
Rochester Institute of Technology Rochester Institute of Technology 

RIT Digital Institutional Repository RIT Digital Institutional Repository 

Theses 

4-1-1997 

Evolution of solutions to real-time problems Evolution of solutions to real-time problems 

Greg Semeraro 

Follow this and additional works at: https://repository.rit.edu/theses 

Recommended Citation Recommended Citation 
Semeraro, Greg, "Evolution of solutions to real-time problems" (1997). Thesis. Rochester Institute of 
Technology. Accessed from 

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact 
repository@rit.edu. 

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F3104&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/3104?utm_source=repository.rit.edu%2Ftheses%2F3104&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu


Evolution of Solutions to

Real-Time Problems

by

Greg P. Semeraro

A Thesis Submitted
In

Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE
In

Computer Engineering

Approved by:

Dr. Tony H. Chang, Professor

Dr. Roy Czemikowski, Professor and Department Head

Department of Computer Engineering
College ofEngineering

Rochester Institute of Technology
Rochester, New York

April, 1997



THESIS RELEASE PERMISSION FORM

ROCHESTER INSTITUTE OF TECHNOLOGY

COLLEGE OF ENGINEERING

Title: The Evolution of Solutions to Real-Time Problems

I, Greg P. Semeraro, hereby grant permission to the Wallace Memorial Library to

reproduce my thesis in whole or part.

Greg P. Semeraro

;J. 9 U,/1---L! i 997
Date



Evolution of Solutions to

Real-Time Problems

by

Greg P. Semeraro

Copyright 1997 by Greg P. Semeraro

All Rights Reserved



Abstract

This thesis develops the theory and tools necessary for the determination

of a near optimal Real-Time Operating System (RTOS) scheduling policy for an

arbitrary multitasking problem specification. The solution is determined using a

Genetic Algorithm (GA).

All real-time operating systems provide some means of
'tuning'

the

characteristics of the scheduling policy to accurately meet the application

requirements. This thesis shows the applicability of using a GA to determine

these parameters for an arbitrary application. In addition, the RTOS parameters

considered are broad enough to allow the results to be used for specifying and/or

choosing an RTOS for the actual implementation of a real-time system.

The domain of real-time applications which is of particular interest is that

of embedded systems. In the embedded systems domain, real-time multitasking

problems are specified by a series of timing constraints, time deadlines and

practical available resources. These constraints guide the analysis of the results.

A PC-based RTOS/GA tool set is the end result of this thesis and can be

used for the analysis of arbitrary real-time applications.

m



Table of Contents

1. Introduction 1

2. Background 10

2.1 Real-Time Applications 10

2.1.1 Formal Methods for Real-Time Analysis 15

2.2 Genetic Algorithms 18

2.2.1 Genetic Operators 26

3. Evolution of Solutions to Real-Time Problems 31

3.1 Real-Time Operating System (TASKING) 34

3.1.1 Facilities and Capabilities 37

3.1.2 Configuration Parameters 49

3.1.3 RTOS Performance 53

3.2 Genetic Algorithm 59

3.2.1 Genetic Representation 61

3.2.2 Mutation 62

3.2.3 Crossover 63

3.3 Problem Specification 64

3.3.1 Specification Parameters 64

3.3.2 Specification File Format 66

4. Evolution Tool Set 68

4.1 Custom RTOS (TASKING) 68

iv



4.2 Real-Time Application (RTOS-APP) 71

4.3 Genetic Algorithm (GRTOS-GA) 71

5. Test Suite Description 74

5.1 Verification ofCapabilities 75

5.2 Verification ofPerformance 77

5.3 Test ofCapabilities 79

5.4 Test ofPerformance 85

6. Conclusions 92

7. Bibliography 94

8. Appendix A RTOS Source Code 96

8.1 TASKING.INT 96

8.2 TASKING.PAS 99

9. Appendix B Genetic Algorithm Source Code 117

9.1RTOS-APP.PAS 117

9.2 GRAPH-GA.PAS 123

9.3 RTOS_GA.PAS 132

9.4 MATH_GA.PAS 136

10. Appendix C Support Software Source Code 140

10.1 DINING.PAS 140

10.2TSK-BNCH.PAS 142

10.3 TASKS-A.PAS 146

10.4TASKS-B.PAS 147

V



10.5 GRAPHICS.PAS 147

10.6BMP_UTIL.PAS 148

10.7 MS MOUSE.PAS 150

VI



Table of Figures

Figure 1 - TaskExecutionProfile 6

Figure 2 - GeneticAlgorithm 8

Figure 3 - ReactionRateController (RRC) 12

Figure 4 - GeneralGenetic Algorithm 20

Figure 5 - Sample Optimization Function Plot 24

Figure 6 - Sample OptimizationFunctionPlot (Localized) 25

Figure 7 - Operating SystemFacilities/Structure 39

Figure 8 - Unbounded Priority Inversion 51

Figure 9 - Priority Inheritance Protocol 52

Figure 10 - TASKING Benchmark (Relative Performance) 55

Figure 1 1 - TASKING Benchmark (Context SwitchingOverhead) 56

Figure 12 - TASKING Benchmark (Context Switching Percentage) 57

Figure 13 - TASKING Benchmark (SystemClock Impact) 59

Figure 14 - Genetic Algorithm Process Flow 60

Figure 15 - Task Execution Profile 65

Figure 16 - Sample TASKING.RPT File 70

Figure 17 - SampleRTOS-APP.RPT File 71

Figure 18 - GRTOS-GA Startup Screen 72

Figure 19 - Real-Time Problem #1 75

Vll



Figure 20 - Problem #1,
'Random'

AssignmentAnalysis - Rank #3 77

Figure21 - Real-Time Problem #2 78

Figure 22 - Real-Time Problem #3 80

Figure 23 - Problem #3,
'Random'

Assignment Analysis - Rank #2 82

Figure 24 - Problem #3,
'Random'

Assignment Analysis - Rank #3 83

Figure 25 - Problem #3,
'Random'

Assignment Analysis - Rank #5 84

Figure 26 - Real-Time Problem #4 88

Figure 27 - Problem #4,
'Random'

Assignment Analysis - Rank #3 90

Figure 28 - Problem #4,
'Random'

Assignment Analysis - Rank #5 91

Vlll



Table of Tables

Table 1 - RRC Requirements 12

Table 2 - GA Solutions to SampleFunction 26

Table 3 - RTOS Genotype 62

Table 4 - Real-Time Application Specification 67

Table 5 -GRTOS-GA.EXE Results, Problem #1 76

Table 6 - GRTOS-GA.EXE Results, Problem #2 79

Table 7 -GRTOS-GA.EXEResults, Problem #3 81

Table 8 - GRTOS-GA.EXE Results, Problem #4 89

IX



Table of Equations

Equation 1 - SampleOptimization Function 23

Equation 2 - SampleOptimization Function (Localized) 25

Equation 3 - Expected AlleleCoverage (BinaryRepresentations) 28

Equation 4 - ExpectedAllele Coverage (Non-BinaryRepresentations).28

Equation 5 - Task Schedulability 74

Equation 6- Schedulability, Problem #1 75

Equation 7 - Schedulability, Problem #2 78

Equation 8 - Schedulability, Problem #3 80

Equation 9 - Priority Assignment Characteristics 83

Equation 10 - Schedulability, Problem #4 88



Glossary

Note: All terms appearing in this glossary will appear for the first time as

underlined text in the main body of the thesis.

Term Page Description

Allele

Epistatic Interaction

21 Any of a group of possible

mutational forms of a gene.

7 A genetic interaction which is

nonrecipricating and is between

nonalternative forms of genes in

which one gene suppresses the

expression of another affecting the

same part of an organism.

Expected Allele Coverage 27

GA

Given the following: A binary string

encoding of length L, (with are 2L

possible alleles) and a random

population of N encodings. The

expected allele coverage is the

expected proportion of all possible

alleles that occur in the population

and is l-(l/2f [Ref. 19, pg. 32].

A Genetic Algorithm (GA) is the

general term applied to computer

algorithms which search for a

solution to a given problem by

XI



Term Page Description

Genotype

NP-Complete

Nyquist Theorem

Phenotype

RTOS

imitating the 'natural
selection'

which

steers the evolution of living

organisms.

21 The genetic make-up of an organism.

1 A problem is said to be NP-Complete

if computing an exact solution to the

problem requires nondeterministic

polynomial time and it has been

proven to be Complete.

11 Nyquist Theorem [Ref. 16, pg. 519]:

Let x(t) be a bandlimited signal with

X(co)
= 0 for |<z>| > cdm Then x(t) is

uniquely determined by its samples

x(nT), n
= 0, 1, 2, ... if cos

> Ico^

where <ys
= 27i/T.

21 The environmentally and genetically

determined observable appearance of

an organism, especially as considered

with respect to all possible

genetically influenced expressions of

one specific character.

1 A Real-Time Operating System

(RTOS) is a computer operating

Xll



Term Page Description

systems which provide the necessary

constructs to allow for the creation of

multitasking applications capable of

communicating with each other and

meeting critical timing constraints.

TSR 59 A Terminate and Stay Resident

(TSR) program is an MS-DOS

program that remains in memory

after the program has finished

executing. TSRs typically hook into

interrupt vectors and appear to

execute in the background underMS-

DOS. Since their execution can be

sporadic, their impact on system

performance is not defined.

Xlll



1. Introduction

The objective of this thesis is to develop a tool to assist the user in

determining a near optimal Real-Time Operating System (RTOS) scheduling

policy for an arbitrary multitasking problem specification. The solution is

determined using a Genetic Algorithm (GA). The basic idea is that determining

the
'best'

RTOS scheduling policy is a very complicated task. This determination

is usually done by an individual, or small group of individuals, with significant

knowledge about the problem domain of the application. With multitasking

software becoming increasingly complex, knowing that the RTOS scheduling

policy that is being used is the most effective for the specific application is no

longer something that can be determined merely by understanding the problem

domain. What is needed is detailed knowledge about the interaction of the tasks

that make up the multitasking application. Even with this knowledge, the

problem of determining an optimal RTOS configuration is NP-Complete.

"The problem of determining that a given schedule is optimal has

been proven to be an NP-complete problem in general. ... The most

notable exception from NP-completeness is determining a schedule

for a monoprocessor system, in which all tasks are initially released

simultaneously. If a problem is NP-complete, it is not likely that an

algorithm exists that performs better than an algorithm based on

enumerative
methods."

[Ref. 2, pg. 33]



For many optimization problem classes, it has been shown that GAs are

uniquely qualified to search complex problem spaces for a global optimum,

especially when that search space contains numerous local optima.

"... The developed evolution program displayed some qualities not

always present in the other (gradient-based) systems:

The optimization function for the evolution program need

not be continuous. At the same time some optimization

packages will not accept such functions at all.

Some optimization packages are all-or-nothing

propositions: the user has to wait until the program

completes. Sometimes it is not possible to get partial (or

approximate) results at some early stages. Evolution

programs give the users additional flexibility, since the

user can monitor the 'state of the
search'

during the run

time and make appropriate decisions. In particular, the

user can specify the computation time (s)he is willing to

pay for (longer time provides better precision in the

answer).

The computational complexity of evolution programs

grows at a linear rate; most of other search methods are

very sensitive to the length of the optimization horizon.

As usual, we can easily improve the performance of the

system using parallel implementations; often this is

difficult for other optimization
methods"

[Ref. 12, pg. 117].



It is for this reason that a GA will be used to determine the
'best'

RTOS

scheduling policy for the given problem specification.

All real-time operating systems provide some means of
'tuning'

the

characteristics of the scheduling policy to accurately meet the application

requirements. The main objective of this thesis is to show the applicability of

using a GA to determine these parameters for an arbitrary application. In so

doing, a tool set will be developed which completely automates this tuning

process. In addition, the RTOS parameters that are considered are broad enough

to allow the results to be used for specifying and/or choosing an RTOS for the

actual implementation of the real-time system.

The domain of real-time applications which is of particular interest is that

of embedded systems. In the embedded systems domain, real-time multitasking

problems are specified by the usual real-time properties, such as a series of

timing constraints and time deadlines. In addition, embedded systems are further

confined to using processing resources that are both practical and available in the

particular application environment. These additional constraints are probably the

most significant attributes of embedded real-time systems which must be

considered during the design of the system. These constraints arise from the very

nature of embedded systems and take the form of size, weight, power and cost

restrictions.

Therefore, in addition to evaluating the ability ofvarious RTOS scheduling

policies to meet the real-time timing constraints and time deadlines (both hard

and soft), the effectiveness of the scheduling policy is evaluated with regard to

3



CPU utilization. One of the most common means of reducing the size, weight,

power and cost of an embedded system is to reduce the required CPU processing

power. As a result of reducing the CPU processing power, the clock frequency

and memory speed can often be reduced as well. This is the area of the system

design where size, weight, power and cost savings are achieved. Therefore, the

'best'

RTOS scheduling policy (which is application-specific) is the one which

maximizes the following criteria:

Percentage of timing constraints met.

Weighted percentage of deadlines met (recognizing that for

applications with hard deadlines, anything less than 100% is

unacceptable).

Percentage of CPU processing bandwidth available (i.e., surplus

processing power).

Real-time operating systems typically provide relatively few parameters

which can be
'tuned'

to a particular application. This thesis evaluates the

effectiveness of the following RTOS parameters (this list is intended to include

all configuration parameters likely to be found in most available RTOSs):

TaskingModel - Both cooperative and preemptive multitasking models

are used.

Timeslice - The processing timeslice ranges from 50 u:Sec to 65 mSec

(only applicable for preemptive multitasking).



Priority Inheritance -

Scheduling policies with and without priority

inheritance are used (enabling priority inheritance guarantees that

unbounded priority inversion cannot occur).

Priority Allocation -

During run-time, the task priorities are either fixed

at the initial assigned value (static priority allocation) or changed

through the use of a rotation scheme (dynamic priority allocation).

Initial Priority Assignment - The priority of each task is initially

assigned using one of the following algorithms:

0 Uniform (constant) Assignment - All tasks are assigned the same

priority regardless of execution profile.

0 Ad-hoc (random) Assignment - Tasks are assigned random

priorities, uniformly distributed within the allowable range,

without regard to execution profile.

0 Rate Monotonic Assignment - Tasks are assigned priorities based

on execution period. Tasks with high execution rate (low period)

are assigned high priorities; lower execution rates (higher

periods) are assigned proportionally lower priorities. Execution

period is defined as the amount of time which elapses between

consecutive executions of a task (periodic execution is assumed).

See Figure 1 - TaskExecution Profile, Tr.

0 Deadline Monotonic Assignment - Tasks are assigned priorities

based on execution deadlines. Tasks with short deadlines are



assigned high priorities; longer deadlines are assigned lower

priorities. Execution deadlines are defined as the amount of time

which can elapse between when a task begins executing and

when it must reach a critical point in its execution. See Figure 1

- TaskExecution Profile, Tj>

0 Workload Monotonic (greedy) Assignment - Tasks are assigned

priorities based on the amount of work that the task must

perform. Tasks with high workloads are assigned high priorities;

lower workloads are assigned proportionally lower priorities.

Task workload is defined as the amount of time which elapses

between when a task begins executing and when it completes

executing. See Figure 1 - TaskExecution Profile, Ty/.

Sample Task Execution Profile

Figure 1 - Task Execution Profile

The Genetic Algorithm used to perform this RTOS evaluation is a

generalized algorithm with application-specific genetic operators (population



crossover and mutation), see Figure 2 - Genetic Algorithm. It has been shown

that genetic operators are most capable of performing the required search when

they are designed with prior knowledge of the problem domain.

"... although the gains are not dramatic, RAR2 out-performs

uniform crossover with a simple penalty function on a family of

problems in which the solution is a fixed-size set, using fitness

functions which vary from highly epistatic to non-epistatic. This

therefore provides some evidence that forma [sic] analysis is capable

of leading to effective genetic search in problem domains not well

suited to conventional binary
representations."

[Ref. 17, pg. 27]

Therefore, the approach taken is to fully define the problem domain (i.e.,

RTOS configuration parameters) and then design the genetic operators so as to

properly evolve a solution to this
specific problem domain.



Randomly Initialize

the Population

v

Select the First

individual

v

Evaluate the Fflnes

of this Individual

V

Advance to Next

Individual in Populati
;*-N <T Last Individual?^-

Yes

Perform Genetic

Crossover

i

Perform Genetic

Mut ition

Figure 2 - Genetic Algorithm

It is obvious from Figure 2 above that the GA itself is extremely simple.

The power of the algorithm comes from the fact that as it progresses, it does two

distinct things: 1) it continuously improves and, 2) it explores solutions which

may provide additional improvements. Both of these operations are

encompassed in the genetic operators of population crossover and mutation.

These operators manipulate the genes of the individuals to produce the

continuously improving and experimentation properties of the GA. Since the

genes of the individuals are used to determine how it behaves (i.e., how well it

solves the problem), and the genetic operators manipulate those genes, the

genetic operators must be intricately tied to the representation of the genes. This



results in genetic operators that are specific to the problem domain. Significant

research has been done, attempting to determine 'universal genetic
operators'

based on 'universal gene representations'. Unfortunately, as the following quote

summarizes, these attempts have not been very successful:

"The EC (Evolutionary Computation) community differs widely on

opinions and strategies for selecting appropriate representations,

ranging from universal binary encodings to problem-specific

encodings for TSP (Traveling Salesman Problem) problems and

real-valued parameter optimization problems. The tradeoffs are

fairly obvious in that universal encodings have a much broader

range of applicability, but are frequently outperformed by problem-

specific representations which require extra effort to implement but

exploit additional knowledge about a particular problem
class."

[Ref. 7, pg. 619]

It is for these reasons that the GA developed for this thesis will use

application specific genetic operators.



2. Background

In order to provide a firm foundation from which to establish this thesis,

the concepts of real-time applications and genetic algorithms must be fully

defined. This section will provide a generalized, detailed description of these

very important concepts by using two simple, but concrete, examples.

2.1 Real-Time Applications

It is important to first discuss the characteristics of real-time problems in

general, after which, the problems associated with determining the appropriate

configuration parameters of an RTOS will become apparent. The following

example will be used to illustrate the general characteristics of real-time

applications.

This example will consider the problem of a Reaction Rate Controller

(RRC) of a chemical processing plant [Ref. 1]. The RRC is responsible for

managing the reaction rate for a single chemical process. For this simplified

example, the reaction rate is a function of the relative proportions of only two

reagents and the temperature and pressure within the reaction chamber.

