
Rochester Institute of Technology Rochester Institute of Technology 

RIT Digital Institutional Repository RIT Digital Institutional Repository 

Theses 

11-14-2011 

RNA-Sequencing analysis from the triceps muscle of normal and RNA-Sequencing analysis from the triceps muscle of normal and 

myostatin-deficient mice using various tools myostatin-deficient mice using various tools 

Richard Rodrigues 

Follow this and additional works at: https://repository.rit.edu/theses 

Recommended Citation Recommended Citation 
Rodrigues, Richard, "RNA-Sequencing analysis from the triceps muscle of normal and myostatin-deficient 
mice using various tools" (2011). Thesis. Rochester Institute of Technology. Accessed from 

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact 
repository@rit.edu. 

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F4112&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/4112?utm_source=repository.rit.edu%2Ftheses%2F4112&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu


 
 

 

 

 

RNA-Sequencing analysis from the triceps muscle of normal 

and myostatin-deficient mice using various tools  

Richard Rodrigues 

Master of Science in Bioinformatics 

 

 

 

Department of Bioinformatics 

College of Science 

Rochester Institute of Technology 

 

 

 

Approved on November 14
th

, 2011 

Dr. Gary Skuse 

Dr. Stephen Welle 

Dr. Vicente Reyes 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

This thesis is dedicated to my loving family, to my 

parents who supported and encouraged me throughout 

my life, my brother and my girlfriend who have always 

been helpful and understanding. 

 

 

 

 

 

 

 

 

 

 

 



 
 

DISSERTATION AUTHOR PERMISSION STATEMENT 

 

 

 

TITLE OF THESIS: RNA-Sequencing analysis from the triceps muscle of 

normal and myostatin-deficient mice using various tools 

 

Author: Richard Rodrigues 

Degree: Masters 

Program: Bioinformatics 

College: College of Science, Rochester Institute of Technology 

 

I, Richard Rodrigues, understand that I must submit a print copy of my thesis or dissertation to 

the RIT archives, per current RIT guidelines for the completion of my degree. I hereby grant to 

the Rochester Institute of Technology and its agents the non-exclusive license to archive and 

make accessible my thesis or dissertation in whole or in part in all forms of media in perpetuity. I 

retain all other ownership rights to the copyright of the thesis dissertation. I also retain the right 

to use in future works (such as articles or books) all or part of this thesis or dissertation.  

 

_________________________ 

                             Richard Rodrigues 

Date 

 

 



 
 

ACKNOWLEDGEMENTS 

 
 

 I feel immensely happy and privileged to finish my Masters of Science degree from the 

Rochester Institute of Technology. Coming to the United States was the first time I had been 

outside my home country India and RIT made my stay a memorable experience. The thesis 

marks an end to the wonderful two years I spent here, and many of the people I encountered 

made the time more comfortable and certainly special.  

 

 A special thanks to Dr. Stephen Welle from the University of Rochester and his team 

Arnold Walker and Chin Yi Chu for providing the data and guidance during my thesis. I would 

like to express my sincere thanks to Dr. Gary Skuse, Dr. Vicente Reyes and Dr. Michael Osier 

for their timely help and support throughout my Masters.  

 

 I would also like to thank Illumina, Inc. and Partek, Inc. for providing me with their 

software and technical support during my thesis.  

 

 I would like to thank Dr. Gurcharan Khanna and Ralph Bean of RIT Research Computing 

for allowing and helping me to use their advanced computation resources. I would also like to 

thank Nicoletta Bruno Collins for her help with the academic formalities. I would like to thank 

my Professors, faculty, family and friends for their assistance. 

 

 Last, but certainly not the least, I would like to thank the faculty from the International 

Students Services Office who were a second family for me and many other Internationals.



 
 

ABSTRACT 

 

 RNA-Sequencing technologies are being used to determine the single nucleotide 

polymorphisms, insertions, deletions and gene expression. The purpose of this study was to 

analyze the effect of myostatin in the triceps muscles of mice using 65 bases single-end RNA-

Sequencing data from the Illumina platform. Another aim was to analyze alternat ive splicing 

events for differentially expressed genes in the above data.  Finally, commercially available and 

open source software packages were compared for their splice junction detection abilities.  

 CASAVA was used for determining the exon, gene and splice junction counts. Partek 

Genomic Suite was used to perform a two-way analysis of variance followed by the 

identification of differentially expressed genes. The splicing events were identified using the 

software packages CASAVA, TopHat, MapSplice and SpliceMap. The results of splice junction 

detection were viewed in the UCSC genome browser. The performance and features of the above 

software were compared.  

 The results revealed that myostatin deficiency significantly alters gene expression. This 

study provides an unbiased view towards commercial and open source RNA-Sequencing 

software using a very significant dataset. The results show that a preliminary inspection for 

alternative splicing can be performed; however, currently no software alone can fully analyze the 

RNA-Seq data and needs complementary software to assist in the complete analysis. The results 

of this study would benefit researchers in choosing the right software for their purposes 

considering the resources like time, man-power and money available.  
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INTRODUCTION 

1. Gene expression 

 Deoxyribonucleic acid (DNA) is a double stranded molecule made up of an array 

of four nucleotide bases (A, T, G and C) and some sequences of these nucleotides which 

encode proteins or RNA within the DNA are known as genes. Genes are composed of 

coding segments (exons) and non-coding segments (introns) (Pearson, 2006), (Clancy, 

2008). These genes are switched on and off under certain internal/external activation 

signals. Different genes are activated at different times in different tissues under different 

stimuli. It is this differential expression of genes, which allows the proper functioning of 

multi-cellular organisms. The central dogma of life involves transfer of information 

encoded by DNA, into the intermediate messenger ribonucleic acid (mRNA), which is 

then translated into protein. Genetic expression is controlled at many levels including that 

of mRNA modification and protein modification. The pre-mRNAs are complementary to 

one of the DNA strand sequence. These pre-mRNA molecules are spliced and exons are 

joined into a particular pattern. This mRNA modification is known as ―splicing‖. Some 

splicing events exclude some exons and recombine the remaining exons into different 

patterns resulting in different isoforms of a protein. Such splicing events are termed 

―alternative splicing‖ (Black, 2003), (Matlin, Clark, & Smith, 2005). These splicing 

patterns can be constitutive or induced for a particular gene. Because of the alternative 

splicing and the differential expression capabilities of genes, transcriptome studies have 

become an indispensable part of any biological research.  
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2. DNA/RNA sequencing 

 The most common ―first generation‖ sequencing method, known as ―Sanger’s 

chain termination sequencing‖ is conventionally used for its accuracy, read length and the 

ease with which it can be automated. However, high cost of the reagents and the tedious 

sample preparations involved in this method, demanded alternative sequencing strategies 

to be developed. Consequently, over the past decade, many ―next (second) generation‖  

sequencing strategies have been developed and highly commercialized. These high 

throughput sequencing technologies have increased the potential scope of the genomic 

studies and our ability to perform genetic diagnostics. These automated/ programmed 

next generation sequencing methods have additional advantages over the Sanger method 

in terms of ease of use and cost of sequencing. The widespread uses of commercially 

available next generation technologies like Roche/454, Illumina/Solexa, Applied 

Biosystems/SOLiD, and Helicos BioSciences/HeliScope, have accelerated the pace and 

increased the scope of research (Shendure & Ji, 2008). Next-generation technologies 

have a variety of applications like genomic analysis and resequencing, metagenomics, 

transcriptome sequencing and mapping of DNA binding proteins and chromatin analysis 

(Voelkerding, Dames, & Durtschi, 2009). These applications include gene expression 

studies, linkage studies and diagnosis, s ingle nucleotide polymorphisms (SNPs) 

detections, transcript rearrangement and non-coding RNA discovery (Morozova, Hirst, & 

Marra, 2009). The next generation sequencing methods produce little noise, give the 

absolute counts of the transcripts, allow the detection of unlimited number of known and 

novel transcripts, hence, are more reliable and precise than DNA microarray-based 

methods (Marguerat, Wilhelm, & Bahler, 2008).  
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 Genome analysis points towards the fixed genetic patterns within a genome, 

whereas transcriptome, all mRNAs within the cell, analysis reveals the variable effects of 

environmental factors on the genetic patterns. Thus, the transcriptome data can be very 

useful for detection of gene expression patterns, genetic variations and mutations, gene 

fusion detection, mapping transcription start site, characterizing alternative splicing, etc. 

which are indicative of the normal/abnormal conditions. The next generation sequencing 

methods used to study transcriptome data at the nucleotide level is called ―RNA-

Sequencing‖ or simply, ―RNA-Seq‖ (Ozsolak & Milos, 2011) (Wang, Gerstein & 

Snyder, 2009).  

