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Abstract
Automated Sleep Classification Using the New Sleep Stage Standards

Elizabeth Ann Fehrmann

Supervising Professor: Dr. Juan Carlos Cockburn

Sleep is fundamental for physical health and good quality of life, and clinicians and researchers

have long debated how best to understand it. Manual approaches to sleep classification have been in

use for over 40 years, and in 2007, the American Academy of Sleep Medicine (AASM) published a

new sleep scoring manual. Over the years, many attempts have been made to introduce and validate

machine learning and automated classification techniques in the sleep research field, with the goals

of improving consistency and reliability.

This thesis explored and assessed the use of automated classification systems with the updated

sleep stage definitions and scoring rules using neuro-fuzzy system (NFS) and support vector ma-

chine (SVM) methodology.

For both the NFS and SVM classification techniques, the overall percent correct was approxi-

mately 65%, with sensitivity and specificity rates around 80% and 95%, respectively. The overall

Kappa scores, one means for evaluating system reliability, were approximately 0.57 for both the

NFS and SVM, indicating moderate agreement that is not accidental. Stage 3 sleep was detected

with an 87–89% success rate.

The results presented in this thesis show that the use of NFS and SVM methods for classifying

sleep stages is possible using the new AASM guidelines. While the current work supports and

confirms the use of these classification techniques within the research community, the results did

not indicate a significant difference in the accuracy of either approach—nor a difference in one over

the other. The results suggest that the important clinical stage 3 (slow wave sleep) can be accurately

scored with these classifiers; however, the techniques used here would need more investigation and

optimization prior to serious use in clinical applications.
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Chapter 1

Introduction

1.1 Problem Statement

Sleep is fundamental for physical health and good quality of life, and clinicians and researchers

have long debated how best to understand it. Sleep is a complex phenomenon [11], and research on

sleep quality and quantification is ongoing.

One prevalent method used to support sleep research involves “sleep stage classification”. For

decades, the scoring of sleep stages has been considered essential for the understanding of sleep

architecture, and this method continues to be used as a standard quantifier in sleep research [7, 12,

13]. Classic approaches to sleep stage classification involve sleep specialists (or sleep technicians)

utilizing a manual technique of scoring. Over the years, however—and in response to the issues

that result from using standard approaches—researchers have been looking for advances that might

improve the efficiency, reliability, and accuracy of the classification process [14, 1].

To that end, the recording of physiological phenomena that occur during sleep made the tran-

sition from paper recordings to computer recordings, and it was only a matter of time before au-

tomated computer classification schemes were developed with the intention of assisting with the

scoring and research of sleep staging [15]. In addition to the potential time savings, the possibility

of reducing the variability in scoring outcomes led to multiple attempts to advance automated sleep

stage classifiers.

The range of attempts at sleep scoring automation have exhibited some success [16]. For exam-

ple, automated classification methods such as artificial neural networks, neuro-fuzzy systems, and

support vector machines have been applied to the sleep scoring problem. Even with that success,

though, recent reviews of these attempts have reaffirmed the need for continued work to improve
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these automated classification schemes [17, 18].

This thesis explores the use of automated classification systems with the updated sleep stage

definitions and scoring rules. In 2007, after years of research and discussion, new sleep guidelines

were published by the American Academy of Sleep Medicine (AASM). The AASM guidelines were

intended to replace the Rechtschaffen and Kales scoring system and are now required for AASM

certification in sleep clinics [13]. Professional opinions of sleep staging are varied: some have

challenged the value of the AASM approach [19], some have questioned sleep staging itself [20, 21],

and some view the five-year old approach as a positive development that invites more research [22].

So, given the ongoing research in sleep classification, the following questions can be asked:

1. Can the new AASM staging definitions be used with an automated process to identify the

stages of sleep correctly?

2. Do implementations that have proven effective in the past show improvements in classification

when using the new AASM guidelines?

3. Is there a difference in performance between classifier implementations using the new AASM

guidelines with respect to sleep features and scoring?

1.2 Thesis Objectives

For years, researchers have been attempting to create automated sleep stage classifiers that can per-

form as well as sleep technicians. These efforts have seen some success—using methods such as

neuro-fuzzy systems (NFS) and support vector machines (SVM)—which suggests the value of the

pursuit of automated sleep systems [23, 24]. However, as noted earlier, the classification standards

have changed, and there have been few, if any, explorations of NFS and SVM methods in conjunc-

tion with the AASM guidelines.

Therefore, the first thesis objective was to automate sleep classification using the new sleep

manual’s stage definitions, using NFS methods, and to evaluate the performance of that automation.

A second objective involved implementing and evaluating a second classifier using SVM method-

ology. The performance of the NFS and SVM classifiers was evaluated as follows.
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First, in keeping with traditional approaches to the evaluation of automated sleep stage clas-

sification, the accuracy of these classifiers was assessed by calculating the percentage agreement

between the automated classification results and the classification performed manually. Because the

manual scoring of sleep stages is still used as a “golden standard,” this calculated agreement pro-

vides a metric indicating whether classifiers using AASM guidelines can be developed to identify

sleep stages correctly.

To offer a perspective of this type of performance evaluation, a recent study reported the percent

agreement between manual and automated scoring (based on 12 studies of automation attempts)

ranging from 50.9% to 89.1% [25]. The results for an automated classification system could be

compared to the manual results with the same sleep data that is equal to or greater than the agreement

result range of 50–89%. This kind of evaluation provides a metric to evaluate whether the AASM

guidelines can be developed to identify sleep stages correctly.

In addition, on top of the basic percent agreement metric, recent discussion of the assessment

of classifier performance emphasizes the use of Cohen’s kappa [26], so kappa scores were also

used as a metric for assessment of the SVM and NFS classifiers. The range of kappa (κ) scores

associated with the agreement scores noted above is κ = 0.55 to 0.81, which indicates moderate to

“almost perfect” agreement, respectively [27]. Unfortunately, the two top agreement scores above,

81% and 89% did not include kappa scores. The classification results of this thesis, though, were

evaluated using kappa. Moreover, other metrics recommended for measuring classification include

“specificity” and “sensitivity” [26], and these are included and discussed in the results section.

The preceding discussion indicates the central approach to evaluating the classifiers developed

for this thesis. However, the accuracy of the NFS and SVM classifiers was also compared to the

accuracy of other NFS and SVM sleep classifiers that had been created with the old R&K sleep

stage standards to see if there were any improvements in classification.

Finally, in addition to the above, the classifiers developed in this thesis were also compared

to each other. Researchers have noted that comparing the relative performance of classifiers using

the same data set is rare [28]. Comparing different classifiers using a single data set can mitigate

differences in the performance results due to differences in data sources, as opposed to differences in

the effectiveness of the classifiers themselves. Therefore, with the use of a single data set for training

and testing both classifiers, this work evaluates the “true” relative performance of the classifiers.
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Chapter 2

Background Theory

2.1 Technical Background

The discussion in this section provides an overview of the technical language that forms the basis

for addressing the thesis objectives stated in section 1.2.

2.1.1 Electroencephalogram and Polysomnography

An electroencephalogram (EEG) is a recording of the voltages generated by brain activity. Elec-

trodes placed at predefined locations on a patient’s scalp (see Figure 2.1) allow clinicians to measure

brain activity by registering the potential differences between certain pairs of electrodes and plotting

the signals—called electroencephalogram, or EEG signals—over time [29].

In the context of sleep staging, these EEG signal recordings are gathered, along with electroocu-

logram (EOG) and electromyogram (EMG) signals (in addition to electrocardiogram and respiration

traces, which will not be used in this analysis), into a single record called a polysomnogram (PSG),

shown in Figure 2.2 [30, 31, 32, 33]. EEG signals recorded for the purpose of sleep staging are

a combination of different frequencies, ranging from 0.5 hertz (Hz) up to approximately 35 Hz,

and typically have an amplitude on the order of microvolts (µV). This broad-spectrum signal is

then broken into sub-bands, called delta (δ), theta (θ), alpha (α), and beta (β), and their frequency

bands range from low to high, respectively. For further discussion of the frequency bands, refer to

section 3.2. Similarly, EOG signals are recordings of the voltages generated by eye movements,

and EMG signals are recordings of muscle movements. All of these recordings are instrumental in

helping clinical sleep specialists (or sleep technicians) with sleep staging—identifying a patient’s

sleep stage based on a set of characteristics observed in the PSG signals.
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Figure 2.1: A diagram showing a top-down view of the 19 standard locations used for the 10-20
EEG electrode placement scheme. The labeled electrodes are as follows: F3 and F4 in the frontal
lobe region, C3 and C4 along the centerline, and O1 and O2 in the occipital region, with electrode
placements indicated by the white circles. Adapted from [1].

2.1.2 Sleep Staging

Sleep staging is very important, as it is typically used to assess and diagnose patients with sleeping

disorders such as sleep apnea or hypersomnia, as well as in more generalized studies to learn more

about the physiology of human sleep. The sleep stages of “normal” (non-disordered) adults typically

cycle through a basic sequence over the course of the night, and that sequence is often referred to as

“sleep architecture” [34, 35]. It has been shown that disruptions of one’s sleep architecture can have

a detrimental effect on cognitive functioning and that certain sleep disorders show distinct patterns

that differ from the sleep architecture of the “normal” population [36, 37]. Therefore, to both aid in

identification and diagnosis of disordered sleep as well as expand the understanding of regular sleep

and its function, it is important that the outcome of these sleep studies be based on an accurate view

of a patient’s sleeping patterns.
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Figure 2.2: A sample PSG file with raw EEG, EOG, EMG, and ECG signals displayed over 30
seconds; channel labels and voltage ranges are shown to the left of the screen. This graph was gen-
erated by the freeware program “Polyman,” which was designed as an European Data Format (EDF)
viewer. The Polyman viewer program developed by Bob Kemp and Marco Roessen was down-
loaded from the “Download” section of the following website: http://www.edfplus.info/index.html.

R&K Methods

The dominant internationally accepted theory on sleep is that different levels and combinations

of EEG wave patterns characterize the different stages of sleep. According to the standard sleep

manual by editors Rechtschaffen and Kales (usually denoted “R&K”), A Manual of Standardized

Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects, there are six

possible sleep stages: Wake (for periods when the subject is awake), Stage 1 (light sleep), Stage 2

(the most prevelant stage in normals), Stage 3, Stage 4 (both stage 3 and 4 are known as deep or

slow-wave sleep stages), and rapid eye movement (abbreviated REM, this stage is also known as

dream sleep or paralysis sleep) [7]. Each stage has its own set of identifiable traits (or features) that

can be observed in an EEG recording.
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The standard method by which sleep stages are classified in clinics is simply by hand. This

manual approach is a very tedious process and requires the sleep lab technicians to stay awake all

night to annotate the EEG recordings and write down the observed sleep stage every 30 seconds—

or every “epoch.” Understandably, this method has been critiqued as error-prone and achieving

good inter-rater reliability has been challenging. One study of inter-rater reliability of technicians

from different sleep centers reported an overall agreement rate of 76.8% [14]. This means that

the same sleep study scored by two different sleep lab technicians would likely have—at least—a

20% difference in the scored stages. Even so, sleep researchers and clinicians have been using the

R&K sleep manual as the “gold standard” for sleep staging since 1968—a little over forty years—

without adapting the sleep stage definitions to technological advances and recent results in sleep

research [12, 17].

AASM Methods

In June of 2007, after years of research and discussion, a new sleep stage scoring manual was re-

leased by the AASM, The AASM Manual for the Scoring of Sleep and Associated Events. Compiled

by authors at the American Academy of Sleep Medicine, this manual is meant to replace the tradi-

tional 1968 manual by R&K and includes revised definitions of the sleep stages and new rules for

sleep scoring [12]. These guidelines are now required for AASM certification in sleep clinics [13].

