
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

8-10-2012

Assembly, annotation, and polymorphic characterization of the Assembly, annotation, and polymorphic characterization of the

Erysiphe necator transcriptome Erysiphe necator transcriptome

Jason Myers

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Myers, Jason, "Assembly, annotation, and polymorphic characterization of the Erysiphe necator
transcriptome" (2012). Thesis. Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F4077&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/4077?utm_source=repository.rit.edu%2Ftheses%2F4077&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Assembly, Annotation, and Polymorphic Characterization of
the Erysiphe necator Transcriptome

by

Jason Myers

Submitted in partial fulfillment of the requirements for the Master of Science degree in
Bioinformatics at Rochester Institute of Technology.

Department of Biological Sciences
School of Life Sciences

Rochester Institute of Technology
Rochester, NY

August 10, 2012

Committee:

Dr. Gary Skuse
Associate Head of the School Life Sciences/Professor/Committee Member

Dr. Michael Osier
Bioinformatics Program Head/Program Advisor/Associate Professor/Committee Member

Dr. Dina Newman
Thesis Advisor/Associate Professor

Dr. Lance Cadle-Davidson
Associate Thesis Advisor/Plant Pathologist USDA-ARS

Dr. Angela Baldo
Thesis Project Advisor/Computational Biologist USDA-ARS

 II

Abstract:
 The objectives of this study were to develop a transcriptomic reference resource and to

characterize polymorphism between isolates of Erysiphe necator (syn. Uncinula necator), grape

powdery mildew. The wine and fresh fruit markets are economically vital to many countries

worldwide, and E. necator infection can cause severe crop damage and subsequent financial loss.

Most of the publicly available sequence data for Erysiphales are from research done on Blumeria

graminis f. sp. hordei, barley powdery mildew, which occupies a distinct clade within the

Erysiphales. We obtained 641,601 sequencing reads from a Roche 454-FLX next-generation

sequencer (RNA-Seq) and performed multiple assemblies using the Mira assembly software. The

best assembly was de novo and yielded 39,686 contiguous sequences. The reference was then

ordered based on similarity to B. graminis genes and annotated based on sequence similarity to

known proteins. 11,605 SNPs and 5,248 INDELs were called against the reference using RNA-

Seq data from 55 additional geographically and phenotypically distinct isolates of E. necator.

The reference transcriptome, annotations, and polymorphic characterization collections from this

project represent a vast resource for E. necator and should allow for future research of this

organism and other Erysiphales. Our results illustrate that RNA-Seq is a valid alternative to

whole-genome sequencing for genetic characterization of non-model organisms.

 III

Table of Contents

Page

1. Introduction 1

2. Materials and Methods 10

2.1. Sequencing 10

2.2. Computational Resources 13

2.3. Assembly 13

2.4. Contig Ordering 13

2.5. Annotation 14

2.6. SNP/INDEL Calling 15

3. Results 16

3.1. Mira Assembly 16

3.2. Contig Ordering 24

3.3. SNP/INDEL Calling 31

3.4. Annotation 33

3.5. Trinity Assembly 35

4. Discussion 38

5. Conclusion 50

6. Works Cited 51

7. Appendix 1 A1

7.1. cleanBLAST.pl A1

7.2. recipHitsEval.pl A2

7.3. getContigOrder.pl A5

8. Appendix 2 A7

 IV

8.1. getContigOrderNRBLAST.pl A7

9. Appendix 3 A9

9.1. getContigOrderLength.pl A9

10. Appendix 4 A11

10.1. finishOrdering.pl A11

11. Appendix 5 A14

11.1. fixGff3fromBlast.pl A14

12. Appendix 6 A18

12.1. vcfFilter.pl A18

12.2. removeMultiIndels.pl A22

12.3. vcf2Fasta.pl A25

12.4. getSNPVars.pl A30

12.5. varFilter.pl A31

13. Appendix 7 A34

13.1. vcf2gff3.pl A34

14. Appendix 8 A37

14.1. correlateSNPLoci.pl A37

15. Appendix 9 A48

15.1. compileContigData.pl A48

 1

1. Introduction:

The purpose of the research described here is to create transcriptomic resources to

support study of Erysiphe necator (syn. Uncinula necator), the grape powdery mildew fungus. E.

necator is an obligate biotroph of the genus Vitis (grapevine), meaning that it only grows and

reproduces on living plant tissue [1]. The fungus is believed to have originated in eastern North

America, was introduced to Europe around 1845, and spread to all grape-producing regions in

the world, likely as a result of the trading of grapevines [2]. For most of its life cycle this fungus

exists as a haploid ascomycete reproducing asexually by spores known as conidia, but when both

mating types are present, sexual reproduction is possible, resulting in the production of

ascospore-containing cleistothecia [2]. Most of the publicly available data for Erysiphales are

from research done on Blumeria graminis f. sp. hordei (Bgh), barley powdery mildew, which

occupies a distinct clade within the Erysiphales (Fig. 1) [1, 3, 4].

 2

Figure 1 Phylogenetic analysis of the ITS region for 45 powdery mildews plus
two outgroup species (Phialocephala and Phialophora). The tree is a phylogram
of one of the 40 most parsimonious trees, which was found using a heuristic
search employing the random stepwise addition option of PAUP. The tree also
has the highest likelihood of the 40 most parsimonious trees, which was found by
determining the log likelihood of all 40 trees. Horizontal branch lengths are
proportional to the number of nucleotide substitutions that were inferred to have
occurred along a particular branch of the tree. Branch support was determined by
1000 bootstrapped data sets, shown on the tree as numbers above the supported
branches. Branches = 95% are strongly supported and are shown in bold

 3

(Felsenstein 1985), bootstrap values below 50% are not shown. Bremer support is
shown below the branches (Bremer 1988). The consistency index (CI) is 0.574,
the retention index (RI) is 0.809, and the rescaled consistency index (RC) is 0.464
(Farris 1989). Conidium and conidiophore morphology in relation to phylogeny
inferred from ITS variation is mapped onto the tree. Conidiophore types: A, D,
and E, spores formed singly; B, C, F, and G, spores formed in chains. A, B, C, F,
and G all belong to the mitosporic genus Oidium; D is the mitosporic genus
Ovulariopsis, and E is the mitosporic genus Oidiopsis. The genus Oidium is
further subdivided into six subgenera based on conidial surface patterns. Oidium
subgenus Pseudoidium is represented as A; Oidium subgenus Striatoidium is
represented as B; Oidium subgenus Reticuloidium is represented as C; Oidium
subgenera Fibroidium and Setoidium is represented as F; and Oidium subgenus
Oidium is represented as G. The numbers adjacent to the right of the tree
correspond to the six major clades of powdery mildews, which are strongly
correlated with the six different mitosporic types.
Source: [4]

E. necator infects host cells in much the same way as Bgh [5]. The mode of infection

after a conidium lands and adheres on the host involves germination of the conidium,

appressorium attachment to the cuticle, and formation of a penetration peg to pierce the host

cuticle and cell wall [3, 5]. Successful infection results in the formation of a haustorium, an

extension of a penetration peg that forms within a single host epidermal cell (Fig. 2) [6].

 4

Figure 2 Laser scanning confocal micrograph of Erysiphe necator on an
ontogenically susceptible leaf of Vitis vinifera at 72 h post-inoculation, stained
with wheat germ agglutinin conjugated with Alexafluor-488, showing the
multilobed primary appressorium and penetration pore (A) and secondary germ
tube with appressorium (B). The globose haustorium (C) is faintly and partially
visible at the lower right, beneath the primary appressorium.

Source: [6]

The haustorium is the only cell of the fungus that interacts directly with a host cell. It

secretes proteins that suppress host defenses and shuttle nutrients from the host to the pathogen,

determining whether the interaction between host and parasite will be compatible or

incompatible [3, 5]. One of the goals of transcriptomic analysis is to identify candidate secreted

proteins, as they are likely to be under significant evolutionary pressure to overcome the host

response (apoptosis) to their presence [3].

 Research of the grape powdery-mildew fungus, E. necator, is motivated by its economic

impact on the grape industry everywhere grapes are grown [7]. The wine and fresh fruit markets

are economically vital to many countries worldwide, and E. necator infection can cause severe

crop damage and subsequent financial loss. There are also financial and environmental issues

with over-use of fungicides to combat the disease because little is understood about severity

 5

thresholds that have a significant effect on quality and yield [7]. The lack of knowledge causes

undue financial strain on grape growers by indirectly advocating excessive application of

fungicide [7]. While genomic characterization of E. necator is desirable for the above reasons,

only 19 ESTs have been deposited at the National Center for Biotechnology Information’s

(NCBI) GenBank for E. necator currently [8]. This fact is most likely due to the inability to

culture E. necator axenically (i.e. it must be cultured on living plant tissue) [5]. Bgh has been

researched much more than any other powdery mildew species and there are significant genomic

resources available for comparison of E. necator ESTs to Bgh genes [1]. An extensive EST

collection for E. necator is important because it will increase the amount of information

available for comparison of adaptive variation amongst all the Erysiphales. In an attempt to

increase knowledge about E. necator, the goals of this study include the assembly of EST

sequences into a reference transcriptome, the annotation of this reference, and the

characterization of polymorphism between the reference and 55 phenotypically and/or

geographically distinct isolates of E. necator.

Transcriptomics as a field of study within biology began in the mid 1990's with the

advent of microarrays [9] and has progressed through advancements in high-throughput

sequencing technologies [10] and the development of the RNA-Seq method [11]. While the term

transcriptome can encompass the RNA complement of a cell, including mRNA, tRNA, rRNA,

and non-coding RNA for a particular physiological condition or developmental stage of a cell

[12], the use of the term in this thesis will focus on the mRNA complement of an organism. The

study of the transcriptome is essential for characterization of development, disease, functional

elements of a genome, and/or genetic diversity within a species, allowing unprecedented views

into the complexity of genetic expression in nearly any organism [13]. Several approaches have

 6

been developed to facilitate researchers in the study of transcriptomes including hybridization-

based and sequencing-based methods, but for either approach, genes must first be identified in a

reference sequence database [12]. The objectives of this study were to develop a transcriptomic

reference resource and to characterize polymorphism between isolates of E. necator. Figure 3

shows a graphical representation of the many steps undertaken here towards these objectives.

Figure 3 Graphic representation of the work proposed and completed during the
course of this project. The Roche 454-FLX and Illumina HiSeq next generation
sequencing technologies were used to generate RNA-Seq data for the reference
strain (G14), and Illumina HiSeq was used to generate RNA-Seq data for 55
additional isolates of Erysiphe necator. Mira [14, 15] and Trinity [16] are both
computer software packages capable of assembling RNA-Seq data de novo and
were used on the reference strain data to generate the mRNA contiguous
sequences (contigs). The best assembly was chosen, then the contigs were ordered
based on their in silico-translated similarity to proteins of the closest related

 7

organism with a publicly available, ordered genome (Blumeria graminis f. sp.
hordei). The E. necator contigs were then annotated based on similarity to the
National Center for Biotechnology Information’s non-redundant database and the
SwissProt database. SNPs and INDELs between the reference isolate and 55
additional isolates were then called using BWA [17] and Samtools [18] software.
All of the annotation and SNP/INDEL information attained during the above steps
were then compiled in the gff3 file-format for viewing within the Artemis
Annotation Browser [19].

Sequencing-based methods of transcriptome study offer a way of quantifying gene

expression through hard counts of the transcripts present in a sample, but more importantly for

this study, a way to obtain the sequence of those transcripts. During the last few years, Sanger

sequencing of cDNA or EST libraries has been supplanted with high-throughput tag-based

methods for serial analysis of gene expression (SAGE), cap analysis of gene expression (CAGE),

and massively parallel signature sequencing (MPSS) [12]. Tag-based methods allow one to

quantify genetic expression, but they require a significant amount of genetic annotation of the

transcriptome in order to make sense of the resulting data [12]. Lacking resources for whole

genome sequencing, transcriptomics through next-generation sequencing of ESTs, known as

RNA-Seq, offers an efficient means to attain genomic level data for non-model organisms, such

as E. necator [20].

The RNA-Seq method involves converting a population of RNA fragments, generally

transcripts that have been post-transcriptionally modified with a poly (A) tail, to a library of

cDNA sequences with adaptors attached that allow for amplification via PCR [12]. The PCR

products are then sequenced in a high-throughput manner using one of the next-generation

sequencing technologies. The Roche 454 Life Science, Illumina GA, and Applied Biosystems

SOLiD technologies have been used in previous studies; however, any high-throughput

sequencing method is conceivably applicable for use in RNA- Seq experiments [12]. The reads

 8

generated from RNA-Seq runs are generally between 30-400bp in length depending on the

version of the sequencing technology used [12]. One of the advantages of RNA- Seq exploited in

this study is that genomic reference sequence is not necessary for the assembly of reads. De novo

assembly is possible if sufficiently high depth of coverage is attained per transcript [12, 20].

Another advantage is the relatively small amount of sequencing necessary for characterizing the

transcriptome of a eukaryotic organism as opposed to sequencing the genome of the same

organism. This is due to the fact that most eukaryotic genomes are comprised of large amounts

of non-coding DNA in the form of introns and intragenic regions [20]. While the non-coding

regions of DNA contain transcription factor binding sites and are important for discovering how

and why gene expression differs within a species, they do not generally apply to the study of how

transcripts and their protein products differ between individuals. EST sequences lack intragenic

DNA and in most cases lack introns (though alternative splicing of a transcript can result in the

inclusion of intron sequence), which means less sequencing is needed than for whole genome

sequencing [20].

 There are significant computational challenges to dealing with RNA-Seq data. Storage

and manipulation of the large quantity of data generated by the next-generation sequencing

technology is not trivial, easily ranging from tens to hundreds of gigabytes per run [12]. The

number and small lengths of the fragments reduces cost and time required for transcriptome

sequencing but increases the complexity of computational analysis. Assembling the small reads

generated during RNA-Seq in a genome-independent manner is particularly difficult

computationally; fortunately, many programs have been developed to facilitate researchers use of

such data [21]. Programs capable of this type of assembly, including Velvet [22], TransABySS

[23], and MIRA [14, 15], produce consensus transcripts (contigs) that can be aligned to

 9

nucleotide or protein databases for annotation of function via sequence similarity [21]. Many

more assembly programs (Cufflinks, Scripture, etc.) are available for assembly of RNA-Seq data

using genomic sequence as a template, called a mapping assembly [21]. MIRA is an example of

a program that can perform de novo and mapping assemblies, which makes it attractive to use for

comparisons between methods [14]. EST sequences from one species can also be used as a

reference for a mapping assembly of RNA-Seq data from a related species, if the two species are

closely related [20].

 It is difficult to annotate a RNA-Seq transcriptome without a reference genomic sequence

to alignment. Many methods have been developed to utilize our current understanding of genetic

features such as open reading frames (ORFs), intron splicing (and alternative splicing),

pseudogenes, transposons, similarity and protein folding to assist with assigning reading frames,

location of translation complex binding regions, and most importantly function [24]. However,

even with the tools available, it is difficult to annotate RNA-Seq without genomic sequence

because there is no reliable way to determine if the contigs generated in an assembly program are

complete (the full EST was sequenced) or if multiple contigs resulted from the same transcript

due to sequencing error. With that in mind, one must be careful in choosing parameters for the

various stages of assembly, annotation, and polymorphic characterization to ensure that the

results are as accurate as possible (generally by increasing significance thresholds). The large-

scale nature of RNA-Seq experiments does however bring the level of annotation possible for

non-model organisms up to what was previously only possible for model organisms, even if at

the expense of some certainty in those annotations.

 Characterizing polymorphism involves the determination of single nucleotide

polymorphisms (SNPs) and insertion/deletions (INDELs) within a population. SNP and INDEL

 10

calling is classically accomplished by aligning ESTs to a genomic reference sequence but can be

accomplished using a transcriptome as the reference [20]. The Computational Biology Service

Unit (CBSU) at Cornell University has developed a pipeline for SNP/INDEL calling against a

reference transcriptome using the alignment program Burrows-Wheeler Aligner (BWA) [17] and

Samtools, a group of alignment manipulation tools [18]. SNP/INDEL data are attractive

information because they can be used to determine haplotypes, to identify different isolates

within the same species, and/or to infer the effects of non-synonymous mutation on the

efficiency of a given protein [20]. Inferring the effect of non-synonymous mutation from

SNP/INDEL data however, is entirely dependent on the level of phenotypic characterization of

the samples used during the SNP/INDEL calling as well as the level of certainty in annotations

of the transcriptome.

2. Methods and Materials:

2.1 Sequencing: All powdery mildew isolates were grown on grape leaves. Fungal tissue was

collected using nail polish prior to RNA isolation [5]. A cDNA library of the reference isolate

g14 collected from grape hybrid Rosette in Geneva, NY was normalized and sequenced using a

454 GS FLX genomic sequencer (Roche, Inc.). The reference isolate was also sequenced using

an Illumina GA HiSeq sequencer with paired-end reads. RNA from 55 additional isolates were

barcoded with 5 base-pairs during the creation of the cDNA libraries, allowing for pooled,

single-end re-sequencing using an Illumina GA sequencer for comparison with the deep-

sequenced reference isolate. The Illumina re-sequencing runs consisted of one run where 7

isolates were sequenced in a single lane and one run where the other 48 isolates were sequenced

together. For each of the runs, the FastX-toolkit barcode splitter [25] was used to separate the

reads by the 5 base-pair barcode indicating to which isolate the sequencing read belonged.

 11

Screening and trimming of sequencing reads was accomplished using the SeqClean tool [26]

developed by the Dana-Farber Cancer Institute at Harvard School of Public Health with

contamination defined by NCBI's UniVec database [27], poly (A) tails, low quality regions, and

low complexity regions. The 55 isolates to be characterized for polymorphism were obtained

from different regions of the United States, 18 isolates from the Northeastern US, 19 isolates

from the Southeastern US, 7 isolates from the Central US, 3 isolates from the Western US, and 8

isolates from Chile (Table 1) [2]. As seen in table 1, the reference isolate and 55 additional

isolates were obtained from the leaves of 5 Vitis species and 12 cultivars of V. vinifera and

interspecific hybrids [2].

 12

Table 1 Information about the source and sequencing depth of 56 Isolates of Erysiphe necator
including Reference Strain ‘G14’.

 13

2.2 Computational Resources: The following machines were used to perform all computations:

16-core Linux machine with 80 gigabytes of RAM, 24-core Linux machine with 32 gigabytes of

RAM, and a 48-core Linux machine with 512 gigabytes of RAM.

2.3 Assembly: Raw 454 sequencing reads in SFF format from the reference isolate were initially

converted to the FASTA and QUAL formats needed for assembly using the Python script

SFF_extract [28] with the end-clipping option enabled. Multiple assemblies were performed

using the MIRA software [14, 15] the default EST specific parameters for 454 data and the

following combinations of sequencing reads to determine which resulted in the best assembly: 1)

454 reads alone in a de novo assembly; 2) 454 reads combined with Illumina paired-end reads in

a hybrid de novo assembly; and 3) 454 reads mapped to Bgh mRNA sequences. Each assembly

was performed using the two quality settings: “normal” and “accurate”. Each assembly was also

compared via BLASTx (e-value cutoff of 1xe-10) against the set of Bgh proteins and the set of

core eukaryotic genes defined for Saccharomyces cerevisiae (CEGMA) [29] to assess their

relative composition. Trinity assembly software [16] was used to attain an Illumina-only de novo

assembly of the G14 reference strain. The four Illumina-only assemblies consist of the first 5.75

million pairs of reads with- and without- the Jaccard_clip option and the first 11.5 million pairs

of reads with- and without- the Jaccard_clip option. The Jaccard_clip option is designed to

minimize fusion transcripts for paired-end RNA-Seq data from compact, gene dense, fungal

genomes by clipping contigs apart where there is low pairing support [16].