  

3. Illumina/Solexa technology 

 The RNA-Seq using Illumina technology employs following basic steps 

(Shendure & Ji, 2008), (Metzker, 2010). RNA samples are used as templates for cDNA 

preparations. These cDNA samples are used for sequencing in Illumina/Solexa  

technology (Figure 2). These cDNA samples, immobilized to beads, are amplified using 

―Bridge‖ Polymerase Chain Reaction (PCR) (Figure 1). Dense arrays of clonally 

amplified cDNA fragments are further sequenced using cyclic reversible termination 

sequencing method using Solexa technology. Each sequencing cycle includes the 

simultaneous addition of a mixture of four modified deoxyribonucleotide species, each 

bearing one of four fluorescent labels and a reversibly terminating moiety at the 3’ 

hydroxyl end. A modified DNA polymerase extends primed templates synchronously. 

This is followed by imaging in four channels and then cleavage of both the fluorescent 

labels and the terminating moiety. Imaging data is then translated and recorded in the 
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form of nucleotide sequence. These read sequences are analysed using sequence analysis 

software. 

 

 

Figure 1: Clonal amplification by bridge PCR 

   

Figure 2: Schematic representation of Solexa/Illumina technology 
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4. Motivation 

 Different analytical tools are available to study DNA/RNA sequencing data. 

Alignment tools like ELAND, SOAP (Li, Li, Kristiansen, & Wang, 2008), SHRiMP2 

(David, Dzamba, Lister, Ilie, & Brudno, 2011), Bowtie (Langmead, Trapnell, Pop, & 

Salzberg, 2009) can be useful to align the short sequence reads to the reference genome. 

Tools like Cufflinks (Trapnell et al. , 2010), CASAVA, Myrna (Langmead, Hansen, & 

Leek, 2010) can be used for finding expression of genes. Splice junction sites can be 

detected using MapSplice (Wang et al., 2010), SpliceMap (Au, Jiang, Lin, Xing, & 

Wong, 2010), TopHat (Trapnell, Pachter, & Salzberg, 2009), etc.  

 With hundreds of different software available for analyzing RNA-Seq data, a 

major question that every researcher is faced with is the choice of software. Some 

software are biased towards a specific platform, allowing the analysis of or giving better 

performance for data from specific platform, e.g. SplitSeek (Ameur, Wetterbom, Feuk, & 

Gyllensten, 2010) which is for SOLiD data only, Maq which can be used for SOLiD or 

Illumina, but not 454 Roche data; while other software may be biased towards better 

performing for data with specific read lengths. Another concern that a researcher has is 

the amount of money he/she can afford to use licensed software. The researcher might 

eventually end up in blindly using software recommended by their collaborators or the 

software which shows as the first hit in Google, which may or may not be the best 

software for their purposes. 

There are very few studies comparing different open source RNA-Seq software, 

however, these studies compare the software to their ―own‖ software, thus, being biased 

towards their software. Also, the next generation platform can generate single- or paired- 
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end read data of different read lengths, making it difficult to be able to compare all the 

angles in a single study. The performance of MapSplice has been compared to TopHat 

and SpliceMap using a simulated RNA-Seq dataset. The read length used for the studies 

are not 65 bp length. Illumina is one of the most widely used sequencing platforms and 

can generate single-end data with a read length of 65 bases.  

The current project aims at analyzing the effect of myostatin on gene expression 

in mice, of RNA-Sequencing data from Illumina platform using CASAVA. This study 

would also compare the performance of the splice junction detection capacity and 

features of the 3 open source software packages (TopHat, MapSplice and SpliceMap) 

along with the commercial software package CASAVA on Illumina RNA-Seq data. This 

study would also serve as a tutorial for individuals wishing to use different software on 

single-end RNA-Seq data.  

 

5. Sequence analysis tools 

5.1 CASAVA (Version 1.7) 

  Consensus Assessment of Sequence And VAriation (CASAVA) is a sequence 

analysis platform for variant detection, such as Single Nucleotide Polymorphisms (SNPs) 

and insertions and deletions (indels) , by aligning the sequencing reads to a reference 

genome.  It can also perform read counting for identifying expression levels of the genes, 

exons and splice junctions in RNA sequencing analysis .  

i. Sequence Alignment: 

 The sequence alignment module used in CASAVA, called ―GERLAD‖, provides 

two alignment algorithms, namely, ―PhageAlign‖ and ―Efficient Large-Scale Alignment 
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of Nucleotide Databases‖ (ELAND). PhageAlign allows finding the best match, whereas, 

the ELAND alignment method is used to match a large number of reads against the 

reference genome. The latest version, ELANDv2, allows for multiseeded and gapped 

alignments. Multiseed alignments allow successive alignment of seeds, each of 32 bases. 

Gapped alignment extends each candidate alignment to the full length of the read, and the 

gaps between each consecutive candidate can be up to 20 bases. 

ii. Variant detection: 

 There are two steps to call SNPs via CASAVA. First, based on base calls, 

alignment, and quality scores , it calls alleles. Secondly, SNPs are called based on the 

allele calls and read depth.  

  There are three stages of finding Indels using CASAVA. Initially, it allows for the 

computation of non-aligned 'shadow reads' clusters, using distance metric positions of the 

'singleton' reads that they pair to. Secondly, it assembles these clusters into contigs. 

Finally, it aligns the contigs back to the genome using the positions of associated 

'singleton' reads. 

iii. Counting 

  CASAVA can use these two methods for read counting: 

a. readBases: Initially, the alignments to splice junctions are converted into two 

shorter genomic alignments, followed by counting the number of bases and not 

the number of reads, that belong to exons and genes. The splice junctions’ counts 

are the number of reads that cover the junction.  

b. readStart: It will only count the first base of each read and was used for counting 

genes, exons and splice junctions. 
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5.2 Bowtie (Version 0.12.7)  

 Bowtie is an open source, memory efficient tool for short read alignments. It 

aligns a large number of short nucleotide sequences (reads) to larger reference 

mammalian genomes. The ultrafast alignment rate of Bowtie makes it more efficient than 

other read mapping tools like SOAP and Maq. Bowtie employs an improvised Burrows-

Wheeler index that allows keeping its memory footprint small. Bowtie has a ―quality-

aware backtracking‖, that permits mismatches and favours high quality alignments; and 

―double indexing‖, that prevents excessive backtracking. Bowtie also forms a good basis 

for other tools like TopHat, MapSplice, SpliceMap, etc. In short, Bowtie is extremely 

suitable for faster alignment of sets of high quality short reads having unique alignments 

to the reference. 

 

5.3 TopHat 

 TopHat, built on the ultrafast short read mapping program Bowtie, is a fast splice 

site mapping tool that aligns short RNA-Seq reads to a reference genome in order to 

identify splice junctions (Trapnell, et al. , 2009). TopHat can also identify the splice 

junctions without a reference annotation. This can be achieved by initial mapping of 

RNA-Seq reads to the genome by splitting the input reads into smaller segments and 

mapping them independently, then, assembling the covered regions to get a single end-to-

end consensus to identify potential exons. Using this initial mapping TopHat builds a 

database of the possible splice junctions by checking canonical (GT-AG) donor and 

acceptor (introns) sites between adjacent and neighbouring exons. The unmapped reads 
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are indexed and mapped against the junction database to confirm splice sites , using the 

seed and extend alignment.  