R&K Versus AASM

The first major difference between the old R&K method and the new method is the total number of

sleep stages. Using the new method, there are only five sleep stages as opposed to six: Wake, Stage

1, Stage 2, Stage 3, and REM.

The sleep scoring is still to be performed on a 30-second interval epoch. The Wake stage

is assigned when the EEG patterns indicate that greater than 50% of each epoch contains alpha

activity—activity in the 8–13 Hz region—or when the existence of slow eye blinks or other irregular

eye movements is detected. Stage 1 sleep is characterized by the disappearance of alpha rhythm and

an increase in low-voltage, mixed-frequency activity (usually comprised predominantly of theta, or

4–7 Hz, activity, but can also include beta activity, or activity greater than 16 Hz) to occupy greater

than 50% of the epoch. The low-voltage, mixed-frequency continues in Stage 2, but it is joined by
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the regular appearance of sleep spindles and K-complexes (two distinctive EEG waveform features,

see Figure 2.3). The new Stage 3 encompasses the definitions of the old Stage 3 and 4 sleep,

which were defined by delta activity—activity in the 0–4 Hz region—in proportions of greater than

20% but less than 50% and greater than 50%, respectively. In accordance with the new manual, a

subject has entered Stage 3 when more than 20% of an epoch contains slow-wave activity, thereby

eliminating the need to look for a specific 20%-to-50% level of slow-wave content. The last possible

stage for scoring is REM. The definition for this stage, like stage 1, is identical to its definition in the

old R&K manual. The stage is labeled REM sleep if it is observed that more than 50% of each epoch

is devoted to low-voltage, mixed-frequency activity—much like Stage 1 sleep—with the addition

of detectable rapid movements of the eyes, thereby defining this sleep stage and giving rise to its

name [7, 1].

Figure 2.3: A graphical illustration—not to scale—of two defining characteristics of Stage 2 sleep:
K-complexes and sleep spindles. Adapted from [1].

2.2 Classifiers and Automatic Sleep Staging

2.2.1 General Classification

Classification is the process of categorizing data into relevant groups. The first step in the clas-

sification process is identifying features or characteristics that will enable distinction between the

different groups of data. Good feature selection is key to a good classifier; if the wrong features are
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used for decisions, it is likely that the classifier’s error rate—the rate of mis-classification—will be

very high. To avoid this, the distinctive features of the data must be chosen with care to be easy

to extract, insensitive to noise, as well as invariant with respect to transformations such as scaling

and translation. Next, a classification model is developed that provides the structure for how the

classification processes’ actions will be realized. Ideally, this model should be chosen such that the

performance of the system is optimized, although it may need to be revised as the classifier design

progresses. A classifier is then implemented and “trained” to recognize the chosen features in the

data, or to determine the best input-to-output mapping. There are many different ways to train clas-

sifiers, but all of them fall into one of two categories: supervised learning and unsupervised learning.

A particular system is said to utilize supervised learning if the system uses a “knowledge expert”

(or a teacher) to create an optimal response for the system, which is used as feedback to the learn-

ing system to increase accuracy; this method is the one that will be used in this work. In contrast,

unsupervised learning occurs when the system does not use a teacher to modify its output. Once the

system has “learned” to recognize and correctly classify specific inputs, the system is ready to be

tested and evaluated with such metrics as speed of computation and accuracy of classification [3, 5].

See Figure 2.4 for a block diagram of the classification flow process.

One of the methods used for automating sleep stage classification is based on artificial neural

networks (or ANN) [38, 28, 39, 40, 41]. These classifiers are occasionally combined with fuzzy

logic decision rules to increase accuracy of classification [42, 43], and the resulting classifiers are

called neuro-fuzzy systems (NFS). Yet another approach to sleep stage classification is the use of

support vector machines (SVM) [44, 45, 24, 46]. Representative classification techniques are briefly

described in sections 2.2.2 through 2.2.5.

2.2.2 Artificial Neural Networks

Artificial neural networks are classifiers modeled on the actual recognition and learning functional-

ity of biological neural networks [3, 4]. A typical neural network consists of one input layer, one or

more hidden processing layers, and one output layer. Figure 2.5 shows an example of an ANN.

The network can be regarded as an input-to-output mapping system: an input is applied to the

input layer, then each hidden node combines the inputs using a transfer (or propagation) function

and node weight, passing the input to other nodes for further processing (if the next layer is another
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Figure 2.4: Action flow of a generic classifier design.

hidden layer) or to the output function for output realization. Figure 2.6 illustrates three popular

propagation functions.

These ANNs are then trained—using either supervised or unsupervised learning processes—to

produce a desired response upon recognition of a certain stimulus. Figure 2.7 illustrates a block

diagram of a supervised learning network structure. To produce the desired result, a known training

set—a set of data for which the classification is already known—is applied to the system and the

weights are adjusted to minimize the error on the output side [3].

2.2.3 Fuzzy Logic

Fuzzy logic, in turn, is a way to describe a mathematical model that attempts to classify data cor-

rectly whose classification characteristics are vague or imprecise [5], or a way to deterministically
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Figure 2.5: A sample artificial neural network, with inputs signals xn and output signals yn.
Adapted from [3].

Figure 2.6: A selection of ANN propagation functions, from left to right: step, sigmoid, and linear
transfer functions. Adapted from [3]. The sigmoid function is the most popular because of its
general robustness and efficiency [4].

infer the outcome of a particular decision using approximate reasoning [47]. The function that de-

fines a particular data point’s inclusion in a set is called a membership function, and many such

functions exist to approximate fuzzy sets as accurately as possible [48]. Figure 2.8 illustrates the

difference between a binary, or “crisp” set and a fuzzy set. Given the varying degrees of member-

ship of features in one group or another, fuzzy logic allows a feature to be defined as belonging

to more than one class. The combination of this fuzzy logic with neural nets leads to neuro-fuzzy

systems (NFS).
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Figure 2.7: A block diagram of a supervised learning system; a neural network structure could be
put in place as the “learning system”, while a set of data with known outcomes could be used as the
“teacher” to minimize the error in the network’s response. Adapted from [3].

Figure 2.8: A comparison of a binary membership function (left) to a fuzzy membership function
(right). If the characteristic under investigation is “tall”, the function on the left will include only
those data points greater than or equal to 170 centimeters, when 169 centimeters should perhaps be
included. The function on the right, however, dictates degrees of membership, and therefore allows
varying degrees of how “tall” the sample is. Adapted from [5].

2.2.4 Neuro-Fuzzy Systems

Fuzzy logic, by itself, is a good way to approximate a reasoning process, but it lacks the ability

to optimize its membership functions and rules based on a given data set. Neural networks have
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the ability to learn, but their decision capabilities are coded in the node weights and hard to inter-

pret. Neuro-fuzzy systems combine the strengths of both, the fault-tolerance and adaptability of the

ANN and the ability of fuzzy logic to use prior knowledge of the problem. This way, the NFS has

increased learning functionality, able to “learn” (or optimize) fuzzy rules and membership functions

that are specific to the data set of interest [47, 5]. That is, neuro-fuzzy systems do not combine

ANNs and fuzzy logic, but instead use the ANN to create a fuzzy system via a heuristic learning

method that leverages the learning procedures of the neural networks [49].

Figure 2.9: A generic diagrammatic implementation of one neuro-fuzzy-type system structure—
called an Adaptive Network-based Fuzzy Inference System (ANFIS)—that has two inputs (x1 and
x2), five intermediate processing layers, and one output (y). Adapted from [5].

The structure of an NFS is similar to a neural network structure: inputs are passed along and

processed by one or more hidden layers that apply fuzzy logic-based transfer functions and weights

(which can be modifying by the network’s learning capabilities), and then combine the results into

a single output decision. A sample diagram of the structure of these systems is provided in Figure

2.9.

Neuro-fuzzy methods can be applied if a fuzzy system is used for classification problems can

be supported or replaced by an automatic learning process. This is meant to reduce the time and er-

rors associated with manual modifications of the fuzzy decision logic, and to aid in the introduction

of prior knowledge to and interpretation of the results produced by the neural networks. Systems

called “Takagi-Sugeno” fuzzy systems are often used as a base for NFS solutions in function ap-

proximation problems [49]. Details of the system are described further in section 3.4.1.

In sleep-related studies that used NFS for sleep classification, researchers have been able to
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achieve about 76–84% agreement rates [42, 50] when compared to sleep stage classification per-

formed by human experts.

2.2.5 Support Vector Machines

There is a type of learning machine called a support vector machine (SVM) that classifies elements

according to a scheme based on statistical learning theory in an effort to minimize the error and

maximize the class separation interval [51, 6].

A support vector machine maps input vectors to a high-dimensional, linear feature space through

a non-linear mapping, and then constructs an optimal separating hyperplane between the classes.

With a particular data set made of features (known as the input space), it increases the dimensionality

of the problem until it can find a hyperplane separation between the classes in the feature space [6].

A “maximum margin” hyperplane is created with all points corresponding to one class on one side

of the plane and all points corresponding to the other class on the other side, such that the distance

from the plane to the closest data points of both classes is at a maximum. Those points close to the

plane become the support vectors (see the large “O’s” and large “X’s” in Figure 2.10) used to define

the plane.

Figure 2.10: A sample hyperplane separating two data sets: the X’s and the O’s. The “maximum
margin” hyperplane is defined using the data points closest to the plane, called the “support vectors”
(indicated by the large X’s and O’s in the diagram), that maintain the maximum possible distance
between those supporting points—or vectors—and the plane. Adapted from [6].

The maximal margin hyperplane is the simplest SVM, but works only on linearly separable
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data, and therefore does not generalize well to non-linear or non-separable cases. If the data are not

linearly separable, the optimization is modified to account for noise and outliers and allow erroneous

classifications with a penalty. This type of SVM is known as a soft-margin SVM classifier [44, 52],

and details of the system are described further in section 3.4.2.

In studies that looked at using SVM classifiers to score sleep automatically in humans, re-

searchers have been able to achieve approximately 80–90% agreement rates [44, 45] when com-

pared to a sleep lab technician’s stage classification; 86–96% agreement has been seen in studies

that looked at classifying sleep in rats [24, 46].

Clearly, with the updated sleep manual, the necessity arises for all of the previous automatic

staging methods to be revised to conform to the new standards set forth by AASM, and this suggests

the value of further research on staging efficacy utilizing NFS and SVM classifiers as automatic

sleep staging systems.
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Chapter 3

Data and Methods

In this section, the data collected and the methods used to process that data will be discussed.

Construction of the classifiers will also be addressed.

3.1 Data Acquisition

This thesis used data gathered from the Sleep Heart Health Study Database1. The Sleep Heart

Health Study (SHHS) was a prospective cohort study designed to assess the relationship between

sleep-disordered breathing (SDB), such as obstructive sleep apnea (OSA), and the development of

cardiovascular disease. Approximately 6,440 participants (aged 40 years and older with no history

of OSA treatment) were enrolled and completed home-based sleep monitoring periods [53]. The

resulting files were consolidated into the SHHS database and made available to the public for re-

search purposes. Research criteria that were used to narrow the number of records for use in this

work were the following:

• The overall study quality grade was equal to or greater than a score of “Excellent.”

• The total time in bed was equal to or greater than 7 hours (420 minutes).

Of the resulting 571 available records that matched the given criteria, twenty-five subject data

files were randomly chosen from the restricted pool for inclusion. The status of the subjects’ disease

states were ignored—even though sleep disorders can alter sleep architecture [37]—since the main

1“The findings in this report were based on publicly available data made available through the Sleep Heart Health
Study (SHHS). However, the analyses and interpretation were not reviewed by members of the SHHS and does not reflect
their approval for the accuracy of its contents or appropriateness of analyses or interpretation.” (SHHS Data Distribution
Agreement)
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Table 3.1: A breakdown of the number of samples (and subsequent percentage) per sleep stage for
the data used in this work. A “sample” indicates one epoch of time, described earlier in section
2.1.2.