2.4 Ordering Contigs: Initial ordering of the reference transcriptome contigs was based on the

detection of orthologs with Bgh proteins, through reciprocal best hits BLAST analysis, using the

order of the proteins within the Bgh genome [30, 31]. Reciprocal BLAST searches were

performed between the reference transcriptome contigs and Bgh proteins with the BlastAll

 14

program and the soft filtering option (-F “m S”) per the recommendation of a previous ortholog–

matching study [30]. A series of Perl programs (Appendix 1) were written for the determination

of orthologs between the E. necator reference transcriptome and Bgh proteins based on the

BLAST results. Contigs that were not deemed orthologous with Bgh proteins were subsequently

ordered in descending fashion by bit score from protein BLASTx against the non-redundant

GenBank database at NCBI with a Perl script (Appendix 2). Reference transcriptome contigs

with neither orthologs to Bgh nor hits to the non-redundant GenBank database were ordered by

size in descending fashion via a Perl script (Appendix 3). The ordering of the contigs was

undertaken to facilitate viewing of the transcriptome using the genome-browsing software

Artemis [19]. The final ordering script (Appendix 4) uses all of the ordering information to

create a reference multi-FASTA file (contigs are separate FASTA’s), a reference FASTA file

(contigs separated by 10 N’s), and a reference GFF3 file.

2.5 Annotation: Sequence similarity-based functional annotations were derived from BLAST

searches (BLASTx) against the NCBI's non-redundant database of protein sequences, and the

SwissProt database of protein sequences with e-value thresholds of 1xe-10. Blast2GO was used to

determine the top-hit species during the NCBI’s NR protein BLAST with an e-value threshold of

1xe-3 [32]. The bioPerl program, bp_search2gff.pl was used to convert the BLAST annotations to

the GFF format [33]. A Perl script (Appendix 5) was written to convert BLAST results in the

GFF format to GFF3 format for viewing annotations in the context of the reference transcriptome

using Artemis [19]. The following annotation files were created from BLAST searches to allow

the user to choose the level of annotation wanted: topSwiss.gff3 (the highest scoring hit to

SwissProt only), topBG.gff3 (the highest scoring hit to a Bgh protein only), allBG.gff3 (all hits

to Bgh proteins), topViralNR.gff3 (the highest scoring hit to Viral proteins from NR only),

 15

fungalNR.gff3 (all hits to Viral proteins in NR), top5_30NR.gff3 (the top 5 hits to the NR

database with an e-value of e-30 or less), and topNR.gff3 (all hits to the NR database). Each

annotation file in GFF3 format was color-coded to provide a visible distinction between

annotations within Artemis. Additionally each BLAST hit was colored based on the bit score and

the color assigned to the database from which it was derived.

2.6 SNP/INDEL Calling: SNP and INDEL calling among the 55 isolates of E. necator and the

reference transcriptome was based on the CBSU pipeline using BWA [17] to align the

sequencing reads of the individual isolates to the reference transcriptome separately. The

alignments were then combined using the Samtools [18] mpileup program to call SNPs and

INDELs based on all of the sequencing reads from the 55 isolates that aligned to any loci of the

reference transcriptome. A series of Perl scripts (Appendix 6) were written to filter the resulting

polymorphic data in Variant Call Format (VCF) and to convert the polymorphism data to

Comma Separated Values (CSV) format and FASTA format for further study. More specifically,

the program PGDSpider was used to convert the SNPs in VCF format initially to FASTA format

and then the Perl scripts in the appendix were used [34]. Annotation of the reference

transcriptome with the SNP/INDEL information for viewing with Artemis was accomplished by

writing a Perl script (Appendix 7) capable of converting the CSV files of SNPs and INDELs of

the 55 isolates of E. necator to the GFF3 format. The filters applied to the polymorphic data

include removal of SNP/INDEL calls with overall quality scores and mapping quality scores

below 20, calls made with coverage less than 5 (not enough coverage to be significant), calls

where the reference sequence or alternative sequence at the potential polymorphic loci is non

ATGC (indicative of indecisive base calls), and INDEL calls were there are multiple alternative

sequences because the Samtools programs do not report accurate quality for these types of calls

 16

[18]. Another Perl script (Appendix 8) was written and used to categorize SNPs as synonymous

or non-synonymous mutations based on their location within the predicted protein-coding

regions from BLASTx and BLASTp runs. The BLAST hit with the highest bit score spanning

the position of each individual SNP was used to set the frame of the potential protein-coding

region. A final Perl script was written to compile all of the annotation and SNP/INDEL

information into one easy to use tabular file (Appendix 9).

3. Results:

3.1 Mira Assembly: The vast majority (90%) of the Roche 454 reads for reference isolate G14

were validated by SeqClean analysis, passing in terms of both quality and complexity (Fig. 4).

The passed reads were subjected to end trimming based on quality and presence of poly A/T

sequence while still being at least 25 bp in length. Of the 66,265 failed reads, the reasons for

failure included: shorter than 25 bp before trimming (7%), vector contamination (2%), and

shorter than 25 bp after quality and poly A/T trimming (1%). Less than 1% of the failures were

due to either low quality or low complexity (Dust) of the sequence. Pre-processing results for the

Illumina data sets were similar, with a majority of sequences being of sufficient length, quality,

and complexity to proceed with the project using the NGS data obtained (data not shown).

Vector contamination was less than 5% of the total reads for all samples combined but for some

isolates it was the most prevalent reason sequences were determined to be invalid.

 17

Figure 4 The Results of the SeqClean + UniVec Database Pre-processing of the
Roche 454 Generated Reference Data (G14). The secondary pie chart shows the
reason each of the 66,265 (10%) sequences was deemed invalid. A sequence was
determined to be of Low Quality when more than 3% of bases in a sequence were
undetermined (2). Dust refers to the low complexity program and was applied
when less than 40nt left unmasked (50).

After pre-processing, the Roche 454 data were assembled into contigs using Mira

assembly software [14,15]. The first two assemblies were performed to determine which quality

level (“accurate” or “normal”) to select and the third assembly was performed to compare

mapping to the pathogen related to E. necator (Bgh) versus the previous two de novo assemblies.

The three methods produced similar results, with the two de novo approaches resulting in nearly

identical data (Table 2). For example, the average contig lengths for the de novo assemblies are

the same (647bp) and only 12bp shorter than the mapping + de novo assembly. Similarly, the

total sum of the contigs in base pairs varies by less than 1% between de novo and mapping

assemblies, and the number of contigs varies by less than 3%.

575336,	

90%	

42532,	
 7%	

2,	
 0%	

50,	
 0%	
 7401,	
 1%	

16280,	

2%	

66265,	

10%	

G14	
 SeqClean	
 Results	

Valid	

Short	

Low	
 Quality	

Dust	

ShortQ	

Vector	
 Cont.	

 18

Table 2 Summary Data for the Three Different Mira Assemblies.

A – “Accurate” de novo Mira Assembly
B – “Normal” de novo Mira Assembly
C - Mapping to the Blumeria graminis genome

Thus, additional information was needed to determine which Mira assembly to use for

annotation and SNP/INDEL calling. Each of the assemblies was queried against the set of Bgh

proteins (BLASTx e-value cutoff of 1xe-10) to ascertain which assembly resulted in the most

contigs with significant similarity (Table 3).

Table 3 Summarized Results of BLASTx Analysis of the Three Different Mira
Assemblies Queried Against Bgh Proteins.

A – “Accurate” de novo Mira Assembly
B – “Normal” de novo Mira Assembly
C - Mapping to the Blumeria graminis genome

* “Contigs” refers to the Erysiphe necator reference contigs created during the
Trinity assembly and “Proteins” refers to the Blumeria graminis proteins that
were hit from this one BLAST run. The BLAST information summarized in this
table is split up into categories of blast score, greater than 479, greater than 287,

 19

and a combined total of all hits with an e-value greater than 1xe-10 in an effort to
visualize relatively long and medium length hits.

A BLAST score reflects the identity between two sequences as opposed to the e-value

associated with each hit, which reflects the probability of a hit occurring by random chance.

While the statistical information in table 2 for each assembly did not provide an adequate basis

for delineating between them, the “accurate” de novo assembly had 1,526 contigs matching Bgh

proteins at a score exceeding 480 while the “normal” de novo assembly had 1,516 contigs and the

mapping assembly had 1,511 at the same score threshold. Additionally, the “accurate” de novo

assembly had 2,996 contigs matching Bgh proteins with scores greater than 287, while the

“normal” de novo assembly had 2,987 and the mapping assembly had 2,977. Table 3 also shows

the same general pattern of in regards to the Bgh proteins that were hit when each assembly was

queried against them. The “accurate” de novo assembly had the most long and medium length hit

proteins, 1,506 and 2,718 respectively. The information in table 3 shows that the Mira assembled

E. necator contigs may represent incomplete gene assemblies that could be further assembled

with additional sequence, but that a vast majority of the orthologs have been sequenced in E.

necator. For example, in the “accurate” assembly approximately 11,181 E. necator contigs match

approximately 4,834 (84.6%)of the 5,717 Bgh proteins.

Because the 454 assembly was based on a normalized cDNA library, the number of reads

per contig should have a linear relationship with contig length, and the number of reads per kb

should be nearly equal across contigs. A strong, positive linear correlation (R2 = 0.74) was

observed between the number of reads per contigs and the length of the contigs (Fig. 5).

However, several outlier contigs had 10-fold more reads than expected, suggesting that the reads

were from homeostatic transcripts or the contigs were the result of merged transcripts.

 20

Figure 5 Scatter plot of Comparison between Sequence Length and Number of
Reads per Contig of the “Accurate” de novo 454 Mira Assembly with Marginal
Histograms. The x and y-axis and x-axis of each histogram have a logarithmic
scale. The majority of sequences are composed of only 2 reads. Note that the
longer contigs incorporate more reads than short contigs.

The assertion that the best assembly should be the data set containing more long (>=

1,000bp) contigs was also checked for validity (Fig. 6). The majority of E. necator reference

contigs (28,498) do not match any Bgh proteins and are shown to reference how few contigs

were hit. From figure 6, it is clear that longer E. necator contigs have higher scoring BLAST hits

to the Bgh proteins.

 21

Figure 6 Scatter plot of Contig Length vs. BLAST score of the “Accurate” de
novo 454 Mira Assembly Queried against the Blumeria graminis proteins with
Marginal Histograms. The x-axis and y-axis of the scatter plot and the x-axis of
each histogram have a logarithmic scale. Note that the general trend of the data
set suggests that longer contigs have higher scoring blast hits. Non-matching
contigs (28,498) were given a BLAST score of 5 to improve the right hand
marginal histogram and show the entire reference data set.

The “accurate” de novo Mira assembly was then checked for potential contamination from

human sequences from sample processing and plant sequences from fungal culturing. The easiest

way to check for this sort of contamination was to BLAST the G14 contigs against the NCBI’s

chloroplast protein and mitochondrial protein components of the non-redundant database. The

 22

results of the BLAST check for plant contamination with an e-value cutoff of 1xe-10 can be seen

in figure 7.

Figure 7 BLAST Results of the G14 Reference Transcriptome Queried Against
Chloroplast and Mitochondrial Proteins from the NCBIs NR database. Each
BLASTx run had an e-value cutoff of 1xe-10 and the mitochondrial BLAST used
the #4 translation table (mitochondrial specific) for the Erysiphe necator
translations. Frequency refers to the number of chloroplast and mitochondrial
proteins that had similarity to E. necator contigs. Many chloroplast and
mitochondrial proteins had similarity to a very small number of E. necator
contigs.

Only 15 E. necator contigs had hits to mitochondrial proteins, all of which had higher

scoring hits to Bgh proteins. Additionally, 114 unique E. necator contigs had hits to chloroplast

 23

proteins and only 13 of those had high scoring BLAST hits (>287). Those 13 contigs were also

found to have higher scoring hits to Bgh proteins. Combined, 129 unique E. necator contigs were

hit with this test, which is just 0.3% of the total 39,686 contigs. Alternatively, 3,175 unique

chloroplast proteins and 2665 unique mitochondrial proteins had hits. Of the total 39,686 E.

necator reference contigs, few (129) had low scoring similarity with many chloroplast (3,175)

and mitochondrial (2,665) proteins. Given that only a small number showed similarity to these

two databases suggests that there is little to no contamination of our reference transcriptome

from the plant it was taken from.

In additional to the contamination checks performed on the 454 reference transcriptome

we also tested it for the amount of core eukaryotic genes that were incorporated from the

CEGMA database (Fig. 8). 452 of the 458 CEGMA proteins (99%) had hits to the reference

transcriptome at an e-value greater than 1xe-10. However, only 448 reference contigs matched the

452 proteins, which is 97.8% of the total 458 CEGMA proteins. The majority of CEGMA

proteins were present in the initial reference transcriptome assembly for E. necator (Fig. 8).

 24

Figure 8 Results of CEGMA Protein BLASTx Against Erysiphe necator Contigs
using tBLASTn. The CEGMA protein database containing 458 proteins was
queried against the translated nucleotides of the E. necator reference
transcriptome.

3.2 Contig Ordering: Since there is no publicly available whole-genome sequence available for

E. necator, contig ordering was based on gene order in the publicly available Bgh genome [1]. In

determining how to perform the reciprocal best hits BLAST ordering, we compared results of: a)

translating both the E. necator reference sequences and the Bgh CDS (tBLASTx), versus b)

translating the E. necator reference sequences to compare with annotated Bgh protein sequences

(BLASTx; Fig. 9).

 25

Figure 9 Scatter plots with Marginal Histograms of tBLASTx and BLASTx
Reciprocal BLAST Results between the 454 Mira “Accurate” de novo and
Blumeria graminis CDS/Proteins. The x-axis of each figure shows the BLAST
scores when Bgh sequences were queried against the Erysiphe necator reference
sequences and the y-axis of each figure shows the BLAST scores when the E.
necator reference sequences were queried against Bgh sequences. The solid lines
drawn in each scatter plot demark the BLAST score 288. The figure on the left is
a scatter plot of the reciprocal tBLASTx runs using Bgh CDS and the figure on
the right is a scatter plot of the reciprocal BLASTx runs using Bgh proteins.

 Using BLASTx with the Bgh protein sequences to order the E. necator reference contigs

provided more hits than tBLASTx (Fig. 9). In the figure on the left there are 2165 BLAST hits

with bit scores greater than 287 (medium to long length hits) when Bgh coding sequences (CDS)

were the query and 2,425 when E. necator contigs were the query. In the figure on the right there

are 2,898 BLAST hits with bit scores greater than 287 when Bgh proteins were the query and

3,289 when E. necator contigs were the query.

Ordering the contigs with some semblance of how they might be found within the E.

necator genome was the next task undertaken. The best way to accomplish this task was to

search for orthologs between our transcriptomic contigs and the Bgh proteins via reciprocal best-

 26

hit BLAST analysis. The proteins considered problematic by the researchers who annotated the

Bgh genome, an additional 404 protein sequences, were included in this first stage of the contig

ordering process in an attempt to order the most E. necator contigs from the available

information (Table 4).

Table 4 Results of Reciprocal Best Hit Protein BLASTs Against Bgh Proteins +
Problematic Bgh Proteins

* tBLASTn and BLASTx with an e-value cutoff of 1xe-10 and the parameter -F “m
S” [30] were used to generate the data in this table.

The reciprocal best-hit BLAST analysis results shown in table 4 were derived using

tBLASTn (Bgh queried against E. necator) and BLASTx (E. necator query and Bgh). Of the

6,121 Bgh sequences and 39,686 E. necator reference contigs used to perform the reciprocal blast

tests, 4522 hit each other with the highest BLAST bit score. Table 4 also shows that only about a

third of the E. necator contigs, 12,148 out of 39,686 had similarity to Bgh proteins an increase of

approximately 1,000 contigs had hits with the addition of the problematic Bgh proteins. To

maximize the contig ordering capability of this test, the 4,522 E. necator contigs determined to

be orthologous to Bgh proteins were each followed by the E. necator contigs that hit the same

protein to a lesser degree in descending order. By doing this we were able to order the first

12,148 contigs within the reference transcriptome based on the order of predicted proteins within

the Bgh genome. The order of the remaining 27,538 reference contigs was based on the BLAST

hits shown in figure 10.

 27

Figure 10 Scatter plot of Contig Length vs. BLAST score of the “Accurate” de
novo Mira Assembly Queried against the NCBI’s NR Protein Database with
Marginal Histograms. The data shown are the BLASTX results after an e-value
cutoff of 1xe-10. The majority of Erysiphe necator contigs (26,778) did not hit
anything within the NR protein database and are shown here with scores of 5 to
visualize them in the right marginal histogram while showing the entire reference
data set.

There were 13,161 E. necator contigs matching 8,452 NR proteins at an e-value less than

or equal to 1xe-10. Longer contigs have higher scoring BLAST hits, similar to figure 6. The

actual BLASTx run performed to create figure 9 did not have an e-value cutoff, which resulted in

27,801 of the 39,686 E. necator contigs with hits to NR proteins. With the previously ordered

contigs removed from this pool, we were able to order an additional 15,728 reference contigs

 28

from highest to lowest BLAST score based on the NR protein database BLAST. The Blast2GO

program was used to determine which species within NR had proteins with similarity to the

assembled E. necator contigs (Fig. 11) [32]. The majority of the top-hit species from the

Blast2GO BLAST annotation were fungal ascomycetes, most notably Botryotinia fuckeliana and

Sclerotinia sclerotiorum, which are the most closely related to powdery mildews. The host plant

of E. necator was also one of the top hit species but only 102 E. necator reference contigs were

similar to Vitis vinifera further indicating that host contamination was minimal.

Figure 11 Distribution of the Top-Hit Species when Erysiphe necator reference
contigs were queried against the NCBI’s NR Protein database using the BLAST
annotation feature of Blast2GO. An e-value cutoff of 1xe-3 was used during the
BLAST analysis. The majority of top-hit species are fungal ascomycetes and there
are only 102 E. necator contigs with hits to the host species Vitis vinifera.

This left 11,810 reference contigs to be ordered be length because they showed no

similarity to Bgh proteins above an e-value of 1xe-10 or to any NR proteins at any level. The

entire contig-ordering scheme for the 454 Mira assembled reference transcriptome can be seen in

figure 12.

 29

Figure 12 Contig Order of the 454 Mira de novo Assembly. All 39,686 reference
contigs were ordered based on either BLAST hits to Blumeria graminis proteins,
or BLAST hits to the NCBI’s NR database, or by contig length.

 In total, three processes were used to put the E. necator reference contigs into descending

order of information assigned as shown in figure 12. The first 12,148 reference contigs were

ordered based on orthologs to Bgh proteins followed by 15,728 contigs ordered based on

similarity to NR proteins and the last 11,810 contigs were put into descending order of contig

length.

To improve our ability to assign a potential function to the E. necator reference contigs

they were also queried against the SwissProt database because the annotations in SwissProt are

held to a higher standard than those found in the NCBI’s NR protein database (Fig. 13).

