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Abstract 

 Remote sensing provides a variety of methods for classifying forest communities and can 

be a valuable tool for the impact assessment of invasive species. The emerald ash borer (Agrilus 

planipennis) infestation of ash trees (Fraxinus) in the United States has resulted in the mortality 

of large stands of ash throughout the Northeast. This study assessed the suitability of multi-

temporal Worldview-2 multispectral satellite imagery for classifying a mixed deciduous forest in 

Upstate New York. Training sites were collected using a Global Positioning System (GPS) 

receiver, with each training site consisting of a single tree of a corresponding class. Six classes 

were collected; Ash, Maple, Oak, Beech, Evergreen, and Other. Three different classifications 

were investigated on four data sets. A six class classification (6C), a two class classification 

consisting of ash and all other classes combined (2C), and a merging of the ash and maple 

classes for a five class classification (5C). The four data sets included Worldview-2 multispectral 

data collection from June 2010 (J-WV2) and September 2010 (S-WV2), a layer stacked data set 

using J-WV2 and S-WV2 (LS-WV2), and a reduced data set (RD-WV2). RD-WV2 was created 

using a statistical analysis of the processed and unprocessed imagery. Statistical analysis was 

used to reduce the dimensionality of the data and identify key bands to create a fourth data set 

(RD-WV2). Overall accuracy varied considerably depending upon the classification type, but 

results indicated that ash was confused with maple in a majority of the classifications. Ash was 

most accurately identified using the 2C classification and RD-WV2 data set (81.48%). A 

combination of the ash and maple classes yielded an accuracy of 89.41%. Future work should 

focus on separating the ash and maple classifiers by using data sources such as hyperspectral 

imagery, LiDAR, or extensive forest surveys. 
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1. Introduction 

1.1   Overview 

 

 Invasive species pose a serious threat to environmental conservation and biodiversity on 

a worldwide scale. The impact that these invaders have on both native ecosystems and economic 

infrastructures is of concern, as the list of invasive species continues to grow. In the United 

States alone there are an estimated 50,000 non-native species that have led to an environmental 

damage estimate of $120 billion per year in economic losses (Pimentel et al. 2005). Among the 

invasive species in North America, the Agrilus planipennis, also known as the emerald ash borer 

(EAB), has received particular attention. The EAB is a green, wood-boring beetle from Asia that 

infests members of the Fraxinus genus (Figure 1). It is estimated to have caused the death of 53 

million ash trees since accidental introduction in 2005 (Kovacs et al. 2010).  

The threat of invasive species has 

prompted various methods of detection and 

management. An increasingly popular method 

for invasive species detection is remote sensing, 

which can provide accurate, reliable, and large 

scale recognition. Used in time-series format, 

remote sensing analyses can be used to detect, 

track and monitor invasive species, infestations, 

and spread.  

 

Figure 1: An Emerald Ash Borer on top of a 

penny for size comparison (Photo: Howard 

Russell, MI State U., www.forestryimages.org.) 
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1.2   Defining Invasive Species Management 

 

The continued spread of existing invasive species, as well as the introduction of new 

species, has prompted some ecologists to question the accepted paradigm concerning invasive 

species management. Two schools of thought have developed upon this subject. The first asserts 

that constant vigilance and the implementation of precautionary measures are necessary, in order 

to block or reduce the spread of non-native species. The second is that not all introduced species 

are malicious, and that it is nearly impossible to monitor and track them all. Hence, it is better to 

concentrate eradication and control efforts on a few that have serious ecological or economic impact.  

Ruesink et al (1995) suggested that all foreign species be treated as dangerous until 

proven otherwise in terms of potential harm, and supported this statement with three case studies. 

The first is the decision to not introduce channel catfish (Letalurus punctatus) into New Zealand. 

By basing the decision on damage done by previous introductions in other environments and the 

likelihood of escape, it was decided to not go through with the introduction, avoiding potential 

ecological and economic damage.  

The second case study involved the study of a family of shrubs and trees, Banksia, a 

native of Western Australia, but imported and cultivated in Africa. Richardson et al (1990) used 

life-history characteristics to predict which species of Banksia may invade the fynbos, a rare, 

extremely biodiverse, fire-dependent ecosystem. The authors looked at pine species that had 

successfully invaded the fynbos, and determined that key life-history characteristics shared by 

the species were small seeds with large wings, short juvenile periods, serotinous cones, and 

adults that were killed by fire. The authors then extrapolated between plant families and found 14 

species within the Banksia genus that shared the same life-history characteristics, and therefore 

Formatted: Condensed by  0.2 pt
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were most likely to invade the fynbos. They concluded that it cannot be said with certainty that 

an introduced species will be a successful invasive based upon certain attributes. However, using 

a habitat specific approach, it is possible to identify functional groups that have a high 

probability of successful invasive introduction (Richardson et al. 1990). 

In the final case study, the US Forest Service was concerned that the importation of 

Siberian timber into the United States might bring with it pests or diseases, and placed a ban on 

imports. By defining risk as the product of the probability of an infestation; assuming survival 

during transport, detectability, ease of establishment, spread, and likelihood of association with 

logs, and the magnitude of effects; economic, social, political, environmental, they determined 

potential pest impacts on the United States. The authors determined that there were 175 possible 

pests that might be introduced, of which 36 were deemed to be at a high risk for invasion and 

analyzed further. Based upon the model that the authors created, they estimated that the US 

Forest Service’s decision to ban Siberian imports potentially prevented losses to the timber 

industry of approximately $58 billion, as well as the elimination of certain tree species, food web 

changes, and forest to grassland conversion. Rusink et al (1995) used these case studies to 

illustrate that the best option for preventing invasive species spread in the world is to restrict 

nonindigenous species entrance. The final case study is especially relevant to the EAB infestation. 

On the other side of the argument is a growing group of ecologists that argue that the 

current mentality of invasive species prevention is extreme (Davis et al. 2011). For instance, they 

point to the continual failure since 1996 to eradicate invasive plants in the Galapagos. Even 

though there have been 39 attempts, only four have been successful. Also, they point to the 

devil’s claw plant (Martynia annua) and tamarisk shrubs (Tamarix spp.) as species that garner 

Formatted: Condensed by  0.1 pt
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considerable negative attention from both the government and the public, yet there is little 

evidence to show any harm to the environment. They propose that instead of automatically 

categorizing a foreign species as invasive, and therefore subject to management or eradication, 

scientific evidence should be used to determine the impact a species has on an ecosystem. If an 

exotic species does not cause human health or economic harm, then it should not be considered 

an invasive species. The authors do not dismiss the impacts that invasive species can have on the 

environment. Invasive species, such as zebra mussels, and avian malaria, have driven extinctions 

and damaged environmental services. Avian malaria has resulted in the extinction of more than 

half of Hawaii’s native birds species and zebra mussels have cost the US power and water 

utilities hundreds of millions of dollars in damage from clogged pipes. Davis et al (2011) state 

that while invasive species have had negative impacts on the environment, the majority of 

introduced species cause minimal, if any, harm to the ecosystems they invade.    

1.3   Emerald Ash Borer Infestation 

 

In the context of this controversy, the infestation by the EAB of the northeastern United 

States ash population poses an interesting ecological question: should the EAB be considered an 

invasive species and therefore be controlled or eradicated? The approach that Ruesink et al 

(1995) would recommend is to contain and control the current EAB infestation and to take 

precautions to limit the continued spread. Initiatives such as the banning of camp fire wood 

transport between counties and states, as well as insecticide injections into to uninfested ash 

trees, are already being pursued. For example, EAB was found in the City of Rochester, in New 

York, in June of 2010 (Schubert 2010). Prior to the EAB being discovered, the City of Rochester 

Forestry Division had conducted an inventory of all trees that fall under the City’s jurisdiction. It 
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was estimated that 5,000 ash trees, 8% of the total inventory, exist within the city limits. While it 

is possible to remove all the ash trees at once, a procedure that would leave some streets totally 

bare of tree cover, the city chose a less disruptive route. All visibly unhealthy and infested trees 

were removed immediately, while remaining trees were treated with TREE-age, an insecticide 

that is injected directly into the trunk and is expected to prevent infestation for two to three years. 

Once the treatment period is over, trees will either be retreated or removed. Where ash has 

already been removed, different species have been planted to replace it, allowing for a gradual 

urban forest transition.  

