6. Multiple Sub-Aperture Illumination. 

 One may notice that we are iterating across all the CPI's twice in the algorithm shown in 

Figure 7, unfortunately memory limitations on the size of the VPH limited the number that could 

be allocated.  The smaller scenario, where a 256x256 2D-IFFT is computed, necessitated 

256(DR) * 256(CR) * 8(Bytes per double) * 2 (complex) = 1 MB of contiguous memory per 

VPH buffer, two of which are required per ROI cell (one for input and one for output).    

Although several could be allocated, not enough were available to provide one for every ROI 

cell, so we are forced to iterate over the CPI two times.   

 Once all the CPIs that illuminate a given ROI cell have illuminated it, the 2-dimensional 

IFFT can be run across the VPH.  The 2-dimensional Inverse FFT is calculated using the FFTW 

library developed by Matteo Frigo and Steven Johnson of MIT.  This library is upheld by 

benchmarks as the fastest available FFT implementation and is licensed for use in Matlab.  The 

IFFT dimension is typically twice that of the VPH pixel count so that there is sufficient 

resolution to calculate PSL and ISL.  Were further computing power available, increasing this 

resolution would be an area to invest it. 
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 The complex information generated by this operation is normalized to a power mapping, 

which is then used to find the PSL and ISL performance.  In order to calculate PSL and ISL, the 

main power lobe is located and the total power contained within it is summed.  The remainder of 

the power mapping is then summed in order to calculate the ISL.  While iterating across the 

remaining pixels, the maximum value found is saved and used to calculate the PSL.   
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Figure 7. Radar Genome Evaluation 

 Once the radar calculations have been completed the performance data is gathered.   

These values are then used to index a fitness map, which normalizes performance into a fitness 

value between 0.0 and 1.0; this value is then accessed by the SPEA2 algorithm to rank the 
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performance of population members. In the case of the MPI implementation it is this normalized 

fitness value that is returned to the master.  Further detail on how SPEA2 uses this fitness 

information to select the fittest members for addition to the archive can be found in [3]. 

 

6. MPI Performance Validation 

 Just as the initial C++ implementation was validated against the original Matlab 

implementation, so too was the grid implementation validated against previous results. The 

resulting genetic algorithm performance, once differences in CPU performance were normalized, 

were in line with the expected parallelization gains. The MPI grid used for the simulations 

presented later in this paper had only had 30 cores available, while most test runs contained a 

population size of 100 and archive size of 20.  This is well below the Copt found previously, so it 

becomes important to understand the distribution scheme and its affect on parallelization.  

 When testing began on the grid one immediate revelation was that running a single 

threaded implementation was slower than an identical run to generate the single threaded results 

of previous C++ simulations.  This was caused by a CPU difference and the difference was 

baselined by running a series of 256 by 256 2D-IFFT.  A single grid core was capable of 

executing this in 10ms, which is 3x slower than the previous implementation.  Despite this 

silicon setback the "embarrassingly parallel" nature of the genetic algorithm scenario allowed the 

other 27 cores to prove the value in a distributed algorithm.  

 As noted previously, information is distributed to the slaves in batches based on how 

many slaves have been constructed.  This batch scheduling approach means that a speed-up only 

occurs as slaves increase by least common multiples of the total population size.   

              
                

          
  

Thus the total speed up versus the single threaded implementation is given by: 

                   
                                                 

                                  
 

 

7. MPI Grid FFT Performance 

 In order to understand the time required to compute the 2D-IFFTs of a generation, a 

testbench was written.  This test suite randomly illuminates a VPH and tracks the time required 
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to compute its IFFT averaged over a hundred runs.  The results from these runs can be seen in 

the following Table 2.   