 

5.4 MapSplice 

 MapSplice is an algorithm for mapping RNA-Seq data to a reference genome in 

order to identify splice junctions within the sequence reads. MapSplice is a memory-

efficient tool that can align all short reads (<75bp), long reads (>=75bp), paired-end reads 

and single-end reads. It can report the memory footprints of the alignments in small size, 

and thus is a CPU efficient algorithm. The effectiveness of the algorithm can be figured 

out by the fact that MapSplice can detect not only the smaller exons, but also 

distinguishably identify canonical, semi-canonical and non-canonical junctions. The 

splice site detections using the MapSplice tool are based on the alignment quality and 

diversity of reads mapped to a junction. It can also identify chimeric events (intra-

chromosomes and inter-chromosomes, inter-strands) within long reads. MapSplice 

identifies the splice junctions using a two step process. The first step is the ―tag alignment 

phase‖ where all the input reads are split into smaller segments of equal length and 

mapped to the reference. The segments that completely map to the genome correspond to 

the exons, whereas those that do not map contiguously are considered as mapping to the 

splice junctions. These candidate alignments of the segments to the splice sites are used 

in the ―splice inference phase‖, where a splice site appearing in the alignment of more 

segments would be identified with high confidence. 



Page | 10  
 

5.5 SpliceMap 

 SpliceMap is an algorithm for the execution of the split-reads alignment which is 

geared towards mammalian genomes. Initially, the set of input reads (50 bp) are divided 

into two equal segment reads. These segment reads are independently mapped to the 

genome, using either Bowtie, Eland or SeqMap (Jiang & Wong, 2008) to identify the 

locations of exons. These (uniquely or multiply) mapped segment reads are used as seed 

alignments and extended base by base to identify splice points. The unmapped (residual 

or segment) reads are used to search for the partner splice points. Currently, only the 

canonical GT-AG splice sites are identified using SpliceMap. If the input reads are longer 

than 50 bp, the reads are separated into overlapping segments of 50 bp and the above 

steps are followed.  

  

6. Data source 

 The RNA-Seq data obtained is a part of an ongoing research project of Dr. 

Stephen Welle and coworkers at the University of Rochester Medical Center. Dr. Welle’s 

group is investigating the influence of post-developmental myostatin deficiency in gene 

expression profiles, associated with wheel running exercise in mice. Investigations of 

Rockl et al. (Rockl et al., 2007) and pilot studies conducted by Dr. Welle et al., indicate 

that wheel running exercise induces more changes in gene expression patterns in triceps 

muscles than in hind-limb muscles. Thus, the triceps muscles’ expression profiles from 

normal mice and myostatin deficient mice are more likely to indicate the effect of 

myostatin on wheel running exercise. Expression profiles can be derived from 

transcriptome sequencing. The transcriptomes involved in this study were sequenced  
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using the Illumina RNA-Sequencing platform. Comparison and analysis of these 

sequence reads with respect to the reference genome using the software described above 

can identify differentially expressed genes and their splicing events.  
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MATERIAL AND METHODS 

 

To analyze RNA sequencing data from the Illumina platform using CASAVA  

  

 The data obtained from the Illumina sequencing platform was in the form of 

sequencing images that after Real Time Analysis (RTA) were converted to bcl (base 

calling) files. Using the converter module of CASAVA, bcl files are converted into 

qseq.txt files [named as: s_<lane>_<read>_<tile>_qseq.txt], which are stored in a 

BaseCalls directory. As the samples were multiplexed, demultiplexing was done using a 

sample sheet (SampleSheet.csv) and qseq.txt files as input. The format of qseq.txt files 

and sample sheet are as shown in Table 9 and Table 10 respectively. 

 

1.1. DEMULTIPLEXING COMMAND 1 

############################################################################## 

Script name: demult_1_rich.sh 

Location: /home/rrr5868 

Description: This script is a wrapper script for demultiplexing on the Werner cluster. The 

commands load the CASAVA module and do the part 1 of the demultiplexing. This script only 

creates a Demultiplexed directory with empty the sub-directories 001, 002 and unknown (the 

contents for these sub-directories are filled when the command for part 2 is run from within the 

Demultiplexed folder) and make-files required for the actual demultiplexing. This command is for 

demultiplexing only, the parameter for alignment has not been provided.  

Input files required: Figure 2 
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############################################################################## 

module load casava     

/tools/casava/1.7.0/bin/demultiplex.pl --input-dir ./CASAVA_trial_run/BaseCalls --output-dir 

./CASAVA_trial_run/BaseCalls/Demultiplexed --sample-sheet 

./CASAVA_trial_run/BaseCalls/SampleSheet.csv 

############################################################################## 

 

1.2. DEMULTIPLEXING COMMAND 2 

############################################################################# 

Script name: demult_2_make_rich.sh 

Location: /home/rrr5868/CASAVA_trial_run/BaseCalls/Demultiplexed 

Description: This script is a wrapper script for demultiplexing on the Werner cluster. The 

commands load the CASAVA module and do the part 2 of the demultiplexing. This script does 

the actual demultiplexing (qseq.txt files and other files are created during this command). This 

command is for demultiplexing only, the parameter for alignment has not been provided. 

Number of cores: 4 

Input files required: Figure 3 

############################################################################## 

module load casava 

nohup make -j 4 

############################################################################## 
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 Figure 3: Demultiplexing input  files and folders.  The demultiplexing step requires many folders like  Lane00x, 

Matrix, Phasing,  etc. and files like  SampleSheet.csv, .htm files, confg.xml,  qseq.txt  BustardSummary.xml, etc. (a) 

and (b) are  representative  figures.  There are  120 qseq.txt  files (corresponding to each lane ) for  each index 1  and 2  

per sample (1 to 8).  

 

 

Figure 4: Output of demultiplexing command 1  and input for demultiplexing command 2.  The  

demult_2_make_rich.sh i s script file for command 2  and the test.output i s the report gene rated of the run.  
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 The qseq.txt files generated after demultiplexing contain short read sequences. 

These read sequences are then aligned to the reference genome using the GERALD 

module of CASAVA. For alignment, GERALD needs qseq.txt files, config.txt, reference 

genome files, BustardSummary.xml and the config.xml file. Parameters set for GERALD 

analysis are as shown in Table 1.  
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1.3. CONFIG FILE TO DEFINE PARAMETERS 

############################################################################## 

Script name: config12_rich.txt 

Location: /home/rrr5868/CASAVA_trial_run/BaseCalls/Demultiplexed/001 

Description: This config file is needed for GERALD to specify which analysis to perform for 

lanes 1 and 2. The other lanes are automatically set to the default ―ANALYSIS none‖. Similar for 

the other lanes, i.e. (3, 4) and (5, 6). The config file names were changed to the corresponding 

lane numbers inside gerald_1bacth_rich.sh 

Parameters: Table 1 

P.S.: For the ELAND_RNA_GENOME_REF_FLAT_GZ, the CASAVA 1.7 manual does not 

mention _GZ which gives an error. The parameter needs _GZ. 

############################################################################## 

EXPT_DIR /home/rrr5868/CASAVA_trial_run/BaseCalls/Demultiplexed/001 

12:USE_BASES all 

ELAND_SET_SIZE 40 

12:ANALYSIS eland_rna 

12:ELAND_GENOME 

/home/rrr5868/CASAVA_trial_run/RefGenome/GenomeSeqFiles/GenomeSeqFiles_Fasta_Squashed 

12:ELAND_RNA_GENOME_REF_FLAT_GZ 

/home/rrr5868/CASAVA_trial_run/RefGenome/GenomeSeqFiles/illumina_refFlat_mm9/refFlat.txt.gz 

12:ELAND_RNA_GENOME_CONTAM 

/home/rrr5868/CASAVA_trial_run/RefGenome/GenomeSeqFiles/AbundantFiles_Fasta_Squashed 

WITH_SORTED true 

############################################################################## 
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1.4. GERALD COMMAND 1: creating directories and files necessary for the alignment 

##############################################################################  

Script name: gerald_1batch_rich.sh 

Location: /home/rrr5868/CASAVA_trial_run/BaseCalls/Demultiplexed/001 

Description: This script is a wrapper script for alignment on the Werner cluster. The commands 

load the CASAVA module and do the part 1 of the Gerald alignment. This script only creates the 

subdirectories (empty directories; the contents are filled when the command for part 2 is run from 

the analysis folder) and makefiles required for the actual GERALD alignment. This command is 

for alignment. 