While the foreign origins of the EAB would automatically categorize it as an invasive 

species according to Ruesink et al (1995), Davis et al (2011) may categorize it an invasive for 

different reasons. As stated earlier, Davis et al (2011) identify an invasive species by its 

economic and human health impact. A growing body of evidence supports the EAB being 

considered an invasive. Spread scenarios estimate the mortality of 700 million ash trees in 

Michigan alone (Herms et al. 2004). Kovacs et al (2010) estimated the possible cost of 

treatment, replacement, and removal of ash trees on developed land as a result of EAB 

infestation over a 10 year period at $10.7 billion.  

1.4   Lesson from Past Invasions 

 

The EAB is not the first potentially serious threat to the North American forest 

ecosystems. Ellison et al (2005) used the following description of a foundation species: “a single 

species that defines much of the structure of a community by creating locally stable conditions 

for other species, and by modulating and stabilizing fundamental ecosystem processes.” 

Examples of lost North American foundation species resulting in significant impacts on their 
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respective environments include American chestnut (Castanea dentate) and Eastern hemlock 

(Tsuga canadensis). Both of these species played key roles in nutrient cycling and habitat 

creation in their respective ecosystems.  

The American chestnut constituted a significant proportion of northeast forest 

communities, along with oak, and exerted a heavy influence on the environment. Chestnut blight, 

which resulted from the accidental introduction of the canker pathogen, Cryphonectria 

parasitica, from Asia, decimated the chestnut population within 50 years of introduction (Ellison 

et al. 2005). Presently, chestnut exists as an understory shrub with very few fully grown, mature 

trees left. Chestnuts are thought to have had far-reaching impacts on the ecosystem structure of 

the forest communities where they lived, and that their removal has changed the forests 

irreparably. There is evidence that chestnut produced allelo-chemicals that suppressed the growth 

of eastern hemlock and rhododendron along riparian corridors, species that are currently thought 

of as common for that type of environment (Ellison et al. 2005). Additionally, chestnuts rapid 

growth and sequestration of carbon and nutrients, low C:N ratio, and high tannin content would 

have had strong influences on decomposition, productivity, and nutrient cycling. Chestnut is a 

quickly decomposing and highly nutritional food source to forest stream systems. The change 

from chestnut to oak, a much more slowly decomposing and lower nutritional food source, 

would have resulted in decreased growth rates and body size of aquatic macroinvertebrates 

(Ellison et al. 2005).  

The loss of the Eastern hemlock due to the hemlock woolly adelgid (Lambdina 

fiscellaria) resulted in changes to the ecosystem, because of a similar decline as the American 

chestnut. Hemlock stands create unique microclimates that are cool, damp, and have very slow 
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nitrogen-cycling within nutrient poor soil (Ellison et al. 2005). Furthermore, hemlock canopy 

transpiration and snow-interception rates decrease stream temperature profile variation and 

stabilize soil moisture and stream base flows, supporting distinctive assemblages of salamanders, 

fish, and freshwater invertebrates (Ellison et al. 2005). Unlike the American chestnut, which can 

be found growing in the understory as a shrub, the Eastern hemlock typically does not re-

establish after a woolly adelgid invasion. Instead, hemlock range lost to adelgid mortality is 

being colonized by birch (Betula spp.), oak (Quercus spp.), maple (Acer spp.), and yellow poplar 

(Liriodendron tulipifera) (Ellison et al. 2005). The loss of the Eastern hemlock would alter 

stream ecosystems, cause the loss of uniquely associated plants and birds, and impact nutrient 

and hydrological cycles. 

The American chestnut and Eastern hemlock illustrate the ecological impact that the loss 

of a foundation species can have on an ecosystem. The widespread infestation and mortality of 

ash by the EAB, is similar to that of the American chestnut and Eastern hemlock in both scope 

and possible severity. Ash represents a large portion of forest cover in Monroe County and New 

York State (Figure 2). While the importance of ash in the local forest community is not fully 

known, species richness is relatively low. Considering that there are only a few tree species, 

including ash, that account for most of the cover in the forest community, loss of ash will have 

some impact on the ecosystem. The severity of the impact, however, is unknown. 
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1.5   Target Species 

 

 Fraxinus is a large tree genus that has member species worldwide.  In the Great Lakes 

region, the ash species present are white ash (Fraxinus americana), green ash (Fraxinus 

pennsylvanica), black ash (Fraxinus nigra), and to a lesser extent blue ash (Fraxinus 

quadrangulata) and pumpkin ash (Fraxinus profunda).  The ash genus is characterized by 

opposite feather-compound leaves and canoe shaped winged fruit (Petrides and Wehr, 1998). 

Ash is an important component of both urban and natural woodlands. They are common street 

trees in urban areas (Kashian and Witter, 2011) as well as being an important timber species for 

furniture, baseball bats, and tool handles. Ash grow in a number of different ecosystems ranging 

from upland dry areas (white ash) to poorly drained swamp areas (black ash) and seasonally 

saturated environments (green ash) (Kashian and Witter, 2011). White ash is a dominant species 

in forest ecosystems, primarily in Michigan and northwestern Wisconsin, where it is considered 

an indicator species of certain habitat types in upper Michigan and northwestern Wisconsin 

(Griffith, 1991). White ash is a source of browse for deer, wood duck, northern bobwhite, purple 

finch, fox squirrel and other birds and mammals. It readily provides trunk cavities that provide 

key nesting for a number of woodpecker species, wood duck, grey squirrels, and owls (Griffith, 

1991). It is unclear what the impact of the loss of this species will be on the multiple ecosystems 

that the ash genus inhabits. It has been demonstrated both experimentally and in the field that 

EAB readily parasitize all four species (Anulewicz et al. 2008). 
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1.6   Remote Sensing 

 

Campbell and Wynne (2011) defined the overall field of remote sensing as the 

observation of an object from a distance without physically contacting it. In general, remote 

sensing falls into one of two types of collection methods, passive and active.  

Passive remote sensing relies upon recording the energy reflected or emitted by an 

object. In their book, Introduction to Remote Sensing , Campbell and Wynne (2011) divide 

passive remote sensing into two categories; the first being the recording of solar radiation 

reflection off a surface, the second being the recording of the radiation emitted by an object. 

There is an important distinction between recording either the energy reflected or emitted by an 

object. An example of a passively recording reflectance is photography, or orthoimagery, 

discussed later (Campbell and Wynne, 2011).  

The other passive category differs from the first in that it records emitted energy in the far 

infrared, or other wavelength, not visible to the naked eye. This can be further divided into 

multispectral and hyperspectral imagery collect, which will be discussed later.  These types of 

imagery can be used, for example, to assess chlorophyll status in plants, evaluate leaf area index, 

and estimate plant stress based upon the recording of emitted energy at certain wavelengths 

(Horler et al. 1983). Active remote sensing uses an energy source and records the reflection of 

that energy off of an object. Campbell and Wynne (2011) provide an example of an active 

remote sensing system is a camera with a flash attachment.  
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1.6.1   Passive Remote Sensing Data 

 

Passive remote sensing can be divided to three types of imagery; orthoimagery, 

multispectral imagery, and hyperspectral imagery. Orthoimagery is a traditional color or 

panchromatic image of the target area, georectified to remove camera distortions at the edge of 

the photo and orthorectified to display objects without tilt and in the proper location. 

Multispectral imagery consists of a sensor collecting light reflected by an object into specified 

groups, or bands, such as 400-450nm (Figure 3).  Finally, hyperspectral imagery is similar to 

multispectral imagery in that it represents reflectance but instead of large frequency ranges 

generalized to a few bands, it usually has very narrow frequency ranges and many contiguous 

bands (Figure 4). Passive remote sensing is used in a number of different fields, and its ability to 

analyze large areas with minimal field surveys has seen a growing use in the detection and 

tracking of invasive species. 

 

 

 

 

 

 

 

 

 

Figure 3: The diagram shows the basic operation of a multi-spectral device. Light energy is reflected off an object 

and a sensor collects this energy and distributes it into different bands that have a set wavelength collection range 

(wr.udel.edu). 
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Figure 4: The diagram shows the concept and operation of a hyper-spectral device. Light energy is reflected off an 

object and is collected by sensor. Different object reflect light at a different spectrum and this energy is categorized 

into many narrows wavelength ranges (st.gsfc.nasa.gov). 