Table 2. IFFT Time 

VPH CR 
IFFT2 
CR 

Time Per Transform 
(sec) 

Time Per Member - 
45m x 1000m (sec) 

Time Per Member - 
45m x 1000m (min)  

128 256 0.0198682 66.161106 1.1026851 

256 512 0.04555384 151.6942872 2.52823812 

512 1024 0.11810853 393.3014049 6.555023415 

1024 2048 0.26291108 875.4938964 14.59156494 

2048 4096 0.56116136 1868.667329 31.14445548 

 

 These test runs were all computed with a VPH down range dimension of 128 and IFFT 

down range 256.  The cross range dimension was repeatedly doubled from an initial IFFT of 256 

up to 4096.  One can see that the 128 x 256 transform required 0.0198 seconds to complete, 

while the 2048 x 4096 required 0.5611 seconds per calculation.   

 The large 45m by 1000m ROI scenario requires each member to calculate 3330 2D-

IFFTs, yielding the time required per member found in columns 4 and 5.  Using the equation 

generated in the previous section, one can determine that running a population size of 120 (20 

archive plus 100 mating population), at the 256 by 512 size would require 51 minutes per 

generation in pure FFT calculations.   

 When running the later SAR scenarios, this theoretical number was proven to be correct 

with each generation requiring 55-56 minutes to complete.  A full real-life SAR mission would 

require the 45m by 1000m scenario to run with a VPH cross range of at least 2048 to provide a 

column to each CPI pulse.  Calculating this scenario with the current grid would require 622.88 

minutes per member, or over 10 hours per generation.  

 

8. SAR C++ Validation 

 The C++ SPEA2 waveform suite was first validated against the original SAR mission.  In 

this scenario, a platform illuminates a 45m by 30m region of interest in a 0.346 second run.  The 

original fitness mappings for PSL and ISL to the 0.0 to 1.0 fitness value were reused by the C++ 

implementation.  Table 2 lists all the relevant parameters including the dynamic azimuth angle, 

which is encoded in the genetic material of each population member.  Running this scenario has 

yielded the following results which are in line with the initial work found in [2]. 
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 Figure 8 is the Illuminated VPH for the center cell of an archive member of the randomly 

generated initial population. Note its relatively sparse illumination – only a small number of the 

waveform’s CPIs were landing within the ROI.  Contrast this with Figure 9 and one can see how 

the 350 generations have found genetic material, which better illuminates the ROI cell.  This 

yields a significant improvement in PSL and ISL.  

 The improvement in fitness performance is illustrated in Figure 10.  Over the course of 

350 generations, the PSL and ISL have both improved by 6-7dB, which results in a fitness 

improvement of 0.3-0.4.  The fitness improvement of SPEA2 in this mission is not linear as most 

of the growth occurs within the first 50 generations, while the remaining 300 offer a fraction of 

growth.  Understanding when fitness improvement tapers off allows for testing scenarios to an 

optimal generation count and once this has been reached a new scenario can be tested more 

quickly.   

Table 3. SAR Parameters 

Simulation Parameters  Value 

No. of Apertures 1 

Physical Aperture size  12λ m 

Effective aperture length  45 m 

Center frequency  600 MHz 

Bandwidth  50 MHz 

PRF 369 Hz 

No. of pulses  1 

VPH dimensions  128 x 128 

IFFT size  256 x 256 

Cross range resolution  3 m 

Down range resolution 3 m 

Beamwidth  5° 

Platform Velocity  130 m/s 

Region of Interest Cross 

Range size  30 m 

Region of Interest Down 

Range size 45 m 

Distance to Region of Interest  500 m 

Azimuth angle 

 -30°to30°in 32 

steps 

Objective Functions  PSL & ISL 

Crossover Operator Uniform  50% 

Mutation Operator Binary  5% 
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Figure 8. Initial VPH for the center cell of the ROI.  Figure 9. Final VPH for the center cell of the ROI. 

 

Figure 10. Initial and Final Archive Population Fitness 

   

Figure 11.  SAR Maximum Member Fitness Improvement 
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Figure 11 illustrates the rate of change for the ISL and PSL fitness, where ISL continues to 

improve throughout the generations, while PSL plateaus after 50 generations and sees only 

marginal (1.5%) improvement. 

 The performance generated in the simple SAR scenario reproduces the previous [2] work 

and shows the viability of the new C++ model for improving PSL and ISL. 