Parameters: config.txt file.  

############################################################################## 

module load casava     

/tools/casava/1.7.0/bin/GERALD.pl config12_rich.txt --EXPT_DIR 

/home/rrr5868/CASAVA_trial_run/BaseCalls/Demultiplexed/001 --make 

 ############################################################################# 

 The GERALD command 1 generates few empty folders like Plots, Stats, Temp 

and files like Makefile, Makefile.config under the new GERALD folder. The files 

config.txt and config.xml are copied from the upper directory into the newly created 

GERALD directory. 
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Parameters used for the config.txt file in RNA-Sequencing analysis: 

Parameter Description 

EXPT_DIR Path to the experiment directory (contains the qseq.txt files, 

BustardSummary.xml, config.xml files, etc.) 

USE_BASES The USE_BASES string contains a character for each cycle.  

• If the character is ―Y‖, the cycle is used for alignment.  

• If the character is ―n‖, the cycle is ignored.  

• Wild cards (*) are expanded to the full length of the read. Default 

is USE_BASES all. Y65 means use all 65 characters. 

ELAND_GENOME Directory containing the reference genome for alignment with 

ELANDv2. 

ANALYSIS Type of alignment that should be performed. The default is 

ANALYSIS none. ANALYSIS eland_rna for RNA-Sequencing 

analysis, uses ELANDv2 and can be used for single-end reads only. 

ANALYSIS sequence is used for converting qseq.txt files to 

FASTQ/FASTA format sequence.txt files, but no alignment is 

performed, required as input by BOWTIE and alternative splicing 

junction detection tools like TopHat, SpliceMap, MapSplice. 

ELAND_SET_SIZE Maximum number of tiles aligned by each ELAND process, to 

ensure a core will not run out of memory. No default value. The 

value should be somewhere around ELAND_SET_SIZE < (12 

million) / (clusters per tile). 

SEQUENCE_FORMAT Format used to export data in the s_N_sequence.txt file. Allowed 

values are --fasta, --fastq, or –scarf  

Default is SEQUENCE_FORMAT --fastq. 

WITH_SORTED Produce the sorted.txt files. Default WITH_SORTED false. 

WITH_SEQUENCE Produce the sequence.txt files. Default WITH_SEQUENCE false. 

ELAND_RNA_GENO

ME_REF_FLAT_GZ 

Points to the refFlat.txt.gz file (gzip compressed). 

ELAND_RNA_GENO

ME_CONTAM 

Points to a squashed version of the files of ultra-abundant 

sequences (generally ribosomal and mitochondrial). Reads that 

match to these are ignored. 

Table 1: GERALD parameters for RNA-Seq analysis.  
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1.5. GERALD COMMAND 2: run command from newly created GERALD directory 

##############################################################################  

Script name: gerald_2batch_rich.sh 

Location: /home/rrr5868/CASAVA_trial_run/BaseCalls/Demultiplexed/001/GERALD_date_user 

Description: This script is a wrapper script for alignment on the Werner cluster. The commands 

load the CASAVA module and do the part 2 of the alignment of GERALD module. This script 

does the actual alignment (export.txt files and other files are created during this command).  

Parameters: config.txt file 

############################################################################## 

module load casava     

nohup make -j 2 

##############################################################################  

 

 The export.txt and sorted.txt files produced in the GERALD analysis were used as 

input for the variant detection and counting analyses. The export.txt file has the results of 

alignment of all the reads in the lane. The sorted.txt file has the results of only those reads 

that passed purity filtering and have a unique alignment with the reference genome. The 

format for the sorted.txt file is as shown in Table 11. 

 

 For variant detection and counting, input is the export.txt files that are newly 

created in GERALD folder.  The parameters selected for the variant detection and 

counting analysis in RNA-Seq is as described in Table 2. 
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Figure 5: Output of command 2 of the GERALD module. The summary reports, export.txt and sorted.txt files have  

been created. 

 

Option Description 

-e     --exportDir=PATH Path to export.txt files 

-l      --lanes=NUMBER_LIST List of lanes (or samples) 

-p     --projectDir=DIR Project directory; all the output would be inside this directory 

-r      --runId=STRING Unique identifier for each run, can be any unique string 

-ref   --refSequences=PATH PATH of the reference genome sequences 

-a  --applicationType=TYPE Type of analysis, DNA or RNA; default is DNA. Example: -a RNA 

-wa   --workflowAuto Generates the workflow definition file and runs it. 

--jobsLimit  Number of parallel jobs 

--refFlatFile Name and location of UCSC refFlat.txt.gz file 

-rm    --readMode=MODE Run-read-mode for all runs, paired (default) or single. Single mode is 

recommended for RNA-Seq, sets the snpCovcutoff = -1 (which turns 

off the SNPCaller Coverage Cutoff filter, i.e. SNPs are now called at 

every position). 

rnaCountMethod Control the RNA counting method default: rnaCountMethod readBases 

Table 2: Parameters for RNA-Seq variant detection and counting  
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1.6. VARIANT DETECTION COMMAND 

############################################################################## 

Script name: var_count_rich_1.sh 

Location: /home/rrr5868/CASAVA_trial_run/BaseCalls/Demultiplexed/001/GERALD_27-09-

2011_rrr5868 

Description: The command does the gene expression and splices junction detection analysis for 

the specified lane (or sample). 

Parameters: Table 2 

############################################################################## 

/tools/casava/1.7.0/bin/runRNA.pl --runId=001_Rich_lane1 --

projectDir=/home/rrr5868/CASAVA_trial_run/BaseCalls/Demultiplexed/001/GERALD_27-09-

2011_rrr5868/Var_Count_lane1 --

refFlatFile=/home/rrr5868/CASAVA_trial_run/RefGenome/GenomeSeqFiles/illumina_refFlat_m

m9/refFlat.txt.gz -e 

/home/rrr5868/CASAVA_trial_run/BaseCalls/Demultiplexed/001/GERALD_27-09-2011_rrr5868 -

l 1 --

refSequences=/home/rrr5868/CASAVA_trial_run/RefGenome/GenomeSeqFiles/GenomeSeqFile

s_Fasta_Squashed --workflowAuto --jobsLimit=2 

############################################################################## 

 

 The results obtained from variant detection and counting contains different files 

sorted by chromosome. It includes count.txt files for exons, genes and splice junctions, 

and snp.txt files for SNP calls sorted by position. The format for snp.txt and count.txt 

files is as shown in Table 12 and Table 13 respectively. 
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 Using PERL scripts, the columns for gene symbol and normalized gene count 

were extracted from the *_genes_count.txt for each chromosome per sample and saved 

with the file name corresponding to the respective sampleID. These gene counts for each 

sample were imported into the Partek Genomic Suite for identifying differentially 

expressed genes. In the Partek analysis, samples were arranged as rows and each gene 

was arranged as a separate column. The sample attributes , like exercise (wheel 

running/sedentary) and genotype (myostatin deficient/wildtype), were added and 

Analysis of Variance (ANOVA) was performed on the data followed by creating the gene 

lists. The Benjamini and Hochberg method of False Discovery Rate (FDR) was used to 

correct for multiple comparisons. The differentially expressed genes were used for 

checking the performance of the splice junction detection software . 
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To analyze alternative splicing events in the data using software like CASAVA, 

TopHat, MapSplice and SpliceMap. 

 

 To align the input reads with BOWTIE, the demultiplexed qseq.txt files were 

converted into FASTA formatted files using CASAVA’s ANALYSIS: sequence module 

from GERALD. The commands are the same as for the ANALYSIS: eland_rna and only 

the config.txt file was modified for the specific parameters.  

 

2.1. CONFIG FILE to create FASTA formatted reads 

######################################################################## 

Script name: config1_rich_fasta.txt 

Location: /home/rrr5868/CASAVA_trial_run/BaseCalls/Demultiplexed/001/ 

Description: This config file is needed for GERALD to specify which analysis to 

perform. 

