
Rochester Institute of Technology Rochester Institute of Technology 

RIT Digital Institutional Repository RIT Digital Institutional Repository 

Theses 

12-1-1993 

Reliability analysis of triple modular redundancy system with Reliability analysis of triple modular redundancy system with 

spare spare 

Khalid A. Al-Kofahi 

Follow this and additional works at: https://repository.rit.edu/theses 

Recommended Citation Recommended Citation 
Al-Kofahi, Khalid A., "Reliability analysis of triple modular redundancy system with spare" (1993). Thesis. 
Rochester Institute of Technology. Accessed from 

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact 
repository@rit.edu. 

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F3217&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/3217?utm_source=repository.rit.edu%2Ftheses%2F3217&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu


Reliability Analysis of Triple Modular Redundancy
System with Spare

by
Khalid A. Al-Kofahi

A Thesis Submitted

in

Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in

Computer Engineering

Approved By : Graduate Advisor Dr. P.V. Reddy

Department Chairman - Dr. Roy Czemikowski

Professor of Electrical Engineering Dr. J. E. Palmer

DEPARTMENT OF COMPUTER ENGINEERING

COLLEGE OF ENGINEERING

ROCHESTER INSTITUTE OF TECHNOWGY

ROCHESTER, NEW YORK

December 1993



Title of thesis
Reliability Analysis of Triple Modular Redundancy
System with Spare

I Khalid A. AI-Kofahi hereby grant permission to the Wallace Memorial Library of
the Rochester Institute of Technology to reproduce my thesis in whole or in part.
Any reproduction will not be for commercial use or profit.

Date: I,~ J8~ Ilt]q~ Signature of Author



Abstract

Hardware redundant fault-tolerant systems and the different design

approaches are discussed. The reliability analysis of fault-tolerant systems is

usually done under permanent fault conditions. With statistical data suggesting

that up to 90% of system failures are caused by intermittent faults, the reliability

analysis of fault-tolerant systems must concentrate more on this class of faults.

In this work, a reconfigurable Triple Modular Redundancy (TMR) with spare

system that differentiates between permanent and intermittent faults has been

built. The reconfiguration process of this system depends on both the current

status of its modules and their history. Based on this, a different approach for

reliability analysis under intermittent fault conditions using Markov models is

presented. This approach shows a much higher system reliability compared to

other redundant and non-redundant configurations.
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CHAPTER ONE

INTRODUCTION



1.1 INTRODUCTION

The widespread use of computers in almost every aspect of life motivates

the need for more reliable computers, especially in such applications where

computer failures may cause great financial or human tragedies. Although

practicing more conservative design approaches and using more reliable

hardware and software components, does increase the reliability of computer

systems, computer failures still happen. These failures are caused by different

factors, from harsher environmental conditions to user abuse. Even in a

favorable environment, computer systems nowadays are much more

sophisticated and contain a larger number of hardware and software

components, which are bound to fail, making the overall probability of a system

failure even larger.

With faults being unavoidable, the trend is to design computers that can

tolerate faults and prevent them from causing errors and system failures. Before

discussing some of the fault-tolerant computing techniques, one should

understand common faults, their types, distribution, causes, and extents.

1.2 Faults: Types, Causes, and Distribution

A fault is a physical defect, or an erroneous state of hardware

or software components, which may cause failure or system error.

When designing a fault-tolerant system it is important to identify the faults

that may occur, their types, causes, effects, extents and distribution. Then

designers should decide what action(s), if any, should be taken in respose to a



fault. This decision depends on many factors such as: system failure cost versus

fault-tolerant design cost, repair cost, application cruciality, fault distribution, etc.

Faults may be permanent, intermittent, or transient. Permanent faults

result in forcing the system, or part of it, into a faulty state. Intermittent and

transient faults occur occasionally caused by unstable hardware or software

conditions.

Causes of Faults

Faults have different causes. Understanding these causes enables the

designers to anticipate and hence, tolerate them. The first cause of faults is

incomplete, vague, or incorrect hardware and/or software specifications. The

second cause of faults is implementation mistakes. These mistakes happen

during the translation of hardware and software specifications into a system. The

third and most crucial cause of faults is hardware defects. The fourth cause of

faults is external factors, such as harsher environmental conditions, temperature

extremes, fluctuating in the supply voltage, interfaces, user abuse or mistakes,

etc.

Faults Distribution

Faults happen at any time of system operation. But different types of

faults are dominant at different stages of the system life. As shown in figure 1.1,

a system life can be divided into three stages. The first stage is the infant

mortality period. During this period systems usually have high failure rate due to

either component defects or manufacturing mistakes. It is a common procedure



to burn in the systems before puting them into operation. The next stage is the

normal life period. This period is characterized by a constant failure rate. The

last stage is the wear-out period, where the failure rate starts increasing again

due to hardware aging. Of course, the boundaries between these stages are not

clear cut and may differ from one system to another. Harsher environmental

conditions, for example, may cause the system to wear-out earlier. It is important

to notice that fault-tolerant systems are usually designed to tolerate faults only

during their normal life period.

FAILURE

RATE

Infant

mortality

period

Normal

liftime

-//-

Wear-Out

| period

1 TIME

Figure 1.1

Bathtub curve describing failure rates as a function of time

1.3 Fault Tolerance

Fault-tolerance is the system ability to continue its operation correctly

despite the existence of a fault(s).



Although fault-tolerant systems are usually described as being either

highly reliable or highly available, there are other attributes to fault-tolerant

systems. Such as performance, safety, maintainability, and/or testability.
Fault-

tolerant systems may be designed to achieve some or all of these requirements.

1.3.1 Reliability: R(t)

Reliability is the conditional probability that a system will perform correctly

during the time interval [0, t], given that it was operational at the beginning

of the interval (t = 0).

Reliability is considered to be the most important factor in applications

where system failures are not acceptable, either because of their consequences,

or because systems cannot be repaired, as in satellites. Highly reliable systems

usually contain some redundant hardware, which will enable the system to

continue its operation without interruption upon system failure (as in the case of

hot standby systems).

1.3.2 Availability : A(t)

Availability is the probability that a system is operational correctly at any

time t.

The goal here is to make the system as available to the user as possible.

Availability is typically used as a figure of merit in systems where short duration

failures do not have serious consequences. Because availability can be defined



as operation time divided by total life time, a system can be highly available

while having frequent failures, as long as these failures have short duration and

repair times. The use of spares during the system down and repair times is very

common in highly available systems.

1.3.3 Performability : P(L,t)

Performability is the probability that a system performance is at, or higher

than some level L at time t.

One of the drawbacks of some fault-tolerance techniques is lower system

performance; this is obvious in majority voting systems where some processor

time must be wasted to synchronize the processors. This measure is used to

ensure that the system performance does not fall below a certain level L.

1.3.4 Safety : S(t)

Safety is the probability that a system will not fail into a state that may

disturb the operation of other related systems, or endanger the people

associated with it.

Fault-tolerant systems differ in the way they respond to a fault. Most of

fault-tolerant systems follow more conservative design approaches, pass

through different quality control tests (to avoid faults caused by specification and

implementation mistakes), and are designed to handle harsher environmental

conditions and external disturbances. With this being done, designers are left



with two choices in dealing with faults: either mask them or tolerate them. Fault

Masking is the process of preventing faults from causing errors and system

failures. Majority voting systems are a typical example of such technique;

another example is the use of error detecting and correcting codes. Fault

Tolerance, on the other hand, requires fault detection, location, confinement,

and recovery (usually through reconfiguration). In either case, some form of

redundancy is required.

1.4 Redundancy

Redundancy is the addition of extra hardware, software, information, or

repetition that is not needed for normal system operation.

The addition of redundant resources does not come free and may

degrade the system performance, especially in the case of software and time

redundancy. Therefore, a trade off between the redundant design cost versus

the system failure cost must be made to decide what form and level of

redundancy is needed. In this section we will breifly discuss the different kinds of

redundancy that are commonly used.



Software Redundancy

Software redundancy is the use of extra software beyond the system's

normal operation need. One example is the software added to produce error

correcting and detecting codes.

Information redundancy

Information redundancy can be seen in all error correcting and detecting

codes, where extra information, parity, check sum, m-of-n codes, duplication of

words, etc, are added for the purpose of fault-tolerance. It is also worth

mentioning that information redundancy involves both software and hardware

redundancy.

Time Redundancy

Time Redundancy is useful in systems where speed is less important, or

in applications that do not form a computational challenge to the system and do

not require a short response time. The basic idea of this form of redundancy is

the repetition of computation in a way that will detect faults. For example, faults

with short duration (intermittent and transient) can be detected if the computation

is repeated at different times.

Hardware Redundancy

Hardware redundancy is becoming more popular due to the decreasing

cost, size, and power requirements of hardware components. Hardware



redundancy is used to mask faults and prevent them from generating errors, or

to detect, locate, and recover from faults. The earliest (and maybe the most

common) form of this redundancy is the Triple Modular Redundancy (TMR).

1.4.1 Triple Modular Redundancy : TMR

Triple modular redundancy is the first form of hardware redundancy

techniques, introduced by J. Von Neuman in 1956. Figure 1.2 shows the basic

configuration of this form. The output in such designs agrees with the majority

(2-out-of-3) of the processors (or modules). This means that the system can

tolerate (mask) single module failures only. The reliability of such designs

cannot be higher than the voter reliability. A voter failure is considered to be a

common point failure. To overcome this problem the voter can be triplicated as

shown in figure 2.3.

Another majority voting technique is the N-Modular Redundancy, NMR,

which is the general case of TMR. In this method N modules (usually are odd

number) are used instead of three to enable the system to tolerate more than a

single module failure.
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TMR basic diagram
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Figure 1.3

TMR with Triplicate voters



Another common technique is the TMR with spare, as shown in Figure

1.4. It consists of a TMR system, spare, switching circuitry, and some fault

detection and location hardware. The basic modules start the voting process;

then, upon a module failure, the spare will be considered in the voting process. If

these modules are isolated from each other, the failed module can be replaced

or repaired without interrupting the system's operation. Obviously this system is

more reliable and available than a regular TMR (as we will see in later chapters).

disaqr. detectl

I I
proc 1

switch

/

/
proc 2 f......

\

proc 3

spare
I

|

output

Figure 1.4

A TMR System with Spare

1 .5 Problems with majority voting techniques

In addition to common point failure, majoty voting techniques have other

major problems. For example, adding redundant modules does not necessarily

improve the reliability of a system
over its simplex counterpart as one would first

10



expect. To illustrate this, consider a TMR system. The system is functioning

correctly if:

all three modules are functioning correctly,

or two of the modules are operational and one is not.

So, if we denote the system's reliability by RSyS ,
and the module's reliability by

R, then

RSyS = r3 + ( 3 choose 2 )
R2 (1 -R)

= R3 +
(3!/(2!*

1!)) R2(1-R)

=
3R2-2R3 0-1)

And the crossover (intersection) point will be

Rsys = R

0 =
3R2 - 2R3 - R

solving yields:

R = 0, 1/2, or 1.

The above result suggests that, using three modules with reliability of 0,

1/2, or 1 in a TMR system will not improve the system's reliability over its simplex

counterpart at all. Furthermore, using modules with reliability less than 0.5 in a

TMR system will worsen the overall system reliability with respect to its simplex

counterpart. Figure 1.5 shows the results of the same analysis for different

majority voting systems.

11



System

Reliability

A out of 5

^&^^^^^*^*^^

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Unit Reliability

Figure 1.5

Unit Reliability versus System Reliability

(B. S. Dhillon 1987)
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CHAPTER TWO

THEORETICAL BACKGROUND



2.1 INTRODUCTION

Evaluation measures are needed to determine whether a fault-tolerant

system will achieve its goals without actually building it. These measures will

also help designers decide what fault-tolerant techniques are most suitable for

their applications. Section 2.2 introduces some of the evaluation measures

available. Sections 2.3, 2.4, and 2.5 introduce some of the most common tools

used to analyze fault-tolerant systems. Section 2.6 is a comparison between

different fault-tolerant systems. Finally, section 2.7 discusses the effect of

intermittent faults on fault-tolerant systems.

2.2 EVALUATION MEASURES

Several measures are available for evaluating fault-tolerant systems. These

measures can be divided into two categories: quantitative and qualitative.

Although qualitative measures are, to an extent, subjective in nature,

quantitative measures give numbers that can be used to compare different

systems. Usually a collection of these measures are needed to fully describe a

system. The most common measures are: Failure Rate, Reliability, Availability,

Mission Time, Mean Time To Failure, Mean Time Between Failure, Mean Time

To Repair, Fault Coverage, Safety, and Cost.

2.2.1 Failure Rate Z(t)

Failure rate, or hazard rate, is defined as the total number of system failures

per time period. During the system normal life time failures have a constant rate

of occurrence (see figure 1.1, bath-top curve), hence Z(t) = Lambda (L). The

13



most common technique used for estimating failure rates is the United States

Department of Defense (USDOD) MIL-HDBK-217 standards, which predicts the

constant failure rate of an Integrated Circuit (IC) to be:

L = FL FQ(C1 Ft + C2 FE) FP failures per million hours.

Where,

FL : Learning Factor, this factor represents the level of confidence in the

fabrication process. Devices fabricated using a new and yet unproved process

are assigned a learning factor of 10, while those produced using a proven

process are assigned a factor of 1 .

FQ Quality Factor, this factor represents the level of the device screening and

testing. Typical values vary froml to 300.

