
Rochester Institute of Technology Rochester Institute of Technology 

RIT Digital Institutional Repository RIT Digital Institutional Repository 

Theses 

4-1-2009 

Poly[4(5)-vinylimidazole]/polyvinylidene fluoride composites as Poly[4(5)-vinylimidazole]/polyvinylidene fluoride composites as 

proton exchange membranes proton exchange membranes 

Jingjing Pan 

Follow this and additional works at: https://repository.rit.edu/theses 

Recommended Citation Recommended Citation 
Pan, Jingjing, "Poly[4(5)-vinylimidazole]/polyvinylidene fluoride composites as proton exchange 
membranes" (2009). Thesis. Rochester Institute of Technology. Accessed from 

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact 
repository@rit.edu. 

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F4122&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/4122?utm_source=repository.rit.edu%2Ftheses%2F4122&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu


 

Poly[4(5)-Vinylimidazole]/Polyvinylidene Fluoride  

Composites as Proton Exchange Membranes 
 

Jingjing Pan 

April 2009 

 

 

Thesis submitted in partial fulfillment of the requirements for the  

degree of Master of Science in Chemistry. 

 

Approved: _______________________________________ 

Thomas W. Smith (Advisor) 

______________________________ 

Paul Rosenberg (Department Head) 

 

 

Department of Chemistry 

Rochester Institute of Technology 

Rochester, New York 14623-5603



 i

 

Copyright Release Form:  
 
 

INVESTIGATION OF POLY[4(5)-VINYLIMIDAZOLE] COMPOSITES 
AND THEIR POTENTIAL AS PROTON CONDUCTIVE MEMBRANES 

 
 

I, Jingjing Pan, hereby grant permission to the Wallace Memorial Library 
of Rochester Institute of Technology to reproduce my thesis in whole or in 
part. Any reproduction will not be for commercial use or profit. 

 

   

Jingjing Pan 

April, 2009 



 ii

Abstract 

In the present research, the morphology and thermal chemical characteristics of composite films 
comprised of poly(vinylidene fluoride) (PVF2) and poly[4(5)-vinylimidazole/vinylimidazolium 
trifluoromethylsulfonylimide] (PVIm/VIm+TFSI-]) were studied. In these composites, conditions such as 
choice of solvent and drying and annealing conditions can affect the crystal habit, crystallite size and 
degree of crystallinity of PVF2 as well as the distribution of the minor component, poly[4(5)-
VIm/VIm+TFSI-]. Such composites may have potential in fuel cells as high-temperature proton-
exchange membranes.  

When cast from either dimethylformamide (DMF) or dimethylacetamide (DMAC) at ambient 
temperature and dried at temperatures below 100˚C, PVF2 homopolymer films and 
PVF2//PVIm/VIm+TFSI- composite films were obtained in which the crystallites of PVF2 were β-phase. 

The films initially obtained were white, opaque films with limited strength and mechanical integrity. After 

heating to 200˚C, both the PVF2 films and the PVF2//PVIm/VIm+TFSI- films became stronger and more 

transparent.  X-ray diffraction showed that prior to heating the PVF2 homopolymer film was β-phase and 

after heating to 200˚C PVF2 was α-phase. This was also the case with the PVF2//PVIm/VIm+TFSI- 
composites. In other words, the crystalline polymorph of PVF2 in the non-heated composite films was 

identical to that of non-heated homopolymer PVF2, and the PVF2 polymorph in the heated composite films 

was identical to that of heated homopolymer PVF2 films. DSC analysis showed that the melting point of 

crystals in heated PVF2 was lower than that in the non-heated PVF2. This difference in Tm (melting 

temperature) is attributed to the fact that PVF2 β-phase crystals have a higher melting temperature than that 

of the α-phase crystals. PVF2 composites cast from DMAC have a higher onset Tc (onset crystallization 

temperature) than do PVF2 composites cast from DMF. The crystallinity of PVF2 in the heated homopolymer 

films was lower than that in the non-heated films. The percent crystallinity in the composites was variable 

and depended, to some degree on the level of TFSI.  In the composites cast from DMAC, the crystallinity is 

maximal at 15 mol% TFSI and decreases somewhat as the TFSI level is increased to 50 mol%. The 

crystallinity of PVF2 in the composites cast from DMF is minimal at 15 mol % TFSI and increases in concert 

with the TFSI level.  The intimacy of the phases in the composites was assessed by evaluating the amount of 

PVIm/VIm+TFSI- that could be extracted with ethanol/water.  It was found that, after heating, the amount 
of imidazole polymer that could be extracted dropped from about 81% to less that 16% of the imidazole 
polymer originally in the mixture.  This observation coupled with the substantial transparency of the 
heated composites, is indicative of a nanoscopic composite in which the PVIm/VIm+TFSI- phase is 
intimately mixed with the amorphous phase of the majority PVF2 component. 
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I. Introduction and Background 
Global warming is a serious environmental problem due, in large part, to increases in 

emissions of air pollutants and greenhouse gases.1  Mankind is also faced with a limited supply 

of fossil fuels and as global consumption increases environmental and economic problems are 

projected to become much worse.2   One way to solve this problem is through the use of 

alternative fuels.  Hydrocarbon-powered combustion engines can be replaced by proton 

exchange membrane fuel cells, which use hydrogen as a fuel and emit only water.  Since 

hydrogen can be obtained by electrolysis of water, fuel cells can be a clean energy alternative to 

the above problems. 

A. The proton exchange membrane fuel cell 

A fuel cell is an electrochemical device that converts chemical energy stored in hydrogen 

or gasoline into electricity.  In 1839, the Welsh scientist Sir William Robert Grove3 developed 

the first fuel cell, the “gas voltaic battery”, which combined hydrogen and oxygen and produced 

electric energy. He is known as the “Father of the Fuel Cell”.  A proton-exchange fuel cell 

consists of two catalytic electrodes (an anode and a cathode), separated by a hydrogen ion 

selective electrolyte, and connected by a wire to complete the electrical circuit. An illustration of 

a typical fuel cell is shown in Figure 1. 

 

Figure 1. Illustration of a PEM fuel cell4 
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At the anode, hydrogen is oxidized to produce protons and electrons. The oxidation reaction is 

promoted by a platinum catalyst embedded in the anode. 

Oxidation at anode: H2  2H+ + 2e- 

The H+ ions pass through the electrolyte membrane to the cathode where oxygen is reduced and 

combined with H+ to produce water. 

Reduction at cathode: ½ O2 + 2H+ + 2e-  H2O 

Protons permeate through the ion selective membrane and electrons produced at the anode are 

transported via an external circuit. 

Overall cell reaction: H2+ 1/2O2  H2O 

Common types of fuel cells include polymer electrolyte membrane fuel cells (PEMFC), 

direct methanol fuel cells (DMFC), alkali fuel cells (AFC), phosphoric acid fuel cell (PAFC), 

solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC).5 The PEMFC uses a solid 

polymer membrane as an electrolyte and uses platinum as a catalyst. It usually operates at low 

temperature (60-100˚C). Hydrogen gas is the main source of hydrogen fuel. Platinum catalysts 

are expensive and poisoned easily by CO from hydrocarbon fuels. The DMFC uses liquid 

methanol fuel instead of hydrogen. It operates at slightly higher temperature (50-120˚C). Small 

mobile power applications such as laptops and cell phones use DMFC, but current limitations 

such as membrane corrosion and fuel crossover must be addressed. The PAFC uses liquid 

phosphoric acid as an electrolyte with a platinum catalyst. It usually operates at high temperature 

(150-200˚C) and is tolerant to impurities. Typically it is used for medium to large scale 

stationary power generation. The AFC uses hydrogen gas as a fuel. It operates in an electrolyte 

solution of potassium hydroxide. The operating temperature is 23-250˚C with a variety of metal 

catalysts. But the AFCs are subject to CO poisoning. The SOFC uses a solid ceramic electrolyte 

and operates at 800-1000˚C. It is tolerant to CO poisoning. The MCFC uses a molten alkali 

carbonate mixture for an electrolyte and can operate at 600-750˚C. Both SOFC and MCFC have 

limitations including slow start up and the requirement of durable materials for high temperature6. 

A proton exchange membrane (PEM) is semipermeable, allowing protons to pass through 

while being impermeable to molecules of oxygen and hydrogen gas. PEMs may be single 
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component or composite (multi-component) polymer membranes in which one component is a 

strong acid ionomer. The PEM is used to separate the two catalytic reactions, oxidation of 

hydrogen at the anode and reduction of oxygen at the cathode while simultaneously allowing 

protons to pass through as electricity is generated. 

The benchmark materials for PEMs are perfluorinated ionomer membranes typified by 

DuPont’s Nafion®. This compound was discovered in the late 1960’s by Walther Grot at 

Dupont 7  and is one of the most common and commercially available materials for PEM. 

Nafion® is a sulfonated tetrafluorethylene copolymer and has a perfluoroethylene backbone with 

a sulfonated perfluoroether side chains. A representative structure for Nafion® is shown in 

Figure 2. 
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Figure 2. Structure of Nafion 

The tetrafluoroethylene backbone provides excellent thermal, mechanical, and 

chemical/oxidative stability while the sulfonic acid group provides the functionality for proton 

conductivity. Because of its superior ion mobility and chemical and thermal stability, Nafion® 

has found widespread application in fuel cells and in chlor-alkali production. It is reported that 

the proton conductivity of these perfluorosulfonic acid polymer membranes with thicknesses of 

25 to 175 μm at 80°C and 100% relative humidity (RH) is on the order of 10-1 Scm-1.8 

Kreuer studied the microstructure of perfluorosulfonic polymers and noticed some rather 

interesting properties that these materials possess. He reported that proton conductivity strongly 

increases when the concentration of absorbed water increases. The transport of protons and water 

is related to the microstructure and water content of the Nafion® membrane. When Nafion® is 

hydrated, the sulfonic acid functional groups ionize and aggregate to form hydrophilic domains 
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through which protons and water can be transported. The hydrophobic backbone provides for 

chemical and thermal stability, and being insoluble in water maintains the structure and integrity 

of the membrane. Figure 3 depicts architectural components of the Nafion® membrane. 

 

 

Figure 3. Architectural Elements of Nafion®9  

 

Because of their excellent proton conductivity and mechanical strength, sulfonic acid 

membranes of varying kind have been extensively studied as PEMs.  Sulfonated aromatic 

polymers that have been employed include poly(etheretherketone) (PEEK) and poly(ether ketone) 

(PEK). Figure 4 shows the relative conductivity of a variety of materials in which the 

temperature dependence of proton conductivity has been studied. One can see that sulfonated 

polymers like Nafion®, exhibit high proton conductivity, above 10-1 Scm-1, at temperature below 

100˚C. The benzimidazole/H3PO4 liquid membrane exhibits high proton conductivity at high 

temperature but below the level of 1x10-1 Scm-1 provided by the hydrated sulfonic aid polymers. 