Sleep Stage Number of Samples Percent of Data
Wake 9967 32.17%
Stage 1 1348 4.35%
Stage 2 12418 40.09%
Stage 3 2744 8.86%
REM 4496 14.51%

purpose of this work is identification of sleep patterns and stages in and of themselves and not the

relation of disease states to sleep staging or sleep architecture. Table 3.1 provides a breakdown of

the proportions of the 25 data files used by sleep stage.

3.2 Data Pre-Processing

Before the data could be classified by sleep stage, they required some pre-processing to clean the

signals and extract relevant features for classification. The matrix manipulation software Matlab2

was used for all the processing and classification development in this work.

3.2.1 AASM Recommendations

The guidelines that follow are taken from the 2007 AASM manual [1].

Data Sampling and Filtering

The AASM manual calls for the data to be sampled at a minimum rate of 200 Hz, with an ideal

sampling rate of 500 Hz for the EEG, EOG, and EMG channels. The manual also recommends

“routinely recorded filter settings” to provide some hardware filtering of the electrode signals to

provide technicians with the ability to select important sleep characteristics visually. Those settings

require that the EEG and EOG channels be bandpass filtered with cutoff frequencies of 0.3 Hz and

35 Hz, while the EMG channels should be filtered such that frequencies in the 10–100 Hz range are

passed.

2Matlab R© Student Version 7.7.0 (R2008b) was the version used and will be noted as “Matlab” in this document.
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EEG

To support the new visual scoring rules presented in the AASM manual, it is recommended that

the EEG electrode derivations used for staging be the following: F4-M1, the electrode on the right

frontal lobe minus the reference electrode on the left ear (this reference electrode was traditionally

referred to as A1 in the old R&K scoring manual, but it is now referred to as M1); C4-M1, the

electrode to the right of the center ridge minus the left ear reference electrode; and O2-M1, the

electrode on the right occipital lobe minus the left ear reference electrode. This recommended

placement of electrodes ensures that the scoring algorithm will have the most overall coverage of

the EEG activity in the frontal, center, and occipital regions. Refer to Figure 2.1 for the complete

electrode layout.

EOG

The EOG channel derivations that are used are given as well, and they are as follows: E1-M2, the

electrode placed one centimeter below the outer corner of the left eye minus the reference electrode

on the right ear; and E2-M2, the electrode placed one centimeter above the outer corner of the right

eye minus the right ear reference electrode. See Figure 3.1 for an EOG electrode placement diagram

(labeled E1 and E2).

EMG

To record the muscle movements, a set of three electrodes is typically placed on and around the

jawbone, one above and two below the inferior edge of the mandible. A single output is derived

by taking the derivation between the electrode above and referencing it to one of the two electrodes

below (one electrode is a backup in case the other malfunctions). Figure 3.1 illustrates the placement

locations of these electrodes (labeled EMG), along with the reference electrode locations (M1 and

M2).

3.2.2 SHHS Data Recording Procedures

The SHHS utilized data that were collected using an acquisition tool that had the capability of

recording a full polysomnographic electrode montage at 500 Hz. The channels that were recorded
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Figure 3.1: EMG, EOG, and reference electrode placement diagram; black dots indicate recom-
mended electrode locations, which are the same for both the R&K and AASM guidelines. Adapted
from [7] based on guidelines given by [1].

were C4-M1 and C3-M2 (EEG), standard EOG, and chin EMG, among others. The sleep data were

then reviewed for quality and scored manually according to R&K standards by a central reading

center in an attempt to provide consistency in sleep stage classification across all data sets [53].

The SHHS data used sampling rates of 125 Hz to collect the EEG and EMG signals and 50

Hz to collect the EOG signals. Additionally, only one of the three AASM-recommended EEG

channel derivations (C4-M1) was collected. While these are not the recommended frequencies, nor

the complete complement of recommended channels, a case can be made for the sufficiency of the

information in the signals as recorded for the SHHS:

• Freely available, adequate data sets that follow all of the AASM recommendations for channel

derivations and that contain sleep stages scorings according to AASM guidelines are not

available at this time. Others who have published work on automation development during

this transitional period have also cited the need for data [54].

• Recent studies have noted the explicit use of AASM scoring guidelines for their studies in-

volving sleep using only the central (C4-M1) channel—or the central and occipital, with no
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frontal channel—for recording EEG [28, 55, 56, 57].

• The AASM guidelines recommend the frontal (F4), central (C4), and occipital (O2) set of

channels to maximize the chances for obtaining the necessary EEG information for certain

stages. It does not state that there is no chance of seeing the same information for all stages if

one uses only the central derivation [1].

• Other researchers have used the central channel to develop approaches to automated sleep

stage classifications that they believe will be easily translated for use with the AASM guide-

lines when data collected according to the AASM standards are more readily available [54].

3.2.3 EDF to ASCII Data Conversion

Since the data processing and classification was performed in Matlab, the data needed to be format-

ted in such a way that it could be imported into Matlab. The SHHS data files are all in European

Data Format (EDF) [58, 59]. Matlab does not have built-in functions to handle EDF data, so the files

were converted to ASCII-formatted data files using a freeware program called the “EDF-to-ASCII

Converter”3. The result of the conversion is two files: a “.ascii” file containing all the raw data

samples for a particular electrode channel, and a “.txt” file containing information on the signal’s

source file, recording time, label, sampling frequency, and physical value conversion. All of the

generated “.ascii” and “.txt” files belonging to a subject were assembled in a subject folder with a

number designation (e.g. “01”).

The resulting ASCII files, each containing a different channel of data, were then loaded into

Matlab for processing. The ASCII file is imported into Matlab as “raw” data, which then must

be converted into the physical values of micro-volts (µV). The ASCII-to-microvolt conversion fac-

tor was taken from the channel-specific “.txt” files, and the formulas for conversion are shown in

equations (3.1), (3.2), and (3.3):

EEG(µV ) = (ASCII + 32768)× 0.00381475547417411− 125 (3.1)

EMG(µV ) = (ASCII + 128)× 0.247058823529412− 31.5 (3.2)

3The EDF-to-ASCII converter program developed by Bob Kemp and Marco Roessen was downloaded from the
“Download” section of the following website: http://www.edfplus.info/index.html.
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EOG(µV ) = (ASCII + 128)× 0.980392156862745− 125 (3.3)

3.2.4 Data Filtering

Once the data have been converted to real-world values, the next step in the process is to filter the

data according to the AASM requirements—0.3–35 Hz for both the EEG and EOG signals, and

10–100 Hz for the EMG signal. These filter settings are given so that labs will have them in place

while recording to capture the signal characteristics of interest, but it is also important that any noise

introduced post-recording is filtered out using the same standards. Eighth-order elliptic filters with

0.1 dB pass-band ripple and an 80-dB stop-band were chosen for their relatively pass-band and quick

roll-off at the cutoff frequencies, and implemented using the Matlab function ellip. Choosing

the cutoff frequencies to limit the signals’ frequency content, however, had to be performed with

care, given the fact that the actual data acquisition frequencies (50 and 125 Hz) do not follow the

recommended minimum 200 Hz collection rate.

The Matlab filter design tool adheres to rules that will not allow a filter to be built that is more

than half of the collection frequency due to the following: generally, to have sufficient information

at that highest necessary frequency, the sampling rate (fs) of the acquisition must be at least two

times that high cutoff due to the Nyquist frequency (fN ) rule (3.4):

fs (Hz) > fN (3.4)

The minimum sampling rate must satisfy the Nyquist Rate, so the sampling frequency must be

greater than twice the highest frequency in the signal, as shown in (3.5) below:

fN = 2×B, (3.5)

where B, in this case, is the high-end cutoff of the bandpass filter. With that, then, the minimum

required sampling rate for the EEG data channel would be 2 × 35 (Hz) = 70 (Hz), which the

available 125 Hz fulfills, allowing the EEG band-pass filter to be designed as requried by the AASM

manual. See Figure 3.2 for the frequency response of this filter.

The EMG and EOG channels, however, needed to be handled separately. Neither of them satisfy
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Figure 3.2: Filter used to extract the desired 0.3–35 Hz frequencies from the EEG signal as dictated
by the AASM manual; the magnitude response is in the plot on the left, and the phase response in
the plot on the right.

the Nyquist rule, as we would like to see a minimum sampling rate of 70 Hz on the EOG channel—

where there is only a maximum fs of 50 Hz—and a minimum sampling rate of 200 Hz on the EMG

channel—where there is only a maximum fs of 125 Hz. However, with careful inspection, the

signals do still provide adequate signal information. The signal range needed for the EOG channel

is 0.3–35 Hz (same frequency range as the EEG). Therefore, the 50 Hz sampling rate used to record

the EOG is more than adequate to capture the signals of interest, and to achieve the recommended

0.3–35 Hz range, the signal was high-pass filtered at 0.3 Hz, making the final range 0.3–50 Hz.

Similarly, the EMG signal, sampled initially at 125 Hz, is passed through a 10 Hz high-pass filter to

achieve a signal range of 10–125 Hz, which is close to the recommended 10–100 Hz output.

The alternative to using only high-pass filters was to design band-pass filters using the maxi-

mum allowable filter cutoff frequencies, which for the EMG signal would have been 125 (Hz)/2 =

62.5 (Hz) and for the EOG signal would have been 50 (Hz)/2 = 25 (Hz). It was thought that this

alternate course would take away too much signal information at the higher frequencies, and there-

fore the decision to proceed with only high-pass filters for the EMG and EOG signals was made.

The filters are shown in Figure 3.3.

These filters were then applied to their respective matrices using the function filter, which

creates a one-dimensional digital filter (implemented as a direct form II transposed structure). The
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Figure 3.3: Filters designed for pre-processing the EOG and EMG data, with magnitude (on left)
and phase response (on right). A 0.3 Hz high-pass filter was used for EOG and a 10 Hz high-pass
filter was used for EMG.

difference equation implemented by the filter function is:

y(n) = b(1)x(n) + b(2)x(n− 1) + . . .+ b(nb+ 1)x(n− nb) (3.6)

− a(2)y(n− 1)− . . .− a(na+ 1)y(n− na),

where b(n) and a(n) are the coefficients of the filter, n− 1 is the filter order, x is the input vector to

be filtered, and y is the output of the filter. The transfer function corresponding to that equation is:

Y (z) =
b(1) + b(2)z−1 + ...+ b(nb+ 1)z−nb

1 + a(2)z−1 + ...+ a(na+ a)z−na
X(z) (3.7)

The filter function takes three parameters: a vector of the filter coefficients from the nu-

merator (the b(n) coefficients), a vector of the filter coefficients from the denominator (the a(n)
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coefficients), and the input vector to be filtered (the EEG, EOG, and EMG data).

3.2.5 Epoch Breakdown

After filtering, or “pre-conditioning,” the data channels were segmented into epochs—independent,

consecutive, 30-second-long sections of data containing each of the four channels—for scoring

purposes, as dictated by the AASM manual. The number of samples in each epoch was determined

by the sampling rate. Since the sampling rate was 125 Hz for the EEG and EMG channels, and 50

Hz for the EOG channels, the number of samples per epoch was 30 seconds×125 samples/second =

3750 samples and 30 seconds× 50 samples/second = 1500 samples for the channels, respectively.

Data structures were created with the following fields (and number of samples):

• “eegc4”: the C4-M1 EEG channel data (3750 samples)

• “eogl”: the EOG channel data from the left eye (1500 samples)

• “eogr”: the EOG channel data from the right eye (1500 samples)

• “emg”: the EMG channel data (3750 samples)

• “subj id”: an identifier for the data set, labeled by the folder from which the raw data came

The number of epochs per subject (N ) varied depending on how long the subject’s recording

lasted, and the first and last epochs of data for each set were thrown out due to the minor distortions

caused by the filtering process used per the discussion in section 3.2.4.

