Rochester Institute of Technology

RIT Digital Institutional Repository

Theses

1-1-1974

A Near Time Optimal Adaptive Control Algorithm for Second
Order Systems

Carlton Warren

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation
Warren, Carlton, "A Near Time Optimal Adaptive Control Algorithm for Second Order Systems" (1974).
Thesis. Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.


https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F4528&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/4528?utm_source=repository.rit.edu%2Ftheses%2F4528&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

A NEAR TIME OPTIMAL
ADAPTIVE CONTRCL ALGORITHM
FOR SECON" ORDER SYSTEMS
BY

Carlton J, Warren

A Thesis Submitt

Partial ™alfilliment

of 1he '

5

RGQUirGBEuLQ for the Degrec of
MAS“ER OF SCIENCE
in
{

Electrical Fngineering

Auproved by
> George A. Brown

T

» PO . ,‘,V
Thosis sdvigoar?

Prof.  lllegible Signature

Prof. RogerHeintz

"»cf.  Watson Walker

¥

{Deporimeni

<5 377
S
DS 24,

N I VAR DeOTAT I i h " TALTE o vy ™y
DTJT:LR{;‘JV'I .’('“: 'J C'p LS;‘ ‘“'J' fal '[""} : % \{‘4 Es \1 o} j,‘,l : i\

ks PRSI A A_]
VLLEGY O wNGINLERING

ROCHYETRR 1%5T0(TUNE OF TRGINGINGY

LR R NN § AsRe| PN

S S o G
Vs TR

Vo
Lhes s

v RIS e e



ﬁ?_z,@/

ABSTRACT

During the past few ycars, many non-linear and/or adaptive
control algorithms have been developed for industrial proc-
esses. Many have been rather complex schemes either re-
gquiring or specifically developed for an on line digital
computer. As an alternative to such systems, at least

on low order plants, the development of a near time optimal,
adaptive control algorithm is proposedr This rule must
encompass a significantly large group of the systems to

be encountered and yet be simple enough for hardware

implementation as a single loop controller.

The author's attention is confined primarily to systems

whose transfer functions may be approximated by

X
—5——— , and whose inpuis (setpoints) and disturbances
ST+AS+B

zre essentially step functions, System parameter varia-
tione are considered slow relative to the frequency of
disturbance inputs ¢v ecetpoint changes. The desired,

or optimal, ciosed 1loop response for these systems is
assuned te bo tne fastest pocssible respoense to a stop luput,
with no overshcot., This time optimal deadbezt response

is uninue for a system with given dynamics and fixed

accelerating and braking power sources. An algorithm



ii
is developed which provides total response time within a
few percent of the time optimal deadbeat response on
any system within the general classification. Addition-
ally, the algorithm is adaptive and need not be tuned or
adjustedvin any way at startup or to compensate for

system age or drift.
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INTRODUCTION

In many processes the most desirable closed loop control
is that which provides the fastest possible response to

a step change in input or disturbance, with little or

no overshoot. Fastest possible in this case refers to
the theoretical limitation imposed by the system dynamics
and the available drive or power sources, rather than the
characteristics of any control device. .Re3ponse to
dynamic inputs other than step functions is not a

concern as setpoints* remain fixed in normal operation

and are changed only infrequently, from one fixed

operating point to another.

The desired response discussed above may be obtained in
general by applying maximum input to the system up to the
time when further application makes overshoot unavoidable
and then applying the one input sequence which will bring
the system to rest a the new operating point without
overshoot. Any other input sequence will result in
overshoot. In a first order system, full power mey be
applied until the system reaches the new operating

point, followed by the input required to maintain that

operating point. A sccond order system may be driven

¥Setpoints are controller inputs corresponding to
desired system outputs.



at full power to the state from which continuous
application of minimum power Or maximum reverse power
is required to bring the system to rest at the new
operating point. This transient* must be followed by
the input required to maintain the new operating point.
Higher order systems require a unique sequence of full
forward-full reverse power applicationé to follow

this 'fastest' trajectory, again followed by the input
required to maintain the new operating point. In eﬁery
case this minimum transient from one state to another is
uniquely determined by the system transfer function,

the maximum and minimum inputs available and the initial
and final states. Such a transient is usually called
time optimal and will be referred to as such throughout

this work.

While the time optimal response may be the most desirable,
it cannot be obtained with standard 3-mode*¥* control,.
Such linear control may be defined to provide a time

optimal response between two specific operating points

*¥"Pransient" will denote the sequence cf events occur-~
ing between any starting state and the stable state to
which the system is driven.

*¥Proportional plus %ntegral plus derivative control.

Controller output = AE+BSEdt+c§% , where E is error,



in certain systems with fixed parameters¥*, but this control
will not provide an optimal response between any other points.
Control will also deteriorate with any change in system
parameters. In a system with time varying parameters,

3=-mode controllers must be adjusted for stability under the
worst of the varying conditions. Response under more
favorable conditions must therefore suffer to guarantee
stability in the worst case. -

A review of the 1iterature1’2

has indicated that in many
cases the control of low order single loop systems (particu-
larly adaptive and/or time optimal control) has been accom-
plished using algorithms of such complexity that a digital
computer is required. Use of these techniques seems a
tremendous waste of computing power and money, unless many
such loops are to be controlled by one computer. Even
multi-loop computer control suffers from a reliability
standpoint, since all loops are dependent on a single criti-
cal element. As an alternative to such systems, at least

on low order plants, the development of a near time

optimal adaptive control algorithm is proposed. This rule

will encompass a significantly large group of the

“That is, a "linear" controller's proportional and
derivative gains may both be set very high, to cause
controller saturation, and with a ratio such that the con-
troller output switches polarity at the proper time.



systems to be encountered and yet be simple enough for
hardware implementation as a single loop controller.

Such an algorithm will allow the procduction of a
controller competitive in cost and similar in mechanical
configuration to present 3-mode analog controllers but
providing some of the more desirable control
characteristics of the computer based éystems discussed.
Since the largest application for this device would be the
industrial process control field, attention shall be

confined to that area.

The main elements of a typical industrial control loop

are shown in figure 1. The plant is of course the

boiler, motor or other device or process being controlled.
Vl is the temperature, pressure, position, speed, or
similar output parameter being controlled. Rl is the
controlling or drive power for the plant. This may be

fuel flow, electrical power, steam pressure or any

number of other quantities. 1In every case however, there
is some limitation on the maximum and minimum drive
ayailable. Perraps a maximum fuel flow rate, an electrical
voltage or current equal to that of the main supply,

or a maximum safe input to the system is the limitation.
The minimum fuel flow rate is zero, but the concept of

a negative or reverse input (and maximum 1limit) is inherent

in electrical and other types of system drive. The
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system actuator controls the drive power anywhere in the
minimum to maximum range, in response to its own control
input R. Generally, the actuator cannot drive the system
past its input limits, and in fact may set those limits.
A motor driven valve for instance, cannot be driven
beyond fully open or fully closed. In most cases the
dynamic characteristics of the actuator are not
significant when compared to those of the plant, and

its transfer function is indicated as simply the gain Kl.
Similarly, the transmitter may almost always be
represented as a gan K3. Its function is to monitor

the controlled variable and produce an output signal

V proportional to the controlled variable and suitable
for use by the controller. A thermocouple transmitter
for instance, might be used to measure a process
temperature and produce a proportional voltage or current
signal, in a standard range such as 4 to 20 milliamps.
The setpoint is usually the position of a control

knob on a standard analog controller, but could be a
remote electrical or pneumatic signal. In any case

it represents the desired cutput V1. The scaling

block converts the setpoint to a proportional signal

VD for use by the controller. In an electronic controller
with a control knob as a setpoint, the scaling would

be simply an internal potentiometer. The controller



itself computes the error E = VD - V, and produces a
corrective output R (the actuator input) according
to some algorithm. This element may be the computer
discussed; a specially built "hard wired" computer
(analog or digitial), or a standard 3-mode controller.
The 3-mode controller uses the algorithm

R = AF+B§th+CQ§

- o‘ dt * .

where A, B, and C are manual adjustments used for
"tuning“ the controller t¢o a particular process.
It should be recognized that since the analog controller
is a basically linear device, its output must spend
considerable time in its linear range in driving
the system to a new operating point. Since a time
optimal response requires the controller output to
be at one or the other of the saturation limits
throughout the transient, linear control cannot
produce a time optimal response*. Two=- or three=-
mode control parameters are often adjusted for the
fastest response (defined as time to the first peak,
or to attain some error criterion) possible while

remaining within some tolerable level of overshocot,

*With the exception of a first order system, where
a very high proportional gain may be used to provide
2 near time optimal response.