Figure 4 also shows the temperature dependence of proton conductivity in a variety of 

ethoxylated imidazole oligomers and a composite of sulfonated PEEKK + imidazole that Kreuer 

et al have explored because of their potential as models for membranes that might function at a 

temperature in excess of 100˚C and low relative humidity. 
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Figure 4. Proton conductivity of different fully hydrated 
acidic polymers, the liquid benzimidazole/H3PO4 system, 
and ethoxylated imidazole oligomers 10 

Despite its position as the benchmark PEM, Nafion® does have limitations. First, the 

proton conductivity is strongly dependant on the relative humidity. When the operating 

temperature is above 100°C, water is driven out of the system and this causes proton 

conductivity to drop dramatically.  Second, fluorosulfonic acid PEMs are expensive, typically 

adding thousands of dollars to the cost of a PEMFC-powered car9. Third, methanol crossover 

limits the performance and utility of fluorosulfonic acid PEMs in direct-methanol fuel cells. 

Therefore, new cost-effective, methanol-compatible PEM materials are needed in which a high 

level of proton conductivity is maintained at elevated temperatures and low relative humidities. 

The proposition by Kreuer et al of the potential utility of polymer membranes containing 

the imidazole functionality as an option in meeting the high-temperature membrane problem 

continues to be of interest. Liquid imidazolium salts and small molecule imidazole derivatives 

are not suitable, in themselves, as membranes in electrochemical devices because they are liquid 

and mobile.  In 1997, Fuller and coworkers studied ionic liquid-polymer gel electrolytes and 

described ionic liquid/PVF2 composites that are nonvolatile and are thermally stable. They 
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developed rubbery gel electrolytes that use ionic liquids and poly(vinylidene 

fluoride/hexafluoropropylene) copolymer, PVF2/(HFP), and found that the ionic liquid-

PVF2(HFP) gels are freestanding and flexible and have conductivity levels between 1.1 and 5.8 

mS/cm at room temperature. Since the ionic liquids and the PVF2(HFP) are nonvolatile and 

thermally stable at temperatures up to 200°C, the gel can be operated successfully without 

degradation 11 . Thus, it was demonstrated that robust ion conductive membranes might be 

fabricated using PVF2 as the host for ionic liquid salts. 

B. PVF2 and related copolymers 
Polyvinylidene fluoride (PVF2) is a semi-crystalline polymer with a relatively low melting 

point (160 - 170˚C), high purity, high mechanical strength. Like other fluoropolymers, it is 

substantially inert and it is resistant to most chemicals, solvents, weathering conditions, and high 

temperatures. Moreover, is easily purified, lower cost than fluorosulfonic acid polymers, and 

easy to process from solution or from a melt. PVF2 is widely used in the chemical process 

industry12 and in semiconductors,13 wire and cables,14 piping15 and lithium batteries.16 

An important property of PVF2 is that it is ferroelectric.17 When it is heated, subjected to an 

electric field to orient its molecular dipoles, and then cooled and allowed to recrystallize in the 

presence of an applied electric field, piezoelectric properties are induced within this material.  Its 

glass transition temperature (Tg) is about -35°C; the material has a crystallinity of 50-60%.18  In 

the crystalline state PVF2 can arrange into at least three types of molecular conformations, 

TGTG, TTTT, and TTTGTTTG. Figure 5 illustrates theses conformers. 

 
Figure 5. Conformers of PVF2 19 
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Four crystalline modifications of PVF2 are known: α, β, γ, and δ. In Figure 6, form I 

represents β type PVF2, form II & IIp represent α and δ type, and form III represents γ type  

crystalline PVF2. Crystal form I is generally prepared by stretching this material at room 

temperature. Form II is obtained by cooling from the melt at a moderate rate (e.g., 10-20°C/min 

or higher). The spherulites of Form III are obtained by slow cooling from the melt. 

 

Figure 6. Crystal structure of four crystalline modifications of PVF2
19 

PVF2 is most often obtained as the alpha-phase material. The piezeoelectrically active form 

is the β-phase material. Copolymers of PVF2 are typically less polar than pure PVF2. 

Because of the many favorable properties that PVF2 possesses, the current work explores 

the use of this material (Kynar®301) and two copolymers thereof (Kynar®2801 and 

Kynar®7201) for use in the preparation of PVF2/poly[(4(5)-VIm/VIm+TFSI-] composite films. 
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The structure of these polymers is depicted in Figure 7, below. 

Kynar®301 
Poly(vinylidene fluoride) 

CF2  CH2 
n  

Kynar®2801 
Copoly(vinylidene fluoride/hexafluoropropylene) 

CH2 CF2 CF2 CF2

CF3

n m

 

Kynar®7201 
Copoly(vinylidene fluoride/tetrafluorethylene) 

n m
CF2 CF2 CF2  CH2 

 

Figure 7. Structures of PVF2 and PVF2 copolymers 

C. Imidazole polymer systems 

Given that the present research is concerned with the use of imidazole containing polymers, 

this section gives a broad review of the literature on the use of the imidazole system as vehicle 

for proton exchange. 

Imidazole is an aromatic heterocycle whose structure is shown in Figure 8.  Kreuer et al.20 

were the first to propose that imidazole might be useful as a substitute for water at higher 

temperatures (150°C-250°C) in proton exchange fuel cell membranes. 
N

N

H  

Figure 8. Molecular structure of 4(5)-vinylimidazole 
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Imidazole is an amphoteric base with a pKa of 7 and, like water, can undergo autoprotolysis. 

It is a bidentate nucleophilic base that is strongly hydrogen bonded and can support proton 

transfer by the Grötthus mechanism21 , 22  in which a concerted transfer of protons proceeds 

through a proximate chain of hydrogen-bonded molecules as shown in Figure 10. 

O

H

H

O

H

H
O

H

H

O

H

H
O

H H

H
+

 

Figure 9. Grötthus mechanism of proton transport through water molecules 

Water can transport protons by a Grötthus mechanism as shown in Figure 9. As reported by 

Kreuer, H-bonded sequences of imidazole molecules can also transport protons via this 

mechanism. The mechanism of movement of an excess proton though a sequence imidazole 

moieties by a Grötthus process is shown in Figure 10. 

N
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HH
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N
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Figure 10. Grötthus mechanism of proton transport through imidazole molecules 

The molecular weight of water is low and, in comparison to imidazole, its volatility is high, 

particularly at the temperatures encountered in fuel cell membranes. Kreuer employed 

imidazoles with flexible polyether tethers to study the contribution of proton mobility, proton 

transfer between imidazoles, and diffusion to proton transport. Scharfenberger, Kreuer and 

coworkers 23  synthesized proton-conducting imidazole polymers tethered to a polysiloxane 

backbone via flexible alky side-chains (spacer) and studied their utility as proton transporting 

media. Cyclic oligomers and open chain polysiloxanes with tethered imidazole moieties were 

also examined as proton solvents. They found that the polymers with the longest tethers had the 

highest proton conductivities. Furthermore, they reported that polymers with siloxane backbones 

were flexible and had a small repeat unit which can allow for high side-chain density. The 
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polysiloxanes and cyclic oligomers were stable up to at least 200°C and had a relatively high 

proton conductivity of around 1.5 x 10-3 Scm-1 at 160°C. Samples with long tethers have the 

lowest glass transition temperatures.  

In related work, Pu, Meyer and Wegner studied the proton conductivity of poly[4(5)-

vinylimidazole] blended with H3PO4 and H2SO4.
24 When the polymer was 100% protonated, the 

conductivity was characteristic of the acid itself.  Furthermore, as can be seen in Figure 11, the 

conductivity of the blends increased as the temperature was increased. The level of conductivity 

when the molar ratio of acid to imidazole is high (X = 1.0 – 2.0) is 4-5 orders of magnitude 

greater than when the polymer is only fractionally protonated. In other words, poly[4(5)-VIm] 

doped with high levels of acid are essentially behaving as H3PO4or H2SO4 membranes. Pu and 

coworkers therefore postulated that proton conductivity in these blends could result from both 

proton hopping and polymer segmental movement. As the temperature approached and exceeded 

the glass transition temperature, segmental motion of the polymer increased, resulting in better 

conductivity. They also found that the conductivity of poly[4(5)-vinylimidazole] protonated with 

H2SO4 was higher than that of poly[4(5)-vinylimidazole] protonated with H3PO4. This was 

ostensibly because H2SO4 is a stronger acid than H3PO4.  

 

Figure 11. Temperature dependence of DC conductivity 
of poly[4(5)-vinylimidazole] blended with H3PO4 at 
various molar concentration ratios, X.24 
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Bozkurt and coworkers25 also investigated the proton conductivity in poly(4-vinylimidazole) 

protonated with phosphoric acid. The number of moles of phosphoric acid per poly(4-

vinylimidazole) repeat unit was varied between X = 0 and 2. They reported that blends are 

thermally stable up to 150°C and that their glass transition temperature is reduced as the molar 

concentration of phosphoric acid is increased. The conductivity reaches about 10-4 S/cm for the 

blends with 2 moles of phosphoric acid per poly(4-vinylimidazole) repeat unit. Figure 12 shows 

the log σ versus 1000/T for the two blends of poly(4-vinylimidazole) with H3PO4 and the pure 

polymer. The conductivity is lower in the pure polymer than that in the two blends with H3PO4. 

As the acid content is increased, the mechanism of proton transport is reported to change from 

Grötthus transport to proton movement through free acid with poly(4-vinylimidazole) merely 

serving as a support that is plastized by H3PO4 (a H3PO4 membrane in its essence).   The authors 

of this work suggest that this change occurs because proton transfer between the phosphate units 

predominates when phosphoric acid has been added to the polymer. 

 
Figure 12. Temperature dependence of DC conductivities of 
poly(4-vinylimidazole) and the  poly(4-vinylimidazole)–x H3PO4 
blends 25 

Meilin Liu and coworkers 26  have studied triazole-containing PEMs. 1,2,3-triazole like 

imidazole is a multi-dentate nitrogen heterocycle that can potentially support proton transport by 

a Grötthus  mechanism. The pKa of the amine hydrogens in 1,2,3-triazole are pKa1= 1.17, pKa2 = 

9.26. The triazole is a stronger acid, in itself, than is imidazole. Given this greater acidity proton 

transport in neutral 1H-1,2,3-triazole could be expected to be significantly greater than that in 

neutral imidazole. Indeed, Liu found that 1H-1,2,3-triazole has a higher proton conductivity than 
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poly(4-vinylimidazole). The comparison of the conductivities between poly(4-vinyl-1H-1,2,3-

triazole) and poly(4-vinylimidazole) is shown in Figure 13.  

 
Figure 13. Proton conductivity of poly(4-vinyl-1H-1,2,3-triazole) 
and poly(4-vinylimidazole)26 

In studies by Martinelli and coworkers 27 , the physical properties of potential proton 

conducting membranes based on protic ionic liquids (ILs) were investigated as a function of 

IL/polymer ratios and temperature. The ionic liquid, N-ethylimidazolium 

bis(trifluoromethanesulfonyl)imide, EImTFSI, was incorporated into a matrix based on a 

poly(vinylidene fluoride) (PVF2) copolymer. They found that the thermomechanical stability of 

the membranes was increased with increasing polymer content; however, conductivity decreased 

concomitantly, due to changes in the morphology of the membrane and interactions between the 

polymer matrix and the ionic liquid. They found the starting polymer matrix, PVF2, has, 

predominantly, the polar crystalline structure, form III which is characterized by the polar TTTG- 

sequence in the unit cell of PVF2. When temperature was increased but kept below the melting 

point of the membrane, crystalline form III was transformed to an amorphous phase.  Increasing 

polymer content increases the glass transition temperature of the amorphous ionic liquid/PVF2 

phase in the membrane and has a subtle impact on the temperature dependence of the 

conductivity, presumably, due to geometrical confinement of the ionic liquid in the polymer 

matrix.  Figure 14, displays the ionic conductivity of the three membranes and of the pure ionic 

liquid as a function of temperature. The inset shows the concentration dependence of the 

conductivity at room temperature.  
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Figure 14. Ionic conductivity of PVF2/EIm+TFSI-composite membranes27 

In similar work, Fernicola and coworkers28 showed that proton-conducting membranes, 

formed by incorporating Brønsted acid-base ionic liquids (ethylmethylimidazolium, 

methylimidazolium and methylpyrrolidinium) in a poly(vinylidenefluoride-co-

hexafluoropropylene)  polymer matrix, exhibit high thermally stability. However, the release of 

the ionic liquid (IL) component affects the long-term stability of the membranes. The authors 

proposed that the stability might be improved by incorporating ceramic fillers in the PVF2/ionic 

liquid composites.   