12148	
 15728	
 11810	

0	
 10000	
 20000	
 30000	
 40000	

�Ordering	

Number	
 of	
 Contigs	

E.	
 necator	
 Contig	
 Ordering	

Scheme	

B.	
 graminis	
 Protein	

NR	
 Protein	

Length	

 30

Figure 13 Histogram of BLASTx Results of the Erysiphe necator Reference
Transcriptome Queried Against SwissProt database. This BLAST run was done
with an e-value cutoff of 1xe-10.

As seen in figure 13, there were only 1,340 reference contigs with similarity to 23,078

SwissProt protein sequences with a BLAST score greater than or equal to 288, meaning that

there is significant overlap between the sequences in SwissProt. However, there were

significantly more contigs with hits with e-values below 1xe-10 and the large number of

SwissProt proteins hit in our BLAST analysis suggests that there is a high degree of conserved

features captured by the E. necator reference transcriptome. The highest scoring BLAST hit had

a bit score of 1703.

 31

3.3 SNP/INDEL Calling: The first step performed in the SNP/INDEL calling was to extract the

sequences belonging to each isolate based on the unique barcode sequence added to each

individual isolate (for number of reads per isolate see Table 1). The number of Illumina reads for

each isolate used in the SNP/INDEL calling was relatively uniform (approx. 3 million reads) as

shown in Table 1. The Illumina sequencing data were put through the same rigorous pre-

processing as the 454-reference strain using the SeqClean program with additional screening for

UniVec contamination. The cleaned reads for each isolate were then aligned to the E. necator

reference transcriptome and SNPs and INDELs were called using the pipeline set-up by

Cornell’s CBSU. The results of the SNP and INDEL calling were then filtered based on quality

metrics assigned to each call during the process. The final SNP and INDEL count for each

isolate can be seen in figure 14.

Figure 14 Histogram of SNPs and INDELs per Erysiphe necator Isolate. All 55
isolates used to call SNPs/INDELs against the E. necator reference transcriptome
are shown with the number of SNPs and INDELs associated with each.

 32

The majority of E. necator isolates contain comparable numbers of SNPs and INDELs as

shown in figure 14. In total, there were 11,605 SNPs called and 5,248 INDELs called against the

E. necator reference transcriptome. It is important to note that these SNPs and INDELs were

spread throughout the E. necator reference transcriptome; even the contigs without similarity to

Bgh or NCBI NR proteins contained SNPs/INDELs. The E. necator isolate RoaMus3 contains

the most SNPs (7,470) and INDELs (4,349) as compared to the reference transcriptome

(potentially an artifact of the barcode splitting procedure). The E. necator isolate pcf32 has the

lowest number of SNPs (164) and INDELs (21) as compared to the reference transcriptome. The

average number of SNPs called per isolate was 544 and the average number of INDELs called

per isolate was 292.

Determining what the SNPs might mean in terms of their effect on the function of the

mRNA in which they occur is a difficult task. To maintain the utmost confidence in defining a

SNPs consequence, only those that were located within any of the Bgh protein, NCBI NR

protein, or SwissProt protein annotations were assigned a synonymous or non-synonymous

classification. The results of this classification process can be seen in figure 15.

 33

Figure 15 Predicted SNP Consequences Based on Location within BLAST Hit.
The number of SNPs predicted to be synonymous and non-synonymous are
shown. The secondary piechart shows that 3% of SNPs involved stop codons.

The highest scoring BLAST annotation any given SNP was located in was used to set the

frame for translation of the codon to which the SNP belonged. Of the 11,605 SNPs called against

the E. necator reference transcriptome 6,864 were not within a BLAST annotation, 2,344 were

classified as synonymous (encoding the same amino acid as the reference), and 2,407 were

classified as non-synonymous (encoding a different amino acid than the reference). Of the 2,407

non-synonymous classified SNPs, 279 of them either dealt with a stop codon changing to a non-

stop amino acid or an amino acid changing to a stop codon.

3.4 Annotation: All of the BLAST annotations and SNP/INDEL information gained throughout

this project were put into the gff3 format (standard for annotations) for viewing in the Artemis

Genome Browser. The information was broken up into components and color coded for easier

descrimination between all of the annotations (see Table 5).

6864,	
 59%	

2344,	

20%	

2128,	

18%	

279,	
 3%	

2407,	

21%	

Predicted	
 SNP	
 Consequences	
 	

N/A	

Synonymous	

Non-­‐synonymous	

Stop	
 Codon	

 34

Table 6 Annotation File Summaries.

* This table shows the summary information for each annotation file including the
coloring scheme that allows the user to easily delineate between annotations
within Artemis. The codes within the colored blocks indicate each specific color.

The E. necator reference transcriptome contigs were concatenated with 10 N’s separating

each contig to facilitate browsing the entire transcriptome in one window of the Artemis Genome

Browser and annotated such that it showed up with a sky blue coloring as shown in table 6. Nine

different BLAST annotation files were created with different coloring to delineate between the

bit score of varying degrees of similarity. This allows the user to add in or remove information

depending on their need. Additionally, a single variant annotation file containing both SNP and

INDEL calls (colored differently) was also created.

An example of the landscape created in Artemis visualizing this information can be seen

in figure 16. The Artemis genome browser allows one to scroll through the entire E. necator

transcriptome and all BLAST and SNP/INDEL annotations associated with each contig. The user

can also display the start and stop codons for all six frames of translation and perform searches

for key words within the annotations.

 35

Figure 16 Example of Compiled Information about Reference Erysiphe necator
Isolate (G14) and SNPs/INDELs Using the Artemis Genome Browser. The
annotations loaded into Artemis at in this figure include: En_transcriptome.gff3,
topBG.gff3, allBG.gff3, topNR.gff3, topSwiss.gff3, and En_vars.gff3. This
allows the user to scroll through the compiled BLAST annotation information and
SNP/INDEL information in one window.

3.5 Trinity Assembly: The number of Illumina reads (approx. 330 million) for the reference

strain G14 vastly outnumbers the amount of 454 reads (approx. 0.6 million) as shown in table 1.

Hybrid assembly of the 454 and Illumina data in Mira failed due to the size of the datasets and

computational expense (in terms of time and resources). Therefore, we decided to perform de

novo assembly of the Illumina data alone using the Trinity software package [16]. The full

 36

Illumina data set (~80Gb) alone was still too large for assembly via Trinity even on a 48-core

Linux machine with 512Gb of RAM and five days of run-time. Therefore, two fractions (the first

5.75 million and the first 11.5 million paired reads) of SeqClean + UniVec processed data were

assembled, with and without the Jaccard_clip option (recommended for gene-dense fungal

genomes), to ascertain the validity of an Illumina only assembly versus a 454 only assembly

(Table 6).

Table 6 Summary Data Associated with the Four Different Trinity Assemblies.

A - Trinity Assembly of 5.75M paired-end Illumina reads with Jaccard_clip
B - Trinity Assembly of 5.75M paired-end Illumina reads without Jaccard_clip
C - Trinity Assembly of 11.5M paired-end Illumina reads with Jaccard_clip
D - Trinity Assembly of 11.5M paired-end Illumina reads without Jaccard_clip

 37

Table 6 shows that the greatest mean contig length (1,407) and combined sum of the

contig lengths in base-pairs (~92M) resulted from the assembly of 11.5 million paired-end reads

of Illumina data from the reference strain G14 without the Jaccard_clip option enabled (D). In

contrast, the mean contig length (655) and total sum in base-pairs (~43M) of the 11.5 million

paired-end reads of Illumina data from the reference strain G14 with the Jaccard_clip option

enabled (C) are significantly less. The same pattern is evident when less Illumina reads were

assembled. The mean contig length (1,103) and sum in base-pairs (~56M) of the first 5.75

million paired-end reads without the Jaccard_clip option (B) are both greater than with the mean

contig length (588) and sum in base-pairs (~35M) with the Jaccard_clip option enabled (A).

 As with the 454 Assembly comparisons, additional information is necessary to properly

determine which Trinity assembly provides the best resulting reference transcriptome. In order to

better determine which Illumina only assembly is optimal each assembly was queried (BLASTx)

against the Bgh proteins data set. The results of this BLAST analysis can be seen in table 7.

Table 7 Summarized Results of BLASTx Runs of the Four Different Trinity
Assemblies Queried Against Bgh Proteins.

A - Trinity Assembly of 5.75M paired-end Illumina reads with Jaccard_clip
B - Trinity Assembly of 5.75M paired-end Illumina reads without Jaccard_clip
C - Trinity Assembly of 11.5M paired-end Illumina reads with Jaccard_clip
D - Trinity Assembly of 11.5M paired-end Illumina reads without Jaccard_clip

* “Contigs” refers to the Erysiphe necator reference contigs created during the
Trinity assembly and “Proteins” refers to the Blumeria graminis proteins that
were hit from this one BLAST run. The BLAST information summarized in this

 38

table is split into categories of blast score (greater than 479, greater than 287), and
a combined total of all hits with an e-value greater than 1xe-10 in an effort to look
at relatively long and medium length hits.

Table 7 shows that greatest number of E. necator contigs with hits to Bgh proteins scoring

greater than 479 (6,762), greater than 287 (11,564), and overall (25,891) was the Trinity

assembly of the first 11.5 million paired-end reads of the reference isolate (D). The same

assembly (D) also hit the greatest number of Bgh proteins with scores greater than 479 (2,102),

greater than 287 (3,305), and overall (4,886). The assembly of 11.5M paired-end Illumina reads

with the Jaccard_clip option enabled (C) matched fewer E. necator contigs (23,219) to fewer

Bgh proteins (4,868) than when the Jaccard_clip option was disabled (D). Therefore, assembly D

from tables 6 and 7 was chosen as the best Trinity de novo assembly.

4. Discussion:

Financial and environmental issues concerning the over-use of fungicides to combat

grape powdery mildew fungus, caused by Erysiphe necator, has spurred applied genomic

research focused on this fungus [5]. The purpose of the current research project was to develop

and apply transcriptomic resources in the study of E. necator, for which there are currently only

19 EST sequences available in GenBank. Development of a transcriptomic reference for an

organism is essential for characterization of the functional elements of a genome, and is a useful

tool for studying genetic diversity within a species. Most of the publicly available data for

Erysiphales are from research done on Blumeria graminis f. sp. hordei (Bgh), barley powdery

mildew, which occupies a clade within the Erysiphales but distinct from E. necator [2, 3]. The

research described here resulted in the identification and annotation of up to 39,686 ESTs, a

more than 2000-fold increase over publicly available data. Further, 11,605 SNPs were identified

in transcribed sequences, providing a foundation for population genomics and genome-wide

 39

association studies in E. necator.

RNA-Seq, a next-generation sequencing technique, offers an efficient means to attain

genomic level data for non-model organisms, such as E. necator [20]. The sequencing and

computational work described here required an investment of near $30,000, about 2% the cost of

the Bgh genome project (Cadle-Davidson, personal communication). Thus, we demonstrated that

a large quantity of useful information could be gathered about an organism’s functional genetic

content and the diversity within a species without costly whole genome sequencing and

assembly.

The first step generally taken after a next-generation sequencing run is to pre-process the

data. Many assembly programs like MIRA, integrate this step into the assembly process

alleviating the need for the user to undertake this process prior to loading the data into the

assembly software [14, 15]. However, when one relinquishes this task to the assembly software,

the user also surrenders this step as a check point to evaluate the sequencing run and remove any

sequences that may hinder the assembly process. As such, we opted to perform pre-processing

using the SeqClean software with the additional screening for known vectors and viral

contaminants from the NCBI’s UniVec database [26, 27]. Figure 4 shows the results of the pre-

processing performed on the Roche 454 data set of the E. necator reference isolate (G14) as an

example of the type of information used to evaluate the sequencing done during this project. The

majority of sequences in each of the three E. necator data sets were considered valid and none of

the data sets had more than 5% vector contamination. All of the sequencing data after pre-

processing with SeqClean was therefore deteremined to be of sufficient quality to move forward.

 A number of parameters can be modified in the Mira assembly software, including

overall quality, the percent identity necessary for read inclusion into contigs, and the number of

 40

iterations of the assembly process to perform. The summary data for each of the three Mira

assemblies (Table 2) showed that the “accurate” and “normal” de novo assemblies had the same

mean contig length, and the mapping assembly to Bgh coding sequences (CDS) had a slightly

greater mean contig length. All three assemblies consisted of approximately 25.5M base-pairs

(Table 2). Therefore, more information was needed to delineate between the three assemblies in

order to choose which assembly provided the most potentially relevant sequences.

 To ascertain which assembly provided the most potentially relevant sequences, we chose

to analyze reciprocal sequence similarity between each assembly and the Bgh protein sequences.

Bgh is the nearest relative to E. necator with complete genome sequence. The use of protein

sequences ensured that synonymous nucleotide differences did not bias the results. The BLAST

results shown in table 3 were used in our determination that the “accurate” de novo assembly was

the best Mira assembly of the Roche 454 data because it had more hits with high BLAST scores

to the Bgh proteins. The proportion of high scoring hits to Bgh is an indication of the content of

an assembly because long stretches of similarity allow one to make functional annotations with

higher confidence. A more accurate assesment of the assemblies would be to look for similarity

to all proteins in the NCBI’s NR database but the Bgh proteins data set is significantly smaller

and contains sequences with higher probability of sequence similarity because they are from a

closely related organism. Overall, the reference transcriptome (“accurate” de novo) contained

similarity to 84.6% of the 5,717 Bgh proteins, which indicates that we have captured the majority

of E. necator genes with this reference assembly.

High scoring BLAST hits are useful for making associations between two species with as

much confidence as possible and are indicative of sequences that are likely to be found within

other public databases for the purpose of functional annotation. A BLAST score is derived from

 41

the percent identity between two sequences such that the score is increased by each matching

base and decreased by mismatches and gap-openings and gap-extensions [31]. Therefore,

misassembly of reads into contigs resulting in chimeric sequences would not result in a single

high scoring BLAST hit because each score is determined by the overlap between one query (E.

necator) sequence and one subject (Bgh) sequence. A chimeric contig would display BLAST

scores to multiple subject (Bgh) sequences. Repetitive sequences are also not an issue in this

instance because without significant coverage of a repetitive region, the length of the match will

be shortened (not long enough to give a high BLAST score) in the assembly process. The pre-

processing done insures that low complexity reads are removed from the data set. Long contigs

(>1000bp) are the result of many assembled reads and are more likely to contain long stretches

of similarity to functionally annotated proteins, and therefore present higher BLAST bit scores

and lower e-values. We checked that the “accurate” de novo Mira assembly contained these long

contigs derived from numerous sequencing reads by looking at the reads per contig and

subsequent length of each contig (Fig. 5). A strong positive correlation between reads per contig

and contig length was found. We also checked the assertion that longer contigs (>1000bp) in

general have higher scoring BLAST hit scores to Bgh proteins. We found that longer contigs do

in fact have longer stretches of similarity than short contigs (<1000bp). Therefore, the basis for

determining the “accurate” de novo assembly to be the best of the Mira assemblies holds.

Ensuring that a dataset is free of contamination is an important aspect of having

confidence in the quality of the data. To validate that no contamination was incorporated into the

“accurate” de novo assembly, it was checked for similarity to chloroplast and mitochondrial

proteins from the NCBI’s NR database with BLAST(Fig. 7). The few contigs that showed

similarity to either the chloroplast or mitochondrial proteins had higher scoring BLAST hits to

 42

Bgh proteins, which indicates that these contigs are not likely to be the result of contamination. It

was determined that the similarity seen to these two potential sources of contamination did not

indicate a flawed transcriptome but that the matches were due to sequence similarity between

chloroplast/mitochondrial protein sequences and other, unrelated proteins. The reference

transcriptome was also checked for containing the core eukaryotic genes from the CEGMA

database. Again using BLAST, we found that the reference transcriptome contained similarity to

99% of the CEGMA proteins, which suggests that the reference transcriptome likely contains the

vast majority of expressed genes of E. necator, at least in the tissues sampled. However, the

technique used to obtain samples of E. necator for RNA-Seq may not have sampled the

haustorium, the only fungal cell that interacts directly with the host plant cell, thereby missing

the production site of the RNAs that are translated and secreted. One of the goals of

transcriptomic analysis is to identify candidate secreted proteins, as they are likely to be under

significant evolutionary pressure to overcome the host response (apoptosis) to their detection in

host epidermal cells [3]. Thus, even though 99% of the core genes were detected, some of the

most important genes in host-pathogen interactions may have been missed. Future experiments

could target transcripts from the haustorium and be used to confirm whether they were captured

by this reference transcriptome or not.

Ordering the reference transcriptome to reflect contig positions within the genome was

not possible due to the lack of a whole genome sequence for E. necator. However, we co-opted

the order of genes of closely related Bgh that has been fully sequenced and annotated to order

contigs by determining the orthologous genes between them [20]. We accomplished this through

reciprocal best-hit BLAST analysis [30]. In order to determine which Bgh data set (CDS or

protein) to use for the reciprocal BLAST searches we ran both and compared them (Fig. 9). The

 43

reciprocal BLAST test using the Bgh proteins resulted in more higher scoring matches than when

the Bgh CDS were used. At this point we decided to add in the set of Bgh proteins considered

problematic (404) by the researchers who sequenced and manually annotated its genome in order

to gain as much ordering power as possible for the reference transcriptome. The reciprocal best-

hit BLAST analysis was re-run including the problematic proteins and 4,522 orthologs were

found between E. necator and Bgh (Table 4). To maximize the contig ordering capability of this

test, the 4,522 E. necator contigs determined to be orthologous to Bgh proteins were each

followed by the E. necator contigs that hit the same protein to a lesser degree in descending

order. Gene fragmentation and reduced representation are well-known downfalls of next-

generation sequencing assemblies and explain why multiple E. necator contigs have regions of

similarity (not covering the entire contig sequence) to the B. graminis proteins [35]. This allowed

us to place a total of 12,148 E. necator contigs in a biologically relevant order, an increase of

approximately 1,000 contigs with the addition of the problematic Bgh proteins. However, this

left the remaining 27,538 contigs unordered.

 The ordering of the remaining contigs was done based on similarity to the entire NCBI

NR database (Fig. 10). There were a total of 27,801 contigs with BLAST hits to the NCBI’s NR

proteins from a BLAST run without an e-value cutoff. No cutoff was used during this BLAST so

that we could maximize the number of contigs ordered even if the matches were in fact random.

Removing the 12,148 contigs previously ordered, we were able to order the remaining contigs

(15,728) with similarity to the NR proteins in descending order of BLAST score. We also used

the NCBI’s NR protein BLAST against the E. necator reference contigs to determine the top-hit

species distribution using Blast2GO (Fig. 11) [32]. The top-hit species distribution shows that

the majority of NCBI’ NR annotations are from fungal ascomycetes (many of which are also

 44

plant pathogens). A very small number of E. necator reference contigs (102) had similarity to the

host species proteins (V. vinifera), which further indicated that host contamination was minimal.

This result also gives one confidence that the annotations based on similarity to NCBI NR

protein sequences are in fact derived from fungal species and more likely to be biologically

relevant. The remaining 11,810 reference contigs without similarity to Bgh or NR proteins were

put into descending order of length. In essence, the E. necator reference transcriptome was put

into the order of highest degree of information gathered to lowest (Fig. 12).