This often involves temporary saturation in the system
or in the controller. When this is the case, the
control system performance will differ for different
sized input steps and different operating points.
Finally, since the linear controller's parameters

must be édjusted for best control of a particular
system, time varying system parameters present obvious

problems,

As indicated, this work is concerned primarily with
those systems for which the normal inputs are step
functions and for which the desired output response

is time optimal. On the premise that a large number
of the described systems may be approximated as second

order with no zeros, the work is further limited to

vi(s) %

R1(S) ~

2
SZ+AS+B

the systems , where A or B or both

may be zero. First order systems will also be considered
as a limiting case. From this point on, the "system"
referred to will include the plant, the actuator,

and the transmitter, so that the systems of interest of

V§S) KKKy K
ROS) 7 Q2,404 B  SP4AS+B




Figure 2a shows the time optimal response, as defined
previously, for a typical second order system. The
system is first accelerated tcward the new operaiing
point by maximum input R, and then braked, by maximum
reverse R, until output V comes to rest at the new
operating point. R then becomes fixed at the value
(not necessarily zero of cource) required to maintain
that output. Note that the time optimal response is
by definition a deadbeat response. That is, the
input (R) and output (V) transients have a finite
number of cycles, or beats. The response of figure
2b might find equal or greater acceptance in certain
applications., In this case the optimal or desired
response is that which will meet-and maintain a given
error criterion in the least amount of time.

This criterion may be met in slightly less time than
that afforded by the figure 2a response, since the
overshoot and oscillatory "tail" of the 2b responrse
are vwithin the allowable error. It should be recognized
that the algorithm reculting from the present work,
although intended to produce (a close approximation
to) the time optimal deadbeati response, could produce

the responcc of figure 2a with only slight modification.

The control concept to be developed involves a high

gain limiting amplificr, whose limits represent the



10

Vit —
Vv
t Q)
Rmax
R
t
Rmm‘*'
VD"' J g
V maximum error
criterion
b)
t
Riax
R m
U/XV t
le!'l“

Figure 2 Optimal Responses

Q)deadbea‘t B) mimimum time to
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input saturation limits of the controlled system.
The amplifier, whose output is the controller
output, is driven by a modified error signal. This
error signal consists of the (scaled) setpoint V

D

minus a predicted final system output V The

P
prediction is based on measurements of the system's
current and, to a lesser degree, pasl states.

It represents the final output if maximum braking
input¥* were applied from the present state until the
"velocity" %% is equal to =zero.

Several members of the general family of systems will

be investigated as models from which to define the

rule for prediction. An analog simulation will be

K
performed with %%%% = —5 as the model. Results
S

of the simulation will be analyzed and approbriate
modifications and additions made to the rule in
order to obtain acceptable performance on all systems

of the general form. Suggestions will be made for

*¥Braking input is that input which drives av/dat
to zero. Accelerating input increases the magnitude
of dv/dt.
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extension of the rule to include higher order systems
and systems with lead terms, and several potentially

valuable simplified forms of the rule will be discussed.

The final form of the algorithm will use the predicted

ahd

output V, = V + ?TR;T{:—BVT

F , where K and B (system

-~

parameters) are defined (approximated) in terms of

~A®

V¥ at transition times (where the limiting amplifier
switches from full power into its linear region or
vice~versa, as in figure 2) and Rb is available
braking input (one of the amplifier limits). It will
provide a very close approximation to the time optimal

deadbeat response on all systems of the general form

K

R(S S24+AS+B

where K may have any value and A or B or both may be

zero (or any other value). The storage and arithmetic
capability required suggest the use of the "microcomputer’
concept for implementétion. Evidence will be presented

to show that this is not inconsistent with the desire for a

cost competitive, single loop, "hardware' controller.

*7 = av/at, ¥ = 4°v/at®



43

PROJECT DDFINITION

The project's objective has been defined as the
development of a control algorithm which will provide

adaptive time optimal control of the systems

R(S) ~ g2,4s43

To produce the time optimal response, thé controller
must provide an appropriate sequence of two output
levels corresponding to system input saturation.
Therefore it may be said to operate in a switched

mode during the transient. However, the system

output must be maintained once the transient is past
and the controller must therefore be able to produce
any output between the two saturation limits.

A controller configuration meeting these requirements
is shown in figure 3. The controller consists of

a limiting amplifier and a ﬁathematical model used

for predicting the future value of the system output V.
The precise function of the mcdel is to predict the
final value of V should maximum braking input be
applied to the syctem from the current instant of

time until V were equal to zero. This projected

final value is designated VF’ The limiting amplifier

is driven by the modified error signal VPWVF.
J
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Figure 3
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It has a very high gain G so that a small error

will drive the amplifier to one of its saturation
limits. These limits are adjusted to equal the
saturation inputs of the system, or to other desired

limits within the bounds of input saturation.

Figure 4 illustrates the controlled systems response
to an input (VD) step function. The lim#ting
amplifier is held in saturation at Rmax until its

driving signal VD~V approaches zero. At this point

E\
R crosses rapidly through its linear zone to saturation

at Rmin' VF is by definition the value of V at which

V becomes zero if Ry is applied until V = Vi, Vg there-

fore remains constant after R reaches saturation at Rmin’

since Rmin in this case is Rb. VF is slightly

greater than V., at this point because of the finite

D
gain G of the limiting amplifier. The finite gain

causes ‘R to leave saturation at Rmax before VF=VD

and reguires VF>VD to achieve saturation at Rmin'

As a result the system is accelerated to a velocity
V just short of the theoretical limit before switching,

and full braking input (R_._) is not applied until

min

the small overshoot is unavoidable. When V = Oy

V, =V and as V becomes ativ
P . es negative, Rmax becomes
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Rb.* Since V.D--VF was just large enough to maintain
saturation when V = 0, R now leaves saturation and remains
in its linear region. Again because of the gain G, the
output comes to rest at a slight error. All three of the
errors noted are exaggerated for clarity in figure 4.

They become insignificant with a sufficiently large value
of G, the price being an increase in "noise" on the
controller output R at equilibrium. This.potential

problem could be dealt with by switching to a less

responsive control mode when near equilibrium.

In order to provide adaptive control, the predictive
equation used in the controller must provide valid results
with any of the systems in the general classification.

It was felt that because of the basic similarity in second
order responses to a step input, a single model system,
appropriately scaled, might be used to predict the

future output of the controlled system., Only for the case
where the controlled system is identical to the model
system except for scale, would perfect results be achieved.
However, the model would provide increasingly correct
information as the setpoint was neared, so prospects for

rapid damping should be good. Scaling would be obtained

*Since V is being increased in magnitude by Rmin'
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on a continuous basis, or as required, by the controller
itself, as opposed to the externally programmed parameters
(proportional, integral and derivative gains) of

conventional controllers.

For a gi;en system, the exact predictive eqguation may be
developed by first obtaining the equation for the systems
response to an input step function. Thisemay be differen-
tiated and set equal to zero. The resulting equation

can be solved for the time (as measured from the applica-
tion of the step) required to force V to zero. This time,
hereafter called TF' will be in terms of the system
parameters, the magnitude of the input step, and A

at the time of application of the step. TF may then be
substituted into the original equation for V, to obtain
an equation for VF in terms of the system parameters,

the magnitude of the input step, and the system state (V
and V) at the time of application of the step. The input
step function referred to is of course the application of
= V,. This

F D
procedure is illustrated for several systems in Appendices

maximum braking input to the system when V
1-40

A plot of error E = Vy~V versus E is referred to as a phase
plane plot. Since £ = -V, such a plot is easily obtained

from the equation for VF’ given a particular V and

F!
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-

either Rmax or R For a typical scecond order system,

min®
several such plots are shown in figure 5. Note that
application of Rmax drives I negative (V positive)

while application of Rmin drives B positive (V negative).
The intersection of each trajectory with the E axis is

¥ VF' The dotted portion represents the trajectory the

o=
cystem would follow if the same input were still applied
after & = O. Any system transient obtaiged by driving the

system at Rm. must follow a trajectory in one

or
m Rm

ax
of the two families. A time optimal trajectory between
any two equilibrium states (where E = 0) or from any state
to an equilibrium state must follow a unique path
consisting of one segment from each of the two families.¥*

Phase plane trajectories are thus useful for the visual-

ization of time optimal concepts.