The user interface to the RRC is an operator console; the RRC must accept

the desired reaction rate from the operator and provide reaction status to the

operator. This operator interaction is relatively slow due to the fact that human

operators respond slowly and require some time to assimilate information. It is

assumed that the operator cannot request reaction rate changes more frequently

than once every two seconds and that the operator cannot recognize status

10



changes more frequently than four times per second. In order to ensure that the

operator is always informed about the status of the reaction, the RRC must

update the operator display no less than once per second.

The RRC must also accommodate the fact that the reaction rate within the

reaction chamber can change within 100 milliseconds. In order to maintain a

safe reaction environment, the RRC must respond to that change by re

positioning the reagent valves within an additional 100 milliseconds. This means

that in the worst case, the reagent valves may be re-positioned as frequently as

every 200 milliseconds. The RRC must also ensure that the reaction pressure and

temperature are sampled at a sufficiently high rate to ensure that all changes are

detected. Again, since the reaction rate within the reaction chamber can change

within 100 milliseconds, the Nyquist Theorem states that the sampling period for

the pressure and temperature sensors must be no more than 50 milliseconds.

The system software architecture for the RRC is shown in Figure 3 -

Reaction Rate Controller (RRC), which shows data and control flow within the

system, timing parameters and software tasks.

n



Reaction Rate Controller (RRC)

250-
1000mSec~~

Reaction

Controller

50 ctiSec Period \

r

Monitor

^ ^_

Pressure

50 mSec Period '._

^^'e
r

Monitor

%
Temperature

V

Temperature

Sample f Temperature

Sensor

<J=

- Communication Trigger Penod

Legend
Automate Periodic Trigger

Figure 3 - Reaction Rate Controller (RRC)

The physical input/output devices connected to the RRC, the information

flow to/from the RRC and a description of the timing requirements imposed on

the RRC are summarized in Table 1 below.

ID# I/O Device Data Flow Direction Timing Requirements

1 Operator Console Desired Reaction Rate To RRC Non-Periodic: >2000 mSec

2 Operator Console Actual Reaction Rate &

Reaction Status

From RRC Periodic: 250 mSec (Design Goal), <1000
mSec (Requirement)

3 Reagent #1 Valve Valve Position From RRC <100 mSec after Reaction Change

4 Reagent #2 Valve Valve Position From RRC <100 mSec after Reaction Change

5 Pressure Sensor Pressure Sample To RRC Periodic: 50 mSec

6 Temperature

Sensor

Temperature Sample To RRC Periodic: 50 mSec

Table I - RRC Requirements

From this example it is readily apparent that real-time applications are

most notably characterized by deadlines. That is, real-time applications are

specified by a series of deadlines that the software (in this example, the RRC)

must meet. These deadlines typically arise from the very nature of the

12



application and the processing that the application must perform. Careful

analysis of the problem can expose all of the deadlines that a system must meet.

In addition to identifying the deadlines, it is also important to characterize the

nature of each deadline. For example, some deadlines are more
'important'

to the

proper operation of the system than others. In the RRC example above, it is

obvious from Table I - RRC Requirements that requirement #2 (Display Update)

is
least'

important because a range of allowable performance values is specified.

Intuitively that makes sense as well because failure to update the operator display

as frequently as four times per second will result in a graceful performance

degradation. On the other hand, failure to properly control the reagent valves

may result in an unsafe reaction; therefore the requirements associated with

actually controlling the reaction are
'more'

important to the correctness of the

system.

The different relative importance of real-time deadlines is expressed as to

whether a given deadline is
'hard'

or 'soft'. Hard deadlines are those which must

always be met in order for the system to be said to operate correctly. Soft

deadlines are those which can be missed (occasionally) without severely

impacting the correctness of the system. In other words, if a system fails to meet

a hard deadline, a catastrophic failure usually results. Failure to meet a soft

deadline usually results in graceful degradation of some aspect of system

performance. In the above example, failure to meet a hard deadline associated

with controlling the reaction rate may result in an unsafe reaction which could

result in loss of life or property. Failure to meet the soft deadline associated with

13



updating the operator display will result in the inability of the operator to adjust

the reaction rate to the desired level (if the display is not updated, the operator

does not know that the reaction rate is something other than the desired rate).

Therefore, in the above example, all deadlines are hard except for update of the

operator display. In essence, the system can be said to be operating properly

even if the operator display is updated less frequently than four timer per second.

In large, complex systems, the concept of strictly hard or soft deadlines is

usually too restrictive to adequately describe all of the deadlines present within

the system. Obviously, some deadlines will still be strictly hard or soft, but some

soft deadlines may be more important than other soft deadlines. It is typically

necessary to extend hard and soft deadlines to include a 'degree of
hardness'

so

that all of the subtle aspects of required system performance can be captured.

This allows the system to be evaluated based on how well the hard deadlines are

met ('Is the system operating correctly/safely?'), as well as how well the varying

degrees of hardness deadlines are met ('Is the performance of the system

adequate?'). Another method of specifying the relative importance of a soft

deadline is to use the benefit accrual model of timeliness [Ref. 2, pg. 30]. In this

model, all deadlines are modeled as a function of time, f(t), which corresponds to

the benefit achieved to the system by completing the deadline at time t. In this

way the complete spectrum of hard and soft deadlines can be modeled

consistently and thoroughly.

The problem associated with determining the appropriate configuration

parameters of an RTOS for a given real-time application is extremely difficult.

14



One reason for this difficulty is that there is often very little to guide a designer in

choosing the
'best'

RTOS parameters. Even though it may be possible to fully

specify the real-time application in terms of its deadlines, that alone in no way

guarantees that the deadlines will actually be met. The RTOS configuration will

affect the system performance which will in turn determine to what extent the

system performs correctly (hard deadlines) or to what degree the system

performance is degraded from the design goals (soft deadlines).

2.1.1 Formal Methods for Real-Time Analysis

Recently, there has been significant research into defining formal methods

for analyzing the correctness of real-time systems [Ref. 9]. The appeal of this

approach is that by using some of these formal methods, the correctness of a real

time system design can often be proven analytically. Unfortunately, for large

complex systems, the applicability of these methods can be limited.

The techniques that have been developed for analyzing real-time systems

generally fall into two distinct categories: model-based reasoning and proof-

based reasoning [Ref. 9, pg. 14]. Each of these has associated advantages and

disadvantages, and each has been used successfully to model real-time systems.

The remainder of this section outlines the major accomplishments in defining

formal methods for the analysis of real-time systems.

2.1.1.1 Model-BasedAnalysis

For model-based analysis, the real-time system is typically specified using

a graphical model tool set. The main advantage to this approach is that the

model can be created and maintained by individuals with no formal mathematical

15



background, and the analysis is automatically performed by the tool set. In

addition, the graphical model provides a description of the system that can be

used to document the real-time design. One disadvantage of this approach is that

it does not scale well to large complex systems. The problem of creating and

maintaining a single large model that fully describes the entire system can easily

result in errors and areas of model inadequacy. Another problem is that as the

model grows, the analysis process becomes increasingly more time consuming.

This is due to the fact that the complexity of the analysis grows as 0(2 ) where N

is the number of states in the real-time system.

One promising method ofmodel-based analysis that has been introduced
is

based on the Modechart specification language [Ref. 14]. This specific method

provides a set of tools which is used to create the system specification, simulate

the model to exhibit individual behaviors of the system, and verify global

properties of the system. This method is promising because it provide significant

automation of the analysis using the tool set provided. Unfortunately this, like all

state-based methods suffers from the state explosion problem. That is, as the

real-time system being modeled more closely parallels a real-world problem, the

number of states required to accurately represent the system becomes

unmanageably large. Ultimately what often happens with such a system is that,

over time, the model loses
synchronization with the actual system being designed

and becomes obsolete. Another potential problem with state-based models is that

the computations that must be performed to verify the design grow of order 2N.

Again, the number of states creates an often unacceptable computation time

16



which is not proportional to the increase in design complexity. Even a marginal

increase in complexity of the system can result in a tremendous increase in the

complexity of the computations necessary to
'prove'

the validity of the design.

For small-scale real-time systems this method may be feasible but it is unlikely to

be applicable for large, complex systems.

2.1.1.2 Proof-BasedAnalysis

For proof-based analysis, standard logical deduction methods are used to

formally prove that one specification is equivalent to another specification. With

the system design and system requirements being used as the starting and ending

points of the proof, this method can prove that a specific real-time design

specification is equivalent to the corresponding system requirements

specification. The main advantage to this approach is that a formal proof of the

design meeting the requirements is achieved. The disadvantages are that

producing the proof requires formal mathematical training, and since the proof

must be done by hand, changes in the design and/or requirements can necessitate

the complete recalculation of the proof.

One promising method of proof-based analysis that has been introduced is

based on a timed process algebra which supports time consuming actions,

instantaneous events, and the concept of prioritized interactions [Ref. 11]. In

order to utilize this method, the real-time system and the requirements must be

specified in terms of the ACSR specification language [Ref. 11, pg. 169-179].

This may not seem like a severe limitation but it often is. First, expertise in the

ACSR specification language is necessary, although this is not significant it is

17



knowledge that is not often present within the real-time development community.

Secondly, and more importantly, using this analysis method requires that not

only the system being designed but also the system requirements be specified in

the ACSR specification language. System requirements are very infrequently

defined to a degree that would allow a formal specification to be developed.

More often than not the system requirements are being developed at the same

time that the system design is being developed. Again, this is not to say that this

method is not without merit, it is just that for real-world problems where the

requirements of the system are dynamic this method may not be feasible.

2.2 Genetic Algorithms

It is important to first discuss the characteristics of genetic algorithms

(GAs) in general, after which, the particular application of a GA to determining

appropriate configuration parameters of an RTOS can be investigated. One way

to understand GAs is to view them as algorithms which search the space of

possible solutions to a problem for the optimal solution. In this regard, GAs are

very similar to other parametric search algorithms (hill climbing, simulated

annealing, etc.). The most important difference between GAs and other search

methods is that GAs attempt to model the natural world laws of 'random

perturbations'

and 'survival of the fittest'. This property is unique to GAs.

The basic architecture of a GA is one of a collection of individuals, where

each individual is a candidate solution to the problem being solved. In turn, the

basic architecture of each individual is one of a collection of 'genes', where each

gene represents one component of the parameterized solution to the problem.

18



The GA uses this
'population'

of individuals and 'gene
pool'

of genes together

with the natural laws of 'random
perturbations'

and 'survival of the
fittest'

to

allow the
'best'

solution to evolve over many generations, see Figure 4
- General

Genetic Algorithm. From this discussion it is apparent that the GA is

parameterized as follows:

Population Size, 7Y - The number of individuals that will be used to

comprise the population. This value is chosen such that statistical

significance within the population is maintained and such that the

initial (and potential) gene pool is sufficiently diverse.

Mutation Rate, Pm - The rate at which 'random
perturbations'

will be

introduced into the gene pool. This value is chosen in such a way as to

ensure that any useful genetic material which is lost due to crossover, is

re-introduced into the gene pool and to allow the GA to explore areas of

the search space that have not yet been explored.

Crossover Rate, Pc - The rate at which individuals participate in genetic

recombination, i.e., the rate at which genes are recombined from

individuals of the present generation to form individuals of the next

generation. This is the means that
'fit'

genetic material
'survives'

from

generation to generation. The value is chosen in a manner that allows

for a reasonable rate of convergence, a trade-off between execution

time and probability of false convergence must be made.

It is obvious that this approach does not constitute an exact or formal

method. Instead, as the example that follows will illustrate, the GA seems to

19



meander about in its search for the
'best'

solution, never really knowing were the

search will lead but amazingly enough almost always able to find a reasonably

appropriate solution.

Randomly Initialize

the genes of the

Population

I
Start of New

Generation:

Select the First

individual from the

Population

I
Evaluate the Fitness

of this Individual

(using genes as

parameters to the

problem at hand).

1f

Advance to Next

Individual in

Population

^ No <f Last Individual? J>

Yes

*

Apply Natural Law:

Survival of the Fittest

1 '

Apply Natural Law:

Random

Perturbations:

Figure 4 - General GeneticAlgorithm

Note that the answer found by the GA is not necessarily optimal. This

arises from the fact that the GA is never really finished, in theory the solutions

would evolve over an infinite number of generations (notice that there is no exit

condition specified in the Figure 4). This means that in practice, one of the more

difficult problems associated with using a GA is determining when to stop the

20



search. This decision is often based on statistical measurements of the

population and/or gene pool, as stated below.

"There are two basic categories of termination conditions, which use

the characteristic of the search for making termination decisions.

One category is based on the chromosome structure (genotype); the

other - on the meaning of a particular chromosome (phenotype).

Termination conditions from the first category measure the

convergence of the population by checking the number of converged

alleles, where an allele is considered converged if some

predetermined percentage of the population have the same (or

similar - for non-binary representations) value in this allele. If the

number of converged alleles exceeds some percentage of total

alleles, the search is terminated. Termination conditions from the

second category measure the progress made by the algorithm in a

predefined number of generations; if such progress is smaller than

some epsilon (which is given as a parameter of the method), the

search is
terminated."

[Ref. 12, pg. 65].

The natural laws of 'random
perturbations'

and 'survival of the
fittest'

were first articulated by Charles Darwin in The Origin Of Species. Even though

these concepts were focused entirely on biological organisms and their

interactions, it is in this rich background that the field of genetic algorithms is

based.

As shown below, Darwin uses the term 'individual
differences'

to express

the concept of random perturbations as it relates to biological organisms; the

21



exact same principles are used when applying genetic algorithms to

computational problems, see section 3.2 Genetic Algorithm.

"The many slight differences which appear in the offspring from the

same parents, or which it may be presumed have thus arisen, from

being observed in the individuals of the same species inhabiting the

same confined locality, may be called individual differences. No

one supposes that all the individuals of the same species are cast in

the same mould. These individual differences are of the highest

importance for us, for they are often inherited, as must be familiar to

every one; and they thus afford materials for natural selection to act

on and accumulate, in the same manner as man accumulates in any

given direction individual differences in his domesticated

productions."

[Ref. 5, pg. 59]

As Darwin indicates below, individual biological organisms within a

population compete with each other for the right to survive. Together with

random perturbations, natural selection creates a continuously improving

population. This is true even though, for any given generation, there will exist

individuals that are less fit for survival.

"Can it, then, be though improbable, seeing that variations useful to

man have undoubtedly occurred, that other variations useful in some

way to each being in the great and complex battle of life, should

occur in the course of many successive generations. If such do

occur, can we doubt (remembering that many more individuals are

born than can possibly survive) that individuals having any

22



advantage, however slight, over others, would have the best chance

of surviving and of procreating their kind? On the other hand, we

may feel sure that any variation in the least degree injurious would

be rigidly destroyed. This preservation of favourable individual

differences and variations, and the destruction of those which are

injurious, I have called Natural Selection, or the Survival of the

Fittest. Variations neither useful nor injurious would not be affected

by natural selection, and would be left either a fluctuating element,

as perhaps we see in certain polymorphic species, or would

ultimately become fixed, owing to the nature of the organism and

the nature of the
conditions."

[Ref. 5, pg. 87-88]

The following simple example will be used to illustrate the general

characteristics of genetic algorithms by determining the maximal value of a

complex trigonometric function. Consider the following function of two real-

valued variables:

/(*
,y>

--215+ x sin(4-

-3.0 < x

4.1 < v

7T-x)+ y

< 12.1

<5.8

sin(10- Ky)

Equation 1 - Sample Optimization Function

It is not at all obvious what values of* and v result in the maximal value of

this function. The plot below, Figure 5 - Sample Optimization Function Plot,

shows the function for the given range.

23



38.705

fffTffT

Ni>

4.163

Figure 5 - Sample Optimization Function Plot

Because the function has so many local maxima, most optimization

algorithms would
'find'

a local maximum instead of the global maximum unless

an extremely close initial value was used, GAs do not posses such a limitation.

After localizing the exhaustive search to the region shown in Equation 2 -

Sample Optimization Function (Localized), the maximum value is determined.

The graph is shown in Figure 6 - Sample Optimization Function Plot (Localized)

shows the maximum value of the function is/(l 1.626,5.65)=38.775.

24



/

38.773

V|>

15.95

Figure 6 - Sample Optimization Function Plot (Localized)

/(*,y)== 21.5 + x sin(4

11.5<x

5.5 <v

7i-x)+ y

11.7

<5.7

sin(10-
ny)

Equation 2 - Sample Optimization Function (Localized)

The following table shows the results of a single run of GMATH-GA. EXE?

the results show the percent error after 903 generations. Notice that even without

any knowledge of the optimal solution, and searching the entire range (see

Equation I), the GA performed remarkably well at determining the maximum

value of the function. This function optimization example will be revisited in the

remainder of this section as the various aspects ofgenetic algorithms are detailed.

25



nm X y

38.668

(0.276%)

11.615

(0.095%)

5.650

(0.000%)

38.664

(0.286%)

11.615

(0.095%)

5.651

(0.018%)

38.662

(0.291%)

11.615

(0.095%)

5.652

(0.354%)

38.657

(0.304%)

11.615

(0.095%)

5.648

(0.354%)

38.603

(0.443%)

11.615

(0.095%)

5.645

(0.088%)

Table 2 - GA Solutions to Sample Function

2.2.1 Genetic Operators

The most important aspect of the genetic algorithm is the internal

representation of the genes. There is nothing which is more intrinsic to a specific

GA for a problem than the gene representation and the genetic operators which

manipulate those genes. There are two genetic operators which essentially

comprise the genetic algorithm: mutation(...) and crossover(...). These operators

are responsible for the behavior of the GA, its ability to converge to a solution,

and the rate at which the convergence occurs.

It is important to note that both of these operators must be designed with

complete knowledge of the precise genetic representation which is being used.

There are two different representation methods which are typically used to create

a GA: pure binary genes and representational genes. There is significant debate

within the GA research community as to whether one method is superior to the

other, most indications are that pure binary genetic representations may be out

performed by representations which more closely match the problem domain

[Ref. 17, pg. 27].

26



The following sections will describe the mutation(...) and crossover(...)

operators for both type of genetic representation.

2.2.1.1 Mutation

The mutation(...) operator attempts to model the natural law of 'random

perturbations'. Quite simply, mutation is the random altering of genetic material

of some members of the population. One of the parameters of a GA is the

mutation rate (or probability of mutation). This parameter controls how

frequently (or with what probability) genes will be mutated.