FT : Temperature Factor, this factor depends on the device technology,

operating temperature, and power dissipation. For example, the temperature

factor (FT) for bipolar circuits is given by :

FT = 0. l e

Where,

-4794((r7573M^))

Tj Junction temperature, in degrees Celsius.

FE Environmental Factor, this factor represents the
harshness of the operating

environment. Typical values vary form 0.2 to 10.0

14



Fp Pin Factor, this factor is a function of the number of pins on the IC. Typical

values ranges from 1 .0 to 1 .2.

C^ C2 : Complexity Factors, these factors are functions of the number of gates

in a logic circuit.

Table 2.1 shows some failure rate values computed using MIL-HDBK-217B

standards.

No. of Logic Failure rate

gates (Failures/million hours)

50 0.1527

100 0.2312

200 0.3655

500 1 .4483

1000 14.4880

Table 2.1, Failure rates calculated using

MIL-HDBK-217B ( FL = 1, FQ
= 16, FT

=
.35,

FE
= 0.2, FP = 1). Johnson 1989.

2.2.2 Reliability R(t)

Recall that Reliability is the conditional probability that a component (or a

system) will operate correctly throughout the interval [t0,t] given that it was

15



operational at time t^. Consider a system put into operation at time t0 and tested

at time t.

Let, N be the total number of system components.

Nf(t) be the number of failed components at time t.

N0(t) be the number of operating components at time t.

Then,

N0(t)
R(t) =

o'

N

and

or

v '
N

cfff(f)
=
-\dNf(t)

dt

~

N dt

dNf(t)= NdR(t)

dt dt

Now, since Z(t) = (1/N0(t) ) dNf(t)/dt

then,

^V_dR(0

N0(t) dt

-1 dR(t)
~

R(t) dt

hence,

dR^
=
-Z(t) R(t), substituting L for Z(t) yields:

dt

16



Solving yields:

R{t) =
e~u

(2.1)

Equation (2.1) is known as the exponential failure law.

2.2.3 Mean Time To Failure (MTTF)

Mean time to failure Is the expected operation time of a system before its

first failure. MTTF can be measured experimentally. For example, consider N

identical systems put into operation at time t0, and at time tj system i encounters

its first failure, then

MTTF= (t, +t2 + ... +tN)/N

Or, let f(t) be the failure density function, then

MTTF = ]t f{t)dt

o

Using integration by parts and the fact that f(t) = d(
1-

R(t) )/dt, yield:

MTTF = JR(t)dt
0

As an example, Consider a simplex system with

R(t) =
e"Lt

The MTTF for this system is:

MTTF = 1/L (2.2)

17



Mean Time To Repair & Mean Time Between Failures (MTTR & MTBF)

Repair rate (MTTR) is defined as the average number of repairs per hour.

Although the expected value of repair rate cannot be found directly as failure

rate, it is a common assumption in systems with small failure rates, that repair

rate = failure rate. Now, if we denote repair rate by m then,

MTTR = 1/m

and

MTBF = MTTF + MTTR

2.2.4 Fault Coverage

Fault coverage is a measure of the system's ability to detect, locate, confine,

and recover from faults. The most important aspect of fault coverage is the fault

recovery coverage, which is sometimes used to denote fault coverage in

general. Mathematically, it is defined as the conditional probability that the

system will recover given that a fault exists, or,

C = P ( fault recovery | fault exists)

Fault coverage is not easy to calculate, because it usually requires

developing a list of all possible faults and then deciding what factor of these

faults can be detected, located, confined, and recovered from. This may require

exhaustive testing of the system with a very large number of test vectors.

18



2.2.5 Mission Time MT(r)

Mission time is an estimate for the time at which the system's reliability falls

below some level r. For example, a non-redundant system that follows the

exponential failure law has a reliability

R(t) =
e-Ll

To find MT(r) for this system, set r = e
"Lt and solve for t. Solving yields:

-ln(r)

L

or,

M7(r) =
^ (2.3)

A simple example will show the importance of this measure. Consider a non-

redundant system with failure rate L = 0.002 failures/hour. The mission time for

this system at a reliability level of 0.95 is:

MT(0.95)simp|ex
= [ -In (0.95) ] / 0.002

= 25.64 hours.

Now, consider a TMR system with the same failure rate. The system's mission

time at the same reliability level as before is (R(t) is given by equation 1.1):

0.95 =

3e<-0-004t)-2e<--006t)

Solving for t gives:

MT(0.95)jMR
= 145 hour.

19



The previous result states that at a failure rate of 0.002 failure/hour, a TMR

system is expected to operate 5.45 times longer than a single-module simplex

system before its reliability falls bellow 0.95

2.3 RELIABILITY MODELING

Loosely used to denote evaluation criteria for fault tolerant systems,

reliability is one of the most important system attributes. System reliability can be

measured experimentally (as seen earlier). But this requires the availability of a

sufficiently large population of such systems, and one may wait for years for the

expected failures to happen, which is totally impractical. Hence the importance

of reliability analysis. Reliability analysis can be done under various

assumptions, such as failure to exhaustion and failure with repair. Failure to

exhaustion assumes that all system components (modules) fail before any repair

can take place. Systems operating under this assumption can be modeled using

combinatorial modeling techniques. Failure with repair, on the other hand,

involves the modeling of two concurrent processes, the failure process and the

repair process. Markov modeling is one of the most popular techniques for this

kind of system.

2.3.1 Combinatorial Modeling

Combinatorial modeling divides the system into non-overlapping modules.

Each module is assigned a probability of working Pj (or Rj(t)), then some

probabilistic techniques are used to enumerate all possible ways for the system

20



operation. System reliability is defined as the sum of the
modules'

reliabilities in

all these different ways. This technique makes the following assumptions :

1 . Module failures are independent.

2. Failed modules yield incorrect results.

3. The system fails when all working modules do not form a way that is

sufficient for system operation.

4. A failed system cannot return to correct operation by any further failures.

These assumptions are suitable for modeling random hardware failures in a

system. But when failures are caused by some global factors, the first

assumption, for example, is not accurate. To analyze systems reliabilities,

combinatorial modeling categorize systems into series and parallel systems, and

a combination of these.

Series Systems

A series system can be seen as a system that has no redundancy at all,

where all system modules are necessary for correct system operation. Consider

the series system shown in figure 2.1. Its reliability is given by:

R(t)series= Ri(t) R2(t) RN-lW RN(t) (2.4)

Furthermore, if each module satisfies the exponential failure law, then

or,

21



where,

^(Ose^s=e-L

L =L +L +...+ L
system 1 2 N

Module 1

R1(t]

Module 2

R2(t)

Module N

1 Rn(t)

Figure 2. 1 A series system of N modules

Parallel Systems

A parallel system of N modules (such as the one in figure 2.2) can be seen as a

system with a redundancy level of (N 1), where one operating module is

sufficient for correct system operation. To analyze such systems, let us define

the unreliability of module i to be, Qj(t) = 1 - Rj(t).

It is obvious that the system of figure 2.2 will fail if and only if all its N modules

fail, or,

Qpara,la,(t) = Ql(t)Q2(t) <*n(Q

Or, R Parallel^)
~

' QparallelW

= 1-[(1-R1(t))(1-R2(t))...(1-RN(t))] (2.5)

22



1

Module 1

Module 2

1

i

1

l_ Module N

Figure 2.2 A parallel system of N modules

Series/Parallel Systems

Some fault-tolerant systems can be modeled as a combination of series and

parallel systems. Modules with high failure rates or those more critical to the

application are usually configured in parallel. Those with infrequent failures or

those with tolerable failure results are usually configured in series. The reliability

of a system depends (in addition to other factors) on the way its modules are

configured. To illustrate this, consider a redundant system consisting of two

processors, A & B, and two memory modules, C & D, with one processor and

one memory module being needed for system operation. Figure 2.3 shows two

ways of configuring these modules.

- The system in figure 2.3-a requires the combination of either A-C, or B-D for its

correct operation, hence represents two series modules, A-C and B-D,

configured in parallel.

Rfig2.3-a(t) =
1- [( (1-RaW Rc(t)) )(

1" (RbW RdW) )]

23



- The system in figure 2.3-b requires the combination of any processor and any

memory modules for its correct operation, and so it represents two parallel

modules configured in series.

Rfig2.3-b(t) = [
1- (1-RA(t))(1-RB(t)) ][ 1- (1-RC(t))(1-RD(t)) 1

B D

Figure 2.3-a Parallel series configuration

A ,

B ' D

Figure 2.3-b Series parallel Configuration

To simplify the comparison,
assume that

RA(t) = RbW = Rc(t) = RD(t) = R

then,
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Rfig2.3-a = 1 -

( 1-R2)( 1-R2)
= 2R2 R4

and,

Rfig2.3-b =

[1-(1-R)(1-R)][1-(1-R)d-R)]

= [2R R2][2R-R2]

= 4R2 - 4R3 + R4

It is obvious that the reliability of the system in figure 2.3-b (Rfjg2.3-b) is larger

than that of figure 2.3-a (Rfig2.3-a)- Tnis resu,t shows that the reliability of a fault

tolerant system is depends on its configuration.

Modeling a TMR System

A TMR system can be modeled using combinatorial modeling techniques by

enumerating all possible ways for system operation. Consider a TMR system

with three modules A, B, and C configured in a majority voting fashion. The

system requires any two of these to be operational for its correct operation.

Assuming that the voter has a reliability of 1.0, the TMR reliability is given by :

RtmrW = raW RB(t) Rc(t) + RA(t)RB(t)(i-Rc(t))

+ RA(t)Rc(t)(i-RB(t)) + RB(t)Rc(t)(i-RA(t))

Now, if RA(t) = RB(t) = Rc(t) = R(t)

then, RtmrW
= 3R2(t)

" 2R3(l)
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The above result agrees with the formula derived earlier (equation 1.1). We can

follow the same analysis to find the reliability of any N-out-of-M system, where N

operational modules are required for correct system operation.

In addition to the assumption that module failures are independent, which is

inaccurate in some cases, combinatorial modeling has other problems. One of

the major problems is the perfect fault coverage assumption, which means that

the detection of a failed module in the system has a probability of 1.0. Another

problem is the assumption that the reconfiguration process is also a perfect one

and happens in zero time units. Furthermore, the modeling of complex systems

can be extremely difficult. Finally, combinatorial modeling techniques cannot

model systems with repair and sometimes require very restrictive assumptions.

2.3.2 Markov Modeling

Markov modeling is a powerful technique for analyzing systems. The basic

concepts of the Markov process model are the system state and the state

transition. The system state fully describes the system status at any given

instant of time. The state transition describes the behavior of the system as

modules fail and are repaired. A system of N modules with each module being

either working or in failure will have 2N states. There are two types of Markov

models: discrete time models and continuous time models. Discrete time models

assume that all state transitions occur at fixed intervals of time. Continuous time

models allow state transitions to occur in a random fashion. In this section the

term Markov model refers to continuous time model.
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One of the most important assumptions in Markov modeling is that the state

transitions depend only on the current state. This means that the time spent in a

given state does not affect the probability of the next transition or the probability

of remaining in the current state. Furthermore, failure rates are constant and do

not depend on the time spent in any state. Thus the model agrees with the

exponential failure law.

As an example, consider a non-redundant system consisting of one module.

If the system has a constant failure rate L (obeys the exponential failure law),

then given that the system was operational at time t, the probability of system

failure at time t+dt is:

1-e-Ldt

Substituting the exponential series expansion for the exponential term above

yields:

= l-[l + (-Ldr)+*=^+...]

And for small values of dt, the above expression reduces to

-e"L'Ldf

Therefore, the probability of system failure within the time period dt is

approximately L dt Figure 2.4 is a graphical representation of our simplex

system with failure rate L and repair rate m. The state probabilistic equations for

the system in figure 2.4 are:

Pi(t + dt) = (1 - Ldt) P^t) + mdt P2(t)

27



P2(t + dt) = (1 -

mdt) P2(t) + Ldt P^t)

Where, Pj(t) is the probability that the system is at state i at time t, and Pj(t + dt)

is the probability that the system is at state i at time t + dt.

Ldt

1-LdtC 7 1 ) ( 2 1 )1-mdt

mdt

Figure 2.4 Two state differential Markov model

Rearranging the above equations and dividing by dt produce:

[Pi(t + dt) P!(t)]/dt = -LP^t)* mP2(t)

[ P2(t + dt) - P2(t) ] / dt = LP^t) mP2(t)

Taking the limit as dt approaches zero produces the following simultaneous

differential equations:

dP^f)
=
-LP,(t) +mP2(t)

dt

dP2(t)

dt

= LP,(t)-mP2(t)

These equations are known as Chapman-Kolmogorov equations. They can be

written directly from the transition diagram without the self loops. Consider figure

2.5, in which the change in state (1) is the flow coming from state (2) times the

probability of being at state (2), minus the flow out of state (1) times the

probability of being at state (1).
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L

1 t 2

m

Figure 2.5

Two state Continuous time Markov model

The previous equations can be solved using LaPlace transforms. Performing

LaPlace transforms gives:

sP^sJ-P^O)
=
-LP^sJ

+ mP^s)

sP2(s)-P2(0)
= LP^-mP^s)

Since the system is assumed to be operational at time t = 0, then P-i(O) = 1, and

P2(0) = 0. Substituting these values in the above equations yields:

(s + LJP^s) m P2(s) = 1

-L P2(s) + (s + m) P2(s) = 0

Solving for P^s) and P2(s) gives:

*,(*)=
S +m

P2(s) =

s2

+Ls +ms

L

s-

+ Ls +ms

Performing the partial fraction expansions yields:

29



P(r)_m/(/-+m)

,
LI {L+m)

s s+L+m

P(c)=l-/(L+m)

|
LI(L+m)

s s+L+m

Performing the inverse LaPlace transforms yields:

m L
+

+m L+

L L

Pl(t)= ^-+
e-(L+m)'

L+m L+m

P2(t) =^^ +
^^-e-(L+m)'

(2.6)
L+m L+m

Equations 2.6 describe the probabilities of the two system states. P^t) is the

probability that the system is operational at any time t (or known as the system's

Availability). P2(t) is the probability that the system is in a failed state at any time

t. One interesting feature of these equations is that both of them approach a

constant value as t approaches infinity

P-i (infinity) = m /(L+m)

(2.7)

P2(infinity) = L/(L+m)

Pi (infinity) is known as the steady state availability Ass(t). Furthermore, if we are

only interested in the system's steady state status, the state equations can be

rewritten as

0 =

-LP! + mP2

0 = LP-i
-

mP2
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Solving these equations with the extra condition (P-, + P2
= 1 ), gives us the same

result as those in equations (2.7).

