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ABSTRACT

During the past few years, many non-linear and/or adaptive

control algorithms have been developed for industrial proc

esses. Many have been rather complex schemes either re

quiring or specifically developed for an on line digital

computer. As an alternative to such systems , at least

on low order plants, the development of a near time optimal,

adaptive control algorithm is proposed. This rule must

encompass a significantly large group of the systems to

be encountered and yet be simple enough for hardware

implementation as a single loop controller.

The author's attention is confined primarily to systems

whose transfer functions may be approximated by

K

o , and whose inputs (setpoints) and disturbances

S^+AS+B

are essentially step functions. System parameter varia

tions are considered slow relative to the frequency of

disturbance Inputs or setpoint changes. The desired,

or optimal, closed loop response for those systems is

assumed to bo the fastest possible response to a str-p i:;pr.i,
,

with no overshoot. This time optimal deadbest response

is unique for a system with given dynamics and fixed

accelerating and braking power sources. An algorithm



i 1

is developed which provides total response time within a

few percent of the time optimal deadbeat response on

any system within the general classification. Addition

ally, the algorithm is adaptive and need not be tuned or

adjusted in any way at startup or to compensate for
v

system age or drift.
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INTRODUCTION

In many processes the most desirable closed loop control

is that which provides the fastest possible response to

a step change in input or disturbance, with little or

no overshoot. Fastest possible in this case refers to

the theoretical limitation imposed by the system dynamics

and the available drive or power sources, rather than the

characteristics of any control device. Response to

dynamic inputs other than step functions is not a

concern as setpoints* remain fixed in normal operation

and are changed only infrequently, from one fixed

operating point to another.

The desired response discussed above may be obtained in

general by applying maximum input to the system up to the

time when further application makes overshoot unavoidable

and then applying the one input sequence which will bring

the system to rest at the new operating point without

overshoot. Any other input sequence will result in

overshoot. In a first order system, full power may be

applied until the system reaches the new operating

point, followed by the input required to maintain that

operating point. A second order system may be driven

*Setpoints are controller inputs corresponding to

desired system outputs.



at full power to the state from which continuous

application of minimum power or maximum reverse power

is required to bring the system to rest at the new

operating point. This transient*
must be followed by

the input required to maintain the new operating point.

Higher order systems req\xire a unique sequence of full

forward-full reverse power applications to follow

this 'fastest'
trajectory, again followe.d by the input

required to maintain the new operating point. In every

case this minimum transient from one state to another is

uniquely determined by the system transfer function,

the maximum and minimum inputs available and the initial

and final states. Such a transient is usually called

time optimal and will be referred to as such throughout

this work.

While the time optimal response may be the most desirable,

it cannot be obtained with standard
3-mode**'

control.

Such linear control may be defined to provide a time

optimal response between two specific operating points

"^"Transient"

will denote the sequence of events occur-

ing between any starting state and the stable state to

which the system is driven.

**Proportional plus integral plus derivative control.

Controller output = AE+B$Edt+c~?
f where E is error.



in certain systems with fixed parameters*, but this control

will not provide an optimal response between any other points

Control will also deteriorate with any change in system

parameters. In a system with time varying parameters,

3-mode controllers must be adjusted for stability under the

worst of the varying conditions. Response under more

favorable conditions must therefore suffer to guarantee

stability in the worst case.

1 2
A review of the literature

'
has indicated that in many

cases the control of low order single loop systems (particu

larly adaptive and/or time optimal control) has been accom

plished using algorithms of such complexity that a digital

computer is required. Use of these techniques seems a

tremendous waste of computing power and money, unless many

such loops are to be controlled by one computer. Even

multi-loop computer control suffers from a reliability

standpoint, since all loops are dependent on a single criti

cal element. As an alternative to such systems, at least

on low order plants, the development of a near time

optimal adaptive control algorithm is proposed. This rule

will encompass a significantly large group of the

-That is, a
"linear"

controller's proportional and

derivative gains may both be set very high, to cause

controller saturation, and with a ratio such that the con

troller output switches polarity at the proper time.



systems to be encountered and yet be simple enough for

hardware implementation as a single loop controller.

Such an algorithm will allow the production of a

controller competitive in cost and similar in mechanical

configuration to present 3-mode analog controllers but

providing some of the more desirable control

characteristics of the computer based systems discussed.

Since the largest application for this device would be the

industrial process control field, attention shall be

confined to that area.

The main elements of a typical industrial control loop

are shown in figure 1. The plant is of course the

boiler, motor or other device or process being controlled.

VI is the temperature, pressure, position, speed, or

similar output parameter being controlled. Rl is the

controlling or drive power for the plant. This may be

fuel flow, electrical power, steam pressure or any

number of other quantities. In every case however, there

is some limitation on the maximum and minimum drive

available. Perhaps a maximum fuel flow rate, an electrical

voltage or current equal to that of the main supply,

or a maximum safe input to the system is the limitation.

The minimum fuel flow rate is zero, but the concept of

a negative or reverse input (and maximum limit) is inherent

in electrical and other types of system drive. The
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Figure 1

Typical Induiinal

Control Lo



system actuator controls the drive power anywhere in the

minimum to maximum range, in response to its own control

input R. Generally, the actuator cannot drive the system

past its input limits, and in fact may set those limits.

A motor driven valve for instance, cannot be driven

beyond fully open or fully closed. In most cases the

dynamic characteristics of the actuator are not

significant when compared to those of the plant, and

its transfer function is indicated as simply the gain K-,.

Similarly, the transmitter may almost always be

represented as a gain K-,. Its function is to monitor

the controlled variable and produce an output signal

V proportional to the controlled variable and suitable

for use by the controller. A thermocouple transmitter

for instance, might be used to measure a process

temperatiire and produce a proportional voltage or current

signal, in a standard range such as 4 to 20 milliamps.

The setpoint is usually the position of a control

knob on a standard analog controller, but could be a

remote electrical or pneumatic signal. In any case

it represents the desired output VI. The scaling

block converts the setpoint to a proportional signal

VD for use by the controller. In an electronic controller

with a control knob as a setpoint, the scaling would

be simply an internal potentiometer. The controller
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itself computes the error E ~ V^ -

V, and produces a

corrective output R (the actuator input) according

to some algorithm. This element may be the computer

discussed, a specially built "hard wired"

computer

(analog or digitial) ,
or a standard 3-mode controller.

The 3-mode controller uses the algorithm

t

R = AE+BjJEdt+C
,

where A, B, and C are manual adjustments used for

"tuning"
the controller to a particular process.

It should be recognized that since the analog controller

is a basically linear device, its output must spend

considerable time in its linear range in driving

the system to a new operating point. Since a time

optimal response requires the controller output to

be at one or the other of the saturation limits

throughout the transient, Linear control cannot

produce a time optimal response*. Two- or three-

mode control parameters are often adjusted for the

fastest response (defined as time to the first peak,

or to attain some error criterion) possible while

remaining within some tolerable level of overshoot.

*V/ith the exception of a first order system, where

a very high proportional gain may be used to provide

a near time optimal response.



8

This often involves temporary saturation in the system

or in the controller. When this is the case, the

control system performance will differ for different

sized input steps and different operating points.

Finally, since the linear controller's parameters

must be adjusted for best control of a particular

system, time varying system parameters present obvious

problems.

As indicated, this work is concerned primarily with

those systems for which the normal inputs are step

functions and for which the desired output response

is time optimal. On the premise that a large number

of the described systems may be approximated as second

order with no zeros, the work is further limited to

VI (S) 2
the systems vyv'e^

-

~t
~ where A or B or both

K{.bJ qE^b

may be zero. First order systems will also be considered

as a limiting case. From this point on, the "system"

referred to will include the plant, the actuator,

and the transmitter, so that the systems of interest of

y(S) K1K2K3 K

P S)
S^+AS+B S2+AS+B
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Figure 2a shows the time optimal response, as defined

previously, for a typical second order system. The

system is first accelerated toward the new operating

point by maximum input R, and then braked, by maximum

reverse R, until output V comes to rest at the new

operating point, R then becomes fixed at the value

(not necessarily zero of course) required to maintain

that output. Note that the time optimal response is

by definition a deadbeat response. That is, the

input (R) and output (V) transients have a finite

number of cycles, or beats. The response of figure

2b might find equal or greater acceptance in certain

applications. In this case the optimal or desired

response is that which will meet -and maintain a given

error criterion in the least amount of time-

This criterion may be met in slightly less time than

that afforded by the figure 2a response, since the

overshoot and oscillatory
"tail"

of the 2b response

are within the allowable error. It should be recognized

that the algorithm resulting from the present work,

although intended to produce (a close approximation

to) the time optimal deadbeat response, could produce

the response of figure 2a with only slight modification.