9. MTI C++ Validation 

 The purpose of reconstructing the MTI mission in [1] is to baseline the functionality of the 

new implementation against known results.  The scenario parameters in Table 3 are used to run a 

MTI mission where revisit time and number of pulses are used as the fitness functions in a 3 

second run-time scenario. 

Table 4. MTI Scenario Parameters 

Simulation Parameters  Value 

No. of Apertures 1 

Physical Aperture size  12λ m 

Effective aperture length  45 m 

Center frequency  600 MHz 

Bandwidth  50 MHz 

PRF 369 Hz 

No. of pulses  1, 8, 16, 32 

VPH dimensions  128 x 128 

IFFT size  256 x 256 

Cross range resolution  3 m 

Down range resolution 3 m 

Beamwidth  5° 

Platform Velocity  130 m/s 

Region of Interest Cross 

Range size  1000 m 

Region of Interest Down 

Range size 45 m 

Distance to Region of 

Interest  500 m 

Azimuth angle 

 -60° to 60° 

in 32 steps 

Objective Functions  

Revisit & 

Pulse 

Timing 

Crossover Operator 

Uniform  50% 

Mutation Operator Binary  5% 
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 The C++ implementation was able to quickly complete the MTI mission and rapidly 

improved the performance of the archive population members.  Comparing against [1] does 

highlight a discrepancy in the fitness values achieved by the final archive population.  Initial 

random populations for both the original Matlab and new implementation have an average fitness 

of ~0.5 for both Pulse and Revisit time.  After one hundred generations, the Pareto optimal front 

achieved by the original implementation is at around 0.6 to 0.8.  While the new waveform design 

suite has measured its final archive members to have 0.98 Revisit fitness and 0.9 Pulse fitness.  

This performance is shown in Figure 12. 

 This growth is also achieved rapidly; in Figure 6 one can see that the revisit fitness has 

approached its maximum within 10 generations.  When implementing the PSL and ISL 

calculations for the SAR mission, the original Matlab implementation was directly ported to C++. 

Pulse fitness however was calculated with a new algorithm and this may explain some of the 

fitness discrepancy.  Originally the pulse fitness was found by calculating the average number of 

pulses in each ROI cell, then averaging over the total number of ROI cells.  The C++ algorithm 

assigns a fitness value (between 0.0 and 1.0) to each pulses count per CPI type, and then 

determines how many of each pulse count type occur in a given member.  Averaged over the total 

number of CPI, the summation of the fitness value by the pulse count is used to determine each 

member’s Pulse fitness. 

The results of the MTI mission are evolved successfully by the new suite and achieve an even 

higher performance then the original solution. 
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Figure 12.  MTI Initial versus Final Archive Fitness (100 Generations) 

 

Figure . MTI Maximum Member Fitness Improvement. 
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executed to validate the distributed algorithm.  The parameters were kept identical to the initial 
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observed.  The resulting fitness improvement and rate of fitness improvement can be observed in 

the following figures. 
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Figure 13. SAR Fitness Improvement per Generation 

 

Figure 14. SAR Maximum Member Fitness Improvement 

 

 

Figure 15. Initial VPH for the center cell of the ROI.  Figure 16. Final VPH for the center cell of the ROI. 
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         Figure 17. Initial 2D IFFT Normalized Magnitude                    Figure 18. Final 2D IFFT Normalized Magnitude 

     Performance of the MPI implementation was nearly identical to the gains observed in the 

single threaded implementation.  Figure 8 is the Illuminated VPH for the center cell of an archive 

member of the randomly generated initial population, while Figure 9 shows the VPH of an 

archive member from generation 500.  There has been a significant improvement (but comparable 

to the single threaded implementation) in the illumination of the center cell.   This yields a 

significant improvement in PSL and ISL, as can be observed in Figures 10 and 11.  The plots 

show the 2D IFFT magnitudes of generation 0 and generation 500 and one can observe a 

significantly higher resolution point source in Figure 11. 