The heavy so0lid line on figure 6 is the solution for
VF = VD’ for a particular VD and a particular system;
system 1, Assume that system 1 were driven from rest
at state A to equilibrium at state C (zero error,

zero rate of change of error) in a time optimal manner.

*¥An exception is the trivial case where both
points lie on the same segment.



20

F'ngure 5

Phase Plane Plots for Typical
Second Order System
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It would be forced along the solid line by Rmax uatil it
reached state B, the time optimal switch point. At this
instant Rmin would be applied and the system state would
follow the heavy line to the origin. If this eguation¥*

for VF were used in the controller of figure 3 time optimal
control would be realized on system 1. Now consider system
2 (of figure 6). This system differs from system 1 only in
time scale and/or gain, however, if the above control wvere
applied to system 2, switching would occur 2t state E
resulting in the overshoot shown. The optimal switch point
is of course D. On the other hand, if VF 28 used in the
controller is written in general terms rather than the
specific gains, time constants, etc. of system 1, and if
the controller is able to measure these parameters either
continuously or at reasonable intervals, then VF becomes
adaptive. It will be shown that sufficient information

for this process is contained in V, V, and V. Tre

addition of such scaling allows the "normalization" of the
phase plane plot, so that all systems differing from

gystem 1 only in gain or time scale will follow the same
normalized trajectory. The vertical axis in the nornal-

ized phase plane will be designated NE, as in figure 7.

=

*¥That is, VF for system ), as derived bty the
procedure discussed yreviously.



- -— sustem 4 less stable than 1,2
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(Ve derived in general terms for systems L2 ete.)
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With the adaptive form of V the controller would provide

F’

time optimal response when driving any system of the same

form as the model, system 1. For instance, if system 1

vs) __*
RUS) = g2,95

were then time optimal control would

K

be provided on all systems of the form X{g% =

82+AS

As mentioned earlier, it is felt that use of a VF derived
from a single model system might provide acceptable
performance on all systems of interest in this study, as
well as near ideal performance on those differing only

in scale. In addition to the trajectory for model systen

1 and all similar systems, figure 7 also shows trajectories
for systems 3 and 4. System inputs are switched from

at state B, as dictated by V

R to Rm. For want of a

max in F°
better term, system 3 shall be described as more stable
than the model system, and system 4 as less stable than the

model. For instance, in relation to the above examrle

2
of systems 1 and 2, system 4 might be X(g = ~5
S
V(s .
or sy = §§ . The less stable system would overshoot

the zero error point before coming to rest (% = 0) while

e
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the more stable system would never reach zero error.
Actually, the controller of figure 3 would force the more
stable system to the origin along the VF = VD line, or model
system trajectory, by simply applying less than maximum
braking input to the system after reaching state B.

However, since Rmin is maximum braking input, the

controller can do nothing to reduce the overshoot of

system 4, Figure 8a shows the path the controlled system

4 would take to the origin if VF were not adaptive,

while figure 8b illustrates the increased damping

provided by the adaptive V

The adaptive V., is increasingly

F’ F
close to the ideal for system 4 as the controlled system
nears the origin. Briefly, this occurs because for
relatively small¥* time intervals the difference in the
step responses of various second order systems are

primarily differences of scale. This is illustrated in

figure 9.

With the control approach established, the problem becomes
one of choosing the model system and performing the
mathematical manipulations required to use it in the
manner described. It is apparant from the phase plane

considerations that performance will be guite sensitive

*Small relative to system speed.
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to the model used. Once the model is chosen and the
equations of the algorithm determined, the model

must be evaluated both for performance in the controller
and ease of implementation. Modifications and compromises

will be necessary to achieve a practical result.



INITTAL DEFINITION OF THi ALGORITHM

Four basic transfer functions break out of the general

5 K K - K K
orm —z—— , These are -—x s
S24AS+B s2 7 s%B | 5%4as

and (S+A)%Q+B) . Fach of these was considered, at least

briefly, as the model system for the algorithm. The

system (S+A)%S+B) was considered first, as it was

felt that this might be the most commonly encountered
system. Its equations quickly became unwieldy and

work was halted. Further study disclosed the fact that
considerable work had been done in time optimal control

2,3

of relay servomechanisms using the simple servo

transfer function ETﬁ%KT . This, as well as its relatively
simple eguations, made it a likely candidate.

As discussed in the previous section, our approach toc the
control problem will be to measure the state of the
controlled system, assume that the model is in that state,

and apply to the controlled system the input which would
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drive the model system to equilibrium along time
optimal trajectories. This was illustrated previously
on the phase plane of figures 5-8 and is now illustrated
on the time axes of figure 10. With reference to figure
10a, Rmanaximum accelerating input) is applied to the
system until it reaches a state from which the model
would require continuous application of Rmiémaximum

braking) to bring it to rest (V = 0) at { =V The system

D
trajectory is shown dotted up to this point. The solid
line, for both V and R, indicates the time optimal* model
trajectory which coincides with the system trajectory

at the switch point. From the switch point on then, the
s0lid line is the trajectory predicted for the controlled
system by the model. VF has become equal to VD. As

VF becomes slightly greater than VD’ the controller

output R (see figure 3) is suddenly driven negative.

However,; it drives only as far negative as is necessary to
keep-VF = VD + % y» Wwhere G is the controller amplifier gain.

Since this may be accomplished with less than maximum
braking, the system follows the model trajectory (for
V and V, not for R) to eguilibrium. Note that the %total
controlled system transient is optimal up to the switch

point, since the system is driven by Rm and suboptimal

ax?

*Time optimal for the model or systems of similar form.
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thereafter. The continuvation of the actual time optimal
response for the system is shown dotted. Figure 10D
shows the controlled system response when the system

is less stable than the model. Here the switch point
predicted by VF = VD is too late and the overshoot cannot
be avoided. This response might be entirely

satisfactory however, if the first peak were limited

to a specified maximum, and could even be‘considered

cptimal by the definition of figure 2b.

In order to achieve the above result with §T§§KT as a

model, the mathematical manipulations of appendix 1 were
carried out. First, using standard Laplace transform

techniques, the system response to a step input R/S,

v RK RKt |RK v ,
v(t) = Vg + L 5 ot s - wld ™Y, vas
A A A A A

derived. V(t) was differentiated and V was set equal to

zero. The resulting equation,

V=54 (VO = =g =0 at t = TF’ R = Rb , was solved
, AV
for Tp = % In (1 « —— ) . Substituting Tp in the equation
' R, K '
'b ,

for V(t), with present V and V being initial conditions,
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led to the equation for the predicted final output;

. RK .
- y._ b e
VF = V + Tt A2 1in [1 RbK ] .

The solution is not complete at this point, since the
unknowns K and A must be e¥wressed in terms of the current
state., V, Vv ang V provide enough equations, but the
solution is complex. A better =zpproach might be to use

~

A =— . Since one would not expect rapid changes

v
(relative to system time constants) in the effective
value ¢f 4, these derivatives could be heavily fiiiered

to reduce the associated noise problems. By suvstituting

we

V into V, one finds that K = =(4V+V). As previously

o] -

defined, R is the current system input, and Rb is

whichever of the saturation limits (R or R_._)
max min

.
T

will drive 7V toward zero. K and A have now been defined

is vherefore

h:j

in term:s of the current system state. V
adaptive and totally dependant on the state of the

controlled system.

At this point an algorithm has been defined, and a

theoretical evaluation of its properties may proceed.
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The control was applied mathematically to the system

(S+2§?S+17 with the result shown in figure 11. The

excellent performance with the system tested was an
encouraging result and considerable thought was given

to methods of implementing this control. These will not
be discussed because, mainly due to the djfficulty in

obtaining the model parameters without the third
derivative, the use of the ET@%KT model was dropped.

Several things of later importance were brought out during
this phase. Since assumptions had to be made zbout the
available braking input, it was required that it be

equal to the accelerating input or that the ratic of the
two be included in the algorithm. Also it was recognized
that some form of automatic (but not necessarily continuous)
magnitude scaling of the controlled system derivatives
would be necessary to keep them within the useful range

of physical devices, and several technigues were
investigated. A basic difference was noted between
systems with and without free irtegrations in that the
effective ratio of accelerating to braking force in the

latter case is affected strongly by the system output,
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unless a considerable overdrive* is available. Finally,
a number of interesting control approaches for subclasses
of the general system classification considered here

resulted from the work.