The control concept to be developed involves a high

gain limiting amplifier, whose limits represent the
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V

R
max

"mm

a)

maximum error

criterion

b)

Rmax

Rrnuv

Figure 2. Optimal Responses

a)deadbecrt b) minmium t tme to

response maximum error criterion
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input saturation limits of the controlled system.

The amplifier, whose output is the controller

output, is driven by a modified error signal. This

error signal consists of the (scaled) setpoint VD

minus a predicted final system output V. The

prediction is based on measurements of the system's

current and, to a lesser degree, past states.

It represents the final output if maximuii braking

input* were applied from the present state until the

"velocity"
-rr is equal to zero.

Several members of the general family of systems will

be investigated as models from which to define the

rule for prediction. An analog simulation will be

Vf S)
K

performed with
b/a)

-

~n as ^e model. Results

of the simulation will be analyzed and appropriate

modifications and additions made to the rule in

order to obtain acceptable performance on all systems

of the general form. Suggestions will be made for

*Braking input is that input which drives dV/dt

to zero. Accelerating input increases the magnitude

of dV/dt.
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extension of the rule to include higher order systems

and systems with lead terms, and several potentially

valuable simplified forms of the rule will be discussed.

The final form of the algorithm will use the predicted

II

output V-p
= V +

?
.

R

'

-py

j"

, where K and B (system
I h '

parameters) are defined (approximated) in terms of

V* at transition times (where the limiting amplifier

switches from full power into its linear region or

vice-versa, as in figure 2) and R, is available

braking input (one of the amplifier limits). It will

provide a very close approximation to the time optimal

deadbeat response on all systems of the general form

vr
K

m
S2+AS+B

where K may have any value and A or B or both may be

zero (or any other value) . The storage and arithmetic

capability required suggest the use of the
"microcomputer11

concept for implementation. Evidence will be presented

to show that this is not inconsistent with the desire for a

cost competitive, single loop,
"hardware"

controller.

*V = dV/dt, V =

d2V/dt2
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PROJECT DEFINITION

The project's objective has been defined as the

development of a control algorithm which will provide

adaptive time optimal control of the systems

V(S?
K

S2+AS+B

To produce the time optimal response, the controller

must provide an appropriate sequence of two output

levels corresponding to system input saturation.

Therefore it may be said to operate in a switched

mode during the transient. However, the system

output must be maintained once the transient is past

and the controller must therefore be able to produce

any output between the two saturation limits.

A controller configuration meeting these requirements

is shown in figure 3. The controller consists of

a limiting amplifier and a mathematical model used

for predicting the future value of the system output V,

The precise function of the model is to predict the

final value of V should maximum braking input be

applied to the system from the current instant of

time until. V were equal to zero. This projected

final value is designated Vp. The limiting amplifier

is driven by the modified error signal V^-V.
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Figure 3

Proposed Controller Configuration

V.

Controller

*

Predictive

* System

Model VF

max

Kjnm

Sustem
V

E>

Rway - -
. Jmiitmcj amphfjer

slop e
*G" transfer characteristic

> vp-vF

mm
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It has a very high gain G so that a small error

will drive the amplifier to one of its saturation

limits. These limits are adjusted to equal the

saturation inputs of the system, or to other desired

limits within the bounds of input saturation.

Figure 4 illustrates the controlled systems response

to an input (V-) step function. The limiting

amplifier is held in saturation at R
,v
until its

max

driving signal V^-V approaches zero. At this point

R crosses rapidly through its linear zone to saturation

at R . . V-p, is by definition the value of V at which

mm F

V becomes zero if R, is applied until V = V-p. V-p there

fore remains constant after R reaches saturation at R .

,
mm

since R . in this case is R, . V-p is slightly
mm d x

greater than V^ at this point because of the finite

gain G of the limiting amplifier. The finite gain

causes R to leave saturation at R before V =Vp.
max F D

and requires VT1>V-n to achieve saturation at R . .

a i) mm

As a result the system is accelerated to a velocity

V just short of the theoretical limit before switching,

and full braking input (R , ) is not applied until

the small overshoot is unavoidable. When V = 0,

V = V , and as V becomes negative, R becomes
.c max



16

(all errors exaggerated

for clarity)

t

V *

t

Figure 4
Control led System

Response to Step
Input of magnitude V0
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R,.* Since V^-V^ was just large enough to maintain

saturation when V = 0, R now leaves saturation and remains

in its linear region. Again because of the gain G, the

output comes to rest at a slight error. All three of the

errors noted are exaggerated for clarity in figure 4.

They become insignificant with a sufficiently large value

of G, the price being an increase in
"noise"

on the

controller output R at equilibrium. This, potential

problem could be dealt with by switching to a less

responsive control mode when near equilibrium.

In order to provide adaptive control, the predictive

equation used in the controller must provide valid results

with any of the systems in the general classification.

It was felt that because of the basic similarity in second

order responses to a step input, a single model sj^stem,

appropriately scaled, might be used to predict the

future output of the controlled system. Only for the case

where the controlled system is identical to the model

system except for scale, would perfect results be achieved,

However, the model would provide increasingly correct

information as the setpoint was neared, so prospects for

rapid damping should be good. Scaling would be obtained

*Since V is being increased in magnitude by R . .0
mm
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on a continuous basis, or as required, by the controller

itself, as opposed to the externally programmed parameters

(proportional, integral and derivative gains) of

conventional controllers.

For a given system, the exact predictive equation may be

developed by first obtaining the equation for the systems

response to an input step function. This* may be differen

tiated and set equal to zero. The resulting equation

can be solved for the time (as measured from the applica

tion of the step) required to force V to zero. This time,

hereafter called Tp, will be in terms of the system

parameters, the magnitude of the input step, and V

at the time of application of the step. T may then be

substituted into the original equation for V, to obtain

an equation for V-p in terms of the system parameters,

the magnitude of the input step, and the system state (V

and V) at the time of application of the step. The input

step function referred to is of course the application of

maximum braking input to the system <vhen V^ = V-p,. This

procedure is illustrated for several systems in Appendices

1-4.

A plot of error E = V^y-V versus E is referred to as a phase

plane plot. Since S =
-V", such a plot is easily obtained

from the equation for Vp, given a particular V, and



19

either R or R . . For a typical second order system,
max mm

J * '

several such plots are shown in figure 5. Note that

application of R drives E negative (V positive)
insix

while application of R . drives E positive (V negative).**
mm

* \ o /

The intersection of each trajectory with the E axis is

V~-V The dotted portion represents the trajectory the

system would follow if the same input were still applied

after E = 0. Any system transient obtained by driving the

system at R . or R must follow a trajectory in one
mm max

of the two families. A time optimal trajectory between

any two equilibrium states (where E = 0) or from any state

to an equilibrium state must follow a unique path

consisting of one segment from each of the two families .
*

Phase plane trajectories are thus useful for the visual

ization of time optimal concepts.

The heavy solid line on figure 6 is the solution for

V-p
= V-p, for a particular V^ and a particular system;

system 1. Assume that system 1 were driven from rest

at state A to equilibrium at state C (zero error,

zero rate of change of error) in a time optimal manner.

*A.n exception is the trivial case where both

points lie on the same segment.
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E =VD-V E =
-V

Figure 5

Phase Plane Plots for Typical

Second Order System
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-}
->

tm*^^^ controlled response of system I

^ ^___^
controlled response of system2

A D

1MB OB KB optimal response for system 2

Figure 6

Controlled System Response, with Fixed VF
used m Controller of Figure 3

(VF used is that derived for system I above)
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It would be forced along the solid line by Rm^ until it

reached state B, the time optimal sv/itch point. At this

instant R . would be applied and the system state would

mm
r

follow the heavy line to the origin. If this equation*

for V-p were used in the controller of figure 3 time optimal

control would be realized on system 1. Now consider system

2 (of figure 6) . This system differs from system 1 only in

time scale and/or gain, however, if the above control were

applied to system 2, switching would occur at state E

resulting in the overshoot shown. The optimal switch point

is of course D. On the other hand, if V-p as used in the

controller is written in general terms rather than the

specific gains, time constants, etc. of system 1, and if

the controller is able to measure these parameters either

continuously or at reasonable intervals, then V-p becomes

adaptive. It will be shown that sufficient information

for this process is contained in V, V, and V. The

addition of such scaling allows the
"normalization1'

of the

phase plane plot, so that all systems differing from

system 1 only in gain or time scale will follow the same

normalized trajectory. The vertical axis in the normal

ized phase plane will be designated ME, as in figure 7.