    The improvements in PSL and ISL evident in Figures 17 and 18 correspond to the fitness 

improvement observed in Figure 7.  The PSL and ISL have both improved by 6-7dB, which 

results in a fitness improvement of .4 for the ISL and .5-.6 for the RSL.  This is a comparable 

level of growth to the initial single threaded implementation, with a small amount of additional 

improvement achieved in the additional 150 generations the MPI variant was able to run.  The 

growth rate remains front loaded with the greatest improvement in the first 75 generations, but 

PSL continued to make modest gains for the remainder of the simulation.   

 

11. MTI MPI C++ Validation 

    This scenario recreates the large MTI scenario, but distributing it with MPI.  A 1000m by 

45m region of interest was examined over a 3 second simulation evaluating with the revisit time 

and number of pulses fitness metrics.  Now running on the MPI grid, this simulation was able to 



23 
 

be run for 500 generations instead of the 100 used in the Matlab and initial C++ 

implementations.   

 

Figure 19.  MPI MTI Inivital versus Final Archive Fitness 

 

Figure 20.  MPI MTI Maximum Member Fitness Improvement 

   Examining the two figures above one can see a similar level of performance 

improvement from the initial implementation, when comparing the first 100 generations.  The 

advantage of running for 500 generations appears to be twofold.  First, the Pareto Optimal front 

created by the final archive population covers a wider range of potential solutions, with most of 

this spread across the Revisit time fitness, but also increased distribution in the Pulse fitness as 

well.  Second, the final improvement of the Pulse fitness has reached the maximum over the 

course of the run.    This simulation validated the ability of the MPI solution to run the MTI 

scenario accurately and reproduce the previous results. 
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12. SAR MPI Increased Resolution  

    In this scenario the same parameters are maintained from the original SAR scenario, 

except the VPH dimensions and IFFT size are increased.  With a VPH dimension of 128 x 256, 

and scenario time remaining at 0.346 seconds, each CPI illuminates two cross range columns.  

The IFFT size was increased to 256x512 to retain resolution.   

Table 5. SAR Increased Resolution Parameters 

Simulation Parameters  Value 

No. of Apertures 1 

Physical Aperture size  12λ m 

Effective aperture length  45 m 

Center frequency  600 MHz 

Bandwidth  50 MHz 

PRF 369 Hz 

No. of pulses  2 

VPH dimensions  128 x 256 

IFFT size  256 x512 

Cross range resolution  3 m 

Down range resolution 3 m 

Beamwidth  5° 

Platform Velocity  130 m/s 

Region of Interest Cross 

Range size  30 m 

Region of Interest Down 

Range size 45 m 

Distance to Region of 

Interest  500 m 

Azimuth angle 

 -30° to 30° 

in 32 steps 

Objective Functions  

Revisit & 

Pulse 

Timing 

Crossover Operator 

Uniform  50% 

Mutation Operator Binary  5% 

 

 The results of this run can be observed in the following Figures where the final 

improvement of generation 500 is comparable to that of the initial SAR run.  PSL fitness has 

improved from an initial average of 0.47 to 0.90, while ISL has gone from 0.61 to 0.81.  The 

largest discrepancy between the two runs comes from the initial fitness values, while the final are 

nearly identical.  Given the similar convergence point between the two, one must draw the 
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conclusion that upping the size of the VPH while maintaining the same scenario time yields little 

benefit to final performance.  

 

Figure 21. SAR Fitness Improvement per Generation 

 

Figure 22. SAR Maximum Member Fitness Improvement 

13. SAR MPI Increased ROI Size 45m by 60m 

 This scenario keeps the increased VPH resolution of the previous solution, but pairs it 

with an increased scenario ROI and flight time.  Increasing the length of the scenario time to 

0.692 seconds with the 369 Hz PRF caused each CPI to illuminate one complete cross range 

column.  Doubling the scenario time also allows the target platform to traverse twice the ROI 

distance during the scenario, increasing the complexity of each population member's genome to 

twice the number of chromosomes.    
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Table 6. SAR 45m by 60m Parameters 