3.2.6 Sleep Staging

In addition to the EEG, EOG, and EMG channel information, each subject’s data set had a file

containing a professional’s sleep stage scoring annotations associated with the recording. These

text files contained the sleep stage codes that are used to identify the stages: “0” for Wake, “1” for

Stage 1 sleep, “2” for Stage 2 sleep, “3” for Stage 3 sleep, and “5” for REM. There were other codes

present in these vectors, such as “4” and “9”, with the inclusion of stage 4 due to the fact that the

SHHS study used the R&K rules for scoring. To create sleep stage annotations that focus on scoring

only genuine sleep according to the AASM standards, all of the Stage 4 codes found in the sleep
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stage code vectors were changed to “3” since there is no distinction of Stage 4 from Stage 3 in the

AASM manual [1]. All other codes found were assumed to indicate events like movement time,

were given a value of “-1” as a marker, and were ignored in later processing steps. This modified

vector, then, became a sixth field in the subject’s data structure (as described in the previous section,

3.2.5) with the label “sleep stages.”

3.2.7 Preprocessing Summary

Finally, the preprocessing routine steps are summarized in the following pseudo-code:

Algorithm 1 Raw sleep data preprocessing

for all patients do
importdata(EEG, EMG, EOG)
fs ← sampling frequency
convert ASCII data→ µV
filtered data← filter(EEG @ 0.3–35 Hz, EMG @ 10 Hz, EOG @ 0.3 Hz)
sleep stages← sleep technician scores
number of epochs = study length (secs) ÷ 30 seconds/epoch
samples per epoch = fs × 30
for i = 1 to number of epochs do

get current epoch using samples per epoch and i
[EEGC3, EEGC4, EMG, EOGL, EOGR, sleep stages]← filtered data(current epoch)

end for
end for

3.3 Feature Selection and Extraction

Once all of the patients’ data files had been processed as detailed in the previous section (3.2),

specific sleep stage characteristics—or features—needed to be extracted from the epochs. The

features that were extracted were chosen to reflect the visual staging rules that are detailed by the

AASM sleep manual as much as possible, at least to the extent that an automated system is able

to identify certain characteristics. For example, stage “Wake” has the following rule: “more than

50% of the epoch must display alpha rhythm in the occipital region for the epoch to be scored as

‘W.”’ Since there exist quite a few methods to extract the alpha-band frequency activity successfully

(8–13 Hz) from the background EEG signal (such as spectral analysis or digital filtering [2]), it is
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Table 3.2: Stage characteristics as defined by AASM and features extracted for this program [1].

Sleep Stage Visual Rule Features Extracted Relevant to Stage
Wake 50% or more of epoch dedicated

to alpha rhythm
Energy in alpha (8–16 Hz) frequency band

Stage 1 Attenuated alpha rhythm and
50% or more of epoch dedi-
cated to low amplitude, mixed
frequency activity

Energy in theta (4–8 Hz) and beta (>16 Hz)
frequency bands

Stage 2 The presence of K-complexes
(unassociated with arousals) and
sleep spindles with a continu-
ation of low amplitude, mixed
frequency activity

K-complexes and sleep spindles

Stage 3 20% or more of epoch dedicated
to slow wave activity

Energy in delta (0.3–4 Hz) frequency band

REM All of the following present:
low amplitude, mixed frequency
EEG, low chin EMG tone, and
rapid eye movements

Eye movements, tonic and phasic EMG

acceptable for automated systems to evaluate the alpha-band frequency based on characteristics

such as mean amplitude, mean frequency, and energy ratios [2, 60].

Table 3.2 summarizes the stages and stage characteristics (or visual rules) as defined by the

AASM sleep manual, and it also shows the characteristics that were chosen to be extracted for each

stage. It should be noted that the rules given are generalized rules and will not necessarily apply to

all sleep samples, so only the extraction of the most generalized features that should be present for

most all subjects (regardless of varying factors such as age) and features that are unique for each

stage (such as extracting sleep spindles to help define Stage 2) are pursued.

The means by which researchers go about handling the extraction process varies greatly. Notable

stage features and their extraction methods are shown in Table 3.3. Of the features chosen for

extraction, four of them deal with energy in the various frequency bands. To get an accurate picture

of this, then, wavelet decomposition was determined to offer the best separation mechanism between

bands of different frequencies in biological signals [61, 43, 4, 41].
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Table 3.3: Listing of possible methods for sleep feature extraction, first two columns are adapted
from [2].

Sleep Pattern Possible Methods Chosen Method
Alpha (α) waves Period-amplitude analysis, spectral analy-

sis, digital band-pass filter
Wavelet decompo-
sition

Delta (δ) waves Period-amplitude analysis, spectral analy-
sis, digital band-pass filter, model-based
detector

Wavelet decompo-
sition

Sleep Spindles Digital filters, neural networks, matched
filtering, wavelets

Match filter

K-complexes Neural networks, matched filtering,
wavelets, model-based detector

Match filter

Eye movements Matched filtering, rapidly adapting neu-
ronal fuzzy system, discrete wavelet trans-
form, period-amplitude analysis

Match filter

Tonic muscle movements Trimmed root-mean-squared amplitude RMS amplitude
Phasic muscle movements Maximal peak-to-peak amplitude Max peak-to-peak

amplitude
Artifact (removal) Digital filtering, autoregressive-modeled

filter smoothers, adaptive noise cancellers,
independent component analysis

Digital band-pass
filter

3.3.1 Wavelet Decomposition for Feature Extraction

For effective, adaptive analysis of the frequency components of biological signals, wavelet decom-

position is often used. Signals such as EEG are non-stationary, dynamic, and often noisy, which can

make them difficult to analyze using methods like Fourier transforms. The discrete wavelet trans-

form (DWT) is a type of decomposition in which the input signals are split in two and the lower

frequencies are filtered and decimated repeatedly as needed until the desired frequency ranges are

extracted [41, 4]. This is illustrated in the diagram in Figure 3.4 below.

The wavelet decomposition function in Matlab, called wavedec, takes information about the

number of desired levels of decomposition and the wavelet type and outputs the wavelet decom-

position vector containing the sub-band signals. These sub-bands can then be analyzed sepa-

rately as needed. Matlab has many wavelet types available, but researchers have suggested that

the Daubechies second-order wavelet is a good choice [41, 40]. The scaling function—φ(t)—and

wavelet—ψ(t)—for second-order Daubechies wavelets are shown in Figure 3.5.
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Figure 3.4: An illustration of how wavelet decomposition splits, filters, and decimates the signal
into two sub-bands: the lower half of the frequency band in one output, and the upper frequency
band in the other. Adapted from [8].

Figure 3.5: The scaling (left) and wavelet (right) functions associated with the second-order
Daubechies wavelets. Adapted from [9].

3.3.2 Wake Stage Features

For the first stage, Wake, the manual indicates that one should look for more than 50% of the epoch

to be alpha activity, so the feature chosen for extraction to represent the Wake stage was the energy in

the alpha (8-16 Hz) band. The alpha frequency band was extracted from the rest of the background

EEG using wavelet decomposition.

The “energy” of the signal is then computed using the Matlab function wenergy, which com-

putes the percentage of energy in the signal sub-band of interest. To do this, it first computes the

2-norm, or Euclidean norm, of the wavelet coefficients and of the entire signal. Equation (3.8)
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Figure 3.6: A sample of the output of wavelet decomposition performed on an epoch of sleep
marked “Wake”. The original signal is shown in the top plot, and then the decomposed signals in
each of the four sub-bands of interest: β, α, θ, and δ (from the second plot down). The units on the
y-axis are µV. Note the relatively large amplitude of α content and the presence of sharp, irregular
eye movements that appear on the δ band.

illustrates the calculation for the 2-norm.

‖x‖2 =
√
x21 + . . .+ x2n =

√√√√ N∑
n=1

x2n (3.8)

Then, the “relative energy”—or the ratio of energy in particular frequency band to the overall

energy of the signal—is computed using the following equation (3.9):

Relative Energy = 100×
‖xwave coeffs‖22
‖xsignal‖22

(3.9)

3.3.3 Stage 1 Features

For the identification of Stage 1, the AASM definition states that “alpha rhythm is attenuated and

replaced by low amplitude, mixed frequency activity for more than 50% of the epoch” [1], and
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from that, it was determined that the unique stage feature to be extracted was the presence of “low

amplitude, mixed frequency” activity, and typically includes activity in the theta (4–8 Hz) and beta

(>16 Hz) frequency bands; therefore, the feature selected for Stage 1 was the energy in the theta and

beta frequency bands. First, those bands were extracted from the background signal using wavelet

decomposition (see Figure 3.7 for a sample Stage 1 decomposition), and then the wenergy function

was used to compute the relative energy in those portions of the signal.

Figure 3.7: A sample of the output of wavelet decomposition performed on an epoch of Stage 1
sleep. The original signal is shown in the top plot, and then the decomposed signals in each of the
four sub-bands of interest: β, α, θ, and δ (from the second plot down). The units on the y-axis
are µV. Note the disappearance of the peaked eye movements and the reduction in α band activity
(compared to 3.6).

3.3.4 Stage 2 Features

Stage 2 has what are probably the two most visually discernible characteristics of sleep: K-complexes

and sleep spindles. Predictably, the AASM sleep manual states that one should begin scoring an

epoch as stage two when either of these characteristics appear, unassociated with an arousal (an

abrupt shift in frequency). The features that were extracted then for identification of Stage 2 sleep
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were both K-complexes and sleep spindles. Since both of these characteristics have a well-defined

shape and approximate standard frequency they can be effectively extracted using match filters. The

concept of match filtering is as follows: a template pattern is defined to “match” the signal pattern

hidden in the background EEG, then the template is compared to the EEG signal using convolu-

tion or correlation, and “matches” between the signal and the template can be quantified. Due to

the non-symmetric nature of the K-complex, the template was compared to the EEG signal using

correlation. Sleep spindles, however, are symmetric, and could be located using either method of

comparison. For this work, correlation was the chosen method. Figure 3.8 illustrates the match

filters used in this step.

Figure 3.8: Match filters used to extract K-complexes (top) and sleep spindles (bottom) for idendifi-
cation of Stage 2 sleep. Filter magnitudes are shown on the left, with their corresponding frequency
responses on the right.

Since the duration of sleep spindles—to be considered spindles—must be at least 0.5 seconds,
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the time-scale length of the template was fixed at approximately 0.5 seconds. Spindles can last

longer than 0.5 seconds, but require a minimum of 0.5 seconds to meet the requirements of a sleep

spindle; therefore as long as the template detects at least a 0.5-second run of spindle-frequency

activity, the spindle train can continue after the 0.5-second template and not adversely affect the

operation of the template’s correlation. The dominant spindle frequencies are in the 11–16 Hz band,

with most occurring between 12 and 14 Hz. The center frequency of the match filter was set at

13 Hz with a fractional bandwidth of 0.08 (or 8%, meaning the bandwidth is 13±8%, which is

approximately 12–14 Hz).

The frequency of K-complexes is approximately 1 Hz (or the wave shape normally occurs over

the course of one second) therefore the template was designed to have a time-domain duration of

one second.

3.3.5 Stage 3 Features

The AASM manual defines Stage 3 sleep as slow-wave sleep, and an epoch should be scored as

Stage 3 when more than 20% of the epoch is dedicated to slow-wave, or slow delta, activity (0.3–4

Hz). Since that is the only defining characteristic for Stage 3, it becomes the extracted feature by

default. Similar to the way that alpha and theta frequencies were extracted previously, this delta

frequency band is evaluated by wavelet decomposition and percent energy. See Figure 3.9 for an

EEG sample of Stage 3 sleep decomposed into its sub-bands.