Masayoshi Watanabe and coworkers 29  characterized the ionic conductivity and proton 

conductivity under anhydrous conditions of a system comprised of imidazole (Im) and 

bis(trifluoromethanesulfonyl)imide (HTFSI) at various molar ratios of Im to HTFSI.  High 

proton conductivity was observed in ionic liquid compositions comprised of imidazole that was 

fractionally protonated with HTFSI. The proton conductivity increased dramatically with 

increasing levels of HTFSI up to a mole fraction of about 0.1 and then decreased steadily as the 

mole fraction of HTFSI is increased beyond this point (See Figure 15). Direct current 

polarization measurements were employed to confirm proton conduction. Self-diffusion 

coefficients, measured by pulsed-gradient spin-echo NMR methods, indicated that fast proton 

exchange reactions between protonated imidazole cations and unprotonated imidazole molecules 

took place in the presence of excess imidazole. The process of proton conduction was assumed to 
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be a combination of Grötthus - and vehicle-type mechanisms. In the latter case movement of 

H3O+ is responsible for proton conduction. 

 
Figure 15. Ionic conductivity as a function of the mole fraction of 
imidazole (Im) in Im/bis(trifluoromethanesulfonyl)imide (HTFSI) 
mixtures 29 

D. Poly[4(5)-vinylimidazole] 

Poly[4(5)-vinylimidazole], shown in Figure 16, exhibits close proximity and high volume 

density of imidazole groups.  Accordingly, one might expect that proton conductivity by a 

Grötthus mechanism might be maximized in this polymer. 

 

Figure 16. Poly[4(5)-vinylimidazole] 

Films of poly[4(5)-vinylimidazole] are however brittle and difficult to fabricate as free-

standing films. Moreover, poly[4(5)-VIm] is not stable to the chemical/oxidative environment of 
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an operating PEMFC. Wu and Smith30 have mitigated these problems with the development of a 

new process for preparation of nanostructured composites of PVF2 with PVIm/Im+TFSI-. 

E. The work of Jinghang Wu 

Wu formulated, fabricated and characterized PVF2/poly[4(5)-vinylimidazole/imidazolium 

trifluoromethylsulfonylimide] composite films.  In order to prepare composites of poly[4(5)-

vinylimidazole] with PVF2, it is necessary to dissolve the two polymers in a common solvent.  

However, given the solubility characteristics of poly[4(5)-vinylimidazole] this could not be 

achieved.  Wu and Smith30 discovered that fractional and full protonation with trifluoromethyl 

sulfonylimide enabled the preparation of homogeneous solutions of PVF2 and poly[4(5)-

VIm/VIm+TFSI-] in dimethylformamide.  Given this discovery, Wu dissolved poly[4(5)-

vinylimidazole] protonated with 50 mol% TFSI and poly(vinylidene fluoride)], PVF2 in 

dimethylformamide (DMF) and cast films from these solutions. Films were dried and heat 

treated under differing conditions to obtain composites which were believed to have different 

PVF2 crystallite sizes and morphologies.  Composite films were prepared in which the ratio of 

Kynar® 301 PVF2: PVIm was 3:1, 4:1 and 8:1, respectively. Wu also characterized the 

composite films by differential scanning calorimetry (DSC). His DSC thermograms displayed 

melting endotherms for PVF2 in the 3/1, 4/1 and 8/1 composites at about 169 °C and a 

recrystallization exotherm peaking at about 125 °C. The melting and recrystallization 

temperatures of PVF2 in the composites were analogous to those of pure PVF2. The glass 

transition temperature of poly[4(5)-VIm] complexed with 50 mol% TFSI- was -30°C. The 

composite films doped with benzoyl peroxide (BPO) had more crystallinity than films without 

BPO.  Incorporation of BPO apparently caused the % crystallinity of the 3/1 and 4/1 composite 

films to increase slightly and the crystallinity of the 8/1 composite films to increase substantially. 

Polarized optical microscopy was carried out to observe crystals in the composite films. Using a 

hot-stage on the microscope it was observed that PVF2 crystals were molten at 200°C, revealing 

a dark field from amorphous poly[4(5)-VIm/VIm+TFSI-] phase. The background field became 

brighter when cooling to ambient temperature. Thermogravimetric analysis (TGA) established 

that the decomposition temperature of poly[4(5)-VIm/VIm+TFSI-] is 300°C and the temperature 

of decomposition of PVF2 is 450°C.  In addition, proton conductivity was measured at 80°C.  

The conductivity of the 4/1 PVF2/poly[(4(5)-VIm/VIm+TFSI-] was slightly greater than that of the 
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3/1 composite film; the 8/1 composite film did not show any proton conductivity. Wu reported that 

at 80% relative humidity, conductivity of 0.05 S/cm, approaching that exhibited by Nafion® 112 

(0.18 S/cm), was realized in a 4/1, PVF2/poly[4(5)-VIm/VIm+TFSI-] composite film. 

Based on the background information and Wu’s work, described above, 

PVF2//PVIm/Im+TFSI-(4/1)v composites were fabricated in which the mol% of TFSI was 15, 25, 

35 and 50 mol%. In Wu’s work, the crystal habit of the PVF2 in the heated and non-heated films 

was not determined, and only one level of TFSI (50 mol%) was evaluated. In the present 

research, the crystal habit of PVF2 and the morphology of PVF2//PVIm/Im+TFSI- composites 

were studied by X-ray diffraction, DSC and solvent extraction. 
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II. Experimental  

A. Materials 

Urocanic acid (99%), dibenzoyl peroxide (BPO), and ammonium persulfate (98%) 

were obtained from Acros Organics.  Trifluoromethanesulfonylimide (TFSI) (95%), N,N’-

dimethylformamide (DMF) (99.8%),  dimethylacetamide  (DMAC), azobisisobutyronitrile 

(AIBN), 4,4-azobis(4-cyano valeric acid) (75%) were purchased from Sigma-Aldrich, Inc.. 

Benzene was purchased from EMD Chemicals Inc.  Methanol was purchased from J.T. Baker. 

Ethyl alcohol (absolute anhydrous) was purchased through VWR, Bridgeport, NJ. Kynar® 

301F poly(vinylidene fluoride), Kynar® 2801F copoly(vinylidene fluoride), Kynar® 7201F 

copoly(vinylidene fluoride) were obtained from Atochem North America, Inc. 

B. Synthesis of 4(5)-vinylimidazole 
4(5)-vinylimidazole was synthesized by decarboxylation of urocanic acid in 

accordance with the procedure published in Macromolecular Synthesis by Overberger et 

al.31 Thus, 5 grams of anhydrous urocanic acid was placed into a short path distillation 

apparatus which was then immersed in a 230°C oil bath to effect decarboxylation of 

urocanic acid. The resulting 4(5)-vinylimidazole was refluxed under vacuum over a 

period of about four and a half hours. The crude 4(5)-vinylimidazole that was obtained 

was placed in a refrigerator overnight, and then held at room temperature for two hours to 

cause recrystallization. The purification of crude 4(5)-vinylimidazole was done by 

sublimation. Typically, 2 grams of 4(5)-vinylimidazole was placed in a sublimator, which 

was then immersed in a 70°C oil bath under a vacuum of (~0.5 x 10-3 torr). Over a period 

of about 4 hours pure white crystals formed on the cold finger of the sublimator. The 

yield of pure 4(5)-vinylimidazole was 1.63 grams (81%). 

C. Synthesis of Poly4(5)-vinylimidazole 

1) Polymerization of 4(5)-vinylimidazole in benzene solution initiated by   
azobisisobutylnitrile(AIBN)  

Sublimed 4(5)-vinyl imidazole (1.5 g) and azobisisobutylnitrile (AIBN; 0.048 g) 

were dissolved in 10 ml benzene and placed into a pressure tube. The solution was 

purged with argon for 30 minutes and the pressure tube was capped with a crown cap. 

The tube was immersed in a 60°C water bath and held at this temperature for at least 24 

hours. As the polymer formed, it precipitated out of solution because of its insolubility in 
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benzene. After the polymerization was completed, the tube was opened and benzene was 

decanted. Poly[4(5)-vinylimidazole], wet with benzene, was dissolved in methanol. 

Hexane was added to this methanol solution until the solution turned cloudy, and then a 

drop of methanol was added to clear the solution. This solution was added dropwise to a 

~200 ml of acetone under constant stirring. The polymer was isolated by centrifugation. 

A yield of 1.57 g was obtained after drying at ambient temperature. Given that mass was 

in excess of 1.5g it is assumed that this polymer was not fully dried. 

2) Polymerization of 4(5)-vinylimidazole in ethanol/water solution initiated by  
4,4-azobis(4-cyanovaleric acid)  

Sublimed 4(5)-vinyl imidazole (2 g) and recrystallized 4,4-azobis(4-cyanovaleric 

acid) (0.2 g) in 10ml ethanol/6ml distilled water were added to a pressure tube. The 

pressure tube was purged with argon gas for 30 minutes and then the tube was capped 

and immersed overnight in a 65°C water bath. After the polymerization, the tube was 

opened and the polymer solution appeared clear and viscous. Poly[4(5)-vinylimidazole] 

was precipitated from acetone by adding a few drops of hexane was added to the polymer 

solution. Poly[4(5)-vinylimidazole] (1.60 g) was collected by filtration and air-dried 

overnight. 

D. PVF2 Stock Solutions 

1M trifluoromethylsulfonylimide (TFSI) stock solutions in DMF and DMAC were 

respectively prepared by diluting 2.67 grams of TFSI to 10 ml in a volumetric flask to 

volume. Solutions of Kynar®301F, Kynar®2801, and Kynar®7201 in DMF (15% 

polymer w/v) were simply prepared by dissolution of polymer (2 g) in 13.5 mL of solvent. 