*That is, V. for system J., as derived bv the-.

procedure discussed previously.
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Systems /

NE

max

}

systems 1,2 etc.

system 3, more stable than 1,2

system 4; less stable than Ij2

Fioure 7

Controlled System Response, with Adaptive

Vf used in Controller of Figure 3

(VF derived m general terms for systems i^etc.)
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With the adaptive form of V-p, the controller would provide

time optimal response when driving any system of the same

form as the model, system 1. Eor instance, if system 1

V(S)
^

were
p7TT

=

~o then time optimal control would

K{b)
S +7S

be provided on all systems of the form
pTqT

=

~~p

K

S +AS

As mentioned earlier, it is felt that use of a V-p derived

from a single model system might provide acceptable

performance on all systems of interest in this study, as

well as near ideal performance on those differing only

in scale. In addition to the trajectory for model system

1 and all similar systems, figure 7 also shows trajectories

for systems 3 and 4. System inputs are switched from

R~oV "to R . at state B, as dictated by V. Eor want of a
max mm

u

F

better term, system 3 shall be described as more stable

than the model system, and system 4 as
less'

stable than the

model. For instance, in relation to the above example

of systems 1 and 2, system 4 might be |r{ =
o

V(S)
K

or

RTs)
=

~~2
' The less stable system would overshoot

the zero error point before coming to rest (E = 0) while
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the more stable system would never reach zero error.

Actually, the controller of figure 3 would force the more

stable system to the origin along the V =

V^ line, or model

system trajectory, by simply applying less than maximum

braking input to the system after reaching state B.

However, since R . is maximum braking input, the
'

mm
to * '

controller can do nothing to reduce the overshoot of

system 4. Figure 8a shows the path the controlled system

4 would take to the origin if V_, were not adaptive,

while figure 8b illustrates the increased damping

provided by the adaptive V. The adaptive V is increasingly

close to the ideal for system 4 as the controlled system

nears the origin. Briefly, this occurs because for

relatively
small* time intervals the difference in the

step responses of various second order systems are

primarily differences of scale. This is illustrated in

figure 9.

With the control approach established, the problem becomes

one of choosing the model system and performing the

mathematical manipulations required to use it in the

manner described. It is apparant from the phase plane

considerations that performance will be quite sensitive

*Small relative to system speed.
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adaptive

switching
trajectory

Figure 8

Controlled Response of System

a)
fixed Vp b) adapt ivs Vp
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V
A

V system
-^

-t

v

A

V K

3 S2+-AS

v

A

Vro
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to the model used. Once the model is chosen and the

equations of the algorithm determined, the model

must be evaluated both for performance in the controller

and ease of implementation. Modifications and compromises

will be necessary to achieve a practical result.
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INITIAL DEFINITION OF THE ALGORITHM

Four basic transfer functions break out of the general

K K

form

K

These are

K
'

S2+AS+B
S2

snrt ~r
K

T?^,-^ /-v-F +

2 '2
S +B s +as

7-5 '."yy 0 '^\ . Each of these was considered, at least
lb+Aj (, b+B;

briefly, as the model system for the algorithm. The

system 7 q A
w o'.-p'S

was considered first, as it was

felt that this might be the most commonly encountered

system. Its equations quickly became unwieldy and

work was halted. Further study disclosed the fact that

considerable work had been done in time optimal control

2 3
of relay servomechanisms

'

using the simple servo

transfer function
qT'^tt This, as well as its relatively

simple equations, made it a likely candidate.

As discussed in the previous section, our approach to the

control problem will be to measure the state of the

controlled system, assume that the model is in that state,

and apply to the controlled system the input which would
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drive the model system to equilibrium along time

optimal trajectories. This was illustrated previously

on the phase plane of figures 5-8 and is now illustrated

on the time axes of figure 10. With reference to figure

10a, R ^maximum accelerating input) is applied to the

system until it reaches a state from which the model

would require continuous application of R (maximum

braking) to bring it to rest (V = 0) at V, = V^. The system

trajectory is shown dotted up to this point. The solid

line, for both V and R, indicates the time optimal* model

trajectory which coincides with the system trajectory

at the switch point. From the switch point on then, the

solid line is the trajectory predicted for the controlled

system by the model. V has become equal to V^. As

V-p becomes slightly greater than V,,, the controller

output R (see figure 3) is suddenly driven negative.

However, it drives only as far negative as is necessary to

keep- V. =

VD +
-g , where G is the controller amplifier gain.

Since this may be accomplished with less than maximum

braking, the system follows the model trajectory (for

V and V, not for R) to equilibrium. Note that the total

controlled system transient is optimal up to the switch

point, since the system is driven by R
, and suboptimal

*Time optimal for the model or systems of similar form.
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thereafter. The continuation of the actual time optimal

response for the system is shown dotted. Figure 10b

shows the controlled system response when the system

is less stable than the model. Here the switch point

predicted by V^
= Vj. is too late and the overshoot cannot

be avoided. This response might be entirely

satisfactory however, if the first peak were limited

to a specified maximum, and could even be considered

optimal by the definition of figure 2b.

In order to achieve the above result with
K

S(S+A)
as a

model, the mathematical manipulations of appendix 1 v/ere

carried out. First, using standard Laplace transform

techniques, the system response to a step input R/S,

V(t) =

v0 +

V,
0

A

RK

72

RKt

+ +

A

RK

7 A

-At

was

derived. V(t) was differentiated and V was set equal to

zero. The resulting equation,

RK
. ,iT RKx -At

V = ^+ (V
0 A

' e
= 0 at t = Tj,, R = r was solved

1
AV

for Tp
=

j
In (1 - ) . Substituting Tp in the equation

RbK

for V(t), with present V and V being initial conditions,
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led to the equation for the predicted final output;

V V
1 -

AV

The solution is not complete at this point, since the

unknowns K and A must be expressed in terms of the current

state. V, V and V provide enough equations, but the

solution is complex. A better approach might be to use

A =.-
. Since one would not expect rapid changes

V

(relative to system time constants) in the effective

value of A, these derivatives could be heavily filtered

to reduce the associated noise problems. By substituting

V into V, one finds that K =
Tr(Av~-f'V) . As previously

defined, R is the current system input, and R, is

whichever of the saturation limits (R or R . )v
max

mm'

*

will drive V toward zero. K and A have now been defined

in
term;:-'

of the current system state. V-~, is therefore

adaptive and totally dependant on the state of the

controlled system.

At this point an algorithm has been defined, and a

theoretical evaluation of its proper-ties may proceed.
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The control was applied mathematically to the system

20

(S+"2T^ S+TT w:i-th the result shown in figure 11. The

excellent performance with the system tested was an

encouraging result and considerable thought v/as given

to methods of implementing this control. These will not

be discussed because, mainly due to the difficulty in

obtaining the model parameters without the third

derivative, the use of the o /o , A
\ model was dropped

Several things of later importance were brought out during

this phase. Since assumptions had to be made about the

available braking input, it was required that it be

equal to the accelerating input or that the ratio of the

two be included in the algorithm. Also it was recognized

that some form of automatic (but not necessarily continuous)

magnitude scaling of the controlled system derivatives

would be necessary to keep them within the useful range

of physical devices, and several techniques were

investigated. A basic difference was noted betv/een

systems with and without free integrations in that the

effective ratio of accelerating to braking force in the

latter case is affected strongly by the system output,
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unless a considerable overdrive* is available. Finally,

a number of interesting control approaches for subclasses

of the general system classification considered here

resulted from the work.

V

Following the work with
q/g

.\
, the general objectives of

the project and the chosen approach to thpse ends v/ere

again considered. There was some concern at this point

because of the small overshoot of the two time constant

system of figure 11, and it seemed likely that one of

the most unstable systems in the general classification

might be the best choice from the standpoint of guaranteed

K

stability.
9

was the logical choice, as its equations
S^

KB

are much simpler than * . Appendix 2 shows the

S. +B

derivation of V for this model in a manner similar

V2

to that discussed previously. This time, Yv = V
F 2R^K

*The term overdrive indicates more input pov/er

is available than is required to maintain maximum

desired system output.
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is in terms of V, V, and only the single model parameter K.