1.6.2   Active Remote Sensing Data 

 

 LiDAR is a remote sensing system that has found uses in a wide array of disciplines 

including forestry, geography, military applications, mapping, meteorology, and other scientific 

and commercial fields. The basic design of a LiDAR system consists of a laser that pulses a 

specified number of times a second, for instance 200kHz. Combined with the laser is a sensor to 

detect the returning laser pulse after it hits an object and bounces back. A return time is recorded 

with each returning laser pulse and this return time can be translated into a distance from the 

source (Figure 5). These distances can then be converted into a 3D point cloud of a target, such 

as a forest canopy (Figure 6). By assessing the 3D structure of individual trees or forest canopies,  
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it is possible to estimate forest biomass using specific algorithms. Physical characteristics such as 

diameter at breast height (DBH), and height are important variables in biomass and carbon 

sequestration equations. Structural data that can be collected using LiDAR systems can be used 

to classify forest communities as well as estimate biomass. 

1.7   The Emerald Ash Borer 

 

 EAB larvae feed on the phloem, cambium, and shallow sapwood of ash trees while adults 

feed on leaves (Wang et al. 2010). Within 3-5 years, ash mortality in a healthy stand can 

approach 85% (Kashian and Witter 2011). In its natural environment, the EAB is reported to be 

able to disperse up to 1.1 km per year (Wang et al. 2010), however, Taylor et al (2010) found 

Figure 5: This diagram shows the operation of an 

airbourne LiDAR system. As the plane flies over a 

landscape laser pulse returns are recorded based upon 

the time the pulse was emitted and the time for that 

pulse to return to the sensor (USDA Forest Service). 

 

Figure 6: A LiDAR image of a forest area on the 

Rochester Institute of Technology campus. The 

blue dots represent lower elevations, such as a road, 

and the red dots represent the highest elevations, 

the tops of the forest canopy. 
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that mated females may fly more than 3km or more in a single day and up to 7.2 km in four days. 

The distance that could potentially be covered by an EAB female in search of host trees for egg 

laying is well over the earlier assumptions of a half mile per year spread rate (Taylor et al. 2010), 

indicating a more rapid invasion. Figure 7 shows infestation points regionally dispersed over the 

northeastern United States. It is believed that the EAB was introduced via shipping crates 

constructed from infested timber. The extensive and rapid spread of the EAB is believed to be 

due to transportation of infested campfire wood, timber, and nursery stock from infested to un-

infested areas (Bendor et al. 2006).  

 The EAB was discovered in southeastern Michigan in June 2002 and as of 2011 has 

spread to 15 states and two Canadian provinces (Figure 7).  Recently the EAB has been 
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discovered in multiple counties (Cattaraugus, Erie, Genesee, Livingston, Orange, Steuben, 

Greene, Ulster, and Monroe) in New York (Figure 8). Within Monroe County, the EAB 

infestations have been found by the New York State Department of Environmental Conservation 

(DEC) in the Chili-Scottsville area as well as reported sightings in Mendon and Pittsford 

(Schubert, 2010). Additionally, an EAB infestation was found in the Upper Falls Park in 

Downtown Rochester by forestry personnel in June 2011. 

Signs of EAB infestation include D-shaped exit holes (Figure 9), canopy dieback, bark 

splits and peeling, epicormic shoots, and vertical larval galleries (Figure 10). These 

characteristics of EAB infestation make early detection difficult and therefore are only noticed 

Figure 8: Map showing the location of documented infestations in New York State as well as the counties that 

the infestations were found in and the quarantine zones established to limit EAB spread (NYSDEC, 2013).  
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when the EAB population is high and ash trees begin dying 

(Wang et al. 2010). The threat that the EAB poses, both 

ecologically and economically, has prompted a number of 

monitoring, containment, and eradication methods to be 

explored. The hidden stages of the EAB lifecycle in the 

cambium of host ash make monitoring challenging because 

an infestation is only confirmed if an ash tree is already 

infested and dying or adult EAB are captured via traps in 

the area, in which case the area ash are probably already 

infested. EAB traps are prism shaped structures, colored 

purple, and coated with non-toxic glue and a lure, Manuka 

oil (Figure 11). If infested trees are found, the typical 

response is to 

remove them and others around them to prevent 

additional spread.  

In cases where the ash trees are believed to still 

be healthy and removal is not desirable, insecticides are 

used as a preventative measure. This method involves 

drenching the soil around the roots of the tree with 

insecticide or directly injecting it into the tree trunk. A 

study by Mckenzie et al (2010) found the trunk 

injection chemical azadirachtin to have a strong effect 

Figure 9: Example of a D-shaped exit 

hole that is characteristic of emerald 

ash borer (EAB) infestation. 
(http://www.inhs.illinois.edu/outreach/

EAB.htm) 

 

Figure 10: Example of vertical larval 

galleries that is an indication of emerald 

ash borer (EAB) infestation. (NYSDEC)  

 

http://www.inhs.illinois.edu/outreach/EAB.htm
http://www.inhs.illinois.edu/outreach/EAB.htm
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on EAB larval development in ash trees that were 

treated before exposure to EAB and for trees treated 

after EAB infestation. They found that larval 

development ceased after the second-instar stage, 

indicating that Azadirachtin was very effective for 

both prevention of infestation and treatment after 

infestation. Possible collateral damage to other non-

target species, specifically decomposer invertabrates, 

as a result of Azadirachtin application has been 

researched. Kreutzweiser et al (2011) fed treated ash 

leaves to earthworms and microbial decomposers and 

compared the survival, leaf consumption rates, 

growth rate, and cocoon production to controls. There 

was no signification reduction in any of the comparisons, except for a reduction in microbial 

decomposition at the highest test concentration of Azadirachin (~6 mg kg-1).  

 Finally, in order to contain the spread of the EAB and also not cause potential harm to the 

environment, biological controls are being investigated. While an invasive species can be a 

serious problem outside of its home range, it is usually neutralized or controlled within its native 

environment. In Asia, where the EAB is native, Wang et al (2010) found that a parasitoid, 

Spathius agrili, was found to the major insect predator of larvae and noted the potential for 

biological control in the United States. In addition, Duan et al (2011) found that another 

parasitoid, Blacha indica, first sited in Virginia in 1995, has been found to prey upon EAB 

Figure 11: Example of an emerald ash borer 

monitoring trap. It is purple to attach the EAB 

and coated with a non-toxic glue and lure, 

Manuka oil. 

(http://www.ci.roseville.mn.us/index.aspx?NI

D=2057) 

 

http://www.ci.roseville.mn.us/index.aspx?NID=2057
http://www.ci.roseville.mn.us/index.aspx?NID=2057
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throughout larvae, prepupae, and pupae life stages. Duan et al (2009) found that B. indica, 

Eupelmus pini, Dolichomitus vitticrus, and two unidentified species caused 3.6% parasitism in EAB. 

1.8   Literature Review 

 

 Remote sensing has been widely researched as a means to classify natural communities 

(Miguel-Ayanz and Biging 1997, Lu et al. 2008, Yang and Everett 2010, Dinuls et al. 2012). 

More specifically, the multi-spectral sensor, WorldView-2, has been used for forest species 

classification with promising results. Abd et al (2012) were able to achieve species classification 

accuracies of 23.7% to 83.2%, depending upon the species, by collecting spectral reflectance 

values in the field for training. In another recent study, Immitzer et al (2012) achieved an overall 

classification accuracy of 82% with ten different species and single date imagery in a temperate 

forest in Austria. Worldview-2 imagery has also been used for identifying volcanic ash plumes 

and inferred height (McLaren et al. 2012). 

Multiple studies have investigated the influence that multi-temporal imagery can have on 

classification accuracies (Ghioca-Robrecht et al. 2008, Townsend and Walsh 2001, Tso and 

Mather 1999). Hill et al (2010) conducted a study in Monks Wood in eastern England using five 

images collected throughout the growing season. Using one image, the highest overall accuracy 

the authors obtained was 71% (kappa 0.63). When images were combined, the overall accuracy 

increased to a maximum of 84% (kappa 0.79)  

 There are a number of other multi-spectral sensors whose utility has been assessed for 

forest and vegetation classifications. Lu et al (2008) used both Landsat Thematic Mapper (TM) 

and SPOT High Resolution Geometric (HRG) imagery for vegetation classifications in the 
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Brazilian Amazon. Overall classification accuracies ranged between 46.3% and 61.8% 

depending upon the data fusion method. The authors attribute this poor accuracy to the complex 

environment that the Amazon exhibits. This mixture results in pixel mixing and confusion. 