Determining the
'correct'

mutation rate for a given genetic algorithm

optimization problem is itself an optimization problem, this is also true for

determining other parameter values for a GA. Since it is not feasible to construct

a GA which determines the parameters for another GA, although this has, been

done [Ref. 6, pg. 92], typically, general principles are used to select approximate

GA parameter values.

One of the most important measurements of the GA parameters is the

expected allele coverage of the population. The mutation rate and the population

size directly effect the expected allele coverage, 99% expected allele coverage is

typically used [Ref. 19]. The way that the expected allele coverage is calculated

is different for pure binary genes than for more representational genes. Equation

3 and Equation 4 provide guidelines for determining the mutation rate or

population size for binary and representational genes respectively [Ref. 19].

For pure binary genes the genetic material is uniform, therefore expected

allele coverage is simply a function of the population size and the number of

27



choices for each bit (i.e., 2), see Equation 3 - Expected Allele Coverage (Binary

Representations) below [Ref. 19, pg. 33].

E[ac] =
l-(\/2)N

Where: ./Vis the population size

Equation 3 - ExpectedAllele Coverage (Binary Representations)

For more representational genes the genetic material is not uniform,

therefore a summation is required to accumulate the weighted expected allele

coverage, see Equation 4 - Expected Allele Coverage (Non-Binary

Representations) below [Ref. 19, pg. 33].

Pm(N,K)
=^

The probability that exactly m distinct symbols are used for

any given gene within the entire population is given by:

fK\ K-m-i (K-m\

\rnj t=t

(K-m-v)N

V v j

Where: Kis the number ofdistinct symbols used in the encoding

andN is the population size.

Since all gene positions are disjoint with respect to alleles,

the expected allele coverage is given by:

Eiac^^-'Zm-pJN^)
-K-

m=l

Equation 4 - ExpectedAllele Coverage (Non-Binary Representations)

For pure binary representations, carrying out the mutation operation is very

straightforward. Since each individual's genotype is represented as a single bit

string of length m, where individual genes that comprise the genotype are

assigned sub-regions of the bit string, and the population is composed of n

individuals, the entire gene pool is composed of n m bits. The mutation

28



operation is performed once every generation where each bit is mutated (i.e.,

inverted) with probability Pm.

For representational genes, carrying out the mutation operation is slightly

more complex. Since is it possible that simply mutating single bits will result in

illegal (i.e. meaningless) genes, the mutation operation must always produce a

gene which is valid within the problem domain. For this reason the mutation

operator must be closely tied to the actual problem being solved. Again, the

mutation operation is performed once every generation but in this case each gene

is mutated (the exact meaning of which is application specific) with probability

Pm-

In the example above, the genes are two real-valued numbers in the ranges

specified in Equation 1 - Sample Optimization Function. Since the genes are not

binary encodings, mutation for this example is defined as replacing the gene to

be mutated with a randomly selected value from the corresponding range. This is

typical of a representational genotype. The mutation rate, Pm, is determined by

choosing a population size, N, of 175 individuals, setting the desired expected

allele coverage to 97% and evaluating Equation 4, above. The resulting mutation

rate, for this example, is Pm
= 3%, resulting in accuracy of

1/50*

of the respective

ranges of each variable.

2.2.1.2 Crossover

The crossover(...) operator attempts to model the natural law of 'survival

of the fittest'. Genetic crossover allows individuals to pass their genetic material

on to individuals of the next generation. To do this, those individuals that are

29



most fit are chosen to participate in genetic crossover. When crossover(...) is

applied to the population, two relatively fit individuals are chosen at random and

their genetic material is combined in some way to produce an offspring. The

most common type of crossover is 'single-point crossover'. Single-point

crossover occurs when a randomly selected gene is used to split the genotypes of

the two parents, the offspring inherits one half of the genotype from each parent.

There are important consequences of this operation, as described below.

"One important feature of one-point crossover you should be aware

of is that it can produce children that are radically different from

their parents. ... Another important feature is that one-point

crossover will not introduce differences for a bit in a position where

both parents have the same value. ... An extreme instance occurs

when both parents are identical. In such cases, crossover can

introduce no diversity in the
children."

[Ref. 6, pg. 17]

There is no theoretical guideline for determining the proper crossover

probability, Pc, for a GA, typical values range from 25% to 75%. Values used for

GAs in this thesis will be determined empirically but will be from the typical

range.

In the example above, single-point crossover with a crossover probability

ofP,=25% was used.

30



3. Evolution of Solutions to Real-Time Problems

The most promising applications of genetic algorithms arise in the area of

engineering design. This is true because many design problems are very

complex (often NP-Complete or at least NP-Hard) and once the engineering and

business trade-offs have been made, these problems can be expressed as an

optimization problem. GAs are uniquely qualified for these exact type of

optimization problems where there are far too many system constraints for an

engineer (or small group of engineers) to keep in mind during the design phase.

If sufficiently large computers are available there is really no limit to the number

of constraints that can be managed by a GA. In addition, GAs are capable of

solving problems without actually requiring that the specific design problem be

solved (or solvable) at all, as the following summarizes:

"Assume, then, that (for some reason) we have to (or like to) build a

new system to solve a nontrivial optimization problem. ... Then we

have to make a choice: either we can try to construct an evolution

program or we can approach the problem using some traditional

(heuristic) methods. It is interesting to note that in a traditional

approach it usually takes three steps to solve an optimization

problem:

1 . Understand the problem

2. Solve the problem

3. Implement the algorithm found in the previous step

31



In the traditional approach, a programmer should solve the problem

-

only then may a correct program be produced. However, very

often an algorithmic solution of a problem is not possible, or at least

is very hard. On top of that, for some applications, it is not

important to find the optimal solution -

any solution with a

reasonable margin of error (relative distance from the optimum

value) will do. ... An evolution programming approach usually

eliminates the second, most difficult step. Just after we understand

the problem, we can move to the implementational issues. The

major task of a programmer in constructing an evolution program is

a selection of appropriate data structures as well as genetic operators

to operate on them (the rest is left for the evolution
process)."

[Ref. 12, pg. 302]

In addition to the all too often cited example ofVLSI circuit design, there

are many other examples of systems that have been designed using, at least in

part, a genetic algorithm. One such example is the parametric design of aircraft:

"The problem addressed here is parametric design using a design

concept typical of modern fighter aircraft. The problem is

representative of
real-world aircraft conceptual design problems. It

is similar to practical problems that are currently being solved using

methods described here. The aircraft takes off, accelerates

subsonically and then perhaps supersonically, transits to an

engagement area, conducts combat operations, returns to base,

loiters, and lands. The parameters describing the mission include

altitude, duration and velocity of those activities, range, and

acceleration and maneuverability requirements for combat.

32



Representative parameters of the aircraft's geometry and

configuration include fuselage width, height and length; wing

planform and thickness characteristics; vertical and horizontal tail

surface dimensions; and engine size (that is, aircraft thrust-to-weight

ratio). Parameters of the design concept include unsealed engine

weight and dimensions, and weights of aircraft subsystems and the

weapons complement. The total number of parameters for this

problem is
fifty."

[Ref. 3, pg. 113]

The engineering design problem that is being considered in this thesis is

the system software architecture design for an embedded, real-time application.

This design problem can be viewed as an optimization problem. The
'function'

to be optimized is the applicability of a real-time operating system (RTOS)

configuration to a given problem specification. The parameters of the
'function'

are the configuration items for the RTOS. It is reasonable to hypothesize that

there is no optimal RTOS configuration for all real-time applications, instead the

best RTOS configuration for any given application will, in some unknown

manner, be a function of the application itself. Therefore, the tools developed

must be capable of accepting a user specified real-time application. The tools

will then generate a list of the
'best'

RTOS configurations for that application. A

genetic algorithm will be used to determine these RTOS configurations. In

general, a genetic algorithm can be used to find the optimal solution to a given

problem but only if given infinite time. Since infinite time is not feasible, the

solutions provided by the tools developed in this thesis will produce sub-optimal

33



solutions. The following sections describe the RTOS, genetic algorithm and real

time application specification aspects of the tool set.

3.1 Real-Time Operating System (tasking)

TASKING provides all of the RTOS services necessary for real-time

application development. It is important to note that the services provided merely

allow for the development of real-time applications ~ they do not ensure that a

system design will actually perform in real-time. The services provided are

easily segregated into the following categories: task management, software

events, binary semaphores, counting ("Dijkstra") semaphores, message passing,

condition variables and interactive I/O handling.

The task management services primarily allow tasks to be dynamically

created and destroyed. In addition, services are provided so that tasks can be

suspended, resumed or change their priority. These services are sufficient to

allow for the design of a multitasking application; however, additional services

are necessary to allow the tasks to communicate and interact. The remaining

categories of services provide these necessary capabilities.

Inter-task communication and interaction are achieved by the use of one

(or more) of the following constructs: software events, binary semaphores,

counting ("Dijkstra") semaphores, message passing or
condition variables. These

constructs are actually a superset of those that are required for inter-task

communication. It has been shown that at the most basic level, all of these

constructs can be considered to be a special case of a simple semaphore.

34



"In the previous sections we have studied four different interprocess

communication primitives. Over the years, each one has

accumulated supporters who maintain that their favorite way is the

best way. The truth of the matter is that all these methods are

essentially semantically equivalent (at least as far as single CPU

systems are concerned). Using any of them, you can build the other

ones."

[Ref. 18, pg. 52]

Nonetheless, in order to ease application development, they are all

provided by TASKING- Note that when these constructs are created they are just

like any other variable in that their value is undefined. Before the construct is

used it should be initialized to a value appropriate for the given construct. In

addition, task interaction with the application user is performed by a set of

blocked I/O handling routines.

Software events are one of the more simple constructs; events can take on

only one of two possible values: signaled or unsignaled. In addition to this

restriction, events can retain only a single signal, i.e., once an event has been

signaled, all subsequent signals to that
event are superfluous (the event remains

signaled) but are not considered errors. Tasks may communicate simple

information with events but most often events are used for task synchronization.

Quite simply one task would wait for an event to be signaled by another task

which would indicate that some temporal situation was satisfied (e.g., a data

buffer had just become non-empty or non-full, etc.). At that point the tasks

would be synchronized.

35



Whereas software events are typically used to task synchronization, binary

semaphores are typically used to ensure mutually exclusive access to a resource

which is shared between two (or more) tasks. Binary semaphores, like software

events, can only take on two possible values: 0 or 1. In addition, it is logically an

error to signal an already signaled binary semaphore; TASKING Wl^ enforce this

restriction by detecting and reporting this as an error.

"Dijkstra", or counting, semaphores are similar to binary semaphores

except that they can retain multiple signals because TASKING maintains

information so that it knows how may signals are stored in the semaphore at all

times. Whenever a given semaphore is signaled the count is incremented. Tasks

that wait on the semaphore are only suspended when the semaphore contains no

signals (i.e., the semaphore value is zero). This allows
"Dijkstra"

semaphores to

provide control over access to a resource that has more than one instance. That is

n tasks can access m similar resources, where n>m.

TASKING als0 supports passing arbitrary, application-specific messages

between tasks; this is accomplished when the source task allocates memory for

the message and sends a pointer to the message to the destination task. The

receiving task is responsible for de-allocating the memory for the message after it

has been consumed. There are no restrictions on the size, structure or number of

messages that can be used within the application. TASKING manages mailboxes

for the destination of the messages and all messages are delivered in a non-

prioritized, first-in-first-out manner. Extreme care must be taken to ensure that

36



these message queues do not cause unbounded priority inversion; note that this

form ofpriority inversion cannot be detected or prevented by TASKING-

The last construct is condition variables. Condition variables do not have

any memory associated with them; if a task is already waiting on a condition

variable when it is signaled it will become unblocked, but if a condition variable

is signaled and no task is waiting on it, then the signal is lost. Condition

variables are typically used in the implementation of Hoare Monitors or for

simple forms of task synchronization.

The other service that TASKING can provide is blocked I/O. Both

keyboard and MS-Mouse I/O can be performed in a completely blocking manner

where the task is blocked (suspended) until input is available. The only

restriction is that only one task each can perform blocked keyboard input and

blockedMS-Mouse input.

The detailed design of each service and the general operating system

philosophy are presented in the remainder of this section.

3.1.1 Facilities and Capabilities

TASKING
allows for the creation of up to 2047 simultaneous, parallel

executing tasks, or threads of execution, within the application. The tasks

execute in an environment of 1000 distinct priority levels. The error handling

options provided by TASKING are quite flexible; each task, or set of tasks, can

have its own specific error handling routines; all tasks can use global application

error handlers; or TASKING can handle any/all of the application errors. When

default error handlers are used, TASKING W1^ attempt to continue executing in

37



the presence of errors, but it should be noted that under error conditions, task

deadlock is likely to occur (under task deadlock conditions TASKING W1^

terminate the application). As regards inter-task constructs, the number of these

constructs used by the application is limited only by the amount of available

memory in the system. TASKING imposes no limits on these constructs. In

addition to these features, TASKING provides performance and operational

statistic reports which can be used to determine how well TASKING has been

configured to match the needs of the application (reports may also be useful for

determining the needs of the application tasks).

The structure of TASKING ls giyen m Figure 7 - Operating System

Facilities/Structure. Detailed component descriptions are provided in the

following section and complete TASKING source code can be found in Appendix

A RTOS Source Code [TASKINGINT and TASKING.PAS].

38



TASKING

Task

Management

Software

Events

CREATE ( ) SIGNAL_EVENT()

DESTROY ( ) BROADCAST_EVENT ( )

SUSPEND ( ) WAIT_ON_EVENT ( )

RESUME () START_PERIODIC_EVENT ( )

CHANGE_PRIORITY ( ) STOP_PERIODIC_EVENT {)

WAIT_FOR_DELAY ( )

Counting
Semaphores

Condition

Variables

SIGNAL_SEMAPHORE () SIGKAL_CONDITION_VARIABLE ( )

WAIT_ON_SEMAPHORE ( ) WAlT_ON_CONDITION_VARIABLE { )

Interactive I/O

Handling

Message

Passing

WAIT_ON_READKEY ( ) SEND_MESSAGE_TO ( )

ENABLE_MOUSE_ACTI0NS () WAIT_AND_RECEIVE_MESSAGE ( )

WAIT AND_RECEIVE_MOUSE_ACTIONS () RECEIVE_MESSAGE ( )

LOCK SCHEDULER ()

UNLOCK_SCHEDULER ( )

Binary
Semaphores

SIGNAL_BINARY_SEMAPHORE ( }

WAIT ON_BINARY_SEMAPHORE ( )

Figure 7 - Operating System Facilities/Structure

The basic architecture of a TASKING application consists of a program

'main'

body, used only to initialize global data and create initial tasks, and the

tasks themselves. No tasks that are created by the
'main'

body will begin

executing until the
'main'

body actually terminates. Essentially, the main

program is used only to initialize the multitasking application. A task

39



automatically ceases to exist when the body of the task terminates. The program

as a whole terminates when all tasks have terminated or when the halt(..) system

call is made. Appendix C Support Software Source Code [DINING.PAS]

includes a sample TASKING program, it is a solution to the classic multitasking

problem proposed and solved by Dijkstra in 1965 called The Dining

Philosophers Problem [Ref. 18, pg. 56].

3.1.1.1 CREATEf...)

This routine creates all system data structures for a parallel executing task.

The task will be made ready to run and will be available for execution. Actual

execution occurs when the scheduler activates the task (i.e., precise execution

time is unknown and depends on the task priority and the relative priority of

other
'ready'

tasks). In addition, no tasks are allowed to execute until the

application
'main'

has terminated. In this manner all tasks created in the
'main'

body begin executing simultaneously. In addition to creating tasks in the
'main'

body, tasks can also create other tasks. There is no concept of task parent-child

relationships within TASKING' when a task is created it continues to exists until

it is destroyed or terminates itself, i.e., the task existence is independent of the

existence of the task that created it.

3.1.1.2 DESTROY^..)

This routine forces the task to terminate and releases all of the task's

resources so that they can be used by other tasks and will then remove all

evidence of the task ever having existed. Tasks may only destroy other tasks, not

themselves. Tasks destroy themselves by merely exiting the task procedure.

40



This operation should only be performed when the full consequences of task

destruction are known. This is particularly important in cases when the task that

is being destroyed communicates with other tasks. If the destroyed task has a

resource locked (with a semaphore, for example), there may be no way to reclaim

that resource. Another potential risk is that the destroyed task may be the

recipient of a message. Since the mailbox structure for that task will cease to

exist after the task is destroyed, any subsequent message sent to that task will

cause an 'Illegal
Operation'

error. It is important to note that except for the most

simple multitasking designs, deadlock is likely to result from the task

destruction. In most cases TASKING W1h detect system deadlock and terminate

the application.

3.1.1.3 SUSPEND^..)

This routine causes a previously ready task to become blocked

unconditionally. Once this has occurred, the only way that the suspended task

can execute again is if another task resumes it (see section 3.1.1.4 RESUME(..)).

Note that suspending a task is distinctly different from destroying a task. A

suspended task is essentially waiting for the conditions to exist which will cause

another task to awaken it. A destroyed task can never be awakened (although it

may be re-created).

3.1.1.4 RESUME(...)

This routine causes a previously suspended task to become ready to

execute. After the task has been resumed, it is not necessarily the next task to

execute, as is always the case when a task becomes unblocked. The task

41



priorities of all ready tasks and the scheduling policy determine which task will

be next to execute. Note that although typically this action is performed on a

task that has been suspended, TASKING will allow any task to be resumed,

regardless of the reason that the task is blocked. It is important to realize that

resuming a task prematurely is likely to cause logical errors in the way that the

tasks interact; deadlock may occur.

3.1.1.5 CHANGE_PRIORITY(...)

This routine allows the currently running task to change its priority. It is

not possible for a task to change the priority of another task. After the task's

priority has been changed, the normal scheduling arbitration takes place and a

new task is chosen to execute. It is important to realize that designing a real-time

system where a task changes its priority is extremely difficult. There may be

isolated instances where it is useful, but in general, it should be avoided.

3.1.1.6 WAIT_FOR_DELAY(...)

This routine causes the currently running task to become blocked for a

specified length of time. The time specified can be as long as thirty-two days

with accuracy to one millisecond. When the time delay expires, the task becomes

ready to execute. As is always the case
when a task becomes unblocked, the task

priorities of all ready tasks and the scheduling policy
determine which task will

be next to execute. Although it is possible to use this mechanism to create a task

which performs some operation periodically, TASKING provides a more accurate

means to do this (see sections 3.1.1.10 START
_PERIODIC_EVENT(..)

and

3. 1.1.11 STOP_PERIODIC_EVENT(..)).