Simulation Parameters  Value 

No. of Apertures 1 

Physical Aperture size  12λ m 

Effective aperture length  45 m 

Center frequency  600 MHz 

Bandwidth  50 MHz 

PRF 369 Hz 

No. of pulses  1 

VPH dimensions  128 x 256 

IFFT size  256 x 512 

Cross range resolution  3 m 

Down range resolution 3 m 

Beamwidth  5° 

Platform Velocity  130 m/s 

Region of Interest Cross 

Range size  60 m 

Region of Interest Down 

Range size 45 m 

Distance to Region of 

Interest  500 m 

Azimuth angle 

 -30° to 30° 

in 32 steps 

Objective Functions  

Revisit & 

Pulse 

Timing 

Crossover Operator 

Uniform  50% 

Mutation Operator Binary  5% 

 

 Results from this scenario show that configuring the scenario time and PRF such that one 

CPI illuminates a single cross range column (Figure 25,  26) will produce consistent performance 

independent of the increase in ROI.  Although this required doubling the amount of genetic 

information, the run-time of this scenario was close to the higher resolution SAR 45m x 30m run.  

This is due to the fact that most of the processing time is spent in the 2D – IFFT and not 

determining which VPH bins are illuminated by a particular CPI. 

 Figures 23 and 24 show the rate of fitness improvement for PSL and ISL and the initial 

versus final Archive member performance after 500 generations.  PSL continues to be the fitness 

metric most improved by the genetic algorithm, as it starts with a lower fitness and ends higher 

than the ISL.  Initial performance was equivalent to the increased resolution scenario and the 
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final archive fitness was similar but more tightly grouped.  The 500
th

 generation’s archive 

performance also yielded a tight bend with a dense but defined pareto-optimal front emerging.  

In Figures 27 and 28, one can see the 2 dimensional surface created by the IFFT of the 

illuminated VPH.  Figure 27, from the center ROI cell of an initial population member, has a 

well defined main lobe, but Figure 28 clearly illustrates the effect of the genetic algorithm.  It has 

improved the performance by roughly 6dB of peak side lobe suppression. 

 Another way to examine the improvement is to determine whether or not each CPI 

successfully illuminates at least one pixel of the ROI as defined by the cross and down range 

resolutions.  Figure 29 shows the rate of illumination for a member of the initial and final archive 

populations.  The x-axis is the CPI index and the y-axis is the total number of CPIs whose 

illumination fell within the ROI.  Ideally this would have a slope of 1 and the total number of 

CPIs would equal the number of hits.  Generation zero only yielded 33 ROI hits out of its 256 

potential intervals for a success rate of 12.9%.  After completion of the algorithm, this has 

increased to 98 hits or 38.3% hit rate.    

 This plot allows one to identify, by regions with decreased slope, where the GA could 

still use improvements.  These low increase regions are common in the initial member, but the 

final archive pushes most of these lower performing regions to the beginning and end of the CPI 

indices.  Given a moving platform that begins and ends at the edge of the ROI, this result is 

expected as these points in the flight provide the greatest number of Azimuth angles, which can 

miss the ROI.  This information could also yield a more targeted mutation operator in the future.  

It is also interesting to note that with only 38.3% of the CPIs falling within the region of interest, 

the population is able to achieve a fitness of 0.88-0.91 in PSL and 0.82 -0.86 ISL, so perhaps the 

fitness maps could be re-evaluated to achieve greater final scenario performance. 
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Figure 23. SAR Fitness Improvement per Generation 

 

Figure 24. SAR Maximum Member Fitness Improvement 

 

                   

Figure 25.Initial VPH for the center cell of the ROI  Figure 26. Final VPH for the center cell of the ROI 
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Figure 27. Initial 2D IFFT Normalized Magnitude  Figure 28. Final 2D IFFT Normalized Magnitude 

 

Figure 29. ROI Illumination per CPI 

14. SAR MPI Scenario 45m by 120m 

 Maintaining a similar computational burden to the previous simulations, a larger ROI of 

120m in the cross range dimension was examined.  A simulation time of 1.384 and a PRF of 369 

achieved a single cross range column illumination by upping the pulses per CPI to two from the 

single pulse used in all preceding scenarios.   
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Table 7. SAR 45m by 120m Parameters 