Another study used Landsat TM and SPOT HRG imagery for classifying land cover in Central 

Sierra Spain (Miguel-Ayanz and Biging 1997). They found that the Landsat TM imagery was 

able to correctly classify five of the most abundant classes, which made up 72% of the scene, to 

an overall accuracy of 90%. They point out that sample size may play a part in the achieving 

higher overall accuracies, because classes that represented a smaller proportion of the scene will 

have unequal total training size compared to the dominant land classes.  

Hyperspectral sensors have also been used for land cover classifications with strong 

results. Yang and Everett (2010) used a hyperspectral sensor attached to a Cessna to collect 

imagery over an Ashe juniper site in central Texas. They also collected field reflectance values 

of the study site. The authors evaluated a number of supervised classification techniques 

including minimum distance, Mahalanobis distance, maximum likelihood, spectral angle 

mapper, and mixture tuned matched filtering. Overall accuracy was 93%, 91%, 91%, 87%, and 

92% for the respective classifications. Because hyperspectral imagery contains such a large 

amount of data from very small band spectral ranges, it is possible to identify very specific 

wavelengths associated with target classes. This makes it possible to identify land cover or forest 

species much more accurately than would be possible with multispectral imagery. However, with 

such as large amount of data available, date reduction becomes a necessity.  

 Active remote sensing devices, such as LiDAR sensors, when combined with spectral 

imagery data, have been shown to increase classification accuracies. LiDAR has also been used 
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on its own for classifying land cover. Because LiDAR is able to provide forest attributes such as 

height, above ground biomass, and diameter at breast height, this adds additional identifying 

factors for forest classifications. Neuenschwander et al (2009) compared LiDAR data and 

Quickbird imagery for land cover classification accuracy on a ranch in San Marcos, Texas. 

Overall accuracy was 85.8% and 71.2% for the LiDAR and Quickbird imagery respectively. 

Another study assessed a combination approach of multispectral imagery and LiDAR data for 

classifying a forest in Latvia and determined that it is possible, under favorable conditions, to 

achieve 97% overall accuracy (Dinuls et al. 2012).  
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1.9   Objectives 

 

 The detection and management of the emerald ash borer (EAB) is a challenging task due 

to: 1) difficulty in predicting it’s spread and; 2) once an infestation is discovered it is often too 

strongly established to eradicate. An important part of managing the EAB infestation is early 

detection and monitoring. Remote sensing can be a valuable tool for this purpose by providing 

broad scale assessments of given areas in order to target specific areas of interest, namely stands 

of ash trees. This study looked to evaluate the feasibility of 8-band multispectral Worldview-2 

data to classify a mixed deciduous forest on the Rochester Institute of Technology (RIT) campus, 

with a focus on identifying the ash population present to a percent accuracy level of 85% or 

higher. The results of this research may assist management and monitoring of EAB infestations 

and better characterize the Worldview-2 sensor’s utility for forest classifications. 

 Thus my goals are: 

 Assess the utility of WorldView-2 imagery for genus (specifically fraxinus) level forest 

classification. 

 Determine the influence of multi-temporal imagery. 

 Estimate the impact the EAB will have on the forest community. 
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2.   Methodology 

2.1   Site Description 

 

This study was conducted on the campus of the Rochester Institute of Technology (RIT) 

located in the Town of Henrietta in Monroe County New York (43° 5' 3.88'' N, 77° 40' 29.81'' 

W). Monroe County lies within the ecoregion described by the New York State Department of 

Environmental Conservation (NYSDEC) as the Great Lakes EcoRegion. The region was formed 

14,000 years ago during the last Ice Age and distinguished by lake plains and low level 

landscapes (NYSDEC). The area receives approximately 34 inches of precipitation per year and 

an average 100 inches of snow fall (NYSC). The mean temperature is 47.6° Fahrenheit with 

extremes of 100° F to -20°F, with Lake Ontario exerting some influence on local climates 

(NYSC). The soil composition on the RIT campus consists of mostly Canandaigua Loam and 

Niagara Loam that account of an estimated 23.4% and 18.6% of the soil make up. A table of soil 

types, acreage of coverage, and percent of the total campus area can be found in Appendix A. 

The campus sits on an approximately 1200 acre plot and is made up of a central developed and 

built up area, surrounded by diverse forest communities, agriculture, wetland, and transitional 

open fields.  The northern and eastern parts of the campus forest consist predominantly of maple 

species (Acer) with varying concentration of ash species. Some pine species (Pinus) and black 

locust (Robinia pseudoacacia) are also present.  The southern part of the campus forest consists 

of maple, beech (Fagus), oak (Quercus) and ash. NYSDEC estimates that in Monroe County, 

and surrounding counties such as Orleans, Genesee, Ontario, Wayne, Seneca, and Livingston, 
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total basal area is made up of 16% to 28% ash (Figure 2). These counties contain the highest 

concentration of ash in New York State.    

2.2   Imagery 

 

 The WorldView-2 satellite is a high-resolution, multispectral sensor, owned by Digital 

Globe. It provides 1.85m resolution multispectral and 46cm panchromatic resolution imagery at 

GSD nadir and 770 km altitude. The multispectral sensor collects 8 bands in the follow ranges; 

400-450nm, 450-510nm, 510-580nm, 585-625nm, 630-690nm, 705-745nm, 770-895nm, and 

860-1040nm (Table 1). WV2 imagery was collected in June (J-WV2) and September (S-WV2) 

of 2010 of the Rochester Institute of Technology campus. Two datasets, one from each collection 

date, were used in the study. 

Table 1: WorldView-2 wavelength ranges for each of the 8 bands. Near-IR1 and Near-IR2 are near infrared bands. 

 

 

 

2.3   Data Collection 

 

Training points were collected between November 2011 and April 2012, when a majority 

of the forest is in leaf-off. Global Positioning System (GPS) points were collected using a 

Trimble GeoExplorer 3000 Series GeoXT handheld unit (Trimble Navigation Limited, 

Sunnyvale, California). The unit was set to record a positional fix every second for ninety 

seconds and calculate the average position. 

Coastal: 400-450nm Red: 630-690nm 

Blue: 450-510-nm Red Edge: 705-745nm 

Green: 510-580nm Near-IR1 770-895nm 

Yellow: 585-625nm Near-IR2 860-1040nm 
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Training points were located by walking through the forested areas and selecting 

representative trees for each class. Sample trees were chosen based on height and crown area, in 

order to maximize the visible tree cover in satellite imagery. The class of each training point was 

recorded and a GPS point collected. At each training point, the GPS was held approximately 1 

meter above the ground (waist height), and as stationary as possible. During the sampling in 

April the GPS was mounted to a tripod. During sampling, the GPS was set up on the southern 

side of the sample tree, and facing the same direction. Training points were categorized into six 

classes; Ash, Maple, Beech, Oak, Evergreen, and Other. Trees that were used as training points 

that did not fall into the genus fraxinus, acer, quakus, or fagus, and were not pinales, were placed 

into the Other class. The genus was identified using the Peterson Field Guide to Eastern Trees 

(Petrides and Wehr 1998). In total, 153 training points were recorded consisting of 57 Ash, 52 

Maple, 17 Oak, 9 Beech, 11 Evergreen, and 7 Other (Table 2).  

Table 2: Number of classification points and test points collected per class. 

 

 

 

 

 

 The GPS points were exported into Trimble GPS Pathfinder Office (Trimble Navigation 

Limited) and differentially corrected. Any points that contained greater than 2.0 meter horizontal 

error were removed. The points were then exported into ESRI ArcGIS 10.0 as shapefiles.  

 CLASSIFICATION GROUND TRUTH TOTAL 

ASH 40 17 57 

MAPLE 37 15 52 

OAK 12 5 17 

BEECH 6 3 9 

EVERGREEN 8 3 11 

OTHER  5 2 7 

TOTAL 108 45 153 
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Within each class, a random selection of approximately 30% of the training points were 

selected to create a sub-category for use as test points later in the study. The remaining points 

were used as classification points. Classification points were used in the classification and test 

points were used for accuracy assessments. A 2.0 meter buffer was created around each point 

and then exported into ENVI 4.7 (ITT Visual Information Solution, Boulder CO USA) to mimic 

tree canopies. 