Parameters: Table 1 

######################################################################## 

EXPT_DIR /home/rrr5868/CASAVA_trial_run/BaseCalls/Demultiplexed/001 

USE_BASES all 

ANALYSIS sequence 

ELAND_SET_SIZE 40 

WITH_SEQUENCE true 

SEQUENCE_FORMAT --fasta 

######################################################################## 
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 BOWTIE builds an index of the genome using the DNA sequences. It has to be 

built only once and pre-built indexes can be used for future analyses. The splice junction 

detection software requires the BOWTIE index files, FASTA formatted separate 

chromosome files, FASTA formatted input reads and the refFlat.txt.gz file. The output are 

insertions.bed, deletions.bed and junctions.bed (Table 14). The junctions.bed can be directly 

imported and viewed in the UCSC genome browser (W. James Kent et al., 2002). The 3 

software packages, TopHat, MapSplice and SpliceMap, are able to run BOWTIE by 

themselves and directly use the output from BOWTIE as input for finding the splice 

junctions.  

2.2. TopHat  

 There are many parameters which can be provided via the command line to 

TopHat (Table 3): 

Argument Description 

<ebwt_base> The base-name of the index to be searched. E.g., In-case of genome.1.ebwt, 

the base-name is genome 

<reads1,…….readsN> A comma-separated list of files containing reads in FASTQ or FASTA 

format. Each sample is in a separate file 

-o/--output-dir <string> Sets name of the output directory, default is ./tophat_out 

-a/--min-anchor-length 

<int> 

Only junctions whose reads span atleast these many bases on each side of the 

junction (anchor length) are reported. The default is 8. 

-m/--splice-mismatches 

<int> 

The maximum number of mismatches allowed in the anchor region of a 

spliced alignment. The default is 0 

-i/--min-intron-length 

<int> 

The minimum intron length, default is 70, and ignores donor-acceptor pairs 

with less than these many bases apart 

-I/--max-intron-length 

<int> 

The maximum intron length, default is 500000. 

--max-insertion-length 

<int> 

The maximum insertion length. The default is 3. 
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Table 3: Parameters for TopHat  

 

  

--max-deletion-length 

<int> 

The maximum deletion length. The default is 3. 

 

-F/--min-isoform-fraction 

<0.0-1.0> 

 

Junctions supported by very few alignments are discarded. The number of 

reads spanning junction / average dept of coverage of exon > minimum 

isoform fraction, for the junction to be reported. 

Zero disables the filter. The default is 0.15 

-p/--num-threads <int> Number of threads for aligning reads; allows parallel computing. 

-g/--max-multihits <int> For a single read, allows these many maximum alignments to the reference. 

Default is 20 for read mapping. 

--initial-read-mismatches During initial mapping of read to the reference, only this number of 

maximum mismatches is allowed. Default is 2 

--bowtie-n BOWTIE uses –n option for initial mapping, default is –v 

--segment-mismatches During initial mapping of read segments, maximum of these many 

mismatches are allowed, default 2 

--segment-length Each read is divided into segments, each of atleast these many bases, they are 

independently mapped. Default is 25. 

--min-coverage-intron The minimum intron length that may be found during coverage search. The 

default is 50. 

--max-coverage-intron The maximum intron length that may be found during coverage search. The 

default is 20000. 

--min-segment-intron The minimum intron length that may be found during split-segment search. 

The default is 50. 

--max-segment-intron The maximum intron length that may be found during split-segment search. 

The default is 500000. 
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TOPHAT COMMAND 

########################################################################  

Script name: tophat_batch_rich.sh 

Location: /home/rrr5868/TopHat 

Description: The command loads the necessary modules and after alignment using 

BOWTIE, uses TopHat for finding the splice junctions.  

########################################################################  

module load bowtie 

module load tophat  

module load samtools 

nohup tophat --num-threads 8 --bowtie-n --segment-length 32 genome 

001_sample_1_sequence.txt,001_sample_12_sequence.txt,001_sample_13_sequence.txt,001_s

ample_15_sequence.txt,001_sample_3_sequence.txt,001_sample_6_sequence.txt,001_sample

_7_sequence.txt,001_sample_9_sequence.txt,002_sample_10_sequence.txt,002_sample_11_se

quence.txt,002_sample_14_sequence.txt,002_sample_16_sequence.txt,002_sample_2_sequen

ce.txt,002_sample_4_sequence.txt,002_sample_5_sequence.txt,002_sample_8_sequence.txt 

######################################################################## 
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2.3. SpliceMap 

 

 There are many parameters which can be provided via a command line or via 

run.cfg file (Table 4): 

Parameter Description 

genome_dir Directory containing the separate chromosome files  in FASTA format 

> reads_list1 

 sample1.txt  

< 

List of files containing the input reads, one sample per line, starting of list 

with > and ending of list with <  

read_format Format of input reads, can be FASTA, FASTQ, RAW 

Mapper Aligner type, can be bowtie, eland, seqmap 

annotations the annotations file to find novel junctions 

temp_path name of directory storing temporary file, default is temp 

out_path name of directory that stores output files, default is output 

max_intron maximum intron size, default is 400000 

min_intron 25-th intron size, default is 20000 

max_multi_hit segment reads can have maximum of these many multi-hits to the reference, 

default is 10 

seed_mismatch maximum number of mismatches allowed in mapping seed reads, can be 0, 

1, 2. Default is 1 

read_mismatch maximum number of mismatches allowed in mapping complete reads. 

Default is 2 

chromosome_wildcard name of chromosome file with wildcards, default is chr*.fa 

num_chromosome_together processes these many chromosomes at once, default is 1 

bowtie_base_dir base of bowtie index 

num_threads number of threads for mapping, default is 2, allows parallel computing 

Table 4: Parameters for SpliceMap  
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CONFIG FILE TO DEFINE PARAMETERS 

######################################################################## 

Script name: run.cfg 

Location: /home/rrr5868/TopHat 

Description: This config file is needed for SpliceMap to specify parameters. 

Parameters: Table 4 

######################################################################## 

# This configuration file contains all settings for a run of SpliceMap. 

# lines begining with '#' are comments. lists begin with '> tag' and end with '<' on separate lines 

# Required Settings 

genome_dir = /home/rrr5868/TopHat/ 

> reads_list1 

001_sample_1_sequence.txt 

001_sample_12_sequence.txt 

001_sample_13_sequence.txt 

001_sample_15_sequence.txt 

001_sample_3_sequence.txt 

001_sample_6_sequence.txt 

001_sample_7_sequence.txt 

001_sample_9_sequence.txt 

002_sample_10_sequence.txt 

002_sample_11_sequence.txt 

002_sample_14_sequence.txt 
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002_sample_16_sequence.txt 

002_sample_2_sequence.txt 

002_sample_4_sequence.txt 

002_sample_5_sequence.txt 

002_sample_8_sequence.txt 

< 

#> reads_list2 

#< 

read_format = FASTA 

#quality_format = phred-33 

mapper = bowtie 

# Optional Settings 

#annotations = all.gene.refFlat.txt 

temp_path = ./splicemap_temp 

out_path = ./splicemap_output 

max_intron = 400000 

min_intron = 20000 

max_multi_hit = 10 

# full_read_length = 70 

seed_mismatch = 2 

read_mismatch = 2 

#max_clip_allowed = 40 

sam_file = sam 

chromosome_wildcard = chr*.fa 
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num_chromosome_together = 2 

#  Bowtie specific options  

# Required Settings 

bowtie_base_dir = /home/rrr5868/TopHat/genome 

# Optional Settings 

num_threads = 12 

######################################################################## 

 

 

 

SPLICEMAP COMMAND 

########################################################################  

Script name: splicemap_batch_rich.sh 

Location: /home/rrr5868/TopHat 

Description: The command loads the necessary modules and after alignment using 

BOWTIE, uses SpliceMap for finding the splice junctions.  