Solutions of poly[4(5)-VIm/VIm+TFSI-], (Kynar®301F), and (Kynar®2801F in DMF 

(20% polymer w/v) were prepared by dissolving 30 grams of polymer in 140 ml of 

solvent. Solutions of Kynar®301F and Kynar®2801F in DMAC (15% polymer w/v) 

were prepared by dissolving 2 grams of polymer in 13.5 ml of solvent. Solutions of 

Kynar®301F and Kynar®2801F in formamide (20% polymer w/v) were prepared by 

dissolving 30 grams of PVF2 into 140 ml of solvent. 
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E. Poly[4(5)-vinylimidazole] solutions protonated with various mol% of 
trifluoromethylsulfonylimide (TFSI) in DMF 

1) Solution of poly[4(5)-vinylimidazole] in DMF (15% polymer w/v) protonated with  
15 mol% TFSI 

Poly[4(5)-vinylimidazole] (Experimental Section IIC2) (1.0 grams (0.01 mol)) 

was charged to a disposable test tube. 0.42g (0.0015 mol) of TFSI was added to the test 

tube along with 8.05 ml DMAC to yield a homogeneous solution of poly[4(5)-

vinylimidazole/imidazolium TFSI] (0.85/0.15)M. 

2) Solution of poly[4(5)-vinylimidazole] in DMF (15% polymer w/v  protonated with  
25 mol% TFSI 

The above 15 weight% poly[4(5)-vinylimidazole] solution, 0.5 ml, doped with 15 

mol% TFSI was charged to a disposable test tube and 0.0108g of TFSI was added to 

yield a homogeneous solution of poly[4(5)-vinylimidazole/imidazolium TFSI] 

(0.75/0.25)M. 

3) Solution of poly[4(5)-vinylimidazole] in DMF(15% polymer w/v) protonated with 
35 mol% TFSI 

The above 15 weight% poly[4(5)-vinylimidazole] solution, 0.5 mL, doped with 

15 mol% TFSI was charged to a disposable test tube. 0.0255g of TFSI was added to the 

test tube to yield a homogeneous solution of poly[4(5)-vinylimidazole/imidazolium TFSI] 

(0.65/0.35)M. 

4) Solution of poly[4(5)-vinylimidazole] in DMF (15% polymer w/v) protonated with 
50 mol% TFSI 

The above 15 weight% poly[4(5)-vinylimidazole] solution, 0.5mL, doped with 15 

mol% TFSI was charged to a disposable test tube. 0.04755g of TFSI was added to the test 

tube to yield a homogeneous solution of poly[4(5)-vinylimidazole/imidazolium TFSI] 

(0.5/0.5)M. 

F. Poly[4(5)-vinylimidazole] solutions protonated with various mol% 
trifluoromethylsulfonylimide (TFSI) in DMAC 

1) Solution of poly[4(5)-vinylimidazole] in DMF (15% polymer w/v) protonated with 
15 mol% TFSI 

Poly[4(5)-vinylimidazole] (Experimental Section IIC2) (1.0 grams (0.01 mol)) 

was charged to a disposable test tube. 0.42g (0.0015 mol) of TFSI was added to the test 
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tube along with 8.05 ml DMAC to yield a homogeneous solution of poly[4(5)-

vinylimidazole/imidazolium] (0.85/0.15)M. 

2) Solution of poly[4(5)-vinylimidazole] in DMF (15% polymer w/v  protonated with 
25 mol% TFSI 

The above 15 weight% poly[4(5)-vinylimidazole] solution, 0.5 mL, doped with 

15 mol% TFSI was charged to a disposable test tube. 0.0108g of TFSI was added to the 

test tube to yield a homogeneous solution of poly[4(5)-vinylimidazole/imidazolium TFSI] 

(0.75/0.25)M. 

3) Solution of poly[4(5)-vinylimidazole] in DMF(15% polymer w/v) protonated with 
35 mol% TFSI 

The above 15 weight% poly[4(5)-vinylimidazole] solution, 0.5 mL, doped with 

15 mol% TFSI was charged to a disposable test tube. 0.0255g of TFSI was added to the 

test tube to yield a homogeneous solution of poly[4(5)-vinylimidazole/imidazolium TFSI] 

(0.65/0.35)M. 

4) Solution of poly[4(5)-vinylimidazole] in DMF (15% polymer w/v) protonated with 
50 mol% TFSI 

The above 15 weight% poly[4(5)-vinylimidazole] solution, 0.5mL, doped with 15 

mol% TFSI was charged to a disposable test tube. 0.04755g of TFSI was added to the test 

tube to yield a homogeneous solution of poly[4(5)-vinylimidazole/imidazolium TFSI] 

(0.5/0.5)M. 

G. PVF2(Kynar®301F) /poly[(4(5)-VIm/VIm+TFSI-](4/1)V composite films from DMF  

1) PVF2(Kynar®301F)/poly[(4(5)-VIm/VIm+TFSI-(0.85/0.15)M](4/1)V composite films  

Four parts by volume of a 15 weight% solution of PVF2 (Kynar®301F) in DMF 

were mixed with one part by volume of a 15 weight% solution of [poly 4(5)-

vinylimidazole/imidazolium TFSI](0.85/0.15)M in DMF . The mixed solution was cast 

into films on a 25 x 75 mm glass plate mounted on a perforated vacuum drawdown table 

which was covered with a sheet of 1024 bond paper. The gap of an adjustable drawdown 

wedge was set at 27 mil. After the film was dried at room temperature overnight, it was 

heated at 100°C for one hour to yield an opaque white film. This process was repeated to 

prepare several films. Two dried films were heated on a hot plate at 200 °C for 5 minutes 

under argon to yield films with increased transparency. 
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2) PVF2(Kynar®301F)/poly[(4(5)-VIm/VIm+TFSI](4/1)V composite films doped with 
TFSI at 25, 35 and 50 mol%  

The above process was repeated to prepare [poly4(5)-vinylimidazole/ imidazolium-

TFSI](0.75/0.25)M, [poly4(5)-vinylimidazole/imidazolium-TFSI](0.65/0.35)M and 

[poly4(5)-vinylimidazole/imidazolium TFSI](0.5/0.5)M composite films. Films of the 

above compositions were prepared by a procedure analogous to that used to prepare the 

PVF2//PVIm/Im+ composites containing [poly4(5)-vinylimidazole/imidazolium 

TFSI](0.85/0.15)M. 

H. PVF2(Kynar®301F)/poly[(4(5)-VIm/VIm+TFSI-](4/1)V composite films from DMAC 

1) PVF2(Kynar®301F)/poly[(4(5)-VIm/VIm+TFSI-(0.85/0.15)M](4/1)V composite films  

Four parts by volume of a 15 weight% solution of PVF2 (Kynar®301F) in DMAC 

were mixed with one part by volume of a 15 weight% solution of [poly 4(5)-

vinylimidazole/imidazolium TFSI] (0.85/0.15)M in DMAC. The mixed solution was cast 

into films on a 25 x 75 mm glass plate mounted on a perforated vacuum drawdown table 

which was covered with a sheet of 1024 bond paper. The gap of an adjustable drawdown 

wedge was set at 27 mil. After the film was dried at room temperature overnight, it was 

heated at 100°C for one hour to yield an opaque white film. This process was repeated to 

prepare several films. Two dried films were heated on a hot plate at 200°C for 5 minutes 

under argon to yield films with increased transparency. 

2) PVF2(Kynar®301F)/poly[(4(5)-VIm/VIm+TFSI](4/1)V composite films doped with 
TFSI at 25, 35 and 50 mol%  

The above process was repeated to prepare [poly4(5)-vinylimidazole / 

imidazolium TFSI](0.75/0.25)M, [poly4(5)-vinylimidazole / imidazolium 

TFSI](0.65/0.35)M and [poly4(5)-vinylimidazole/imidazolium TFSI](0.5/0.5)M composite 

films. Films of the above compositions were prepared by an analogue procedure to that 

used to prepare the (4/1) with 10 mol% TFSI composite. 

3)  PVF2(Kynar®2801F)/poly[(4(5)-VIm/VIm+TFSI-(15, 25, 35, 50mol% TFSI](4/1)V 
composite films from DMAC 

Films with various levels of protonation of PVIm with TFSI (15, 25, 35 and 50 

mol%) were prepared. PVF2 (Kynar®2801F) in DMAC solution was added to the various 

PVIm/Im+TFSI- DMAC solutions, respectively. The volume ratio of PVF2 and 
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PVIm/Im+TFSI- was 4 to1. After all the composite films were cast, they were annealed on 

the hot plate in a glove box filled with Ar gas.  The annealing procedure is given below. 

It took 30 minutes for the hot plate to heat up to the desired temperature. The films were 

then heated at 200 °C for another 30 minutes. After heating, cooling down to room 

temperature took about 60 minutes. 

4) PVF2(Kynar®7201F)/poly[(4(5)-VIm/VIm+TFSI-(15, 25, 35, 50mol% TFSI](4/1)V  
composite films from DMAC 

Films with various levels of protonation of PVIm with TFSI (15, 25, 35 and 50 

mol%) were prepared. PVF2 (Kynar®7201F) in DMAC solution was added to the various 

PVIm/Im+TFSI- DMAC solutions, respectively. The volume ratio of PVF2 and 

PVIm/Im+TFSI- was 4 to1. After all the composite films were cast, they were annealed on 

the hot plate in a glove box filled with Ar gas.  The annealing procedure is given below.  

It took 30 minutes for the hot plate to heat up to the desired temperature. The films were 

then heated at 200°C for another 30 minutes. After heating, cooling down to room 

temperature took about 60 minutes. 

I. Characterization of the composite films 

1) Differential Scanning Calorimetry (DSC) 

DSC analysis was carried out under nitrogen on a Perkin Elmer Diamond DSC. 

Sample pans were heated and cooled at a rate of 20°C/min. All the samples were 

subjected to two heating and cooling cycles. Pure PVF2 and films with different polymer 

compositions were evaluated before and after annealing at 200°C. 

PVF2 is a semicrystalline polymer. A typical protocol for the DSC analyses was to 

first ramp to 200°C, then cool to -70°C at a rate of 20°C/minute. Thus, the first scan was 

completed. This cycle was repeated until two DSC traces overlapped. The sample was 

then ramped to 200°C at a rate of 20°C/minute and cooled to -70°C at a rate of 

20°C/minute.  The analysis was thus a 7-step process.  

Step 1 - Heat from 30°C to 100°C at 20°C/min 

Step 2 - Hold for 2 min at 100°C 

Step 3 - Cool from 100°C to -70°C at 20°C/min 

Step 4 - Heat from -70°C to 200°C at 20°C/min 

Step 5 - Cool from 200°C to -70°C at 20°C/min 
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Step 6 - Heat from -70°C to 200°C at 20°C/min 

Step 7 - Heat from 200°C to -70°C at 20°C/min 

PVF2(Kynar®301)/poly[4(5)-VIm/VIm+TFSI-] composite films from 

dimethylacetamide (DMAC) were prepared and analyzed in an analogous manner. The 

composition of these films is listed below. 

− PVF2/poly[4(5)-VIm/VIm+TFSI-] (15mol%) (4/1)v 

− PVF2/poly[4(5)-VIm/VIm+TFSI-] (25mol%) (4/1)v 

− PVF2/poly[4(5)-VIm/VIm+TFSI-] (35mol%) (4/1)v 

− PVF2/poly[4(5)-VIm/VIm+TFSI-] (50mol%) (4/1)v 

Two sets of films identified as “non-heated and heated” were analyzed for each 

composition. The non-heated films were dried at 50˚C on a hot plate overnight, and then 

were heated at 100˚C for 30 minutes in air. Heated films were obtained by heating at 

200˚C for 5 minutes, and then cooling down to room temperature. 