42



3.1.1.7 SIGNAL_EVENT(...)

This routine signals the event specified; if there are tasks waiting on the

event, then one task is made ready (based on a non-prioritized, first-in-first-out

algorithm). If there are no tasks waiting on the event, then the signal is saved,

the next task to wait on the event will consume the signal. Only one signal is

maintained no matter how many times the event is signaled. Note that sending

multiple signals to the same event is not considered to be an error, but can lead to

logical problems on the receiving task's subsequent reactivation.

3.1.1.8 BROADCAST_EVENT(...)

This routine is functionally identical to section 3.1.1.7

SIGNAL_EVENT(..) with minor differences. If there are tasks waiting on the

event when it is signaled, then they are all made ready to execute. If there are no

tasks waiting on the event, then the signal is saved and the next single task to

wait on the event will consume it.

3.1.1.9 WAIT_ON_EVENT(...)

This routine either causes the calling task to be suspended waiting for the

event to be signaled or else consumes the signal already stored in the event. If

the event has already occurred, then the calling task will not be suspended but

instead will immediately become ready to execute. Although technically the task

has not become unblocked, TASKING
treats these two conditions identically.

Therefore, the task priorities of all ready tasks and the scheduling policy

determine which task will be next to execute.

43



3.1.1.10 START_PERIODIC_EVENT(...)

This routine causes TASKING t0 begin the periodic signaling of the event

specified at the specified interval. This mechanism is most useful for creating

periodic tasks. Since TASKING ls responsible for signaling the event, the task is

guaranteed that the signal will occur at the specified interval. It is important to

note that the task priorities of all ready tasks and the scheduling policy will

actually determine the exact execution period of the task. Requesting a periodic

event is not the same as a real-time design which guarantees that the periodic

execution will result.

3.1.1.11 STOP_PERIODIC_EVENT(...)

This routine causes TASKING to stop the periodic signaling of the event

specified (see section 3.1.1.10 START Note that the

event is not destroyed by this operation; it may still be used by restarting the

periodic event.

3.1.1.12 SIGNAL_BINARY_SEMAPHORE(...)

This routine performs an
'Up'

operation on the specified binary semaphore.

Since the
'Up'

operation is not defined for a binary semaphore that is already set,

TASKING
wil1 detect this condition as an error. If there are tasks waiting on the

semaphore when it is signaled, then one is made ready to execute. If there are

none waiting then the
semaphore is set.

3.1.1.13 WAIT_ON_BINARY_SEMAPHORE(...)

This routine performs a
'Down'

operation on the specified binary

semaphore. If the binary semaphore is already zero, then the running task is

44



suspended until the semaphore is signaled. If it is non-zero, then the semaphore

is cleared and execution continues, based on the priorities of all ready tasks and

the scheduling policy that is in effect.

3.1.1.14 SIGNAL_SEMAPHORE(...)

This routine performs an
'Up'

operation on the specified
"Dijkstra"

semaphore. If there are tasks waiting on the semaphore when it is signaled, then

one is made ready to execute. If there are no tasks waiting, then the semaphore is

incremented. In either case, execution continues, based on the priorities of all

ready tasks and the scheduling policy that is in effect.

3.1.1.15 WAIT_ON_SEMAPHORE(...)

This routine performs a
'Down'

operation on the specified
"Dijkstra"

semaphore. If the
"Dijkstra"

semaphore is already zero, then the running task is

suspended until the semaphore is signaled. If it is non-zero, then the semaphore

is decremented and execution continues, based on the priorities of all ready tasks

and the scheduling policy that is in effect.

3.1.1.16 SEND_MESSAGE_TO(...)

This routine sends the message (actually, the pointer to the message) to the

specified task by placing it in the task's mailbox (the mailbox will automatically

be created if necessary). Although the calling task cannot block when sending a

message, TASKING
re-evaluates which task should be executing, and execution

continues based on the priorities of all ready tasks and the scheduling policy that

is in effect. Typically, messages are dynamically allocated (using getmem(..))

45



before being sent, the receiver is responsible for deallocation (usingfreemem(..J)

after the message has been used.

3.1.1.17 WAIT_AND_RECEIVE_MESSAGE(...)

This routine retrieves a message (actually, a pointer to a message) from the

caller's mailbox (which is created if necessary). If there are no messages in the

mailbox then the task is blocked waiting for a message to arrive. Because the

caller is blocked until a message is available, the return pointer is guaranteed not

to be nil. Typically, the receiving task will dispose of the message after it has

been used. Messages are queued in first-in-first-out order into the task's mailbox

(extreme caution should be used in the design of the message passing tasks to

avoid unbounded priority inversion).

3.1.1.18 RECEIVE_MESSAGE(...)

This routine is functionally identical to section 3.1.1.17

WAIT AND with minor differences; if there are no

messages present in the caller's mailbox at the time of the call, then the return

value is nil. Therefore, the task cannot become blocked by calling this routine.

3.1.1.19 SIGNAL_CONDITION_VARIABLE(...)

This routine signals the condition variable specified; if there is a task

waiting on the condition variable then it is made ready. Multiple waiting tasks

are handled in first-in-first-out order. If there are no tasks waiting on the

condition variable when this routine is called, the signal is lost, (recall that

condition variables have no storage capabilities).

46



3.1.1.20 WAIT_ON_CONDITION_VARIABLE(...)

This routine is guaranteed to cause the calling task to become blocked.

Because condition variables do not store signals, the task is guaranteed to be

waiting on the condition variable as a result of calling this routine. As soon as

another task signals the condition variable the waiting task will be made ready.

3.1.1.21 WAIT_ON_READKEY(...)

This routine provides the means for an application task to perform I/O in a

'blocking'

manner. This means that while there is no input from the keyboard, the

calling task is suspended. As soon as input arrives from the keyboard, the calling

task is made ready to execute. In addition, the ASCII code of the key that was

pressed is returned to the caller. This in an example of interrupt driven

multitasking. The task that calls this function (of which there can be only one)

provides the interface between the rest of the application tasks and the outside

world (in this case, the user). Typically, the task responsible for user input would

send messages to other tasks or signal some type of inter-task communication

construct as a result of receiving the user input. Note that TASKING cannot

detect deadlock if this feature is used within the application. This is due to the

very nature of an interrupt
driven task. It could be awakened at any time by the

keyboard; therefore deadlock is not detectable.

3.1.1.22 ENABLE_MOUSE_ACTIONS(...)

This routine enables the specified MS-Mouse events to be received by the

task which is (or will be) waiting to receive mouse actions. Essentially, this

allows the task to communicate with TASKING me exact MS-Mouse features

47



that it is using. This routine can be called at any time to change the mouse

actions that are of interest to the task.

3.1.1.23 WAIT_AND_RECEIVE_MOUSE_ACTIONS(...)

This routine receives MS-Mouse action parameters from the MS-Mouse

driver and passes them to the waiting task. If none of the enabled mouse actions

has occurred, then the task is blocked, waiting for one (or more) action to occur.

This is another means of providing an application task the ability to perform I/O

in a
'blocking'

manner. Note that TASKING cannot detect deadlock if this feature

is used within the application. This is due to the very nature of an interrupt driven

task. It could be awakened at any time by the MS-Mouse action; therefore

deadlock is not detectable.

3.1.1.24 LOCK_SCHEDULER(...)

This routine allows a task to
'lock'

the scheduler and prevent all further

task rescheduling until it is unlocked (see section 3.1.1.25

UNLOCK_SCHEDULER(. ..)).

One use of this routine is when multiple tasks need to write to the display,

and it is desired that the output from each task occurs without the output from

other tasks intermixing with it. Note that during the time that the scheduler is

'locked'

there will be no preemptive or cooperative task rescheduling. The

application should avoid locking the scheduler if possible. If that is not feasible

or practical for the application, then the time spent with the scheduler locked

should be an absolute minimum.

48



It is imperative that each call to lock the scheduler have a corresponding

call to unlock it. Successive (nested) calls to lock the scheduler are allowed, but

the application should ensure that each scheduler lock request has a

corresponding call to unlock it.

3.1.1.25 UNLOCK_SCHEDULER(...)

This procedure
'unlocks'

the scheduler and allows task rescheduling to

continue based on the previously existing configuration. Note that the scheduler

must previously have been locked, or an 'Illegal
Operation'

error will occur (see

section 3. 1. 1.24 LOCK_SCHEDULER(..)).

3.1.2 Configuration Parameters

TASKING provides a number of configurable parameters which help to

match the RTOS to the real-time application. The following parameters must be

initialized by the application before multitasking begins; therefore this

initialization must occur in the application
'main'

body or from the application

INI file, which TASKING w*h read before the
'main'

body executes. Once

multitasking begins (i.e., when the
'main'

body terminates), TASKING W11l

ignore all changes to these parameters:

Scheduling Policy - Task priorities can be either static throughout the

execution of the application (default), or they can rotate on every

context switch. Static priorities will ensure reliable, predictable system

performance whereas rotating priorities will add a degree of uncertainty

to the scheduling algorithm which may result in better performance for

49



some applications. For example, an application where
'fairness'

is an

important system feature may benefit from rotating priorities.

Priority Inheritance - Task priority inheritance will be either enabled or

disabled. Priority inheritance is effective in solving the problem of

unbounded priority inversion. Priority inversion can occur when low

and high priority tasks share a common resource and there exist

intermediate priority tasks. If a low priority task
'locks'

a resource and a

high priority task requests that resource (i.e., attempts to
'lock'

the

resource), it is possible for an intermediate priority task to indefinitely

prevent the low priority task from
'unlocking'

the resource. This

essentially creates the condition where an intermediate priority task can

prevent a high priority task from executing (see Figure 8
- Unbounded

Priority Inversion).

50



Task 1 attempts to lock Task 3 unlocks and

resource (blocked) Task 1 locks resource

/

Task 3 locks

resource

Task 2 runs to

completion

\ \
/

Task 1 (High)

Task 2 (Med.)
V

"ask 2 Ready
to execute

1

;

V
Task 3 (Low)

1 / 1 1 i / i i i I w

Task 3 pre

empted by Taskl

Task 3 pre

empted by Task2

/ i / i i i i i i i i I >

Active Task

Legend
Task Interaction Priority Inversion

Figure 8 - UnboundedPriority Inversion

Priority inheritance prevents this situation from arising by temporarily

raising the priority of a task with a locked resource to the level of the

highest priority task attempting to lock that same resource for the

duration of time that the lower priority task maintains control of the

resource (see Figure 9 - Priority Inheritance Protocol).

51



Task 1 attempts to lock Task 3 unlocks and

resource (blocked)

^

Task 1 locks resource

Task 3 locks

resource

Task 2 runs to

completion

/

TaSr\ i ^niyn;

Task 2 (Med.)

Task 3 (Low)

V

Tasc 2 Ready
to execute

V

/
V

I ' I / I

Task 3 pre

empted by Taskl

Task 3 inherits

/ / I \ I I I I

\ Task 3 prio ity
;ve

restored

priority of Task 1 to original It

Active Task

Legend
Task Interaction Priority Inversiori

Figure 9 - Priority Inheritance Protocol

TaskingModel - Both cooperative and preemptive multitasking models

are supported. Cooperative multitasking only allows context switching

when TASKING services are called. Cooperative multitasking requires

that all tasks
'surrender'

the CPU when they have completed their work

(i.e., the tasks must cooperate by blocking to allow other tasks to

execute, and there can be no continuously executing background tasks).

This tasking model is often referred to as 'prioritized, run-to-

completion'. In addition to allowing context switches when TASKING

services are called, preemptive multitasking causes context switches

periodically based on the timeslice parameter. The timeslice can range

from 50 uSec. to 65 mSec. Preemptive multitasking removes the

requirement that the tasks must cooperate in passing the CPU resource

52



from task to task. When preemptive multitasking is selected, TASKING

will
'give'

the CPU to a task for a single timeslice. After that, the CPU

will be
'taken'

from that task and
'given'

to another task which is chosen

based on the relative task priorities of all tasks which are ready to

execute and the scheduling policy that is in effect. Note that under this

multitasking model, continuously executing background tasks are

allowed.

3.1.3 RTOS Performance

The most important performance parameter of an RTOS is that of overhead

imposed by the RTOS on the application. This is the amount of processing that

is performed by the RTOS to achieve its goals which in no way contributes to the

completion of the application requirements. TASKING performance in this area

is shown in the following figures. Note that although these measurements were

made on a 66 MHz Pentium processor, a different x86-class processor would

produce similar results, i.e., a faster processor would show a decrease in

overhead proportional to its speed relative to a 66MHz Pentium.

In order to fully understand the performance merits of TASKING there are

two things that must be explained: how the measurements were made and why

the results turned out as they did.

The measurements were made using two special programs to generate the

data and another program to produce a graph, see Appendix C Support Software

Source Code [TASKS-A.PAS, TASKS-B.PAS and TSK-BNCH.PAS]. First, a

baseline measurement was made using a program which performs a set of

53



computations without using TASKING in any way [TASKS-B.PAS]. This

produces a measurement of the best possible performance since any additional

processing performed by TASKING results in performance which is degraded

from this baseline measurement. Next, measurements are made using a program

that performs the same set of computations but in this case TASKING *s used to

create multiple tasks each of which performs a subset of the computations

[TASKS-A.PAS]. For these measurements TASKING *s configured for

preemptive multitasking with priority inheritance disabled (which is not relevant

because none of the tasks interacts or shares resources). In addition, all tasks

execute at the same priority level with static priorities. The point is to measure

the impact of context switching on the time required for the application to

perform all of the computations. This RTOS configuration achieves that goal by

disabling or not using all other TASKING features. The only RTOS parameter

that is allowed to vary is the target timeslice. The timeslice is varied from 1

mSec to 250 mSec; this range encompasses most reasonable timeslice values.

54



TASKING Performance Benchmark - Relative Performance

o.o

-0.5

-1.0

-1.5

-2.0

-2.5

-3.0

-3.5 H f 1 h 1 1 I 1 1 i 1 1 1 \ 1 1 1 1 1 1 1 1 1 h

1 21 42 62 83 103 124 145 165 187 208 231

Timeslice

Figure 10 - TASKING Benchmark (Relative Performance)

The results from these measurements are shown above in the Figure 10 -

TASKING Benchmark (Relative Performance). This graph shows that TASKING

imposes a minimum of approximately 1.7% performance penalty on the

application. What is most interesting is that after the timeslice value exceeded

approximately 20 mSec, the performance degradation remained relatively

constant. This implies that -1.7% performance degradation is the best that

TASKING
can achieve. As the graph clearly shows, the overhead increases

significantly for small timeslice values. The reason for this is that smaller

timeslice values result in more context switches. As the following graphs show

(Figure 11 and Figure 12), the context switch overhead is the dominate factor in

TASKING'S performance only for small timeslice values. For larger timeslice

values, the dominate (and constant) factor in TASKING'S performance is

TAS
KING'S management of the system clock. That is, the handling of the

system clock interrupt and the internal delay request checking performed during

that interrupt service routine.

55



Figure 11 - TASKING Benchmark (Context Switching Overhead) below

shows that context switching is not responsible for the performance degradation.

Note that after the timeslice value exceeded approximately 20 mSec, the context

switching overhead remained relatively constant at zero. It is only for small

timeslice values that the context switch overhead is appreciable.

TASKING Performance Benchmark - Context Switch Overhead

i 1= H -H 1 1-

1 21 42 62 83 103 124 145 165 187 208 231

Timeslice

Figure 11 TASKING Benchmark (Context Switching Overhead)

As shown below in Figure 12 - TASKING Benchmark (Context Switching

Percentage), context switching time itself is negligible when compared to the

timeslice value. The context switch time is only significant for small timeslice

values. It is the presence of TASKING itself that impacts performance. This is a

good indication that the performance degradation is relatively constant regardless

of the application being used. This is a very important characteristic of a real

time operating system. Note that none of the values of Figure 12 is zero, rather,

some values are merely very small (or more likely beyond the measurement

capabilities of the data collected).

56



Context Switching Percentage

Timeslice

Figure 12 TASKING Benchmark (Context Switching Percentage)

Analysis of the context switching time of TASKING over the same range

of timeslice values as in Figure 12 yields a value which never exceeds

approximately 37 uSec. The context switching time does vary somewhat over

this range but never beyond the accuracy of the measurements. That is, to within

the accuracy possible with the data collected, the context switching time of

TASKING remains relatively constant over this range of timeslice values. These

two context switching time properties (relatively constant and guaranteed upper

bound) are probably the most important RTOS characteristics for real-time

applications. A constant context switch time allows accurate, verifiable timing

analysis to be performed and an upper limit on the context switch time allows

worse-case timing analysis to be performed. No system is actually
'real-time'

if

the context switch time varies excessively or is unbounded.

The performance degradation which occurs when using TASKING 1S a

result of the monitoring of the system clock that TASKING must do in order to

achieve preemptive multitasking. TASKING must change the clock interrupt

57



period of the main system clock hardware of the PC to a minimum of 1.000 kHz

(1.000 mSec period) for timeslice values of 1 mSec or more. Because of this and

the fact that the PC clock is originally set to 18.20 Hz (54.93 mSec period),

TASKING performance is best at multiples of approximately 55 mSec. This is

illustrated below, (see Figure 13 - TASKING Benchmark (System Clock Impact)).

The graph shows the excess processing that TASKING must perform in order to

simulate the MS-DOS clock timer. TASKING must determine the proper time

that the original MS-DOS clock timer interrupt should be called so thatMS-DOS

will continue to keep the proper 'clock time'. Since MS-DOS assumes that it's

timer interrupt handler will be activated once every 54.93 mSec, in order forMS-

DOS to keep proper time, TASKING must ensure that it does. It is this simulated

interrupt which tends to add modulated irregularities to the TASKING

performance curves. If MS-DOS was not used by the application, TASKING

would not need to simulate the interrupt. That would stabilize the performance

curves for TASKING hut would not allow the application to use any MS-DOS

services (such as screen and/or disk I/O). Since it is not practical to include all of

those services into TASKING' the only alternative is to understand the

performance measurement limitations and factor those limitations into the

interpretation of the performance data.