To calculate the system's reliability, we need to modify the Markov model of

figure 2.5 such that the system's failed state is a trap state (i.e. no repair is

taking place). Doing so produces the following equations :

dP^t)

dt
-LPt(t)

dt
|V '

Performing LaPlace transforms produces:

P>(s)=
l

P2(s) =

s + L

L

s(s + L)

Performing partial fraction expansions and the inverse LaPlace transforms yield:

R(t) = P](t) =
e'u

(f) = P2(f) =
l-e-u

Notice that the above results agree with our original assumption that the system

obeys the exponential failure law.

Modeling a TMR System

Consider a TMR system, where only two of the three processors are

necessary for correct system operation. The Markov model for such a system

with failure rate L and no repair is shown in figure 2.6.
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Figure 2.6 Markov model for TMR system

In the figure above, the states have the following meanings:

state 3 : the three processors are operational.

state 2 : two processors are operational.

state F : the system failed.

Taking LaPlace transforms of the state equations yields:

sP3(s)
- P3(0) =

-3LP3(s)

sP2(s) P2(0) = 3LP3(s)

sPF(s) PF(0) = 2LP2(s)

Substituting the initial conditions P3(0) = 1, P2(0) = 0, and PF(0) = 0, and

performing the partial fraction expansions yield:

P3(s) =
1

S + 3L

P(s) =

3L

"(S + 2L)(S + 3L)

PF(s)--

6L2

"

S(S + 2L)(S + 3L)

Performing the inverse LaPlace transforms
yields:
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P3(t) = e-3Lt

P2(t) = 3e-2Lt
. 3e-3Lt

PF(t) = 1 - 3e-2Lt + 2e-3Lt

The reliability of the system is equal to the probability that the system is in either

state (3) or state (2), therefore

RTMR(t) = P3(t) + P2(t)

= e-3Lt + 3e-2Lt
- 3e-3Lt

= 3e-2Lt + 2e-3Lt

Now, if we let R(t) = e"Lt, then the above equation becomes:

RTMR(t) = 3R2(t) 2R3(t)

This final result matches the one produced earlier using combinatorial modeling.

2.4 AVAILABILITY MODELING

System availability is an important factor in the analysis of fault-tolerant

systems. In many cases the main concern is not how long a computer can

operate without any failure (reliability), but it is whether it will be available when

needed. As mentioned earlier, availability can be approximated as the system's

operation time divided by the total time elapsed since the system started

operation, or,

AssW = (operation time) / (operation time + repair time) (2.8)

33



The above equation emphasizes the importance of short repair times (rate) in

highly available systems.

Markov models can be used to calculate system availability. But since in

many cases we are only interested in the steady state availability Ass(t), another

simpler technique is usually used. Consider a simplex system with failure rate L

and repair rate m, if we assumed that the system experienced N failures during

its life time, then

MTTF = 1/L

and

MTTR = 1/m

Furthermore,

system operation time = N(MTTF) = N/L,

system repair time = N(MTTR) = N/m

Substituting these values in equation (2.8) yields:

4,(0 =

1 1
h

L m

m

m + L
(2.9)

This last result agrees with the formula obtained earlier for Ass(t) using Markov

models (see equation 2.7). As an example, consider the simplex system

modeled in figure 2.5, and let the failure rate L = 0.01 (MTTF = 100 hr), and the
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repair rate m = 0.1 ( MTTR = 10 hrs). Then from equation (2.9) ,
the system's

steady state availability is 0.909090909. Using equation (2.6), we get the

availability as:

A(t) = P.,(t) =

(0.9090909) + (0.0909090) e-011'

A plot for the above result is shown in Figure 2.7

Availability

steady state value

Time (hours)

10 20 30 40 50

Figure 2.7 Availability as a function of time

As shown in figure 2.7, the system approaches its steady-state availability value

in a short period of time, hence the importance of this value.

2.5 SAFETY MODELS

The definition of the word
"safe"

itself depends on the application. With this

in mind we will divide each system's failed state into two states, Safe Failed

(SF), and Unsafe Failed (UF). The distinction between these two is whether the

fault was detected by the system or not, hence the importance of fault detection
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coverage C. As an example, consider a simplex system with failure rate L and

fault detection coverage C. The Markov module for this system is shown in

Figure 2.8.

Figure 2.8 Markov model for safety calculations.

Taking LaPlace transforms of the state equations with Pi(0) = 1, PSF(0) = PUF(0)

= 0, and solving yield:

Ks) =
1

PSF(s) =

PUF(s) =

s + C

C C

s s + L

l-C 1-C

s s + L

Performing the inverse LaPlace transforms yields:

P](t) =
e-U

PSF(t) =
C-Ce-u

PUF(t) =
(\-C)-(\-C)e~u
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Finally, the Safety of the system is:

S(t) = P^t) + PSF(t)

= e-"-Ce-"+C

The previous equations agree with the ideas we have built so far. For example,

the system reliability is given by:

R(t) =P1(t)
= e-L

Furthermore, at time t = 0 (initially) the system safety is S(0) = 1
,
and as time

approaches infinity the system safety approaches C (the fault coverage). The

next section is a full reliability analysis of a TMR with spare system, 3-out-of-5,

and a 3-out-of-4 majority voting systems.

2.6 SYSTEM COMPARISON

To show the importance of the techniques encountered so far, the reliability

of different fault-tolerant systems will be analyzed. As an example, consider the

following systems: 3-out-of-4 majority voting, 3-out-of-5 majority voting, and TMR

with spare systems (this last one was implemented as part of this thesis work).

3 - out of - 4 System

A 3-out-of-4 majority voting system requires 3 operational processors for its

correct operation. Assume that each processor has a failure rate of L, and no

repair is taking place, then the Markov model is shown in Figure 2.9.
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Figure 2.9 3-out of-4 Markov model

In figure 2.9, the states have the following meanings:

state 4 : all processors are operational.

state 3 : three processors are operational.

state F : system failed.

Taking the LaPlace transforms of the state equations and solving yield:

P4(s)
1

S + 4L

4L

PF(s)--

(s + 3L)(s +

12L2

4L)

S(S + 3L)(S + 4L)

Performing the partial fraction expansions yields:

P4(s)

P3(s)--

PF(s) =

l

s + 4L

4 4

S + 3L S + 4L

4 3
+ -

S S + 3L S + 4L

Solving for R(t) (R(t) = 1 - PF(t)), yields:
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3Lf ,-4LI

R(f) = 4e-3L,-3e

2.6.2 3-out of-5 System

A 3-out-of-5 Majority voting system requires three operational processors at

any time for its correct operation. Assuming that each processor has a failure

rate of L, and no repair is taking place, yield the Markov model of figure 2.10.

3L
M F

Figuie 2.10 3-out-of-j Markov model

Writing the state equations and performing the LaPlace transforms yield

sP5(s)
- P5(0) =

-5LPS(S)

sP4(s)
- P4(0) =

-4LP4(S) + 5LP5(S)

sP,(s)
- P3(0) =

-3LP3(s)
+ 4LP4(s)

sPF(s)
- PF(0) = 3LP3(s)

Solving for R(t) ( R(t) = P5(t) + P4(t) + P3(t) ) with the the initial conditions

P5(0) = 1,P4(0) = 0,/>(0)
= 0,PF(0) = 0

yields:

R(t) =

6e"5"

+I0e
-iU
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2.6.3 TMR with Spare System

Using the same assumptions used for the previous systems, gives the

Markov model shown in figure 2.1 1 .

Figure 2.1 1 Markov model for TMR with spare system

In the above figure the states have the following meanings:

state 4 : all three processors and the spare are operational.

state 3 : only three processors are operational

state 2 : only two processors are operational.

state F : the system failed.

Taking LaPlace transforms of the state equations yields:

sP4(s)-P4(0) = -4LP4(s)

sP3(s)-P3(0) = 4LP4(s)-3LP3(s)

sP2(s)-P2(0) = 3LP3(s)-2LP2(s)

sPF(s)-PF(0) = 2LP2(s)

Solving for the system's reliability (R(t) = 1 - PF(t)) with the initial conditions,

P4(0) = 1, P3(0) = 0,P2(0) = 0,PF(0) = 0,

we get :
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fl(0 =
3e^"-8e-3"

+
6e-2L'

This value is obviously larger than the reliability values of the previous systems.

Figure 2.12 is a comparison between the systems considered. From figure 2.12

we can notice the following:

- Although both the TMR with spare and the 3-out-of-4 systems contain the same

level of redundancy, the first is more reliable than the second. Furthermore, it is

also more reliable than the 3-out-of-5 system which contains a higher level of

redundancy (4 redundant processors).

- Recall that the reliability graphs of TMR and Simplex systems intersect at a

reliability value of 0.5 (see figure 1.5). The addition of an extra processor to the

TMR may shift this intersection point up (as it is the case with the 3-out-of-4

system), or down (as it is the case with the TMR with spare system). The up-

shifting means that the redundant system processors must have reliability values

larger than 0.5 to make the redundant system more reliable than the simplex

one. The down shifting loosens this requirement on the redundant system.

- Notice that the reliability of the TMR with spare system becomes smaller than

that of the simplex system after a certain point in time. This suggests that the

TMR with spare system is more suitable for short life applications (In chapter 4

we will come to a different conclusion).
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To further study the characteristics of these systems, the MTTF values were

calculated for all of them. The results shown below were calculated with L = 0.01

failure/hour.

System MTTF (hours)

Simplex 100

TMR 83

3-out-of-4 58

3-out-of-5 78

TMR with spare 108

The above results suggest that although the TMR with spare system has a small

advantage over the simplex system, the Simplex is better than the other

systems. However one should not jump into such inaccurate conclusion. To

explain the above results, take another look at figure 2.12. The MTTF can be

seen as the area under the reliability curve, and that area is larger for the

simplex system than for the 3-out-of-4 and the 3-out-of-5 systems. So, if the

intended application has a short life time the 3-out-of-5 system, for example, is

better than the simplex. This suggests that the MTTF alone is not an accurate

measure of a system. Instead, a measure that takes into consideration the

intended application life is needed, such as the Mission Time MT(r). Table 2.2

lists some values for MT(0.90) of different systems at a failure rate L = 0.01 .
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System Configuration MT(0.90)

Simplex 10.53 hours

TMR 21.90 hours

3-outof-4 15.0 hours

3-out-of-5 28.2 hours

TMR with Spare 38.5 hours

Table 2.2 MT(0.90) for different systems with L = 0.01

From table 2.2 one can see that the TMR with spare system has a mission time

improvement factor of 3.66, 1.76, 2.57, and 1.37 over Simplex, TMR, 3-out of-4,

and 3-out-of-5 systems respectively. And all of the TMR, 3-out-of-5, and 3-out-

of-4 systems are superior to the simplex system. Finally notice that all the

previous measures favored the TMR with spare system over the other

considered systems.

2.7 INTERMITTENT FAULTS

In the previous analysis we only considered the effect of hard/permanent

faults on fault-tolerant systems. But since experimental data suggests that

approximately 90% of system faults are intermittent, the effect of this class of

faults must be considered. An intermittent fault can be defined as a fault with

temporary behavior. It may be caused by lose/dry connection(s), temperature

sensitive elements, external interferences, etc. The difficulty with intermittent

faults arises from their temporarily beahviour. Figuer 2.13 is an intermittent fault
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model. The transition rate B (in figure 2.13) has a big effect on the intermittent

faults detection coverage. A full intermittent faults analysis will be done in

chapter 4 (system analysis).

Ok 1 f Failed

A : Intermittent faults rate

B : Intermittent faults disappearing rate.

Figure 2.13 Intermittent faults modeling
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CHAPTER THREE

SYSTEM DESCRIPTION



3.0 SYSTEM DESCRIPTION

To study and illustrate some of the design issues involved in fault-tolerant

systems, a fault-tolerant system was built. The system consists of two

reconfigurable Triple Modular Redundancy (TMR) with spare modules (see

figure 3.1). The system's application is a two main-substreet-intersections traffic

lights controller (see figure 3.2), with each module controling one intersection.

The system's terminal displays the processors status/failure data and is shared

by both modules. This chapter describes the system's hardware, operation, and

some of the design problems that were encountered and the approach used in

solving them.

3.1 SYSTEM HARDWARE

The system consists of two modules (see figure 3.3 in the appendix).