3.3.6 REM Stage Features

Stage REM (or R) contains two unique characteristics that are not seen in other stages: very low

chin EMG “tone” (or low levels of muscle movements) and rapid eye movements, the latter of which

gives this stage its name. These two characteristics, then, were chosen to be the extracted features.

The eye movements, located in the EOG signal, are sharp peaked waves and their semi-regular

shape allows them to be extracted using a match filter, as shown in Figure 3.10.

The chin EMG signal needs to be evaluated for low amplitude, so RMS amplitude and maximal

peak-to-peak amplitude were chosen to represent this feature [2]. The RMS amplitude was com-

puted in Matlab by taking the 2-norm of the signal and dividing by the square root of the length of
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Figure 3.9: A sample of the output of wavelet decomposition performed on an epoch of Stage 3
sleep. The original signal is shown in the top plot, and then the decomposed signals in each of the
four sub-bands of interest: β, α, θ, and δ (from the second plot down). The units on the y-axis are
µV. Note the relatively low amplitude of β, α, and θ band activity and the large amplitude of the δ
band activity.

the signal as shown below in equation (3.10):

xRMS =

√√√√ 1

N

N∑
n=1

x2n (3.10)

The peak-to-peak amplitude was computed simply as the maximum value minus the minimum

value, as shown in equation (3.11).

Amppeak−to−peak = max(x)−min(x) (3.11)

3.3.7 Linear Scaling and Normalization

Problems with feature bias in classification can arise when the numerical range of the features have

large variability with respect to one another [46], as when the magnitude of the range of one feature
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Figure 3.10: Match filters used to extract random eye movements (REMs). The filter magnitudes
are shown at the top (left eye channel filter on the left and right eye channel on the right) and the
frequency response is shown below.

is much greater than that of another. For example, the energy percentages calculated as a means

of extracting information about different frequency bands will fall in the range of zero to one only,

while the phasic EMG calculations can range from approximately 7 µV up to 200 µV (empirically

determined from the data set), and therefore result in a classifier that would be much more sensitive

to changes in the EMG signal than changes in the energy computations. One method of scaling to

eliminate bias includes scaling the data to have zero mean and unit variance, but for this work the

feature values were linearly scaled to the range of [-1 1] [62, 44].

The scaling was accomplished by taking the maximum and minimum values for each of the
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Table 3.4: Features extracted for use in classification along with their abbreviations (right column).

Feature
Number

Description Abbreviation

1 Delta (δ) band energy δ

2 Theta (θ) band energy θ

3 Alpha (α) band energy α

4 Beta (β) band energy β

5 Sleep spindles SS
6 K-complexes KC
7 Left eye movements EOGL
8 Right eye movements EOGR
9 RMS muscle movement EMGRMS

10 Max amplitude muscle movement EMGMAX

features. Then, midpoints were determined using the calculation shown in equation (3.12):

mid val =
max val −min val

2
+min val (3.12)

Once the minimum, maximum, and midpoint values were determined, each feature value was

recomputed using equation (3.13) to scale each feature according to its individual range (thereby

resulting in numerical features in the range [−1 1]):

feature valnew =
feature valold −mid val
max val −mid val

(3.13)

3.3.8 Feature Summary

In total, ten features were extracted from the EEG, EOG, and EMG data signals (summarized in

Table 3.4): energy in the delta, theta, alpha, and beta frequency bands, sleep spindles, K-complexes,

eye movements in the left and right eyes, and two different calculations of muscle movements. Each

set of features (one for each epoch) then formed a 10-element vector, which was appended to an

N -by-10 feature matrix (where N is the number of epochs recorded for a particular patient) to be

passed on to the classifiers.

There are other rules and characteristics of sleep that are routinely observed and recorded but

whose features are not strictly part of the definitions for one of the five sleep stages, including

heart rate (electrocardiogram or ECG), arousals, limb movements, and respiratory rate or airflow.
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Some of these may be counted as their own type of “stage” (such as movement time) or used to

help conclusively diagnose sleep disorders (such as monitoring nasal airflow in patients with sleep

apnea), but these other features were ignored in this work in favor of focusing on classifying only

the five sleep stages as defined by AASM.

3.4 Design of Classifiers

For the purpose of this work, it was determined that designing both a neuro-fuzzy system and a

support vector machine from scratch would not be necessary. Matlab toolboxes were used which

provided the functions needed to create NFS and SVM classifiers.

The portions of the two systems that could be modified were the parameters used to affect the

design of both the NFS and the SVM. These parameters are discussed in the following paragraphs.

3.4.1 Neuro-Fuzzy System Design

There are many different types of neuro-fuzzy system implementations, but one commonly used is

the Adaptive Network-based Fuzzy Inference System (ANFIS), which is an NFS architecture de-

veloped by J.R. Jang. The structure provides an NFS solution that implements a Sugeno-type fuzzy

system. The system has few constraints—it must be a feed-forward network with node functions

that are continuous or piecewise differentiable—making it applicable to a variety of classification

problems [5, 63].

For inputs [x1, x2, . . . , xn], the fuzzy if-then rules take the following form [5, 63, 64]:

If x1 is A1
1 ∧ x2 is A1

2 ∧ . . . ∧ xn is A1
n then y1 = f1(x1, x2, . . . , xn) = a10 + a11x1 + . . .+ a1nxn

. . .

If x1 is Ar1 ∧ x2 is Ar2 ∧ . . . ∧ xn is Arn then yr = f r(x1, x2, . . . , xn) = ar0 + ar1x1 + . . .+ arnxn

The rules that make up the system must be known in advance, as ANFIS only adjusts the premise

and consequent parameter values. For a sample two-input (x1 and x2), the rules would be:

If x1 is A1
1 ∧ x2 is A1

2 then y1 = f1(x1, x2) = a10 + a11x1 + a12x2

If x1 is A2
1 ∧ x2 is A2

2 then y2 = f2(x1, x2) = a20 + a21x1 + a22x2

The network operation using those two rules, then, is as follows [5, 63]:
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1. The first layer—the inputs are not counted as a layer—contains nodes that encompass the

“premise parameters”, or input membership function parameters. The membership functions

are the interpretations of the quantifiers An, and follow the form:

O1
n = µAn(x), (3.14)

where x is the input to the nth node and µAn is the function that defines the input’s degree

of membership. Typically, a bell-shaped curve is used, whose function is given by equation

(3.15):

µAn(x) =
1

1 +
(
x−cn
an

)2bn , (3.15)

where [an, bn, cn] are the parameters of the curve: cn defines the center and ±bn2an
is the slope

of the line at cn ± an. See Figure 3.11 for an illustration of a sample bell curve and how it is

defined by the given parameters.

Figure 3.11: A generic sample bell curve membership function depicting the definition of ANFIS
parameters a, b, and c. Adapted from [10].

2. The second layer is a multiplication of the outputs from layer 1. The products represent the

“firing strength” of a particular rule, and are calculated using the equation shown in (3.16):

wn = µAr
n
(x)× µAr

n
(y), (3.16)

where r and n = 1, 2.
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3. The third layer takes in all the product results from layer 2 and computes a ratio of each

individual rule’s firing strength to a sum of all the firing strengths calculated in layer 2. This

ratio can be viewed as a “degree of fulfillment” of each of the rules, and is given by equation

(3.17):

w̄n =
wn

w1 + w2
(3.17)

These outputs are also known as “normalized firing strengths.”

4. The fourth layer is made up of one node for each of the outputs of layer 3. Each node takes

as input one of the normalized firing strengths and one of each of the initial input values (xn),

for a total of n + 1 inputs. The output of these nodes can be calculated using the formula

shown in equation (3.18):

O4
n = w̄nfn = w̄n(ar0 + ar1x1 + ar2x2) (3.18)

The coefficients arn are known as the “consequent parameters.”

5. The final layer (layer 5) computes the sum of all the signals output from layer 4 to give a final

weighted sum. The summation is given by equation (3.19):

O5
n =

∑
n

w̄nfn =

∑
nwnfn∑
nwn

(3.19)

Matlab’s Fuzzy Logic toolbox provides an implementation of this neuro-fuzzy architecture,

called “anfis.” First, a fuzzy inference system (FIS), that implements the fuzzy logic portion of

the NFS, must be generated. Next, that system is placed within a neural network framework for

learning.

To create the FIS that will be input into the anfis function, Matlab’s “genfis” functions can

be used. While both genfis1 and genfis2 generate Sugeno-type FIS structures [8], genfis1

was selected due to the nature of the definable parameters. The structure is generated with the

following parameters: number of input membership functions per input, input membership function

type (default value is for a bell-shaped membership function, “bellmf”), and output membership

function type.
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The default number of input membership functions is two, and this number was deemed suffi-

cient for the purpose of this work. Classification of epochs into sleep stages can be stated as a binary

problem: either the current epoch is in the current class, or not in the current class, and therefore

lends itself to the use of two input functions that determine the degree of membership of the features

for the current epoch.

Because triangular membership functions have already been used with automated classifiers [23],

the decision was made to use a different type of function—for example, the Gaussian membership

function—to explore potential improvement of the classification [65]. Therefore, the input mem-

bership function type was set to Gaussian (“gaussmf”).

The ANFIS learning process proposed by Jang proceeds using a combination of backpropa-

gation and least squares estimation (LSE). The former is used to modify the premise parameters

(parameters defining the input membership functions in layer 1) and the latter is used to modify the

coefficients associated with the consequents (weights assigned in layer 4). The network’s learning,

then, proceeds as follows [5]:

1. Fix the premise parameters, propagate the training inputs and determine the consequent pa-

rameters by LSE.

2. Fix the consequent parameters found in the first step, propagate the training inputs again and

determine the premise parameters by backpropagation.

3. If the error was reduced in four consecutive steps, adjust the learning rate (either up or down

depending on how the error is calculated).

4. If the error is less than the maximum allowable error, learning is done, otherwise repeat the

process from step 1.

To tell the ANFIS network that this “hybrid learning” is the desired training method, the optimiza-

tion code (“optMethod”) for the anfis function was set to “1.”

The output membership function parameter values offered a choice of either linear or constant.

Due to empirically-achieved results, the constant output membership function was chosen because

of its superior performance.

The number of training epochs (or, the number of times the training inputs would be propagated

through the structure) was increased from the default setting of 10 to 1000. This gave the NFS more
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iterations through its learning process and therefore a greater chance of finding a solution with a

low error rate.

The output of an ANFIS classifier is a weighted average of the inputs [5, 63]. Since the sleep

stages are coded using integers, a conversion method was needed to translate the averages to output

that could be compared directly to the sleep stage classes. So, the weighted average output was

rounded to the nearest integer, allowing the classifier to select one of the integer classes definitively.

This practice was deemed sufficient because the weights in the network had, at that point in the

process, already impacted the decision to result in a number that “lands” closer to one integer than

another. Therefore, it was plausible that rounding the output to get the “closest” class was decided

to be a sufficient way to achieve integer output.

A diagram of the ANFIS classifier built with the aforementioned parameters is shown in Figure

3.12.

3.4.2 Support Vector Machine Design

Support vector machines operate on the principle that there exists some training sample set which

is separable via a hyperplane. The optimal separating hyperplane selection is a definable parameter

in Matlab, and the method chosen was the quadratic programming (QP) method, which results in a

two-norm (2-norm), soft-margin SVM. This classifier has been shown to produce a more accurate

generalized classifier than the maximum margin SVM, which typically has a more specific, complex

decision boundary.