58



TASKING Overhead - System Clock

62 83

Timeslice

103 124 145 165 187 208 231

0.0

-0.1

-0.2

-0.3

5 -0.4

a>

-0.5

a>

>
-0.6

-0.7

-0.8

-0.9

-1.0

-

^i- I I 1 1- J I ' 1 1
I
l^_J 1 1 1 r^1 ' ' y^

I
i

- - -

I

Figure 13 TASKING Benchmark (System Clock Impact)

In general, TASKING provides reliable, consistent performance. The only

concern is that the application is in fact degraded by approximately 1.7%.

Although this value is not excessive, it is also not negligible. Given that all of

TASKING is written in Pascal and that there is no appreciable assembly

language, these results are not surprising and certainly not unreasonable.

3.2 Genetic Algorithm

The GA is constructed in the
'standard'

genetic algorithm manner (see

Figure 14 - Genetic Algorithm Process Flow). The only exception to this is that

the information within the GA will flow through data files created on the

computer hard drive. This is necessary because the GA must be completely

suspended in order to run the TASKING programs which are used to evaluate the

individuals of the population. In order to achieve accurate and reproducible

results, the GA must be run from a minimum PC configuration, i.e., no Terminate

and Stay Resident (TSR) programs loaded. In addition, the GA must be run in a

59



pure MS-DOS environment, i.e., not from within an
MS-DOS

shell under
MS-

Windows.

Parse Application

Specification File

"^ Issue Error Message

Create Initial

Population

Create Application

Simulator

Configuration File for

Present Individual

Run Application

Simulator (Producing
TASKING and

Application Reports)

Select Next

Individual

Perform Genetic

Mutation

Perform Genetic

Crossover

Figure 14 - GeneticAlgorithm Process Flow

60



The most important aspect of the GA design is in the choice and/or design

of the genetic operators: mutate(...) and crossover(...). These operators will

affect the ability of the GA to converge to a solution, the rate of convergence and

the probability of false convergence. Most of the research associated with this

thesis has involved these operators. There is no shortage of opinions regarding

the
'best'

universal operators, but there has been nothing published regarding

operators specific to this problem domain. A certain amount of experimentation

is required in determining viable operators. The following sections detail the

appropriate operators for this application and also describe the desirable

characteristics of genetic operators.

Before the genetic operators can be designed, the genetic representation

that will be used for the problem must be determined. The following section

describes the genetic representation used for the GA.

3.2.1 Genetic Representation

The genetic representation for the RTOS is representational in nature, that

is, it is not a pure binary representation. Instead the representation will closely

mirror the configuration parameters of the RTOS, see Section 3.1.2

Configuration Parameters. The following table lists the genes that comprise the

genotype used for the RTOS configuration:

61



Gene Possible Values

Tasking Model Cooperative, Preemptive

Target Timeslice 50 - 65,535 uSec

Priority Inheritance Enabled True, False

Priority Allocation Static, Rotating

Initial Priority Assignment Constant, Random, Rate Monotonic,

Deadline Monotonic, Workload Monotonic

Table 3 - RTOS Genotype

Since the GA will not use a binary representation, it is important to note

that there are five genes in the genotype above. All five are considered to be

equal even though the actual representation length (bit length) of each gene is

different. For the purposes of genetic mutation and crossover, they are

considered to be of equal length. Therefore, each of the five has equal

probabilities whenever a gene is to be operated upon in a random manner. This

is considerably different from a binary representation GA where each bit is

considered equal, and the length of the group of bits that comprise a gene has a

significant impact on the relative probability of that gene becoming involved in

mutation and/or crossover.

3.2.2 Mutation

The genetic mutation(...) operator for this GA simply mutates (which is a

gene specific operation) all genes of the population with equal probability PM.

For example, suppose Pm=4% (i.e., 0.04), the number of individuals N=225, and

the number of genes per genotype M=5; then for a typical generation there would

be Pm>N>M= 0.04.225.5 = 45 genetic mutations, on average.

For the representation used here, the mutation to be performed is a

function of exactly which gene is to be mutated. As is the case for all

62



representational genotypes, this genetic algorithm mutation operator randomly

selects a value from the allowable range for the gene to be mutated. In this way

all genotypes are guaranteed to be made up of valid genes. This ensures that all

individuals represent valid solutions to the problem at hand even if they have

been involved in a genetic mutation. The allowable values for each gene are

defined in Table 3 - RTOS Genotype above.

3.2.3 Crossover

The genetic crossover(...) operator for this GA is implemented using

single-point crossover. First, two parents are selected at random from all above

average individuals (i.e., individuals that have a fitness value greater than the

average fitness for all individuals of the population). Then a crossover point is

randomly selected. The crossover is performed as all genes up to the crossover

point are taken from the first parent, and the remaining genes are taken from the

second parent. The newly created individual replaces a below-average

individual. Since there are five genes in the genotype, the crossover point is

from one to four. This ensures that at least one gene is taken from each parent.

The results achieved when using single point crossover are somewhat

dependent upon the ordering of the genes. Since the genes that are taken from

the parents are contiguous, it is useful to group related genes together. For this

application, the only genes that are related are the Tasking Model and Target

Timeslice genes. As indicated in Table 3 - RTOS Genotype above, these two

genes are adjacent within the genotype.

63



3.3 Problem Specification

The real-time application must be specified in the most flexible manner

possible in order to support an arbitrary real-time design. In order to do that, the

GA reads the design information from a
'standard'

data file. This approach

allows the real-time application specification to be created independently of the

GA. The following sections describe which aspects of the real-time application

must be specified and how the specification must be created so that the GA can

correctly process (parse) the information.

3.3.1 Specification Parameters

In order to completely specify the real-time application, the user will have

to provide details about the characteristics of the tasks that make up the

application. The only aspects of the application design that are germane to the

GA are those that involve the tasks themselves and the task interaction. The

details of what operations the tasks perform are irrelevant. The necessary task

characteristics are as follows:

Task Name - This will be a text string that will be used when

performance results are reported and when communication is performed

with other tasks.

Period - This will be the amount of time between successively

beginning executions of a periodic task. A value of zero is used to

indicate that the task is non-periodic. Non-periodic tasks will only

execute once. See Figure 15 - Task Execution Profile, Tr.

64



Deadline - This will be the amount of time between when a task begins

execution and when it must reach a critical point in its execution. See

Figure 15 - TaskExecution Profile, Tpj.

Deadline Hardness - This parameter will indicate the degree to which

the previously specified deadline is 'hard'. A linear scale between 1

(soft) and 10 (hard) is used.

Workload - This will be the amount of time between when a task begins

executing and when it completes. A value of zero is not allowed. See

Figure 15 - TaskExecution Profile, T^.

Sample Task Execution Profile

Time

Figure 15 Task Execution Profile

In addition, the user must specify the inter-task communication aspects of

the real-time system. The following communication characteristics may also be

specified (some applications and/or tasks will not require these features):

Task Name - This will be the name of the task that is to be the recipient

of the communication.

65



Communication Type - This will be the TASKING inter-task

communication type that is to be used (Message, Semaphore, Binary

Semaphore, Event or Condition Variable).

Communication Time - This will be the amount of time from when the

task begins executing to when the communication should be performed

with the other task. See Figure 15 - TaskExecution Profile, Tq.

Up to two pairs of the above communication parameters can be specified.

This will allow most complex inter-task communication architectures to be fully

described.

3.3.2 Specification File Format

Since it is not the goal of this thesis to develop an application for creating

the real-time application specification, a standard PC spreadsheet program will

be used to create the file used to specify the design of the real-time system. Any

spreadsheet can be used as long as the file is saved in the standard 'Comma

Separated
Value'

format (all commercial spreadsheet applications support this

format, as well as most commercial database applications). Text fields will be

enclosed in double quotes; integer fields will be ASCII text but will not be

enclosed in quotes; real numbers are not necessary and will not be supported.

Each line of the file will represent a single task specification, the length of

which is limited to 255 characters. The order of the fields within each line of the

spreadsheet must as specified in Table 4 - Real-Time Application Specification

below.

66



#2

o
0>

CO

E

o
o
o

6

0)
o

3

O <N

a: a

|?

CO

jz

O

o

#2

CD
JZ

O

in

CM

#2

o

OJ

to

E

o
o
o

o

CD

jz

CJ

O

ro

jz

O

m
CM

o

0)

to

E

o
o
o

6

CO
JZ

O

o

h-

CO
JZ

o

m

CM

O
0)

CO

E

o
o

o

o

(0
JZ

O

o

><
0)

CO
JZ

o

in

CM

o

s

o
0)

CO

E

o
o
o

o

8
CI
c

a

to

X

o

c o

</>

E

o
o
o

6

c
o
Q.

o
0)

CO

E

o
o
o

6

E a)

CO
JZ

o

m

CM

2

a

cu

CO"

c

c
a

s

I

r~



4. Evolution Tool Set

This thesis will result in a set of PC-based tools which will compute near

optimal RTOS parameters for any real-time application. The tools will provide a

means of creating an application specification and performing the GA based

analysis, using a custom RTOS -

TASKING- Performing the analysis will

include real-time graphical display of the progress of the GA
'population'

and a

report with the recommended near optimum RTOS configuration.

The set of project deliverables is as follows (detailed in the following

sections):

Custom RTOS (tasking) t0 ^e use<^ m evaluating RTOS parameters.

Tool to analyze and evaluate an arbitrary real-time application using a

specific set ofRTOS parameters.

Genetic Algorithm based tools to evolve a near optimal RTOS

configuration for the real-time application.

Set of real-time application specifications and analysis to verify proper

operation of the tool set (i.e., problems with known solutions).

4.1 Custom RTOS (TASKING)

The RTOS used to evaluate the real-time application has already been

described in detail (see section 3.1 Real-Time Operating System (TASKING)).

The aspect of TASKING tnat nas not been descriDed is how lt is instrumented to

provide performance information. TASKING is capable of capturing and

68



reporting performance information about three different aspects of the execution

of an application. These aspects are:

Hardware Interrupts - includes information about which interrupts were

serviced, how many times they were serviced and how frequently they

were serviced (report filename:
j_rq #

rpt)-

Software Interrupts - includes information about which MS-DOS

services were used by the application, howmany times they were called

and how frequently they were called (report filename:

SERVICES. RPT)-

Task Statistics - includes information about the CPU and stack

utilization of each task as well as the percentage ofperiodic events that

failed to be signaled at the proper time (report filename:

TASKING. RPT)-

As it relates to the evaluation of an RTOS configuration for a real-time

application, the task statistics information is the most useful. The following

figure shows a sample report for the Dining Philosophers Problem (Figure 16 -

Sample TASKING.RPTFile).

69



1 Preemptive Multitasking statistical Information

2 -Priority Inheritance Enabled
3

4

-Static Priorities

5 Task Activity:

6 Context Switches 2002 (-640 per second)
7 Cooperative 361 (-115 per second)
8 Preemptive 1641 (-524 per second)
9 Target Time Slice = 1500 usee

10 Achieved Time Slice =
-1563 usee

11 Available CPU Bandwidth - 0.000 *

12 Periodic Event Faults 29.941 %

13 Tasks at Termination:

14 Task State Task Stack Size Stack Used Stack Used CPU Used
15

16

17

(Delayed Until) ID Priority (words) (words) (%) (%)

Ready 1 9991 4000 110 2.8 58.4
18 Ready 2 9986 4000 110 2.8 39.5
19 Ready 3 9966 4000 31 0.8 0.0
20

21

Running 4 10000 2000 687 34.3 2.1

22

23

Maximum percent of stack used: 34.3%

24 Heap Information (bytes):

25 Total Available: 100,000

26 Used for Application Stacks: 28,000

27

28

Available to Application: 72,000

29 Execution Time:

30 Effective = 3.070 seconds

31 Absolute = 3.13 seconds

Figure 16 - Sample TASKING.RPT File

The parameters of interest are on lines 1 1 and 12. The CPU utilization is

determined by TASKING by recording the task that is executing when system

timer interrupts occur. Since TASKING maintains a 'null
task'

which executes

only when there are no application tasks which are ready to execute, TASKING

can very easily (and accurately) determine the percentage of available CPU

bandwidth. The percentage of periodic events that are missed by the application

is also very easily determined. Since TASKING ^s m control of the system clock,

whenever a periodic event is signaled the state of the event is examined. If the

event is already signaled then the application will miss that event (i.e., the

application was not able to finish its execution during the previous time period).

These two parameters represent TASKING'S contribution to the RTOS evaluation

by providing information usually available only to the operating system to the

genetic algorithm.

70



4.2 Real-Time Application (RTOS-APP)

The real-time application produces a report which includes a measure of

timeliness for various aspects of the application timing requirements. The real

time application monitors the system clock (provided by TASKING) t0

determine if the task's deadline and periodic execution occurred at the

appropriate time. Since the measurements are made by the tasks themselves, the

results are very accurate. TASKING 1S capable of signaling a periodic event at

the correct time but the RTOS configuration and application design dictate

whether the task will actually receive the signal at the correct time or not. The

following figure shows a sample real-time application report file:

Individual Task Timeliness

Task Name: TASK #1

Periodicity: 213/213 (100.00%)

Deadline: 14/214 (6.54%)

Task Name: TASK #2

Periodicity: 141/141 (100.00%)

Deadline: 68/141 (48.23%)

Task Name: TASK #3

Periodicity: 0/0 (0.00%)

Deadline: 0/0 (0.00%)

Average Task Timeliness

Periodicity: 66.67%

Deadline: 13.51%

Application Timeliness = 40.09%

Figure 17- Sample RTOS-APP.RPTFile

The parameter of interest is shown on line 19, it is this value that is used to

contribute to the evaluation of the RTOS configuration for the specific real-time

application.

4.3 GeneticAlgorithm (GRTOS-GA)

The GA performs the operations which result in evolving a near real-time

RTOS configuration for the real-time application. The evaluation of the RTOS

configuration is performed by parsing the TASKING . RPT and RTOS-APP . RPT

files and combining the results. At the completion of the evolution process, the

71



GA produces a report (qj^ Xx ^ rpt> where XX is a sequence number) which

indicates what the top five RTOS configurations were. The startup screen for the

tools is shown below {Figure 18 - GRTOS-GA Startup Screen). The tool accepts

the following commands from the user (the underlined letter indicates the key

required to activate the command, also note that the tool only responds to user

commands at generation boundaries) :

E-

ROCHES EK NS'H'ILKE Of 'ECHNOLDGl

Evolutution of Solutions to

RealTime Problems

Greg P. Semeraro

Copyright 19 9 7

TCTu^7 ioo^ioo Evu^ Pause? Grab rtvjqe Re^se ccljs Wcie Report Quit aial?^"^

Figure 18 - GRTOS-GA Startup Screen

Evolve - Starts (and stops) the evolution process. After receiving this

command the tool will switch between the startup screen (see Figure

18) and begin displaying the evolution statistics graphs.

Pause - Pauses (and restarts) the evolution process at the next

generation boundary.

72



Grab image - Grabs the currently displayed image (in MS Windows Bit

Map format) to the file image XX. BMP? where XX is a sequence

number. The file is saved in the directory specified in the INI file.

Reverse colors - Reverses the color scheme of the display. Both the

normal and reversed color schemes can be specified in the INI file.

Make report - Makes a report file (q^ xx .

RPT- where XX is a

sequence number) in the same directory as the tool executable file. The

report generated represents the current genetic algorithm statistics.

Note that a report file is always generated when the program is

terminated.

Quit - Terminates the evolution tool (and produces a report file).

73



5. Test Suite Description

In order to evaluate the tool set it is necessary to use the tools to solve

increasingly complex problems. As these problems are solved, confidence in the

ability of the tools to provide correct solutions will increase. The real-time

applications that were used to evaluate the tool set are described in the following

sections and are of increasing complexity. Obviously, the ability of the tool to

provide correct solutions to problems with known solutions is the first step in

validating its applicability to arbitrary real-time applications.

A partial formal analysis of these problems is also possible and provides

insight into the schedulability of the tasks that make up the problem. This

analysis does not help in determining the solution but does determine if a

solution exists which can satisfy the problem requirements. This schedulability

test is defined in Equation 5 below [Ref. 1, pg. 28]. If the inequality is met, then

there is guaranteed to exist an RTOS configuration which will satisfy the

problem requirements. If the inequality is not met then it is guaranteed that an

RTOS configuration that satisfies the problem requirements does not exists.

f^-<N-(2*-\)

Where: N is the number of tasks

C, is the execution time of task i

Tt is the period of task /

Equation 5 - Task Schedulability

74



5.1 Verification ofCapabilities

The first step in verifying that the GA is capable of finding a reasonable

solution to a real-time application is to use the GA to solve a problem with a

known solution. The least complicated class of real-time applications is the class

of purely independent, periodic tasks. The following figure (Figure 19 - Real-

Time Problem #1) completely describes one such real-time application.

13 mSec Period ; 15 mSec Period )

JA_

Task #1

Hardness = 7

Deadline = 15mSec

. Workload = 2 mSec .

Hardness = 3

Deadline = 10 mSec

Workload = 3 mSec
'J

Hardness = 5

Deadline = 35 mSec

Workload = 4 mSec

&
* Communication Jrigjjer_Period_

Task

Legend
Data

Structure

Automatic Periodic Trigger

Figure 19 - Real-Time Problem #1

Note that none of the tasks interact in any way, this is an example of the

simplest class of real-time problems. Applying the schedulability test of

Equation 5 to this problem yields the following results:

A +A +JU 3.(2*

-1)

13 15 40

45.4% < 77.9% - Passed

Equation 6 - Schedulability, Problem #1

From this analysis it is clear that under all conditions, the tasks are

schedulable, i.e., there is guaranteed to exist a task schedule (RTOS

configuration) which will allow all of the tasks to meet all requirements at all

times. The results from running GRTOS-GA . EXE
are as follows:

75



Rank Fitness Tasking

Model

Timeslice

(\iSec)

Priority

Inheritance

Priority

Allocation

Priority

Assignment

1 84.24 Preemptive 1273 Enabled Rotating Rate

Monotonic

2 84.12 Preemptive 1227 Enabled Static Deadline

Monotonic

3 83.74 Preemptive 1519 Disabled Rotating Random

(674788598)

4 82.73 Preemptive 2560 Enabled Rotating Rate

Monotonic

5 52.26 Cooperative N/A

(34282)

Disabled Rotating Rate

Monotonic

Table 5 -

GRTOS-GA.EXE Results, Problem #1

These results are not surprising, for purely independent tasks, an initial

priority assignment using a rate monotonic algorithm produces an optimal task

scheduling policy. Rate monotonic assignment theory does not provide any

insight into the proper choice for the other RTOS configuration parameters. The

results above (see Table 5 _ GRTOS-GA.EXE Results, Problem #1) clearly show

that a preemptive multitasking environment using priority inheritance with a

timeslice of approximately 1.2 mSec provides the best results. It would be

imprudent to read anything more into the results, recall that this tool provides

guidelines for configuring the RTOS for the application. For example it appears

that rotating priorities may provide some
added benefit, although this result may

not be conclusive.