2.4   Pre-classification Imagery Preparation 

 

Using ENVI, the J-WV2 and S-WV2 data sets were combined into a single data set using 

Layer Stacking (LS-WV2). Layer Stacking merges the two data sets by stacking one set of 8 

bands on top of another. This provided both temporal and multi-temporal data sets for to test 

Worldview-2 genus classification abilities. 

The classification and training point shapefiles were converted into Region of Interest 

(ROI) files within ENVI, creating classification ROIs and test ROIs. The forested areas of the 

campus were manually delineated, using a visual assessment of the imagery. A mask file was 

created using the delineated areas and was applied to all classifications in order to limit 

classification confusion with urban areas. 

A Principle Component Analysis (PCA) was run on each of the data sets  (J-WV2, S-

WV2, LS-WV2). The two objectives of using a PCA are to reduce the number of variables and 

redundancy in the dataset while maintaining variability and to identify hidden patterns and 

underlying significant variables within the data set. These variables are then classified based 

upon the amount of information or variability that they explain in the data set. Two PCA data 



  26 

 

sets were created from each of the original data sets (J-WV2, S-WV2, LS-WV2). One data set 

being created used a covariance matrix during the PCA calculation and another used a 

correlation matrix during the calculation. Table 3 shows the number of variables per data set that 

were obtained from the PCA.  

2.5   Statistical Data Reduction 

 

 Spectral signatures were extracted from J-WV2, S-WV2, LS-WV2, and imported into 

Microsoft Excel. The derivatives were calculated for each of the datasets. The derivative of 

spectral reflectivity is the rate of change with respect to wavelength (dy/dx) (Rundquist et al. 

1996). Derivatives were calculated by dividing the difference of successive spectral signatures 

for each training point by the mean range of the two corresponding bands. The signatures and 

derivatives were imported into SAS statistical software for analysis. Table 3 shows all of the 

variables input into SAS. In total 94 variables were evaluated.  

 A discriminate analysis was first used to identify the spectral signatures that best separate 

the classes used. This analysis used linear combinations of the variables in order to best explain 

the data as well as reduce the dimensionality of the data. Significance levels of 0.85, 0.90, 0.95, 

and 0.99 were evaluated, however little difference was seen in band selection. Therefore 0.85 

was used for final analysis. The CORR procedure was used to calculate the correlations between 

the variables identified by the discriminate analysis. A Pearson correlation coefficient was 

produced in order to further separate variables if possible. Twelve bands were found and selected 

for grouping into a new data set called RD-WV2. The bands that were selected can be found in 

Table 3a-c, as well as the remaining other bands used in the statistical analysis. 
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Table 3: This table shows the number of variables that were used in the discriminant analysis for each of the data 

sets. For the June and September data set unaltered (Raw) imagery and the spectral derivatives (Deriv) were used. A 

Principle Component Analysis using a covariance matrix (PCA – Cov) and a correlation matrix (PCA – Cor) were 

included. Shaded cells show the variables selected for the RD-WV2 data set.   

a. 

 

 

 

 

b. 

 

 

 

c. 
June-September Layer Stacked Data set 

PCA - Cov PCA - Cor 

PCALS_2_BAND_1 PCALS_4_BAND_1 

PCALS_2_BAND_2 PCALS_4_BAND_2 

PCALS_2_BAND_3 PCALS_4_BAND_3 

PCALS_2_BAND_4 PCALS_4_BAND_4 

PCALS_2_BAND_5 PCALS_4_BAND_5 

PCALS_2_BAND_6 PCALS_4_BAND_6 

PCALS_2_BAND_7 PCALS_4_BAND_7 

PCALS_2_BAND_8 PCALS_4_BAND_8 

PCALS_2_BAND_9 PCALS_4_BAND_9 

PCALS_2_BAND_10 PCALS_4_BAND_10 

PCALS_2_BAND_11 PCALS_4_BAND_11 

PCALS_2_BAND_12 PCALS_4_BAND_12 

PCALS_2_BAND_13 PCALS_4_BAND_13 

PCALS_2_BAND_14 PCALS_4_BAND_14 

PCALS_2_BAND_15 PCALS_4_BAND_15 

PCALS_2_BAND_16 PCALS_4_BAND_16 

 

June Worldview-2 Data set 

Raw Derivative PCA - Cov PCA - Cor 

JUN_BAND_1 JUN_Deriv_1 PCAJ_2_BAND_1 PCAJ_4_BAND_1 

JUN_BAND_2 JUN_Deriv_2 PCAJ_2_BAND_2 PCAJ_4_BAND_2 

JUN_BAND_3 JUN_Deriv_3 PCAJ_2_BAND_3 PCAJ_4_BAND_3 

JUN_BAND_4 JUN_Deriv_4 PCAJ_2_BAND_4 PCAJ_4_BAND_4 

JUN_BAND_5 JUN_Deriv_5 PCAJ_2_BAND_5 PCAJ_4_BAND_5 

JUN_BAND_6 JUN_Deriv_6 PCAJ_2_BAND_6 PCAJ_4_BAND_6 

JUN_BAND_7 JUN_Deriv_7 PCAJ_2_BAND_7 PCAJ_4_BAND_7 

JUN_BAND_8   PCAJ_2_BAND_8 PCAJ_4_BAND_8 

September Worldview-2 Data set 

Raw Derivative PCA - Cov PCA - Cor 

SEP_BAND_1 SEP_Deriv_1 PCAS_2_BAND_1 PCAS_4_BAND_1 

SEP_BAND_2 SEP_Deriv_2 PCAS_2_BAND_2 PCAS_4_BAND_2 

SEP_BAND_3 SEP_Deriv_3 PCAS_2_BAND_3 PCAS_4_BAND_3 

SEP_BAND_4 SEP_Deriv_4 PCAS_2_BAND_4 PCAS_4_BAND_4 

SEP_BAND_5 SEP_Deriv_5 PCAS_2_BAND_5 PCAS_4_BAND_5 

SEP_BAND_6 SEP_Deriv_6 PCAS_2_BAND_6 PCAS_4_BAND_6 

SEP_BAND_7 SEP_Deriv_7 PCAS_2_BAND_7 PCAS_4_BAND_7 

SEP_BAND_8   PCAS_2_BAND_8 PCAS_4_BAND_8 
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2.6   Spectral Analysis  

2.6.1   Classification Types 

 

A maximum likelihood analysis was chosen for the classification method. In a maximum 

likelihood classification (MLC), pixels are classified using a probability function and training 

site inputs, and designate a class based upon the probability of belong to that class (Erener 

2013).A detailed explanation of the methodology and principles behind the MLC can be found in 

Myung 2003. 

Three different classification groups were tested, consisting of class groupings of six 

class (6C), two classes (2C) and five classes (5C). 6C comprised the classes Ash, Maple, Oak, 

Beech, Evergreen, and Other. 2C involved the merger of the Maple, Oak, Beech, Evergreen and 

Other classes in a single class and Ash remaining as its own class. As a result of some confusion 

between the Ash and Maple classes during some preliminary research, we merged the Ash and 

Maple classes into a single class, leaving the four remaining classes (Oak, Beech, Evergreen, Other).  

2.6.2   Classification Procedure 

 

  The MLC was run on the J-WV2, S-WV2, LS-WV2, and RD-WV2 datasets. A 

probability threshold of 0.85 was selected, so any pixel that had lower than an 85% probability of 

being classified as one of the classes remained unclassified. Each classification (6C, 2C, 5C) was 

run on each of the data sets. The accuracy of each classification was calculated by using the test 

ROIs and confusion matrix. Each confusion matrix output consisted of an overall accuracy 

assessment and kappa coefficient, individual class accuracies, errors of commission and 

omission, and producer and user accuracies (Appendix A).   
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3.   Results 
 

 Table 4 displays the results of the three different classifications (2C, 5C, 6C) 

performance using the four data sets analyzed (J-WV2, S-WV2, LS-WV2, RD-WV2) for the ash 

and maple class. The 6C classification yielded the highest accuracy for classifying both ash and 

maple when run using the RD-WV2 data set. Ash test pixels were classified correctly 72.22% of 

the time and maple test pixels 52.94%. This same combination also yielded the lowest ash being 

misclassified as maple (22.22%) and maple being misclassified as ash (23.53%).  