2

V V
K may be replaced by ^

,
so that Vp

= V -

,
which if

2~V

Rh V|V|
R

2
= 1* is equivalent to V = V + - -

. In this case

R
*

2|V|

V may be filtered, as it represents a relatively slowly

changing constant. As a check on the derivation of V-p,

the control was applied mathematically to the system

g
; }

1j , with the result shown in figure 12a. Note that

final equilibrium (a deadbeat response is obtained) is

reached at a time only 22% greater than the time optimal

response. This information was obtained by calculating

V.p points until the switch point (where V = V,J was found

and then calculating the value of R immediately after the

switch, using V =

V^ . Then assuming R stayed constant, V,

V, and V were calculated (and plotted on figure 12a)

for t = T0=.l .** Again using V-,, = V^, a new value of R was

calculated and, assuming R stayed constant at this value,

V, V, and V were calculated at t = T+.2 . This process

*This is not a restriction, but simplifies the

following work.

**T0 indicates the switch point.
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Figure 12b

Sample Calculations for Figure 12a

V=VQ+VQ-R+Rt+ ( R-VQ ) e

V=R-(R-V0)e"t

V=(R-VQ)e
*

@ t=1 .0,

V=-1+t+e_t=.368

V=i-e"t=.632

V=e"t=.368

V2

VF=V+^=.911
*

2V

-t

@ t=1.05,

V=.4

V=.65

V=.35

Vp= 1 . 0 and t= 1.05== T
1S

is

After switch,

V2

Vj.-V-I7.-I
1

2V

2
V= V 35

2(V-1)

r=V0+V=.3

Now, @ t=Ts+.1, assuming R=.3

V=.4+.65~.3+o(.l) +
(.3~.65)e"*1

=
.463

V=.3-(.3-.65)e"*1-.6l7

V=(.3-.65)e"'*1

=
.317

But if Vp=1 ,
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V= J^l_ ~

'^^
= -..353

2(V-1)

R=Vv=.617-.353-.264

Now @ t=Ts+.2, assuming R=.264,

V=.463+.6l7-.264+.264(.l)+(.264-.6l7)e"""1=.522

V=.264-(.264-.6l7)e"'1=.584

V=(.264-.6l7)e~"1-
-.353

But if V =1 ,

V- ^ - - -.356

2(V-1) 2( ,522-1)

R=V0+V=
.
584-

.
356=

. 228
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was. repeated until the trajectories became obvious, (sample

calculations are shown in figure 12b), and then checked

mathematically. That is, the integral of the constant

V shown (in figure 12a), with the initial condition V(Tg)

is the rampV shown, and similarly, its integral, with

initial condition V(Tg) is the V shown. Also of course,

Vp
=

V^ is valid from Ts on. The particular model trajectory

on which the controlled system is driven is that of

.35

5-, whose apparent point of origin is at V = -.2 and
S^

t = -.8. It was later noted that this information

could have been obtained from the solution of the

'2
V

differential equation V = 1 -

7c rather than the

incremental approach taken.

This algorithm showed enough promise, in terms of simplicity

and ease of implementation, to justify an analog simulation

to determine its performance over the entire class of

systems. A simulation, either digital or analog, was the

logical next et"p because manual calculation of response

curves for a la,:/;e number of systems was impractical.



42

K

ANALOG SIMULATION WITH MODEL -k

S

The circuit of figure 13 was first used for a crude

simulation of the controller. No attempt at extreme

accuracy was made in this breadboard because one objective

of the simulation was to demonstrate that the controller

was not unduly sensitive to its own parameters. Also,

mainly qualitative results were desired. Ten percent

tolerances were used throughout and zer"o offsets were

ignored. R . and R
, , the controller output limits,

mm max
r *

were set equal in magnitude for convenience. A large

amount of filtering (Rl, R2) was added to the differentiators

for noise suppression. Most of the noise was line frequency

pickup due to hasty design and poor breadboard layout and

was sufficient to completely saturate the differentiator

outputs without filtering. While irritating at this

point in time, it probably provided a useful foretaste of

practical noise levels.

Figure 14 illustrates the circuit used for system simulation

with the controller breadboard of Figure 13. Time scaling

was chosen to provide computer time transients of approx

imately 15 seconds duration. All simulation results

(figure 15 f 16, 19-26) were recorded by tracing a crt

display, and transient duration was chosen to facilitate
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.5

this technique. The first system simulated was * ,

S

since if the controller didn't perform properly with this

system it was either improperly constructed or the

K

algorithm was incorrectly defined. ( ^
was the model

S^

for the algorithm.) The results for a positive input

step from 0 to .8 are shown in figure 15, and for a

negative step from ,8 to 0 in figure 16. While rot

perfect, the results were as close as v/ould be expected

considering the accuracy of the test. The radical behavior

I I

v|v|
of -

near the switch point is caused by the filtering

2|v|

of V. That is, after the switch point the measured |V|

drops to zero before settling to its correct value. The

slight overshoots are caused by the imbalance in positive

and negative inputs and small gain errors in the various

amplifiers. Other systems were investigated briefly with

this configuration, but the thought occurred that the

troublesome differentiators need not have been used,

as the derivatives could have been made available from

system simulation. The system simulation was accordingly

changed to that of figure 17, -and the controller reduced

to that of figure 18. This was done only for ease of

simulation and does not imply that derivatives will be
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.5

available from an actual system. The system
^
was

$ s

again tested and results were slightly better than

above, mainly because supply voltages were adjusted to

equalize positive and negative R*, and zero adjustments

were made on the multiplier and divider. Aberrations

at the switch point caused by V filtering were gone.

|V| still must drop to zero after the sWitch point, since

V reverses polarity, but without filtering this transient

is very fast.

IT

Two members of the
^p r-y family, figures 19 and 20, were

tested next, with results as predicted by the prior

analytical techniques (see figure 12). Negative going

(from X to 0) input steps produced responses identical

to those produced by positive going input steps. Following

4
* T

477
this, results for

(s+>6j(s+.6)
,
^j-j-

.
and

s;>477

were obtained, as shown in figure 21 through 26.

*R .
= -R was chosen for convenience and the

mm max

controller breadboard assumes this to be true in

calculating V?. A practical version would use the actual

ratio .
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Vn=.57
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Results of Analog

Simulation of

$2+-4

1.0

-1.0

H- t



57

i.o

<- t

4.0

R

Results of Analog

Simulation of
.__

S + ,477

i.o

t

w
-w+

VlV|

3.0

i

4.0

.--"^v



58

f- t

1.0

Figure 26

Results of Analog

Simulation of
' \L-

S-K477

V-v
vP = v+^lvi
F

21 vl

-i.o ..



59

It is evident from the results of the simulation that

the algorithm does not possess all of those fine qualities

desired of it. Figures 19 and 20 indicate that excellent

performance can he expected if the controlled system is

K

near the same type as the model (-k) . For instance

K

S(s+A}
^ransien"ts approach optimal as A becomes small. In

a servo application this would mean load friction was

small in comparison with load inertia. With a given

amount of friction, the greater the inertia, the more

optimal the control. Unfortunately, as relative friction

increases the switch point comes increasingly early

and control becomes sluggish* (Figure 19 is more

sluggish than figure 20) .

All systems without a free integration will suffer from

the above problem (that as the controlled systems inherent

stability increases the control becomes less optimal)

and from a variation in effective braking force to

^Qualitative terms such as sluggish, as used in this

section refer to deviation from the optimal response for

the system in question, not to inherent differences

betv/een that system and any other system.
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accelerating force ratio with output level. The latter

is very evident in figures 22 and 23. Notice the

radically different responses, depending on direction,

between the same two operating points, 0 and ,57. Other

results from the simulation showed very nearly optimal

results when V stayed near the origin (say 0.2) and

horribly unbalanced response when V was near the extremes

(1) . Response to a step input change firom .95 to S for

instance, would be several hundred percent overshoot

followed by a deadbeat response. This is perhaps the

redeeming feature of the control; that even though the

overshoot may be large, response is always complete

after one half cycle of overshoot. In fact, the

control might be entirely satisfactory on a system with

sufficient overdrive. For a system with 70-80% overdrive,

the worst possible (magnitude, not percent) overshoot

would be that shown in figure 24. If the system equation

included a damping term the maximum overshoot would be

reduced or eliminated, as in figure 22. This would

represent a fortuitous partial cancellation of the two

problems discussed. Of course if damping were increased

further, the sluggishness induced by the damping would

override the overestimation (or compound the underestimation)

of braking input caused by lack of a free integration

and dominate the response. The limiting case would be
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the single time constant, figures 25 and 26, where

the response is not much faster than that obtained by

aPPlying an open loop step input equal to the final

control value.