76



Normalized Analysis - Rank #3

1
1

- -?

*
*

"

"""V

0.9
.<x2- /

0.8 - '* /
'"' /

- 0.7 ]
E

| 0.6 -

.'V /
| 0.5-

y'

5
2> 0.4 -

//

rf
ua "

"S^^ ---._ ./

^ 0.2 ^^\ >/

(0 ^^^^ >^

H
0.1-

^^\
0

^

Task Number

Rate Monotonic

Deadline Monotonic

Figure 20 - Problem #1,
'Random'

AssignmentAnalysis Rank #3

Analyzing the priorities used in the random assignment above (ranked
3r

)

shows that this random seed actually results in a (albeit non-proportional)

deadline monotonic assignment (see Figure 20 Problem #1,
'Random'

Assignment Analysis - Rank #3, above). It is evident from the fact that the 'Task

Priorities'

and 'Deadline
Monotonic'

curves possess the same general

characteristics. This supports the conclusion that this
'random'

task priority

assignment produces priority assignments which are similar to a deadline

monotonic assignment scheme.

5.2 Verification ofPerformance

The next step in the verification process is to use the GA to find a solution

to a real-time application for which a solution can be predicted but not proven.

This type of problem was created by adding task dependencies to the basic

77



application. The advantage of using the GA to solve this type of problem is that

it is relatively straight forward to see that the GA arrived at a reasonable solution.

13 mSec Period i

15 mSec Period ;
40 mSec Period >

Task #1

Hardness = 7

Deadline = 15mSec

Workload = 2 mSec

Hardness = 3

Deadline = 10mSec

. Workload = 3 mSec .

^i_

Task #3

Hardness = 5

Deadline = 35 mSec

, Workload = 4 mSec .

Av-^^

/.&

-,-a.'.0ms8c

"-->

Results Table Communication Server

<3=

- Trigger Penod_

'

1 Legend
Task

Data

Structure
j Automatic Periodic Trigger

Figure 21 - Real-Time Problem #2

In the cases where task blocking can occur (as in this case) the

schedulability test of Equation 5 must be extended to include blocking time in

addition to execution time (in other words, C, is replaced by C,+5 where Bt is

the total amount of time that all other tasks can lock resources used by the task).

This analysis represents the worst case task schedule. The actual task schedule

used may eliminate some (or all) of the blocking times. The following analysis

shows the upper and lower bounds for the task schedulability:

2 +2 +S3.(2*-l)
13 15 40

Lower Bound = 45.4% < 77.9% - Passed

23
+
3! + !!*3.(2*-l)

13 15 40

Upper Bound - 77.6% < 77.9% - Passed

Equation 7 - Schedulability, Problem #2

78



It is obvious that even under the worst case task scheduling (when all

blocking time is included), the tasks are still schedulable, albeit barely. The

results from running GRTOS-GA. EXE are as follows:

Rank Fitness Tasking

Model

Timeslice

(ixSec)

Priority

Inheritance

Priority

Allocation

Priority

Assignment

1 76.68 Preemptive 1205 Enabled Rotating Rate

Monotonic

2 75.81 Preemptive 1245 Enabled Rotating Rate

Monotonic

3 74.41 Preemptive 1245 Disabled Rotating Rate

Monotonic

4 72.78 Preemptive 1245 Enabled Rotating Rate

Monotonic

5 54.67 Cooperative N/A

(33299)

Enabled Static Rate

Monotonic

Table 6 GRTOS-GA . EXE Results, Problem #2

Again the results are not surprising, given that a schedule was possible

under all conditions it is reasonable to expect that a rate monotonic assignment

would perform best. It is interesting to note that the above results (see Table 6 _

GRTOS-GA.EXE Results, Problem #2) clearly show results that are very similar

to the previous problem (see Table 5 _ GRTOS-GA.EXE Results, Problem #1).

That is, a preemptive multitasking environment using priority inheritance with a

timeslice of approximately 1.2 mSec provides the best results. These results

point more strongly to the fact that rotating priorities may provide some added

benefit, in fact that conclusion can clearly be made.

5.3 Test ofCapabilities

Now that the GA has been verified to operate correctly, the next test is a

simple problem for which there is no obvious solution. This represents the first

79



opportunity to use the GA to find a solution for a real-time problem when the

only other means of analysis is conjecture. The problem has been created by

further augmenting the basic problem to include sporadic tasks modeled as

periodic tasks.

; 1 3 mSec Period L j 15 mSec Period j, 40mSec Period
j.^

~<\ 'l-\ 'a
r

Task#1
^

Hardness = 7

Deadline = 15 mSec

i Workload = 2 mSec

^ Task #2
^

Hardness = 3

Deadline = 10 mSec

i Workload = 3 mSec

Task #3

Hardness = 5

Deadline = 35 mSec

Workload = 4 mSec
v J

msec
^ /-:

Results Table Communication Server

| 25 mSec Period j. 15 mSec Period ^

A 'j\

Routine Task '

Hardness = 2

Deadline = 10 mSec

Workload = <1 mSec

Emergency Task |

Hardness = 10

Deadline = 12 mSec

Workload = <1 mSec I

Data Flow LEGEND -^5ta

Task ,\
Automatic Pericdic TriggerVs

'

Communication Trigger Period

<j
x ^ ,

Figure 22 Real-Time Problem #3

As in the previous case, task blocking can occur, therefore the

schedulability test of Equation 5 is again extended to include blocking time in

addition to execution time. The following shows the analysis:

2+2+++<5.(2!-i)
13 15 40 25 15

Lower Bound = 56.1% < 743% - Passed

13 15 40 25 15

Upper Bound = 883% < 743% - Failed

Equation 8 - Schedulability, Problem #3

80



As this analysis clearly shows, this problem (i.e. the set of tasks) may or

may not be schedulable. Whether the tasks are schedulable or not is a function of

the RTOS configuration itself. This is evident from the fact that the lower bound

on the task schedulability is below the threshold and the upper bound is above it.

This means that under the worst possible scenario (i.e., RTOS configuration) the

tasks are not schedulable. The obvious conclusion is that it is likely that an

RTOS configuration exists which results in some level of blocking which yields

a CPU utilization which is below the allowable threshold.

The results from running GRTOS-GA. EXE are as follows:

Rank Fitness Tasking

Model

Timeslice

(u.Sec)

Priority

Inheritance

Priority

Allocation

Priority

Assignment

1 71.86 Preemptive 1005 Enabled Rotating Deadline

Monotonic

2 71.01 Cooperative N/A

(26878)

Disabled Static Random

(-1704415732)

3 69.85 Cooperative N/A

(24732)

Enabled Static Random

(1366122493)

4 62.83 Preemptive 1879 Enabled Rotating Deadline

Monotonic

5 61.61 Preemptive 44703 Disabled Static Random

(712905428)

Table 7 -

GRTOS-GA.EXE Results, Problem #3

Analyzing the characteristics of the
'random'

priority assignments for this

real-time application is very difficult. As the following graphs show (Figure 23,

Figure 24 and Figure 25), the task assignments that result from the random

assignment algorithms cannot accurately be categorized.

81



Normalized Analysis - Rank #2

1 "

>^>>v
^

0.9 ^-" r~~\/'
A %

S
'

^^*C ' *

o 0.8
/ /\. ^ '"N

|0.7-

^ / // \ '.. <

E 0.6

/ \
V

| 0.5 -

/ X M
.
0.4-

i---A--^y Nk ^!
^^

g 0.3 -
-

"
"

Q. /
*

.

^ "7-_

-
0.2-

/ '^-.

m
-

0.1

o ^ _

^
j i

2 3 4

1

5

Task Number

Rate Monotonic - Task Priorities
_._._. Deadline Monotonic ... - Workload Monntnnirl/uuuiii iw iwivi ivlui IIV """--""VVV^IINIV^Cl^JIVI^IIVLVIIl^

Figure 23 Problem #3,
'Random'

AssignmentAnalysis - Rank #2

As can be clearly seen, the 'Task
Priorities'

curve does not resemble any of

the other curves. This random task priority assignment does not share any

general characteristics with the
'standard'

task priority assignment algorithms.

Therefore, this genotype cannot help in determining general trends for the

priority assignment gene. The simple fact is that this random priority assignment

outperformed most other priority assignment algorithms and cannot be described

as anything other than random.

82



Normalized Analysis - Rank #3

1 -

r - > -

o 0.8 -

\ ^" ' N

1
0.7-

\ -

/''

1 0.6 - \ ft \ *N

0.5 - \. /'/

^ \ ~"-^

g 0.3 -
":--~^<&'

\ \ ^
"C

Iii
0.2-

"--"

\ O*^. .--*/
\ "

-
. . . .

**
*

*

CO
-

0.1 -, \ y

0 \^ ^y

2 3 4

1

5

Task Number

Rate Mnnnfrvnir Tnnk Prinritir- |
Deadline Monotonic Workload Monotnnir-

L_ ^J
Figure 24 Problem #3,

'Random'

AssignmentAnalysis - Rank #3

Although it is not obvious, the 'Task
Priorities'

curve above shares many

common characteristics with the 'Deadline
Monotonic'

curve. The task priorities

for this random assignment are more exaggerated than a pure deadline monotonic

assignment but the relation between any two task priorities is the same. That is,

for deadline monotonic assignment and the random assignment in this case, the

following is true:

\/{dvd2):dl,d2 e [SetOfDeadlineMonotonicPriorities] ,V(r, , r2 ): r, , r2 e [SetOfRandomPriorities]

>[(d] <d2< >rx <r2)/\(dx >d2< >rx >r2)A(J, =d2< >r, =r2)]

Equation 9 - PriorityAssignment Characteristics

83



Normalized Analysis - Rank #5

1

^ -C s*"^-*,

y r ^\ * - *

b 0.8 -

/ , / x \ \
-0.7-

/-'
//'

\ \
-

-

/ // \ .. N

E 0.6 - -

/
//

\ >.

| 0.5 - / ' \ \

. 0.4 -

| 0.3 -

a.

~y-yy \v J- ^^

%
-2-

CO
*-

0.1 -

o /
^

2 3 4 5

Task Number

Figure 25 - Problem #3,
'Random'

Assignment Analysis - Rank #5

Again, as can be clearly seen, the 'Task
Priorities'

curve does not entirely

resemble any of the other curves. This random task priority assignment does

share some general characteristics with the 'Workload
Monotonic'

curve but, that

relationship is very weak. This weak association cannot accurately be used in

determining general trends for the priority assignment gene.

From the results obtained it can be concluded that Deadline Monotonic

task priority assignment yields the best results. This is, at least in part,

surprising, since even worst case blocking analysis results in a nearly schedulable

set of tasks (see Equation 8 - Schedulability, Problem #3). It is very promising

that the genetic algorithm used here produced results that outperformed all others

and would likely not have been derived by other means.

84



5.4 Test ofPerformance

The last stage in evaluating the GA was to use it to find a solution to a

practical, complex problem. The important aspect to be evaluated in this case is

the ability of the GA to converge to a solution for a complicated problem. With a

practical complex problem it is very important that the GA be tested to ensure

that it will be capable of converging. The actual real-time application used for

this phase of the testing involves the operation and control of a complex digital

radio transmitter.

This embedded, real-time application encompasses the main control of the

digital radio. The primary functions of the application are: provide the user

interface to the transmitter; monitor the operation of the transmitter to prevent

dangerous operating condition from arising; and perform the necessary control

system functions to maintain the transmitter output power within a specified

limit. To accomplish these functions the transmitter software is broken down

into a number of distinct but interrelated tasks. The responsibility of each of the

tasks is listed below:

Keypad Scan - The operator is able to control the transmission

parameters of the radio (e.g., frequency, modulation mode, audio input

source selection, data input source selection, etc.). This task is

responsible for providing the operator with a means of interacting with

the radio. The operator input is via an alpha-numeric keypad. This task

is responsible for determining which key(s) are pressed by the operator

and translating those keys pressed into internal radio commands.

85



Front Panel Display - The operator is informed as to the status of the

transmitter operation at all times (e.g., output power level, input audio

level, fault messages, etc.). This task is responsible for updating the

front panel liquid crystal display (LCD) with the present state of the

radio transmitter.

Remote Control - The transmitter is capable of being remotely

controlled via a serial interface. This task is responsible for accepting

serial data which represents operator commands (with the same

controllable parameters as from the operator keypad). It is also

responsible for providing radio status over the serial interface by

responding to operator queries (with the same status parameters as on

the LCD display).

Emergency Monitor - The transmitter operation is monitored to ensure

that dangerous signal levels and/or temperatures are not building up

within the radio. This task is responsible for monitoring the internal

radio temperature, voltage and current levels to ensure continuous safe

operation.

Analog Sampler - In order to provide control information to the rest of

the radio processing software, this task is responsible for reading all

analog to digital converters and providing those measurements in useful

units ofmeasure to the rest of the radio control software.

Power Control - The output power of the transmitter is kept within

specified limit during transmission. This is accomplished regardless of

86



the level of input audio to the transmitter. This task is responsible for

adjusting the input audio level and the transmitter power gain to ensure

that the output of the transmitter stays within limits.

System State Control - The transmitter hardware is complex and in

many cases mechanical in nature, this task is responsible for the

absolute control of the various motors and relays used to tune and

adjust the transmitter.

Keyline Processing - Once the operator has configured the transmitter

with the desired transmission parameters the system can be
'keyed'

to

begin transmission. The keyline is typically connected to the radio

handset (i.e.,
'Push-To-Talk'

keyline) and causes the handset audio to

begin being modulated over the air by the radio. This task is

responsible for monitoring the selected key source and translating the

actuation and release of the keyline into the appropriate commands to

the radio hardware to start and terminate transmission.

The system design of the transmitter software is given in Figure 26 - Real-

Time Problem #4, below.

87



150 mSec Period 200 mSec Period

Keypad Scan

Hardness = 6

Deadline = 100 mSec

Workload = 20 mSec

System Configuration

1 50mSec Period

Front Panel

Hardness = 2

Deadline = 500 mSec

Workload = 10mSec

50 mSec Period

Remote Control

Hardness = 7

Deadline = 150mSec

Workload = 15mSec

40 mSec Period

Emergency Monitor

Hardness = 10

Deadline = 3 mSec

Workload = 4 mSec

Analog Sampler

Hardness = 9

Deadline = 2 mSec

Workload = 2 mSec

Keyline

Hardness = 9

Deadline = 30 mSec

Workload = 3 mSec

System State Control

Hardness = 8

Deadline = 10mSec

Workload = 7 mSec

I Power Control

Hardness = 9

Deadline = 10 mSec

I Workload = 5 mSec

30 mSec Period 100 mSec Period
80 mSec Period

Data Flow
Legend

Data

Structure

^

Communication Trigger Period
Task

y
Automatic Periodic Trigger

Figure 26 - Real-Time Problem #4

As in the previous case, task blocking can occur, therefore the

schedulability test of Equation 5 is again extended to include blocking time in

addition to execution time. The following shows the analysis:

20 10 15 4 2 5 7 3
0

.

+ + + - - + + + +
<8-(28

-1)

150 200 150 50 40 80 100 30

Lower Bound = 64.6% < 72.4% - Passed (barely)

20 + 6 10 + 9 15 + 9 4 + 6 2 + 2 5 + 6 7 + 10 3 + 6

150
+ + - +

200 150 50 40 80 100 30

Upper Bound = 133.6% < 72.4% - Failed

+ <8-(2-l)

Equation 10 - Schedulability, Problem #4

As this analysis clearly shows, this problem (i.e. the set of tasks) may be

schedulable, but very likely is not. Whether the tasks are schedulable or not is a

function of the RTOS configuration itself. Note that there is only a small margin

between the utilization lower bound and the schedulability threshold. The

obvious conclusion is that it is not likely that an RTOS configuration exists



which results in some level of blocking which yields a CPU utilization which is

below the allowable threshold.

The results from running GRTOS-GA . EXE are as follows:

Rank Fitness Tasking

Model

Timeslice

(uSec)

Priority

Inheritance

Priority

Allocation

Priority

Assignment

1 76.02 Preemptive 1227 Disabled Static Deadline

Monotonic

2 75.94 Preemptive 2001 Disabled Static Deadline

Monotonic

3 75.69 Preemptive 21060 Enabled Rotating Random

(-1675281081)

4 73.57 Preemptive 2166 Disabled Rotating Deadline

Monotonic

5 72.71 Cooperative N/A

(47447)

Enabled Rotating Random

(-4861458)

Table 8 -

GRTOS-GA. EXEResu^s' Problem #4

Analyzing the characteristics of the
'random'

priority assignments for this

real-time application is somewhat difficult. As the following graphs show

(Figure 27 and Figure 28), one of the task assignments that result from the

random assignment algorithms can be accurately be categorized, and the other

cannot.

89



Normalized Analysis - Rank #3

1

>
*0-9

o 0.8

|0.7-

1 0.6 -

X

| 0.5 -

. 0.4

g 0.3 -

0.

3 -2

CO
-

0.1 -

'^/\/y^K
0 -

v, y _ .

j . . . . 1 -

-

' i *
.

-

-

12 3 4 5 6 7 8

Task Number

Rate Monotonic Task Priorities

rds

Figure 27 - Problem #4,
'Random'

AssignmentAnalysis - Rank #3

Analyzing the priorities used in the random assignment above (ranked 3ra)

shows that this random seed actually results in a (somewhat exaggerated)

deadline monotonic assignment (see Figure 27 - Problem #4,
'Random'

Assignment Analysis - Rank #3, above). Although not obvious, the 'Task

Priorities'

and 'Deadline
Monotonic'

curves posses the same general

characteristics, again the relationships between task priorities are the same (see

Equation 9 - Priority Assignment Characteristics). This supports the conclusion

that this
'random'

task priority assignment produces priority assignments which

are similar to a deadline monotonic assignment scheme.