A 2-norm soft-margin separating hyperplane is defined as follows [6, 66, 52]:

1. A training sample S is defined as:

S = ((x1, y1), . . . , (xm, ym)) ⊆ (X × Y )m, (3.20)

where m is the total number of data points, X ⊆ Rn represents the input space, and Y =

{−1,+1} represents the output domain for a two-class (binary) classifier.

2. Support vector machines are based on a class of hyperplanes defined as:

〈w, x〉+ b = 0 for w, x ∈ Rn, b ∈ R, (3.21)
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Figure 3.12: The Sugeno-type ANFIS used for each of the ten binary classifiers. Each classifier
has five input features (“input” layer), which are then passed to the two membership functions that
determine the degree of membership of each of the features (“inputmf” layer). The results are
then multiplied (or combined using “AND”) and degree of fulfillment determined in the third layer
(“rule” layer); there were a total of 32 fuzzy rules generated for this design. Finally, the weighted
functions are evaluated (“outputmf” layer) and summed to create a single decision output (“output”
layer).

where the points, x, lie on the hyperplane and satisfy Equation 3.21, while the weight vector

w defines the direction perpendicular to the hyperplane, and b adjusts the parallel position of

the hyperplane with respect to itself.

3. Then, instead of a maximum margin hyperplane calculation, we want to construct a soft-

margin hyperplane. To do this, the “slack variable” ξ is introduced into the optimization

problem:

minimizew, b〈w, w〉 (3.22)

subject to yi(〈wi, xi〉+ b) ≥ 1− ξi for ξi ≥ 0, i = 1, . . . ,m. (3.23)
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4. The slack variables ξi, along with the parameter C—which controls the trade-off between

classification errors and margin—modify the 2-norm minimization problem as follows:

minimizeξ, w, b〈w, w〉+ C
m∑
i=1

ξ2i , (3.24)

subject to Equation 3.23.

5. The primal Lagrangian for the minimization problem in 3.24 can be given as:

L(w, b, ξ, α) =
1

2
〈w, w〉+

C

2

m∑
i=1

ξ2i −
m∑
i=1

αi[yi(〈wi, xi〉+ b)− 1 + ξi], (3.25)

where αi ≥ 0 are the Lagrange multipliers.

6. Next, the corresponding dual is found by taking partial derivatives of L(w, b, ξ, α) with re-

spect to w, ξ, and b and imposing stationarity, then resubstituting the resulting relations into

the primal in Equation 3.25 and simplifying to obtain the objective function below:

L(w, b, ξ, α) =

m∑
i=1

αi −
1

2

m∑
i,j=1

yiyjαiαj〈xi, xj〉 −
1

2C
〈α, α〉. (3.26)

7. Hence, maximizing the objective function 3.26 over α is equivalent to maximizing the fol-

lowing:

W (α) =

m∑
i=1

αi −
1

2

m∑
i,j=1

yiyjαiαj

(
〈xi, xj〉+

1

C
δij

)
, (3.27)

where δij is the Kronecker δ, defined as 1 if i = j, and 0 otherwise. Taking into the Kuhn–

Tucker conditions:

αi[yi(〈xi, w + b)− 1 + ξi] = 0, for i = 1, . . . ,m, (3.28)

the resulting quadratic optimization problem is:

W (α) =

m∑
i=1

αi −
1

2

m∑
i,j=1

yiyjαiαj

(
〈xi, xj〉+

1

C
δij

)
, (3.29)
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subject to
m∑
i=1

yiαi = 0 for αi ≥ 0, i = 1, . . . ,m. (3.30)

The implementation of the SVM, then, can be changed by varying the parameters that define

the learning kernel used and how the algorithm divides the feature space (etc.). In the design of the

SVM classifier in Matlab, a number of definable parameters are available to tailor the classifier to

suit the problem at hand.

First, an appropriate kernel function must be chosen. Matlab offers five different built-in kernels;

given the suggestions offered by others in the field, a radial basis function (RBF) kernel was selected

for its general robustness and efficiency [62, 67].

The output of the SVM classifer is determined by equation (3.31), which is the equation for the

separating rule of an RBF kernel:

F (x) = sign(f(x)) = sign

(
N∑
i=1

aiKσ(|x− xi|)− b

)
, (3.31)

where Kσ(|x− xi|) is given by equation (3.32):

Kσ(|x− xi|) = e−σ|x−xi|2 (3.32)

Often, when discussing SVM design, researchers using RBF kernels frequently mention the im-

portance of parameters C and σ (Note: sigma, or σ, is also referred to as gamma—γ—in certain

texts; σ is used here because Matlab defines it as such). The variable σ is the “width”, or vari-

ance, of the RBF function. This parameter can take on any one of a number of values, with the

smaller values indicating a tighter decision boundary. The parameter C, which defines the penalty

for allowing misclassifications, can also take on any number of values. Lower values of C drive

the classifier toward a soft-margin classification scheme, meaning more samples are allowed to be

misclassified, while higher C values drive the classifier toward a “hard” margin, which attempts to

find a more absolute separation at the expense of creating a more complex and potentially over-fitted

boundary [6, 68, 61].

To find the optimal σ value, a range of values (from 0.1 up to 2 in varying increments) were

assessed in an attempt to find the solution empirically that would result in the least amount of error.
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The C parameter was also varied over a range of values (from 0.01 up to 1000 in increments of one

order of magnitude). To find the best combination of these two parameters, a grid search iterating

over the 72 possible [C,σ] combinations was performed because it has been shown that varying

only one at a time can yield sub-optimal results [69].

The Matlab SVM training function, svmtrain, uses a function called quadprog to solve

the quadratic programming problem. This function, in turn, uses the function qpsub, which is an

implementation of the Newton method algorithm as described in [70], a means of minimizing the

quadratic function, and each iteration through the algorithm is the equivalent of one Newton step.

The number of iterations is the first of two stopping criteria for the training function; the other is the

termination tolerance for constraint violation: the termination constraint violation is dictated by the

parameter epsilon (“eps”)—the distance from 1.0 to the next largest double-precision number—

with a default value of 2−52 [8]. The number of iterations for this SVM design was set to 1000

to match the number of training epochs used in the NFS, and to allow the classifier an adequate

amount of time to find suitable hyperplane definitions, while epsilon remained at its default value.

3.5 Training and Testing

Once the training vectors—feature matrices—were completed and the classifier’s designs had been

determined, the training and testing sets for the classifiers needed to be chosen. There are different

theories about the best way to choose training and testing sets, but generally accepted practice

dictates that sets are chosen from a larger data set randomly and that different classes have nearly

equal representation so as not to under- or over-train the classifiers.

3.5.1 Data and Feature Subset Selection

First, a version of stratification was employed. Stratification is typically used to ensure that equal

portions of all classes are represented in the training and testing groups as a basic preventative mea-

sure against over- or under-training one class over the others (which introduces bias) [71]. Because

of the large number of samples (total of 30,973 epochs) unequally distributed over the five classes,

an initial stratification and sample number equalization was performed to bring the total number

of training and testing points to a reasonable, uniformly-distributed amount in a first step toward
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mitigating potential class-bias problems [72, 73]. This was done by first determining the class that

contained the fewest number of samples; in this case, Stage 1 had the least number of epochs repre-

sented at 1348 (see Table 3.1). Then, a percentage of those Stage 1 epochs—25%—were selected to

be included in training and testing, while the same number of epochs (1348× 25% = 337 epochs)

were randomly selected from the remaining classes to be represented for a total of 1685 samples

available to use for training and testing. The sleep stage labels corresponding to those samples were

then pulled out and put into a separate vector.

Note that the variability of sleep patterns between subjects is higher than the variability of the

sleep patterns from within one subject [74, 75]. However, training or testing with only one subject

at a time does not support system robustness (the ability of the classifier to perform well in other

situations). Developing the system with all available patient data is necessary to provide a better

prediction of how the system might perform for generalized applications, so the aforementioned

randomization of sample selection was employed.

One constraint Matlab places on its NFS classifier is that the total number of rules created can

not exceed 250. The number of rules created for any given problem is given by the number of

input membership functions to the power of the number of features. Therefore, with two input

membership functions, the highest number of features the NFS could handle is 27 = 128, since

using 8 features would put the number of rules at 256 and over the Matlab-imposed limit of 250.

So, out of the ten available features, feature subsets needed to be picked that included—at most—

seven features. Due to processing capabilities, however, it was determined empirically that feature

subsets of five features gave sufficient AASM stage information (allows exactly one unique feature

per class, see Table 3.2 for the extracted features for each stage) while cutting down on the time

and possible feature space to be searched. The number of all possible combinations (Cn-choose-m)

consisting of five of the ten extracted features with no repeats and without regard to order can be

found using equation (3.33):

Cn-choose-m =
n!

m!(n−m)!
(3.33)

With a selection of five features out of ten (or ten, choose five), the total number of potential

feature subsets was 252.
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Table 3.5: A table detailing which binary class-pairs were assigned to which classifiers. The stages’
respective codes, used for labeling the stages for use with the classifiers, are shown in parentheses.

Classifier # Class #1: Class #2:
1 Wake (0) Stage 1 (1)
2 Wake (0) Stage 2 (2)
3 Wake (0) Stage 3 (3)
4 Wake (0) REM (5)
5 Stage 1 (1) Stage 2 (2)
6 Stage 1 (1) Stage 3 (3)
7 Stage 1 (1) REM (5)
8 Stage 2 (2) Stage 3 (3)
9 Stage 2 (2) REM (5)
10 Stage 3 (3) REM (5)

3.5.2 Training and Testing Methodology

From there, a one-against-one (OAO) method of training and testing was used. The OAO method is

generally understood to have better results than other methods, like one-against-all (OAA), but can

be computationally expensive, as the number of classifiers that need to be built is given by (3.34),

where n is equal to the number of classes:

N =
n× (n− 1)

2
(3.34)

However, with only five classes (and therefore an N equal to ten), it was determined that building,

training, and testing ten binary classifiers would still be a reasonable number. Table 3.5 details the

class-pair comparisons that were made for each of the ten binary classifiers.

To give the classifiers the best possible chance of discriminating between classes (and since it

is known that some features will appear in some classes and not at all in others), each class-pair

was tested with each of the 252 feature subsets (described in the previous section, section 3.5.1) to

find the combination of five features that best separates each class-pair. Out of the 2,250 possible

combinations, the top ten performing feature subsets—to be used with both the NFS and SVM

classifiers—were chosen and assigned to each corresponding class-pair. Table 3.6 indicates the set

of features (from Table 3.4) used for class separation by each of the ten binary classifiers.

Once an appropriate subset of data was extracted and the classifier design finalized, the k-fold

cross-validation technique was used to generate training and testing sets, with k = 10. K-fold
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Table 3.6: A matrix illustrating which features were sub-selected for use with each of the 10 clas-
sifiers (binary class comparisons). The extracted features are shown in the column headers, the
binary classifiers are shown in the left-hand column, and the features that were used for a particular
classifier are indicated by dots in the appropriate columns.

Classifier δ θ α β SS KC EOGL EOGR EMGRMS EMGMAX

Wake/Stg. 1 • • • • •
Wake/Stg. 2 • • • • •
Wake/Stg. 3 • • • • •
Wake/REM • • • • •
Stg. 1/Stg. 2 • • • • •
Stg. 1/Stg. 3 • • • • •
Stg. 1/REM • • • • •
Stg. 2/Stg. 3 • • • • •
Stg. 2/REM • • • • •
Stg. 3/REM • • • • •

cross-validation is a technique which splits the available data into k partitions, using k−1 partitions

for training the classifier and the remaining partition for “testing,” or validation. This process is

repeated k times, until all partitions have each been used once for testing, and the error for all of

those k runs can be averaged to give an overall error rate. This technique is used when relatively

few samples are available and it can not be guaranteed that all the samples in a group would be

considered good examples of particular classes—for example, a Stage 2 epoch might be labeled as

such, but not have any discernible K-complexes or sleep spindles. The lack of “good” samples will

decrease the likelihood that the classifier will be able to see the separation between classes during

training, since some of the epochs would not have clearly discernible features, and also decrease the

probability that the classifier will correctly identify stages upon testing. However, even if a stage

does not have all the defining characteristics present, it still should be classified as that particular

stage. That being the case, k-fold cross-validation—with k = 10 for the best results using the

smallest possible number of folds—for training and testing set selection was implemented in an

effort to minimize this good sample/bad sample effect [71].