Following the work with i , the general objectives of
S(S+A)

the project and the chosen approach to thpse ends were
again considered. There was some concern at this point
because of the small overshoot of the two time constant
system of figure 11, and it seemed likely that one of

the most unstable systems in the general classification

might be the best choice from the standpoint of guaranteed

K
stability. —5 was the logical choice, as its equations
S
KB
are much simpler than 5 . Appendix 2 shows the
S™+B

derivation of VF for this model in a manner similar

to that discussed previously. This time, VF =V = SET

*¥The term overdrive indicates more input power
is available than is required to maintain maximum
desired system output.
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is in terms of V, V; and only the single model parameter K.

. )
3
K may be replaced by % , so that V, = V - é . which if
bn
Dt
Ry, vV K
— = 1% is equivalent to VF =V + . In this case

2| 9|

V may be filtered, as it represents a relatively slowly
changing constant. As a check on the degivation of V.,
the control was applied mathematically to the system
§T%¢TT , with the result shown in figure 12a. Note that
final equilibrium (a deadbeat response is obtained) is
reached at a time only 22% greater than the time optimal
response. This information was obtained by calculating

VF points until the switch point (where VF = VD) was found
and then calculating the value of R immediately after the

switch, using VF = VD . Then assuming R stdyed constant, V,

, and V were calculated (and plotted on figure 12a)

Ry <.

or t = Tq=.1 ¥%  Again using VF = VD’ a new value of R was
calcuvlated and, assuming R stayed constant at this value,

¥y V, and V were calculated at t = TS+.2 . This process

¥This is not a restriction, but simplifies the
following work.

**TS indicates the switch point.
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Figure 12b

Sample Calculations for Figure 12a

() . _t
V=VO+VO—R+Rt+(R-VO)e
V:R—(R-\'ro)e“t

A!— -o _t
V=(R Vo)e

@ t=1.0,
Vewl+t+e™ F=.368
V=1-e"t=.632
Voe"t=.368

L]
.2

=V4dm=,911
o¥

Vp

@ t=1.05,
Ve 4
V=.65
V=.35

VF=1.O and t=1.05=TS is switchpoint.

After switch,

2
= =]
2V
..V.—': {/2 ="'035

2(v=-1)

R=VO+V=.3

Vp

Now, @ tzTS+.1, assuming R=.3%,
bt 65~ .34.5( 1)+ (. 3-.65) e 1=, 463
Veu3m(.3=.65)e™" 12,617

v

1

V=(.3-.65)e"" 1=.317

But if VF=1,
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j= v .6172

tH

-a 390

2(V-1)  2(-.539)
R=Tr¥=.617-.353-, 264

Now @ t=TS+.2, assuming R=.264,

V=0463+.617-.264+.264(.1)+(.264=.617)e""

V=.264-(.264~.617)e"" '=.584

-

Vz(.264—.617)e“’7= =4 553

But if V=1,

. .2 2

V-= V - .584 - "’.356
2(V~1) 2(.522-1)

R=ﬁ;V=.584m.356=.228

feg
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was repeated until the trajectories became obvious, (sample
calculations are shown in figure 12b), and then checked
mathematically. That is, the integral of the constant
V shown (in figure 12a), with the initial condition V(TS)
is the rampﬁ’shown, and similarly, its integral, with
initial condition V(TS) is the V shown. Also of course,

VF = VD is vealid from TS on. The particular model trajectory

on which the controlled system is driven is that of

e 35

5 whose apparent point of origin is at V = -~.2 and
S

t = -.8., It was later noted that this information

could have bheen obtained from the solution of the

N

differential equation Vyp = 1 = —%g , rather than the

incremental approach taken.

This algorithm showed enough promise, in terms of simplicity
and ease of implementation, to Jjustify an analog simulation
to determine its performance over the entire class of
systems. A simvlation, either digital or analog, was the
logical next =tcp because manual calculation of response

curves for a la.ie number of systems was impractical.
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K

ANALOG SIMULATION WITH MODEL —5
g

The circuit of figure 13 was first used for a crude
simulation of the controller. No attempt at extreme
accuracy was made in this breadboard because one objective
of the simulation was to demonstrate that the controller

was not unduly sensitive to its own parameters. Also,
mainly qualitative results were desired. Ten percent
tolerances were used throughout and zero offsets were
ignored. Rmin and Rmax’ the controller output limits,

were set equal in magnitude for convenience. A large

amount of filtering (R1l, R2) was added to the differentiators
for noise suppression. Most of the noise was line freguency
pickup due to hasty design and poor breadboard layout and
was sufficient to completely saturate the differentiator
outputs without filtering. While irritating at this

point in time, it probably provided a useful foretaste of

practical noise levels,

Figure 14 illustrates the circuit used for system simulation
with the controller breadboard of Figure 13, Time scaling
was chosen to provide computer time transients of approx-
imately 45 seconds duraticn. All simulation results

(figure 15, 16, 19-26) were recorded by tracing a crt

display, and transient duration was chosen to facilitate
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59

this technique., The first system simulated was 5
S

since if the controller didn't perform properly with this
system it was either improperly constructed or the
algorithm was incorrectly defined. (-g% was the model
for the algorithm.) The results for a positive input
step from O to .8 are shown in figure 15, and for a
negative step from .8 to O in figure 16. While not
perfect, the results were as close as would be expected

considering the accuracy of the test. The radical behavior

7]
of

|"' near the switch point is caused by the filtering
21V

of V. That is, after the switch point the measured |V|
drops to zero hefore settling to its correct value. The
slight overshoots are caused by the imbalance in positive
and negative inputs and small gain errors in the various
amplifiers. Other systems yere investigated briefly with
this configuration, but the thought occurred that the
troublesome differentiators need not have been used,

as the derivatives could have been made available from
system simulation. The system simulation was accordingly
changed to that of figure 17, -a2nd the controller reduced
to that of figure 18. This was done only for ease o7

simulation and does not imply that derivatives will be
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5
available from an actual system. The system —5 was
8 S

again tested and recults were slightly better than

above, mainly because supply voltages were adjusted to
equalize positive and negative R¥*, and zero adjustments
vere made on the multiplier and divider. Aberrations

at the switch point caused by V filterihg were gone.

|V| still must drop to zero after the switch point, since

V reverses polarity, but without filtering this transient

is very fast.

Two members of the ETg:KT family, figures 19 and 20, were

tested next, with results as predicted by the prior
analytical techniques (see figure 12). DNegative going
(from X to 0) input steps produced responses identical
to those produced by positive going input steps. TFollowing
A
4 & o

. . * AT
this, results for w1577y 57 . and gi—ms

were obtained, as shown in figure 21 through 26.

¥R . = =R was chosen for convenience and the
min max

controller breadboard assumes this to be true in
calculating V,. A practical version would use the actual
ratio.. "
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It is evident from the results of the simulation that
the algorithm does not possess all of those fine qualities
desired of it., TFigures 19 and 20 indicate that excellent

performance can be expected if the controlled system is
K
near the same type as the model (—5). For instance
S
K ’ . .
6] transients approach optimal as A becomes small. In

a servo application this would mean load friction was
small in comparison with load inertia. With a given
amount of friction, the greater the inertia, the more
optimal the control. Unfortunately, as relative friction
increases the switch point comes increasingly early

and control becomes sluggish* (Figure 19 is more

sluggish than figure 20).

A1l systems without a free integration will suffer from
the above problem (that as the controlled systems inherent
stability increases the control btocomes less optimal)

and from a variation in effective braking force to

*Qualitative terms such as sluggish, as used in this
section refer to deviation from the optim&l response for
the system in question, not to inherent differences
between that system and any other system.
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accelerating force ratio with output level. The latter
is very evident in figures 22 and 23, Notice the
radically different responses, depending on direction,
between the same two operating points, O and .57. Other
results from the simulation showed very nearly optimal
results when V stayed near the origin (say 0%.2) and
horribly unbalanced response when V was near the extremes
(#1). Response to a step input change firom .95 to .9 for
instance, would be several hundred percent overshoot
followed by a deadbeat response. This is perhaps the
redeeming feature of the control; that cven though the
overshoot may be large, response is always complete

after one half cycle of overshoot. 1In fact, the

control might be entirely satisfactory on a system with
sufficient overdrive. For a system with 70-80% overdrive,
the worst possible (magnitude, not percent) overshoot
would be that shown in figure 24, If the system equation
included a damping term the maximum overshoot would be
reduced or eliminated, as in figure 22. This would
represent a fortuitous partial cancellation of the two
problems discussed. Of course if damping were increased
further, the sluggishness induced by the damping would
override the overestimation (or compound the underestimation)
of braking input caused by lack of a free integration

and dominate the response. The limiting case would be
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the single time constant, figures 25 and 26, where
the response is not much faster than that obtained by
applying an open loop step input equal to the final

control value.