90



Normalized Analysis - Rank #5

4 5

Task Number

Rate Monotonic

Deadline Monotonic

-Task Priorities

Workload Monotonic

Figure 28 - Problem #4,
'Random'

AssignmentAnalysis - Rank #5

As can be clearly seen, this 'Task
Priorities'

curve does not share any

general characteristics with the
'standard'

task priority assignment curves. There

are simply no conclusions that can be drawn from this assignment with regard to

priority assignment. The simple fact is that this random priority assignment

outperformed many other priority assignment algorithms and cannot be described

as anything other than random.

The results above (see Table 8 -

GRTOS-GA.EXE Results, Problem #4

and Figure 27 - Problem #4,
'Random'

Assignment Analysis - Rank #3) clearly

show that a preemptive multitasking environment, without priority inheritance,

using deadline monotonic priority assignment
and a timeslice of approximately 2

mSec provides the best results. The genetic algorithm produced these results for

a problem specification which could not otherwise be solved.

91



6. Conclusions

From the results of the previous section it is reasonable to conclude that

the genetic algorithm developed in this thesis can reliably be used to determine

the
'best'

real-time operating system configuration for an arbitrary real-time

application. The tests performed verify that the GA converges to the correct

solution in a case where the optimal solution is known. In addition, the GA

converges to a reasonable solution in a case where the optimal solution can be

predicted but not proven.

What is most interesting about the results obtained is that the task priority

assignment algorithms which produced the best fitness for the problems chosen

clearly fell into two categories. The problem specifications for
'schedulable'

real-time problems resulted in rate monotonic assignment algorithms producing

the best fitness values. This is not surprising since rate monotonic theory proves

that this result produces an optimal solution. The problem specifications for

'non-schedulable'

real-time problems resulted in deadline monotonic assignment

algorithms producing the best fitness values. This is somewhat surprising but the

data clearly supports this conclusion.

These results immediately raise the question: 'Does deadline monotonic

task priority assignment produce the best results when the application tasks are

likely to be non-schedulable?'. This is a very interesting question that would,

unfortunately, require further research to answer. The data obtained very clearly

implies this conclusion but the lack of a large number of diverse real-time

92



application trials prevents that conclusion from being drawn. Opening this topic

to additional research is probably the most significant result of this thesis.

There is an additional observation that must also be made. The most

common industry practice when defining the RTOS configuration for a particular

system is, by far, to use cooperative multitasking with uniform task priorities

(this opinion is based on years of experience developing and studying fielded

real-time systems). I believe that the reason for the choice of each of these

configuration parameters is entirely different. As for the multitasking model, the

reason that cooperative multitasking is often chosen is that cooperative

multitasking systems are inherently simpler than preemptive multitasking

systems. The argument for choosing uniform task priority assignment is that

there is often little knowledge of the task execution profiles, when this is the case

other priority assignment algorithms are not feasible.

The results of this thesis clearly show that preemptive multitasking is

superior to cooperative multitasking in almost all situations, the added

complexity of preemptive multitasking is more than outweighed by the

performance improvement achieved. Also clearly evident from the results of this

thesis is that uniform priority assignment always produces lower performance

than any other assignment algorithm. Again, it is clear that analysis of the

system design (i.e. task characteristics) is essential in order to determine the

'best'

initial priority assignment algorithm
for the real-time system.

93



7. Bibliography

Ref. 1 J. T. Baldwin, Predicting and Estimating Real-Time Performance,
Embedded Systems Programming, pg 30-41, February 1995.

Ref. 2 S. Bodilsen, Scheduling Theory and Ada 9X, Embedded Systems

Programming, pg 32-52, December 1994.

Ref. 3 M. F. Bramlette and E. E. Bouchard, Genetic Algorithms in

Parametric Design of Aircraft, Handbook of Genetic Algorithms,
Van Nostrand Reinhold, 1991.

Ref. 4 I. L. Bukatova and Y. V. Gulyaev, From Genetic Algorithms to

Evolutionary Computer, Proceedings of the Fifth International

Conference on Genetic Algorithms, pg 614-617, 1993.

Ref. 5 C. Darwin, The Origin Of Species, Mentor Edition, NAL Penguin

Publishing, 1958.

Ref. 6 L. Davis, Handbook ofGenetic Algorithms, Van Nostrand Reinhold,

1991.

Ref. 7 K. DeJong and W. Spears, On the State of Evolutionary

Computation, Proceedings of the Fifth International Conference on

Genetic Algorithms, pg 618-623, 1993.

Ref. 8 K. Ellison, Scheduling Algorithms for Systems with Hard Deadlines,

Embedded Systems Programming, pg 24-31, April 1995.

Ref. 9 C. Heitmeyer and D. Mandrioli, Formal Methods for Real-Time

Computing: An Overview, Formal Methods for Real-Time

Computing, JohnWiley & Sons, pg 1-32, 1996.

Ref. 10 E. D. Jensen, Eliminating the Hard/Soft Real-Time Dichotomy,

Embedded Systems Programming, pg 28-33, October 1994.

Ref. 1 1 I. Lee, H. Ben-Abdallah and J-Y. Choi, A Process AlgebraicMethod

for the Specification and Analysis of Real-Time Systems, Formal

Methods for Real-Time Computing, John Wiley & Sons, pg 167-

194, 1996.

94



Ref. 12 Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution

Programs, Springer-Verlag, 1992.

Ref. 13 M. Milenkovic, Operating Systems: Concepts and Design,

McGraw-Hill, Inc., 1987.

Ref. 14 A. K. Mok, D. A. Stuart, and F. Jahanian, Specification and Analysis

of Real-Time Systems: Modechart Language and Toolset, Formal

Methods for Real-Time Computing, John Wiley & Sons, pg 33-54,
1996.

Ref. 15 R. Obenza, Guaranteeing Real-Time Performance Using RMA,

Embedded Systems Programming, pg 26-40, May 1994.

Ref. 16 A. V. Oppenheim and A. S. Willsky, Signals and Systems, Prentice-

Hall, 1983.

Ref. 17 N. J. Radcliff and F. A. W. George,A Study in Set Recombination

Proceedings of the Fifth International Conference on Genetic

Algorithms, pg 23-30, 1993.

Ref. 18 A. Tanenbaum, Modern Operating Systems, Prentice-Hall, 1992.

Ref. 19 D. M. Tate and A. E. Smith, Expected Allele Coverage and the Role

of Mutation in Genetic Algorithms, Proceedings of the Fifth

International Conference on Genetic Algorithms, pg 31-37, 1993.

95



8. Appendix A RTOS Source Code

8.1 TASKING.INT

TASKING

This file contains the specification for a Turbo Pascal Unit which

:tend3 Turbo Pascal by providing a tasking model. Application tasks can

dynamically created, destroyed and controlled. Each task has access
the entire global namespace of the application (although the mutual

sed to prevent simultaneous
iclusn mechan

access to shared va

The tasking model

tasking. For coope

block (or access a TASKING

their execution to allow oth'

provided should

ables) .

an be either
'cooperative'

or
'preemptive'

multi-

tive multi-tasking applications, all tasks must

in some way) at some point during
sks to run. For preemptive multi-

titneslice.tasking, control will pass among ready tasks

this reason tasks do not need to block at all because control will be
taken from them when their timeslice has expired.

In addition to general task management facilities, the following multi

tasking constructs are supported: Counting ('Dijkstra') Semaphores,
Events, Binary Semaphores, Condition Variables, Message Passing, Blocking
Mouse activities and Blocking Keyboard Input operations.

uses M5_M0USE;

*
The policy that TASKING uses when performing task scheduling

* based on task priorities. The task priorities can be static
*
dynamic {rotating}.

PRIORITY_SCHEDULING_POLICIES = (

(*
Priorities are not changed by TASKING in any way, the progr

(*
allowed to change task priorities but TASKING schedules

(*
execution in a pure round-robin manner.

STATIC_PRIORITIES,

Priorities are rotated after each context switch such that th

priority of the task being switched out becomes the lowest. Th

actual priority values for the tasks are not changed but th

logical meaning associated with that priority level is rotated.

ROTATING_PRIORITIES) ;

STATISTIC OPTIONS

(*
No statistics are gathered, this should be

{*
application debugging is complete.

NO STATISTICS,

{*
Gather statistics about the tasks: stack utilization (absolute

{*
and percent), CPU utilization (percent). Statistics concerned

{*
with the application as a whole are also reported.

{*
This information is contained in the directory from which the

{
program was run, in the file 'TASKING.

RPT"

.

I*

TASK_STATISTICS,
(**

Gather statistics about the MS-DOS services that wen

(* the application.

(*
This information is contained in the directory from

(*
program was run, in the file "IRQ. RPT'.

MSDOS SERVICES STATISTICS,

Gather statistics about the hardware interrupts that were

handled while the program was executing.

This information is contained in the directory from which the

program was run, in the file
'
SERVICES. RPT

'
.

HARDWARE INTERRUPT STATISTICS,

(* Gather all of the above statistic.

ALL_STATISTICS) ;

{* Two distinctly different multi-tasking models

(*
TASKING, Cooperative and Preemptive.

supported by

TASKING MODELS - (

For cooperative multitasking, context switches only occur when a

task surrenders control of the CPU by making a TASKING call.

COOPERATIVE,

For preemptive multutasking, TASKING seizes control of the CPU

from the task and re-assigns it to another ready task it at

'timeslice' intervals.

PREEMPTIVE);

This data structure contains all of the user configurable TASKING

parameters. TASKING examines the values in the USER_CONFIGURATION

variable when 'mainO
'
terminates, therefore all changes to the

TASKING configuration must be made in the main body of the program

before multitasking actually starts).

CONFIGURATION * record

TASKING can search the INI file of the application program fo

all (or some) configuration parameters. See TASKING.INI for .

complete description of the format of INI file entries.

USE_INI_FILE_TASKING_PARAMETERS : boolean;

* In order to further refine the TASKING cha

* that TASKING handles priorities (and hence

* controlled.

acteristics,

scheduling)

PRIORITY_SCHEDULING_POLICY : PRIORITY SCHEDULING_POLICIES;
I*

:iority inheretance is a mechanism whereby priority inversion *

(*
can be guranteed not to exist. Priority inversion occurs when a

*

(* high priority task is forced to wait while a low priorty task *

(" (with a locked resource) is preempted by an intermediate priorty
*

(* task. *

PRIORITY_INHERITANCE_ ENABLED : boolean;

{*
During applicatio

(
*
into the resource

n development

utilization of

ls will oft en be u

n and/

seful to

or the

'peek' *

tasks.
*

STATISTICS : STATISTICJDPTIONS;

{
TASKING supports

(*
cooperative and pr

two completely

eemptive.

different ""asking nodels:
*

case TASKING_MODEL : TASKING_MODELS of

(*
For cooperative multitasking, context switches

(*
a task surrenders control of the CPU by making a

COOPERATIVE :

only occur when
*

TASKING call.
*

('
No additional parameters .

ol of the CPU

PREEMPTIVE

If the tasking model is preemptive, then the minimum

of time that a task should be allowed to run before <

is passed to another ready task. The actual timeslio

is achieved may differ from the value specified based <

task characteristics and activities.

This variable can be directly modified within the main body of the

application, changes at any other time have no impact on TASKING.

TASKING CONFIGURATION : CONFIGURATION

<
USE INI_FILE_TASKING_PARAKETERS

PRIORITY_SCHEDULING_POLICY

PRIORITY_INHERITANCE_ENABLED

STATISTICS

TASKING_MODEL

TARGETJTIMESLICE

);

STATIC PRIORITIES;

false;

NO_STATISTICS;

PREEMPTIVE;

10000 (USEC]

(*
Timeslice value;

(*
to sixty seconds,

(*
enforce this rest

MINIMUM TIMESLICE -

MAX IMUM_TIMESLICE -

must fall within

TASKING will ad}

riction if necess

50 (uSec);

60000000 (usec);

the range

ust the ta

ary.

of fifty microseconds
*

rget timeslice value to
*

(" This is the restriction that TASKING places

(* that are
'active'

at any point in time.

MAXIMUM_NUMBER_OF_TASKS - 2047;

the number of tasks
*

Since tasks can be created/destroyed dynamically, an application

can be composed of more than MAX_NUMBER_OF_TASKS , but no more than

MAX_NuMBER_OF_TASKS tasks can be active at any point in time.

Task identifiers will be created/allocated/managed by TASKING,
under no circumstances should a TASK_ID be assigned a value by the

application.

TASK IDS - 0. .SFFFF;

("
All user tasks must be assigned a priority from this range.

USER PRIORITIES - 1. .10000;

All application tasks MUST be procedures which match this task

specification. The parameters to the task will be passed into the

task when it begins executing. Since these values will exists on

the stack frame of the task (which never goes away) the task will

have access to them whenever it is running. Modifying either of

these variables will have NO effect on the execution of the task.

The variables are provided by TASKING to the task but are in no way
used by TASKING (a mechanism is provided to alter the priority of a

task, see the CHANGE_PRIORITY ( ) procedure).

NOTE: Tasks must be declared 'far'
either implicitly with SF+ or

explicitly by adding
'far;'

after the procedure header.

TASKJTYPE = procedure (TASK_ID : TASK_IDS; PRIORITY USER_PRIORITIES) ,-

TASKING ensi

'

within the c<

"

checks, erro.

res that the operations requested by a

fitext of the request. Because of

s of these categories can be detected.

ire valid

validity

SYSTEM_ERRORS -

(

TASK ALREADY_ACTIVE,

INSUFFICIENT_RESOURCES,
TASK_IS NOT ACTIVE,
TASK_ALREADY SUSPENDED,

ILLEGAL_TASK~ID,
ILLEGAL OPERATION

);

(' Each application task can have different

{*

handling routines. Any error handler which
(* implement must conform to this specification.

and/or common error

;he user decides to

HANDLER_PROCEDURE - procedure (TASK_ID : TASK_IDS);

(* This data

(* TASKING.

structure is used to for all time specif icati

96



HOURS ! 0 .23;

MINUTES : 0 . 59;
SECONDS : n. .59;

MILLISECONDS 0
.999;

end;
(*

TIME *)

I ,
^

IASK_AITRIBUTES -
record

( ,
,l#%tt

(*
This priority is subject to the 'Priority Scheduling Policy'

r established in the USER_CONFIGURATION data structure. Note that(*
higher numbers are higher priority.

PRIORITY : USER_PRIORITIES;

(*
This is the number of words that the task requires for stack
space. There is no easy way to determine this value accurately*

Turning on the TAS^STATISTICS is the best method of determining*
stack requirements. Note that if the application 'locks up'

it* is very likely that one (or more) of the task stacks is no? big(*
enough. U'L9

STACK_WORDS_NEEDED ord;

If an application does not assign error handlers then
will use internal default handlers which provide some di;
and attempt to allow the application to continue runninq
unlikely that the application will be able to run in the
of errors, but all attempts are made to do so. If the
error handlers are to be used then the corr.
ERRORHANDLERS element should be set to 'nil'

default

sponding

ay [SYSTEM_ERRORS] HANDLER_PROCEDURE;

Counting ('Dijkstra') Semapho.

(*
All semaphores used by the application must be variables declaredj*
(or dynamically created) of this type. 'Dijkstra'

semaphores can
( retain signals because information is maintained so that TASKING
(*

know-how may signals are stored in the semaphore at all times.

SEMAPHORE .SFFFF;

C

Software Events

All events used by the application must be
[*

dynamically created) of this type. Events c
(*
signal. Once an event has been signaled a

(*
are lost (i.e., the event remains signaled).

ariables declared (or

n retain only a single

1 subsequent signals

EVENT = (UNSIGNALED, SIGNALED);

Binary Semaphores

(*
All binary semaphores used by the application must

(* declared (or dynamically created) of this type. Bina
(*

are used to ensure mutually exclusive access to a resi

(*
shared between tasks. It is logically an error

{*
signaled binary semaphore, TASKING will detect this

illegal operation.

ie variables

semaphores

irce which is

(*

BINARY_SEMAPHORE - 0..1;

(TASK : TASK_IDS) ;

I*
This routine causes a previously running or ready task to be blocked '

(*

unconditionally. The only way that a task suspended by this call can run
'

I*
again is if another task RESUMED 's it.

procedure RESUME

(TASK : TASK_IDS);

This rout

task is not

of the other ready t

causes a previously suspended task to be made ready. The

ily the next to run, that is based on the priorities

function GET_MlLLISECOND_TICKS : longint;

(*
This routine retuns the number of milliseconds that have elapsed since

<*
the program started executing.

procedure WAIT_FOR DELAY
(..... ........ .............

(DURATION : TIME);

(*
This system call causes the currently running task

(*
for the specified length of time. There is no guaran

(*
will begin executing when the time expires, the only

(*
the task will become ready to execute at that time.

to become blocked '

:ee that the task '

guarantee is that
'

rocedure PREEMPTABLE_DELAY

(DURATION : TIME) ;

specified length of time.

sk to be delayed by the ]

procedure CHANGE_PRIORITY

(PRIORITY : USER_PRIORITIES) ;

(*
This routine simply changes the priority of the

(*
and possible reschedules the running task (if thi

1*

priority task ready to run).

rrently running task
'

is a new highest '

Counting ('Dijkstra') Semaphore Operations

procedure SIGNAL_SEMAPHORE
,.. ............ ............

(var SEM : SEMAPHORE);

utine performs an Up ( ) operation on the specified semaphi

tasks waiting on the semaphore then one is awaki

waiting then the semaphore is incremented.

If there *)

rocedure WAIT_ON_SEMAPHORE

(var SEM : SEMAPHORE);

This routine performs a Down ( ) operation on the specified semaphore.

If the semaphore is zero then the running task is suspended. If it is
non-zero then the semaphore is decremented.

(*
Condition Variables

(*

[*
All condition variables used by the application must be

(-
declared (or dynamically created) of this type. It is t

(
that applications will use condition variables (they

{*
useful in the implementation of Hoare Monitors) .

(
variables do not have any memory associated with them, only

(*
task is already waiting on a condition variable when it is signaled

(*
will that task become unblocked. If a condition variable is

(*
signaled and there is no task waiting on it then the signal is lost

(...............*.................,.....................,,,...........

CONDITIONJ/ARIABLE - (CONDITION_VARIABLES_DO_NOT_HAVE VALUES);

riables

likely

Condition *)

Memory Management Operatii

procedure GETMEM

(var PTR : pointer; SIZE : word);

This procedure replaces the standard Turbo Pascal memory

procedure of the same name . Since TASKING must perform a

allocation and de-allocation, this routine
*must* be used inste

system. getmem ( ) procedure. If 'type P : "T;
'
is declared,

correct usage is "getmemlpointer (P) , sizeof (T)
);'

.

procedure FREEMEM
.......................

pointer; SIZE
<*

(PTR ord);

alio.This procedure replaces the standard Turbo Pascal memo.