 The functional annotation of a transcriptome is necessary to understand what protein each

transcript (contig) is likely to encode. Functional annotations are generally based on similarity to

known protein sequences that have already been functionally annotated with a high-throughput

technique. As such, the E. necator reference transcriptome was queried (BLASTx) against the

NCBI’s NR protein database and the SwissProt data base in addition to the annotations already

provided from the BLAST search against the Bgh protein data set. The Bgh protein functional

annotations are not publicly available but their similarity to the reference contigs allows one to

target those contigs which have a high probability of being vital to the survival of E. necator. A

total of 27,801 reference contigs were annotated based on similarity to NCBI NR proteins (no e-

value cutoff) and 6,659 reference contigs were annotated based on similarity to SwissProt

proteins (e-value cutoff 1xe-10). These annotations were put into the gff3 format, standard for

annotaion browsing, for use with the Artemis Genome Browser (Table 6). There are some

disadvantages to developing a reference transcriptome data set and using BLAST to annotate it.

For example, we have no way of evaluating whether the assembly process produced full-length

ESTs or determining the proportion of contigs in the data set that are chimeric (containing

sequence from two or more transcripts) without targeted re-sequencing of problematic contigs.

 45

Additionally, the annotations based on BLAST results against the largest public repositories of

protein annotations and the Bgh protein dataset do not generally span the entire sequence of a

contig. Therefore, high scoring BLAST annotations that cover a relatively small portion of a

contigs sequence may not provide an accurate determination of a contig’s potential function

(after translation). The discrepancy in annotation coverage of the contig sequence may be due to

the presence of sequences for translation machinery binding. Problems with the reference

transcriptome may be resolved through the use of protein prediction software like GeneMark-E

[36] and could lead to higher confidence functional annotations from programs like InterProScan

[37]. However, this route would likely overlook the contigs that did not show any similarity to

known proteins and potentially lead to loss of valuable information because these contigs were

shown to be relevant during the SNP/INDEL calling process by having high quality SNPs and

INDELs found within them.

 Even though the reference transcriptome created during this project may contain flaws

such as chimeric or incomplete sequences, we were able to make valid functional annotations to

approximately two thirds of the contigs. For example, contig EN00002 (1,018bp) is likely to be a

2-hydroxyacid dehydrogenase, with hits to both the NCBI’s NR and SwissProt databases at e-

vaules of 4xe-86 and 1xe-69 respectively. This contig also had a significant hit to the Bgh protein

bgh01634_polypeptide at an e-value of 2xe-103 and no SNPs or INDELs. The contig EN00263

(1,384bp) had significant hits to the Bgh protein bgh00694_polypeptide (e-value: 6xe-111),

hypothetical protein BC1G_07261 [Botryotinia fuckeliana B05.10] (e-value: 5xe-84) from the

NCBI NR database, and Low-affinity iron/zinc ion transport protein fet4 (e-value: 1xe-55) from

the SwissProt database. Contig EN00263 is therefore most likely an iron/zinc ion transport

protein and is an instance where use of the SwissProt database allowed us to make a meaningful

 46

functional annotation when the highest scoring hit to the NCBI NR database was a hypothetical

protein. This contig may also be of note because it contains two SNPs (one synonymous and one

not within a BLAST hit) when compared to the 55 non-reference E. necator isolates.

Additionally, contig EN01270 (2,456bp) had similarity to bghP000684000001001 (e-value: 0),

alpha-L-rhamnosidase B [Aspergillus fumigatus Af293] (e-value: 0) from the NCBI NR

database, and no hit to the SwissProt database. Therefore, contig EN01270 is most likely codes

for an alpha-L-rhamnosidase B protein and is an instance where the SwissProt database may not

have contained a similar protein. This contig may be of particular significance because it

contains 6 SNPs when compared to the 55 non-reference E. necator isolates. Many of the

reference contigs were found to have the highest similarity to hypothetical proteins in the

NCBI’s NR database. This is unavoidable because of the amount of hypothetical annotations that

are allowed into the NR database and a side effect of the rapid growth and availability of large-

scale sequencing. There is a significant need for experimental validation and functional

determination of proteins to expand the set of well-annotated public available resources like

SwissProt.

 SNP/INDEL analysis between isolates of a species is an effective way of characterizing

the diversity within a population. There were a total of 11,605 SNPs called and 5,248 INDELs

called against the E. necator reference transcriptome using the Illumina derived sequence data

sets from the 55 additional isolates (Fig. 14). The average number of SNPs called per isolate was

544 and the average number of INDELs called per isolate was 292. One isolate, RoaMus3, had

significantly greater numbers of SNPs and INDELs than the averages. This is likely due to the

barcoding process and the fact that this isolate was not barcoded and all of the sequences that

were considered unmatched during barcode splitting process were associated with RoaMus3. As

 47

such, the SNPs and INDELs associated with RoaMus3 from this analysis will not be used to

make determinations about the phenotype exhibited by the RoaMus3 isolate in further studies.

Any other isolates deviation from these averages is likely due to more reads passing the cleaning

process than the majority of isolates allowing for higher quality SNP/INDEL calls. This could be

checked by normalizing in regards to the number of reads used to make the SNP/INDEL calls

per isolate and the number of SNPs and INDELs called. One should also note that the samples

for the 55 additional isolates used for SNP/INDEL calling were not normalized, which could

have resulted in fewer polymorphisms called because of uneven coverage within the reference

transcriptome.

 The determination of whether a SNP is synonymous or non-synonymous in terms of the

amino acid codon in which it occurs is important to understanding its potential consequence. We

used the Bgh protein, NCBI NR protein, and SwissProt protein annotations to predict the frame

of the sequence in which a SNP occurred in order to make a determination of the amino acid

encoded by reference codon and the codon with the SNP included. Of the 11,605 SNPs called

against the reference contigs we found that roughly the same number of SNPs (20-21%) were

synonymous and non-synonymous (Fig. 15). SNPs that change the stop codon of a transcript are

especially interesting because these polymorphisms have a high probability of disrupting protein

function. Of the 11,605 SNPs there were 279 (3%) in this category (Fig. 15). Identification of

these polymorphisms will direct researchers to target the contigs containing these types of SNPs

and the transcripts they represent for further study. The SNPs and INDELs called during this

project will be used in the future for a transcriptome wide association study (TWAS) in

combination with phenotypic data to determine which polymorphisms correspond to the

phenotypic differences seen amongst the isolates.

 48

 With the results of the annotation and SNP/INDEL identification using the 454 reference

transcriptome it was clear that there was room for improvement of the reference. Not all of the

Bgh genes were found within the 454 E. necator reference and there are clear signs that some

contigs were the result of chimeric assembly and incomplete transcripts were present. In an

attempt to improve upon the 454 reference transcriptome the G14 isolate was again sequenced,

using the Illumina platform. Ideally, a hybrid assembly of the Illumina and Roche 454 data using

Mira would increase the sequencing coverage and provide a higher quality reference.

Unfortunately multiple attempts at a hybrid assembly using Mira were unsuccesful due to lack of

computational resources and time. The hybrid assembly process involves a time-consuming

sequential step and an enormous amount of RAM is necessary (256Gb) to load the entire

Illumina data set into memory. Attempts to use fractions of the Illumina reference data were also

unsucessful due to time constraints. Because of this we assembled the Illumina data de novo

using the Trinity sequences assembler.

Trinity has a smaller computational resource footprint than Mira, but the entire Illumina

data set (~330M reads) was still too large to attain an assembly in a reasonable amount of time

(less than 7 days). To overcome the problems associated with such a large data set and still gain

an assembly of the Illumina data in a de novo fashion we used the first 5.75M and the first 11.5M

paired-end Illumina reads in four assemblies. Four assemblies were necessary to ascertain at

which point the addition of more sequencing data was worthwhile and whether the Jaccard_clip

option (recommended for fungal data sets) was advantageous (Tables 6 and 7). The Trinity

assembly of the 11.5M paired-end Illumina reads without the Jaccard_clip option had the

greatest mean contig length (1,407) and had the greatest total number of base-pairs (~92M bp) of

 49

the four assemblies performed. The same assembly also had the greatest number of high scoring

BLAST hits to Bgh proteins.

From tables 6 and 7 it is clear that the Jaccard_clip option resulted in shorter length

contigs that matched fewer Bgh proteins than when it was disabled. This may be due to the

Jaccard_clip option having a too lax criteria for splitting contigs. Therefore, the Jaccard_clip

option does not seem to provided a better assembly with the E. necator Illumina data set. The

addition of more Illumina reads to the assembly process increased the average contig length,

number of contigs, and their sum in base pairs. As such, it appears that 11.5 million reads is

probably not the upper limit at which an increased number of reads can add significant value to a

given assembly. However, it is advisable to balance the need for additional reads and potentially

higher quality assemblies against the time and resources available. The increased contig length

could lead to higher quality annotation compared with the Roche 454 only assemblies. However,

the longer contig lengths could be a failure to delineate between two separate transcripts (not

using Jaccard_clip), which could be catastrophic in terms of assigning potential function to any

given contig. Without more information, it is not clear whether the Trinity de novo assembly

provided a better assembly than the Mira de novo assembly. A BLAST search of the 11.5M

paired-end read Trinity assembly (without Jaccard_clip) against the NCBI’s NR database will

likely provide a better means of differentiating between the two assembly programs and

sequencing platforms. The greater number of contigs and the total sum of base-pairs of the

Illumina reference transcriptome would however make all of the downstream annotation and

SNP/INDEL calling analysis take a significantly longer time and use more computational

resources. If time and resources are not an issue this type of assembly may be worthwhile to

researchers because it is more likely to provide a robust and all encompassing transcriptomic

 50

reference.

5. Conclusion:

 The Roche 454 derived reference transcriptome created for Erysiphe necator and the

functional annotation and polymorphic characterization performed during this project will assist

researchers in understanding which genes are responsible for the differences between different E.

necator isolates and may allow for increased efficacy of attempts to control this fungus and its

infection of grape vines. In total, we made over 50,000 annotations and called 11,605 SNPs and

5,248 INDELs against the 39,686 contigs that make up this transcriptome. These data sets will be

made publicly available and be used to further study E. necator and other Erysiphales.

 We have successfully shown that RNA-Seq is a viable option for researchers of non-

model organisms to obtain large quantities of useful information at a relatively low cost. A lack

of whole-genome sequence presents unique problems, however. The unavoidable presence of un-

anchored and unordered contigs, potentially chimeric contigs, and incomplete contigs are some

of the problems that need to be addressed in order to attain the highest level of confidence in a

reference transcriptome. In the future, we would like to determine which sequencing technology

(Roche 454 or Illumina) provides data allowing for the best de novo assembly and develop

criteria for the removal of contigs that are unlikely to biologically relevant. The reference

transcriptome can be used to create markers that will allow researchers to target specific E.

necator genes for further study. Additionally, the SNP and INDEL information will be used in

the future to make phenotypic associations, through a TWAS, amongst the isolates used in this

study. The reference transcriptome will also most likely be run through gene prediction software

and annotated using protein domain prediction software.

 51

6. Works Cited

1. Spanu PD, et al. (2010) Genome Expansion and Gene Loss in Powdery Mildew Fungi Reveal
Tradeoffs in Extreme Parasitism. Science, 330:1543-1546.

2. Brewer MT and Milgroom M. (2010) Phylogeography and population structure of the grape
powdery mildew fungus, Erysiphe necator, from diverse Vitis species. BMC Evolutionary
Biology, 10:268.

3. Glawe DA. (2008) The Powdery Mildews: A Review of the World's Most Familiar (Yet
Poorly Known) Plant Pathogens. Annual Review of Phytopathology, 46:27-51.

4. Saenz GS and Taylor JW. (1999) Phylogeny of the Erysiphales (powdery mildews) inferred
from internal transcribed spacer ribo- somal DNA sequences. Canadian Journal of
Botany, 77:150–168.

5. Cadle-Davidson L, Wakefield L, Seem R, and Gadoury D. (2009) Specific Isolation of RNA
from the Grape Powdery Mildew Pathogen Erysiphe necator, an Epiphytic, Obligate
Parasite. Journal of Pytopathology, 158:69-71.

6. Gadoury DM, Cadle-Davidson L, Wilcox W, Dry I, Seem R, and Milgroom M. (2012)
Grapevine powdery mildew (Erysiphe necator): a fascinating system for the study of the
biology, ecology and epidemiology of an obligate biotroph. Molecular Plant Pathology,
13:1–16.

7. Calonnec A, Cartolaro P, Poupot C, Dubourdieu D, and Darriet P. (2004) Effects of Uncinula
necator on the yield and quality of grapes (Vitis vinifera) and wine. Plant Pathology,
53:434-445.

8. National Center for Biotechnology Information. (2010). Erysiphe necator taxonomy browser.
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=52586,
verified on October 23, 2011.

9. Schena M, Shalon D, Davis RW, and Brown PO. (1995) Quantitative monitoring of gene
expression patterns with a complementary DNA microarray. Science, 270:467-470.

10. Mardis ER. (2008) Next-generation DNA sequencing methods. Annual Review Genomics
and Human Genetics, 9:387-402.

11. Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y. (2008) RNA-seq: an assessment of
technical reproducibility and comparison with gene expression arrays. Genome Research,
18:1509-1517.

12. Wang Z, Gerstein M, and Snyder M. (2009) RNA-Seq a revolutionary tool for
transcriptomics. Nature Reviews Genetics, 10:57–63.

13. Wang Z, Gerstein M, and Snyder M. (2009) RNA-Seq: a revolutionary tool for
transcriptomics. Nature Reviews Genetics, 10:57–63.

14. Chevreux B, Pfisterer T, Drescher B, Driesel AJ, Muller WEG, Wetter T, and Suhai S.
(2004) Using the miraEST assembler for reliable and automated mRNA transcript
assembly and SNP detection in sequenced ESTs. Genome Research, 14:1147–1159.

 52

15. MIRA [http://chevreux.org/projects_mira.html].
16. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L,

Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma
F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, and Regev A. (2011) Full-
length transcriptome assembly from RNA-seq data without a reference genome. Nature
Biotechnology, 29:644-652.

17. Li H and Durbin R. (2000) Fast and accurate short read alignment with Burrows-Wheeler
Transform. Bioinformatics, 25:1754-1760.

18. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin
R, and 1000 Genome Project Data Processing Subgroup. (2009) The Sequence
alignment/map (SAM) format and SAMtools. Bioinformatics, 25:2078-2079.

19. Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, and Barrell B.
“Artemis: sequence visualization and annotation.” Bioinformatics, 10:944-945.

20. Parchman T, Geist K, Grahnen J, Benkman C, and Buerkle CA. (2010) Transcriptome
sequencing in an ecologically important tree species: assembly, annotation, and marker
discovery. BMC Genomics, 11:180-196.

21. Garber M, Grabherr M, Guttman M, and Trapnell C. (2011) Computational methods for
transcriptome annotation and quantification using RNA-seq. Nature Methods, 8:469–
477.

22. Zerbino DR and Birney E. (2008) Velvet: algorithms for de novo short read assembly using
de Bruijn graphs. Genome Research, 18:821-829.

23. Robertson G, Schein J, Chiu R, Corbett R, Field M, Jackman SD, Mungall K, Lee S, Okada
HM, Qian JQ, Griffith M, Raymond A, Thiessen N, Cezard T, Butterfield YS, Newsome
R, Chan SK, She R, Varhol R, Kamoh B, Prabhu AL, Tam A, Zhao Y, Moore RA, Hirst
M, Marra MA, Jones SJ, Hoodless PA, and Birol I. (2010) De novo assembly and
analysis of RNA-seq data. Nature Methods, 7:909-912.

24. Wilming L and Harrow J. (2009) “Gene Annotation Methods” in Bioinformatics: Tools and
Applications; D. Edwards et al. eds.; Springer Scienc+Business Media. Chapter 6, 121-
136.

25. FastX-toolkit [http://hannonlab.cshl.edu/fastx_toolkit/index.html].

26. SeqClean [http://compbio.dfci.harvard.edu/tgi/software/].
27. UniVec [http://www.ncbi.nlm.nih.gov/VecScreen/UniVec.html]

28. SFF extract [http://bioinf.comav.upv.es/sff_extract/].
29. Parra G, Branam K, and Korf I. (2007) CEGMA: a pipeline to accurately annotate core genes

in eukaryotic genomes. Bioinformatics, 23:1061-1067.
30. Moreno-Hagelsieb G and Latimer K. (2008) Choosing BLAST options for better detection of

orthologs as reciprocal best hits. Bioinformatics, 24:319-324.
31. Altschul SF, Gish W, Miller W, Myers EW, and Lipman DJ. (1990) Basic local alignment

search tool. Journal of Molecular Biology, 215:403–410.

 53

32. Conesa A, Götz S, Garcia-Gomez JM, Terol J, Talon M, and Robles M. (2005) Blast2GO: a
universal tool for annotation, visualization and analysis in functional genomics research.
Bioinformatics, 21: 3674-3676.

33. Stajich JE, Block D, Boulez K, Brenner SE, Chervitz SA, Dagdigian C, Fuellen G, Gilbert
JG, Korf I, Lapp H, Lehväslaiho H, Matsalla C, Mungall CJ, Osborne BI, Pocock MR,
Schattner P, Senger M, Stein LD, Stupka E, Wilkinson MD, Birney E. (2002) The
Bioperl toolkit: Perl modules for the life sciences. Genome Research, 12:1611–1618.

34. Lischer HEL and Excoffier L. (2012) PGDSpider: An automated data conversion tool for
connecting population genetics and genomics programs. Bioinformatics, 28:298-299.

35. Ye L, Hillier LW, Minx P, Thane N, Locke DP, Martin JC, Chen L, Mitreva M, Miller JR,
Haub KV, Dooling DJ, Mardis ER, Wilson RK, Weinstock GM, and Warren WC. (2011)
A vertebrate case study of the quality of assemblies derived from next-generation
sequences. Genome Biology, 12:R31.

36. Borodovsky M and McIninch J. (1993) GeneMark: parallel gene recognition for both DNA
strands. Computers and Chemistry, 17:123-133.

37. Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R and Lopez R. (2005)
InterProScan: protein domains identifier. Nucleic Acids Research, 33:W116–W120.

 A1

7. Appendix 1

7.1. cleanBLAST.pl

Program to remove all secondary blast hits Leaving the single
highest scoring blast hit for a given query sequence. The input
must be sorted by the query name followed by the blast score.

example: sort -k1,1 -k12,12nr blastResults

@author: Jason Myers
@date: 06/21/2011

#!/usr/bin/perl
use strict;
#use warnings;
Making sure that the correct number of arguments are given by the user and
that the program displays an accurate message in case the user does not.
my $numArgs = $#ARGV + 1;
unless($numArgs == 1) {

 print "Usage: perl cleanBLAST.pl srt_blastResults\n";
 exit;
}
get a handle on the input file
my $infile = $ARGV[0];
my $lastQuery = "";
open INFILE, "$infile", or die $!;
my $outfile = "cl_" . $infile;
open OUTFILE, ">>$outfile", or die $!;
#loop over the input
while(<INFILE>){
 my $string = $_;
 chomp($string);
 my ($query, $subject, $identity, $alLength, $mismatch, $gap,
 $qStart, $qEnd, $sStart, $send, $eVal, $score) =
 split(/\t/, $string, 12);
 if($query eq $lastQuery){
 } else {
 print OUTFILE $string, "\n";
 $lastQuery = $query;
 }

}
close(INFILE);
close(OUTFILE);

 A2

END
exit;

7.2. recipHitsEval.pl

Determine if reciprocal blasts correspond. The blast
input files must be cleaned using cleanBLAST.pl (m8).
The idList file is from a .gff3 file sorted by contig
in the first column then the proteinID in column 2.