Table 4: This table displays the percent accuracy of the ash, maple and combined ash-maple classes for Worldview-

2 imagery collected in June and September 2010 (J-WV2 and S-WV2), a layer stacked data set of J-WV2 and S-

WV2 (LS-WV2), and a statistically reduced data set (RD-WV2). The percent that ash was miss-classified as maple 

of vice versa is in brackets. 

Class J-WV2 S-WV2 LS-WV2 RD-WV2 

Ash (6C) 
53.70 

(24.07) 

50.00 

(27.78) 

61.11 

(33.33) 

72.22 

(22.22) 

Maple (6C) 
41.18 

(27.45) 

31.37 

(23.53) 

47.06 

(41.18) 

52.94 

(23.53) 

Ash-Maple 

(5C) 
64.76 63.81 89.52 80.95 

Ash (2C) 70.37 55.56 61.11 81.48 

The S-WV2 data set yielded the lowest accuracy for ash and maple at a percent of 

50.00% and 31.37% respectively. Ash only saw a small increase of less than 4.00% accuracy for 

the J-WV2 data set, 53.70%, while the maple class accuracy increased by approximately 10.00% 

to 41.18% (Table 4). There were not significant differences between J-WV2 and S-WV2 in terms 

of ash and maple being incorrectly classified as the other.  

The apparent confusion occurring between the ash and maple classes prompted further 

investigation. The ash and maple classes were merged to determine if the confusion was between 
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classes another unknown variable. The 5C classification resulted in significantly higher 

accuracies overall for all data sets investigated. LS-WV2 yielded the highest accuracy of 

89.52%. RD-WV2 resulted in a slightly lower accuracy of 80.95%, however still a higher 

accuracy then when using the 6C classification. J-WV2 and S-WV2 performed similarly with 

accuracies of 64.76% and 63.81% respectively (Table 4).  

To further determine if the classification confusion was a result of a spectral similarity 

between the ash and maple classes; the maple, beech, oak, and other classes were merged 

together. The 2C classification yielded a high accuracy of 81.48% when using the RD-WV2 

dataset. J-WV2 resulted in the next highest accuracy with 70.37%. The LS-WV2 and S-WV2 

datasets produced accuracies of 61.11% and 55.56% respectively (Table 4). The overall, class, 

producer, and user accuracies for all the variables can be found in Appendix B, Tables 1-8. 
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4.   Discussion 

4.1   Classification analysis 

 

Classification accuracies varied depending upon the dataset and classification used. 

Within the 6C classification there was a pattern of consistent identification confusion between 

the ash and maple classes (Table 4). While it is expected to have some amount of classification 

error, 20-35% of the ash test pixels were misclassified as maple, depending upon the data set. 

Misclassification of ash as any of the other classes, for example oak, was not significant 

compared to the proportion confused with maple. This confusion is also seen in the maple 

classification, where there is a consistent misclassification of maple as ash for a large proportion 

of the test pixels. 

The 2C classification was used to determine if the confusion that was occurring was from 

the maple class itself or from some other factor. Class accuracy for ash did increase compared to 

the 6C classification, depending upon the data set (Table 4). The RD-WV2 and S-WV2 data sets 

showed small increases in accuracy while the J-WV2 data set greatly improved. However the 

LS-WV2 data set showed no change.  

When the ash and maple classes were merged, this new class resulted in a significantly 

higher accuracy when using the LS-WV2 data set (Table 4). This was the highest accuracy that 

was found throughout the study for the ash or maple classes.   

Ash was best identified using the RD-WV2 dataset and the 2C classification, at an 

accuracy of 81.48% (Table 4). While the 5C classification produced a higher accuracy of 

89.52%, any pixel designated within the Ash-Maple class could be either genus, making specific 
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identification impossible. While the classification of ash using the 6C classification resulted in a 

lower accuracy of 72.22% with the RD-WV2 dataset, making it slightly too low for commercial 

purposes, other classes such as evergreen and oak were identified to an accuracy of 100.00% 

using the same dataset.  

The reasons for this confusion between the ash and maple classifiers can be attributed to 

a number of possibilities. Worldview-2 multispectral pixel size is 1.85x1.85m (Appendix A). 

While smaller than other multispectral sensors such as Landsat TM and BGIS 2000, it is possible 

that the mixed nature of the forest community and varying canopy sizes are causing pixels on the 

edge of tree canopies to confuse the classification. Also, the varying canopy heights and tree 

spacing might be causing shadows and ground spectral signatures to confuse the classification. 

Additionally, the spectral signatures of ash and maple are fairly similar in both the June and 

September datasets (Figure 12). From an ecological stand point, it is not uncommon to find ash 

and maple occupying the same forest cover areas such as Sugar Maple stands and Black Ash, 

American Elm, Red Maple stands (USFS). Also, structurally, both species have opposite 

branching patterns, which may lead to similar spectral signatures. 

4.2   Multi-temporal Analysis 

 

Overall and individual class accuracy differences between single date and multi-temporal 

(LS-WV2) data sets showed some pattern. In general, the overall accuracy of the J-WV2 and S-

WV2 datasets were lower than of the LS-WV2 data set. The S-WV2 dataset overall accuracy 

was higher than that of the LS-WV2 data set using the 2C classification, 72,73% and 71.43% 

respectively. Within the ash class specifically, multi-temporal data resulted in higher accuracy 

using the 6C and 5C classifications. However, using the 2C classification, the J-WV2 data set 
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produced the higher accuracy, 70.37% compared to 61.11% for the LS-WV2 data set. 

  

 

Multi-temporal imagery improved classification accuracy of ash and maple for almost all 

classifications. The one exception was the J-WV2 data set combined with the 2C classification 

that had an accuracy of 70.37%, compared to the L-WV2 data set accuracy of 61.11%.  These 

results show that multi-temporal imagery has a positive impact on classification accuracy, 

depending upon the classification that is used and the specific class that is in question. The 

literature shows that this has also been the case with other classification studies (Key et al.2001, 

Ghioca-Robrecht et al. 2008, Townsend and Walsh 2001, Hill et al. 2010).  

The improved accuracy results from the multi-temporal analysis point to possible further 

accuracy enhancements with additional imagery from other times of the growing season. 

Research has shown that multi-temporal imagery can improve classification accuracy (Wolter et 

Figure 12: Shows the spectral signature for ash (green) and maple (red) for the layer stacked dataset. Bands 1 

through 8 are from the June WorldView-2 dataset and bands 9 through 16 are from the September WorldView-2 

dataset. 
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al. 1995, Key et al. 2001, Singh and Glen 2009, Townsend and Walsh 2001). Additionally, the 

use of different types of multispectral imagery, for example a combination of Landsat TM and 

SPOT HRG, should be investigated (Lu et al. 2008, Miguel-Ayanz and Biging 1997). 

Given the mixed nature of the forest, high resolution imagery might be able to better 

differentiate individual tree genus due to less confusion with surroundings. Hyperspectral 

imagery offers a promising possibility with its narrow band ranges and high resolution (Jones et 

al. 2010, Yang and Everitt 2010, Lui et al. 2012). The inclusion of LiDAR data to delineate 

canopy and structure combined with multispectral imagery has produced favorable classification 

results (Ke et al. 2010, Cho et al. 2012, Dinuls et al. 2012). 

4.3   Ecological Impacts 

 

 The type of impacts that the EAB infestation will have on the forest community both on 

the RIT campus and in the region in general is not clear. The EAB has been in the United States 

since at least 2005, particularly in Michigan, where the invasion is believed to have originated 

(Kovacs et al. 2010). Now that stands of ash have been decimated and forest regeneration has 

begun, initial inferences can be drawn on forest community impacts. Kashian and Witter (2011) 

investigated the potential for ash re-establishment in Lower Michigan. The authors found that 

while overstory ash mortality was almost 100%, there were abundant understory ash populations. 

However, there were indications that the seed bank was becoming depleted, as seedlings 1-2 

years were the least abundant. They also suggested that overstory competition with other species 

was a key driver of ash regeneration, and that the influence that the EAB may have is unknown 

at this time. While the species composition in the previous study was different from that of this 

study, it could be assumed that similar effects may be seen.  
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 Due to the limited amount of research that has been conducted on the role that ash play in 

a forest ecosystem, it is difficult to state with any certainty what impact the loss of ash may have 

on the forest community. However, some inferences can be made based upon a few studies. A 

study by Petritan et al (2009) investigated the growth response of ash, maple, and beech sapling 

to disturbance opening in the canopy. Ash and maple were characterized as “gap species”, due to 

rapid growth as a result of increased light availability following an opening in the canopy. Beech 

displayed more shade tolerant characteristics and did not compete as well for new canopy space. 