########################################################################  

module load bowtie 

module load splicemap 

module load samtools 

nohup /tools/SpliceMap/3.3.5.2/bin/runSpliceMap run.cfg 

######################################################################## 
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2.4. MapSplice 

 

 There are many parameters which can be provided via a command line or via 

MapSplice.cfg file (Table 5): 

Parameter Description 

-u/--reads-file <string> comma separated list of files containing reads  in FASTA or FASTQ format 

-c/--chromosome-files-

dir <string> 

Directory containing the separate chromosome files  in FASTA format 

-B/--Bowtieidx <string> the path and basename of the index to be searched 

-o/--output-dir <string> name of directory that stores output files, default is ./mapsplice_out 

-L/--seglen <int> length of read segments, should be between 18 to 25 and no longer than half of 

the read length, if the read can’t be divided evenly, the remainder read 

sequence will be deleted  

-Q/--reads-format 

<string> 

Format of input reads, fa, fq 

-E/--segment-

mismatches <int> 

The maximum number of mismatches (Hamming distance) allowed in an 

unspliced aligned read and segment. Can be 0 - 3. The default is 1. 

-n/--min-anchor <int> the anchor length for spliced alignments 

-m/--splice-mismatches 

<int> 

maximum number of mismatches allowed in a segment crossing a junction, 

default is 1 

-i/--min-intron-length 

<int> 

minimum intron length, default is 1 

-x/--max-intron-length 

<int> 

maximum intron length, default is 200000 

-X/--threads<int> number of threads for mapping, allows parallel computing 

--max-hits<int> For a single read, allows (max. hits x 10) many maximum alignments to the 

reference., default is (4 x 10 = 40) 

-r/--max-insert <int> The maximum small indel length. Can be 0 - 3. The default is 3 

 Unless mentioned otherwise, by default MapSplice assumes the read to be 

single-end, finds only canonical junctions, first tries to map unspliced reads to 

the reference and will try to find spliced alignments for the read only if it could 

not find the unspliced alignments for the read. 

Table 5: Parameters for M apSplice 
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MAPSPLICE COMMAND 

########################################################################  

Script name: mapsplice_long_rich.sh 

Location: /home/rrr5868/TopHat 

Description: The command loads the necessary modules and after alignment using 

BOWTIE, uses MapSplice for finding the splice junctions.  

########################################################################  

module load bowtie 

module load mapsplice 

module load samtools 

python /tools/MapSplice/1.15.2/bin/mapsplice_segments.py -Q fa -c /home/rrr5868/TopHat -u 

001_sample_1_sequence.txt,001_sample_12_sequence.txt,001_sample_13_sequence.txt,001_s

ample_15_sequence.txt,001_sample_3_sequence.txt,001_sample_6_sequence.txt,001_sample

_7_sequence.txt,001_sample_9_sequence.txt,002_sample_10_sequence.txt,002_sample_11_se

quence.txt,002_sample_14_sequence.txt,002_sample_16_sequence.txt,002_sample_2_sequen

ce.txt,002_sample_4_sequence.txt,002_sample_5_sequence.txt,002_sample_8_sequence.txt  -B 

/home/rrr5868/TopHat/genome -L 21 -E 2 -n 8 -m 0 -X 12 --fusion 2>mapsplicelong_time.log 

######################################################################## 
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RESULTS AND DISCUSSION 

 

1. CASAVA 

 CASAVA can create genomic builds, call SNPs, detect indels, and count reads 

using data generated from one or more runs of the Genome Analyzer across a broad 

range of sequencing applications. The RNA-Sequencing module of CASAVA was used 

to find the gene counts for all the samples across the whole genome. For aligning of the 

short reads to the reference genome using the GERALD module , the ELANDv2 

algorithm was used. GERALD provides the flexibility to include lane specific  

parameters, required or optional configuration file parameters, or analysis specific 

parameters. Using the variant detection and counting module, single nucleotide 

polymorphisms (SNPs) and indels can be detected. However, the Indel Finder application 

runs only during paired-end reads, and it uses singleton/shadow read pairs to detect 

indels. So, for single-end reads, the output is in the form of exon counts, gene counts and 

splice junction counts for each chromosome per lane (or sample). 

 

2. Partek Genomic Suite 

The gene count will be used to find the differentially expressed genes and to 

understand any effects of myostatin deficiency in mice. After conducting a principal 

component analysis on the gene counts from CASAVA for the 16 samples using the 

Partek Genomic Suite, four samples appeared to be outliers as compared to the other 

samples. On checking the lab notes, these samples were found to have used a different 
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homogenization method for RNA extraction so they were removed from further analysis. 

Only 12 samples were used for the 2-way ANOVA using Partek and for finding 

differentially expressed genes. The 2-way ANOVA model used, Method of Moments, 

allows for the checking of the two main factors of exercise and genotype and their 

interaction. To check the effect of myostatin, a contrast of wildtype vs. myostatin-

deficient mice was performed using the Fisher’s Least Significant Difference test.  

 From the sources of variation plot (Figure 6), it was clear that the interaction is 

not highly significant. It could hardly explain the variability in the data. The gene list 

obtained for the interaction had only three genes (Mpl, Prph2 and 1700020N18Rik) and it 

seems that myostatin and exercise together do not cause any major changes in gene 

expression. Since we already know that exercise causes major changes in gene 

expression, the major focus was on finding the genes differentially expressed due to 

myostatin.  

 

 

Figure 6: Sources of variation plot  from Partek Genomic Suite  
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Although many different combinations of p-value and fold change could have 

been used for generating the list of differentially expressed genes, it was decided to 

concentrate only on p-value rather than fold change. To compensate for the exclusion of 

fold change in the analysis, a stringent criterion of p-values with FDR < 0.01 was used.  

A total of 22 genes were found to be differentially expressed with the above criteria 

(Table 6). Genes related to cardiomyopathy like Sgcg, Prph2 which is related to 

Amyotrophic lateral sclerosis (ALS), Mstn which is related to muscular hypertrophy and 

Mpl which is involved in the Jak-STAT signalling pathway were observed. A less 

stringent criterion of p-values with FDR < 0.05 could have been used to find novel genes 

at the expense of having some false discoveries. These genes were further used as a test-

dataset to check the performance of the splice junction detection software.  

 

3. Splice Junction results 

 BOWTIE is an aligner that can align short reads to a reference genome. It 

provides input to many splice junction detection software packages like TopHat, 

SpliceMap and MapSplice. To analyze alternative splicing in the data, it was first 

important to identify the exon-exon splice junctions. Currently, TopHat and SpliceMap 

identify only canonical GT-AG junctions. CASAVA gives the expressed splice junctions, 

whereas MapSplice is flexible enough to allow for canonical, semi-canonical and non-

canonical splice junction identification. For the sake of fair comparison and to limit the 

number of false positives, the junction detection was performed for canonical splice 

junctions only. There are thousands of genes that show alternative splicing, so with the 

scope of this thesis in mind, the analysis of alternative splicing was limited to the 22 
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differentially expressed genes obtained from the earlier analysis of CASAVA followed 

by analysis with the Partek Genomic Suite (Table 6). To study alternative splicing, it is 

first important that the software used is able to identify the splice junctions of the gene 

under study. Table 7 shows the performance of the software in identifying the splice 

junctions for the representative genes. 