For each class-pair, starting with Wake (code 0) and Stage 1 (code 1), the proper C and σ values

(needed for the SVM classifier) were assigned to temporary variables and all samples of the two

current stages of interest were assigned to temporary matrix structures. The class labels were then

assigned logical values of 0 and 1, with the “current” class—or the class in which the samples
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are looking for membership—receiving the value of 1. The “comparison” class—the class that is

outside the current class of interest—is assigned the value of 0. The appropriate five-feature subset

was then extracted from the two classes’ feature matrices and re-assigned to the temporary matrix

of features.

Each of the ten binary classifiers (ten SVM classifiers and ten NFS classifiers) were then trained

on these temporary data structures using the appropriate class groupings from the first nine k-fold

cross-validation indices designated for training. Once training was performed using the first k-fold

training group, the binary classifiers were then tested on the one held-out k-fold testing group.

Training and testing continued until all ten groups had each been tested once.

3.5.3 Class Voting and Decision Methodology

Implementation of ten separate binary classifiers necessitates combination of the results by some

method. Class voting systems have been used frequently for this sort of decision making with good

results, so a simple voting system was created to consolidate the output into a single vector of

classes.

To keep track of how many times a particular sample is classified as a particular class, a voting

matrix (of size 1685 samples by 5 classes) was created for each of the two classifiers. As each

sample was selected for membership as either belonging to the current class of interest or not (and

therefore making the decision that it belonged to the comparison class), the corresponding index in

the voting matrix was incremented by one.

After all of the samples had been passed through the classifiers and voted on, each samples’

votes were assessed and the sample was assigned to the class that received the most votes. That

final vector of class assignments—one per classifier—became the output that was compared to the

target classes for performance evaluation.

Breaking Voting Ties

In some cases, the votes ended in a tie, with multiple class labels having acquired equal numbers of

votes. Typically, ties are broken arbitrarily, with a random class picked out of the tied classes , but

in an effort to introduce some “smart” decision making, a primitive sort of confidence measure was

developed. A “distance matrix” (labeled as such because it tracked the distance of sample points to
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their respective classes), in the same dimensions as the voting matrix, was created for each of the

two classifiers.

NFS Decision Method

Since the output of the NFS is a weighted average, and therefore likely not an integer value, the

decimal portion of the number can be used as a sort of confidence measure to break voting ties.

Earlier in the process, the class labels were changed from the sleep stage codes (“0,” “1,” “2,” etc.)

to a simple binary one or zero (either the sample is in the class or out of the class respectively). In

this case, then, the closer the weighted average output is to one, it could be said that that sample

has more “confidence” with respect to membership in the current class, and the closer the output

is to zero (or to two or higher), the less confident we are about that sample’s membership in the

class. Therefore, a basic “confidence metric” in (3.35) was implemented to evaluate how close the

weighted average output is to one:

Confidence Metric = |1− x| (3.35)

For each vote a class received in the voting matrix, the NFS distance matrix added the result of

this confidence metric computation to the appropriate index. So, in the case of a tie, all the pos-

sible class values are extracted (all the classes that received votes), along with their corresponding

confidence measures from the distance matrix. Since a value close to one means more confidence

is class membership, the confidence metric that was found to have the smallest result was picked as

the “winning” class.

SVM Decision Method

The SVM tie-breaking method was more straightforward to implement, because Matlab’s SVM

function already computes a metric corresponding to the evaluation of the class determination func-

tion, which gives the distance from the current point to the established separating hyperplane. This

variable is calculated in a private function, and the calling function does not save this number as

an output, but the function result can be made visible simply by adding it to the list of outputs in

the decision function. Therefore, as each class gets a vote in the voting matrix, the absolute value
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of the distance measure associated with that sample gets added to its corresponding location in the

distance matrix.

In the event of a tied vote in the SVM voting matrix—similar to the NFS tie-breaker—all pos-

sible class values are extracted along with their corresponding distance measures. In this case,

however, it is reasonable that the sample that lies furthest from the separating hyperplane is the

sample that would have the most confidence in belonging to one or the other class. So, then, the

class associated with the largest distance metric is picked as the “winning” class.
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Table 4.1: Confusion matrix for the NFS results. This indicates the percentage of samples per stage
(”actual,” right most column) that were identified as each of the other stages (”predicted,” header
row).

Actual/Predicted Wake Stage 1 Stage 2 Stage 3 REM
Wake 81.01% 13.95% 1.48% 1.93% 1.63%
Stage 1 12.46% 60.98% 11.13% 1.93% 13.50%
Stage 2 4.75% 21.07% 49.70% 10.83% 13.65%
Stage 3 1.78% 0.15% 9.94% 87.83% 0.30%
REM 3.26% 34.87% 9.79% 4.01% 48.07%

Chapter 4

Classification Results

The following section contains the output results of the NFS and SVM classifiers and provides a

comparison of the performance of the two methods.

4.1 NFS Results

A confusion matrix of the output of the NFS is presented in Table 4.1, and a heatmap of the same

information is presented in Figure 4.1, while a graph of the actual stage classification versus the

classifier output is shown in Figure 4.2.

4.2 SVM Results

A confusion matrix of the output of the SVM is presented in Table 4.2 and a heatmap of the same

information is presented in Figure 4.3, while a graph of the actual stage classification versus the

classifier output is shown in Figure 4.4.
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Figure 4.1: A heatmap representation of the NFS confusion matrix. The gradient indicates percent-
age agreement, with white indicating a 100% agreement rate and black at 0%. The gradient legend
to the right of the figure shows the percentages that correspond to each grayscale level.

Table 4.2: Confusion matrix for the SVM results. This indicates the percentage of samples per stage
(”actual,” right most column) that were identified as each of the other stages (”predicted,” header
row).

Actual/Predicted Wake Stage 1 Stage 2 Stage 3 REM
Wake 78.78% 16.02% 1.63% 1.34% 2.23%
Stage 1 9.79% 63.80% 12.61% 1.63% 12.16%
Stage 2 3.56% 22.55% 44.81% 14.10% 14.99%
Stage 3 0.74% 0.15% 9.64% 89.17% 0.30%
REM 2.23% 33.98% 7.86% 4.75% 51.19%

4.3 Comparison of NFS and SVM Classification

The overall correct rate (percent correct), sensitivity, specificity, and Cohen’s kappa for both classi-

fiers are presented in Table 4.3. In both cases, the Cohen’s kappa calculation returned results indi-

cating both classification techniques have moderate agreement and that the “observed agreement is

not accidental.”
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Figure 4.2: A graphical representation of the NFS classifier’s test output. The red line indicates
the known true stage of each of the test samples (the “truth”), while the blue x’s indicate the stage
classification assigned by the NFS classifier for each of the test samples. X’s which do not fall on
the red line are misclassifications.

Table 4.3: Comparison of results between the NFS and SVM. The percent correctly classified overall
and by stage, as well as overall sensitivity, specificity, and Cohen’s kappa are shown.

Results Summary NFS SVM
Wake 81.01% 78.78%

Stage 1 60.98% 63.80%
Stage 2 49.70% 44.81%
Stage 3 87.83% 89.17%
REM 48.07% 51.19%

Overall accuracy 65.52% 65.55%
Sensitivity 81.01% 78.78%
Specificity 94.44% 95.92%

Cohen’s kappa 0.5690 0.5694
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Figure 4.3: A heatmap representation of the SVM confusion matrix. The gradient indicates percent-
age agreement, with white indicating a 100% agreement rate and black at 0%. The gradient legend
to the right of the figure shows the percentages that correspond to each grayscale level.



55

Figure 4.4: A graphical representation of the SVM classifier’s test output. The red line indicates
the known true stage of each of the test samples (the “truth”), while the blue x’s indicate the stage
classification assigned by the SVM classifier for each of the test samples. X’s which do not fall on
the red line are misclassifications.
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Chapter 5

Discussion

This section contains the discussions regarding the methods and subsequent observed results, as

well as some suggestions for future pursuits in this area.

5.1 Analysis of Methods

The methods used in this thesis were drawn from a number of sources, and choices made regard-

ing the parameters and implementation of these methods certainly had an impact on the results.

Discussion of this impact follows.

The EEG channel available was C4-M1, only one of three AASM-recommended channels used

for sleep scoring (recall that the other two are F4-M1 and O2-M1). Due to this, it is possible that

information that would have been evident on one or both of the two missing channels might have

increased the probability of certain pattern detection. For example, some researchers have stated that

it is “easier” to see K-complexes in the frontal lobe derivations because that is where that pattern

is likely to be maximal in amplitude across all patients [1]. With the pattern-dampening effect due

to this “detection at a distance” (or, a greater distance than is deemed ideal), there is the possibility

that some stage characteristics were missed during feature extraction, thereby having a detrimental

impact on the results.

With regard to the feature subset selection, recall that each class-pair was tested with each of the

252 feature subsets to find the combination of five features that best separated each class-pair. This

set of empirically-selected features was an attempt to mitigate bias related to the selection of the

feature subset. While the AASM manual dictates the type of features that should be used to identify

the stages, those features may not be the same ones that are ideal for providing the best distinction
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between stages.

The idea that the features that provide the best identification are not necessarily those features

that are best for providing class separation is illustrated in Table 3.4. One feature that is often used

to separate wake (0) from stage 3 sleep (3) is the δ band energy. However, in this work the features

empirically chosen to separate those two classes, which are subject to the effectiveness of the feature

extraction methods, were the α band energy, the eye movements (both channels), and the muscle

movements (both calculations). There is the possibility that this seeming incongruent result comes

from the methods used to extract the features—potentially sub-optimal for the application—but

these results suggest that the feature separability of the stages should be defined by the actual data

and not confined to only exact implementations and comparisons of the stage definitions provided

by AASM [21, 76]. Additionally, while these subsets were selected using a brute–force search of all

possible five–feature set combinations, the selection of the highest performing set combinations was

based on a single training and testing run per set, and therefore was not necessarily truly exhaustive.

Misclassification rates are also impacted by the large variability of sleep patterns between sub-

jects [74, 75]. Because the data sets for training and testing were selected randomly from a combi-

nation of all 25 available subject files, there is a high possibility that the variability of the samples

within classes is too high for the classifiers to definitively separate. For example, the wake stage

features could be sufficiently different from the first subject to the second subject, and therefore

training on both of those feature samples could be detrimental when attempting to classify the wake

stage features of the third and fourth subjects. Attempting to develop a classifier that works across

many patients requires a design suited to generalization (given inter-subject feature variability),

particularly when the data do not contain all the recommended channels and the channels that are

available may not be ideal for detecting certain features.

One common problem with machine learning and classification is overfitting, which refers to

instances for which the classifier learns the training data too well, resulting in poor generaliza-

tion [77, 78]. Any learning algorithm or classification problem can suffer from overfitting, and the

ANFIS is particularly susceptible to overfitting issues [79]. Two things that can be used to mitigate

the overfitting problem are: setting a training error goal (or constraint) and defining the maximum

number of training iterations. There is, for every problem, some optimal number of iterations that

will minimize the amount of error a validation set will generate. The error constraint indicates the
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maximum amount of error the model is allowed, and each iteration through the system attempts

to bring the error down toward zero. However, at some point, the amount of error generated will

stop decreasing and start increasing; that is the point at which the model is overfitting to the data

and any further increase in the number of iterations past that point is detrimental to the learning

algorithm. If there is the potential that the number of iterations could cause this overfitting to occur,

the error constraint can act as a limiter by stopping the training when the error reaches some pre-

defined acceptable level. Then, the training is halted either when the error constraint condition or

the maximum number of iterations is satisfied. Generally, the number of iterations is defined em-

pirically; that is, training and validation is performed over a range of iterations, and the error rates

are monitored for the minimum [79, 80]. The ANFIS in this work was not tested for the optimal

iteration count, but was instead given both an iteration maximum—identical to that of the SVM in

an attempt to make the classifiers as comparable as possible—and an error constraint, and evaluated

only with the NFS output results.