2) X-ray Diffraction 

X-ray diffraction patterns were obtained on the above materials by Dr. Surendra 

K Gupta using a Rigaku DMAX-II B powder diffractometer with Cu Kα radiation (40 kV, 

35 mA). Patterns were analyzed using MDI Jade 6 software with the ICDD PDF-4+ 

database.  Films with the four different dopant levels, PVF2 (Kynar®301F)/poly[4(5)-

vinylimidazole] doped at 15, 25, 35 and 50 mol% TFSI were analyzed both before and 

after heating at 200 °C. All the films were glued to glass slides with LOCTITE glue. 

3) Wide Angle X-ray Scattering (WAXS) at the Brookhaven Synchrotron 

Crystallographic analysis for a set of films cast from DMAC and a sister set cast 

from DMF was sent to Dr. Peggy Cebe at Tufts University.  X-ray diffraction spectra of 

composite films from DMF and DMAC were obtained on the synchrotron at Brookhaven. 

The PVF2 (Kynar®301)/poly[4(5)-VIm/VIm+TFSI-] composite films from DMAC and 

DMF were doped with 15 and 35 mol% TFSI. All the compositions before and after 

heating to 200°C were studied. Each set of films was measured both free-standing and 

Kapton® mounted. 
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4) Extraction by water or water/ethanol mixture of PVF2/poly[(4(5)-VIm/VIm+TFSI-] 
composite films 

Water extraction of PVF2/poly[(4(5)-VIm/VIm+TFSI-] composite films was 

carried out, in accordance with the following protocol. The initial weight of each 

composite film was recorded. Then all of the films were immersed in distilled water for 

24-48 hours at ambient temperature. After immersion, the films were removed from the 

distilled water and air-dried for two weeks. Subsequently, they were heated at 70°C for 

four hours until they dried to constant weight.  The difference in the weight of the initial 

film and the film after water extraction and drying was recorded as the mass of extracted 

materials.  Water/ethanol extraction of PVF2/poly[(4(5)-VIm/VIm+TFSI-] composite 

films was carried out with an analogous protocol. Each of the films that had been 

subjected to extraction with distilled water was soaked in ethanol/water solution for one 

day at ambient temperature. After extraction, the films were dried in air for one hour and 

then they were heated at 70°C for one hour to dry to constant weight.  The difference in 

the weight of the initial film and the film after water extraction and drying is the mass of 

extracted material. Evaluation for percent of mass extracted from the composite films 

follows the equation below: 

( )pre-soaked sample - dried sample
% mass extracted 100%

pre-soaked sample
= ×  

5) Viscometry 

The viscosity of a dilute polymer solution can be used to determine the polymer’s 

molecular weight. Basically, the solution viscosity relates to the size of polymer molecules. 

The procedure used to evaluate viscosity is that published by Cannon.32 Thus, the efflux 

time (t) was measured for a specified volume of polymer solution to flow through the 

capillary tube.  This time was compared with the time (t0) required for pure solvent to pass 

through the viscometer.  From t, t0 and the solute concentration, the relative, specific, and 

reduced viscosities of a polymer solution can be determined using the following 

equations33: 

Relative viscosity ηr = η/n0 = t/t0 

Specific viscosity ηsp = ηr – 1 

Reduced viscosity ηred = ηsp/c 
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The intrinsic viscosity is defined as [η] = ηred(c 0), where c is the concentration of 

the polymer solution. The unit of concentration c is grams per milliliter. Intrinsic viscosity 

can be determined by extrapolating a plot of ηred vs. c. This intrinsic viscosity can be used 

to determine the molecular weight by using the Mark-Houwink-Sakurada equation: 

a]M[K ][η v= , where the range of a is between 0.5 and 0.8. 

A Cannon-Ubbehohde viscometer (size 75) was cleaned with hot sulfuric acid 

mixed with nochromix® solution in order to make sure the capillary tube was 

unobstructed. The visometric parameters ηr, ηsp and ηred were evaluated under conditions 

of isoionic dilution for the PVIm polymerized in benzene and in ethanol/H2O. Thus, 0.25 

grams of PVIm were diluted with 0.5M KCl in methanol/H2O(1/1)v in a 10ml-volumetric 

flask. A series of dilutions were then made using the KCl in methanol/water mixture. 

This was done to maintain constant ionic strength for all solutions. The series of diluted 

solutions had concentrations of 2.5, 1.25, 0.625, 0.5, 0.25 0.20, 0.15, 0.08 and 0.05 g/dL. 

The viscometer was placed into water bath at a temperature of 25˚C for about 15-20 

minutes to equilibrate the temperature of viscometer at 25˚C. The Ubbeldode viscometer 

was used to measure the flow time of the solvent.  At high dilution, gegenions that are not 

covalently bound to the polymer backbone can diffuse away from the polyion without 

isoionic dilution (maintaining constant ionic strength), this results in deshielding of 

positive charged Im+ residues on the polymer chain. The resulting charge repulsion 

expands the dimension of the polymer coil and leads to an increase in hydrodynamic 

radius and viscosity. 
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The viscosity data for poly[4(5)-vinylimidazole] polymerized in benzene using 

AIBN and in ethanol/water using 4,4-azobis(4-cyanovaleric acid) are presented in Figure 

17 as reduced viscosity, ηred, vs. mass concentration of polymer, c. The equations for the 

two straight lines in Figure 17 are given below.  The y-intercept of each line gives the 

intrinsic viscosity of each sample. 

PVIm (from benzene) 

y = 1188.2x + 42.203 

[η] = 42.203 mL/g 

PVIm (from ethanol/H2O) 

y = 196.64x + 15.591 

[η] = 15.591 mL/g 

 
Figure 17. Reduced viscosity-concentration curve for a PVIm from benzene 
and ethanol/water 
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III. Results and Discussion  

A. Fabrication of PVF2//PVIm/Im+TFSI- composite films 

In the present research, the structure, morphology, and composition of poly(vinylidene 

fluoride)/poly[4(5)-vinylimidazole/imidazolium trifluoromethylsulfonylimide] composites 

(PVF2//PVIm/Im+TFSI-) have been examined. 
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Figure 18. Structure of PVF2/poly[4(5)-VIm/VIm+TFSI-] 

This work builds on previous studies by Wu30 in which PVF2/PVIm/Im+TFSI- composites were 

prepared and their potential as proton-conductive membranes was explored.  In that work, 

poly[4(5)-VIm] was protonated with 50 mol% TFSI, dissolved in DMF, and the resultant 

PVF2//PVIm/Im+TFSI- solution was mixed with DMF solutions of PVF2.  Subsequently, films 

were cast from these mixed DMF solutions and dried and heated under differing conditions to 

obtain composites of different composition [(3/1)v, (4/1)v and (8/1)v, respectively], morphology, 

and, apparent PVF2 crystallite size.  The proton conductivity, at 80°C and 80% RH, of the 

PVF2//PVIm/Im+TFSI-
(4//1)v composite films were comparable to those of the 

PVF2//PVIm/Im+TFSI-
(3//1)v composite films. The proton conductivity of the 

PVF2//PVIm/Im+TFSI-
(8//1)v composite  film was negligible.  The PVF2 composites were 

characterized by DSC and hot stage microscopy.  
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Building on this work, Wu’s procedure for fabrication of PVF2//PVIm/Im+TFSI-
(4/1)v 

composites was repeated, varying the level of protonation with TFSI.  Most importantly, a more 

quantitative evaluation of the crystallinity of the PVF2 phase was undertaken.  PVF2//PVIm/Im+ 

composite films were prepared and studied in which the mass fraction of PVF2/PVIm was held 

constant at 4/1.  The fraction of protonated imidazole residues was varied between 15 and 50 

mol% TFSI. Films were cast from both DMF and DMAC and were characterized as cast at 

ambient temperature, drying at 100°C or less, and after heating to 200°C.  In order to understand 

the PVF2 crystal habit, α, β or δ,19 X-ray diffraction studies were carried out by this author in Dr. 

Surendra Gupta’s lab here at RIT and by Dr. Peggy Cebe (Tufts University) on the synchrotron 

at the Brookhaven National Laboratory.  Percent crystallinity was evaluated by determination of 

the relative area under the fusion endotherms in DSC traces. Tm values appeared to be somewhat 

correlated with the PVF2 crystal habit.  Composite films were extracted with H2O or H2O/ethanol 

and the extractability of the PVIm/Im+ component (% extractables) was interpreted, in part, as a 

reflection of the intimacy of the mixture. 

In the following paragraphs, the results of experiments evaluating: 1) PVF2 crystal habit by 

X-ray diffraction , 2) % crystallinity and melting characteristics by thermal analysis, and 3) 

extractability of the PVIm/Im+ are presented. In the conclusion section, speculation is offered 

that renders an overall construct for the morphology of PVF2//PVIm/Im+ composite films 

B. Characterization of the composite films 

1) X-ray diffraction studies 

Wide Angle X-ray Scattering (WAXS) at RIT 

Figure 19 displays X-ray diffraction traces of a set of PVF2//PVIm/Im+ composite films 

cast from DMAC (identified as 301P-50, 301P-35, 301P-25, 301P-15 and 301P-50AN, 301P-

35AN, 301P-25AN, 301P-15AN) wherein the level of protonation with TFSI was 50, 35, 25 and 

15 mol%, respectively. AN is indicative of the fact that the film had been heated to 200˚C. One 

can see that the respective traces for the 301P 50, 35, 25 and 15 set and the 301P50-AN, 301P-

35AN, 301P-25AN, 301P-15AN set are very similar. One also sees that the peaks in the 301P50-

AN, 301P-35AN, 301P-25AN, 301P-15AN set are sharper and more distinct.   
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Figure 19. X-ray diffraction traces (spectra) of PVF2/PVIm-Im+ composite 
films cast from DMAC 

The films in the AN set are physically stronger and, as shown in Figure 20, are 

translucent to transparent in appearance.  The relative clarity or lack thereof, may be indicative 

of smaller crystallite size in the heated films than in the non-heated films. Indeed, it was 

suggested by Wu as the reason why heated films were substantially more transparent than the as-

cast non-heated films. The PVIm/Im+ is apparently acting as a nucleating agent for PVF2 

crystallization. The clarity is increased as the fraction of protonation is increased from 15 to 25, 

to 35, to 50 mol% TFSI. 

 
Figure 20. PVF2/PVIm-Im+TFSI- composite films cast from DMAC 

Figure 20 also shows some discoloration in each of the heated composite films. The 

discoloration is greatest in the 15mol% TFSI composite film, somewhat less in the 25mol% TFSI 

film, and only slight in the 35mol% TFSI and 50 mol% TFSI films. The reduced discoloration 
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with increasing TFSI content is indicative of increased thermal stability with higher levels of 

TFSI. 

In order to obtain better crystallographic analysis, the set of films described above and a 

sister set cast from DMF were sent to Dr. Peggy Cebe at Tufts University.  X-ray diffraction 

spectra of these composite films from DMF and DMAC were taken on the synchrotron at 

Brookhaven.  Figure 21a shows the X-ray diffraction spectrum for a control film of PVF2 

(Kynar®301F), cast from DMF at ambient temperature and dried at 100˚C. The spectrum 

exhibits a predominant peak at 2θ = 18 degrees that can be attributed to β-phase PVF2 crystals.34 

When this homopolymer film was heated to 200 ˚C and cooled to room temperature, the X-ray 

diffraction pattern, shown in Figure 21b, was obtained. It clearly shows a transformation from β-

phase crystals to α-phase crystals that exhibit a multiplicity of peaks at 2θ = 12, 16.5, 17, 24 and 

30 degrees. 