@author: Jason Myers
@date: 07/06/2011

#!/usr/bin/perl
use strict;
#use warnings;
Making sure that the correct number of arguments are given by the user and
that the program displays an accurate message in case the user does not.
my $numArgs = $#ARGV + 1;
unless($numArgs == 4) {
 # cleaned - sort -k1,1 -k12,12nr file > out
 # - cleanBlast.pl out

 print "Usage: perl recipHitsEval.pl cleanedG14 cleanedBG bgIDList outfile\n";
 exit;
}
get a handle on the input file
my $infile = $ARGV[0];
my $infile1 = $ARGV[1];
my $infile2 = $ARGV[2];
my $outfile = $ARGV[3];
open the first file
open INFILE2, "$infile2", or die $!;
my $iter = 0;
my @bgId = ();
my %contigs;
my %g14Query;
my %g14Score;
my %g14eVal;
my %g14Subject;
my %g141Score;
my %g141eVal;
my %bgSubject;
my %bgScore;
my %bgeVal;

 A3

my $agree = 2; #set to the error code
#loop over the input
while(<INFILE2>){
 my $string = $_;
 chomp($string);
 my ($contigName, $bg) = split(/\t/, $string, 2);
 if(exists $contigs{$bg}){
 print "Warning: $bg has a duplicated contig.\n";
 } else {
 $contigs{$bg} = $contigName;
 #preserve the order of the id's
 $bgId[$iter] = $bg;
 $iter++;
 }
}
close(INFILE2);
open INFILE, "$infile", or die $!;
#loop over the input
while(<INFILE>){
 my $string = $_;
 chomp($string);
 my ($query, $subject, $identity, $alLength, $mismatch, $gap,
 $qStart, $qEnd, $sStart, $send, $eVal, $score) =
 split(/\t/, $string, 12);
 if($score > $g14Score{$subject}){
 $g14Query{$subject} = $query;
 $g14Score{$subject} = $score;
 $g14eVal{$subject} = $eVal;
 }
 if($score > $g141Score{$query}){
 $g14Subject{$query} = $subject;
 $g141Score{$query} = $score;
 $g141eVal{$query} = $eVal;
 }
}
close(INFILE);
open INFILE1, "$infile1", or die $!;
#loop over the input
while(<INFILE1>){
 my $string = $_;
 chomp($string);
 my ($query, $subject, $identity, $alLength, $mismatch, $gap,
 $qStart, $qEnd, $sStart, $send, $eVal, $score) =
 split(/\t/, $string, 12);
 if($score > $bgScore{$query}) {
 $bgSubject{$query}= $subject;

 A4

 $bgScore{$query} = $score;
 $bgeVal{$query} = $eVal;
 }
}

close(INFILE1);
open OUTFILE, ">>$outfile", or die $!;
print OUTFILE "Contig\ttransId\tG14hit\tG14score\ttransHit\ttransScore\tagree\n";
my $max = $#bgId;
my $bgNoHit;
my $g14NoHit;
for(my $it = 0; $it <= $max; $it++){
 $agree = 2; #error code
 $bgNoHit = 0;
 $g14NoHit = 0;
 my $current = $bgId[$it];
 print OUTFILE $contigs{$current}, "\t", $current, "\t";
 if(!exists $bgSubject{$current}){
 $bgSubject{$current} = "no_hit";
 $bgScore{$current}= 1;
 $bgeVal{$current}= 10;
 $bgNoHit++;
 }
 if(!exists $g14Query{$current}){
 $g14Query{$current} = "no_hit";
 $g14Score{$current}= 1;
 $g14eVal{$current}= 10;
 $g14NoHit++;
 }
 if($g14Subject{$bgSubject{$current}} eq $current){
 print OUTFILE $bgSubject{$current}, "\t"
 , $g141eVal{$bgSubject{$current}}, "\t"
 , $g141Score{$bgSubject{$current}}, "\t";
 $agree = 0;
 } else {
 print OUTFILE $g14Query{$current}, "\t"
 , $g14eVal{$current}, "\t"
 , $g14Score{$current}, "\t";
 $agree = 10;
 }
 print OUTFILE $bgSubject{$current}, "\t"
 , $bgeVal{$current}, "\t"
 , $bgScore{$current}, "\t";
 if($bgNoHit == 1 && $g14NoHit == 1){
 $agree = 5;
 }

 A5

 print OUTFILE "$agree\n";
}
close(OUTFILE);
END
exit;

7.3. getContigOrder.pl

Determine the order of contigs based on reciprocal
blast information from recipHitsEval.pl

@author: Jason Myers
@date: 06/24/2011

#!/usr/bin/perl
use strict;
#use warnings;
Making sure that the correct number of arguments are given by the user and
that the program displays an accurate message in case the user does not.
my $numArgs = $#ARGV + 1;
unless($numArgs == 2) {
 # resorted means sort the cleaned blast result
 # using sort -k2,2 -k12,12nr file.txt > outfile.txt
 print "Usage: perl getContigOrder.pl fixed_recirocalInfo cleaned_resorted_G14_blast\n";
 exit;
}
get a handle on the input file
my $infile = $ARGV[0];
my $infile1 = $ARGV[1];
open the first file
open INFILE, "$infile", or die $!;
reciprocal info arrays
my @g14 = ();
my @bg= ();
my @codes= ();
blast hit info arrays
my @blastQu = ();
my @blastSub = ();
my @blastSc = ();
my @blastE = ();
my @blastQuS = ();
my @blastQuE = ();
my @blastSubS = ();
my @blastSubE = ();

 A6

finished contig list arrays
my @list = ();
my @codeList = ();
misc
my $iter = 0;
my $flag = 0;
my $it = 0;
my $num = 0;
#loop over the input get the reciprocal info
while(<INFILE>){
 my $string = $_;
 chomp($string);
 #for agree: 0=reciprocalMatch, 5=reciprocalMisMatch, 10=MisMatch
 my ($contigName, $bgID, $g14query, $g14Score, $BGquery, $BGscore, $agree) =
split(/\t/, $string, 7);
 if($flag == 0){
 $flag++;
 } elsif($agree == 0 || $agree == 10) {
 if($g14query ne "no_hit"){
 $g14[$iter] = $g14query;
 $bg[$iter] = $bgID;
 $codes[$iter] = $agree;
 $iter++;
 }
 }
}
close(INFILE);
open INFILE1, "$infile1", or die $!;
#loop over the input get the blastInfo
while(<INFILE1>){
 my $string = $_;
 chomp($string);
 my ($query, $subject, $identity, $alLength, $mismatch, $gap,
 $qStart, $qEnd, $sStart, $sEnd, $eVal, $score) =
 split(/\t/, $string, 12);
 $blastQu[$it] = $query;
 $blastSub[$it] = $subject;
 $blastSc[$it] = $score;
 $blastE[$it] = $eVal;
 $blastQuS[$it] = $qStart;
 $blastQuE[$it] = $qEnd;
 $blastSubS[$it] = $sStart;
 $blastSubE[$it] = $sEnd;
 $it++;
}
close(INFILE1);

 A7

#sort
for(my $t = 0; $t <= $#bg ; $t++){
 $list[$num] = $g14[$t];
 $codeList[$num] = $codes[$t];
 $num++;
 for(my $i = 0; $i <= $#blastQu; $i++){
 if($bg[$t] eq $blastSub[$i]){
 if($g14[$t] eq $blastQu[$i]){
 }else{
 $list[$num] = $blastQu[$i];
 #15 signifies that these are not reciprocal best hits
 $codeList[$num] = 15;
 $num++;
 }
 }
 }
}
my $outfile = "contigOrder.txt";
open OUTFILE, ">>$outfile", or die $!;
#header
print OUTFILE "g14\tg14Start\tg14End\tSub\tSubStart\tSubEnd\tEval\tScore\tOrigin\n";
$num = 0;
#print
for(my $t = 0; $t <= $#list ; $t++){
 for(my $i = 0; $i <= $#blastQu; $i++){
 if($list[$t] eq $blastQu[$i]){
 print OUTFILE $blastQu[$i], "\t", $blastQuS[$i], "\t", $blastQuE[$i], "\t",
 $blastSub[$i], "\t", $blastSubS[$i], "\t", $blastSubE[$i], "\t",
 $blastE[$i], "\t", $blastSc[$i], "\t", $codeList[$num], "\n";
 $num++;
 }
 }
}
close(OUTFILE);
END
exit;

8. Appendix 2

8.1. getContigOrderNRBLAST.pl

Determine the order of contigs based on an NR
blast result, disregarding already ordered contigs.

@author: Jason Myers
@date: 06/28/2011

 A8

#!/usr/bin/perl
use strict;
#use warnings;
Making sure that the correct number of arguments are given by the user and
that the program displays an accurate message in case the user does not.
my $numArgs = $#ARGV + 1;
unless($numArgs == 2) {
 # sorted blastOutput accomplished
 # using sort -k12,12nr file.txt > outfile.txt
 # may need to be done after cleaning
 print "Usage: perl getContigOrderNRBLAST.pl contigOrder.txt SortedBlastOutput.txt\n";
 exit;
}
get a handle on the input file
my $infile = $ARGV[0];
my $infile1 = $ARGV[1];
open the first file
open INFILE, "$infile", or die $!;
my $flag = 0;
my %firstHash;
#loop over the input get the reciprocal info
while(<INFILE>){
 my $string = $_;
 chomp($string);
 #for origin: 0=reciprocalMatch, 5=reciprocalMisMatch, 10=MisMatch,
15=secondaryMatchToBG
 my ($g14, $g14Start, $g14End, $BG, $BGstart, $BGend, $eVal, $score,
 $origin) = split(/\t/, $string, 9);
 if($flag == 0){
 $flag++;
 } else{
 $firstHash{"$g14"} = $origin;
 }
}
close(INFILE);
open INFILE1, "$infile1", or die $!;
my $outfile = "NRcontigOrder.txt";
open OUTFILE, ">>$outfile", or die $!;
#header
print OUTFILE "g14\tg14Start\tg14End\tNR\tNRstart\tNRend\tEval\tScore\tOrigin\n";
#loop over the input get the blastInfo
while(<INFILE1>){
 my $string = $_;
 chomp($string);
 my ($query, $subject, $identity, $alLength, $mismatch, $gap,

 A9

 $qStart, $qEnd, $sStart, $sEnd, $eVal, $score) =
 split(/\t/, $string, 12);
 if(exists $firstHash{$query}){
 } else {
 print OUTFILE $query, "\t", $qStart, "\t", $qEnd, "\t",
 $subject, "\t", $sStart, "\t", $sEnd, "\t", $eVal, "\t",
 $score, "\t20\n";
 }
}
close(INFILE1);
close(OUTFILE);
END
exit;

9. Appendix 3

9.1. getContigOrderLength.pl

Determine the order of contigs based contig Length
disregarding already ordered contigs.

@author: Jason Myers
@date: 06/28/2011

#!/usr/bin/perl
use strict;
#use warnings;
Making sure that the correct number of arguments are given by the user and
that the program displays an accurate message in case the user does not.
my $numArgs = $#ARGV + 1;
unless($numArgs == 2) {
 # sortedContigLength is accomplished
 # using sort -k2,2nr file.txt > outfile.txt
 # COMBINEDcontigOrder means to combine the output
 # of the getContigOrder.pl and getContigOrderNRBLAST.pl
 # programs (remove intervening header)
 print "Usage: perl getContigOrderLength.pl COMBINEDcontigOrder
SortedContigLengthFile\n";
 exit;
}
get a handle on the input file
my $infile = $ARGV[0];
my $infile1 = $ARGV[1];
open the first file

 A10

open INFILE, "$infile", or die $!;
my $flag = 0;
my %firstHash;
#loop over the input get the reciprocal info
while(<INFILE>){
 my $string = $_;
 chomp($string);
 # For origin: 0=reciprocalMatch, 5=reciprocalMisMatch,
 # 10=MisMatch, 15=secondaryMatchToBG, 20=matchToNR
 my ($g14, $g14Start, $g14End, $BG, $BGstart,
 $BGend, $eVal, $score, $origin) = split(/\t/, $string, 9);
 if($flag == 0){
 $flag++;
 } else{
 $firstHash{"$g14"} = $origin;
 }
}
close(INFILE);
open INFILE1, "$infile1", or die $!;
my $outfile = "LENGTHcontigOrder.txt";
open OUTFILE, ">>$outfile", or die $!;
#header
print OUTFILE "g14\tg14Start\tg14End\tSub\tSubStart\tSubEnd\tEval\tScore\tOrigin\n";
#loop over the input get the blastInfo
while(<INFILE1>){
 my $string = $_;
 chomp($string);
 my ($query, $length) = split(/\t/, $string, 2);
 if(exists $firstHash{$query}){
 } else {
 print OUTFILE $query, "\t1\t", $length, "\tN/A\tN/A\tN/A\tN/A\tN/A\t25\n";
 }
}
close(INFILE1);
close(OUTFILE);
END
exit;

 A11

10. Appendix 4

10.1. finishOrdering.pl

Take in a file with the contig list in order,
a list of contig lengths by ID, and a fasta file
containing all of the contigs then output a newly
ordered fasta file with correct ID's, a fasta file
with all the sequences under one ID with oligo-N's
seperating the different contigs, and a gff3 file
that specifies which contig is which.

@author: Jason Myers
@date: 06/28/2011

#!/usr/bin/perl
use strict;
use Bio::SeqIO;
#use warnings;
Making sure that the correct number of arguments are given by the user and
that the program displays an accurate message in case the user does not.
my $numArgs = $#ARGV + 1;
unless($numArgs == 3) {
 #COMBINEDcontigOrderFile: combination of the outputs of the following:
 # getContigOrder.pl
 # getContigOrderNRBLAST.pl
 # getContigOrderLength.pl
 #
 #ContigLengthFile: should be in the form: ContigID[TAB]ContigLength
 #
 #FastaFile: Containing all of the sequences that you wish to order
 print "Usage: perl finishOrdering.pl COMBINEDcontigOrderFile contigLengthFile
FastaFile\n";
 exit;
}
get a handle on the input file
my $infile = $ARGV[0];
my $infile1 = $ARGV[1];
my $infile2 = $ARGV[2];
open the first file
open INFILE, "$infile", or die $!;
my @ids = ();
my @newNames = ();
my $iter = 0;
my $flag = 0;

 A12

my %hash;
my %lengths;
my $iden = '';
#start at 1 because there is no contig 0
my $i = 1;
start at 1 because there is no base 0
my $curLength = 1;
pad with 11 even though there are only 10
N's seperating the contigs to get the correct
coordiantes.
my $Npad = 11;
The number of bases to be printed per line
my $cutoff = 60;
my $carry = '';
my $tempStr = '';
#loop over the input
while(<INFILE>){
 my $string = $_;
 chomp($string);
 my ($g14, $g14Start, $g14End, $SUB
 , $SUBStart, $SUBEnd, $eVal, $score
 , $origin) = split(/\t/,$string, 9);
 if($flag == 0){
 #skip header
 $flag++;
 } else {
 #store contig ID's
 $ids[$iter] = $g14;
 $iter++;
 }
}
close(INFILE);
open INFILE1, "$infile1", or die $!;
#loop over the input
while(<INFILE1>){
 my $string = $_;
 chomp($string);
 my ($contigName, $contigLength) = split(/\t/,$string, 2);
 $lengths{"$contigName"} = $contigLength;
}
close(INFILE1);
my $inSeq = Bio::SeqIO->new(-file => "$infile2",
 -format => 'Fasta');
my $outSeq = Bio::SeqIO->new(-file => ">g14Ordered.fasta",
 -format => 'Fasta');
#loop over all of the sequences and store them in the hash

 A13

while(my $seq = $inSeq->next_seq()){
 my $newKey = $seq->primary_id;
 $hash{"$newKey"} = $seq;
}
loop over the contig ID's array and print out the
sequences in the correct order
for(my $t = 0; $t <= $#ids; $t++){
 #change the contig name before printing
 $iden = "EN" . sprintf("%05d",$i);
 $newNames[$t] = $iden;
 $hash{$ids[$t]}->display_name($iden);
 $outSeq->write_seq($hash{$ids[$t]});
 $i++;
}
my $outfile = "En_transcriptome.fasta";
open OUTFILE, ">>$outfile" or die $!;
print OUTFILE ">En_transciptome\n";
for(my $t = 0; $t <= $#ids; $t++){
 $tempStr = $carry;
 $tempStr .= $hash{$ids[$t]}->seq();
 $tempStr .= "NNNNNNNNNN";
 my $strLength = length($tempStr);
 my $num = int($strLength / $cutoff);
 if(($strLength % $cutoff) != 0){
 $num++;
 }
 for(my $k = 0; $k < $num; $k++){
 if($k == ($num - 1)){
 $carry = substr($tempStr, $k * $cutoff, $cutoff);
 } else {
 print OUTFILE substr($tempStr, $k * $cutoff, $cutoff), "\n";
 }
 }
}
print OUTFILE $carry, "\n";
close(OUTFILE);
my $outfile2 = "En_transcriptome.gff3";
open OUTFILE2, ">>$outfile2" or die $!;
print OUTFILE2 "##gff-version 3\n";
#loop for the number of contigs and output the gff3 file
for(my $r = 0; $r <= $#newNames; $r++){
 print OUTFILE2 $newNames[$r], "\t";
 print OUTFILE2 "Mira_assembly\t";
 print OUTFILE2 "contig\t";
 print OUTFILE2 $curLength, "\t";
 $curLength += ($lengths{$ids[$r]} - 1);

 A14

 print OUTFILE2 $curLength, "\t";
 $curLength += $Npad;
 print OUTFILE2 "0\t";
 print OUTFILE2 ".\t";
 print OUTFILE2 "0\t";
 print OUTFILE2 "ID=", $newNames[$r], ";Name=", $newNames[$r], ";Alias=",
$ids[$r], ";color=135 206 250\n";
}
END finishOrdering.pl
exit;

11. Appendix 5

11.1. fixGff3fromBlast.pl

This program takes in a file containing information about the
start and end of contigs withiin the transcriptome as a whole
as well as naming conventions of the contigs, a gff3 file from
the bp_search2gff.pl program, a color scheme to be associated
with the annotations that varies by shade according to BLAST
score. (<279 = light, >279<480 = medium, >479 dark), the blast
ouput file to incorporate the e-value information, the name of
the DB quereid against for reference purposes, and allows the
user to specify the output file name.