Finally, there are two problems associated with the use of

V in the algorithm. To be practical the control must

operate with a heavily filtered version ^>f V, but as

demonstrated by the simulation of figure 13 through 16,

this causes errant behaviour of V^ near the switch point.

While this has little effect on response to a large

step, response to small input changes would be far from

optimal. For a small step input the switch point would

occur early because of the filter's underestimation of

V and the resulting large V-p. At the switch point,

V-p would show a drastic increase due to the inordinately

long time the filtered V spends near zero in changing

polarity. By the time it (V-p) recovers something close

to its pre-switch point magnitude, (R will be at maximum

braking until this time) V will have decreased drastically

and V required to keep V-p equal to the setpoint will be

very small. Given the proper conditions, the controller

would either remain in its linear region after this time,

for an extremely sluggish deadbeat response, or swing back

to the accelerating input. A little extension of this
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reasoning (hardly mathematically sound, but satisfying

nonetheless) shows an unavoidable limit cycle.* A second,

related problem is that V will "blow up"

at equilibrium

as V goes to zero, a condition also indicating the

possibility of a limit cycle. This was recognized before

the simulation and not considered a problem as an alternate

control mode could be entered near equilibrium. Limit

cycles from .1% to 1% were observed on all systems.

In summary it should be noted that while the algorithm will

K

no t provide satisfactory control for the entire
p

S +AS+B

family considered, it does have useful application to

subclasses. Excellent potential is noted for load

insensitive time optimal servo drives, for instance, where

the load is primarily inertial and the system may be

y
approximated as

3/
js+p')

K may also be time varying

in this application and therefore the only requirement

F
is for relatively (-*) small load friction. Tachometer

*A limit cycle is a stable (limited amplitude)

oscillation about the equilibrium point.
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feedback, which could supply V directly, is .often used

in servo drives and should make this algorithm even

more attractive. Application to systems where B is

greater than zero are less straightforward. The algorithm

will work well if some minimum overdrive (>1) can be

guaranteed. That is, for a given minimum overdrive,

worst case performance is known. If this is satisfactory,

then performance will always be better than satisfactory

as system gain varys. Relative damping affects response

in much the same way as friction in the servo example.

Again, if a maximum damping (-^) can be guaranteed and

performance is satisfactory with that degree of damping,

then it will always be more than satisfactory as damping

varys. There are really two criteria then for successful

K

application of the algorithm. to
p

with K, A, and

S +AS+B

B finite and time varying. Sufficient input overdrive

(greater than that required for maximum output) must

y
be available to guarantee a minimum

-^
consistent with

allowable overshoots (figure 24). Secondly, the maximum

system damping ^
must be less than some limit acceptable



64

to the user in terms of how sluggish (or suboptimal) a

response can be tolerated. (See figures 21 and 22 versus

figures 23 and 24. The major difference is the damping

term.) There are tradeoffs here. The greater the

overdrive, the less significant the damping becomes.

On the other hand, the greater the damping, the less the

overdrive required to minimize overshoots. In general, the

amount of overdrive and damping would not be available for

change by the control engineer and the decision to apply

this control would depend on the amount of variation in

the system parameters (is adaptive control required?),

and the worst case performance predicted for this algorithm.

Also, in both examples mentioned, provision would have to

be made to eliminate the limit cycle, providing it was

not acceptable to the user. Fortunately, a system with

time varying parameters is likely to include considerable

overdrive .
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PROPOSED MODIFICATIONS TO THE ALGORITHM

If the control is to be of any general use, the limit

cycle mentioned must be eliminated. Two problems, the

"blowup"
of VF as V goes to zero, and the small signal

errors caused by V filtering, exist. The former may be

eliminated by using the measured value of V only when R

is R or R . and storing the last value under that
md.jc mm

condition for use when R is between limits. The latter

may be eliminated by requiring R to be at R or Rmin

for a period of time equal to the V filter risetime

before control is transferred from the stored value to the

measured value. A block diagram of the controller with

the addition of this "track and
hold."

device is shown

in figure 27a. Note that this controller uses the

algorithm Vp
= V +

VlVl Rb

2

R
b"

-V

For convenience, was

R

R

assumed equal to 1 in the previous section.

As mentioned earlier, in order to implement the algorithm

with available physical components some form of magnitude

scaling must be done on the derivatives to keep them

within the useful range of the devices used. The

derivatives used must also be filtered Jn accordance with
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system bandwidth in order to seperate useful information

from the expected noise. The magnitude of V itself

may be used as a measure of system bandwidth, and filtering

may be adjusted accordingly. The larger the magnitude

of V, the higher (frequency) the filter breakpoint

should be. Both derivatives can be scaled by the factor X

in order to keep, them in some acceptable range, with no

effect on the calculation of V,,, since

XV. |XV V V

2X
Rb
-XV

R

R
b
V

R

This scaling may be continuous or discontinuous. These

additions are shown in figure 27b.

Note that, if the scaling is continuous, and implemented by

forcing X
V
- V

R

to equal one, the divider may be eliminated

from the block diagram as in figure 27c We now have a

controller wherein a filtered, sometimes sampled version

of V is used to determine a scale factor for use in a

proportional plus derivative type control. True, the

derivative control is nonlinear (R = G(VD~V-X v|v|), limited

at R and R . ) but it may be more palatable to some

because of successful industry experience with derivative

compensation in standard controllers.
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The scaling and storage discussed above are merely

suggestions for practical implementation of the algorithm.

Performance will be as detailed in the previous section

and as shown qualitatively in figure 28. Attention will

now be given to modifications which will extend the useful

ness of the algorithm. These will be considered in order

of increasing complication, as any large increase in

complexity defeats the stated purpose o the algorithm.

It is intended that these modified forms of the algorithm

be applied with scaling, filtering, and storage techniques

similar to those above.

V V

The first alteration considered was from V,, = V +

F R
b
V

R

V V

to Vp
= V +

bV
R

0

Physically, this change is

relatively minor if the track and hold approach of figure

27c has been adapted, since it can store a good

approximation to V*. Assuming a perfect determination

of VQ, V-p may be written analytically, as for the (servo)

K
system v^vT -\\ in figure 29. Note that as A becomes large

*V0 is V immediately after the last switch point,

where R or R . v/as applied.

max mm
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Fgure 28

Performartc of VC = V +
Vlvl

Elvl

K
S2

K

S2+A

K

(S+A)(S+A)

K

S+A

Excel \cmi

v

K

S(S+A)
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Y

ii
S
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vmm

Figure 29

Derivation of Vp

for System

^
uuheri VF = V- ^ -

fron t = o to t=TS)

y_.
_

RrnaxK RmcxxKt Rma*K ^"At

V =
R&*K

__

RynaxK ^-At

A

V= R
TTlCXX

KeAt

V0= Rmax K

VP =V + = V-

N/

2%V
R

VP =

VF

A2

+

A
AZ

fRmaxK FUaxK
~
AtY

l~A~~
A5- /

Rmm

Rwa;
RrnaxK

Rmax K

A* V 2Rm,J A +VRtnm) A*
^
rAt R^WK ~2At

Q.Tid}
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or as the system approaches
.^

, V approaches V, which is

v

the optimal control for -~ . This is in distinct contrast

to the control provided by the original V, a control

which became extremely sluggish as A became large.

K
y

Performance between the *

and -~ limits appears to be
g2 Ao

only slightly suboptimal. Appendix 5 dmonstrates

mathematically the application of this V to
o/q

- \

including the effects of an arbitrary amount of filtering

on V, which makes the. result slightly less optimal than

predicted by the general V^ above. Note that this system,

which had been somewhat slow with the previous V-p (figure

19) obtains a deadbeat response in elapsed time only 3%

greater than optimal (figure 30). These results were

corroborated by analog simulation. A similar analysis of

T

several other systems could generate a curve of
- -

aPse

T
optimal

Y
versus

~

,
whj ch could be used to determine the response

for any . In view of the performance expected, this is

probably not necessary. Vp
= V +

v|v|

7*o

has been shown
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to be almost perfectly adaptive and time optimal for all

K
v v

systems m the
-^

> """*

AS
subclass however,

it has the disadvantage of not adapting as rapidly to

v|v|

V

parameter changes as the previous V = V =

2

R

Thus a designer faced with step changes in load might

find the earlier control a better choice. A step parameter

change might not be recognized by the later control until

a switch point occurred, while the earlier control would

take immediate corrective action.