Finally, there are two problems associated with the use of
V in the algorithm. To be practical the control must
operate with a heavily filtered version of V, but as
demonstrated by the simulation of figure 13 through 16,
this causes errant behaviour of VF near the switch point.
While this has little effect on response to a large

step, response to small input changes would be far from
optimal. For a small step input the switch point would
occur earlv because of the filter's underestimation of

V and the resulting large V,. At the switch point,

V., would show a drastic increase due to the inordinately

F
long time the filtered vV spends near zero in changing
polarity. By the time it (VF) recovers something close

to its pre~switch point magnitude, (R will be at maximum
braking until this time) V will have decreased drastically
and V required to keep VF equal to the setpoint will be
very small, Given the proper ccnditions, the controller
would either remain in its linear region after this time,

for an extremely sluggish deadbeat response, or swing back

to the accelerating input., A little extension of this
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reasoning (hardly mathematically sound, but satisfying
nonetheless) shows an unavoidable limit cycle.* A second,
related problem is that VF

as V goes to zero, a condition also indicating the

will "blow up" at equilibrium

possibility of a 1limit cycle. This was recognized before
the simulation and not considered a problem as an alternate
control mode could be entered near equilibrium, Limit

cycles from .1% to 1% were observed on 511 systems.

In summary it should be noted that while the algorithm will

not provide satisfactory control for the entire —E—E;——
ST+AS+B
family considered, it does have useful application to
sutclasses. Excellent potential is noted for load
insensitive time optimal servo drives, for instance, where
the load is primarily inertial and the system may be

approximated as 3 J£+F . K may also be time varying

in this application and therefore the only requirement

is for relatively (%) small load friction. Tachometer

*A 1imit cycle is a stable (limited amplitude)
oscillation about the eguilibrium point.
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feedback, which could supply s directly, is often used
in servo drives and should make this algorithm even
more attractive. Application to systems where B is

greater than zero are less straightforward. The algorithm
will work well if some minimum overdrive (%)1) can be

guaranteed. That is, for a given minimum overdrive,

worst case performance is known. If this is satisfactory,
then performance will always be better than satisfactory
as system gain varys. Relative damping affects response

in much the same way as friction in the servo example.
Again, if a maximum damping (%) can be guaranteed and

performance is satisfactory with that degree of damping,
then it will always be more than satisfactory as damping
varys. There are really two criteria then for successful
X
application of the algorithm.to " with XK, A, and
ST+AS+B
B finite and time varying. Sufficient input overdrive

(greater than that required for maximum output) must

consistent with

vsl =

be available to guarantee a minimum
allowable overshoots (figure 24). Secondly, the maximum

system damping % must be less than some limit acceptable
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to the user in terms of how sluggish (or suboptimal) a
response can be tolerated. (See figures 21 and 22 versus
figures 23 and 24. The major difference is the damping
term.) There are tradeoffs here. The greater the
overdrive, the less significant the damping becomes.

On the other hand, the greater the damping, the less the
overdrive required to minimize overshoots. In general, the
amount of overdrive and damping would not be available for
change by the control engineer and the decision to apply
this control would depend on the amount of variation in

the system parameters (is adaptive control required?),

and the worst case performance predicted for this algorithm,
Also, in toth examples mentioned, provision would have to
be made to eliminate the limit cycle, providing it was

not acceptable to the user. Fortunately, a system with
time varying parameters is likely to include considerable

overdrive.



PROPOSED MODIFICATIONS TO THE ALGORITHM

If the control is to be of any general use, the limit
cycle mentioned must be eliminated. Two problems, the
"plowup" of Vg as V goes to zero, and the small signal
errors caused by v filtering, exist. The former may be
eliminated by using the measured value of i only when R
is Rmax or Rmin and storing the last value under that
condition for use when R is between lim;ts. The latter
may be eliminated by requiring R to be at Rmax or Rmin
for a period of time equal to the V filter risetime
before control is transferred from the stored value to the
measured value. A block diagram c¢f the controller with

the addition of this "track and hold" device is shown

in figure 27a. Note that this controller uses the

ikl Ry,
algorithm VF =V + 5 . For convenience, — was
2|=§ R
R

assumed equal to 1 in the previous section.

As mentioned earlier, in order to implement the algerithm
with available physical components some form of magnitude
scaling must be done on the derivatives to keep them
within’the useful range of the devices used. The

derivatives used must also be filtered !n accordance with
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system bandwidth in order to seperate useful information

from the expected ncise. The magnitude of V itself

may be used as a measurc of systen bandwidth, and filtering

may be adjusted accordingly. The larger the magnitude

of V, the higher (frequency) the filter breakpoint

should be. Both derivatives can be scaled by the factor X

in order to keep. them in some acceptabie range, with no
v vl

effect on the calculation of VF’ since = T .

R L1} e
2X|—bXV| 2| _by

R R

This scaling may be continuous or discontinuous. These

additions are shown in figure 27b,

Note that, if the scaling is continucus, and implemented by

foreing legbV' to equal one, the divider may be eliminated
from the block diagram as in figure 27c. We now have a
controller wherein a filtered, sometimes sampled version

of V iz used to determine a scale factor for use in a
proportional plus derivative type control. True, the
derivative control is nonlinear (R = G(VD~V~X2V|V|), limited

at Rm and ijn ) but it may be more palatable to some

ax

because of successful industry experience with derivative

compensation in standard controllers,
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The scaling and storage discussed above are merely
suggestions for practical implementation of the algorithm.
Performance will be as detailed in the previous section

and as shown qualitatively in figure 28, Attention will
now be given to modifications which will extend the useful-
ness of the algorithm. These will be considered in order
of increasing complication, as any large increase in
complexity defeats the stated purpose ofi the algorithm.

It is intended that thesec modified forms of the algorithm
be applied with scaling, filtering, and storage techniques

similar to those above.

ViV
The first alteration considered was from VF =V + ——;fl—
o
o R
VIVl
to VF =V + 7 . Physically, this change is
2| 2§ I
0
R

relatively minor if the track and hold approach of figure
27¢c has been adapted, since it can store a good
approximation to V., Assuming a perfect determination

of V., V. may be written analytically, as for the (servo)

0’ 'F

system ET%:KT in figure 29. Note that as A becomes large,

*VO is V immediately after the last switch point,

where Rm or Rmin vas applied.

ax
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Figure 28
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Fsgure 29
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or as the <ystem approachesA% ’ VF approaches V, which is
the optimal ‘control for 4= . This is in distinct contrast

to the control provided by the original V a control

F,
which became extremely sluggish as A became large.

X

Performance between the - and %g
S_ )

limits appears to be

only slightly suboptimal. Appendix 5 demonstrates

. . . . .4
mathematically the application of this VF to HET

including the effects of an arbitrary amount of filtering
on V, which makes the result slightly less optimal than
predicted by the general VF above. Note that this system,
which had been somewhat slow with the previous VF (figure
19), obtains a deadbeat response in elapsed time only 3%
greater than optimal (figure 30). These results were

corroborated by analog simulation. A similar analysis of

T
several other systems could generate a curve of ~Elapped

Toptimal

versus which could be used to determine the response

¥
Z ’
for any % . In view of the performance expected, this is

i|v]
probably not necessary. VF = V + T has been shown

2|1

R 0
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to be almost perfectly adaptive and time optimal for all

K
systems in the —s —=p =it X )
S RS P T(eTAy — G5 Subclass, however,

it has the disadvantage of not adapting as rapidly to

7|7l
parameter changes as the previous VF = V = =T
D
, 2=
R
Thus a designer faced with step changes in load might
find the earlier control a better choice. A step parameter
change might not be recognized by the later control until
a switch point occurred, while the earlier control would

take immediate corrective action.