@author: Jason Myers
@date: 06/28/2011

#!/usr/bin/perl
use strict;
#use warnings;
Making sure that the correct number of arguments are given by the user and
that the program displays an accurate message in case the user does not.
my $numArgs = $#ARGV + 1;
 # ContigInfo:
ActualContigName<TAB>start<TAB>end<TAB>OriginalContigName
unless($numArgs == 6) {
 print "Usage: perl fixGff3fromBlast.pl contigInfo gff3FromBlast\n",
 "\tcolor(green/purple/yellow/red/gray/blue/pink/brown)\n",
 "\tblastOutput subjectDBname outfile\n";
 exit;
}
get a handle on the input file
my $infile = $ARGV[0];
my $infile1 = $ARGV[1];
my $infile2 = $ARGV[3];

 A15

my $dbName = $ARGV[4];
my $outfile = $ARGV[5];
my $colorFlag = 0;
if($ARGV[2] eq "green"){
 $colorFlag++;
} elsif($ARGV[2] eq "purple"){
 $colorFlag = 2;
} elsif($ARGV[2] eq "yellow"){
 $colorFlag = 3;
} elsif($ARGV[2] eq "red"){
 $colorFlag = 4;
} elsif($ARGV[2] eq "gray"){
 $colorFlag = 5;
} elsif($ARGV[2] eq "blue"){
 $colorFlag = 6;
} elsif($ARGV[2] eq "pink"){
 $colorFlag = 7;
} elsif($ARGV[2] eq "brown"){
 $colorFlag = 8;
} else {
 print "Warning: The color you have chosen is not an option.\nExiting...\n";
 exit;
}
open the first file
open INFILE, "$infile", or die $!;
my $flag = 0;
my %hash;
my %eVals;
my $field1 = "contig";
my $field2 = "start";
my $field3 = "end";
#loop over the input
while(<INFILE>){
 my $string = $_;
 chomp($string);
 my ($newName, $start, $end, $oldName) = split(/\t/,$string, 9);
 $hash{"$oldName"}{"$field1"} = $newName;
 $hash{"$oldName"}{"$field2"} = $start;
 $hash{"$oldName"}{"$field3"} = $end;
}
close(INFILE);
open INFILE2, "$infile2", or die $!;
#loop over the input
while(<INFILE2>){
 my $string = $_;
 chomp($string);

 A16

 my ($query, $subject, $iden, $align, $mis,
 $gap, $qs, $qe, $ss, $se, $eval, $score)
 = split(/\t/,$string, 12);
 $eVals{"$query"}{"$subject"}= $eval;
}
open INFILE1, "$infile1", or die $!;
open OUTFILE, ">>$outfile" or die $!;
#loop over the input
while(<INFILE1>){
 my $string = $_;
 chomp($string);
 my ($featName, $source, $type, $s, $e, $score,
 $strand, $phase, $att) = split(/\t/,$string, 9);
 my ($tag, $ref) = split(/=/,$att,2);
 my $color = "";
 if($flag ==0){
 $flag++;
 print OUTFILE $string, "\n";
 } elsif($type eq "match") {
 } else {
 if($tag eq "iD"){
 $tag = "ID";
 }
 print OUTFILE $featName, "\t", $source, "\t", $type, "\t",
 ($s + $hash{$featName}{$field2} - 1), "\t",
 ($e + $hash{$featName}{$field2} - 1), "\t",
 $score, "\t", $strand, "\t", $phase, "\t",
 "Name=", $ref, ";",
 $tag, "=", $hash{$featName}{$field1}, ";";
 if($colorFlag == 1){
 if($score > 479){
 $color = "0 102 0";
 } elsif($score > 279){
 $color = "0 153 0";
 } else{
 $color = "0 255 102";
 }
 }elsif($colorFlag == 2){
 if($score > 479){
 $color = "102 0 102";
 } elsif($score > 279){
 $color = "153 0 153";
 } else{
 $color = "153 102 153";
 }
 }elsif($colorFlag == 3){

 A17

 if($score > 479){
 $color = "255 255 0";
 } elsif($score > 279){
 $color = "255 255 102";
 } else{
 $color = "255 255 153";
 }
 }elsif($colorFlag == 4){
 if($score > 479){
 $color = "255 0 0";
 } elsif($score > 279){
 $color = "255 140 0";
 } else{
 $color = "255 160 122";
 }
 }elsif($colorFlag == 5){
 if($score > 479){
 $color = "238 233 233";
 } elsif($score > 279){
 $color = "205 201 201";
 } else{
 $color = "139 137 137";
 }
 }elsif($colorFlag == 6){
 if($score > 479){
 $color = "0 0 102";
 } elsif($score > 279){
 $color = "0 51 102";
 } else{
 $color = "0 102 153";
 }
 }elsif($colorFlag == 7){
 if($score > 479){
 $color = "255 20 147";
 } elsif($score > 279){
 $color = "255 105 180";
 } else{
 $color = "255 182 193";
 }
 }elsif($colorFlag == 8){
 if($score > 479){
 $color = "139 69 19";
 } elsif($score > 279){
 $color = "205 133 63";
 } else{
 $color = "222 184 135";

 A18

 }
 }
 print OUTFILE "color=", $color, ";subjectDB=", $dbName,
 ";e-value=", $eVals{$featName}{$ref}, "\n";
 }
}
close(INFILE1);
close(OUTFILE);
END finishOrdering.pl
exit;

12. Appendix 6

12.1. vcfFilter.pl

Filter out variants that do not meet specific criteria
from a vcf file.

@author: Jason Myers
@date: 08/04/2011

#!/usr/bin/perl
use strict;
#use warnings;
Making sure that the correct number of arguments are given by the user and
that the program displays an accurate message in case the user does not.
my $numArgs = $#ARGV + 1;
unless($numArgs == 1) {
 print "Usage: perl vcfFilter.pl vcfFile\n";
 exit;
}
get a handle on the input file
my $infile = $ARGV[0];
open the first file
open INFILE, "$infile", or die $!;
#set quality limits
my $lowQual = 20;
my $lowDP = 5;
my $highDP = 10000;
my $lowMQ = 20;
my $nonBases = "[BDEFHIJKLMNOPQRSUVXYZ]";
my $outfile = "flt_" . $infile;
open OUTFILE, ">>$outfile" or die $!;
my $outfile1 = "disc_" . $infile;

 A19

open OUTFILE1, ">>$outfile1" or die $!;
my $headerFlag = 0;
my $badFlag = 0;
initialize record keeping
my $q = 0;
my $ld = 0;
my $hd = 0;
my $lm = 0;
my $br = 0;
my $ba = 0;
my $qC = 0;
my $ldC = 0;
my $hdC = 0;
my $lmC = 0;
my $brC = 0;
my $baC = 0;
my $badCount = 0;
my $goodCount = 0;
#loop over the input
while(<INFILE>){
 my $string = $_;
 chomp($string);
 if($headerFlag < 2){
 $headerFlag++;
 # print out the header line
 print OUTFILE $string, "\n";
 if($headerFlag == 1){
 # print out the header line plus header info for the new fields

print OUTFILE1 $string, "\t",
"LowQual\tLowMQ\tLowDP\tHighDP\tLowAF\tHighAF\tAmbRef\tAmb
Alt\n";

 }
 } else {
 # split the line into its various parts
 my ($contigName, $location, $thing, $ref, $alt, $qual,
 $thing1, $stats, $order, $isoInfo) = split(/\t/,$string, 10);
 # split to ge the first letter of the stats field to see if
 # the current variant is an INDEL or a SNP
 my ($first, $right) = split(//,$stats,2);
 # initialize some variables
 my($iden, $readDepth, $alleleFreq, $mapQual);
 # if this variant is an INDEL
 if($first eq 'I'){
 # get the read depth

my ($junk, $readDep, $aFreq, $con, $perGT, $mapQ, $junk1) =
split(/;/,$stats,7);

 A20

 ($iden, $readDepth) = split(/=/, $readDep, 2);
 if($iden ne "DP") {
 print "INFO field formatted incorrectly: Indel-DP\n";
 exit;
 }
 # get the mapping quality
 ($iden, $mapQual) = split(/=/, $mapQ, 2);
 if($iden ne "MQ") {
 print "INFO field formatted incorrectly: Indel-MQ\n";
 exit;
 }
 } else {
 # otherwise this should be a SNP
 # get the read depth
 my ($readDep, $aFreq, $con, $perGT, $mapQ, $junk1) = split(/;/,$stats,6);
 ($iden, $readDepth) = split(/=/, $readDep, 2);
 if($iden ne "DP") {
 print "INFO field formatted incorrectly: SNP-DP\n";
 exit;
 }
 # get the mapping quality
 ($iden, $mapQual) = split(/=/, $mapQ, 2);
 if($iden ne "MQ") {
 print "INFO field formatted incorrectly: SNP-MQ\n";
 exit;
 }
 }
 #do the record keeping for this line
 if($qual < $lowQual){
 $q++;
 $qC++;
 $badFlag++;
 }
 if($mapQual < $lowMQ){
 $lm++;
 $lmC++;
 $badFlag++;
 }
 if($readDepth < $lowDP){
 $ld++;
 $ldC++;
 $badFlag++;
 }
 if($readDepth > $highDP){
 $hd++;
 $hdC++;

 A21

 $badFlag++;
 }
 if($ref =~ m/$nonBases/){
 $br++;
 $brC++;
 $badFlag++;
 }
 if($alt =~ m/$nonBases/){
 $ba++;
 $baC++;
 $badFlag++;
 }

 # redirect the line depending on whether the current variant passed all of the filter
 # criteria or not
 if($badFlag > 0){
 # print to the discard file
 print OUTFILE1 $string,
"\t",$q,"\t",$lm,"\t",$ld,"\t",$hd,"\t",$br,"\t",$ba,"\n";
 $badCount++;
 } else {
 # print to the flt file
 print OUTFILE $string, "\n";
 $goodCount++;
 }
 # reset the record keeping variables
 $badFlag = 0;
 $q = 0;
 $lm = 0;
 $ld = 0;
 $hd = 0;
 $br = 0;
 $ba = 0;
 }
}
close(INFILE);
close(OUTFILE);
close(OUTFILE1);
 # print out the record keeping information
 print "Number of \"good\" variants: ", $goodCount, "\n";
 print "Number of \"bad\" variants: ", $badCount, "\n";
 print "Number discarded for low QUAL: ", $qC, "\n";
 print "Number discarded for low MQ: ", $lmC, "\n";
 print "Number discarded for low DP: ", $ldC, "\n";
 print "Number discarded for high DP: ", $hdC, "\n";
 print "Number discarded for nonBase REF: ", $brC, "\n";

 A22

 print "Number discarded for nonBase ALT: ", $baC, "\n";
END
exit;

12.2. removeMultiIndels.pl

Filter out INDEL variants with multiple alleles from a vcf Files

@author: Jason Myers
@date: 08/04/2011

#!/usr/bin/perl
use strict;
#use warnings;
Making sure that the correct number of arguments are given by the user and
that the program displays an accurate message in case the user does not.
my $numArgs = $#ARGV + 1;
unless($numArgs == 1) {
 print "Usage: perl RemoveMultiIndels.pl INDELvcfFile\n";
 exit;
}
get a handle on the input file
my $infile = $ARGV[0];
open the first file
open INFILE, "$infile", or die $!;
my $lowQual = 20;
my $lowDP = 5;
my $highDP = 10000;
my $lowMQ = 20;
my $nonBases = "[BDEFHIJKLMNOPQRSUVXYZ]";
my $outfile = "flt_" . $infile;
open OUTFILE, ">>$outfile" or die $!;
my $outfile1 = "disc_" . $infile;
open OUTFILE1, ">>$outfile1" or die $!;
my $headerFlag = 0;
my $badFlag = 0;
my $multiBADflag = 0;
my $q = 0;
my $ld = 0;
my $hd = 0;
my $lm = 0;
my $br = 0;
my $ba = 0;
my $qC = 0;

 A23

my $ldC = 0;
my $hdC = 0;
my $lmC = 0;
my $brC = 0;
my $baC = 0;
my $badCount = 0;
my $goodCount = 0;
#loop over the input
while(<INFILE>){
 my $string = $_;
 chomp($string);
 if($headerFlag < 12){
 print OUTFILE $string, "\n";
 if($headerFlag == 11){

print OUTFILE1 $string, "\t",
"LowQual\tLowMQ\tLowDP\tHighDP\tLowAF\tHighAF\tAmbRef\tAmb
Alt\n";

 }
 $headerFlag++;
 } else {
 my ($contigName, $location, $thing, $ref, $alt, $qual,
 $thing1, $stats, $order, $isoInfo) = split(/\t/,$string, 10);
 my ($first, $right) = split(//,$stats,2);
 my($iden, $readDepth, $alleleFreq, $mapQual);
 if($first eq 'I'){

my ($junk, $readDep, $aFreq, $con, $perGT, $mapQ, $junk1) =
split(/;/,$stats,7);

 ($iden, $readDepth) = split(/=/, $readDep, 2);
 if($iden ne "DP") {
 print "INFO field formatted incorrectly: Indel-DP\n";
 exit;
 }
 ($iden, $mapQual) = split(/=/, $mapQ, 2);
 if($iden ne "MQ") {
 print "INFO field formatted incorrectly: Indel-MQ\n";
 exit;
 }
 if($alt =~ m/,/){
 $multiBADflag++;
 }
 } else {
 my ($readDep, $aFreq, $con, $perGT, $mapQ, $junk1) = split(/;/,$stats,6);
 ($iden, $readDepth) = split(/=/, $readDep, 2);
 if($iden ne "DP") {
 print "INFO field formatted incorrectly: SNP-DP\n";
 exit;

 A24

 }
 ($iden, $mapQual) = split(/=/, $mapQ, 2);
 if($iden ne "MQ") {
 print "INFO field formatted incorrectly: SNP-MQ\n";
 exit;
 }
 }
 if($qual < $lowQual){
 $q++;
 $qC++;
 $badFlag++;
 }
 if($mapQual < $lowMQ){
 $lm++;
 $lmC++;
 $badFlag++;
 }
 if($readDepth < $lowDP){
 $ld++;
 $ldC++;
 $badFlag++;
 }
 if($readDepth > $highDP){
 $hd++;
 $hdC++;
 $badFlag++;
 }
 if($ref =~ m/$nonBases/){
 $br++;
 $brC++;
 $badFlag++;
 }
 if($alt =~ m/$nonBases/){
 $ba++;
 $baC++;
 $badFlag++;
 }
 if($badFlag > 0){
 print OUTFILE1 $string,
"\t",$q,"\t",$lm,"\t",$ld,"\t",$hd,"\t",$br,"\t",$ba,"\n";
 $badCount++;
 }elsif($multiBADflag > 0){
 print OUTFILE1 $string,
"\t",$q,"\t",$lm,"\t",$ld,"\t",$hd,"\t",$br,"\t",$ba,"*\n";
 $badCount++;
 } else {

 A25

 print OUTFILE $string, "\n";
 $goodCount++;
 }
 $badFlag = 0;
 $multiBADflag = 0;
 $q = 0;
 $lm = 0;
 $ld = 0;
 $hd = 0;
 $br = 0;
 $ba = 0;
 }
}
close(INFILE);
close(OUTFILE);
close(OUTFILE1);
 print "Number of \"good\" variants: ", $goodCount, "\n";
 print "Number of \"bad\" variants: ", $badCount, "\n";
 print "Number discarded for low QUAL: ", $qC, "\n";
 print "Number discarded for low MQ: ", $lmC, "\n";
 print "Number discarded for low DP: ", $ldC, "\n";
 print "Number discarded for high DP: ", $hdC, "\n";
 print "Number discarded for nonBase REF: ", $brC, "\n";
 print "Number discarded for nonBase ALT: ", $baC, "\n";
END
exit;

12.3. vcf2Fasta.pl

Program to convert a vcf file with bi-allelic polymorphisms
to csv and fasta with per isolate and per variant deliniation.

THE INDEL FIXER

Uses tCoffee to insert '-' into the reference and alternative
indel calls so that they match-up correctly.

@author: Jason Myers
@date: 08/11/2011

#!/usr/bin/perl
use strict;
use Bio::Tools::Run::Alignment::TCoffee;

 A26

#use warnings;
Making sure that the correct number of arguments are given by the user and
that the program displays an accurate message in case the user does not.
my $numArgs = $#ARGV + 1;
 # flt_flt: means that the file has been filtered by
 # qual, mapQual, and non-bases from the ref and alt
 #----- then filtered to remove the multiallelic variants
unless($numArgs == 1) {
 print "Usage: perl vcf2fasta.pl flt_flt_vcfFile >> log.txt 2>&1\n";
 exit;
}
get a handle on the input file
my $infile = $ARGV[0];
open the first file
open INFILE, "$infile", or die $!;
my ($outfile, $oldExt) = split(/\./, $infile, 2);
$outfile .= ".csv";
open OUTFILE, ">>$outfile" or die $!;
my $headerFlag = 0;
my @isoNames = ();
my $headingNum = 9; # the number of columns in the header before isolate names
my $isolate = 0;
my $poly = 0;
my @toFactory = ();
my @order = ();
my @data = ();
my $numToAln = 0;
my $missingData = Bio::Seq->new(-seq => "N"); # place holder to be changed to '#' later
 # Bio::seq doesn't allow the sequence to be '#'
header for the isolate name column
print OUTFILE "Isolate";
Build a tcoffee alignment factory
my @params = ('ktuple' => 2, 'matrix' => 'BLOSUM');
my $factory = Bio::Tools::Run::Alignment::TCoffee->new(@params);
#loop over the input file
while(<INFILE>){
 # get line and house-clean
 my $string = $_;
 chomp($string);
 $numToAln = 0;
 @toFactory = ();
 @order = ();
 $isolate = 0;
 # If your at the head of the file
 if($headerFlag <= 1){
 # if your at the second line of the header

 A27

 if($headerFlag == 1){
 # get the isolate names
 @isoNames = split(/\t/, $string);
 # remove the preceeding column headings
 for(my $i = 0; $i < $headingNum; $i++){
 shift(@isoNames);
 }
 # push the name of the reference to the front of the
 # array of isolate names
 unshift(@isoNames, "REFERENCE_G14");
 }
 $headerFlag++;
 } else {
 # print out a comma to coninue the csv header line
 print OUTFILE ",";
 my ($contigName, $location, $thing, $ref, $alt, $qual,
 $thing1, $stats, $order, @isoInfo) = split(/\t/,$string);
 # print out the Variant name for the header
 print OUTFILE ($contigName . "_" . $location);
 # grab the reference sequence and place it in the array
 # for the multiple alignment
 my $tempSeq = Bio::Seq->new(-seq => "$ref");
 $toFactory[$numToAln] = $tempSeq;
 # mark the fact that there is a sequence for this isolate
 $order[$isolate] = 1;
 $numToAln++;
 $isolate++;
 # loop over the isolate genotype information
 foreach my $iso (@isoInfo){
 # get at the PL info (likelihoods)
 my ($pl, $gt, $gq) = split(/:/, $iso, 3);
 my($pl1, $pl2, $pl3) = split(/,/, $pl, 3);
 # if there were no reads for the current isolate
 # at the current position
 if($pl1 == 0 && $pl2 == 0 && $pl3 == 0){
 # mark that there is no sequence info
 $order[$isolate] = 0;
 } else {
 # if the called genotype is homozygous reference
 if($gt eq "0/0"){
 # mark that this is the same as the reference
 $order[$isolate] = 3;
 } elsif($gt eq "1/1"){
 # add the alternative to the alignment
 $order[$isolate] = 1;
 $tempSeq = Bio::Seq->new(-seq => "$alt");

 A28

 $toFactory[$numToAln] = $tempSeq;
 $numToAln++;
 } else {
 # add the reference to the alignment
 $order[$isolate] = 2;
 $tempSeq = Bio::Seq->new(-seq => "$ref");
 $toFactory[$numToAln] = $tempSeq;
 $numToAln++;
 }
 }
 $isolate++;
 }
 # get a reference to the array with seq objects to be aligned
 my $toFactory_ref = \@toFactory;
 # perform the alignment using the factory
 my $aln = $factory->align($toFactory_ref);
 # start the alignment iterator at 1 because underlying bioperl calls for it
 my $alnPOS = 1;
 # loop over the order array
 for(my $j = 0; $j < $isolate; $j++){
 # if no data
 if($order[$j] == 0){
 $data[$j][$poly] = $missingData;
 # if heterozygous
 } elsif($order[$j] == 2){
 $data[$j][$poly] = $missingData;
 $alnPOS++;
 # if homozygous reference
 } elsif($order[$j] == 3){
 $data[$j][$poly] = $aln->get_seq_by_pos(1);
 # if homozygous alternative
 } else {
 $data[$j][$poly] = $aln->get_seq_by_pos($alnPOS);
 $alnPOS++;
 }
 }
 $poly++;
 }
}
close(INFILE);
print OUTFILE "\n";
#print out the data in CSV format
for(my $isoIT = 0; $isoIT < $isolate; $isoIT++){
 # printing out the isolate name
 my $tempStr = $isoNames[$isoIT];
 $tempStr =~ s/cl_od3_//;

 A29

 $tempStr =~ s/cl_//;
 $tempStr =~ s/\.bam//;
 print OUTFILE $tempStr;
 # printing out the allele data
 for(my $polIT = 0; $polIT < $poly; $polIT++){
 print OUTFILE ",";
 # replace N's with #'s
 if($data[$isoIT][$polIT]->seq() eq "N"){
 print OUTFILE "#";
 } else {
 print OUTFILE $data[$isoIT][$polIT]->seq();
 }
 }
 print OUTFILE "\n";
}
close(OUTFILE);
my ($outfile1, $oldExt1) = split(/\./, $infile, 2);
$outfile1 .= ".fasta";
open OUTFILE1, ">>$outfile1" or die $!;
my $newLineFlag = 0;
print out the fasta file
for(my $isoIT = 0; $isoIT < $isolate; $isoIT++){
 #print out the isolate name
 my $tempStr = $isoNames[$isoIT];
 $tempStr =~ s/cl_od3_//;
 $tempStr =~ s/cl_//;
 $tempStr =~ s/\.bam//;
 print OUTFILE1 ">", $tempStr, "\n";
 # print out the data
 for(my $polIT = 0; $polIT < $poly; $polIT++){
 $newLineFlag = 0;
 # replace N's with #'s
 if($data[$isoIT][$polIT]->seq() eq "N"){
 print OUTFILE1 "# ";
 } else {
 print OUTFILE1 $data[$isoIT][$polIT]->seq(), " ";
 }
 #
 if($polIT > 0 && ($polIT % 15) == 0){
 print OUTFILE1 "\n";
 $newLineFlag++;
 }
 }
 if($newLineFlag == 0){
 print OUTFILE1 "\n";
 }

 A30

}
close(OUTFILE1);
END
exit;

12.4. getSNPVars.pl

Create a csv and file from a vcf and fasta
of SNPs. The fasta should be generated using
PGDSpider2.jar.