Simulation Parameters  Value 

No. of Apertures 1 

Physical Aperture size  12λ m 

Effective aperture length  45 m 

Center frequency  600 MHz 

Bandwidth  50 MHz 

PRF 369 Hz 

No. of pulses  2 

VPH dimensions  128 x 256 

IFFT size  256 x 512 

Cross range resolution  3 m 

Down range resolution 3 m 

Beamwidth  5° 

Platform Velocity  130 m/s 

Region of Interest Cross 

Range size  120 m 

Region of Interest Down 

Range size 45 m 

Distance to Region of 

Interest  500 m 

Azimuth angle 

 -31° to 31° 

in 32 steps 

Objective Functions  

Revisit & 

Pulse 

Timing 

Crossover Operator 

Uniform  50% 

Mutation Operator Binary  5% 

 

 

Figure 30. SAR Fitness Improvement per Generation 
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Figure 31. SAR Maximum Member Fitness Improvement 

 Figures 30 and 31 show that this scenario configuration experienced results consistent 

with the previous experiments.  PSL initially starting with a lower performance was rapidly 

improved to an average fitness of 0.9 and ISL improved to 0.88.  Examining the VPH and IFFT's 

for the center cell also reinforced that when constrained to the same illumination per CPI, the 

results are similar despite changes to the scenario time and ROI length.  

Figure 32. Initial VPH for the center cell of the ROI   33. Final VPH for the center cell of the ROI. 
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Figure 34. Initial 2D IFFT Normalized Magnitude  Figure 35. Final 2D IFFT Normalized Magnitude 

 

15. SAR 45m by 60m with 4 Apertures 

 This scenario is the first to utilize multiple sub-apertures and apply them to a ROI of 45m 

by 60m.  With the exception of the sub-apertures, the scenario is identical to section 14, running 

for 0.692 seconds with a VPH size of 128 by 256.  This run time allows the target platform to 

traverse the length of the 60m ROI.  Each CPI sub-aperture is allocated 12.5 MHz, or one quarter 

of the down range resolution (32 cells), and one column in the cross range dimension.  This 

allocation of bandwidth yields VPH illumination patterns that are no longer symmetrical about 

the center of the down range dimension and can be observed in Figures 38 and 39. 
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Table 8. SAR 45m by 60m with 4 Aperutres Parameters 

Simulation Parameters  Value 

No. of Apertures 4 

Physical Aperture size  12λ m 

Effective aperture length  45 m 

Center frequency  600 MHz 

Bandwidth  50 MHz 

PRF 369 Hz 

No. of pulses  1 

VPH dimensions  128 x 256 

IFFT size  256 x 512 

Cross range resolution  3 m 

Down range resolution 3 m 

Beamwidth  5° 

Platform Velocity  130 m/s 

Region of Interest Cross 

Range size  60 m 

Region of Interest Down 

Range size 45 m 

Distance to Region of 

Interest  500 m 

Azimuth angle 

 -30° to 30° 

in 32 steps 

Objective Functions  

Revisit & 

Pulse 

Timing 

Crossover Operator 

Uniform  50% 

Mutation Operator Binary  5% 

 

 

Figure 36. SAR Fitness Improvement per Generation 
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Figure 37. SAR Maximum Member Fitness Improvement 

 

Figure 38. Initial VPH for the center cell of the ROI   Figure 39. Final VPH for the center cell of the ROI 

 

Figure 40. Initial 2D IFFT Normalized Magnitude  Figure 41. Final 2D IFFT Normalized Magnitude 
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 The results from this scenario offered a significant departure from the previous 

simulations.  Initial ISL performance shown in Figure 36, was comparable to the results in 

section 14, starting with a fitness value of 0.6.  PSL, which previously began lower then ISL, 

found an initial value of 0.8, which was well above the expected ~0.48 fitness.  One can see in 

Figure 37 that PSL performance rocketed to saturation by the 50
th

 generation, while the ISL only 

managed to gain ~0.1 for a final archive fitness 0.7.    

 Comparing against previous sub-aperture work [1], one can see that this PSL and ISL 

tradeoff is the anticipated result of introducing multiple sub-apertures.  This simulation 

reinforces the rapid improvement in PSL that can be achieved at the cost of ISL performance.  