 

Gene Symbol Gene Name Chromosome 

Abca4 ATP-binding cassette, sub-family A (ABC1), member 4 3 

D17Wsu92e DNA segment, Chr 17, Wayne State University 92, expressed 17 

Lancl1 LanC (bacterial lantibiotic synthetase component C)-like 1 1 

1700020N18Rik RIKEN cDNA 1700020N18 gene 1 

4832428D23Rik RIKEN cDNA 4832428D23 gene 1 

Arhgef10l Rho guanine nucleotide exchange factor (GEF) 10-like 4 

Aldh18a1 aldehyde dehydrogenase 18 family, member A1 19 

Angel1 angel homolog 1 (Drosophila) 12 

Dkk3 dickkopf homolog 3 (Xenopus laevis) 7 

Ddah1 dimethylarginine dimethylaminohydrolase 1 3 

Etf1 eukaryotic translation termination factor 1 18 

Ints3 integrator complex subunit 3 3 

Mpl myeloproliferative leukemia virus oncogene 4 

Mstn myostatin 1 

Ppil3 peptidylprolyl isomerase (cyclophilin)-like 3 1 

Prph2 peripherin 2 17 

Tardbp predicted gene 13886; TAR DNA binding protein 4 

Pmepa1 

prostate transmembrane protein, androgen induced 1; similar to 

Nedd4 WW binding protein 4 
2 

Sgcg sarcoglycan, gamma (dystrophin-associated glycoprotein) 14 

Serpine2 serine (or cysteine) peptidase inhibitor, clade E, member 2 1 

Slc35f5 solute carrier family 35, member F5 1 

Uaca uveal autoantigen with coiled-coil domains and ankyrin repeats 9 

Table 6: Differentially expressed genes for myostatin; criterion of p -values with FDR < 0.01 
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Column ID TopHat SpliceMap 

MapSplice 

CASAVA 
Alternative 

splicing 
21 bases 
segment 

length 

25 bases 
segment 

length 

1700020N18Rik 
x  x x x x 

Mpl 
x  x x x x 

Prph2 
x x x x x x 

Etf1 
  x x  x 

Tardbp 
  x x   

Abca4 
  x x   

Ddah1 
  x x  x 

Arhgef10l 
  x x   

Ints3 
  x x   

Uaca 
  x x   

Serpine2 
  x x   

Slc35f5 
  x x  x 

D17Wsu92e 
  x x   

Mstn 
  x x  x 

Dkk3 
  x x   

Sgcg 
  x x  x 

4832428D23Rik 
  x x  x 

Angel1 
  x x  x 

Pmepa1 
  x x  x 

Aldh18a1 
  x x   

Ppil3 
  x x   

Lancl1 
  x x   

Table 7: Comparison of splice junction detection ability of the software   

 

 Out of the 22 genes analyzed, 11 were associated with alternative splicing. The 

junction.bed files from the above software were imported into the UCSC genome browser 

and the splice junctions were viewed against the annotated features like mRNAs and 
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alternative splicing events. The following is the example of junctions for the Uaca gene 

obtained from the TopHat and SpliceMap output (Figure 7). 

 

 

Figure 7: Splice junction for  Uaca gene viewed in UCSC genome browser. (a) Junctions from TopHat  (b) Junctions 

from SpliceMap. 

 

 If the junction for the gene had been detected, a preliminary analysis could show 

the usage of specific alternative events in the data. Uaca is a gene expressed at high levels 

compared to the average gene. The gene contains 22 different GT-AG splice junctions. 

Transcription of the gene can produce 7 alternatively spliced mRNAs. The gene is 

annotated to have 4 alternative promoters, cassette exons, bleeding exons and retained 

introns. The junctions from TopHat and SpliceMap show the usage of one of the 
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alternative promoters and a retained intron. Although the report generated by the splice 

junction software gives a count of the number of reads that map the junction, there is a 

wide range in the number of reads that map to the junctions. For one gene, the number of 

reads that correspond to its different splice junctions are not always equal, making it 

difficult to explain the quantitative use of different junctions for the same gene. Further 

analysis might be needed to check for specific usage of junctions in alternative splicing. 

 

4. To compare CASAVA with open source software for splice junction detection. 

 The performance of open source software can be compared to commercial 

software performance using a common data set. Open source software will facilitate 

increased access for the scientific community to the analysis of RNA-Seq data.   

 This goal is fairly complex because many aspects can be studied. One could look 

at the implementation of the software, the actual algorithm used (ELAND and BOWTIE), 

the results of alignment, time requirement, supervision or cost.  

 For comparison (Table 7), CASAVA was kept as a stand-alone software package 

because it is commercial and can perform alignment, detection of alternative splicing, 

plus expression count study, while the  other software packages were used in combination 

with BOWTIE as open source alternatives (e.g. TopHat+Bowtie, SpliceMap+Bowtie, 

MapSplice+Bowtie).   

The study conducted by Yiu et al. (Yiu et al., 2011) used default parameters for 

comparison of RNA-Seq software packages. Their simulated dataset had 40,000 reads 

with primarily 25x read lengths, whereas the ir real dataset consisted of approximately 

14.3 million paired reads of 51 base pairs (bp) and 18.5 million paired reads of 130 bp 
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length. A study at Stanford by Jim Hester (Hester, 2010) used 19 million paired-end reads 

of 75 bp length, from the Illumina GAIIx and simulated paired datasets of varying length 

to compare different RNA-Seq software packages. 

Wherever possible, the segment (seed) length, number of threads, minimum 

anchor length, segment mismatches, splice mismatches and read mismatches parameters’ 

values were kept the same (or similar) in all the software packages, whereas other 

parameters like maximum multi-hits, minimum and maximum intron lengths had the 

default values. This study used an input of single-end 342.7 million reads, which was 

very high compared to the other studies. 

To analyze the hundreds of gigabytes of data produced by RNA-Seq technologies, 

there is a wide array of open source and commercial software packages available. For a 

researcher to get the most information from his data, it is very important to choose the 

right tool for analysis. As seen from the comparison (Table 8), no software alone can 

completely analyze the RNA-Seq data; the use of specific software depends on the aim of 

the researcher and the availability of resources like time, money and expert personnel to 

use the software.  

If the research starts from the raw RNA-Seq data, followed by finding the 

differentially expressed genes, CASAVA would be a good package to determine gene 

expression counts. However, to analyze the differentia l expression of genes using gene-

counts, complimentary software would be needed for the downstream statistical analyses. 

The splice junction counts available from CASAVA cannot be directly viewed in the 

UCSC genome browser and require the conversion of splice_count files into UCSC 

compatible bed format files. Overall, Illumina sequencing provides terabytes of data 
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which can be overwhelming at times. To run the different modules of CASAVA and to 

manipulate its output files to make them compatible for downstream analyses, an expert 

bioinformatician would be needed.  

If the ―interesting‖ genes are already known to the researcher, using TopHat or 

SpliceMap would be good open source options. SpliceMap has an easy-to-use 

configuration file, gives higher sensitivity and allows for the use of different short read 

aligners at the expense of not permitting the change in seed length and being more time 

consuming than TopHat.  

MapSplice was not able to detect any of the ―test‖ genes. The algorithm tries to 

split the input read into smaller equal length segments, each containing the seed length 

number of characters. Any leftover characters from the original read are discarded. A 

read length of 65, using 21 as the seed length, allowed 63 characters of the read to be 

used. With a seed length of 21 the run time was very high and only 264 junctions were 

detected. None of these junctions were mapped to the test genes. The seed length of 25 

allowed only 50 characters of the original read to be used and the rest to be discarded. 

When a seed length of 25 was used, the run time dropped sharply and the software found 

approximately twice as many junctions as compared to the seed length of 21. Again, none 

of these junctions were mapped to the test genes. There was also an error in the number 

of the junctions, with one junction number being skipped in the report. The algorithm 

seems to perform better for read lengths which are multiples of 25.  

MapSplice can be useful to detect novel junctions as it can allow the detection of 

semi- and non-canonical junctions. Many false positives may be found in the results so 

the user needs to be careful while interpreting these results.  
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Software 

Features 
CASAVA 

BOWTIE + 

TopHat 

BOWTIE + 

SpliceMap 

BOWTIE + 

MapSplice 

License type Commercial Open source Open source Open source 

Demultiplexing  x x x 

Aligning short reads     

Gene expression count  x x x 

Splice junction 

detection 
(86% sensitivity) 

(86% 

sensitivity) 

(96% 

sensitivity) 

(no junction 

detected) 

Time requirement 

(hrs. per sample per 

thread) 

GERALD: 7.5 hrs  

Variant and 

detection: 7.5 hrs  

12.5 hrs  24 hrs  

19.5 hrs (segment 

length = 25) 

51.5 hrs (segment 

length = 21) 

Flexibility in parameters     

Junction type expressed canonical canonical

canonical, semi 

and non- 

canonical 

Allows different aligner x x  x

Allows changing read 

segment length 
  x 

Expert supervision 

needed 
Maximum Minimal Minimal Minimal 

Table 8: Comparison of various RNA-Seq software 
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CONCLUSIONS 

 A few open questions may be further studied. New software can be made or 

current software can be upgraded to allow for better and in-depth analysis of alternative 

splicing. No study has been performed as of yet to check for any 3 prime biases that may 

be present in the RNA-Seq data (Ozsolak & Milos, 2011). The selection of mRNA for the 

study is via the selection of poly-A tails of the mRNA. As a result, the 3’ side of the 

transcripts is definitely represented; however, due to the various percentages of RNA 

degradation, it would be interesting to determine if there is any loss of information of the 

5’ end. The RNA degradation and the random fragmentation of the template during 

library preparation may cause a lower number of longer transcripts and a greater number 

of shorter transcripts. This exploration may allow for the further study of issues 

concerning the complexity of the information obtained by the transcripts. Questions like 

whether the absence of 5’ end exons is due to alternative splicing or just loss of 

information due to RNA degradation, and whether the current normalization methods 

would be sufficient if there is any 3’ bias, would be interesting to observe. Software can 

be programmed in efficient ways that allow minimum time and memory requirement. 