@author: Jason Myers
@date: 08/05/2011

#!/usr/bin/perl
use strict;
#use warnings;
Making sure that the correct number of arguments are given by the user and
that the program displays an accurate message in case the user does not.
my $numArgs = $#ARGV + 1;
 # flt_ means that the vcfFile was already run through vcfFilter.pl
unless($numArgs == 2) {
 print "Usage: perl GetSNPvars.pl flt_vcfFile flt_fasta\n";
 exit;
}
get a handle on the input file
my $infile = $ARGV[0];
my $infile1 = $ARGV[1];
open the first file
open INFILE, "$infile", or die $!;
open INFILE1, "$infile1", or die $!;
my $outfile = "en_SNP_info.csv";
open OUTFILE, ">>$outfile" or die $!;
my $flag = 0;
my $headerFlag = 0;
my @isoNames = ();
my @varNames = ();
my $varNum = 0;
my $isoNum = 9;
print OUTFILE "Isolate,";
#loop over the input
while(<INFILE>){
 my $string = $_;
 chomp($string);

 A31

 if($headerFlag == 0 || $headerFlag == 1){
 $headerFlag++;
 } else {
 my ($contigName, $location, $thing, $ref, $alt, $qual,
 $thing1, $stats, $order, $isoInfo) = split(/\t/,$string, 10);
 print OUTFILE ($contigName . "_" . $location), ",";
 }
}
close(INFILE);
while(<INFILE1>){
 my $string = $_;
 chomp($string);
 my (@vars) = split(//,$string);
 if($vars[0] eq ">"){
 my (@head) = split(/\s+/,$string);

 my $tempStr = $head[0];
 $tempStr =~ s/>cl_od3_//;
 $tempStr =~ s/>cl_//;
 $tempStr =~ s/\.bam//;
 print OUTFILE "\n", $tempStr, ",";
 } else {
 $string =~ s/\s+/,/g;
 print OUTFILE $string;
 }
}
close(INFILE1);
print OUTFILE "\n";
close(OUTFILE);
END
exit;

12.5. varFilter.pl

Program to convert a vcf file with atleast bi-allelic polymorphisms
to csv and fasta with per isolate and per variant deliniation and
any variants with either only missing data or reference as the
alternative call.

@author: Jason Myers
@date: 08/12/2011

#!/usr/bin/perl
use strict;

 A32

#use warnings;
Making sure that the correct number of arguments are given by the user and
that the program displays an accurate message in case the user does not.
my $numArgs = $#ARGV + 1;
unless($numArgs == 2) {
 print "Usage: perl varFilter.pl VariantCsvFile 1(SNP)|2(INDEL)\n";
 exit;
}
get a handle on the input file
my $infile = $ARGV[0];
my $code = $ARGV[1];
my $lineBreak;
my $missingData;
if($code == 1){
 $lineBreak = 35;
 $missingData = "N";
} else {
 $lineBreak = 15;
 $missingData = "#";
}
open the first file
open INFILE, "$infile", or die $!;
my $outfile = "flt_" . $infile;
open OUTFILE, ">>$outfile" or die $!;
my $headerFlag = 0;
my @header = ();
my $isolate = 0;
my $poly = 0;
my @order = ();
my @data = ();
#loop over the input file
while(<INFILE>){
 # get line and house-clean
 my $string = $_;
 chomp($string);
 # If your at the head of the file
 if($headerFlag == 0){
 @header = split(/,/, $string);
 $headerFlag++;
 } else {
 my (@curLine) = split(/,/, $string);

 for(my $i = 0; $i <= $#curLine; $i++){
 $data[$isolate][$i] = $curLine[$i];
 }
 $isolate++;

 A33

 }
}
close(INFILE);
my $realFlag;
$order[0] = 1;
for(my $polyIT = 1; $polyIT <= $#header; $polyIT++){
 my $curRef = $data[0][$polyIT];
 $realFlag = 0;
 for(my $isoIT = 1; $isoIT < $isolate; $isoIT++){
 if($curRef eq $data[$isoIT][$polyIT] || $data[$isoIT][$polyIT] eq $missingData){
 if($missingData eq "N" && $data[$isoIT][$polyIT] eq $missingData){
 $data[$isoIT][$polyIT] = "#";
 }
 } else {
 $realFlag++;
 }
 }

 if($realFlag > 0){
 $order[$polyIT] = 1;
 } else {
 $order[$polyIT] = 0;
 }
}
#print out the csv header
for(my $polIT = 0; $polIT <= $#order; $polIT++){
 if($order[$polIT] == 1){
 print OUTFILE $header[$polIT], ",";
 }
}
print OUTFILE "\n";
#print out the csv data
for(my $isoIT = 0; $isoIT < $isolate; $isoIT++){
 for(my $polIT = 0; $polIT <= $#order; $polIT++){
 if($order[$polIT] == 1){
 print OUTFILE $data[$isoIT][$polIT], ",";
 }
 }
 print OUTFILE "\n";
}
close(OUTFILE);
my ($outfile1, $oldExt1) = split(/\./, $outfile, 2);
$outfile1 .= ".fasta";
open OUTFILE1, ">>$outfile1" or die $!;
my $newLineFlag = 0;
my $numPrinted;

 A34

for(my $isoIT = 0; $isoIT < $isolate; $isoIT++){
 print OUTFILE1 ">", $data[$isoIT][0], "\n";
 $numPrinted = 1;
 for(my $polIT = 1; $polIT <= $#order; $polIT++){
 $newLineFlag = 0;
 if($order[$polIT] == 1){
 print OUTFILE1 $data[$isoIT][$polIT], " ";
 $numPrinted++;
 }
 if(($numPrinted % $lineBreak) == 0){
 print OUTFILE1 "\n";
 $newLineFlag++;
 $numPrinted = 1;
 }
 }
 if($newLineFlag == 0){
 print OUTFILE1 "\n";
 }
}
close(OUTFILE1);
END
exit;

13. Appendix 7

13.1. vcf2gff3.pl

FOR VARIANT CALL FORMAT FILES

Take a csv header file and a vcf file
and create a gff3 file.

@author: Jason Myers
@date: 08/12/2011

#!/usr/bin/perl
use strict;
#use warnings;
Making sure that the correct number of arguments are given by the user and
that the program displays an accurate message in case the user does not.
my $numArgs = $#ARGV + 1;
 # combinedCSVheader: The header lines from the SNP
 # and INDEL csv files combined

 A35

 # into a single line.
unless($numArgs == 3) {
 print "Usage: perl vcf2gff3.pl contigInfo combinedCSVheader combinedVCF \n";
 exit;
}
get a handle on the input file
my $infile = $ARGV[0];
my $infile1 = $ARGV[1];
my $infile2 = $ARGV[2];
my $colorFlag = 0;
open the first file
open INFILE, "$infile", or die $!;
my $flag = 0;
my %hash;
my $field1 = "contig";
my $field2 = "start";
my $field3 = "end";
#loop over the input
while(<INFILE>){
 my $string = $_;
 chomp($string);
 my ($newName, $start, $end, $oldName) = split(/\t/,$string, 4);
 $hash{"$newName"} = $start;
}
close(INFILE);
open INFILE1, "$infile1", or die $!;
my @header = ();
my %varNames;
#loop over the input
while(<INFILE1>){
 my $string = $_;
 chomp($string);
 @header = split(/,/, $string);
 shift(@header);
 foreach my $varName (@header){
 $varNames{"$varName"} = 0;
 }
}
close(INFILE1);
open INFILE2, "$infile2", or die $!;
my ($fileName, $type) = split(/\./,$infile2, 2);
my $outfile = $fileName . ".gff3";
open OUTFILE, ">>$outfile" or die $!;
print OUTFILE "##gff-version 3\n";
my $polyType = "";
my $color = "";

 A36

my $iCount = 0;
my $sCount = 0;
my $source = "CBSU+JRM";
my $polyName = "";
my $headerFlag = 0;
#loop over the input
while(<INFILE2>){
 my $string = $_;
 chomp($string);
 if($headerFlag <= 1){
 $headerFlag++;
 } else {
 my ($contigName, $location, $thing, $ref, $poly, $qual,
 $thing1, $stats, $order, $isoInfo) = split(/\t/,$string, 10);
 my $tempkey = $contigName . "_" . $location;
 if(exists $varNames{$tempkey}){
 my ($first, $right) = split(//,$stats,2);
 if($first eq 'I'){
 $polyType = "Indel";
 $iCount++;
 $polyName = $polyType . "$iCount";
 if($qual > 94){
 $color = "139 69 19";
 } elsif($qual > 12){
 $color = "205 133 63";
 } else{
 $color = "222 184 135";
 }
 } else {
 $polyType = "SNP";
 $sCount++;
 $polyName = $polyType . "$sCount";
 if($qual > 94){
 $color = "0 0 102";
 } elsif($qual > 12){
 $color = "0 51 102";
 } else{
 $color = "0 102 153";
 }
 }
 print OUTFILE $polyName, "\t", $source, "\t", $polyType, "\t",
 ($location + $hash{$contigName} - 1), "\t",
 ($location + $hash{$contigName} - 2 + length($ref)), "\t",
 $qual, "\t+\t0\t",
 "Name=", $tempkey, ";Parent=", $contigName, ";Ref=",
 $ref, ";Alt=", $poly;

 A37

 print OUTFILE ";color=", $color, "\n";
 }
 }
}
close(INFILE2);
close(OUTFILE);
END
exit;

14. Appendix 8

14.1. correlateSNPLoci.pl

Take in the top hit from BLAST annotations, the reference fasta,
and the SNP/INDEL gff3 file and determine if a SNP is within a BLAST
annotation. If so, use the highest scoring BLAST annotation to set the
frame, call the amino acid for the reference and with the SNP incorporated.
Then, determine if the two amino acids are synonymous or non-synonymous.

@author: Jason Myers
@date: 05/23/2012

#!/usr/bin/perl
use strict;
#use warnings;
Making sure that the correct number of arguments are given by the user and
that the program displays an accurate message in case the user does not.
my $numArgs = $#ARGV + 1;
unless($numArgs == 6) {
 print "Usage: perl correlateSNPLoci.pl topSwissGff3 topNRgff3 topBGgff3 refFasta
snpIndelGff3 outFile\n";
 exit;
}
get a handle on the input files
my $infile = $ARGV[0];
my $infile1 = $ARGV[1];
my $infile2 = $ARGV[2];
my $infile3 = $ARGV[3];
my $infile4 = $ARGV[4];
my $outfile = $ARGV[5];
open the first file
open INFILE, "$infile", or die $!;
my %blast1 = ();
my $flag = 0;

 A38

#loop over the input
print "Reading in file 1... \n";
while(<INFILE>){
 my $string = $_;
 chomp($string);
 if($flag ==0){
 $flag++;
 } else {
 my ($featName, $source, $type, $s, $e, $score,$strand, $phase, $att) =

split(/\t/,$string, 9);
 my ($name, $desc, $parent, $color, $subject, $eVal) = split(/;/,$att, 6);
 $parent =~ s/Parent=//;
 my $curStr = $s . ',' . $e . ',' . $score . ',' . $strand;
 $blast1{ $parent } = $curStr;
 }
}
close(INFILE);
open the first file
open INFILE1, "$infile1", or die $!;
my %blast2 = ();
my $flag = 0;
#loop over the input
print "Reading in file 2... \n";
while(<INFILE1>){
 my $string = $_;
 chomp($string);
 if($flag ==0){
 $flag++;
 } else {
 my ($featName, $source, $type, $s, $e, $score,$strand, $phase, $att) =

split(/\t/,$string, 9);
 my ($name, $desc, $parent, $color, $subject, $eVal) = split(/;/,$att, 6);
 $parent =~ s/Parent=//;
 my $curStr = $s . ',' . $e . ',' . $score . ',' . $strand;
 $blast2{ $parent } = $curStr;
 }
}
close(INFILE1);
open the first file
open INFILE2, "$infile2", or die $!;
my %blast3 = ();
my $flag = 0;
#loop over the input
print "Reading in file 3... \n";
while(<INFILE2>){
 my $string = $_;

 A39

 chomp($string);
 if($flag ==0){
 $flag++;
 } else {
 my ($featName, $source, $type, $s, $e, $score,$strand, $phase, $att) =

split(/\t/,$string, 9);
 my ($name, $parent, $color, $subject, $eVal) = split(/;/,$att, 5);
 $parent =~ s/Parent=//;
 my $curStr = $s . ',' . $e . ',' . $score . ',' . $strand;
 $blast3{ $parent } = $curStr;
 }
}
close(INFILE2);
open the first file
open INFILE3, "$infile3", or die $!;
my %reference = ();
my $flag = 0;
#loop over the input
print "Reading in file 4... \n";
while(<INFILE3>){
 my $string = $_;
 chomp($string);
 if($flag ==0){
 $flag++;
 } else {
 my (@curLine) = split(//,$string);
 foreach my $nuc (@curLine){
 $reference{ $flag } = $nuc;
 $flag++;
 }
 }
}
close(INFILE3);
open OUTFILE, ">>$outfile", or die $!;
Amino-acid translations
my $tr1 = "TTT";
my $tr2 = "TTC";
my $tr3 = "TTA";
my $tr4 = "TTG";
my $tr5 = "CTT";
my $tr6 = "CTC";
my $tr7 = "CTA";
my $tr8 = "CTG";
my $tr9 = "ATT";
my $tr10 = "ATC";
my $tr11 = "ATA";

 A40

my $tr12 = "ATG";
my $tr13 = "GTT";
my $tr14 = "GTC";
my $tr15 = "GTA";
my $tr16 = "GTG";
my $tr17 = "TCT";
my $tr18 = "TCC";
my $tr19 = "TCA";
my $tr20 = "TCG";
my $tr21 = "CCT";
my $tr22 = "CCC";
my $tr23 = "CCA";
my $tr24 = "CCG";
my $tr25 = "ACT";
my $tr26 = "ACC";
my $tr27 = "ACA";
my $tr28 = "ACG";
my $tr29 = "GCT";
my $tr30 = "GCC";
my $tr31 = "GCA";
my $tr32 = "GCG";
my $tr33 = "TAT";
my $tr34 = "TAC";
my $tr35 = "TAA";
my $tr36 = "TAG";
my $tr37 = "CAT";
my $tr38 = "CAC";
my $tr39 = "CAA";
my $tr40 = "CAG";
my $tr41 = "AAT";
my $tr42 = "AAC";
my $tr43 = "AAA";
my $tr44 = "AAG";
my $tr45 = "GAT";
my $tr46 = "GAC";
my $tr47 = "GAA";
my $tr48 = "GAG";
my $tr49 = "TGT";
my $tr50 = "TGC";
my $tr51 = "TGA";
my $tr52 = "TGG";
my $tr53 = "CGT";
my $tr54 = "CGC";
my $tr55 = "CGA";
my $tr56 = "CGG";
my $tr57 = "AGT";

 A41

my $tr58 = "AGC";
my $tr59 = "AGA";
my $tr60 = "AGG";
my $tr61 = "GGT";
my $tr62 = "GGC";
my $tr63 = "GGA";
my $tr64 = "GGG";
my %trans;
$trans{ $tr1 } = 'Phe';
$trans{ $tr2 } = 'Phe';
$trans{ $tr3 } = 'Leu';
$trans{ $tr4 } = 'Leu';
$trans{ $tr5 } = 'Leu';
$trans{ $tr6 } = 'Leu';
$trans{ $tr7 } = 'Leu';
$trans{ $tr8 } = 'Leu';
$trans{ $tr9 } = 'Ile';
$trans{ $tr10 } = 'Ile';
$trans{ $tr11 } = 'Ile';
$trans{ $tr12 } = 'Met';
$trans{ $tr13 } = 'Val';
$trans{ $tr14 } = 'Val';
$trans{ $tr15 } = 'Val';
$trans{ $tr16 } = 'Val';
$trans{ $tr17 } = 'Ser';
$trans{ $tr18 } = 'Ser';
$trans{ $tr19 } = 'Ser';
$trans{ $tr20 } = 'Ser';
$trans{ $tr21 } = 'Pro';
$trans{ $tr22 } = 'Pro';
$trans{ $tr23 } = 'Pro';
$trans{ $tr24 } = 'Pro';
$trans{ $tr25 } = 'Thr';
$trans{ $tr26 } = 'Thr';
$trans{ $tr27 } = 'Thr';
$trans{ $tr28 } = 'Thr';
$trans{ $tr29 } = 'Ala';
$trans{ $tr30 } = 'Ala';
$trans{ $tr31 } = 'Ala';
$trans{ $tr32 } = 'Ala';
$trans{ $tr33 } = 'Tyr';
$trans{ $tr34 } = 'Tyr';
$trans{ $tr35 } = 'STOP';
$trans{ $tr36 } = 'STOP';
$trans{ $tr37 } = 'His';
$trans{ $tr38 } = 'His';