Each module contains the following elements:

- Three processors (prod, 2, and 3) all of them are Motorola MC68705.

- A spare processor, also MC68705.

- Controller processor, Motorola MC68705.

-

Switching circuitry.

Voting circuitry.

- Disagreement detection circuitry.

- Shift register.

- Traffic Lights.
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Module 1

RS232

Module 2

Terminal

Figure 3*1 SYSTEM

Substreet Substreet

Module 1,.

Trroffic
Lights

Main Street

. Module2

lT8fific

Figure 3,2 APPLICATION
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The Processors and the Spares

The processors and the spares are Motorola MC68705. They execute the

application program (i.e. traffic light controlling). Processors 1, 2, and 3 execute

the exact same program. The Spares execute slightly different programs. A

listing of these programs is shown in the appendix.

The processors deliver their outputs (traffic lights control signals) serially.

Delivering the data serially requires each processor to produce another two

control lines for the serial data control (shift registers serial clock and load

signals), a total of three. This approach is better than delivering the outputs in

parallel. The reason is that delivering the data in parallel requires each

processor to produce six output signals (for the six traffic lights at each

intersection). Each of these must pass through a voting stage, a disagreement

detection stage, and a switching circuitry.

One of the major problems in majority voting systems is processor

synchronization. To address this problem, we chose to use a separate clock for

each processor rather than a common clock. This will be the subject of section

3.3.

The Controller

The controller is also a Motorola MC68705. It collects the
processors'

disagreement data (or faults), displays their status and failure data, and

reconfigures the module based on faults information. As seen from figure 3.3,

the controller I/O ports are occupied as follows:
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- Twelve ports d1...d12 (or PA0..PA7, and PB0..PB3 respectively) to collect fault

information (disagreement detection).

- Three lines for module reconfiguration s1, s2, and s3 (or PB5, PB6, PB7).

- Two lines to regulate the collection of processor fault data H2, H3 (or PB4, and

PCO).

- One line for the reset signal (PC1).

- One line to regulate the sharing of the RS232 bus (PC2).

- One line to send data to the terminal (PC3).

Switching Circuitry

The switches (see figure 3.4) are used to determine which processor

participates in the voting process. The controller controls this choice using the

control lines s1, s2, and s3. Each module contains nine switches (a module

contains three processors with three output lines from each, a total of nine). For

example, consider the top switch in figure 3.3, this switch controls the voter input

F1
, to be either PAO from the first processor (if s1 = 0), or PAO from the spare (if

s1 =1).

Voting Circuitry

The voters (see figure 3.5) are 2-out-of-3 majority voters, which means

that the voter output agrees with at least two of its input signals. Each module

contains the following voters (refer to figure 3.3):

- The traffic lights data voter (labeled H1
,
the top one in figure 3.3).

- The serial clock voter (labeled H2).

- The load signal voter (labeled H3).
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Disagreement Detection Circuitry

A disagreement detector is simply an XOR that produces a high (1) output

if its inputs are not the same and low (0) otherwise (see Figure 3.6). A

disagreement detector is used to detect whether a processor output agrees with

the voter output (majority output) or not. Each module contains the following

groups of disagreement detectors:

- Data lines disagreement detectors determine whether PAO from each

processor, agrees with the voter output (H1) or not, and produce d1, d2, d3,

andd4.

- Serial clock disagreement detectors determine whether PBO from each

processor agrees with the voter output (H2) or not, and produce d5, d6, d7, and

d8.

- Load signal disagreement detectors determine whether PB1 from each

processor agrees with the voter output H3 or not, and produce d9, d10, d1 1, and

d12.

The disagreement detectors d1, d5, and d9 detect the faults of processor #1.

The disagreement detectors d2, d6, and d10 detect the faults of processor #2.

The disagreement detectors d3, d7, and d11 detect the faults of processor #3.

Finally, The disagreement detectors d4, d8, and d12 detect the faults of the

spare processor.
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Figure 3.6 Disagreement Detectors
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Shift Register

The shift register used is a serial-in parallel-out shift register with buffers,

MC74HC595. The inputs of the shift register are the outputs of the voters H1,

H2, and H3 (for the data, serial clock, and load signals respectively), and its

outputs are connected to the traffic lights (LED's), as shown in figure 3.3.

3.2 SYSTEM OPERATION

As mentioned earlier, the system controls two main-substreet-

intersections traffic lights (see figure 3.2). The main street green light is five

times longer than the substreet green light. The system contains two modules,

module one (the one to the left in figure 3.2) and module two. Each module

controls one intersection. The modules are almost identical except in that

module two tries to follow module one (so that the two main street traffic lights

are both green), and in that module one is responsible for controlling the RS232

bus.

Each module continues its normal operation if it has at least two

operational processors (including the spare). Otherwise, it goes into flashing by

simply resetting the processors in a specified time interval. This flashing

approach is safer than making the
"faulty"

processors execute a
"flashing"

procedure.
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The Controller

Each module contains one controller; the controllers are almost identical

except for the differences mentioned earlier. Each controller has its own reset

switch. After receiving a reset signal, the controller from module one sends the

header message to the terminal and the operation continues as follows:

First, each controller resets the processors in its module (at PC1), and initializes

the total number of failures encountered by each processor, so far, to zero. Then

it waits for the serial clock to arrive (H2 at PB4). During each serial clock (H2)

the controller tests the serial clock disagreement lines (d5, d6, d7, and d8) and

saves the results. Then it tests the serial data disagreements lines (d1, d2, d3,

and d4) and saves the results. All this is done before the next serial clock pulse

arrives. Since there are six lights (i.e. six data bits and clock pulses will be

generated), the controller repeats this operation six times, and of course sums

each processor's faults and saves the results. Then the controller waits for the

load signal (H3) to arrive. When it arrives the controller tests the parallel load

disagreement lines (d9, d10, d1 1, and d12) , and saves the results.

While the processors are waiting for the current traffic light time slot to elapse,

the controller starts analyzing the collected data, and tests whether any of the

processors encountered a permanent fault or exceeded the maximum number of

intermittent faults allowed. Depending on these results the controller may decide

to reconfigure the module, go to flashing, or continue its normal operation. The

decision is made as follows:
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- If a processor, P,, encounters a permanent fault at any of its output lines, then

Pi is a faulty processor and the system is reconfigured (i.e. the spare processor

is considered in the voting process instead of Pf).

- If a non-faulty processor Pj encounters N intermittent faults then,

if N > maximum limit
,
then Pj is faulty and the system is reconfigured.

if N <= maximum limit, then the system continues its normal operation.

- If two processors fail then, the Module fails:

if this is the first module failure, flash traffic lights four times and restart

the module (This is done to make the system more available).

if this is the second module failure, then go to flashing indefinitely until

Module is reset by the supervisor.

- After every M (time units) clear all operational
processors'

fault records, and

start counting from zero.

The controller considers any two or more consecutive faults on any line to be

permanent, and intermittent otherwise. The maximum number of intermittent

faults allowed (N faults in M time units) is set depending on: the

expected/measured intermittent faults rate, whether the faults are casued by

global conditions or not, and on the system application.
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The Processors

The processors, in each module, execute the same program with the

spare program being slightly different in the synchronization procedure. After

receiving the reset signal from the controller, a processor sends an ail-off signal

to the traffic lights for half a second, then it sends a green signal for the main

street lights and red for the substreet lights, and continues from there in a

weighted round robin manner. Module one processors send their status to

module two processors, so that the later will try to follow the operation of the

first.

As mentioned earlier, one of the major problems that faces majority voting

systems is to synchronize the processors for the voting process to be a success.

The following section considers this problem and our approach in detail.

3.3 SYNCHRONIZATION

Synchronizing voting processors and keeping them synchronized is one

of the problems that faces all majority voting systems. In our system we used a

separate clock for each processor to address this problem. One of the major

causes of this problem is that even without any processor failures, and even if

the processors started operation at the same clock cycle, these processors will

eventually go out of synchronization due to the fact that even the best quartz

crystals have a margin of error of 0.01% - 0.5 %. Of course the error may be

very small in a well designed system operating in a controlled environment, but

still it is there and it will affect the system operation. Furthermore, since it is very
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necessary in many applications to use timers, a one per million clock error, for

example, will be magnified by the timer prescalar factor, resulting in an N per

million clock error; a more serious situation.

Of course the clock sources errors are not the only cause of the synchronization

problem; faults usually drive processors out of synchronization. One may not

have a great concern about a processor being driven out of synchronization by a

permanent fault since the processor is faulty anyway, but this argument does not

hold when we are dealing with intermittent faults, especially with most studies

suggesting that up to 90% of system failures are due to intermittent faults. With

this being the case, system designers need to make sure that intermittent faults

do not drive processors out of synchronization, hence having the effect of

permanent faults.

In our system the synchronization problem effect was very clear. The

system was first built using a common clock source and it was working almost

fault free. But when we tried to use separate clock sources, the voting process

was rarely a success and (on the average) the system's MTTF was 2 seconds.

Studying the behavior of the system showed that even if the processors started

at the same clock cycle (after the reset), they will be hundreds of clock cycles

out of synchronization four to five seconds later. Our search for the cause of the

problem led us to the timer prescaling factor (a factor of 128) which magnifies

the crystal errors 128 times. After setting this factor to one, the system's MTTF

improved to a system failure every 20 to 30 seconds. These failures were mainly

caused by crystal errors driving the processors out of synchronization. The

crystal errors were caused by stray capacitances and noises on the circuit

board. After isolating the crystals from the system common ground, the system's
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MTTF improved to a system failure every five to seven minutes. Finally,

synchronizing the processors produced an almost failure free system.

Our Approach

Although we had a plenty of system time that can be spent on processor

synchronization (due to the application), we tried to synchronize the processors

as efficiently as possible. Figure 3.7 shows the extra hardware connections that

has to be made between the processors to synchronize them. These

connections are needed to enable each processor to send an
"

I'm
ready"

synchronization message to other processors, and to receive such messages

from them. Notice also that these connections are arranged in a way that will

allow each processor to treat ports C and B connections as
"

me first, then the

others in ascending order". This arrangement allows the processors to execute

the same program and enables them to physically replace each other.

Figure 3.8 is a flowchart of the synchronization procedure
"synchronize"

which is

executed by the processors one, two, and three. Figure 3.9 is a flowchart of the

same procedure executed by the spare processor.

Finally, to prevent the processors from being driven out of synchronization, the

synchronization procedure is executed every one second and also before any

voting process. This may seem to be too costly, but the time spent on the

synchronization procedure itself does not exceed 40 cycles.
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S3

Figure 3.7 The extra connections needed

to synchronize the processors
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3.4 THE SYSTEM

The system is mounted on a single board, except for the reset circuitry

and the crystals, which are mounted on separate boards. The voters, switches,

buffers, and the disagreement detectors were implemented using programmable

logic arrays. Figure 3.10 (in the appendix) shows the actual pin connections for

each of the system's modules. It is easy to understand the analogy between

figure 3.10 and figure 3.3 since we used the same labeling in both figures.

In the following paragraph, a circuit is labeled after its output. For

example, a switch with an output line labeled F1 will be called switch F1. U1

through U6 in each module are PALCE16V8 programmable logic arrays:

- U1 : Implements the first five switches (F1,....,F5).

- U2 : Implements the switches (F6 F9).

- U3 : Implements the three voters (H1, H2, and H3).

- U4 : Implements the data disagreement detectors (d1 d4).

- U5 : Implements the serial clocks disagreement detectors (d5 d9).

- U6 : Implements the load signals disagreement detectors (d10,...,d12), and

the three buffers between the controller (PC1), and the processors reset

circuits.

For a full listing of processors', controllers', spares', PLA's programs see the

appendix.
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PROCEDURE SYNCHRONIZE

PROCESSORS 1, 2, & 3

YES

V

START THE TIMER

r

v

Time Elapsed

Send lam Ready Signal to Others

(set PCO)
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Wait for ready signals from others

who are participating in the voting

process.

UNTIL

Others are READY

> f V

Mark processorwho

is not ready as faulty

AND

Reset PCX)

> f

^T More "^^

^^ than two faulty ^^
YES

Flashing

^^^ processors ^f

NO

> r

RepeatWith SPARE END

Figure 3.8
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PROCEDURE SYNCHRONIZE

SPARE

Time Elapsed

Send lam Ready Signal to Others

( set PCO)
AND

Wait for ready signals from others

who are participating in the voting

process.

UNTIL

Others are READY

Mark processor who

is not ready as faulty

AND

Reset PCO

NO

Repeat Without

Faulty Processors)

Figure 3.9
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3.4 THE SYSTEM

The system is mounted on a single board, except for the reset circuitry

and the crystals, which are mounted on separate boards. The voters, switches,

buffers, and the disagreement detectors were implemented using programmable

logic arrays. Figure 3.10 shows the actual pin connections for each of the

system's modules. It is easy to understand the analogy between figure 3.10 and

figure 3.3 since we used the same labeling in both figures.

In the following paragraph, a circuit is labeled after its output. For

example, a switch with an output line labeled F1 will be called switch F1. U1

through U6 in each module are PALCE16V8 programmable logic arrays:

- U1 : Implements the first five switches (F1 F5).

- U2 : Implements the switches (F6, F9).

- U3 : Implements the three voters (H1, H2, and H3).

- U4 : Implements the data disagreement detectors (d1 d4).

- U5 : Implements the serial clocks disagreement detectors (d5,...,d9).

- U6 : Implements the load signals disagreement detectors (d10 d12), and

the three buffers between the controller (PC1), and the processors reset

circuits.