Studies of the code implementation of current software can be done to better understand, 

increase the efficiency of the software and permit the use of other software modules as 

plug-ins. 

Next generation sequencing technologies are being used for different applications 

every day. RNA-Sequencing analysis is a very promising technique for the analysis of 

gene expression. Many types of software are available for conducting a myriad of 

analyses (Table 15). However, as of today, no one software package can alone do the 
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various types of RNA-Seq analyses. Another major shortcoming in the analysis of RNA-

Seq data is that expert personnel are needed to data mine the overwhelming data and 

obtain some useful information. Software should aim at avoiding the need for users to 

enter command line arguments. Providing the users with a graphical interface or a 

configuration file containing all the parameters, wherein the users might just have to 

select the ones they want, would greatly simplify the analysis. Most of the software 

packages currently available are only Unix-based and have many hardware requirements 

which may not be readily available in a small laboratory, creating a limitation for the 

software’s value to the researcher. With the availability of multi-core, multi-processor 

computers, software should be designed that can utilize the parallel computing ability and 

therefore reduce the computing time. Another issue that needs to be addressed is 

providing the output in formats that are compatible with other software which might be 

used for downstream data processing. The best approach would integrate a number of 

software packages to create one that should be able to completely analyze the data, be it 

alignment, gene counting, differential expression of the genes, finding alternative splicing  

events, visualizing the output or querying different biological databases to correlate the 

results with the available information.  

With the next-generation techniques being upgraded regularly, it is equally 

important that open source, cross-platform, parallel computing software is available that 

can analyze different types of next-generation data with as little time and memory 

requirement as possible. This would bring uniformity in the software usage, making it 

easier to compare different findings.  
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APPENDIX 

 

 

 

 

Field Description 

Machine number Identifier of the sequencer 

Run number Number to identify the run on the sequencer 

Lane number Positive integer (1 to 8) 

Tile number Positive integer 

X X co-ordinate of the spot. Integer 

Y Y co-ordinate of the spot. Integer 

Index Index sequence. If a file has not yet been demultiplexed, it has 0 

Read number 1 for single-end reads, 2 for multiplexed single-end reads 

Sequence Called sequence of read 

Quality The quality string 

Filter Did the read pass filtering? 0-No, 1-Yes 

Table 9: Format of qseq.txt file 
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Field Description 

FCID Flow Cell ID 

Lane Positive integer (1 to 8) 

SampleID ID of the sample 

SampleRef The reference sequence of the sample; species 

Index Index sequence 

Description Description of the sample 

Control Y indicates this lane is control lane, N means sample 

Recipe Recipe used during sequencing 

Operator Name or ID of the operator 

Table 10: Format of Sample sheet 

 

 

Field Description 

Match 

chromosome 

Name of chromosome match or one of the following code: 

RM= repeat masked, i.e. matched to abundant sequences 

NM= not matched 

Match contig  Name of the contig if there is a match, blank otherwise 

Match position w.ith respect to the forward strand, position starts at 1, blank otherwise 

Match strand F=forward R=reverse 

Match descriptor Description of the alignment. 65=65 matches, 32G32=substitution at 33
st
 position, ^..$ 

is used to represent indels, number instead of the dots means insertion and sequence 

means deletion relative to the reference. 

Single read 

alignment score 

Alignment score of a single-read match, scores < 4 should be considered as aligned to 

a repeat. -1 for shadow reads 

Table 11: Format  of sorted.txt file 
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Field Description 

Position Position of the SNP on the chromosome  

A Number of A bases called on the reads 

C Number of C bases called on the reads 

G Number of G bases called on the reads 

T Number of T bases called on the reads 

Modified call The genotype called or the highest scoring allele for heterozygous call 

Total  Total bases called at that position 

Used  Bases used for making the SNP call 

Score Score of first allele, followed by the score of the second allele, if applicable 

Reference The reference base at that position 

Type The call type: 

 SNP_diff—homozygous SNP 

 SNP_het1—heterozygous SNP where the reference allele has the stronger of the 
two allele scores 

 SNP_het2—heterozygous SNP where the non-reference allele has the stronger 

of the two allele scores 

 SNP_het_other—heterozygous SNP where neither allele matches the reference 
Table 12: Format  of snp.txt  file  
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Field Description 

Chromosome the chromosome on which the feature resides 

Start Start position of the feature 

End End position of the feature 

Gene  Gene symbol (appended to chr#_start#_end# for splice junction) 

Normalized count For readBases method: Normalized count (RPKM)=(raw count x read 

length)/(feature length x number of mapped reads in millions) 

Raw counts For readBases method: raw count=sum of coverages for each base within the 

feature. 

For junctions, the count is the number of reads that cover the junction. 

Table 13: Format  of count.txt file  

 

Field Description 

Chrom Name of chromosome 

chromStart Start position of the feature in the chromosome, numbering starts from 0 

chromEnd End position of the feature in the chromosome 

name Name of the BED line, displayed in full or pack mode of genome browser 

Score Between 0 and 1000, number of reads covering the junction 

Strand + or – strand 

thickStart Start position where the feature is drawn thickly 

thickEnd End position where the feature is drawn thickly 

itemRgb RGB value to display color 

blockCount Number of blocks or exons in the BED line 

blockSize List of block sizes separated by comma 

blockStarts List of block starts separated by comma 

Table 14: Format  of BED file. The first 3  fields are required while the others are optional.  
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Software Link 

CASAVA http://www.illumina.com/ 

BOWTIE http://bowtie-bio.sourceforge.net/index.shtml 

TopHat http://tophat.cbcb.umd.edu/ 

MapSplice http://www.netlab.uky.edu/p/bioinfo/MapSplice 

SpliceMap http://www.stanford.edu/group/wonglab/SpliceMap/ 

SHRiMP http://compbio.cs.toronto.edu/shrimp  

SOAP http://soap.genomics.org.cn 

Maq http://maq.sourceforge.net/ 

Myrna http://bowtie-bio.sourceforge.net/myrna/index.shtml 

Cufflinks http://cufflinks.cbcb.umd.edu/ 

Partek
®
 Genomics Suite

TM 
v 6.6 beta http://www.partek.com/ 

Other RNA-Seq tools http://openwetware.org/wiki/Wikiomics:RNA-Seq 

UCSC Genome Browser http://genome.ucsc.edu/ 

Table 15: Links to RNA -Seq related anal ysis tools 

http://www.illumina.com/
http://bowtie-bio.sourceforge.net/index.shtml
http://tophat.cbcb.umd.edu/
http://www.netlab.uky.edu/p/bioinfo/MapSplice
http://www.stanford.edu/group/wonglab/SpliceMap/
http://compbio.cs.toronto.edu/shrimp
http://soap.genomics.org.cn/
http://maq.sourceforge.net/
http://bowtie-bio.sourceforge.net/myrna/index.shtml
http://cufflinks.cbcb.umd.edu/
http://www.partek.com/
http://openwetware.org/wiki/Wikiomics:RNA-Seq
http://genome.ucsc.edu/
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