Also of interest in Appendix 5 work is the method of

approximating VO . This involves the relationship

W'J(T)-»\’fo

R

s where T is a time sufficient for the
T

required noise rejection but small in comparison with the

typical transient times in the system. In the example of

Q

[}
. 3

Appendix 5, T = ; Where VO represents an average of

<a!

0

previously determined VO values, 1is used. This is
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consistent with the filtering requirements (that the
filter bandwidth vary with V) outlined previously. Of
more particular interest, however, is the fact that any
direct measurement of V is eliminated from the algorithm,

v|v|T

since VF may now be written V v

FTUY R, :
2|-—(v(m)-vo)|
R

T is a stored "constant" whose value is ndt critical,

although it must roughly track changes in system

dynamics. The magnitude scaling discussed before is
still applicable of course. Control is transferred
from the stored value of VO at T. During the second

(braking) phase of a transient, the newly determined

value will be essentially equal to the stored value,

if it can be obtained with less than maximum braking.

The alteration discussed will not significantly improve

K
performance with 5 sy however the statements made
ST+A
v|v]
concerning the original algorithm (VF = & ==
‘ ol DY
R
K K ¥
when applied to the 5~ > — § subclass may

5748 ST+AS+B

now be modified. Performance orn all systems in this
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class will be essentially the same as that provided by

K
the original algorithm on 5 , rather than becoming
ST+B

sluggish as damping increases. Overall performance

il
for VF = V + T is shown qualitatively in figure 31.
o
R

The encouraging results of the first modification,

which virtually eliminated control sensitivity to system
damping, stimulated the search for a further modification
which could negate the imbalance effects ascsociated

with finite zero frequency gains. In the original
algorithm, 2|RK| was associated with the accelerating force.
The available braking force was assumed equal to,; or

related by a constant factor to, the accelerating force,
K

V, because of its relationship to RK in the model -—ﬁ),
S

was used as a measure of available braking force. One
notes however, that in the general second order system

K
et e e 1 =
2 r Yo = Ro

- K-BV, (cee Appendices 1, 2, 3, 4)
ST+AS+B

and that therefore a more proper indicator of braking

force might be ROKwBVI y Vhere Rb is the braking input,
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or that input which drives V toward zero. The advantages

of thi = 17l i
is concept (V, = V + SR K-57 ) are obvious when
' o4
one considers its application to the system ( 5 ) of
ST+4

figures 23 and 24, VO of course equals RK when VO = 0,
and the operation of the control under discussion

in the vicinity of zero (relative to K/B) will thus be
identical to that of the original algorithm. For small
steps near zero, V will remain relatively constant at

RK during the brief transient periods and

i v|v| |7l o]

7 vly
VoV om o Vb e & Vb e V4 il
F 7R X 2—%%}' 2|_1_a_bv | 2R K~BV]

0
R R

Figure 23 illustrates the underestimation of braking force
as V is driven toward an extreme (toward K/B), with the
result that braking is applied much too early for optimal

response. If the algorithm had been based on

R L .
VF -V + ET?E?ZEVT , the switch point would have occurred
later, at the point where R =R . , (-1 in this case),

mln

would be required to keep VF equal to the setpoint

after the switch (the basic action of the algorithn).
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The switch point will still occur slightly earlier than
the time optimal switch point, since the effective average
braking force available is something between 2|RbK-BV|
and ? RyK~-BV, |, and is thus greater than 2|RbKuBV|.

This insures a deadbeat response. The same argument
applies when the output is driven toward zero. Braking
will be applied slightly before the time optimal switch
point and the output may thus be drivenesto equilibrium
along a deadbeat trajectory. Intuitively, it would

seem that the control could be improved even further by
replacing B with some function of B, V, and VD accounting

for the effective average braking force which, as mentioned,

is slightly greater than 2|RbK-BV .

In order to retain the adaptive nature of thé control,

the unknown system parameters K and B must be expressed

in terms of measureable qucontities, .as RK was apprecximated
by V¥ in the original algorithm. This naturally results

in more complicaticn; more "memory" and computational
ability required in the controller., Using the fact

that V. = ROK—BV , both K and B can be expressed in

0
terms of R,V, and V 2t (any) two different switch points
(Appendix 6). These logically would be the values at a

current switch point and the switch point immediately
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prcceding it. The values of X and B used in the control
might also be averages of individual results obtained
in this way. VO may be approximated from V as discussed
under the first modification., A block diagram of the

controller is shown in figure 32.

Appendix 6 illusirates mathematically, the application

-

_ e kd o4 . o
of VF = V + ETizi:ﬁvr to the system g?+ ; , with results

in figure 33. The transient from .58 to zero is of
primary interest, because of the large overshoot in
figure‘241 This response (figure 33) is calculated
exactly, both for time optimal switching and for control

based on the algorithm. Note that final equilibrium is

achieved at a time only %% greater than optimal.

The effect of increased systvm damping on the control

is expected to be small, as with VF =V +

the first modification. As system damping increases,

K e writt K'CD . .
may be written as (5+C)(57Dy with C becoming

82+AS+B
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large with respect to D, and the limiting case being

=~
o

|

5 + Note that K = K'CD and B = CD both approach infinity

wn

+

as C approaches infinity and therefore V_ approaches V,

F

'
the optimal control for g+g . Appendix 6 also illustrates

o vl 4
: ) 1 = e oL TS S
the application-of Vg = V + 2R, K-BV] o TETIEn

a system very near that of figures 21 and 22. Compare
the sluggish response of figure 21 with that of figure 34.

Time to equilibrium in this case is 9% over optimal.

vl

This latest version of V Vv + ?Tﬁgirﬁvr , provides

F’

satisfactory control on all systems in the original

RK
classification (V = —s——— where A, B and K take on
ST+AS+B

arbitrary values). It is somewhat more complicated than
had been hoped for, but certainly within the realm of a
single loop controller with hardware available today.

Speed of adaptation would be dependent on the techniques

used for generation of K and B. Consideration should
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be given to providing initial values (when control goes on
line) for K and B to minimize the possibility of a large
overshoot occurring before the first determination of
these parameters. If the K and B used are averages of
several values, several large overshoote can occur before
the controller "learns'" the system. The solution might

be initial values of X = B = E, where E is a suitably
small number. The control would then progress from

overdamped to optimal.
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CONCLUSIONS

The main objective of this investigation has been met.

That is, a control algorithm providing near time optimal,

K

S A 2
82+AS+B

adaptive control, to all systems of the form

has been defined. Its application, at least within the
scope of this study, has been limited tg systems subjected
primarily to step inputs, (as many, if not most, industrial
processes are). With reference to figure %5, the constraints
on the controlled system are as follows. 1Bt Of coNrSe,

X
the system must be closely approximated by —
ST+AS+B
This expression includes the dynamic characteristics of the
actuator, so that the actuator and transmitter es depicted
here are strictly linear gain blocks. It is assumed that
maximum actuator output doeé not result in saturation
within the process, &5 long as the process is within its
normal linits and that manual inputs to the controller
limit mzximwa vaiues of R to those values which result in
maximum actuator outputs. Actuator saturation cannot
be allowed, since the value of R is used in the algorithm,

Maximum values for R, V (Transmitter gain), and V3 have

been artitrarily set at %1, although this has no particular
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significance. Practically any system to which a standard
2 or 3 mode controller had been applied would meet the

actuator-transmitter requirements with no modification.

The control algorithm itself is the modified error signal

VD - VF’ which represents the setpoint minus predicted final
output, applied to a high gain limiting amplifier to produce
controller output R. The amplifier limiss are set in
compliance with the actuator saturation constraint above.
Predicted final output VT is equal to V + 5 Al —r , Where
Rb is the available braking input (controller output).

The adaptive feature of the control is in the automatic
measurement and use of the system parameters K and B.

Using the fact that VO = RyK-BV, , K and B can be expressed
in terms of R, V, and V at (any) two different switch

points (where R makes a rapid transition from accelerating
to braking, or vice-versa). These equations may be found

in Appendix 6.

While stability problems should not be encountered with
any system within the general classification, it could be
advantageous to switch to a different control mode when

within a given distance from the setpoint. One reason
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could be noise triggering of the limitiné amplifier,
causing unnecessary "chattering" of the actuator . A
slower but less noise sensitive control mode, entered

only near equilibrium, could prevent this with no sacrifice
in speed when changing operating points. A related matter
is that while noise sensitivity increases with increased
gain in the limiting amplifier, a system with low 'dc'

gain will require high gain in the limiting amplifier to
preserve low steady state error. Another possible reason
for switching modes is that different performance

characteristics might be desired at the operating point.