 A42

$trans{ $tr39 } = 'Gln';
$trans{ $tr40 } = 'Gln';
$trans{ $tr41 } = 'Asn';
$trans{ $tr42 } = 'Asn';
$trans{ $tr43 } = 'Lys';
$trans{ $tr44 } = 'Lys';
$trans{ $tr45 } = 'Asp';
$trans{ $tr46 } = 'Asp';
$trans{ $tr47 } = 'Glu';
$trans{ $tr48 } = 'Glu';
$trans{ $tr49 } = 'Cys';
$trans{ $tr50 } = 'Cys';
$trans{ $tr51 } = 'STOP';
$trans{ $tr52 } = 'Trp';
$trans{ $tr53 } = 'Arg';
$trans{ $tr54 } = 'Arg';
$trans{ $tr55 } = 'Arg';
$trans{ $tr56 } = 'Arg';
$trans{ $tr57 } = 'Ser';
$trans{ $tr58 } = 'Ser';
$trans{ $tr59 } = 'Arg';
$trans{ $tr60 } = 'Arg';
$trans{ $tr61 } = 'Gly';
$trans{ $tr62 } = 'Gly';
$trans{ $tr63 } = 'Gly';
$trans{ $tr64 } = 'Gly';
print OUTFILE "Contig\tLocation\tReference\tSNP(s)\tRef->Alt1\tRef->Alt2\tRef-
>Alt3\tBlastDBforFrame\n";
open the first file
open INFILE4, "$infile4", or die $!;
my $flag = 0;
#loop over the input
print "Reading in file 5... \n";
print "Writing to output file...\n\n";
while(<INFILE4>){
 my $string = $_;
 chomp($string);
 if($flag ==0){
 $flag++;
 } else {
 my ($featName, $source, $type, $s, $e, $score,$strand, $phase, $att) = split(/\t/,$string,
9);
 if($type eq "SNP"){
 my ($name, $parent, $ref, $alt, $color) = split(/;/,$att, 5);
 $name =~ s/Name=//;
 $ref =~ s/Ref=//;

 A43

 $alt =~ s/Alt=//;
 my ($contigID, $snpLoc) = split(/_/,$name, 2);

 print OUTFILE $contigID, "\t", $snpLoc, "\t", $ref, "\t", $alt;
 my $bStart = 0;
 my $bEnd = 0;
 my $bStrand = '+';

 my $bFlag1 = 0;
 my $bStart1 = 0;
 my $bEnd1 = 0;
 my $bStrand1 = '+';
 my $bScore1 = 0;
 my $bFlag2 = 0;
 my $bStart2 = 0;
 my $bEnd2 = 0;
 my $bStrand2 = '+';
 my $bScore2 = 0;
 my $bFlag3 = 0;
 my $bStart3 = 0;
 my $bEnd3 = 0;
 my $bStrand3 = '+';
 my $bScore3 = 0;
 if(exists $blast1{$contigID}){
 ($bStart1, $bEnd1, $bScore1, $bStrand1) =

split(/,/,$blast1{$contigID}, 4);
 $bFlag1++;
 }
 if(exists $blast2{$contigID}){
 ($bStart2, $bEnd2, $bScore2, $bStrand2) =

split(/,/,$blast2{$contigID}, 4);
 $bFlag2++;
 }
 if(exists $blast3{$contigID}){
 ($bStart3, $bEnd3, $bScore3, $bStrand3) =

split(/,/,$blast3{$contigID}, 4);
 $bFlag3++;
 }
 if(($bScore1 >= $bScore2) and ($bScore1 >= $bScore3)){
 $bStart = $bStart1;
 $bEnd = $bEnd1;
 $bStrand = $bStrand1;
 $bFlag1++;
 } elsif($bScore2 >= $bScore3){
 $bStart = $bStart2;
 $bEnd = $bEnd2;

 A44

 $bStrand = $bStrand2;
 $bFlag2++;
 } else {
 $bStart = $bStart3;
 $bEnd = $bEnd3;
 $bStrand = $bStrand3;
 $bFlag3++;
 }
 my $refProt = "";
 my $refStr = "";
 my $aProt = "";
 my $aStr = "";
 my @altSeq = split(/,/, $alt);
 my $multFlag = 0;

 if($s >= $bStart and $s <= $bEnd){
 $bFlag1++;
 $bFlag2++;
 $bFlag3++;
 if($bStrand eq '+'){
 my $diff = $s - $bStart;
 my $fullCodons = 0;
 my $change = 0;
 my $diff1 = 0;

 if($diff < 3){
 $diff1 = $diff;
 } else {
 $fullCodons = int($diff / 3);
 $change = $bStart + ($fullCodons * 3);
 $diff1 = $s - $change;
 }

 if($diff1 == 0){

$refStr = $reference{$s} . $reference{($s + 1)} .
$reference{($s + 2)};

 $refProt = $trans{ $refStr };

 foreach my $curAlt (@altSeq){

$aStr = $curAlt . $reference{($s + 1)} .
$reference{($s + 2)};

 $aProt = $trans{ $aStr };
 if($refProt eq $aProt){

print OUTFILE "\tSYN:", $refProt, "-
>", $aProt;

 }else{

 A45

print OUTFILE "\tNON:". $refProt,
"->", $aProt;

 }
 $multFlag++;
 }
 } elsif($diff1 == 1){

$refStr = $reference{($s - 1)} . $reference{$s} .
$reference{($s + 1)};

 $refProt = $trans{ $refStr };

 foreach my $curAlt (@altSeq){

$aStr = $reference{($s - 1)} . $curAlt .
$reference{($s + 1)};

 $aProt = $trans{ $aStr };
 if($refProt eq $aProt){

print OUTFILE "\tSYN:", $refProt, "-
>", $aProt;

 }else{
print OUTFILE "\tNON:". $refProt,
"->", $aProt;

 }
 $multFlag++;
 }
 } elsif($diff1 == 2){

$refStr = $reference{($s - 2)} . $reference{($s - 1)} .
$reference{$s};

 $refProt = $trans{ $refStr };

 foreach my $curAlt (@altSeq){

$aStr = $reference{($s - 2)} . $reference{($s
- 1)} . $curAlt;

 $aProt = $trans{ $aStr };
 if($refProt eq $aProt){

print OUTFILE "\tSYN:", $refProt, "-
>", $aProt;

 }else{
print OUTFILE "\tNON:". $refProt,
"->", $aProt;

 }
 $multFlag++;
 }
 }
 } else {
 my $diff = $bEnd - $s;
 my $fullCodons = 0;
 my $change = 0;

 A46

 my $diff1 = 0;

 if($diff < 3){
 $diff1 = $diff;
 } else {
 $fullCodons = int($diff / 3);
 $change = $bEnd - ($fullCodons * 3);
 $diff1 = $change - $s;
 }

 if($diff1 == 0){

$refStr = $reference{$s} . $reference{($s - 1)} .
$reference{($s - 2)};

 $refProt = $trans{ $refStr };

 foreach my $curAlt (@altSeq){

$aStr = $curAlt . $reference{($s - 1)} .
$reference{($s - 2)};

 $aProt = $trans{ $aStr };
 if($refProt eq $aProt){

print OUTFILE "\tSYN:", $refProt, "-
>", $aProt;

 }else{
print OUTFILE "\tNON:". $refProt,
"->", $aProt;

 }
 $multFlag++;
 }
 } elsif($diff1 == 1){

$refStr = $reference{($s + 1)} . $reference{$s} .
$reference{($s - 1)};

 $refProt = $trans{ $refStr };

 foreach my $curAlt (@altSeq){

$aStr = $reference{($s + 1)} . $curAlt .
$reference{($s - 1)};

 $aProt = $trans{ $aStr };
 if($refProt eq $aProt){

print OUTFILE "\tSYN:", $refProt, "-
>", $aProt;

 }else{
print OUTFILE "\tNON:". $refProt,
"->", $aProt;

 }
 $multFlag++;
 }

 A47

 } elsif($diff1 == 2){
$refStr = $reference{($s + 2)} . $reference{($s + 1)}
. $reference{$s};

 $refProt = $trans{ $refStr };

 foreach my $curAlt (@altSeq){

$aStr = $reference{($s + 2)} . $reference{($s
+ 1)} . $curAlt;

 $aProt = $trans{ $aStr };
 if($refProt eq $aProt){

print OUTFILE "\tSYN:", $refProt, "-
>", $aProt;

 }else{
print OUTFILE "\tNON:". $refProt,
"->", $aProt;

 }
 $multFlag++;
 }
 }
 }
 } else {
 print OUTFILE "\tNotInBlastHit\t\t";
 }
 if($multFlag == 1){
 print OUTFILE "\t\t";
 } elsif($multFlag == 2){
 print OUTFILE "\t";
 }
 if($bFlag1 == 3){
 print OUTFILE "\ttop-SwissProt\n";
 }elsif($bFlag2 == 3){
 print OUTFILE "\ttop-NCBI-NR\n";
 }elsif($bFlag3 == 3){
 print OUTFILE "\ttop-Bgraminis-CDS\n";
 }else{
 print OUTFILE "\tN/A\n";
 }
 }
 }
}
close(INFILE4);
close(OUTFILE);
END
exit;

 A48

15. Appendix 9

15.1. compileContigData.pl

Create spreadsheet # 1 (deliverable)
resulting file should contain SNP, INDEL, and Mutation counts.
The output also has per kb stats for each and the top hit
to b. graminis, NR, and swissprot with e-values.

@author: Jason Myers
@date: 08/02/2011

#!/usr/bin/perl
use strict;
#use warnings;
Making sure that the correct number of arguments are given by the user and
that the program displays an accurate message in case the user does not.
my $numArgs = $#ARGV + 1;
 # ContigInfor:
ActualContigName<TAB>start<TAB>end<TAB>OriginalContigName
 # GFF3files: 1 hit per contig (highest scoring)
 # vcfFile: output of SNP/INDEL calling pipeline
unless($numArgs == 9) {
 print "Usage: perl compileContigData.pl vcfFile topBlumeriaGFF3 topNRGFF3",
 " topSwissProtGFF3 csvFile topBGhit topNRblast topSwissBlast
contigInfo\n";
 exit;
}
get a handle on the input files
my $vcfFile = $ARGV[0];
my $blum = $ARGV[1];
my $nr = $ARGV[2];
my $swiss = $ARGV[3];
my $csvFile = $ARGV[4];
my $bgBlastFile = $ARGV[5];
my $nrBlastFile = $ARGV[6];
my $swissBlastFile = $ARGV[7];
my $contigInfo = $ARGV[8];
#vairable definitions
my $flag = 0;
my $index = 0;
my $indFlag = 0;
my %snpCount;
my %indelCount;
my %blumHit;
my %bgEvals;

 A49

my %nrHit;
my %swissHit;
my %nrGI;
my %nrEvals;
my %swissGI;
my %swissEvals;
my %csvList;
my %contigLength;
my @contigNames =();
my @OLDcontigNames =();
my $nrLink = "";
my $swissLink = "";
my $beginLink = "=HYPERLINK(\"http://www.ncbi.nlm.nih.gov/protein/";
open the contigInfo file
open INFILE, "$contigInfo", or die $!;
#loop over the input
while(<INFILE>){
 my $string = $_;
 chomp($string);
 my ($newName, $start, $end, $oldName) = split(/\t/,$string, 4);
 $contigLength{"$newName"} = $end - $start;
 $contigNames[$index] = $newName;
 $OLDcontigNames[$index] = $oldName;
 $index++;
}
close(INFILE);
open the vcf file
open INFILE, "$csvFile", or die $!;
#loop over the input
while(<INFILE>){
 my $string = $_;
 chomp($string);
 my (@csvHeader) = split(/,/,$string);
 shift(@csvHeader);
 foreach my $csvHead (@csvHeader){
 $csvList{"$csvHead"} = 0;
 }
}
close(INFILE);
open the blast file
open INFILE, "$bgBlastFile", or die $!;
#loop over the input
while(<INFILE>){
 my $string = $_;
 chomp($string);
 my ($query, $subject, $iden, $align, $mis,

 A50

 $gap, $qs, $qe, $ss, $se, $eval, $score)
 = split(/\t/,$string, 12);
 $bgEvals{"$query"} = $eval;
}
close(INFILE);
open the blast file
open INFILE, "$nrBlastFile", or die $!;
#loop over the input
while(<INFILE>){
 my $string = $_;
 chomp($string);
 my ($query, $subject, $iden, $align, $mis,
 $gap, $qs, $qe, $ss, $se, $eval, $score)
 = split(/\t/,$string, 12);
 $nrEvals{"$query"} = $eval;
}
close(INFILE);
open the blast file
open INFILE, "$swissBlastFile", or die $!;
#loop over the input
while(<INFILE>){
 my $string = $_;
 chomp($string);
 my ($query, $subject, $iden, $align, $mis,
 $gap, $qs, $qe, $ss, $se, $eval, $score)
 = split(/\t/,$string, 12);
 $swissEvals{"$query"} = $eval;
}
close(INFILE);
open the vcf file
open INFILE, "$vcfFile", or die $!;
#loop over the input
while(<INFILE>){
 my $string = $_;
 chomp($string);
 if($flag == 0 || $flag ==1){
 $flag++;
 } else {
 my ($chrom, $pos, $var, $ref, $alt, $qual, $fil,
 $info, $format, $isolates) = split(/\t/,$string, 10);
 my $tempString = $chrom . "_" . $pos;
 if(exists $csvList{$tempString}){
 if($info =~ m/INDEL/){
 $indelCount{"$chrom"}++;
 } else {
 $snpCount{"$chrom"}++;

 A51

 }
 }
 }
}
close(INFILE);
open the topBLUMERIAgff3 file
open INFILE, "$blum", or die $!;
$flag = 0;
#loop over the input
while(<INFILE>){
 my $string = $_;
 chomp($string);
 if($flag ==0){
 $flag++;
 } else {
 my ($oldContig, $source, $type, $s, $e, $score,
 $strand, $phase, $att) = split(/\t/, $string, 9);
 my($name, $parent, $color, $subDB,
 $eVal) = split(/;/, $att, 6);
 my($tag, $hitName) = split(/=/,$name, 3);
 $blumHit{"$oldContig"} = $hitName;
 }
}
close(INFILE);
open the topNRgff3 file
open INFILE, "$nr", or die $!;
$flag = 0;
#loop over the input
while(<INFILE>){
 my $string = $_;
 chomp($string);
 if($flag ==0){
 $flag++;
 } else {
 my ($oldContig, $source, $type, $s, $e, $score,
 $strand, $phase, $att) = split(/\t/, $string, 9);
 my($name, $desc, $parent, $color, $subDB,
 $eVal) = split(/;/, $att, 6);
 my($head, $hitProt, $nothing) = split(/\"/,$desc, 3);
 $nrHit{"$oldContig"} = $hitProt;
 my($tag, $hitName) = split(/=/,$name, 3);
 my($junk1, $keep, $junk2, $junk3) = split(/\|/,$hitName, 4);
 $nrGI{"$oldContig"} = $keep;
 }

}

 A52

close(INFILE);
open the topSWISSgff3 file
open INFILE, "$swiss", or die $!;
$flag = 0;
#loop over the input
while(<INFILE>){
 my $string = $_;
 chomp($string);
 if($flag ==0){
 $flag++;
 } else {
 my ($oldContig, $source, $type, $s, $e, $score,
 $strand, $phase, $att) = split(/\t/, $string, 9);
 my($name, $desc, $parent, $color, $subDB,
 $eVal) = split(/;/, $att, 6);
 my($head, $hitProt, $nothing) = split(/\"/,$desc, 3);
 $swissHit{"$oldContig"} = $hitProt;
 my($tag, $hitName) = split(/=/,$name, 3);
 my($junk1, $keep, $junk2, $junk3) = split(/\|/,$hitName, 4);
 $swissGI{"$oldContig"} = $keep;
 }
}
close(INFILE);
my $outfile = "En_contigData.txt";
open OUTFILE, ">>$outfile" or die $!;
print OUTFILE "ContigID\tLength(bp)\tSNPcount\tSNPs/kb\tINDELcount\tIndels/kb\t",

"MutationCount\tMutations/kb\tB.graminis_Hit\tB.graminis_eValue\tNR_GI\tNR_eValu
e\t”, “NR_Desc\tSwissProt_GI\tSwissProt_eValue\tSwissProt_Desc\n";

#loop over the contigs
for(my $i = 0; $i < $index; $i++){
 print OUTFILE $contigNames[$i], "\t", $contigLength{$contigNames[$i]}, "\t";
 if(!exists $snpCount{$contigNames[$i]}){
 $snpCount{$contigNames[$i]} = 0;
 }
 print OUTFILE $snpCount{$contigNames[$i]}, "\t",
 (($snpCount{$contigNames[$i]} * 1000) / $contigLength{$contigNames[$i]}),
"\t";
 if(!exists $indelCount{$contigNames[$i]}){
 $indelCount{$contigNames[$i]} = 0;
 }
 print OUTFILE $indelCount{$contigNames[$i]}, "\t",
 (($indelCount{$contigNames[$i]} * 1000) / $contigLength{$contigNames[$i]}),
"\t";
 print OUTFILE ($snpCount{$contigNames[$i]} + $indelCount{$contigNames[$i]}), "\t",

((($snpCount{$contigNames[$i]} + $indelCount{$contigNames[$i]}) * 1000) /
$contigLength{$contigNames[$i]}), "\t";

 A53

 if(!exists $blumHit{$OLDcontigNames[$i]}){
 print OUTFILE "N/A\t";
 } else {
 print OUTFILE $blumHit{$OLDcontigNames[$i]}, "\t";
 }
 if(!exists $bgEvals{$OLDcontigNames[$i]}){
 print OUTFILE "N/A\t";
 } else {
 print OUTFILE $bgEvals{$OLDcontigNames[$i]}, "\t";
 }
 if(!exists $nrGI{$OLDcontigNames[$i]}){
 $nrHit{$OLDcontigNames[$i]} = "N/A";
 $nrLink = "N/A";
 } else {

$nrLink = $beginLink . $nrGI{$OLDcontigNames[$i]} . "\", " .
$nrGI{$OLDcontigNames[$i]} . ")";

 }
 if(!exists $nrEvals{$OLDcontigNames[$i]}){
 $nrEvals{$OLDcontigNames[$i]} = "N/A";
 }

print OUTFILE $nrLink, "\t", $nrEvals{$OLDcontigNames[$i]}, "\t",
$nrHit{$OLDcontigNames[$i]}, "\t";

 if(!exists $swissGI{$OLDcontigNames[$i]}){
 $swissHit{$OLDcontigNames[$i]} = "N/A";
 $swissLink = "N/A";
 } else {

$swissLink = $beginLink . $swissGI{$OLDcontigNames[$i]} . "\", " .
$swissGI{$OLDcontigNames[$i]} . ")";

 }
 if(!exists $swissEvals{$OLDcontigNames[$i]}){
 $swissEvals{$OLDcontigNames[$i]} = "N/A";
 }
 print OUTFILE $swissLink, "\t", $swissEvals{$OLDcontigNames[$i]}, "\t",
$swissHit{$OLDcontigNames[$i]}, "\t";
 print OUTFILE "\n";
}
close(OUTFILE);
END
exit;

	Assembly, annotation, and polymorphic characterization of the Erysiphe necator transcriptome
	Recommended Citation

	Microsoft Word - Myers_Thesis_complete.docx