Also of interest in Appendix 5 work is the method of

approximating V0 . This involves the relationship

V(T)-VQ
v cs

-, where T is a time sufficient for the

required noise rejection but small in comparison with the

typical transient times in the system. In the example of

03 "

Appendix 5, T =
-^_;~

, where Vn represents an average of

V
v0

previously determined Vfi values, is used. This is
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consistent with the filtering requirements (that the

filter bandwidth vary with V) outlined previously. Of

more particular interest, however, is the fact that any

direct measurement of V is eliminated from the algorithm,

since Vp may now be written V = V +

v|v|t

R.

2|D(V(T)-V )
'R

U

T is a stored
"constant"

whose value is not critical,

although it must roughly track changes in system

dynamics. The magnitude scaling discussed before is

still applicable of course. Control is transferred

from the stored value of V0 at T. During the second

(braking) phase of a transient, the newly determined

value will be essentially equal to the stored value,

if it can be obtained with less than maximum braking.

The alteration discussed will not significantly improve

performance with
p ,

however the statements made

S +A

v|v[

concerning the original algorithm (Vp = V +
^ )

"h"

V

K K

when applied to the x

S +B S +AS+B

R

g
subclass may

nov/ be modified. Performance on all systems in this
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class will be essentially the same as that provided by

K

the original algorithm on
p , rather than becoming

S +B

sluggish as damping increases. Overall performance

v|v

R
U

for V-p = V + = is shown qualitatively in figure 31.

b:

The encouraging results of the first modification,

which virtually eliminated control sensitivity to system

damping, stimulated the search for a further modification

which could negate the imbalance effects associated

with finite zero frequency gains. In the original

algorithm, 2 |rk| was associated with the accelerating force

The available braking force was assumed equal to, or

related by a constant factor to, the accelerating force.

K

V, because of its relationship to RK in the model (o) ,

S

was used as a measure of available braking force. One

notes however, that in the general second order system

K

73 , Vn = RnK-BVn (see Appendices 1, 2, 3, 4)
S +AS+B

U

and that therefore a more proper indicator of braking

force might be IRqK-BV j , where R, is the braking input,
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Fiqure 3 1

Performance of VF=.V +
vlvl
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K
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K
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K
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or that input which drives V toward zero. The advantages

'1*1

of this concept (V-p
= V +

2 1 r^r!BVl
^ are ODvlous when

.4

one considers its application to the system (5) of

S +4

figures 23 and 24. VQ of course equals RK when VQ
= 0,

and the operation of the control under discussion

in the vicinity of zero (relative to K/B) will thus be

identical to that of the original algorithm. For small

steps near zero, V will remain relatively constant at

RK during the brief transient periods and

V2

V^ V -

T7^7 V +

V V

2R, K
b

DV
R

V +

Ri

R

V
0

cs V +
vlv

2 jRn.K-BVl
V

Figure 23 illustrates the underestimation of braking force

as V is driven toward an extreme (toward K/B) , with the

result that braking is applied much too early for optimal

response. If the algorithm had been based on

vlvl

VF
" V +

2|RbK-BV|
, the switch point would have occurred

later, at the point where R = R .
f (-1 in this case)*

mm

would be required to keep Vp equal to the setpoint

after the switch (the basic action of the algorithm).
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The switch point will still occur slightly earlier than

the time optimal switch point, since the effective average

braking force available is something between 2 |R,K~BV|

and 2|RbK-BVD|, and is thus greater than 2|RbK-BV|.

This insures a deadbeat response. The same argument

applies when the output is driven toward zero. Braking

will be applied slightly before the time optimal switch

point and the output may thus be driven to equilibrium

along a deadbeat trajectory. Intuitively, it would

seem that the control could be improved even further by

replacing B with some function of B, V, and V^ accounting

for the effective average braking force which, as mentioned,

is slightly greater than 2|R,K-BV|.

In order to retain the adaptive nature of the control,

the unknov/n system parameters K and B must be expressed

in terms of measureable quantities, .as RK was approximated

by V in the original algorithm. This naturally results

in more complication; more
"memory"

and computational

ability required in the controller. Using the fact

that Vn =? R0K-BV ,
both K and B can be expressed in

terms of R,V, and V at (any) two different switch points

(Appendix 6). These logically would be the values at a

current switch point and the switch point immediately
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preceding it. The values of K and B used in the control

might also be averages of individual results obtained

in this way, v~0 may be approximated from V as discussed

under the first modification. A block diagram of the

controller is shown in figure 32.

Appendix 6 illustrates mathematically, the application

of Vp
= V +

vlvl
.4

vlvl

2 I R Y- BVI
t0 the systera

~2 '
wi

I b
v

I S~+.4

th results

in figure 33. The transient from ^58 to zero is of

primary interest, because of the large overshoot in

figure 24. This response (figure 33) is calculated

exactly, both for time optimal switching and for control

based on the algorithm. Note that final equilibrium is

achieved at a time only 3% greater than optimal.

The effect of increased systtm damping on the control

v|v

is expected to be small, as with V^, = V + -

b?
V
0

the first modification. As system damping increases,

K

S +AS+B

K'CB
may be written as

(g^fg-pj , with C becoming
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Figure 32.

Controller Block Diagram

for VP = V-r
Vlvl

2(RbK-BV)

t(IHS

2 X*(RbK-BV)

Vr

J
\r
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true, time optimal R

Figure 33

Response of Control led System

V\</\
and

K and B ore defmed as m Appemdix 6



82

large with respect to B, and the limiting case being

K'D

cr-jj
. Note that K =

K'1

CD and B - CD both approach infinity

as C approaches infinity and therefore V approaches V,

K ' D
the optimal control for

^--^
. Appendix 6 also illustrates

the application of V?
= V +

^j^Wf
to

(s+.62 j?s+.587 >

a system very near that of figures 21 and 22. Compare

the sluggish response of figure 21 with that of figure 34.

Time to equilibrium in this case is S% over optimal.

y|v|
This latest version of V-p, V +

g
.

-

yipy'l '
Provides

satisfactory control on all systems in the original

RK

classification (V = * where A, B and K take on

S +AS+B

arbitrary values). It is somewhat more complicated than

had been hoped for, but certainly within the realm of a

single loop controller with hardware available today.

Speed of adaptation would be dependent on the techniques

used for generation of K and B. Consideration should
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be given to providing initial values (when control goes on

line) for K and B to minimise the possibility of a large

overshoot occurring before the first determination of

these parameters. If the K and B used are averages of

several values, several large overshoots can occur before

the controller
"learns" the system. The solution might

be initial values of K = B = E, where E is a suitably

small number. The control would then progress from

overdamped to optimal.
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CONCLUSIONS

The main objective of this investigation has been met.

That is, a control algorithm providing near time optimal,

K

adaptive control, to all systems of the form * ,

S +AS+B

has been defined. Its application, at least v/ithin the

scope of this study, has been limited to systems subjected

primarily to step inputs, (as many, if not most, industrial

processes are). With reference to figure 35 the constraints

on the controlled system are as follows. First of course,

K

the system must be closely approximated by *
S +AS+B

This expression includes the dynamic characteristics of the

actuator, so that the actuator and transmitter as depicted

here are strictly linear gain blocks. It is assumed that

maximum actuator output does not result in saturation

within the process, as long as the process is v/ithin its

normal limits and that manual inputs to the controller

limit maximum values of R to those values which result in

maximum actuator outputs. Actuator saturation cannot

be allowed, since the value of R is used in the algorithm.

Maximum values for R, V (Transmitter gain), and V- have

been arbitrarily set at 1, although this has no particular
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d

Figure 35

System Constr a\rvts
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significance. Practically any system to which a standard

2 or 3 mode controller had been applied would meet the

actuator-transmitter requirements with no modification.

The control algorithm itself is the modified error signal

VD
~ VP* which represents the setpoint minus predicted final

output, applied to a high gain limiting amplifier to produce

controller output R. The amplifier limits are set in

compliance with the actuator saturation constraint above.

*

I
*

I
Predicted final output Vp is equal to V +

g
.

R
i

, where

I b '

R, is the available braking input (controller output).

The adaptive feature of the control is in the automatic

measurement and use of the system parameters K and B.

*

Using the fact that VQ
=

RqK-BVq , K and B can be expressed

in terms of R, V, and V at (any) two different switch

points (where R makes a rapid transition from accelerating

to braking, or vice-versa). These equations may be found

in Appendix 6.