Figure 21a Figure 21b 

Figure 21a X-ray diffraction spectrum of β-
phase PVF2 cast from DMF at ambient 
temperature and dried at 100˚C 

 
Figure 21b α-phase PVF2 cast from DMF at 
ambient temperature and dried at 100 ˚C and 
annealed at 200˚C 
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Figures 22a and 23a show the X-ray diffraction spectra for composite films of 

PVF2//PVIm/Im+/TFSI- (85/15)M and (65/35)M, cast from DMF at ambient temperature and dried 

at 100˚C. The spectra exhibit a predominant peak, like that in the control, that can be attributed 

to β-phase PVF2 crystals.34  

Figure 22a Figure 22b 

  

Figure 22a In the composite film that gave β-
phase X-ray diffraction spectrum shown in 
Figure 22a. Poly[4(5)-VIm] was protonated with 
15 mol% TFSI, dissolved in DMF. Cast from 
DMF at ambient temperature and dried at 100˚C 

Figure 22b In the composite film that gave α-phase X-
ray diffraction spectrum shown in Figure 22b. α-phase 
Poly[4(5)-VIm] was protonated with 15 mol% TFSI, 
dissolved in DMF. Cast from DMF at ambient 
temperature and dried at 100˚C and annealed at 200˚C 

Figure 23a Figure 23b 

 

Figure 23a β-phase Poly[4(5)-VIm] was 
protonated with 35 mol% TFSI, dissolved in 
DMF. Cast from DMF at ambient temperature 
and dried at 100˚C 

Figure 23b α-phase Poly[4(5)-VIm] was 
protonated with 35 mol% TFSI, dissolved in 
DMF. Cast from DMF at ambient temperature 
and dried at 100˚C and annealed at 200˚C 
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When these composite films were heated to 200˚C and cooled to room temperature, the X-ray 

diffraction patterns, shown in Figures 22b and 23b were obtained. As with the PVF2 control film, 

after heating to 200˚C and rapid cooling, they clearly show a transformation from β-phase 

crystals to α-phase crystals that exhibit a multiplicity of peaks at 2θ = 12, 16.5, 17, 24 and 30 

degrees.  

Control and composite films cast from DMAC exhibited X-ray diffraction patterns 

analogous to those observed for films cast from DMF. Figures 24a, 25a and 26a show that β-

phase crystals were obtained in films cast at ambient temperatures and dried at < 100˚C.  Figures 

24b, 25b and 26b show films, after heating to 200˚C, wherein a transformation from β-phase 

crystals to α-phase crystals has occurred. 

Figure 24a  Figure 24b 

 

Figure 24a β-phase PVF2 cast from DMAC 
at ambient temperature and dried at 100˚C 

Figure 24b α-phase PVF2 cast from 
DMAC at ambient temperature and dried at 
100˚C and annealed at 200˚C 
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Figure  25a 

 
Figure 25b 

 
Figure 25a β-phase Poly[4(5)-VIm] was 
protonated with 15 mol% TFSI, dissolved in 
DMAC. Cast from DMAC at ambient temperature 
and dried at 100˚C 

Figure 25b α-phase Poly[4(5)-VIm] was 
protonated with 15 mol% TFSI, dissolved in 
DMAC. Cast from DMAC at ambient temperature 
and dried at 100˚C and annealed at 200˚C 

Figure  26a Figure  26b 

 

Figure 26a β-phase Poly[4(5)-VIm] was 
protonated with 35 mol% TFSI, dissolved in 
DMAC. Cast from DMF at ambient temperature 
and dried at 100˚C 

Figure 26b α-phase Poly[4(5)-VIm] was 
protonated with 35 mol% TFSI, dissolved in 
DMAC. Cast from DMF at ambient temperature 
and dried at 100˚C and annealed at 200˚C 
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The literature reports that β and γ-phase35, 36 PVF2 can be obtained when the polymer is 

cast from polar aprotic solvents like DMF and DMAC.  It has also been reported that because of 

its faster crystallization rate at higher temperatures (110-150˚C),37 α-phase PVF2 is obtained 

when the polymer is rapidly cooled from the melt. On the other hand, β-phase crystallizes below 

80˚C.37 In PVF2/PMMA blends, it has been reported that crystallization from the melt to β-phase 

is favored.38   It is therefore perhaps of some note that PVIm//Im+TFSI- has no significant 

influence on the crystal habit of PVF2.  

The scheme shown in Figure 27 depicts the process for obtaining β-phase crystals from 

solution and the transformation to α-phase that is observed without respect to whether the solvent 

was DMF or DMAC and without respect to whether the material being processed was pure PVF2 

or a blend of PVF2 and PVIm//Im+TFSI-.  The % protonation with TFSI also has no apparent 

effect on the crystal habit of PVF2. 

 

 

 

 

 

 

   

 

 

 

       

Figure 27. Transformation between the two main phases of PVF2 

Summarizing what has been learned in the course of the present X-ray diffraction analysis, 

it has been determined that PVF2 films cast from DMF and DMAC, at ambient temperature and 

dried at temperatures below 100˚C, give membranes in which PVF2 crystallites adopt a β-phase 

Cast film at ambient 
temperature and dried 
below 100˚C 

DMF or DMAC Solution

β α 

Melt

Heat at 200˚C Quench cool 
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crystal habit. Heating these films to 200˚C and rapidly cooling to ambient temperature results in 

a transformation of the PVF2 crystallites to α-phase. PVF2 homopolymer films cast from DMF or 

DMAC are white and substantially opaque (non-transparent). It seems that the size of PVF2 

spherulites is large and scattering of light makes the film appear opaque.  When the PVF2 film 

was heated at 200˚C and cooled to room temperature, α-phase crystals were obtained, however, 

the film remains white and substantially opaque in appearance. When the composite films of 

PVF2 and PVIm/Im+ protonated with 15, 25, 35 and 50 mol% TFSI were cast at ambient 

temperature and dried at 100˚C, β-phase PVF2 was also obtained and the PVF2 was transformed 

from β-phase to α-phase on heating to 200˚C and rapidly cooling to room temperature.  However, 

in the composite films quenched from the melt, there was significant transparency in the films. 

The films with 15 mol% of TFSI were the least transparent. The films with 25 mol% of TFSI and 

35 mol% of TFSI were increasingly transparent, and the film with 50 mol% TFSI was almost 

clear. It seems that PVIm/Im+TFSI- serves as a nucleating agent and that at higher levels of 

protonation with TFSI, PVIm/Im+ may be more miscible with the amorphous phase of PVF2. 

2) Thermal analysis of PVF2//PVIm/Im+ composites 

a. DSC analysis protocol 

PVF2 control films and composites with PVIm/Im+TFSI- containing 15, 25, 35 and 50 

mol% TFSI and cast from DMF and DMAC were also studied by DSC. Two cycles were run 

heating at a rate of 20˚C/min. In the first cycle, all the films had not been previously heated 

above 100˚C. During the first heating cycle, samples were heated to 200˚C and cooled to 0˚C. In 

the second cycle, these films were again heated to 200˚C and cooled to the 0˚C. Figure 28, 

shown below, displays a typical DSC scan for a heating and cooling cycle for PVF2. The heating 

cycle clearly shows the melting endotherm with Tm (peak) at 162˚C.  In the cooling cycle, the 

crystallization exotherm begins at 137˚C. The area under the melting endotherm and the 

crystallization exotherm, Tc, represent the enthalpy of melting, ΔHm, and the enthalpy of 

crystallization, ΔHc, respectively. This information can be used to estimate the percent 

crystallinity and to evaluate the relative crystallinity of the PVF2 in composites of different 

composition and thermal history. 
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Figure 28. Heating and cooling cycle scans in DSC of Kynar®301 PVF2  

The crystallinity of a semi-crystalline polymer sample can be calculated based on the ratio of 

enthalpy of melting to the melt enthalpy of a 100% crystalline material. In the present research, 

the percent crystallinity (%) was simplistically determined using the relationship  

% Crystallinity =  ΔHm/ΔHm˚ x 100%39 

Where ΔHm is the measured enthalpy of fusion, and ΔHm˚ is the enthalpy of fusion of a 100% 

crystalline material. The theoretical latent heat of fusion for 100% crystalline PVF2, ΔHm˚, was 

taken to be 104.6 J/g40. The composite films of PVF2 and PVIm/Im+TFSI- were cast from DMF 

and DMAC at ambient temperature and dried at 100˚C. In the DSC, the films were heated to 

200˚C and then cooled to 0˚C at 10-20˚C per minute. The heat of melting, ΔHm, and 

crystallization, ΔHc, were determined by integrating the areas (J/g) under the peaks. Films of 

pure PVF2 and the PVF2//PVIm/Im+TFSI- composites, were cast from DMAC and DMF. Their 

thermal properties were examined using DSC and their thermal signatures were studied 

according to the protocol previously described (See Section I-1, page 22). Each sample was 

examined by DSC in two 20˚C/min heating and cooling cycles. The X-ray diffraction analysis 

(see Section III-B-1) already determined that in the first cycle, the PVF2 in the films cast at 

ambient temperature and dried below 100˚C, is β-phase. However, PVF2 recrystallizes to α-phase 
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after heating to 200˚C. Accordingly, after the first heating cycle, the structure of PVF2 in the 

films changed to α-phase. Depending on the crystalline structure before or after the heating 

cycles are performed, the crystallinity of each sample may be calculated differently. If the phase 

structure changes during the cycle, crystallinity can only be reasonably determined by the 

relation given above. If the phase structure does not change, the crystallinity may be determined 

by ΔHm/Hm˚ or Xc = (ΔHa - ΔH) / (ΔHa – ΔHc)41, where ΔHa is the heat capacity associated with 

the amorphous material. In the present work, percent crystallinity for pure PVF2 was evaluated 

by using the simple relationship ΔHm  /ΔHm˚ instead of the more commonly used relationship Xc 

= (ΔHa - ΔH) / (ΔHa – ΔHc). This tactic was chosen because in the first heating cycle, the 

melting endotherm is for melting of β-phase crystals and the recrystallization exotherm is for the 

formation of α-phase crystals. The more complex relationship could have been used for the 

second heating cycle in which α-phase crystals were melting and α-phase crystals were formed 

on cooling. However, for comparative consistency, the simple ΔHm/ΔHm˚ relationship was used. 

b. Analysis of DSC thermgrams of PVF2 and PVF2//PVIm/Im+ composites cast from 
DMAC 

The first heating scan of pure PVF2 cast from DMAC and dried at temperatures below 

100˚C is displayed in the Figure 29a. The pure PVF2 has a melting temperature, Tm, of about 

170˚C. The area under the melting endotherm represents an enthalpy of fusion, ΔHf, which is 

about 37.5 J/g, and the degree of crystallinity is determined to be 35.8%. 
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Figure 29a DSC thermograms for the 1st heating scan of 
non-heated film of PVF2 and the composites from 
DMAC 

Figure 29b DSC thermograms for the 2nd heating scan 
of non-heated film of PVF2 and the composites from 
DMAC 

 

The first heating scan of the composite films cast from DMAC shows that the melting 

temperature, Tm, for the initially formed β-phase of PVF2 is 170-174˚C, similar to Tm (170˚C) of 

the initially formed β-phase of PVF2 in homopolymer films. The apparent enthalpy of fusion, 

ΔHf, of the initial β-phase of PVF2 in the composite film is lower than that of pure PVF2; 

however, since the composites are only 80 wt% PVF2 the % crystallinity is actually larger than 

for pure PVF2. The value of ΔHf of the composites in which PVIm was protonated with 25, 35 

and 50 mol% TFSI are close (27-33 J/g). This corresponds to a % crystallinity of 36-40% based 

on PVF2. The numeric data for the first heating cycle is shown in Table 1a. 
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Table 1a. DSC results for first hearing scans for homopolymer PVF2 and composite films of  
 PVF2 (Kynar®301F) and PVIm/Im+TFSI- cast from DMAC 

First Heating Cycle 
 Tm (˚C) Δ Hf (J/g) % Crystallinity 

non- heated pure PVF2 DMAC 170.20 37.53 35.81% 

non- heated 15-TFSI DMAC 171.80 33.53 39.99% 

non- heated 25-TFSI DMAC 172.00 28.46 33.95% 

non- heated 35-TFSI DMAC 174.03 26.85 32.03% 

non- heated 50-TFSI DMAC 170.15 29.00 34.59% 

 

In the second heating cycle, the character and level of α-phase PVF2 crystals are probed. 