Based upon this study it would appear when a gap opens up in the canopy, such as the death of a 

mature overstory tree, ash and maple would compete. This competition with the presence of the 

EAB could inhibit ash reaching a mature stage and leading to an increase in maple populations.   

 Parallels can be drawn between the possible regeneration response of ash to the EAB 

infestation and the response seen in chestnut mortality as a result of the chestnut blight. The 

chestnut has been reduced to an understory shrub due to the chestnut blight killing trees before 

they can reach full maturity (Ellison et al. 2005). EAB commonly infest tree of 5-9cm in DBH 

and rarely smaller trees (Wang et al. 2010). Much like the chestnut blight, greater age or size 

increases the likelihood of infestation.  So ash may be relegated to an understory role. 

The impact that large scale ash mortality may have on the forest community is also 

unclear. Ulyshen et al (2011) assessed the impact that the increase in canopy gaps and fallen ash 

trees has on the arthropods and exotic earthworms in a forest experiencing EAB infestation. The 

authors found that litter dwelling taxa were more abundant near fallen logs, regardless of canopy 

openness. Therefore, the initial die off of RIT ash would probably have a positive effect on the 

detritivores on campus, but it remains to be seen what the long term affects might be.  
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5.   Conclusions 

 This study looked to determine the feasibility of Worldview-2 data for classifying a 

mixed deciduous forest at a genus level with the focus on ash populations for EAB monitoring 

and management purposes. This methodology and the data sets produced good classification 

accuracy for ash, 81.48% (Table 4).  The results seen in this study are consistent with some of 

the literature regarding the use of Worldview-2 imagery for forest classification purposes (Abd et 

al. 2012; Immitzer et al., 2012). Higher accuracy was achieved when the ash and maple classes 

were merged, yielding a class accuracy of 89.53% (Table 4). Analysis of the results indicate that 

confusion between classifiers, particularly ash and maple, were a key reason for lower 

classification accuracy. The very mixed nature of the forest community, where pure stands are 

uncommon, combined with the resolution of Worldview-2 imagery (1.85x1.85m) may have 

cause pixel mixing and confusion. 

 While the classification of ash was not to an accuracy level that would be ideal for 

monitoring purposes, it was accurate enough to assist in guiding field surveys and investigations. 

This study was conducted on a small scale and could likely be scaled up to potentially classify 

areas of ash that could be inspected for possible EAB infestation. This study was conducted in a 

relatively small area, where access for field surveys was available. In areas where ash 

populations are less accessible, remote sensing can play an important role in locating and 

prioritizing monitoring efforts. Parks would be a particular target of interest for monitoring, 

given that infested firewood transportation is one of the key modes of EAB spread, and firewood 

use in parks is obvious. Knowing the areas and extent of ash populations in large forested areas, 

such as parks, is important for monitoring and management of EAB. 
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 Remote sensing has the potential to offer more than simply locating and identify 

populations of ash. There is a considerable body of research involving the use of remote sensing 

for evaluating plant stress (Holer, Dockray, Barber, 1983; Sepculcre-Canto et al., 2006; 

Asmaryan et al., 2013). Part of the difficulty in monitoring EAB infestation and spread is that 

symptoms of infestation are not readily apparent until too late. Subtle spectral changes in leaf 

reflectance can indicate plant stress due to a variety of factors such as water or soil. Most 

importantly, plant stress can be a result of infestation. Locating ash populations and then assessing 

the corresponding stress levels via remote sensing could greatly focus field investigations.  

 Other multispectral imaging apparatus such as Landsat TM, Quickbird, and IKONOS 

offer additional data source for use in combination with Worldview-2. The improvement seen in 

classification accuracy with multi-temporal data would indicate that increasing the number of 

collection dates utilized may further improve the model. Hyperspectral imagery and LiDAR data, 

in combination with Worldview-2 or separately, offer additional classification capabilities. The 

unique spectral signature of ash could be extracted from hyperspectral imageries enormous 

volume of narrow spectral range bands. LiDAR could potentially identify structural 

characteristics of ash, improving accuracy capabilities. 

 The importance of ash in its respective habitats is unclear, as is the impact that the 

emerald ash borer may have in the long term as cleared ash stands begin to regenerate. These 

unknowns hinder attempts at projecting the influence that the emerald ash borer will have on the 

ash population and ecosystem. With gaps opening up in forest canopies as ash trees die, 

competition from other forest tree species, such as maple, could inhibit population regeneration. 

Formatted: Condensed by  0.2 pt
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Ash is just beginning to regenerate in Michigan from the initial EAB infestations. How the ash 

population responds to this invasion will be important for predicting local ash population impacts.  

More research is necessary in order to further understand the reason for the confusion 

between ash and maple, the potential for alternative forms of remote sensing for ash 

classification, and the ecological and economic impacts of the EAB infestation. Remote sensing 

can play a key role in both managing and preventing present and future invasions.

Formatted: Condensed by  0.1 pt
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Appendix A 
 

 

Figure 1: Soil type and proportion of the Rochester Institute of Technology area, derived from the USGS Websoil 

Survey. 
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Figure 2: Woldview-2 satellite specifications (Digital Globe). 
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Appendix B 
 

Table 1: Shows the overall accuracy and kappa values for each type of classification and dataset combination 

analyzed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data Set OA (%) Kappa 

June (6C) 48.05 0.3207 

September (6C) 43.51 0.2775 

Layer Stack (6C) 50.00 0.3049 

Reduced Data (6C) 70.13 0.6100 

June (5C) 67.53 0.4863 

September (5C) 66.23 0.4829 

Layer Stack (5C) 73.38 0.4257 

Reduced Data (5C) 72.73 0.5070 

June (2C) 67.53 0.3378 

September (2C) 72.73 0.4079 

Layer Stack (2C) 71.43 0.3779 

Reduced Data (2C) 79.22 0.5659 
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Table 2: These four tables display the individual class accuracy for each of the datasets used with the 6C 

classification. a, b, c, and d correspond to the J-WV2, S-WV2, LS-WV2 , and RD-WV2 datasets respectively. 

a. 
Class Evergreen Ash Beech Maple Oak  Other Total 

Unclassified 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Evergreen 77.78 1.85 0.00 0.00 0.00 0.00 5.19 

Ash 11.11 53.70 0.00 27.45 0.00 35.71 31.82 

Beech 0.00 0.00 40.00 7.84 6.25 0.00 5.84 

Maple 0.00 24.07 30.00 41.18 0.00 21.43 25.97 

Oak 0.00 18.52 10.00 7.84 68.75 28.57 19.48 

Other 11.11 1.85 20.00 15.69 25.00 14.29 11.69 

Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

 

b. 
Class Evergreen Ash Beech Maple Oak  Other Total 

Unclassified 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Evergreen 55.56 7.41 0.00 9.80 6.25 0.00 9.74 

Ash 11.11 50.00 10.00 23.53 0.00 0.00 26.62 

Beech 0.00 0.00 20.00 3.92 12.50 21.43 5.84 

Maple 33.33 27.78 20.00 31.37 12.50 14.29 25.97 

Oak 0.00 3.70 50.00 19.61 62.50 14.29 18.83 

Other 0.00 11.11 0.00 11.76 6.25 50.00 12.99 

Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

 

c. 
Class Evergreen Ash Beech Maple Oak  Other Total 

Unclassified 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Evergreen 55.56 1.85 0.00 0.00 0.00 0.00 3.90 

Ash 0.00 61.11 10.00 41.18 6.25 7.14 37.01 

Beech 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Maple 44.44 33.33 60.00 47.06 12.50 42.86 38.96 

Oak 0.00 1.85 30.00 1.96 56.25 7.14 9.74 

Other 0.00 1.85 0.00 9.80 25.00 42.86 10.39 

Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
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d. 
Class Evergreen Ash Beech Maple Oak  Other Total 

Unclassified 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Evergreen 100.00 1.85 0.00 1.96 0.00 0.00 7.14 