For a full listing of processors', controllers', spares', PLA's programs see the

appendix.
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CHAPTER FOUR

RELIABILITY ANALYSIS



4.1 INTRODUCTION

As mentioned earlier, statistics show that up to 90% of system failures are

caused by intermittent faults. With this being the case, the reliability analysis of

fault-tolerant systems will not be accurate without taking this class of faults into

consideration. In this chapter we discuss the reliability of our system while

concentrating on intermittent faults and their effects.

4.2 SYSTEM MODELING

A processor in our system is considered to be faulty if it encounters a

permanent fault or more than N intermittent faults in M hours. Permanent faults

are defined as those existing during two or more consecutive decisions, while

Intermittent faults do not. The values of the parameters N and M should be set

depending on: the intermittent fault rate, intermittent fault causes, and the

system application.

The Markov model of our system is shown in figure 4.1, with the

intermittent faults being modeled for one processor only due to graph

complexity. The intermittent fault models for the other processors are the same

as the one shown. In figure 4.1, states Q1, Q2, and Q3 represent the system

with four, three, or two working processors, respectively. And state x ( x = 1....N)

represents a processor with x intermittent faults.
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Figure 4.1 System Modeling

i: Intermittent Faults rate

p: Permanent Faults rate

The state equations for the above model are very difficult to solve, and

they will become much more difficult if we consider the state equations for all

the remaining processors. Hence, let us try to find an equivalent simpler model

for the one in figure 4.1. First, consider the models in figures 4.2 and 4.3. State

Q1 in figure 4.3 is the same as that in figure 4.2, and state (1) in figure 4.3

represents the combination of states (1) through (N) in figure 4.2. Our goal now

is to find A (in figure 4.3) such that these two models are equivalent.
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Figure 4.2

Markov model for a processor with intermittent faults only

Figure 4.3

Equivalent module of figure 4.2

Consider the model in figure 4.2. The equation for state Q1 is given by:

*p = a(o+^w+^w+ +pa*)

= -i QAt) + -j-(Pi(t) + P2(t)+ +PN(t))
M

sQit)-Q{0)
=

-iQ{s) + -j-(Pl{s)
+P2(s)+ +PN(s)) (4-1)

M

In equation (4.1), Pj represents the state i (i = 1....N). The equation for state Q1

in the model of figure 4.3 is given by:
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da (t)
-7^ =

-iQ.it) + AP.it)
dt

or

(4.2)

sQ1(s)-Q1(0)
=

-iQ^s) + AP^s)

Now, we want to find the value of A in equation (4.2) such that equations (4.1)

and (4.2) are equivalent. To do so, we write every Pj(s) in equation (4.1) in terms

of P-|(s), and then equate the two equations and solve for A. Solving with the

initial conditions Pi,(0) = P2(0) =....= PN(0) = 0, gives the following (refer to

figure 4.2):

for state 2:

sP2(s)
- P2(0) = //>(*)

- (-j-+i)P2(s)
M

or (4.3)

W = \ Px(s)

s+ +/

M

and for state 3:

sP3(s)
- P3(0) = iP2(s)

- (+i)P3(s)

or

P,(S) =

]
P2^

s+ +i

M

Substituting for P2(s) (from equation 4.3) in the previous equation, we
get:

P3(s) = [fPl(s) (4-4)

s+ +i

M

Or in general:
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PN(s) = (
1

)N~l

P^s) (4.5)
s + + i

M

Substituting the values for P^s), P2(s) PN(s) in equation (4.1) yields:

sQi(s)
-

0,(0) = iQ,(s) + P{s)[ X ( 1
)k

] (4-6)
M

^ 1
.

.

k = 0 M

Hence, the value of A in equation (4.2) is:

Ms) =

~S (
)*

(4-7)

M

Taking the inverse LaPlace transforms yields:
i i k=N-l ;k.(k-l)

A(t) = + -Y

lt
e""

M M i (k-l)\ (4.8)

where, a = i + p + 1/M .

Finally, combining the intermittent fault models for all processors, gives us the

Markov model for our system (figure 4.4).
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2p + 2i

Figure 4.4

Equivalent model of figure 4. 1

In figure 4.4, A is given by equation (4.8). B and C were obtained following the

same analysis used for A, and they are given by:

B(t) =
P +p^

k=N-l jkJk-1)

nr (*-D!

e""

+

iNt(N-2)

(N-2)\
(4.9)

k=N-\ jk.(k-l)

C(t) =
pi+p^Ue

k=\ {k-\)\
(4.10)

where, a = i + p + 1/M .

This concludes the modeling of our system.

Recall that in section 2.6 the reliability of our system was calculated under

permanent fault conditions. Now, let us repeat the same analysis under

intermittent fault conditions.
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4.3 RELIABILITY ANALYSIS

Assume that the system encounters intermittent faults only (p = 0); then

the transitions V to W, V to X, W to X, and Y to X in figure 4.4 will disappear.

Furthermore, the transition rate C(t) will be equal to zero, A(t) will stay the same,

and B(t) will be given by:
N
f
(/V-2)

B(t) =
e~a'

(N-2)\

where, a = i + 1/M in both A(t) and B(t).

Before writing the state equations and solving for the system's reliability, there is

one last issue that has to be dealt with. In the model of figure 4.4 the state

transitions are not constants. This means that our system does not obey the

exponential failure law. The most straightforward solution to this problem is to

approximate these state transitions using constant values, but can we? To

answer this question, let us try to interpret the meaning of these state transitions.

A(t) represents the intermittent fault disappearance rate, or (as described in

chapter 2) the transition from the failed state to the pseudo-failed state (see

figure 2.13). A(t) can be thought of as being the "repair
rate."

B(t) represents the

processors failure rate due to intermittent faults only. Figures 4.5, 4.6, 4.7, and

4.8, are plots of A(t) and B(t) for different values of M and N.

Figure 4.5: shows the effect of the parameter M on B(t). As expected, the

probability that a processor will encounter more than N faults in M time units is

bigger for larger values of M (longer time intervals).
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Figure 4.6 : shows the effect of the parameter N on B(t). One can see how

changing N changes the peak value for B(t) and its location. A larger value of N

means that a processor can tolerate more intermittent faults, hence B(t) has a

smaller peak value. The location of this peak is at:

t = t- hours (4.11)
i +

M

Figures 4.7 and 4.8 show the effect of both M and N on A(t). Notice that A(t)

peaks at the same location regardless of M and N values. The steady state

value of A(t) is 1/M. Figure 4.8 shows the relationship between the speed at

which A(t) reaches its steady state and the value of the parameter N.

To approximate these functions (A(t) and B(t)) by constants, keep in mind that in

reliability analysis the safest and the most reliable approach is the one based on

the worst condition assumptions. So, in our system we will assume that the

failure rate
, B(t), is constant at its maximum value, and the "repair

rate,"

A(t), is

constant at its minimum value. This will give us a model similar to those of

chapter 2.

The state equations for the model of figure 4.4 are given below:

(s +4i)V(s)-4AY(s) = 1 (4.12)

(s + 4A + 4B)Y(s) - 4iV(s) = 0 (4.13)

(s + 3i)W(s)
- 4BY{s)

- 3AZ(s) = 0 (4.14)

(s + 3A + 3B)Z(s)
- 3iW(s) = 0 (4.15)

(s + 2i) X (s) - 3BZ(s) = 0 (4-16)

sF(s)
-

2iZ(s) = 0 (4-17)
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From equations (4.12) and (4.13) we get:
(S + 4A + 4B)

0 + 4i)U + 4A +4)-16iA
^4"18^

4/
Y(s) =

C4 iq)
(s + 4i)(s + 4A + 4B)-\6iA

[ '

From equation (4.15) we get:
(S + 3A + 3B) ^r x

3/
(,S) (4-20)

And from equation (4.16) we get:

-4BY(s) + (s + 3i)W(s) -

3AZ(s) = 0 (4.21)

Substituting for Y(s) and W(s) in the above equation yields:

-4B( ) + (s +
3i)(S+ 3A +

3B)Z(s) -

3AZ(s) = 0
(s + 4i)(s + 4A + 4B)-l6iA 3/

Or,

Z(s) =[
^ ][ ^

] (4.22)
(s + 4i)(s + 4A + 4B)-16iA (s + 3i){s + 3A + 3B) -9iA

Substituting the value for Z(s) above in equation 4.16 and rearranging give:

X(S) =[J*-][

^*
][

^ ] (4.23)
s + 2i (s + 4i)(s + 4A + 4B)-l6iA (s + 3i)(s + 3A + 3B) -9iA

Substituting the value for X(s) above in equation 4.17 and rearranging give:

F() =r2iirJB_ir

16iB 3/

s s + 2i (s +4i)(s + 4A +4B)-\6iA (s + 3i)(s + 3A + 3B) - 9iA

Or,

288
i3B2

F(s) = t22LJL (4.24)
sis +UXs+QXs +C^is +C^is +CJ

where,
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C, =2{A+B+i)-2yJA2+
B*

+ 2AB + 2iA - 2/B

C2 = 2(/\+e+/) + 27>42+
B*

+ 2AB + 2iA - 2/B

3(/A+g+/)-3VA2+ B2+ 2AB + 2JA - 2iB
C/o
3

2

3(A+B+/) + 3>//42+ 5"+ 2AB + 2JA - 2/B

C* ~

2

3 3
Notice that C3 = C, , and C4 = C2

Hence,

288i B , . nr\

F(s) =

3 3
(4-25)

s(s + 2i)(s + Cl)(s+C2)(s + -Cl)(s + -C2)

Because we are only interested in the reliability of the system, we only need to

solve equation (4.25). First, taking the partial fraction expansions yields:

F{s) = *L +J^ +_^_ +_^ +
_^

+
s_ (4.26)

s s + 2i s + C{ s + C2 ,

*
/-

_i__

s + C, s + C2
4 4

where,

256/2 B2

Kl ='c;c22

K, =

288f B
3 D2

(-2i)(C1 -2i)(C2 -2/)(|Q -2i)(|c2 -2i)

3 n2

1152/j5

^3 ~

a
2--- - . . -

^^.J

C12(2/-C1)(C2-C1)(-C2-C1)

1152/3B2

^ -

3
C22(2/-C2)(C1-C2)(^C1-C2)
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1536
zJ

B
3 D2

5
-3_2,. 3 3
(-j)C2(2i-Q)(

1536
13 B2

(-j)C2(2i-^Q)(C2-^C1)(C2-Cl)

K* =

(y)C22(2/-|c2)(Q-|c2)(C1-C2)

Taking the inverse LaPlace transforms yields:

3 3

F(0 = K, + K2
e~2"

+ K3
e~c>

'

+ K4
e'^'

+ K5
i^

'

+ K6 (4.27)

And finally, the system reliability is given by:

R(t) = l-F(t) (4-28)

Now, consider a 3-out-of-5 majority voting system. This system involves

the same level of hardware redundancy as our system (4 redundant processors).

Assume that this system encounters intermittent faults only at a rate i

failure/hour. Furthermore, assume that the intermittent faults have a maximum

duration of one system decision (this was the definition of intermittent faults in

our system). With these assumptions being made, the 3-out-of-5 system will fail

only if it encounters three intermittent faults at the same
time. To clarify, assume

that from the fault-free state a processor (in the 3-out-of-5 system) encountered

an intermittent fault putting the system in the four-working/one-faulty state. Then

if during the next system decision another processor encountered another

intermittent fault, this will also put the system in the four-operational/one-faulty

state. This behavior is due to the assumption we made, which implies that the

first faulty processor is now operational caused by the intermittent fault
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disappearance. Considering this, the system can be modeled with two states

only: the all operational state and the system failed state. The transition from the

first state to the second is /3. Finally, the reliability of the 3-out-of-5 system is

given by:

R(t)=e-i3t

Figure 4.9 shows a comparison between our system, a simplex system,

and a 3-out-of-5 system, with i = 0.5 intermittent faults/hour and without any

repair. Although the assumptions we made favor the 3-out-of-5 system, our

system is still more reliable than the other systems.

Figures 4.10 and 4.11 show the effect of the values M and N on the

reliability of our system. As expected, decreasing M (or increasing 1/M, the

"repair rate") improves the reliability of our system, and increasing N (the

intermittent fault tolerance capability) also improves the system's reliability. In

practice these values should be set depending on different factors, such as:

- The intermittent fault rate.

- The intermittent to permanent fault ratio.

- The percentage of intermittent faults that are caused by common factors (to all

processors) to the total number of intermittent
faults.

- The cruciality of the application.
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5.0 Conclusion

The techniques and design issues involved in fault tolerant systems were

discussed. Evaluation criteria were presented with some emphasis on reliability

analysis.

The reliability of hardware fault-tolerant systems is usually done under

permanent fault conditions. The effects of intermittent faults on system reliability

are not fully considered. With statistical data suggesting that up to 90% of

system failures may be caused by intermittent faults, reliability analysis

techniques must concentrate more on this class of faults.

To realize the techniques and the design issues discussed, a

reconfigurable Triple Modular Redundancy (TMR) with spare system was built.

The general problem of synchronization in majority voting systems, causes and

solutions, was presented and discussed. A design and reliability analysis

approaches were introduced & implemented. The TMR with spare system was

designed to tolerate a higher level of intermittent faults. This level is controlled

by the parameters M & N which should be set based on the intermittent faults

rate and their causes. A system with intermittent faults caused by global

conditions affecting all its modules should use lower values of the parameter N.