Further investigation should target whether the saturation of PSL fitness prevents further growth 

in the ISL dimension.  A new fitness map for the PSL function would also allow for one to 

determine the maximum achievable PSL dB value, as the members in this simulation were not 

rewarded for performance beyond the 14dB value seen in Figure 41.   

 

16. SAR 45m by 1000m 

 This scenario is an attempt at running the SAR optimization on a ROI with the 

dimensions used for the MTI mission.  The cross range ROI size was increased to 1000 meters 

and the scenario run time was set to 7.6293 seconds to allow the platform to fully traverse the 

ROI.  Instead of a -30° to 30° Azimuth angle, the genetic algorithm was set to optimize for 

values between -60° and 60°.  PRF was increased to 530 Hz, but the number of pulses per CPI 

was increased to 16 to yield a CR illumination of one column per CPI.   
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Table 9. SAR 45m by 1000m Parameters 

Simulation Parameters  Value 

No. of Apertures 1 

Physical Aperture size  12λ m 

Effective aperture length  45 m 

Center frequency  600 MHz 

Bandwidth  50 MHz 

PRF 530 Hz 

No. of pulses  16 

VPH dimensions  128 x 256 

IFFT size  256 x 512 

Cross range resolution  3 m 

Down range resolution 3 m 

Beamwidth  5° 

Platform Velocity  130 m/s 

Region of Interest Cross 

Range size  1000 m 

Region of Interest Down 

Range size 45 m 

Distance to Region of 

Interest  500 m 

Azimuth angle 

 -60° to 60° 

in 32 steps 

Objective Functions  

Revisit & 

Pulse 

Timing 

Crossover Operator 

Uniform  50% 

Mutation Operator Binary  5% 

 

 Based on the results of the previous experiments, one would have expected similar 

performance of the PSL and ISL as each CPI is again illuminating a single cross-range column.  

Although this scenario was only run for 300 generations versus the 500 of the pervious 

simulations, both the initial and final fitness proved to be lower than expected.   

 One can see in Figure 43, initial PSL performance fell from a fitness of 0.6 to 0.36, 

almost a 50% falloff compared to the 45m by 120m scenario.  ISL also dropped to 0.59 from a 

typical start of ~0.63.  This starting deficiency was compounded by reduced performance 

improvement across all generations of the scenario.  Figure 42 shows that while PSL improved 

by ~0.3 in the smaller scenarios, here it only experienced 0.1 fitness growth over the course of its 

300 generations.  ISL improvement, which has consistently underperformed PSL in previous 
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scenarios, was even slow to improve.  ISL only gains 0.05 fitness in this 1000m scenario, which 

is half the performance of the 120m scenario.  One can see the small improvement between 

Figure 44 and Figure 45; this cell has only gained a small amount of illumination after the 300 

generations have run their course. 

 This scenario baselines the SAR performance in a large scale scenario so that it can be 

compared against the large combined SAR/MTI mission, as well as combined with multiple sub-

aperture missions.  Performance would likely be improved by tweaking the pulse per CPI, PRF 

and CR VPH resolution parameters.   

 

Figure 42. SAR Fitness Improvement per Generation 

 

Figure 43. SAR Maximum Member Fitness Improvement 
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Figure 44. Initial VPH for the center cell of the ROI  Figure 45. Final VPH for the center cell of the ROI 

 

Figure 46. Initial 2D IFFT Normalized Magnitude Figure 47. Final 2D IFFT Normalized Magnitude 

 

17. SAR & MTI 45m by 1000m 

 This scenario combines the SAR and MTI missions for a 4-dimensional SPEA2 

optimization run.  It uses 2 dynamic parameters encoded into each CPI, the number of pulses and 

the angle from -60° to 60°.  The combination of a simultaneous SAR and MTI mission, as well 

as running a SAR mission with a SPEA2 driven number of pulses were both novel to this 

scenario.  The dynamic pulse number was required as it is a crucial part of the fitness metrics 

used for the MTI mission.   
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Table 10. SAR and MTI Parameters 