While certain amounts of subject variability, and the subsequent classification difficulty, were

expected, steps were taken to mitigate any effect the difference in classifiers would have on the

output. In an effort to make the results as comparable as possible, all steps of classification were

performed the same way—the same training and testing data was input to both classifiers—so that

the only difference between the two was the classification decision process, such as how it was

decided whether a class would be included or not, inherent in the classifier design.

5.2 Analysis of Results

The objectives of this thesis were as follows:

• Develop an automated sleep scoring algorithm using the 2007 AASM sleep manual’s stage

definitions by implementing and evaluating a neuro-fuzzy system classifier.

• Develop an automated sleep scoring algorithm using the 2007 AASM sleep manual’s stage

definitions by implementing and evaluating a support vector machine classifier.

Both of these objectives were met: two classifiers were developed, one using NFS and one using

SVM, which were trained and tested on labeled features as defined by the 2007 AASM manual. The
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results were presented in chapter 4, and using those results, some answers can now be given to the

questions that were posed in section 1.1:

1. Can the new AASM staging definitions be used with an automated process to correctly iden-

tify the stages of sleep?

Yes, with variable success. For both the NFS and SVM classification techniques, the overall

percent correct was approximately 65%, with sensitivity and specificity rates around 80%

and 95%, respectively. These results (which use AASM for the classifier stage definitions)

fall within the recently reported agreement range of 50–89% between manual and automated

scoring using the R&K staging definitions [25]. The overall Kappa scores, one means for

evaluating system reliability, were approximately 0.57 for both the NFS and SVM, indicating

moderate agreement that was not “accidental” [27]. These Kappa results also fall within a

recently reported range of κ = 0.55 to 0.81, a range indicating moderate to “almost perfect”

agreement [27, 25].

Although the agreement rates and Kappa scores alone are not yet high enough for confidence

in independent use of the classifiers for automated scoring in clinics or research, detection

accuracy for some of the individual stages was favorable. Both the NFS and SVM classi-

fiers detected some of the stages with higher accuracy than others; for example, stage 3 was

detected with an 87–89% success rate, while REM sleep was only detected correctly half

of the time. That stage 3 accuracy, however, is greater than the 78% classification rate for

stage 3 achieved by a recent implementation of a neuro-fuzzy system [50], and the authors

of that study concluded that their classifier (which had an overall accuracy of 74.7%) was an

improvement over other previous attempts, suggesting that the methods developed for stage

3 detection in this thesis are an additional improvement. These results for the automatic clas-

sification of stage 3, or slow wave sleep (SWS), using NFS and SVM could be interesting for

those who are involved in medical or memory research and SWS. For example, lower SWS

levels have been associated with an increased risk for type 2 diabetes [81], while “good” levels

of SWS have been associated with improved cognition and memory consolidation [82, 36].

2. Do implementations that have proven effective in the past show improvements in classification

when using the new AASM guidelines?
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The results of this work suggest “no,” except a number of other factors must be taken into

account. Unfortunately, with a lack of available data that conform to the AASM recommen-

dations, only partial derivations of the AASM guidelines were used. For example, the full

10-20 complement of surface electrodes is rarely used outside of sleep clinics, so obtaining

all recommended EEG scoring channels (F4, C4, and O2) for this investigation proved chal-

lenging. Additionally, the field of sleep is in an evolutionary period, in which opinions about

the direction of sleep assessment are vastly different; some researchers question the value

of the AASM approach [19], some question the value of sleep staging [20, 21], and some

applaud and encourage still more work using AASM [22]. With the “moving target” that is

sleep research, there are many efforts whose value may not be apparent until more universal,

consistent approaches to sleep definitions and assessment have been developed.

3. Is there a difference in performance between classifier implementations using the new AASM

guidelines with respect to sleep features and scoring?

No. Two different classification techniques, neuro-fuzzy systems and support vector ma-

chines, when evaluated using the same data set and same input features, perform very much

the same (65% accuracy with 80% sensitivity and 95% specificity). This suggests that the

quality, separability, and clarity of definition of the input features are the more important fac-

tors in achieving a highly capable automated sleep classifier, and not the classification method

itself [83]. One must also consider implementing optimization techniques to achieve the best

possible results for any given classification method.

While future implementations might find differences between NFS and SVM approaches, it

is interesting to note that here there was no discernible difference between the classifiers in

the overall accuracy of scoring. Additionally, thus far it seems like this thesis is one among

few (if any) studies that has attempted to compare two different classification schemes using

the same data set scored using AASM guidelines. This is significant because unless the same

data is used, the superiority of one classification method over another—or lack thereof—can

not definitively be determined.
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5.3 Future Work

Should the pursuit of this subject be sufficiently extensive, it might be beneficial for the classifiers

to be developed from scratch so as to provide the maximum amount of flexibility in design and

control over functionality. What follows, though, are only suggestions for improvements or further

developments given the methods in this thesis.

The SHHS sleep database was used for this study, but the data in the SHHS database were

scored using the R&K rules. While there are other databases such as PhysioNet and Siesta that

could be considered for automated sleep classifier research, these databases were also developed

using the R&K scoring guidelines. At this time, there do not seem to be any free, public sleep

databases available that are sufficiently large and scored according to AASM standards. Having

such a database available for ongoing work would benefit the sleep research community and promote

research outcomes that are compliant with the new AASM standards.

One possible improvement to the results would include an exhaustive search of all possible clas-

sifier parameters with all possible combinations of feature subsets per class. Due to the processing

capabilities of the computer and software used in this work, performing an exhaustive search for

optimal parameter and feature subset combinations would not have been feasible, but may offer

some additional benefit. Other methods that could be used for feature space and subset searching

might include techniques such as genetic algorithms. Genetic algorithms are stochastic iterative

search methods which use coding, scoring, ranking, mutating, and iterating steps to mimic the “sur-

vival of the fittest” rule often cited in biological evolution, and has been shown to be successful in

identifying data set-specific significant features sets [77, 83].

In addition to performing an exhaustive search, a search for the optimal number of features to

be included for the best class separation should also be analyzed. Again, due to limited processing

capabilities, not all feature subset sizes were evaluated. It would perhaps increase the accuracy of the

classification if the feature subset used to characterize each class or class pair was tailored to each of

the binary classifiers using a different numbers of feature subsets (e.g. perhaps only one feature—

instead of five—may be needed to distinguish stage 3 sleep from any other stage). Similarly, the

possibility exists that the performance of the classifiers was hurt by attempting to implement a large

number of visual scoring rules, and perhaps better performance could be achieved if it were possible

to determine only one distinctive feature per class. Some of the features do have overlap between
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classes (like eye movements, which occur in both REM and W) and may be causing some confusion.

Eliminating features that have overlap, or adding only distinctly unique class features, would likely

increase the overall performance. Furthermore, a detailed analysis of the efficacy of the feature

extraction techniques would provide a better indication as to which methods are sufficiently specific

for identification of particular feature patterns.

This work used a series of 10 binary classifiers and a voting system to produce a single consensus

output for both the NFS and SVM classification methods. Improvements to the SVM method used

might mean implementation of a single multi-class SVM. Multi-class SVMs generally perform

well, and can be constructed by combining multiple binary classifiers in a cascade, either in a

serial fashion using one-against-one and voting methodology, or in a decision tree fashion using

directed, acyclic graphs [84]. Improvements to the NFS classifier, then, could take the form of

tuning through more careful selection and evaluation (via thorough training and validation) of the

training parameters, such as the number of iterations and the error constraint, in an attempt to further

mitigate potential overfitting of the ANFIS.

Also, there is the possibility that the tie-breaking methods used to break voting ties in class

decisions ultimately resulted in suboptimal performance of the methods. Due to the difference in

the information available from each classifier output, the tie-breaking methods were implemented

accordingly, and the effect of those differences should be evaluated, both within and between clas-

sifiers.

After classification has been completed, there is another potential processing step that could

be used to improve the outcome. From the technologist’s handbook, there is a section that reads

as follows: “This is an epoch that must be scored in context. This means that you have to know

what came before and what comes after to be able to provide a score” [85]. The book is referring

to epochs that were previously considered “movement time”—such as when a patient rolls over.

Epochs that contain major body movements may add enough artifact to the EEG signals to render

the stage unclassifiable by the features defined in the AASM manual. This means that there are some

stages that are not able to be classified based on their distinctive features, but should be classified

based on and in accordance with the stages that come before and after. Therefore, probabilistically

and practically, an unidentified stage that comes between two similarly classified stages would also

be that particular stage. The implication of this goes beyond merely reflecting the rigid criteria
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of visual scoring when automated classification comes into the picture: if some of the stages do

not contain sufficient information to be classified properly in an automated environment, it may

be due to this requirement that the stage be put “in context” to attain the correct classification. The

suggestion, then, would be to incorporate some post-classification “cleaning” of the detection output

to attempt to review the data for misclassification due to “out of context errors.” After classification

is complete, the output could be run through some probability routine that looks for one-off (or

single-occurance) detections that do not “fit” in a particular string of detections, and then change

the final decision to disallow these rapid shifts to and from a stage that differs from those around it.

Lastly, comparison of classifiers using the same data sets provides a backdrop against which the

classification methods can be on more equal footing when comparing and contrasting results. It is

suggested that this type of “internal benchmarking” be continued in the pursuit of the development

of a system that can adequately and reliably aid physicians and sleep lab technicians in the scoring

of sleep.
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Chapter 6

Summary and Conclusions

This section presents a summary of the thesis topic as well as conclusions and comments based on

the results of this study.

For decades, the scoring of sleep stages has been considered essential for the understanding of

sleep architecture, and this method continues to be used as a standard quantifier in sleep research [7,

12, 13]. Classic approaches to sleep stage classification involve sleep technicians using a manual

scoring technique. Over the years, however—and in response to the issues that result from using

standard approaches—researchers have been looking for advances that might improve the efficiency,

reliability, and accuracy of the classification process [14, 1].

Computers have been used to develop automated sleep scoring techniques, which, in addition

to the potential time savings, have the possibility of reducing the variability in scoring outcomes,

and this has led to multiple attempts to advance automated sleep stage classifiers. The range of

attempts at automation have exhibited some success [16], but continued work is needed to improve

upon these classification schemes [17, 18]. This thesis explored the use of automated classification

systems with the sleep stage definitions and scoring rules published by the American Academy of

Sleep Medicine in 2007.

Specifically, the results presented in this thesis show that the use of NFS and SVM methods

for classifying sleep stages is possible using the AASM guidelines published in 2007. While the

current work does support and confirm the use of these classification techniques within the research

community, the results did not indicate a significant difference in the accuracy of either approach—

nor a difference in one over the other. The results did suggest that the important clinical stage 3

(slow wave sleep) can be accurately scored with classifiers such as those developed for this thesis;

however, the techniques used here would need more investigation and optimization prior to serious
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use in clinical applications.

Finally, the work in this thesis sought to contribute to the continued discussion and evaluation

of automated sleep classification. Questions such as those asked here require still more attention

due to the fact that the field of sleep research is still evolving and the use of computer-assisted sleep

analysis will continue to gain momentum in the coming months and years.
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