The algorithm is rather complex for analog implementation,
especially since storage of the approximate system
parameters is required, however the intended application
is to single loocp control, rather than multi-loop
computer controlled systems. It is suggested that the
controller ccvuld be built economically, in volume, with
an analog to digital converter input, arithmetic unit,
several storage locations, control logic, and digital

to analog output converter, all of which is currently
available in a handful of integrated circuit chips
(consider the capabilities of the more advanced pocket
calculators). If a second control mode were desired at
equilibrium, it would be simply an addition to the control

logic.
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Regarding the extension of the algorithm to systems

K1+K2S

% =P , few applications
ST+AS+B

with lead terms, XES

S

seem likely. However, should such extension be desirable,

further work (not shown) has indicated that

)}(2 + V. oo

V., = (R o

0+ -R

O+ "0~

and that the defined control algorithm can be
used if V is modified to an equation of the form
[V—(Rb«R)K2V] [v- (ry-RIK,T]

Vo=V + where the
2 |R k- BY|

derivative term exists only when of the same sign as V.

Regarding the possible extension to third order systems,
further work (also not shown) has indicated a high
probability of limit cycles or poorly damped responses.

A third order algorithm (VF) would probably be based on
the term VV rather than VlVI, however very little effort

has been appiied to the third order case.

Less sophisticated versions of the algorithm, both adasptive
and fixed parameter, may find application to individual

control problems. In applications where a near time
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optimal control is desired, but adaptive control is not
required, the algorithm could be used as defined, but
without the automatic measurement of system parameters.
These parameters (K and B) could be measured by any
suitable method and included as fixed parameters of the
controller. Since storage would no longer be required, an
analcg implementation would again be possible, at least

in cases where derivative compensation if 3-mode control

is possible now. In any case the controller would be
considerably simpler in concept and hardware than the
adaptive form. Its advantages over conventional controllers
would be the time optimal performance and the knowledge
that optimum performance was being obtained from the
controller, a point frequently in doubt with the conventional

units.

Simpler adaptive forms of the algorithm might also find

|7]

i

2
R 9

can perform nearly as well as the most complicated version

application in many areas. The form VF =V +

of the algorithm, on systems with a free integration
or with considcrable overdrive (more input available than
is required for maximum desired output). In its simplest

application, storage of only onc guantity (VO) is required.
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Complications might involve filtering or averaging of the

VO term, filtering of V, switched modes at equilibrium, etc.

For systems requiring "instani" adaptation, one might
ikl

use the form V

R..,

2 l-—-b‘f
R

P = which does not depend on

stored values and thus reacts immediately to changes

L ]
in system parametcrs, The potential inadequacies of
this V have been detailed, however, the appeal of the

adaptation speed may override these.

If the controller was built as suggested, in digital

form with analog inputs and outputs, arithmetic unit,
storage and control logic, and irn addition was modular

in concept, any or all of the above versionshof the
algorithms cculd be implemented with modular additicns

or substitutions to the control logic and memory.
Obviously many other algorithms could he implemented with

the unit.
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Appendix |

Development of Vg for wmodel system
Ve K
R — S(s+A)

System response to imput R :
VS -VS-Va + AVS - AV, = BK

Y
= VoS +(AVe+Va)S + RK
V) S3+ AS2
- B.c . B
V) = 5+ 5t gn
_ (B+D)S?+(AB+C)S +AC
. B+D=V, , AC= RK | AB1 Q= AV, +V,

- RK
and C= el

AB=AVG+\'/°—5£-
- Yo _ RK

B= V,+ % - 5%

D= \/Q-\/Q—V-é_ +B_‘5 RX Vo

T ee——m -

AT AF A

/o RK e\ AL
B A R Y E

Solution for Vg ¢
J o RK (5 _RKY cA
V = A+<V° A)e
and when R=Ry, (t=T¢ ,

V)= B (- B AT <o
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sATF = | :
;-ﬁ&é)
U~ Rk
1 AV,
=& (- 5%
Ve =V (T5) , when Vo=V (1) \,=V@)  R=R,

Ve =V + X _ReK , RK {\—-—u— 3 2K
F 7Rk

Ve v Yy B (1 A

A ORI A

= RyK
Note that
) RK, [y _RKY SAt
\% A+(Vo A)e
oo . R -AL
V=-All-0) e
vee 2 &(- -A%
V:A(VQ"A)@
and ..
YA
A
=:’Y—
Y,
also |
- RY _V
A A
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Appendix 2
Development of Vg for model S\ds’cem
Ms) K
R(S) s=
System response to Inmput % ;
VSt -VeS -V = B8
_ R+ VS +Ve S
V = 3
= =] S _ AS*+Bs +C
V g + 'g'2+ = S3

A=V, , B= Ve ,C= RK

V) =V= \LF Vot + B_akﬁtz

i

V = V,+ RKt

V= RK

Solution for V¢ 3
when R=R, ,t=T¢ |
V(T)= V, + RyKTy =0

YA
T. =

P ORK

V= V(T¢), when Vo=V(t) V= V) R=R,

V=V VT Relt 2

-2 <2 ‘2

Rk T 2rRE K RyK  ZR,X

Vo= V- ==

\:’/2
Ve= V —
F 2R K
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Appendix 3

Development of V¢ for model system

vsS) - _ K
RES) S+ B

System response to Imput E‘g— 2

VSZ-vs-V, + By = RR

V(S) - \/oSa-{-\Q,S +RK
S® + BS

- A c D
V(S) S+3+J{§+S-J\f‘§

y= (Arc+D)s> +(JVB D -JiB C)S + AB

S
V( 93 ac
AB=RK  WBD-WBC =V, |A+C+D =V,
_ RK
B
C+ 0= V°~B—K— Q
. B
- = Mo
C+p= = @
DE N \.j°—R_K +
2h=Ver i - 0@
- = Yo, Ve _ RK
- D=2V ET 2

B
c=D-Vo _ Vo Vo _ RX
Jig ~ & 2B 29

SV = Béi+ qu_ SMVB L + (¥, - %ﬁ)cos(é (e

» - Q’ocosﬁt — E(Vo— %—)S\T\@t

V=08 VesimdBt - BV~ Si)cos @t
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Solution for Vg z
when R=R, t=Te

V(T:)= Vocos/8Te - J"(V-R"K)sm\/’"TF—O

SIT\J—TF - VO
oSBT, tonB T = Jﬁ(vg—ar%-ﬁ)
T'.:_lt = \./°

F B

R
. Jé‘(v—_b_‘i)
Ve=V(T) uhenV—V(t) V= V(%) R=R,

Ve = Re¥ 4 Y gin <‘ccrn v )5

B J8 J8 <V— R%K

Ry K \V
3 [\ = b_)cos tan!
( 8 r( R

)
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Appendix 4
Development of V¢ for wmodel system
V(s) _ a8

R(S) ~ (s+AYs+®)

V(s)= Yo S2+(\,+(A+B) Vo) S +R K
S(s+A)(s+ B)

= X Y -
A s 5+A T S5ve

v(g)= RrY+2)s? + ((A+BIX+BY+AZ)S +ABX

S(S+AY(S+B)
e XAYHZ =N, (A BIREBY +AZ =V, * (A+B) ¥, , ABX = RK
-~ RK
: AB
Z= Vo= K=Y = Vo - ?BS—

(A+B);-‘—g +BY + A~ BX _v) = 4+ (AR Y,

-AY =\ - gRK
(B-A)Y =\, + BV~ B =
.y = Yot BVe - RK/A

B-A
_ o _RK . Vot BV, -RK/A
Z=VoT pp " A-B
>= Yo tAVe - RK/B
A- 8
S V(b)) = B (Vo+BVs = RK/A) AL (Yot AVa— R /B) S8t

AB B-A A-B
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. e Ae
V(t)=V = AB+V(B l-\ ) (\/ (8 S At )
y . SAt 3Bt <At ~Bt

=V,(As_"_ Be ‘) _RK (—ABe ARG
v °( B-A A-B +<V° AB I\ B-A A-R

AeT, BReRt RK\ (AL BE"" A a®t
V=, (
<B’°‘ Pate R ABXB At A B )

Solution for Vg 1

when P\=Rb)t=‘r‘:) .
_y [AeATE gg® ABE”TF  Age ®TF) _
ik (A g TB-A ) (v° )<A B + B-A )’
R Ky B (A-®)T: e _ReK A
o= (V+A Vo= 255 ) ga © +<V°+B(V° AB)) e

A=B BV, +ABV,~ RyK

'}';___:

Ve = V(T), when V= V(1) Vo =V(t) | R=R,,
0 - ® _ "‘A
V, = ReK , (V+BV-RK/A) (AVHABV-RK) g
AB B- A BV+ ABY -~ R K
+ (V +AV-RX/E) (A\:HAB\(-R,,\_Q e%
A-B C BV ABY-RyK
voo Rk, (AVeABY-RokY 25 AVsnsv-rek (3EC
FOAB T A(B-AXBY+ABY-RK) B(A- %)
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Appendix 5
Application of Vg=V « UYL Lo the
syustern WS . .4 ZARVA
;i R(S) ~ s(5+1)

V, will be approximated as

)
A= V(T = V() where T= 28

T ’ 9

and V, 1s an average of previeusly
determined V, values.