Simulation Parameters  Value 

No. of Apertures 1 

Physical Aperture size  12λ m 

Effective aperture length  45 m 

Center frequency  600 MHz 

Bandwidth  50 MHz 

PRF 369 Hz 

No. of pulses  1, 8, 16, 32 

VPH dimensions  128 x 256 

IFFT size  256 x 512 

Cross range resolution  3 m 

Down range resolution 3 m 

Beamwidth  5° 

Platform Velocity  130 m/s 

Region of Interest Cross 

Range size  1000 m 

Region of Interest Down 

Range size 30 m 

Distance to Region of 

Interest  500 m 

Azimuth angle 

 -60° to 60° 

in 32 steps 

Objective Functions  

Revisit & 

Pulse 

Timing 

Crossover Operator 

Uniform  50% 

Mutation Operator Binary  5% 

 

 Unfortunately, the addition of the MTI mission did not provide any benefit to the SAR 

mission when comparing against the pervious scenario.  Initial ISL and PSL performance was 

equivalent with 0.59 and 0.37, respectively.  Fitness growth across the 500 generations was weak 

even when compared to the results of the previous 1000m SAR scenario.  PSL and ISL both 

grew by ~0.04; a very marginal improvement. 

 The MTI fitness metrics performed differently from the expectations set by the previous 

stand-alone run.  Revisit time increased its initial starting value from 0.7 to ~0.9, while Pulse 

fitness fell from 0.6 to 0.5.  The revisit time fitness was able to reach saturation, as it did in the 

prior run, but the maximum pulse fitness was held to 0.7, a gain of 0.2.  Looking at Figure 51, 
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one can see that the pareto-optimal front was not the clean band previously observed in the MTI 

mission.  The diffusion is likely a result of now optimizing across the 4 fitness function. 

 

Figure 48. SAR Fitness Improvement per Generation 

 

Figure 49. MTI Fitness Improvement per Generation 
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Figure 50. SAR Maximum Member Fitness Improvement 

 

Figure 51. MTI Maximum Member Fitness Improvement 
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 This scenario combines all the previous investigations to produce a waveform controlling 
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Figure 52. SAR Fitness Improvement per Generation 

 

 Figure 53. MTI Fitness Improvement per Generation 
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Figure 54. SAR Maximum Member Fitness Improvement  

    

Figure 55. MTI Maximum Member Fitness Improvement 
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small when compared against the independent scenarios.  One can notice a very small 

improvement in illumination when comparing Figures 56 and 57. 

 

Figure 56. Initial VPH for the center cell of the ROI

 

Figure 57. Final VPH for the center cell of the ROI 
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Figure 58. Initial 2D IFFT Normalized Magnitude  Figure 59. Final 2D IFFT Normalized Magnitude 
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19. Conclusion 

 These initial simulation results validate the C++ model of SPEA2 and the multi-mission 

radar waveform design suite by successfully reproducing the results of the previous Matlab 

version.  The new implementation has provided a computational efficiency boost, even when 

running on a single processing core, which has allowed testing of simultaneous MTI and SAR 

missions.   

 Aside from the run-time performance gained by transitioning to C++, this new waveform 

design suite was run on a multi-core grid computer to examine even more realistic scenarios.  

Distributing the SPEA2 algorithm across a grid using MPI allowed for multiple population 

members to be examined in parallel.  This allowed for scenarios involving 256 by 512 2-D IFFTs 

to complete within a fraction of the time required for the original Matlab implementation.  

Multiple experiments proved that various parameters could be adjusted and the results would 

scale as anticipated.   

 The initial combined runs of SAR and MTI missions proved disappointing in both initial 

fitness and growth over the generations. This will prove a useful area for further investigation, to 

determine if higher resolution, especially in the cross-range, can allow for more successful 

solutions. 

 Another area of future research would be into alternative fitness metrics, especially for 

SAR's PSL and ISL.  Given that the fitness is tightly coupled to the total illumination of VPH, a 

rough fitness metric could be gained without computing the full IFFT.  This would allow for 

further reduction in run-time, reserving the high-cost PSL and ISL functions for later generations 

or specific portions of the ROI.  
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