Ash 0.00 72.22 0.00 23.53 0.00 0.00 33.12 

Beech 0.00 0.00 90.00 5.88 0.00 7.14 8.44 

Maple 0.00 22.22 0.00 52.94 0.00 0.00 25.32 

Oak 0.00 1.85 10.00 7.84 100.00 35.71 17.53 

Other 0.00 1.85 0.00 7.84 0.00 57.14 8.44 

Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
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Table 3: These four tables display the individual class accuracy for each of the datasets used with the 5C 

classification. a, b, c, and d correspond to the J-WV2, S-WV2, LS-WV2 , and RD-WV2 datasets respectively. 

a. 
Class Evergreen Ash-Maple Beech Oak  Other Total 

Unclassified 0.00 0.00 0.00 0.00 0.00 0.00 

Evergreen 88.89 2.86 0.00 0.00 0.00 7.14 

Ash-Maple 0.00 64.76 0.00 0.00 35.71 47.40 

Beech 0.00 7.62 90.00 6.25 14.29 12.99 

Oak 0.00 14.29 10.00 87.50 14.29 20.78 

Other 11.11 10.48 0.00 6.25 35.71 11.69 

Total 100.00 100.00 100.00 100.00 100.00 100.00 

 

b. 
Class Evergreen Ash-Maple Beech Oak  Other Total 

Unclassified 0.00 0.95 0.00 0.00 0.00 0.65 

Evergreen 88.89 8.57 0.00 0.00 0.00 11.04 

Ash-Maple 11.11 63.81 0.00 0.00 0.00 44.16 

Beech 0.00 4.76 70.00 25.00 21.43 12.34 

Oak 0.00 11.43 30.00 75.00 21.43 19.48 

Other 0.00 10.48 0.00 0.00 57.14 12.34 

Total 100.00 100.00 100.00 100.00 100.00 100.00 

 

c. 
Class Evergreen Ash-Maple Beech Oak  Other Total 

Unclassified 0.00 0.00 0.00 0.00 0.00 0.00 

Evergreen 55.56 0.00 0.00 0.00 0.00 3.25 

Ash-Maple 44.44 89.52 70.00 18.75 57.14 75.32 

Beech 0.00 0.00 0.00 0.00 0.00 0.00 

Oak 0.00 3.81 30.00 56.25 7.14 11.04 

Other 0.00 6.67 0.00 25.00 35.71 10.39 

Total 100.00 100.00 100.00 100.00 100.00 100.00 
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d. 

Class Evergreen Ash-Maple Beech Oak  Other Total 

Unclassified 0.00 0.00 0.00 0.00 0.00 0.00 

Evergreen 66.67 1.90 0.00 0.00 0.00 5.19 

Ash-Maple 33.33 80.95 20.00 12.50 7.14 60.39 

Beech 0.00 2.86 30.00 12.50 7.14 5.84 

Oak 0.00 5.71 40.00 68.75 35.71 16.88 

Other 0.00 8.57 10.00 6.25 50.00 11.69 

Total 100.00 100.00 100.00 100.00 100.00 100.00 
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Table 4: These four tables display the individual class accuracy for each of the datasets used with the 2C 

classification. a, b, c, and d correspond to the J-WV2, S-WV2, LS-WV2 , and RD-WV2 datasets respectively. 

a. 
Class Ash Others Total 

Unclassified 0.00 0.00 0.00 

Ash 70.37 34.00 46.75 

Others 29.63 66.00 53.25 

Total 100.00 100.00 100.00 

 

b. 
Class Ash Others Total 

Unclassified 7.41 0.00 2.60 

Ash 55.56 18.00 31.17 

Others 37.04 82.00 66.23 

Total 100.00 100.00 100.00 

 

c. 
Class Ash Others Total 

Unclassified 0.00 0.00 0.00 

Ash 61.11 23.00 36.36 

Others 38.89 77.00 63.64 

Total 100.00 100.00 100.00 

 

d. 

Class Ash Others Total 

Unclassified 0.00 0.00 0.00 

Ash 81.48 22.00 42.86 

Others 18.52 78.00 57.14 

Total 100.00 100.00 100.00 
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Table 6: These four tables display the commission, omission, producer accuracy, and user accuracy for each of the 

datasets used with the 6C classification. a, b, c, and d correspond to the J-WV2, S-WV2, LS-WV2 , and RD-WV2 

datasets respectively. 

a. 
Class Commission Omission Prod. Acc. User Acc. 

Evergreen 12.50 22.22 77.78 87.50 

Ash 40.82 46.30 53.70 59.18 

Beech 55.56 60.00 40.00 44.44 

Maple 47.50 58.82 41.18 52.50 

Oak 63.33 31.25 68.75 36.67 

Other 88.89 85.71 14.29 11.11 

 

b. 
Class Commission Omission Prod. Acc. User Acc. 

Evergreen 66.67 44.44 55.56 33.33 

Ash 34.15 50.00 50.00 65.85 

Beech 77.78 80.00 20.00 22.22 

Maple 60.00 68.63 31.37 40.00 

Oak 65.52 37.50 62.50 34.48 

Other 65.00 50.00 50.00 35.00 

 

c. 
Class Commission Omission Prod. Acc. User Acc. 

Evergreen 16.67 44.44 55.56 83.33 

Ash 42.11 38.89 61.11 57.89 

Beech 0.00 100.00 0.00 0.00 

Maple 60.00 52.94 47.06 40.00 

Oak 40.00 43.75 56.25 60.00 

Other 62.50 57.14 42.86 37.50 

 

d. 
Class Commission Omission Prod. Acc. User Acc. 

Evergreen 18.18 0.00 100.00 81.82 

Ash 23.53 27.78 72.22 76.47 

Beech 30.77 10.00 90.00 69.23 

Maple 30.77 47.06 52.94 69.23 

Oak 40.74 0.00 100.00 59.26 

Other 38.46 42.86 57.14 61.54 
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Table 7: These four tables display the commission, omission, producer accuracy, and user accuracy for each of the 

datasets used with the 5C classification. a, b, c, and d correspond to the J-WV2, S-WV2, LS-WV2 , and RD-WV2 

datasets respectively. 

a. 
Class Commission Omission Prod. Acc. User Acc. 

Evergreen 20.27 11.11 88.89 72.73 

AshMaple 6.85 35.24 64.76 93.15 

Beech 55.00 10.00 90.00 45.00 

Oak 56.25 12.50 87.50 43.75 

Other 72.22 64.29 35.71 27.78 

 

b. 
Class Commission Omission Prod. Acc. User Acc. 

Evergreen 72.73 25.00 75.00 27.27 

AshMaple 6.00 44.71 55.29 94.00 

Beech 100.00 100.00 0.00 0.00 

Oak 64.00 25.00 75.00 36.00 

Other 85.00 40.00 60.00 15.00 

 

c. 
Class Commission Omission Prod. Acc. User Acc. 

Evergreen 0.00 44.44 55.56 100.00 

AshMaple 18.97 10.48 89.52 81.03 

Beech 0.00 100.00 0.00 0.00 

Oak 47.06 43.75 56.25 52.94 

Other 68.75 64.29 35.71 31.25 

d. 
Class Commission Omission Prod. Acc. User Acc. 

Evergreen 25.00 33.33 66.67 75.00 

Ash-Maple 8.60 19.05 80.95 91.40 

Beech 66.67 70.00 30.00 33.33 

Oak 57.69 31.25 68.75 42.31 

Other 61.11 50.00 50.00 38.89 
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Table 8: These four tables display the commission, omission, producer accuracy, and user accuracy for each of the 

datasets used with the 2C classification. a, b, c, and d correspond to the J-WV2, S-WV2, LS-WV2 , and RD-WV2 

datasets respectively. 

a. 
Class Commission Omission Prod. Acc. User Acc. 

Ash 47.22 29.63 70.37 52.78 

Others 19.51 34.00 66.00 80.49 

 

b. 
Class Commission Omission Prod. Acc. User Acc. 

Ash 37.50 44.44 55.56 62.50 

Others 19.61 18.00 82.00 80.39 

 

c. 
Class Commission Omission Prod. Acc. User Acc. 

Ash 41.07 38.89 61.11 58.93 

Others 21.43 23.00 77.00 78.57 

 

d. 
Class Commission Omission Prod. Acc. User Acc. 

Ash 33.33 18.52 81.48 66.67 

Others 11.36 22.00 78.00 88.64 
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