Suppose imput V, steps from Otol |

V=.4R-4Re*t (Appendix V)
. - X 1
* \[, o A-4e 363 (R=Rmax=\.o)

2
- VARV AN
Ve = Vo =00 A+ At b4e Ty o

Vo= —1798 + 4t —.0404 &F +.e202 €2

Ve= Vp=1.0 at t=2.96, bg trial and error,
Now, during braking phase,

R= Rmm=—l.0
R il
VF"'""V F?{ZG

AVe — A v, 2V Y
”CHE"'O"V"' 726
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O =

:

S V=-363
V=- 363t +¥, =379-.363¢
V= 379t - .18[5t2 +V,

V= 804 + 379t - (8|5t2
and simce V + .4V = 4R ;

R=-9075+ .4(379-.363t)

= -756-.145%
Now V(T)=.379-.363T-=0
'.'TF= .04 3

and the total transient time =296 41.043=4003

However, for true time optimal switching,
Ve =V V= 4 In(1+\/7.4) , Trom Appendix |,
Ve=-4+4t+ .4 ste4 -4t Amis1-et)

Ve= .4t - Aln(2-et)

V=10 at t= 318 by trial and error.

Now, durmng b‘f‘o.kvng phase |

Vo= =4 +.4(3.18) + .4 &% =889

V,= .4 -.46>'% = 383

sov= B89 (383+.4)- 40 +(=4-383)€F from Appendix .
V=783-.4t-783¢"

V(T =—-4+783¢ =0

S Te=.672

and the total optmal transient 1s 318+.672=3.852
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- Vivl \J
Therefore, with Vi=V+ EYRAl ,yand V, is

approximated as \'/mw:\'/@ ywhere T=:

R
Ve
the rTesponse of the controlied system

A
S(s+1) to a unit step mput s complete

m time only 3.8% 9reater than opt‘mal.

Atl results are plotted 1m Figure 30,
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Appendix &
Aypplication of V,=V+ ZKF\!/BL\C‘BW to systems
V(S) _ K

R(S) ~ S2+AS+B

For this gemneval second order system,

V.= RK—-BY, . O
Now defme aprevious ¥, as V, .
Then ., =R_K-BV, ®
Moy =M _ 3
G V. =R K-BV, ®
i V, ¢ = YA _
kv V, = RK v R_K 0-®

K: V—t.\./c_vov-a
V. Ro- V. R,

Similarly ,

8= R_V, - RV,
V., Re— Vo R,

Far with mput Y

stepped from O to .58 .
V= I|-cos.632t

V= 632 sin.632+
V= _4cos.632t

Now consider the system

from Appendix 3

)

4 sm?. 6320
j.6 - .8cos .632¢

. Vg = I-cos.632t +
Ve = V,=.58 ot t =139 by trial and error,

If V were now dyiven to zero ly apyplicakion of
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Rymin , Final output V would he .562 at Tp= .81l .The
Switch peint chosen by V¢ Is therefore very close

to optuimal.,

Now consider an mput V, stepped from .58 to O.
V=-1+158cos .632t | from Appendix 3.

V=-~sin 632t

sSim?.e32t

. Vg = -1+ 1.58 cos.e32t — (.6-1.264C0S.632%

Ve=0 at t=72 by trial and error.
Du:r‘mg the bro.kmg) phase

=y _ V&
Ve =V 8-8Vv
8Vv-8Vv:-Vv2 =0 ®
. : - d
BV -16VV-2VYV =0 (5 0)
V= '8"2\/ = 5-125V W= Ji/1.25 = 894

S V=5 +125ACco5.8%4t +1.25 Bsim.&9%4%

V = -1[I75A s .8%4t + L1175 Bcos.8%4t
V=~ Acos.8%t —B sin.8%4t

but V,= —439 = L1758

LS. B=-.3928

and V,=.419= 541.25A

J.A= ~-.0648

SO V=.,5-.081c0%.8%4t -.43( s5(n .BY4t

V= .0724 5\n.89%4t —.439 cos .804



V=0648 cos.894t + 3928 sin.894t

and simce 4R =V 4 4V,

R=25V+v

R=.5+.081cos.894t + 49 s/n.894¢
V(Te) =.0724 s1n894T; -.439 c05.894T. =0

Sln8941—p — - .439 —

Cos 894 T, ton.8oaT, O 6.07.
894 T, = |4

Te =158

J.ototal tramsient time =72 4158 = 2.30

However, for true time optimal su\‘tchmg,
Vi

VF = !+6—3;_sm(tm1 m) +<V I)COS(tO.Y\ -6'5_2(\/le)

from Appendix3.

Ve=0 at t= .81 by trial and ervor.
During br‘akmg phase)
Vo ==1+1.58(.8719) =377

\‘/Qz -.4909

_ 4309
V=|- — s$in.632t +(.377-—l) COs.632¢
V=1l-.777 stn.¢32¢t —.623 cos.632%
\7= —.49509c¢c0s.632% +.3%94 sin.632%

V(Tp)= —. 4909¢c0s .6327T; + 394 51n.632T, =0
SM.632 T _4509

=tan.e327T = =
COs.632Te ik F 394

632T; = .895
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Jototal optimal tvransient time 15 .81 +1.41 = 2.22,

and the controllec system respomse is complete
in time 3.5 greater thon optimal.These

results are plotted in Figure 33.

4
(S+.62)(5+.58) )

as Tnput

Now consider the sgstem

Vp IS steppred from O to .58.

V= [+14,5& - (55¢ %%  from’ Appendix 4.

\VARVA
ol b omemt
Ve =V 8-72V

Ve=58 at t =28, by trial and ervor.
Durimg the braking phase,

\'/2

Ve= S8 =Vt gT ey

V2412176 V—T72VE = 464

2VV +12176V - 1,44 VV =0 (d\‘F-Feveh-t\Q-l-mg)
V:‘ !-389.\‘/ + .8456 2 ) h/'.'sgg = .848°%

& -
N = Ae‘a 85t+ Be.9485t
\'/ — _84éS(Ae‘Magt~Bé'a4sgt)
v - .72_(A Qﬁ%&st +B e—,sqsﬁ_ )

but V,=.5001 = A+ 8 + .8456
V,= 1878 = .8485(A-B)
A+ B =-3455
A-B= 2213

2A = — _\eaz | A=-.06208
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B=-3455-A= — 2834

S0, V= -.06208e®8% 555488485 4 456
V=—.05267e3%®5t | o4p5 8485t
V=-0447e385%_ 554 g 8485

and since V4 \V2V +.36V =.4R

R=25V +3V +.9V
R=—.3256e"%%t_ g43 3% | 76

W(T;) = —05267 e 3*85 Ty 240588495 TF =0

Q697 = 2405 _ 4 5
05267

T.= 8949

V. total transient time 1s 2.84+.895=3.695

However, for true timeoptimal switchimg,

T, = nE m( 15.5 v +9(V+1)

f Avppendix 4.
0% 14,5V +9(v+:))’ Tem APP

Ve =<1+ V(-25 &6t 4258 58)H(v+)(14.58 155 €75F )

V,=.58 ot t=3.12 by trial and error.
T, =.26 by trial and error.

.. totol opt\mql tronsient tywme 13 312+ .26= 3.38

Thus the controlled yesponse 1s 97 Qreater
thean optimal. These results are plotted in

Figure 34 .
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