This is because the intermittent faults in this system will have a higher

overlapping probability which may cause an undetectable system errors. The

effect of these parameters on the system's reliability is shown in figures 4.10 &

4.1 1. Although these parameters reflect the level of confidence in the processors

(i.e. a processor is considered fault free despite its encountering N intermittent

faults in M hours), the parameter M (for example) can be thought of as the
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processors repair rate which explains the reliability value of one when N = 1/M in

figure 4.11.

Reliability analysis of the system under permanent fault conditions

showed a higher system reliability compared to other systems especially for

short time applications (see figure 2.12). Reliability analysis under intermittent

fault conditions showed a very big improvement over other redundant (3-out-of-

5) and non-redundant (simplex) systems without any restriction by the intended

application life (see figure 4.9 and compare it to figure 2.12). Furthermore, keep

in mind that these results were obtained despite the worst case assumptions for

our system and a favorable assumptions for the 3-out-of-5 system which

emphasizes the importance of these results.

Although this work did not contain any actual fault statistics, the design

and reliability approaches presented in this work are expected to be useful and,

hopefully, more accurate than the traditional techniques once the values of the

parameters. M & N are carefully set. Determining the optimal values of these

parameters can be the subject of some further work in this area, which may also

involve the use of techniques presented in modeling non-overlapping permanent

faults in fault-tolerant systems.
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Appendix



**********#*****#*******##***#*******#^

****

****

****

****

****

****

*f* *f* *p *1*

****

****

#***

****

****

****

****

****

****

****

Program : contl.asm

By : Khalid Al-kofahi

Date : May 25, 1993

Descrption :

This program is executed by the controller ofmodule 1. It tests all three processors and

the spare for intermittent and permanent faults, and reconfigure the module according
ly. It also controlls the RS232 to the terminal and displays the headder messages and

the
processors'

fault data. The operation proceeds as follows :

- First display headdermessage and reset all processors ( procedures messl & first).

- Wait for the serial clock, when recieved : test the serial data and the serial clock

disagreement detectors ( dl .. d8 ). Repeat six times ( for the six clock cycles) and store

the results in dl_p,d2_p,d3_p,d4_p,cl_p,c2_p,c3_p,c4_p respectively.
- Wait for the laod signal, when recieved : test the load signals disagreement detectors

( d9...dl2) and store the resutl in 11,12,13,14 respectively.

- Note :

di_p : # of faults encountered during the last decision on processor i data line.

ci_p : # of faults encountered during the last decision on processor i clock line.

li_p : # of faults encountered during the last decisionon processor i load line.

di : total # of faults on processor i data line.

ci : total # of faults on processor i clock line.

li : total # of faults on processor i load line.

( processor # 4 is the spare).

- Check all the di's, ci's and li's registers and reconfigure if needed.

- Upon module failure, flash the module four times and start all over ( if this is the first

failure) else go to flash indifinitely.

****

****

****

****

**** Online comments clarify some of the detailes in the program.
****************************************************************************

org $784

fcb $07

org $7fe

fcb $01

fcb $00

end

port_a equ $000

port_b equ $001

port_c equ $002

timer equ $008

a_cntl equ $004

b_cntl equ $005

c_cntl equ $006

t_cntl equ $009

t_mode equ $47

a_mode equ $00

b_mode equ $e0

c_mode equ $fe

dl equ $10

cl equ $11

*
start at location $100 after reset

*
refer to figure 3.3 for actual connections

*
external clock, 128 prescalar
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11 equ $12

d2 equ $13

c2 equ $14

12 equ $15

d3 equ $16

c3 equ $17

13 equ $18

d4 equ $19

c4 equ $1A

14 equ $1B

dl_p equ $1C

cl p equ $1D

H-P equ $1E

d2_p equ $1F

c2_p equ $20

12_p equ $21

d3_p equ $22

c3_p equ $23

13_p equ $24

d4_p equ $25

c4_p equ $26

14_p equ $27

cont equ $28

contl equ $29

cont2 equ $2A

cont3 equ $2B

cont4 equ $2C

cont5 equ $2D

tempi equ $2E

temp2 equ $2F

res equ $30

dis equ $31

status equ $32

again equ $33

regl equ $34

reg2 equ $35

tx equ $36

ace equ $37

indx equ $38

max equ 15

cr equ $0D

If equ $0A

spc equ $20

org $100

sei

Ida #a_mode

sta a_cntl

Ida #b_mode

sta b_cntl

Ida #c_mode

sta c_cntl

Ida #t_mode

sta t_cntl

*
cont : contains N.

*
conti : a flag register to test for permanent faults on processor i

* load lines, if it is == 2, then processor i has permanent fault on
* its load line. It is cleared every two cycles.

*
contains the number of faulty processors

*
contains the data to be printed as ascii

*
transmit register

*
maximum number of intermittent faults allowed (M)
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clr port_a

clr port_b *select original processors ( proc

clr port_c

clr again

bset 3,port_c *
tx = high

*******************************************************

main bclr 2,port_c *holdRS232

jsr delay 1

jsr delay 1

jsr messl

bset 2,port_c *
release RS232

jsr first *
reset all processors

loopl jsr secnd

ldx #6

wait brclr 4,port_b,wait *
wait for the serial clock

jsr delay
jsr testl *

test dl...d8 lines

decx

bne wait
*
repeat six times

wait2 brclr 0,port_c,wait2 *
wait for load signal

jsr delay
jsr test2 *testd9..dl2

jsr procl
*
test processor 1 lines

jsr proc2
*
test processor 2 lines

jsr proc3
*
test processor 3 lines

jsr proc4
*
test spare processore lines

clr cont5
*
will contain the number of faul

brclr l,status,p2

inc cont5
*
processor 1 is faulty

bset 5,port_b
*
reconfigure with spare

p2 brclr 2,status,p3

inc cont5
*
processor 2 is faulty

bset 6,port_b *
reconfgure with spare

p3 brclr 3,status,p4

inc cont5
*
processor 3 is faulty

bset 7,port_b *
reconfigure with spare

p4 brclr 4,status,p5

inc cont5

p5 Ida cont5

cmp #2
*
number of faulty proeccors ?

blo ok

bra rest
*
module fail

ok jsr display
*
write status message on screen

dec cont

bne loopl

bra main
*
continue

*****************************************************************************

jumpp bra main
* just an intermediate jump
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**********************************************************.)C.IC .,..,..,..,<*.,. ,,..,.

rest

restl

rest2

Ida again

cmp #1

beq flash

inc again

bclr 2,port_c

jsr delay 1

jsr delay 1

jsr mess6

bset 2,port_c

Ida #4

sta ace

bclr l,port_c

jsr delay 1

bset l,port_c

ldx #24

jsr delay 1

decx

bne rest2

dec ace

bne restl

bclr l,port_c

clr port_b

* is it the first failure

*
this the second failure, goto flash and stay there

*
increase number ofmodule failures

*holdRS232

*
printmessage

*
release RS232

* flash 4 times then restart

*
reset processors

* length of reset signal

*
send reset

*
select original processors

bra jumpp

:

If here then module already failed

flash jsr delay 1 * 0.1305 sec

jsr delay 1

jsr mess7
*
cr & If

jsr mess7

jsr mess5

bset 2,port_c
*
release RS232

flash 1 bclr l,port_c

jsr delay 1

bset l,port_c

ldx #24

loop jsr delay 1

decx

bne

bra

loop
flash 1

******************************************************************************

*
reset signalfirst bclr l,port_c

jsr delay 1

bset l,port_c

clrx

loop2 clr $10,x

incx

86



cpx #35

bne loop2

Ida #100

sta cont
*
initialize N to 100

rts

******************************************************^:|t:^^^^^:t;.).

secnd clr dl_p
clr d2_p
clr d3_p
clr d4_p
clr cl_p

clr c2_p

clr c3_p

clr c4_p

clr cont5

rts

*************************************************************.:*.,....,..,<

***
testj

.

testd5.. d8 &dl..d4 *********************************************

testl brclr 4,port_a,t2 *d5

inc cl_p

t2 brclr 5,port_a,t3 *d6

inc c2_p

t3 brclr 6,port_a,t4 *d7

inc c3_p

t4 brclr 7,port_a,t5 *d8

inc c4_p

t5 brclr 0,port_a,t6 *dl

inc dl_p
t6 brclr l,port_a,t7 *d2

inc d2_p
t7 brclr 2,port_a,t8 *d3

inc d3_p
t8 brclr 3,port_a,t9 *d4

inc d4_p
t9 rts

***
test2

"

test d9 dl2 ***********************************************************

test2 brclr 0,port_b,al *d9

inc ll_p
al brclr l,port_b,a2 *dl0

inc 12_p
a2 brclr 2,port_b,a3 *dll

inc 13_p
a3 brclr 3,port_b,a4 *dl2

inc 14_p
a4 rts

*****************************************************************************

***
test orocessor 1

************************************************************
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Ida #dl

sta tempi

add #3

sta temp2

jsr test3

brclr O,res,okl

bset 1,status

Ida H-P

cmp #0

beq piend

inc contl

Ida contl

cmp #2

bne piend

clr contl

clr H-P
dec 11

rts

*
tempi = $10 : address of dl

*
temp2 = $13 : address of d2

*
returns wether the processor is faulty or not ( bit 0 of register res)

* if not cleared, the processor is faulty
*
a flag for the main to indicate processor 1 is faulty

*
contl is clered every two consecutive cycles, if it is = 2, then

*
the load line of this processor has a permanent fault

***************************************************************************

**** rirnr'9
* thA cqitia qc rwrw-*l hut thie t*ctc nrnrAccnr 9 inetfQH *************************

proc2 : the same as procl but this tests processor 2 instead ***

proc2 Ida #d2

sta tempi

add #3

sta temp2

jsr test3

brclr 0,res,ok2

bset 2,status

ok2 Ida 12_p

cmp #0

beq p2end

inc cont2

Ida cont2

cmp #2

bne p2end

clr 12_p
clr cont2

dec 12

p2end rts

*********************************************************************

***
proc3: the same as procl but this tests processor 3 lines .

**********************

proc3

ok3

Ida #d3

sta tempi

add #3

sta temp2

jsr test3

brclr 0,res,ok3

bset 3,status

Ida 13_P

cmp #0

beq p3end



p3end

inc cont3

Ida cont3

cmp #2

bne p3end

clr 13_p
clr cont3

dec 13

*********************************************************,lt:).+.^ .,<,,.*.,..,.

.,<.,<

****
proc4 tije same as procl but this test the spare lines .

***********************

proc4

ok4

p4end

Ida #d4

sta tempi

add #3

sta temp2

jsr test3

brclr 0,res,ok4

bset 4,status

Ida 14_p

cmp #0

beq p4end

inc cont4

Ida cont4

cmp #2

bne p4end

clr 14_p
clr cont4

dec 14

rts

*********************************************************************

****
test3

.

tests jjje regiS(ers between the adresses tempi & temp2 . these registers contain the

t*ti-

nrofpccrtrQ th i i 1tc inform5ttirYn
^^^^^?^^^^^?^^^^?^^^^^^^t^^^tvjf^tt-f*!1

*
contains the address of di ,

i = 1,2,3,4

*
two consecutive faults = permanent

*
processor is faulty due to permanent faults

*
processor's intermittent faults > N ?

*
processor is fualty due to intermittent faults

* finished with this processor data ?

loop3

rts

*******************************************************************

****
convert data in reg2 to ascii and call send for screen display

*****************

test3 clr res

Idx tempi

loop3 Ida $c,x

cmp #2

blo bl

bset O.res

bl add 0,x

sta 0,x

incx

cmp #max

bis b2

bset 0,res

b2 cpx temp2

bne loop3

ascii Ida reg2
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hi

and #$fO

lsra

lsra

lsra

lsra

cmp #9

bis hi

add #7

add #$30

sta tx

jsr send *
send theMSD

Ida reg2

and #$0f

cmp #9

bis h2

add #7

add #$30

sta tx

jsr send
*
send LSD

h2

rts

********************************************************************

****
gjjow

processors'

fault information *************************************

display inc dis

Ida dis

cmp #7

beq wait3

cmp #5

bne wait4

bclr 2,port_c *holdRS232

jsr delay 1

jsr delay 1

jsr displ *
show

processors'

status

bset 2,port_c *
release RS232

bra wait4

wait3 ch dis

ine dis

wait4 rts

***
show
processors'

status, statrting at $10 (or dl) and ending at $lb (or 14)
**********

displ jsr mess7
*
cr, If

*
space

*
print space

jsr mess7

Ida #spc

sta tx

jsr send

sta tx

jsr send

clrx

Ida $10,x

sta reg2

jsr ascii

Ida #spc

sta tx

disp2 Ida $10,x * fault information at location $10+x

*
convert them to ascii

*
space
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* did I reach 14 or not yet ?

* is processor loperational ?
*
no it is not, display N in its column on the screen.

*
yes it is , then disply Y in its column on the screen.

* is processor 2 operational ?

is processor 3 operational ?

jsr send

sta tx

jsr send

incx

cpx #12

bne disp2

brclr l,status,m2

jsr noo

bra m3

m2 jsr yess

m3 brclr 2,status,m4

jsr noo

bra m5

m4 jsr yess

m5 brclr 3,status,m6

jsr noo

bra m7

m6 jsr yess

m7 ldx #5

jsr space

Ida cont5

cmp #0

beq m8

brset 4,status,m8

jsr yess

bra m9

m8 jsr noo

m9 ldx #6

jsr space

Ida #1

sta reg2

jsr ascii

rts

*********************************************************************

****
^^ procedure sends the data in register tx to the screen, one start bit , two stop bits.

* is the spare considered in the voting process ?