While stability problems should not be encountered with

any system within the general classification, it could be

advantageous to switch to a different control mode when

within a given distance from the setpoint. One reason
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could be noise triggering of the limiting amplifier,

causing unnecessary
"chattering"

of the actuator . A

slower but less noise sensitive control mode, entered

only near equilibrium, could prevent this with no sacrifice

in speed when changing operating points. A related matter

is that while noise sensitivity increases with increased

gain in the limiting amplifier, a system with low
' dc'

gain will require high gain in the limii^ing amplifier to

preserve low steady state error. Another possible reason

for switching modes is that different performance

characteristics might be desired at the operating point.

The algorithm is rather complex for analog implementation,

especially since storage of the approximate system

parameters is required, however the intended application

is to single loop control, rather than multi-loop

computer controlled systems. It is suggested that the

controller could be built economically, in volume, with

an analog to digital converter input, arithmetic unit,

several storage locations, control logic, and digital

to analog output converter, all of which is currently

available in a handful of integrated circuit chips

(consider the capabilities of the more advanced pocket

calculators) . If a second control mode were desired at

equilibrium, it would be simply an addition to the control

logic.
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Regarding the extension of the algorithm to systems

VfS)
K.+K?S

with lead terms,
-^

= - -

, few applications

seem likely. However, should such extension be desirable,

further work (not shown) has indicated that

V0+
"

(R0+~RoJK2 +

V
'

and that the defined control algorithm can be

used if V is modified to an equation of the form

v v
P-(JvR)v1 [Myioy]

V^
= V +

-

:
-

where the

2|RbK-BV|

derivative term exists only when of the same sign as V.

Regarding the possible extension to third order systems,

further work (also not shown') has indicated a high

probability of limit cycles or poorly damped responses.

A third order algorithm (V~) would probably be based on

the term VV rather than vjvj, however very little effort

has been applied to the third order case.

Less sophisticated versions of the algorithm; both adaptive

and fixed parameter, may find application to individual

control, problems. In applications where a near time
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optimal control is desired, but adaptive control is not

required, the algorithm could be used as defined, but

without the automatic measurement of system parameters.

These parameters (K and B) could be measured by any

suitable method and included as fixed parameters of the

controller. Since storage would no longer be required, an

analog implementation would again be possible, at least

in cases where derivative compensation in 3-mode control

is possible now.- In any case the controller would be

considerably simpler in concept and hardware than the

adaptive form. Its advantages over conventional controllers

would be the time optimal performance and the knowledge

that optimum performance was being obtained from the

controller, a point frequently in doubt with the conventional

units.

Simpler adaptive forms of the algorithm might also find

I * I
v|v

application in many areas. The form Vp
= V +

0-

R
u

can perform nearly as well as the most complicated version

of the algorithm, on systems with a free integration

or with considerable overdrive (more input available than

is required for maximum desired output). In its simplest

application, storage of only one quantity (VQ) is required
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Complications might involve filtering or averaging of the

VQ term, filtering of V, switched modes at equilibrium, etc,

For systems requiring
"instant"

adaptation, one might

use the form V-p =

V V

R
-v. I
*/

R '

which does not depend on

stored values and thus reacts immediately to changes

in system parameters. The potential inadequacies of

this Vp have been detailed, however, the appeal of the

adaptation speed may override these.

If the controller was built as suggested, in digital

form with analog inputs and outputs, arithmetic unit,

storage and control logic, and in addition was modular

in concept, any or all of the above versions of the

algorithms could be implemented with modular additions

or substitutions to the control logic and memory.

Obviously many other algorithms could be implemented wit;

the unit.
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Appendix I

Development of VF for model system

V(s)
_

K

RCS) S(S4-A)

System response to input -B.

VS*
- V0S -

V0 + AV S - AV* = 5J1

w/c\ _. VoS^-rfAVo + Vc) S + RK
VW

" '

S*+AS*

CB-4-D)Sa-i-(AB--c)S + AC

V(S) = JL + ii + -
S

S2
S+fr

V(S) =
S^

AS*

.*. B+ D = VQ A^= RK
^
AB + e = AVQ +Vq

and C= SK
A )

AB - AV0 + Y0
-

b Vo+
A

A2

RK

A

D= V.-V, -
VG RK RK

A2

Vo

A

/.v(t)v.v.+
%-^+a$t+/tt-%^eAt

va*

a;

Solution for Vp ;

and uih&n R-Rb )^TF }

A

RfeK\^ATF = O
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oATc

CT
1_
AS^o \

RbK)

TP =

VF=V(T?) }ijhn v0 = VCt) ^-VCt) ^R=Rb

A*

A ^k)
+

a*

ln((-^

\ Ri

F
A a2-

VF v +
V . RbK

T
*

A*

AV \

RbK/

Note that :

*- +
Wett

R K \ -At

V = -A(v0-^)e

V - A*(*%-
RV<

A '-) e
and. .*.

V

*

_
V

~-A

A
V

al so
^

V .
RK

A

c

V

A

-At

K=1(av+v)
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Appendix 2

Developme-nt of Vp -for model system

V(S) K

R(S)
,SL

System response to input

VSa-V0S-V0
- S

s 1

- BJ<

S

V =
RK-r V0S

-t-VpS2-

v
s*

V = A B 9. =.

ASa
+BS+C

v
"

s
+

s* s*

'

s3

.-. A=vc
>

B=
V0 ^

C= RK

V(t) = V =
v0+-

V0t +
^-t*

V = V0+ RKt

V =
RK

Solutio-n for VF j

when R = Rb }t

=

"T> ^

V(Tr)= V0 + RbKTF =0

T - -\4
'F~

VF= V(TF)>When VC = VW VCO
,
R=Rb

VF-V+ VTFr
^*TFa

v.- v-
*'

F
2RbK
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Appendix 3

Development of Vf for model system

V(S)
=

K

RCS) S2
+ B

System respo-nse. to input

VS*-VoS-V0+ BV=

^
V(S)=

VqS^h-VqS+RK

S3+ 8S

v/r0
_ (A+C+DH^+O^ D->i>FBC:)S4- AB

.\

AB= RK
)

Jv/BD- j>fBC = VQ ^
A+C + D = V0

A= ^

C-VD =

V0-^ (B

-C+D=
-^r (D

J<f B

n- Vq Vq RK
* * U

"

2. 2JNf8 2B

c
_ D_ ty>_ =

V* V0 RK

.
VCO = ir+-

t
svrWSt

+(vo- ^)cos4s t
3 4

Vrr-.fBV^mJBt
-b(\4~ JcosJft
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Solut\on fom Vp
when R =

Rb ,t TF
>

tf(TF) = V0coSJTF -JB(V0-Byi^sm/TF
=0

Vo5!IbtcmJSTF
COSsfBTe

F

TF =
-1 V,

Jb(v0-

*g)

VF=V(T,) ^uhen V0*V(t) }V.

=

V(t), *R = Rb

lV
B J V

Jb(v-S)
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Appendix 4

Development of VF -for model system

R(s) (s+A>(s+&)

System response to mpat

VS2
-V0S -Y0-rCA + B)VS-CA^B)VQ+ ABV^= ^i<

S

V(S)=
VoS2+(fro+(A+B)V,)S*RK

s(s+aKs-vb)

z.

S S+A S+B

V(S\ =

(x+Y-KpS*
+ ((A*9)X-vBY4-AZ)s+ABX

sCs+aHs + b)

.\ x-*-y +z-v0 (a+bh+bx+az =vo+ca+b)v0 ^

abx= rk

RK
X*

AB

RK
2= V0-X-Y = V0- ^-Y

CA+B)^| +BY+A(V0-^|-Y)
=

\ + lA+B)Vc

(B-A^Y=^0-VBV0- B
RK

AB

"

*~

B-A

V
AB

A- B

Z= VQ +AVo
- RK/B

A- B

- \itx.\- RK ,
(VQ-fBVa-RK/A)^-At

, (V0-fAV0"RK/B) ^Bt
+ -e *

A_B
L.
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At x"Bt\ . ^.
/,rAt A/s-6t-.