For pure PVF2 films cast from DMAC, the Tm of α-phase PVF2 is about 165˚C; the ΔHf is 24.65 

J/g; and the percent crystallinity is 23.52%. The Tm of α-phase PVF2 in the composites is 

between 164 and 166˚C and is similar to that in the homopolymer. When taken on a PVF2 basis, 

the ΔHf of α-phase PVF2 in the composite films protonated with 15, 25 and 50 mol% TFSI is 

greater than that of α-phase PVF2 in the homopolymer. That for the 35 mol% TFSI composite is 

comparable to that of pure PVF2 (See Table 1b) 

Table 1b. DSC results for second hearing scans for homopolymer PVF2 and composite 
films of PVF2 (Kynar®301F) and PVIm/Im+TFSI- cast from DMAC 

Second Heating Cycle 
 Tm (˚C) Δ Hf (J/g) % Crystallinity

heated pure PVF2 DMAC 165.38 24.65 23.52% 

heated 15-TFSI DMAC 164.77 23.46 28.04% 

heated 25-TFSI DMAC 165.86 21.08 25.19% 

heated 35-TFSI DMAC 166.60 18.52 22.13% 

heated 50-TFSI DMAC 164.72 22.33 26.68% 
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c. Analysis of DSC thermograms of PVF2 and PVF2//PVIm/Im+ composites cast from DMF 

The first heating scan of pure PVF2 cast from DMF and dried below 100˚C is displayed 

in Figure 30a. The pure PVF2 has a peak melting temperature, Tm, of about 171˚C. The area 

under the melting endotherm represents an enthalpy of fusion, ΔHf, which is about 37 J/g, and 

the degree of crystallinity is determined to be 35%. The Tm, ΔHf and percent crystallinity values 

tabulated for homopolymer films cast from DMF are similar to those in films cast from DMAC. 

(See Table 1a-line 1 and Table 2a-line 1). 

  
Figure 30a DSC thermograms for the 1st heating scan 
of non-heated film of PVF2 and the composites from 
DMF 

Figure 30b DSC thermograms for the 2nd heating 
scan of non-heated film of PVF2 and the composites 
from DMF 

 
The first heating scan of the composite films cast from DMF shows that the peak melting 

temperature, Tm, for the initial β-phase of PVF2 is comparable to that of the β-phase PVF2 in 

homopolymer films. Except for the 15 mol% TFSI sample, the enthalpy of fusion, ΔHf, of the 

initial β-phase PVF2 in the composite film is comparable to that of homopolymer film when 

taken on a PVF2 basis. The crystallinity of the composites protonated with 15 mol% TFSI was 

significantly lower than that in pure PVF2. Given the upward curvature of the trace for the 15 
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mol% TFSI sample, the integrated area under the peak was difficult to measure.  As a result, the 

measured ΔHf, of the initial β-phase PVF2 in the 15 mol% composite film might be low. The 

crystallinity and ΔHf of the composites protonated with 50 mol% TFSI is higher than that in 

composites protonated with 15, 25 and 35 mol% TFSI. The numeric data for the first heating 

cycle is shown in Table 2a. 

Table 2a. DSC results for first hearing scans for homopolymer PVF2 and composite films 
of PVF2 (Kynar®301F) and PVIm/Im+TFSI- cast from DMF 

First Heating Cycle 
 Tm (˚C) Δ Hf (J/g) % Crystallinity 

non-heated pure PVF2 DMF 171.14 36.98 35.29% 

non- heated 15-TFSI DMF 174.11 18.61 22.24% 

non- heated 25-TFSI DMF 171.59 28.99 34.64% 

non- heated 35-TFSI DMF 171.84 28.68 34.27% 

non- heated 50-TFSI DMF 170.82 32.35 38.66% 

 
Given that the literature reports that the Tm of α-phase PVF2 to be 166-167˚C42, the Tm measured 

in the second heating scan for pure PVF2 cast from DMF is consistent with it being α-phase. 

Table 2b shows that, in the second heating cycle, pure PVF2 cast from DMF exhibits a melting 

temperature, Tm, of about 167˚C, enthalpy of fusion, ΔHf, about 25.5 J/g, and the degree of 

crystallinity of about 24%. The Tm of α-phase PVF2 in composites is 165-169˚C, similar to that 

in the homopolymer. The ΔHf of α-phase PVF2 in the composite films protonated with 25, 35 

and 50 mol% TFSI is close (within 1-5 J/g) to that of α-phase PVF2 in the homopolymer. That 

for the 15 mol% TFSI composite is about 25% lower when taken on a PVF2 basis. The numeric 

data for the second heating cycle is shown in Table 2b. 
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Table 2b. DSC results for second hearing scans for homopolymer PVF2 and composite films 
of PVF2 (Kynar®301F) and PVIm/Im+TFSI- cast from DMF 

Second Heating Cycle 
 Tm (˚C) Δ Hf (J/g) % Crystallinity 

heated pure PVF2 DMF 166.72 25.55 24.38% 

heated 15-TFSI DMF 168.72 15.11 18.06% 

heated 25-TFSI DMF 164.91 20.55 24.56% 

heated 35-TFSI DMF 167.39 20.86 24.93% 

heated 50-TFSI DMF 165.06 23.87 28.53% 

 

Films rapidly cooled from the melt exhibit lower crystallinity than films cast from solution with 

no thermal history. This may simply be the result of the trade off between the rate of cooling and 

the rate of crystallization.   

d. Comparative analysis of crystallinity and Tm of PVF2 and PVF2//PVIm/Im+ films cast 
from DMAC and DMF 

The relative crystallinity of PVF2 homopolymer films and PVF2//PVIm/Im+ composite 

films cast from DMF and DMAC in their first and second heating cycles is tabulated in Table1 

and 2 and is graphically displayed in Figures 31 and 32. 
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Figure 31. Non-heated and heated films of PVF2 and composities cast from DMAC. 
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Figure 32. Non-heated and heated films of PVF2 and composities cast from DMF 

Tm values tabulated in Table1 and 2 are graphically displayed in Figure 33. Figure 33 shows the 

Tm for pure PVF2 and the Tm for 15, 25, 35 and 50 mol% of TFSI compositions of the 

PVF2/PVIm-Im+TFSI- system cast from DMAC and DMF. 

 

Figure 33. Melting temperture of PVF2/poly[4(5)-VIm/VIm+TFSI-] (4/1)v in DMF and 

DMAC 
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In the Figure 33, one can see that, in the first heating cycle, thermograms of films cast from both 

DMF and DMAC exhibit a melting peak at 170-174˚C. The melting temperatures of these films 

in the second heating cycle, i,e., after being heated to 200˚C and rapidly cooled to -70˚C, are 

lower than those of the non-heated films. It appears that the crystalline phases in non-heated and 

heated films are different. The X-ray data described in Section III-B-1 teaches that, as cast from 

DMF and DMAC homopolymer and composite films contain β-phases PVF2 crystals and that 

films heated to 200˚C contain α-phase PVF2 crystals. The Tm of β-phase crystals in pure PVF2 

(first heating cycle) is higher than that of α-phases crystals in the pure PVF2 (second heating 

cycle). In the composite films with PVIm/Im+, the Tm of β-phase crystals of PVF2 is similarly 

greater than that of α-phase crystals. The literature42 reports that the Tm of β-phase PVF2 is about 

172˚C and that the Tm of α-phase PVF2 is 166-167˚C. In the present work, the Tm of pure β-phase 

PVF2 in the homopolymer cast from DMF was measured to be 171˚C and that for films cast from 

DMAC was 170˚C. These Tm values are consistent with the literature values for β and α-phases. 

e. Discussion and analysis of latent heat of crystallization  

Tc is the temperature at which recrystallization starts. Tc is always less than the Tm.and the 

difference is representative of the degree of super cooling required to induce crystallization. No 

matter if PVF2 is in the first or second cooling cycle, once it has been heated to 200°C, PVF2 will 

recrystallize as α-phase. Figures 34a and 34b show stack plots of the crystallization exotherms 

observed on cooling films of PVF2 and PVF2//PVIm/Im+ that had been heated to 200°C. It is 

clear from these cooling curves that there is a significant difference in the recrystallization 

behavior of films cast from DMF and films cast from DMAC.  
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Figure 34a DSC thermograms for the cooling scan of 
non-heated film of PVF2 and the composites from 
DMAC 

Figure 34b DSC thermograms for the cooling scan 
of non-heated film of PVF2 and the composites 
from DMF 

Table 3 tabulates the peak crystallization temperature, Tc, for PVF2 homopolymer films 

and composite films of PVF2//PVIm/Im+TFSI-.  

Table 3. DSC results for the cooling scan for composite films cast from DMAC and DMF  

 Material and Thermal History Onset Tc (˚C) 

Cooling 
Cycle 

(DMAC) 

non- heated pure PVF2 DMAC 124.15 
non- heated 15-TFSI DMAC 131.60 
non- heated 25-TFSI DMAC 132.27 
non- heated 35-TFSI DMAC 131.26 
non- heated 50-TFSI DMAC 125.52 

    

Cooling 
Cycle 

(DMF) 

heated pure PVF2 DMF 126.16 
heated 15-TFSI DMF 127.17 
heated 25-TFSI DMF 126.84 
heated 35-TFSI DMF 125.15 
heated 50-TFSI DMF 124.82 
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If the onset Tc data in Table 3 is plotted as a function of the composition of the films and the 

solvent from which the film was cast, this difference becomes more apparent.  Figure 35 shows 

that the onset Tc of pure PVF2 in a film, cast from DMAC, is about 129˚C, and that the onset Tc 

of pure PVF2 in a film cast from DMF is about 131˚C.  Moreover, the onset Tc of each of these 

films in the first and second cycles, without regard to whether it was cast from DMAC or DMF, 

is nearly identical.  This is a result of the fact that the crystal habit of the PVF2 recrystallizing in 

cycle one and cycle two is α-phase. The Tm of α-phase PVF2 crystals in the homopolymers cast 

from DMAC and DMF is 166-167˚C (see Tables 1b and 2b). The difference between Tm and Tc 

is the degree of supercooling required to cause recrystallization. Thus, the data shows the degree 

of supercooling required to recrystallize pure PVF2 in films cast from DMAC is 38˚C and that 

degree of supercooling required to recrystallize pure PVF2 in films cast from DMF is 35˚C. The 

degree of supercooling required to recrystallize PVF2 in films cast from DMAC is thus 3° greater 

than that required to recrystallize PVF2 in films cast from DMF. 