*
yes it is, then display Y in its column on the screen.

*
no it is not, display N in its column on the screen.

*
print space, number of times as in reg. x.

send

tx3

txO

txl

tx4

sta

Ida

sta

bclr

jsr

ror

bcs

bclr

bra

bset

jsr

dec

bne

ace

#08

regl

3,port_c

delay2

tx

txl

3,port_c

tx4

3,port_c

delay
regl

tx3

*
send a start bit

* 80 cycles ( one bit)

:

70 cycles

tx5

inc

nop

nop

bset

regl

3,port_c

dummy delay

"send stop bits (2)
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jsr delay2

jsr delay2

Ida ace

rts

****
the following procedures are for display purposes only

**********************

messl jsr mess7

jsr mess7

clrx

more Ida mesl,x

cmp #$24

beq done

sta tx

jsr send

incx

bra more

done jsr

rts

mess7

yess clrx

more2 Ida yes,x

cmp #$24

beq done2

sta tx

jsr send

incx

bra more2

done2 rts

noo clrx

more3 Ida no,x

cmp #$24

beq done3

sta tx

jsr send

incx

bra more3

done3 rts

mess5 jsr

clrx

mess7

more5 Ida mes5,x

cmp #$24

beq done5

sta tx

jsr send

incx

bra more5

done5 jsr

rts

mess7

mess6 stx indx

jsr mess7

*
cr , If

all messages ends with $24 as a flag

cr,lf

cr,lf

cr,lf
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clrx

more6 Ida mes6,x

cmp #$24

beq done6

sta tx

jsr send

incx

bra more6

done6 jsr mess7

ldx indx

rts

space Ida #spc *
print k spaces, k = contents of reg. x

space 1 sta tx

jsr send

decx

bne space 1

rts

mess7 stx indx *
cr & If

ldx #0

more7 Ida mes7,x

cmp #$24

beq done7

sta tx

jsr send

incx

bra more7

done7 ldx indx

its

*********************************************************************

****
all the delay procedures are the same but they have different lengths

delay Ida #6 * 70 cycles

loop4 nop

deca

bne loop4

nop

rts

delay2 Ida #7 * 80 cycles

loop5 nop

deca

bne loop5

nop

its

delay 1 bclr 7,t_cntl
* 0. 1 305 SEC, used to regulate the traffic lights timing

Ida #$ff

sta timer

self brclr 7,t_cntl,self

rts

*********************************************************************
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org $600

mesl FCC / PI P2 P3 Spare /

FCB $0D,$0A

FCC /ABCDEFGHIJKL/ *
see figure 3.3 for meaning

FCC / PI P2 P3 Spare Module/

FCB $24

yes FCC / Y/

FCB $24

no FCC / N/

FCB $24

mes5 FCC / FATAL ERROR ====>Module - 1 - FLASHING <=====/

FCB $24

mes6 FCC / Module - 1- First Failure, Try Again /

FCB $24

mes7 FCB $0D,$0A,$24
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*********************************************************************************

**** Program : cont2.asm

**** BY : Khahd All-kofahi

**** Date : May 25, 1993
**** Description:

**** This program is executed by the controller ofmodule2. It is almost the same as
****

contl
.asm,

the only difference is that this controller does not write the header messages,
****

and itwaits for the first controller ( contLasm) to release the RS232 to be able to use it.
**********************************************************************************

org $784

fcb $07

org $7fe

fcb $01

fcb $00

end

port_a equ $000

port_b equ $001

port_c equ $002

timer equ $008

a_cntl equ $004

b_cntl equ $005

c_cntl equ $006

t_cntl equ $009

t_mode equ $47

a_mode; equ $00

b_mode: equ $e0

c_mode equ $fa

dl equ $10

cl equ $11

11 equ $12

d2 equ $13

c2 equ $14

12 equ $15

d3 equ $16

c3 equ $17

13 equ $18

d4 equ $19

c4 equ $1A

14 equ $1B

dl_p equ $1C

cl p equ $1D

H-P equ $1E

d2_p equ $1F

c2_p equ $20

12_p equ $21

d3_p equ $22

c3_p equ $23

13_p equ $24

d4_p equ $25

c4_p equ $26
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14_p equ $27

cont equ $28

contl equ $29

cont2 equ $2A

cont3 equ $2B

cont4 equ $2C

cont5 equ $2D

tempi equ $2E

temp2 equ $2F

res equ $30

dis equ $31

status equ $32

again equ $33

regl equ $34

reg2 equ $35 *(

tx equ $36

ace equ $37

indx equ $38

max equ 15

cr equ $0D

if equ $0A

spc equ $20

org $100

sei

Ida #a_mode

sta a_cntl

Ida #b_mode

sta b_cntl

Ida #c_mode

sta c_cntl

Ida #t_mode

sta t_cntl

clr port_a

clr port_b

clr port_c

clr again

data to printed as ascii

bset 3,port_c tx = high

*********************************************************************

main jsr first

loopl jsr seend

ldx #6

wait brclr 4,port_b,wait

jsr delay
jsr testl

decx

bne wait

wait2 brclr 0,port_c,wait2

jsr delay
jsr test2
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jsr procl

jsr proc2

jsr proc3

jsr proc4

clr cont5

brclr l,status,p2

inc cont5

bset 5,port_b

p2 brclr 2,status,p3

inc cont5

bset 6,port_b

p3 brclr 3,status,p4

inc cont5

bset 7,port_b

p4 brclr 4,status,p5

inc cont5

p5 Ida cont5

cmp #2

bio ok

bra rest

ok jsr display
dec cont

bne loopl

bra main

*****************************************************************************

jumpp bra main

*****************************************************************************

rest Ida again

cmp #1

beq flash

inc again

Ida #4 * flash 4 times then restart

sta ace

restl bclr l,port_c

jsr delay 1

bset l,port_c

ldx #24

rest2 jsr

decx

delay 1

bne rest2

dec ace

bne restl

bclr l,port_c
*
send reset

clr port_b
*
select original processors

rs brclr 2,port_c,rs
*
wait for RS232

jsr mess6

bra jumpp
*******************************************************************************

flash nop

rs2 brclr 2,port_c,rs2 *
wait for RS232

jsr mess7

jsr mess7
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jsr mess5

flash 1 bclr l,port_c

jsr delayl

bset l,port_c

ldx #24

loop jsr delayl

decx

bne loop
bra flash 1

*****************************************#+#++^+++#++#+#++#+#^#+^#++:(tj).:):;).;(.!(.;).;(.)1.:t.

first bclr l,port_c

jsr delayl

bset l,port_c *
reset

clrx

loop2 clr $10,x

incx

cpx #35

bne loop2

Ida #100

sta cont

rts

*****************************************************************************

secnd clr dl_p
clr d2_p
clr d3_p
clr d4_p
clr cl_p

clr c2_p

clr c3_p

clr c4_p

clr cont5

its

****************************************************************************

testl brclr 4,port_a,t2

inc cl_p

t2 brclr 5,port_a,t3

inc c2_p

t3 brclr 6,port_a,t4

inc c3_p

t4 brclr 7,port_a,t5

inc c4_p

t5 brclr 0,port_a,t6

inc dl_p
t6 brclr l,port_a,t7

inc d2_p
t7 brclr 2,port_a,t8

inc d3_p
t8 brclr 3,port_a,t9

inc d4_p
t9 rts
****************************************************************************
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test2 brclr O,port_b,al

inc ll_p
al brclr l,port_b,a2

inc 12_p
a2 brclr 2,port_b,a3

inc 13_p
a3 brclr 3,port_b,a4

inc 14_p
a4 rts

************************************++++++#++++++++##+#+#+#++!|ts|(:);;).:).!(::4.:(.!|c;(.!|t;t,;jt:|<;).:(;

procl Ida #dl

sta tempi

add #3

sta temp2

jsr test3

brclr 0,res,okl

bset 1,status

okl Ida ll_p

cmp #0

beq plend

inc contl

Ida contl

cmp #2

bne plend

clr contl

clr ll_p
dec 11

plend rts

proc2 Ida #d2

sta tempi

add #3

sta temp2

jsr test3

brclr 0,res,ok2

bset 2,status

ok2 Ida 12_p

cmp #0

beq p2end

inc cont2

Ida cont2

cmp #2

bne p2end

clr 12_p
clr cont2

dec 12

p2end its

*****************************************************************************

proc3 Ida #d3
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sta tempi

add #3

sta temp2

jsr test3

brclr 0,res,ok3

bset 3,status

ok3 Ida 13_p

cmp #0

beq p3end

inc cont3

Ida cont3

cmp #2

bne p3end

clr 13_p
clr cont3

dec 13

p3end rts

*********************************************************##++++##+J|t+!)! ,,,,,,,,, ++!|c ,,,,,,

proc4 Ida #d4

sta tempi

add #3

sta temp2

jsr test3

brclr 0,res,ok4

bset 4,status

ok4 Ida 14_p

cmp #0

beq p4end

inc cont4

Ida cont4

cmp #2

bne p4end

clr 14_p
clr cont4

dec 14

p4end its

*****************************************************************************

test3 clr res

ldx tempi

loop3 Ida $c,x

cmp #2

bio bl

bset 0,res

bl add 0,x

sta 0,x

incx

cmp #max

bis b2

bset 0,res

b2 cpx temp2
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bne loop3

rts

****************************++*+++++++^#++++++++#++#++++;(:Ht:i(:(;;jt:t;++:ii=(iHt+!(;!|t!)!3(!:)!;(t+:)c:|<

ascii Ida reg2

and #$fO

lsra

lsra

lsra

lsra

cmp #9

bis hi

add #7

hi add #$30

sta tx

jsr send
*
send theMSD

Ida reg2

and #$0f

cmp #9

bis h2

add #7

h2 add #$30

sta tx

jsr send

rts

*****************************************************************************

display inc dis

Ida dis

cmp #7

bne wait3

jsr displ

clr dis

inc dis

wait3 rts

*****************************************************************************

displ nop

rs3 brclr 2,port_c,rs3
*
wait for RS232

jsr mess7
*
cr, If

Ida #spc

sta tx

jsr send

sta tx

jsr send

clrx

disp2 Ida $10,x

sta reg2

jsr ascii

Ida #spc
*
space

sta tx

jsr send

sta tx

jsr send
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incx

cpx #12

bne disp2

brclr l,status,m2

jsr noo

bra m3

m2 jsr yess

m3 brclr 2,status,m4

jsr noo

bra m5

m4 jsr yess

m5 brclr 3,status,m6

jsr noo

bra m7

m6 jsr yess

m7 ldx #5

jsr space

Ida cont5

cmp #0

beq m8

brset 4,status,m8

jsr yess

bra m9

m8 jsr noo

m9 ldx #6

jsr space

Ida #2

sta reg2

jsr ascii

rts

%%%%ifc%%%%%%%%%%X%%%%%^%i%%%%%%%%%%*%%ifc%%ifcX

send sta ace

Ida #08

sta regl

bclr 3,port_c
*
send a start bit

jsr delay2 * 80 cycles

tx3 ror tx

bcs txl

txO bclr 3,port_c

bra tx4

txl bset 3,port_c

tx4 jsr delay
* 70 cycles

dec regl

bne tx3

inc regl
*

dummy delay

nop

nop

tx5 bset 3,port_c ?send stop bits

jsr delay2

jsr delay2

Ida ace

rts
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********************************************************

messl jsr mess7

jsr mess7

clrx

more Ida mesl,x

cmp #$24

beq done

sta tx

jsr send

incx

bra more

done jsr

rts

mess7

yess clrx

more2 Ida yes,x

cmp #$24

beq done2

sta tx

jsr send

incx

bra more2

done2 its

noo clrx

more3 Ida no,x

cmp #$24

beq done3

sta tx

jsr send

incx

bra more3

done3 rts

mess5 jsr

clrx

mess7

more5 Ida mes5,x

cmp #$24

beq done5

sta tx

jsr send

incx

bra more5

done5 jsr

its

mess7

mess6 jsr mess7

more6 Ida mes6,x

cmp #$24

beq done6

sta tx

jsr send

incx

*
cr

,
If

cr, If

*cr,lf

*cr, If
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bra more6

done6 jsr mess7

rts

space Ida #spc

space 1 sta tx

jsr send

decx

bne space 1

its

mess7 stx indx *
cr & If

ldx #0

more7 Ida mes7,x

cmp #$24

beq done7

sta tx

jsr send

incx

bra more7

done7 ldx indx

its

************************************************+*******++++++#+^#+##s|e!)(!J|t!).!(.!|t!|t

delay Ida #6 * 70 cycles

loop4 nop

deca

bne loop4

nop

its

delay2 Ida #7 * 80 cycles

loop5 nop

deca

bne loop5

nop

rts

delayl bclr 7,t_cntl * 0.1305 SEC

Ida #$ff

sta timer

self brclr 7,t_cntl,self

rts

*****************************************************************************

org $600

mesl FCC / PI P2 P3 Spare /

FCB $0D,$0A

FCC /ABCDEFGHIJKL/

FCC / PI P2 P3 Spare/

FCB $24

yes FCC / Y/

FCB $24

no FCC / N/
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FCB $24

mes5 FCC / FATAL ERROR =====> Module -2- FLASHING <=

FCB $24

mes6 FCC / - Module -2- First Failure, Try Again - /

FCB $24

mes7 FCB $0D,$0A,$24

105



Program : processor.asm

By : Khalid Al-kofahi

Date : May 25,1993

Description :

This program is executed by processor 1, 2, & 3. The program proceeds in the following
manner:

- After reset, send all of signal to the traffic lights.