AB \B-A A-B /rl AB'lB-A A-B /

<, _ o
/-AAt

BBV/\/
RK\f-ABeAt

ABeBM

V= yM*eAt,
B2e"BtN / RK\/AaBAt, ABzeBt\

v

vVb-a +aT^b )+VVo"ab)^"b^a
+ "a^b~

)

Solution -Por Vp j

When R=Rb)t =TF ^

**>- *.(% |g?)+(y.- J)(A8gT'+ ^)=0

T = _i_ |
AVq+ABVq- rkk

F
A-B 3^4-ABV0-RbK

VF
= V(TF)

}
uhen V0= V(t)

) V0
= v(t)

>
R^= Rb

V = BkH ;
fir+BV-R^/A'') (AV4ASV-PbK)

F
AB

B- A BV+ABV-RbK

+
(v-t-AV-R^K/s) (Av-vabv-R^vO

e^3
Av~ B

'

B^+ABY-R^K

6
w ,.

RbK (AV*ABV-RbKf =&
,
AV +ABV-RbK _

f
AB A(e-A)(BV + ABV-RbK)

B(A-
B^)
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Appendix 5

Application of VF = V + ^~r to the

V0 uji[\ be approximated as

^
Vm-^(O)

h T= ,08.

.

T ^
and V0 is an average of prev \lxs I

lj

determined V, values.

Suppose input VD steps frora 0 to I

T = .08 = o
" '

"4
'

V^^R-^Re1

(Appendix \)^

/. V0 *
-4--4e~*

.3 6 3 (R=Rvnax=i.0)

v. = v+^l^- =-.4 + .4t + +^-
.72G

.T26

y_= -1798 + .4t -.0404 e +.e20^ e
*x

VF= VD
= I.O at t=2.S6} by trial ctnd error,

Noujj durm9 .braking phase,

4^=0 = ^/+^|-
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0= | 4- 2_V

.726

.',9
=
-.363

V=-.363t +V0 =.379-.J63t

Vs*
.379t

-J8(5t2

+ VQ

V=
.804 +

and since v + .4v .4R

^

R=
-.9075

+

.4(.379-.363t)

R=
-.756-.l45t

Noui ty(TF}=.379-.363TF-0

I.O 43

and the total transient time = 2.96 4 1.043 = 4.003

Houjeven for true time optimal Swiichmci.

VF =

V+>/-.4!"n(l4V/4) ,
from Appendix \.

VF
=
-4 + .4t+ .4 et+.4

- A *-A \r\{\ +\ - e"1)

VF=-4t-.4ln(2-et>)

VF= 1.0 at t=
3.^8^ Joy trial and error.

Nou
^
dun-no hraWino *pWas<?

^

V0=
-4

+.4C3.^)4.4e"-3lS

=.88S

yo= =.383

.'.

Vs
.SSS +C383-K4)-.4t4(-4-.383')e"t)fyo-m Aw<a-n<hx L

V=.763-.4t-.783e~t

^0\A - -4+ .783

e~T* = O

.". TF^.67

QYid -the tota\ optvmaA tr<ras\<rr\t is 3.m + .672 = 3.85
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Therefore, ujvth VF = V+^IiL
^
and V0 ts

2IV.I

approximated as V-ll)"^0! ujhere T= ^
T

Vft
the response of the controlled sustem

'

. to a unit step input, ts complete

S(s-H)
r r r

in time only 3.87o greater than optimal

All results are plotted m.Fioure 30.



103

Application of VF = V+ .
to systems

Appendix 6

vlv

2lR8K~BVl

V(S^) K
-

RCS) 'S2+AS+B

For this qe-n5Tcx\ secorid order
syste-m,

Ve=
R0K-BV0 .

Nog d'sfme a previous V0 as V., .

Then V.,= R_,K- B V,, d>

^ V., =^-R.,K-BV0i
i

v., V_|

. K= V.,Ve-VoV.(

V.,R0-V0R-,

S\milarly ,

V., R0
-

V0 R_,

Now consider the system
-'^

.
uith input Vn

Stepped from O to .58> .

V = l-cos.632t
,
from Appendix 3

V=
.632 Sin.632t

V= 4cos.632t

#.

VF= l-co5.632t4-

|<6,j8coSi6iat:

VF
-

V0
=
.58

at t = 1.33
, by trial aiad error.

If V LJere tiou; driven to xero J^y <vp y I i caA. ion o9
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Rn>m >
^m<i* output V Would be. .5G2

at TF-
.811

.The

siottch point chosen Jby VF is therefore veruj c\os

to optmial .

Nolj consider an input V0 stepped from .58 to 0

V=
-I + I.5& cos .632t

}
from Appendix 3.

\?-
-sm.632t

. . Yf
-

-| + 1.58 COS .632t
-

1.6.|,g64COS?632-b

Vp- 0 at t=.72 by trial and error.

During the
.braking phase^

VF
= V-.8-V8V=

.8

V-.8V2 ~^2

=0

.8V-J.6VV -2YV=0 (i4)

V=-8-2^

=.5-l.2S V iU = Vl/i,2j =
.894

1.6

.*.V
=
.5 + l.25Acos.894t + \.Z5 B sm.SMt

^ =
-I.JI75A Sin.894t + 1. 1175 Bcos.894t

V = - A cos.8^4t - B sm94t

but VG=
-433

= UI75B

.'. B =
-.3928

and Va = .4l9
=
.5 + 1.25A

.'. A =
-.064-8

SO V=
.5-.08I cos .8^4t -.491 sin ,894-t

V=
.0724 sin .8S4t -.439 cos .8^4-t
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V=.0648 COS.894t -{-.3928 Sin.S94t

and since
_4R

=
v + .4v

R= 25\/+V

R-
.5+

.0aicos.894-t +.491 Sm ,894-t

V(TF)=.0724 Sin.894TF -.439co5.894TF =0

Sin.894rf _
.
, 439

.894-TF
= 1.41

TF
= I.5Q

/.total transient time =.72 + 1.58 = 2.30

However, for true time optimal switching 3

VF = , +
*.(tf'^) +(V-I) co^tarf'j^,)

from Append ix 3.

VF
= 0 a"t t =

.81

t toi^ tria\ and error.

Durmo braking phase
^

V0 =
-I + L58(.&7i9)

=
.377

Vo=
-.4909

4909
V-

I-'

0
S\n.6>32t +(.377-0 CQS.fe'SZt

V = I - .77 7 Sm.C32t-.6a3 COS .63 2 t

V=
.4903 COS .S32t +.394 sin .652t

\/(Tf)=
-.4909C0S

.G32TF
i-

."554 sm.G?aTF =0

Sm.G32.TV 4909
= tan,S32TF

COS.G32Tp
^ F

.394

.63aTF

=
.895

TF^ 1.41
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/.total optimal transient time IS -SI +1.4-1
= 2.22

>

and the controlled, system response is
complete

m time 3.5^ greater than optimal.These

results are plotted m Fioure 33'

Now consider the sqstem- ^ ,
as input

* (S+.&a)(S +
.58)

)

VD IS stepped from O to
.58 .

V= | +. |4.? e*GIt- 15.5
e~'S8t

,

from*

Appends 4.

V^9elMt

.8 -,72V

Vf
=
.58 at t = 2.8, toy trjaland error.

During the braking phase
)

V2

+ I.2I7& V -

.72.

V2-
=

2 VV + 1.2176 V - L44 VV'
= O (di-f-Feventi*+i<n^)

V= 1.389 V + .84SG
j J 1/1/589 = -S^SS

V=
.7(A^mtrBe-'8Wt)

hat Vo=.50Ol = A + % r -&4S-G

V0=.\87S=
.8465

(A- E)

/. A+B =
~34 55

A-B=
.22.13

2A= -.1242

,

A= -.06208
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B=
-.3455 -A

=
-.2834

SO,
V=-.OS208e?'8^5t-.2834e-8485t

+.8456

V=
-.os^s7

e'&^st-

+ .2405

e-'8485t

V=-.0447e-8485t-.204e-8485t

and since V+\.2V+.36V S.4R,

R= Z.S 1/+3V + .9v

R=
-.3256

<-848**
-.043

e'848t

+ .76*.

V(TF)=_.0Sa&7e-8485T^.24O5e'8WT':

=0

e.697Tf =
.2405

=4>566

.0 S2&1

TF = -894S

.'.total transient time is 2.5 4.895 = 3.6 95

However for true time opt\raai switching

T = J_ iril5.s*4*Cv+0\

froTn Appends 4-.

VF=-I + v(-25e-'62t425e-58tWv4i)(-)4.5eG1%l5.5-?8t)

Vp^.58 at t = 3.12 by trial a-aci error.

TF=.26 joy trial and error.

.'.total
optimal transient trme is 3.12 4 .26 - 3.3 8

Thus the controlled response is SV greater

than optimal. These results ere plotted \r\

Figure 34-.
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