 

Figure  35. Onset Tc of PVF2/poly[4(5)-VIm/VIm+TFSI-] (4/1)v in DMF and DMAC 

The onset Tc of each composite film cast from DMAC or DMF in the first and second cycles are 

also similar. In composites, the Tc of the films cast from DMAC ranges from 130-134˚C, while 

the Tc of the composite films cast from DMF ranges from 129-132˚C.  The Tm of α-phase PVF2 

crystals in the composites cast from DMAC and DMF is 165-168˚C (see Tables 1b and 2b), 

accordingly, the degree of supercooling required to recrystallize PVF2 in composite films cast 

from DMAC is less than that required to recrystallize PVF2 in composite films cast from DMF.  
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Recrystallization is invariably a nucleated process. Thus, it appears that the nucleation 

rate in films of pure PVF2 cast from DMF is greater than the nucleation rate in films of PVF2 cast 

from DMAC. However, when blended with PVIm/Im+TSFI-, the nucleation rate in films cast 

from DMF is less than that in composite films cast from DMAC. The difference between the Tc 

of the PVF2 homopolymer films cast from DMAC and DMF is about 5˚C while the difference 

between Tc of PVF2 crystals in the composite cast from DMF with 15 mol% TFSI and the Tc of 

the PVF2 homopolymer cast from DMF is only about 1˚C.  

The difference between the Tc of PVF2 in a homopolymer film cast from DMAC and a 

composite cast from DMAC with 15 mol% TFSI is 5-6°C. The big difference in Tc here is 

indicative of an increased nucleation rate in the composite films cast from DMAC. Figure 35 

also shows a trend of decreasing Tc with increasing mol% TFSI. The Tc of PVF2 in films cast 

from DMAC starts to decrease when the level of TFSI is 35 mol% or greater. The Tc of PVF2 in 

composite films cast from DMF starts to decrease when the level of TFSI is greater than 15 

mol%. This suggests that PVIm/Im+ becomes more compatible at high TFSI levels and the 

nucleation rate drops. This also indicates that PVIm/Im+ is less well solvated by DMAC then by 

DMF. 

3) Extractability 

Because PEMs must work in an aqueous environment and because protonated PVIm is 

soluble in water, extraction of PVIm by aqueous solutions and determination of the associated 

weight loss is an important test.  If the PVIm/Im+ phase is intimately mixed with the amorphous 

phase of PVF2 or if it is covalently linked to the PVF2 amorphous phase, it will not be easily 

extracted from the composite.  On the other hand, if phase separation is macroscopic, the 

PVIm/Im+ might be substantially extracted from the composite. 

Accordingly, water extraction studies give us practical information about the utility of a 

composite membrane in the aqueous environment of a working fuel cell membrane electrode 

assembly or fuel cell stack. Moreover, water extraction studies can give one inferential 

information relating to the intimacy of the distribution of the PVIm/Im+ component. 

Wu’s PVF2//PVIm/Im+TFSI- composite films were extracted with distilled water for 48 

hours at ambient temperature, dried to constant weight, and heated for 5 minutes at 200˚C. The 
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8/1, 4/1 and 3/1 films lost 16.7, 26.1 and 30% of their original mass, respectively. When the 

films were doped with 0.1 mole% of dibenzoyl peroxide prior to heating at 200˚C for 5 minutes, 

the 8/1, 4/1 and 3/1 films lost 2.6, 3.1 and 7.6% of their original mass, respectively. The 

differential was due to crosslinking of the films doped with BPO prior to heating to 200˚C. 

In the present work, water extraction of Kynar®301 PVF2/poly[(4(5)-VIm/VIm+TFSI-] 

composite films was carried out in accordance with the protocol described in the experimental 

section, II-H-4. The heated composite films with 15, 25, 35 and 50 mol% of TFSI lost no mass. 

The non-heated composite films with 15, 25, 35 and 50 mol% of TFSI lost only 4.13, 1.93, 0.34 

and 1.62% of their original mass, respectively. PVIm is more soluble in ethanol/water than in 

water. Accordingly, extraction experiments were repeated with the present set of materials, 

extracting with ethanol/H2O (1/1)v. 

Water/ethanol extraction of Kynar®301 PVF2/poly[(4(5)-VIm/VIm+TFSI-] composite films 

was carried out in accordance with the procedure described in section II-I-4. The heated 

composite films with 15, 25, 35 and 50 mol% of TFSI lost 16.20, 11.36, 6.56 and 15.16% of the 

mass associated with PVIm/Im+, respectively. The non-heated composite films with 15, 25, 35 

and 50 mol% of TFSI lost 81.00, 72.72, 75.44 and 68.84% the mass associated with PVIm/Im+, 

respectively. The data is summarized in Table 4. 

Table 4. Percent of PVIm/Im+TFSI- Extraction with Ethanol/H2O (1/1)v  

 15 mol%TFSI 25 mol%TFSI 35 mol%TFSI 50 mol%TFSI 
Heated films 16.20% 11.36% 6.56% 15.16% 

Non- heated films 81.00% 72.72% 75.44% 68.84% 
 

Surprisingly, the percent extracted from the present set of composites as a function of percent 

TFSI was much lower than was observed by Wu. In these experiments, (vinylidene 

fluoride/hexafluoropropylene) (Kynar® 2801) and (vinylidene fluoride/tetrafluoroethylene) 

(Kynar® 7201) composites were also examined. It was expected that the fraction of amorphous 

fluoropolymer phase would be higher in the copolymer and that the mixing of the 

PVIm/Im+TFSI- with the amorphous phase might be enhanced in PVF2 copolymer composites. 

The results without BPO in the present work are graphically displayed in Figure 36.  In the figure, 

301 annealed, 2801 annealed, and 7201 annealed identify Kynar® 301 PVF2//PVIm/Im+TFSI- , 

Kynar® 2801 PVF2//PVIm/Im+TFSI- and Kynar® 7201 PVF2//PVIm/Im+TFSI- composites. 
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Figure 36. Comparison ethanol/water extractions in different composites 

One can see that the percent extractables of all heated composites was less than 10%. PVF2 

composites were generally less extractable than the PVF2 copolymer composites, with 

extractable PVIm/Im+ always being less than 5%. If the PVIm/Im+ had been fully extracted, that 

percent extractables would have been 20%. At the present time, the difference between the 

extraction results obtained by Wu and the results obtained in the present research cannot be 

rationalized. Originally, it was thought that there might be some difference in the molecular 

weight of PVIm used by Wu (polymerized with AIBN in benzene) and PVIm used in the present 

experiments [polymerized with 4,4-azo-bis(4-cyanovaleric acid) in ethanol/H2O]. Indeed, 

viscometric studies show that PVIm polymerized in ethanol/H2O is lower in molecular weight 

than that obtained from benzene. Does this mean that the lower molecular weight PVIm/Im+ is 

more miscible in PVF2 than and therefore contributes more to reduction in extractability then 

does higher molecular weight? 
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IV. Summary 

Wu conducted hot-stage microscopic studies to show that PVF2 crystallite size is sub-

microscopic, in films heated to 200˚C. Larger micron-sized spherulites were observed in films 

cast from DMF and dried at temperatures below 100˚C. The crystal habit of the PVF2 in the 

heated and non-heated films was not determined. In addition, in Wu’s work, only one level of 

TFSI (50 mol%) was evaluated. 

The main advance in the present work is the evaluation of the crystal habit of 

PVF2//PVIm/Im+TFSI- composites by X-ray diffraction. The mol% TFSI was varied from 15 

mol% to 50 mol%. The lower level was chosen to span optimum level of TFSI in Watanabe’s 

studies of monomeric imidazole/imidazolium TFSI mixtures.33 By analysis of X-ray diffraction 

data, it was determined that PVF2 in “non-heated films”, i.e. films that were dried at 

temperatures below 100°C, predominantly adopted the crystalline β-phase, and PVF2 in “heated 

films”, i.e., films that had been heated to 200°C, predominantly adopted the crystalline α-phase. 

The habit of PVF2 crystals in the composite films was found to be the same as that in pure PVF2 

films. The percent crystallinity determines the volume fraction of the amorphous PVF2 phase 

which is mixed, at some microscopic or sub-microscopic scale, with PVIm/Im+TFSI-. The 

presence of PVIm and the percent protonation with TFSI appears to influence the nucleation 

process of the PVF2 crystalline domains; acting as a nucleating agent. Restriction of the 

PVIm/Im+ to thread-like structures permeating the amorphous phase would account for the 

substantial conductivity observed by Wu. The implications of this research allows us to construct 

the following microscopic picture of an initially-formed composite having β-phase crystals that, 

when heated to 200°C and rapidly cooled, recrystallize to yield a more intimate composition in 

which the crystalline polymorph is α-phase. In DSC studies, the higher Tm of PVF2 in the 

initially formed poly[4(5)-VIm/VIm+TFSI-] composite films is consistent with the X-ray 

diffraction assignment as β phase of PVF2. Similarly, the lower Tm of PVF2 in the poly[4(5)-

VIm/VIm+TFSI-] composite films that had been heated to 200°C is consistent with the X-ray 

assignment as α-phase of PVF2. Based on the X-ray diffraction data, DSC analysis, crystallinity 

and extractability, the microstructure and morphology of PVF2/poly[4(5)-VIm/VIm+TFSI-] 

composite films can be envisioned. The PVF2 amorphous phase is the major component, ∼40%. 
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The PVF2 crystals (20-35%) are uniformly distributed in the amorphous PVF2 continuum. The 

PVIm/Im+ (∼20%) is also distributed in the amorphous PVF2 phase. 

 
Figure 37. Visualized microstructure of PVF2/poly[4(5)-VIm/VIm+TFSI-] composites 

Figure 37 shows a cartoon reflecting a submicroscipic picture of a PVF2//poly[4(5)-

VIm/VIm+TFSI-] composite. In the cartoon, three phases are depicted: 1) PVF2 

crystallites/spherulites, 2) PVF2 amorphous chain segments and 3) amorphous PVIm/Im+ 

polymer. The black radial structures represent crystalline spherulites of PVF2 tethered by 

amorphous PVF2 chain segments, also colored black.  PVIm/Im+ is shown as red squiggles and is 

dispersed within the amorphous PVF2 phase. The scale at which it is separated from the PVF2 

amorphous phase is not known, however, based on the relative clarity (transparency) of the 

heated films, the dimensions of the PVIm/Im+ phase must be less than the wavelength of visible 

light. The increase clarity of composites containing 35 and 50 mol% TSFI indicates that the 

miscibility of PVIm/Im+ with the amorphous phase of PVF2 increases at higher TFSI levels.  It is 

yet to be determined what TFSI level is optimum for high proton conductivity, mechanical 

strength and chemically stability.  

PVF2 crystalline phase 

PVF2 amorphous phase 

PVIm/Im+ amorphous phase 
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