Traffic lights start at Nr-Eg, and continues looping in a weighted time slices fashion.
- Before each voting process ( changing the traffic lights ), all processors are

synchronized ( call procedure synch).

While wating for the current time slice to elapse, synchronize the processors every 0.5

seconds.

Refer to figure 3.7 and 3.8 for further information about this program.

The lines being voted upon are :

- PAO - serial data out : 6 - bits

- PBO ~ serial clock.

- PB1 -- parallel clock (load).
****************************************************************************

org $784

fcb $07

org $7fe

fcb $01

fcb $00

org $7f8

fcb $02

fcb $50

end

port_a equ $000

port_b equ $001

port_c equ $002

timer equ $008

a_cntl equ $004

b_cntl equ $005

c_cntl equ $006

t_cntl equ $009

t_mode equ $47

a_mode equ $ff

b_mode equ $03

c_mode equ $01

Nr_Eg equ $0C

Nr_Ey equ $0A

Nr_Er equ $09

Ng_Er equ $21

Ny_Er equ $11

status equ $12

count equ $13

count 1 equ $14

*
start here after reset

* timer interrupt service routine

* North red - East green

* North red - East yellow

* North red - East red

* North green - East red

* North yellow - east red
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count2 equ $15

org $100

sei

Ida #a_mode

sta a_cntl

Ida #b_mode

sta b_cntl

Ida #c_mode

sta c_cntl

Ida #t_mode

sta t_cntl

clr port_c

main

jsr synch

Ida #0

sta port_a

jsr shift

jsr delay

jsr synch

Ida #Nr_Er

sta port_a

jsr shift

Ida #2

sta count

jsr del_sn

jsr synch

Ida #Nr_Eg
sta port_a

jsr shift

Ida #4

sta count

jsr del_sn

jsr synch

Ida #Nr_Ey

sta port_a

jsr shift

Ida #2

sta count

jsr del_sn

jsr synch

Ida #Nr_Er

sta port_a

jsr shift

Ida #2

sta count

jsr del_sn

*
synchronize with other processors

*
traffic lights data is stored at port_a

*
send serial data

*
the length of time slice = 2 * del_sn

*

delay as sepecified by count

*
synch again

*
next light

*
time slice = 4

* del_sn
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jsr synch

Ida #Ng_Er

sta port_a

jsr shift

Ida #4

sta count

jsr del_sn

jsr synch

Ida #Ny_Er

sta port_a

jsr shift

Ida #2

sta count

jsr del_sn

bra main
*
continue looping

**************************************************************************

***
procedure del_sn : delay as specified by count, and keep the processors

***
synchronized.

**************************************************************************

del_sn jsr synch

jsr delay
jsr delay
dec count

bne del_sn

rts

* 512800 cycles

**********************************************************************

***
procedure Synch: This procedure synchronize the processors . for a flowchart see figure 3.8

**********************************************************************

synch brset 2,port_b,flash

bclr 7,t_cntl

Ida #$ff

sta timer

* I am out goto flashing.

*
maximum waiting period.

bclr 6,t_cntl

cli

brset 3,port_b,t2

brset 4,port_b,t3

tl bset 0,port_c

wait Ida port_c

and #$ff

cmp #$ff

beq done

brset 0,status,inter

bra wait

inter brclr l,status,t2

*
pore at PCI is out

*
proc at PC2 is out

*
send I am ready signal

* PC- 3,2,1,0 =1111

*
a processor(s) is not ready, time out is reached.

*
the processor at PCI is too late, don'twait any longer
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brclr 2,status,t3

bra done

t2 bset 0,port_c

wait2 Ida port_c

and #$fd

cmp #$fd

beq done

bra wait2

t3 bset 0,port_c

wait3 Ida port_c

and #$fb

cmp #$fb

beq done

bra wait3

done sei

bset 6,t_cntl

jsr delay3

bclr 0,port_c

rts

the processor at PC2 is too late, don't wait any longer

if all others ( except the one at PCI) are ready, then done

* PC- 3,2,1,0 =11X1

if all others (except the one at PC2) are ready, then done

PC- 3,2,1,0 =1X11

* in case others did not read me yet
*
clear I am ready signal

****************************************************************************

***
procedure shift : shifts the data and serial clock serially, and then sends the load signal

****************************************************************************

shift ldx #6

send bset 0,port_b

jsr delay2

jsr delay2

bclr 0,port_b

jsr delay2

jsr delay2

Isr port_a

decx

bne send

bset l,port_b

jsr delay2

jsr delay2

jsr delay2

jsr delay2

jsr delay2

bclr l,port_b

rts

*
serial clock ofwidth 200 cycle

* 100 cycle

*
send data ( six times)

*
parallel clock of width 400 cycle at PB 1

****************************************************************************

***
procedure flash : if I am faulty or more than two faulty processors

then flash all the time
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****************************************************************************

flash Ida #0 *
all off

sta port_a

jsr shift

jsr delay

Ida #Nr_Er *

Nr-Eg
sta port_a

jsr shift

jsr delay
bra flash *

stay here

****************************************************************************

delay Ida #100 * delayl =512800 cycles

sta count 1

loopl Ida #255

sta count2

loop2 dec count2

bne loop2

dec count 1

bne loopl

rts

delay2 Ida #10
*
delay of 108 cycle

loop4 nop

deca

bne loop4

rts

delay3 Ida #5
* 58 cycles

loop5 nop

deca

bne loop5

rts

****************************************************************************

*** timer int. service routine: If I am here then maximum waiting time is reached without

recieving all the
"

I am ready
"

signals, mark which processor is late ( status) and return.
*****************************************************************************

org $250

bset 5,port_b

bclr 7,t_cntl

ldx port_c
*
which one is late ?

Ida port_b

and #$lc
* 0001 1 100 ,

sl,s2,s3 --> PB2,3,4

cmp #0

bhi flash
*
more than two faulty processors ? ,

if yes goto flash.

txa

and #$0e

sta status

bset O.status
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bclr

rti

end

5,port_b
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****************************************************************************

**** Program: Spare.asm

****
By : Khalid Al-kofahi

**** Date : May 25, 1993
**** Description :

**** This program is executed by the spare processors in both modules. It is the same as the
****

program processor.asm ( executed by processors 1, 2, & 3) except in the procedure

****
synch. For a flow chart of this procedure refer to figure 3.9 and refer to figure 3.7 for the

**** hardware connections.
****************************************************************************

org $784

fcb $07

org $7fe

fcb $01

fcb $00

org $7f8

fcb $02

fcb $50

end

port_a equ $000

port_b equ $001

port_c equ $002

timer equ $008

a_cntl equ $004

b_cntl equ $005

c_cntl equ $006

t_cntl equ $009

t_mode equ $47

a_mode equ $ff

b_mode: equ $03

c_mode equ $01

Nr_Eg equ $0C

Nr_Ey equ $0A

Nr_Er equ $09

Ng_Er equ $21

Ny_Er equ $11

status equ $12

count equ $13

count 1 equ $14

count2 equ $15

org $100

sei

Ida #a_mode

sta a_cntl

Ida #b_mode

sta b_cntl

Ida #e_mode

*
timer interrupt routine
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sta c_cntl

Ida #t_mode

sta t_cntl

main

clr port_c

jsr synch

Ida #0

sta port_a

jsr shift

jsr delay

jsr synch

Ida #Nr_Er

sta port_a

jsr shift

Ida #2

sta count

jsr del_sn

jsr synch

Ida #Nr_Eg
sta port_a

jsr shift

Ida #4

sta count

jsr del_sn

jsr synch

Ida #Nr_Ey
sta port_a

jsr shift

Ida #2

sta count

jsr del_sn

jsr synch

Ida #Nr_Er

sta port_a

jsr shift

Ida #2

sta count

jsr del_sn

jsr synch

Ida #Ng_Er

sta port_a

jsr shift

Ida #4

sta count

jsr del_sn

jsr synch

Ida #Ny_Er
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sta port_a

jsr shift

Ida #2

sta count

jsr del_sn

bra main

****************************************************************************

***
procedure del sn

******************************************************

del_sn jsr synch

jsr delay
jsr delay
dec count

bne del_sn

rts

********************************************************************** *****

***
procedure Synchronize

**************************************************

synch bclr 7,t_cntl

Ida #$ff

sta timer

ben 6,t_cntl

brset 2,port_b,t2

brset 3,port_b,t3

brset 4,port_b,t4

tl bset 0,port_c

wait Ida port_c

and #$ff

cmp #$ff

beq done

brset 0,status,inter

bra wait

inter brclr l,status,t2

brclr 2,status,t3

brclr 3,status,t4

bra done

t2 bset 0,port_c

wait2 Ida port_c

and #$fd

cmp #$fd

beq done

bra wait2

t3 bset 0,port_c

wait3 Ida port_c

and #$fb

cmp #$fb

*
proc 1 is faulty

*
proc 2 faulty

*
proc 3 is faulty

* I am ready.

*
PCO, PCI, PC2,PC3 = 1111

*
processor 1 is too late (time out)

*
processor 2 is too late ( time out)

*
processor 3 is too late ( time out)

* I am ready

* PC- 3,2,1,0 =11X1

* I am ready

* PC- 3,2,1,0 =1X11
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beq done

bra wait3

t4 bset 0,port_c

wait4 Ida port_c

and #$f7

cmp #$f7

beq done

bra wait4

done sei

bset 6,t_cntl

jsr delay3

bclr 0,port_c

rts

* I am ready

* PC- 3,2,1,0 =X111

in case others did not read me yet

****************************************************************************

***
procedure shift ************************************************************

shift ldx #6

send bset 0,port_b

jsr delay2

jsr delay2

bclr 0,port_b

jsr delay2

jsr delay2

lsr port_a

decx

bne send

bset l,port_b

jsr delay2

jsr delay2

jsr delay2

jsr delay2

jsr delay2

bclr l,port_b

*
serial clock of width 100 cycle

send data

*
parallel clock ofwidth 400 cycle

its

*************************************************************************

delay Ida #100

sta count 1

loopl Ida #255

sta count2

loop2 dec count2

bne loop2

dec count 1

bne loopl

rts

* delayl = 512800 cycles

delay2 Ida #10 *

delay of 108 cycle

loop4 nop
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deca

bne loop4

rts

delay3 Ida #5

loop5 nop

deca

bne loop5

rts

*********************

flash Ida #0

sta port_a

jsr shift

jsr delay

Ida #Nr_Er

sta port_a

jsr shift

jsr delay
bra flash

end

*****
tinier int service routine ********************************************

org $250

bset 5,port_b

bclr 7,t_cntl

ldx port_c

Ida port_b

and #$lc

cmp #0

bhi flash

txa

and #$0e

sta status

bset O.status

bclr 5,port_b

rti

end
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MOTOROLA

Advance Information

8-BIT EPROM MICROCOMPUTER UNIT

The MC68705P3 Microcomputer Unit (MCUI is an EPROM member

of the M6805 Family of low-cost single-chip microcomputers. The user

programmable EPROM allows program changes and lower volume

applications in comparison to the factory mask programmable versions.
The EPROM versions also reduce the development costs and turn

around time for prototype evaluation of the mask ROM versions. This

8-bit microcomputer contains a CPU. on-chip CLOCK. EPROM.
bootstrap ROM, RAM. I/O, and a TIMER.

Because of these features, the MC68705P3 offers the user an

economical means of designing an M6805 Family MCU into his system,
either as a prototype evaluation, as a low-volume production run, or a

pilot production run.

HARDWARE FEATURES:

8-Bit Architecture

112 bytes of RAM

Memory Mapped I/O

1804 Bytes of User EPROM

Internal 8-Bit Timer with 7-Bit Prescaler

Programmable Prescaler

Programmable Timer Input Modes

External Timer Interrupt

Vectored Interrupts External, Timer, and Software

Zero-Cross Detection on TnT Input

20 TTL/CMOS Compatible Bidirectional I/O Lines (8 Lines are

LED Compatible!

On-Chip Generator

Master and Power-On Reset

Complete Deyelopment System Support on EXORciser

Emulates the MC6805P2 and MC6805P4 (Except for Vsb>

Bootstrap Program in ROM Simplifies EPROM Programming

SOFTWARE FEATURES:

Similar to M6800 Family

Byte Efficient Instruction Set

Easy to Program

True Bit Manipulation

Bit Test and Branch Instructions

Versatile Interrupt Handling

Versatile Index Register

Powerful Indexed Addressing for Tables

Full Set of Conditional Branches

Memory Usable as Registers/Flags

Single Instruction Memory Examine/Change

10 Powerful Addressing Modes

All Addressing Modes Apply to EPROM, RAM. and I/O

3

MC68705P3

HMOS

(HIGH-DENSITY, N-CHANNEL

DEPLETION LOAD,

6 V EPROM PROCESS!

8-BIT EPROM

MICROCOMPUTER

L SUFFIX

CERAMIC PACKAGE

CASE 719

S SUFFIX

CERDIP PACKAGE

ALSO AVAILABLE

PIN ASSIGNMENT

GENERIC INFORMATION

.1=1.0MHz. Ta =0 10 70CI

Package Type Generic Number

Ceramic

L Suffix MC68705P3L

Cerdip

S Suffix MC68705P3S

"S document contains information on a new product Specifications and information herein

** Subject to change withoul nonce
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