(*
procedure of the same name. Since TASKING must perform all mei

I*
allocation and de-allocation, this routine

*must* be used instead of

(*
system. freemem( ) procedure. If 'type P : *T;

'
is declared, then

{*
correct usage is 'freememlpointer (P) , sizeof (T)

);'
.

(* General Task Management Operations

procedure CREATE

(var TASK : TASK IDS; ATTR : TASK_ATTRIBUTES; ENTRYPOINT ! TASKTYPE);

{* This routine creates all system data structures for a parallel
*

(*
executing task. The task is made ready to run and will be available for

(*
execution. Actual execution will occur when the scheduler activates the

'

(* task (i.e. precise execution time is unknown and depends on availability
'

(*
of system resources and system load}. In addition NO tasks will be

(*
scheduled until the application

'main' has terminated.

I*

rocedure DESTROY

(TASK : TASKIDS);

This routine terminates and (if appropriate) releases all of the task's
'

resources to be used by other tasks and then removes all evidence of the

task ever having existed. Tasks may only
'destroy'

other tasks, not
'

themselves. This operation should only be performed when the full
'

consequences of task destruction are known and the result of the task

Software Event Operations .

rocdur. SIGNAL EVENT

(var THE : EVENT)

Thi: itine signals the event specified, if there ai
(*

the event then one task is made ready. If there are ni
(*

the event then the signal is saved, only one signal
"

matter how many times the event is signaled.

aiting i

tained i

{*

procedure BROADCAST_EVENT

THE_EVENT : EVENT);

This routine signals the event specified, if there are tasks w;

the event then they are ALL made ready. If there are no tasks w<

the event then the signal is saved and the next SINGLE task to
the event will consume the event. Only one signal is mainti

matter how many times the event is signaled.

procedure START_PERIODIC_EVENT

iting on
'

iting on

THE_EVENT : EVENT; INTERVAL : TIME);

(*
This routine starts the periodic signalling (by TASKING) of the event

(*
specified at the specified interval. This routine cannot cause a task to

(*
be suspended but a re-schedule may occur.

procedure STOP PERIODIC_EVNT
(* ............,......,,...

(var THE_EVENT : EVENT};

This routine stops the periodic signalling (by TASKING) of the event

specified. This routine cannot cause a task to be suspended but a

re-schedule may occur.

procedure WAITONEVENT

(var THE_EVENT : EVENT);

This routine causes the calling task to be suspended waiting for the
specified event to occur. If the event has already occurred then the

calling task will immediately become ready, although a re-schedule may

Binary Semaphore Operati

procedure SIGNAL_BINARY_SEMAPHORE

(var SEM : BINARY_SEMAPHORE) ;

{* This routine performs an Up ( ) operation on the specified semaphore. If
(* there are tasks waiting on the semaphore then one is awakened. If there
(*

are none waiting then the semaphore is set.

procedure SUSPEND procedure WAIT_ON_BINARY_SEMAPHORE

97



(var SEM : BINARY_SEMAPHORE) ;

(*
This routine performs a Down ( ) operation on the specified

I*
If the semaphore is zero then the running task is suspended.

(*
non-zero then the semaphore is cleared.

semaphore.

If it is
-

(*
Condition Variable Operations

procedure SIGNAL__CONDlTION_VAP.IABLE

(var C_VAR : CONDITI0N_VARIABLE) ;

This routine signals the condition variable specified, if there is a

ask waiting on the condition variable then it is made ready (or one of

ade ready). If there are no tasks waiting
che signal is lost.

edure WAIT_ON_CONDITION_VARIABLE

ar C_VAR ; CONDITION_VARIABLE) ;

This routine causes the calling task to become blocked. Bei

condition variables are not stored by the system, the calling tasl

guaranteed to become blocked. As soon as another task signals

condition variable the waiting task will be made ready (or one of

multiple waiting tasks will be made ready) .

Mes Massing Opera tions

SEND_MESSAGE_TO

(RECIPIENT_TASK TASK_ IDS; KM IT : poi ter);

This routine sends the message (actually the pointer) to the task

by placing it into the task's mailbox (which is automatically created if

necessary) . Although the calling task cannot block while sending the

message it is possible for a reschedule to occur. Typically messages are

dynamically allocated before being sent and the receiver is responsible

for disposing of them after they have been used.

further task )*
This procedure

'locks'
the scheduler and prevent

*

rescheduling until UNLOCK_SCHEDULER is called.

*
One use of this routine'is when multiple tasks nee>

*

display and it is desired that the output from each

*
the output from other tasks being intermixed with it

*
that the scheduler is

'locked'
there will be

*
task rescheduling. The application should av-

* if possible, if that is not feasible then

*
scheduler

'locked'
should be an absolute minimum.

* It is imperative the
'each*

call to LOCK_SCHEDULER have a corresponding
*
call to UNLOCK_SCHEDULER, successive (nested) calls to LOCK_SCHEDULER are

*
allowed as long as each has a corresponding call to UNLOCK_SCHEDUXER .

ed to write to the

task occur without

t . During the time

preemptive/cooperative

id 'locking'
the scheduler

time spent with thethe

cedure UNLOCK SCHEDULER;

*
This procedun

*
LOCK SCHEDULER i

unlocks
'
the scheduler and allows task rescheduling to

the previously existing configuration. Note that

isly have been called.

procedure RECEIVE_MESSAGE

(var RCV_MESSAGE_PTR : pointer);

This routine retrieves a me;

he caller's mailbox (which i.

lessages in the mailbox then i

blocked by calling this routu

*age (actually a pointer to a message) from *)

created if necessary), if there are no *}

1 is returned. The task cannot become *)

: but a reschedule is possible. Typically
'

(*
the message will be disposed of after it has been used by the receiving *)

procedure WAIT_AND_RECEIVE_MESSAGE

(var RCV MESSAGE PTR : pointer);

I* " 1
(* This routine retrieves a message (actually a pointer to a message) from *}
(* the caller's mailbox (which is created if necessary), if there are no *)
(*

messages in the mailbox then the task is blocked waiting for the mailbox *)
( to become non-empty, because of this the return pointer can never be nil. *)
(*

Typically the message will be disposed of after it has been used by the *)

(*
receiving task. *)

(............................*...*.....*..***.*".""*"**"*""-*****)

(
* * ;>

( MS-Mouse Handling Operations *>

procedure ENABLE MOUSE ACTIONS

i
"*

'
i

(MOUSE_ACTIONS : word) ;

{. *)

(* This routine enables the specified MS-Mouse events to be received by *)

(*
the task which is (or will be) waiting to receive mouse actions. M

{...
................*..................*......******""***"*

**"*?*)

procedure WAIT_ANTJ_RECEIVE_MOUSE_ACTIONS

(var MOUSE_INFO : MOUSE_PARAMETERS) ;

(.

(*
If an MS-Mouse handler is to be created then communication between the *)

(*
mouse driver and the 'mouse

handling' task is done through a variable of *)

i* type MS MOUSE.MOUSE_PARAMETERS (which can be declared or dynamically *)

(* created!. *J
(* This routine receives MS-Mouse action parameters from the MS-Mouse J

{* driver. If none of the enabled mouse actions has occurred then the task *]

(*
is blocked waiting for one (or more) action to occur. N

")

<
* "*)

( Keyboard Handling Operations *)

(................*..*.*..**..*-**"****"-**"*"*"*"******************)

function WAIT_ON_READKEY : char;
,.*....*.*....**.*....

(* This routine provides a means for an application task to perform I/O in

(*
a
'blocking'

manner. This means that while there is no input from the

(* keyboard the calling task is suspended, as soon as input arrives from the

|* keyboard the caller is awakened and given the ASCII code of the key that

1*
was pressed by the user (i.e., a blocking equivalent of 'readkey').

|* An added benefit of using blocked keyboard input is that this version

f*
of

'readkey' is able to detect (and pass back to the application) the

I* extended function keys FU 6 F12 (as well as shift, alt S, Ctrl versions}.

[ The Turbo Pascal
'readkey' function is unable to recognize Fll & F12.

[. WARNING:
,_ ,

. . , ,,

[* Some add-on utilities that extended the size of the keyboard buffer

will actually
'steal' the keys from the blocked task. All such

(* utilities should be disabled when using this blocking I/O feature of

[

^sing'

blocking I/O causes the application to be unable to distinguish

[* between multiple characters arriving from the pressing of an ANSI SYS

I* re-programmed key on the keyboard from the actual re-programmed key.

That is, if a keyboard key is re-programmed using ANSI. SYS then the

i* application will never be able to see that key, it will only see the

I* re-programmed value whenever the key is pressed (the key translation

by ANSI. SYS occurs before the
'key' is detectable by software, although

( the standard Turbo Pascal
'readkey' is able to see the 'base key ).

( This anomaly can create synchronization problems between the keyboard

(* and TASKING if the key has been reprogrammed as multiple keys (which is

i* usually the case). Under these conditions the keyboard buffer can end

(.
up with more characters in it than are reported to the application.

( ANSI-SYS re-programming should be disabled when using this blocking I/O

(* feature of TASKING.

(,....
...........*........*.....**.....

""*****"***********

. . Scheduler Handling Operations

procedure LOCK_SCHEDULER;

98



8.2 TASKING.PAS

80x86 FLAGS register bit definition!

individual bits in the register.

unit TASKING;

(*
Extends Turbo Pascal by adding a preemptive or cooperative tasking(*

model to the language. The multitasking extensions are fully suDDorted(*
while running under MS-DOS.

p

<*SA+

(*SB-

CSD+

(*

(*$L+

(*

I'SF-

CSG-

C$1-

(*$N-

(*$0-

(*$P-

f*$Q-

CSR-

(*SS-

(ST-

(*$V-

(*SX-

C

Options (Ver. 7.0)
Word Alignment

Short Circuit Boolean Evaluation

Debug Code Generation ON (Sort of)
Requires /V option to TPC to activate

Local Debug symbols ON (Sort of)
Requires /V option to TPC to activate

Far calls only as necessary
Generic 90x86 code only
I/O Checking OFF

Do Not allow 80x81 instructions
Overlays NOT allowed

Standard 'string'
parameters

Overflow Checking OFF

Range Checking OFF

Stack Checking OFF

Do Not Force Typed '@'
references

Var-string Checking OFF

Disable Extended syntax

<*$I TASKING. INT -

Filename of the unit interface (i.e.,
'public'

stuff)

implementation

This is the ID of the TASKING task which is executed when there is

nothing else to execute (this is reserved and cannot be assigned to

NULL_TASK_ID - low (TASK_IDS) ;

This is used to document the code where the task ID paramete

procedure is needed by the compiler but not used by the code

because of the context of the call.

ANY_TASK = NULL_TASK_ID;

These priority declarations allow TASKING to create tasks that

guaranteed to have higher and lower priorities than user tas

The obvious use of this is the null task, which has a prior

lower than all user tasks, and tasks which are executing in

scheduler-locked code region which have a priority higher than

others.

ill *)

')

HIGHEST_PRIORITY = succ (high (USER_PRIORITIES) ) ;
LOWEST_PRIORITY - pred ( low (USER_PRIORITIES ) ) ;

type (*................*.*...............*.................*.*...........*...

(*
General task priority type which includes both user priorities and

*

(
TASKING reserved priorities.

*

PRIORITIES LOWEST_PRIORITY. .HIGHEST_PRIORITY;

const
(*...*..*....*..**.*....*.*.*.*.*.*....***.*........*..*..*.**..*.....

(*
This variable keeps track of the highest priority when dynamic *

(*
priority rotation is enabled (i.e., dynamic priorities). *

HIGHEST_DYNAMIC_PRIORITY : PRIORITIES - HIGHEST_PRIORITY;

type
(***

i*

This list enumerates the allowable priority comparisons

(* determine the next highest priority task to execute).

(used to *

COMPARISONS- (GREATERJTHAN, LESS_THAN, EQUAL_TO) ;

(*
This is used to document the code where the address of

(*
parameter to a procedure is needed by the compiler but n

(*
the code because of the context of the call.

the block
*

t used by
*

THERE_IS_NO_BLOCK_TO_MATCH - nil;

(*
These are the hardware specific constants necessary to program the *)

(*
system clock chip (18254) for TASKING and MS-DOS operation. *)

TIMER_CLOCK_FREQUENCY - 1193180;

MSDOS TIMER_0_VALUE - SFFFF;

ONE MSEC TIMER_0_VALUE - round (TIMER_CLOCK FREQUENCY
* 0.001);

DEFAULT_MSDOS_CLOCK_PERIOD = MSDOS_TIMER_0_VALuE / T IMER_CLOCK_FREQUENCY ;

TIMER CONTROL_PORT = 543;

TIMER'O DATA_PORT - 540;

SYSTEM_TIMER CONTROL_WORD - 534;

I*

Allows TASKING application to

the correct execution time.

, month boundary and report

DAYS_IN : array[1..12] of
integer- (31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 ) ;

<

<*

This is

task is

used as a

io longer

special

or neve

delay
r was)

/alue which indicate

waiting for a delay to

s that the

expire.
*

NO
_TIME_

DELAY - -1;

(*

1"

These values are used to

task must
'wait'

when it r

compute

equests

the number

a WAIT FOR

of millise

DELAY ( ) .

=od= that a
*

MILLISECONDS_PER_SECOND - 1000;

MILLISECONDS_PER_MINUTE - MILLISECONDS PER SECOND
* 60;

MILLISECONDS_PER_HOUR - MILLISECONDS_PER_MINUTE
* 60;

MILLISECONDS_PER_DAY - MILLISECONDS_PER_HOUR
*
24;

(* This is an interrupt that is revectored from its original vector

(* to allow TASKING to monitor/control software interrupts. MS-DOS

(* allows user applications to use interrupts OxFO-OxFF. This allows

(* TASKING to prevent preempting MS-DOS (which is guaranteed to crash

(* if reentered) .

j.....................*........*.*.*..............*.*.*....*.****"*"

REVECTORED_INTERRUPT_NUMBER - 5FF;

(........... .............. ................................. ............

(* This allows the statistics functions to detemine how much of the

I* task stack was used by the stack and how much is wasted.

CARRY_FLAG - $0001;

ZERO__FLAG - $0040;

INTERRUPT FLAG - 50200;

PARITY_FLAG - 50004;

SIGN_FLAG - 50080;

DIRECTION_FLAG - $0400;

test/set/clea

AUXILIARY_FLAG - $0010;

TRAP_FLAG - $0100;

OVERFLOW FLAG - $0800;

1*
MS-DOS, system and hardware specific interrupt declarations (i.e.,

'

i*
interrupt vector table entries). This information was derived from

'

I*
a number of different sources and represents the most comprehensive

'

1*
PC interrupt usage description that could be compiled.

'

DIVIDE BY_ZERO_INTERRUPT_NUMBER - $00;

SINGLE_STEP_INTERRUPT_NUMBER = 501;

NMI_INTERRUPT_NUMBER - 502;

BREAKPOINT_INTERRUPT NUMBER - 503;

OVERFLOW_INTERRUPT_NUMBER - $04;

PRINT_SCREEN_INTERRUPT_NUMBER = $05;

INVALID OPCODE_INTERRUPT_NUMBER - $06;
SYSTEM TIMER INTERRUPT NUMBER - $08;

KEYB0ARD_ INTERRUPT NUMBER - 509;
IRQ_3_INTERRUPT_NUMBER - $0B;

IRQ_4_INTERRUPT_NUMBER - $0C;
IRQ_5 INTERRUPT_NUMBER - 50D;

IRQ_6JtNTERRUPT NUMBER = S0E;

IRQ_7_INTRRUPT~NUMBER - 50F;
VIDEO_SERVICES_INTERRUPT NUMBER 510;
EQUIPMENT_CHECK_INTERRUPT_NUMBER - $11;

MMORY_SIZE_INTERRUPT_NUMBER = 512;
DISK_SERVICES INTERRUPT NUMBER - 513;

SERIAL_COMM_INTRRUPT NUMBER - $14;

CASSETTE_IO_INTERRUPT~NUMBER - $15;

KEYBOARD IO_INTERRUPT_NUMBER = 516;

PRINTER_To_INTERRUPT_NUMBER = 517;

BOOTSTRAP_INTERRUPT_NUMBER = $19;

TIME_QF_DAY_INTERRUPT_NUMBER = $1A;

KEYBOARD_BREAK_INTERRUPT_NUMBER = $1B;
CLOCK INTERRUPT NUMBER = SIC;

VIDEO~PARAMS__POINTER - SID;
FLOPPY_DISK_PARAMS POINTER - S1E;
VIDEO_GRAPHICS POINTER - $1F;

PROGRAM_TERMINATION_INTERRUPT NUMBER - $20;

KSDOS_BIOS_FUNCTION~INTERRUPT~NUMBER - $21;

PROGRAM_TERMINATION_ADDRESS
~

- $22;

CONTROL_C_ADDRESS - S23;

CRITICAL_ERROR_ADDRESS - $24;

ABSOLUTE_DISK_READ_INTERRUPT-NUMBER - $25;
ABSOLUTE_DISK WRITE_INTERRUPT_NUMBER - $26;

TSR_INTERRUPt2nUMBER - $27;
idle_handler interrupt_number - 528;
msdos tty_handler interrupt_number - $29;
m5dos~network interrupt_number - $2a;

batch_execute~intrrupt~number - $2e;

multiplex_interrupt_number - $2f;

cpm_jump part 1 pointer - s30;

cpm_jump"part_2~p0inter = 531;

interrupt number - $33;

diskette~rquest interrupt_number $40;

fixed_disk_params_1 pointer - $41;

EGA_GRAPHICS_POINTER - $43;

FIXED_DISK_PARAMS_2_POINTER = 546;

USER_ALARM_ADDRESS - 54A;

ROM BIOS_ALARM_INTERRUPT_NUMBER - 550;
NETWORK_FUNCTIONS_INTERRUPT_NUMBER - $5A;
REVECTORED 19H_INTERRUPT_NUMBER - S5B;

NETWORK USE INTERRUPT_NUMBER - $5C;

LIM_EMS"INTERRUPT_NUMBER $67;

REAL_TIME_CLOCK INTERRUPT NUMBER - $70;

IRQ_2_REDIRECT INTERRUPT NUMBER = 571;

IRQ_10_INTERRUPT NUMBER
~

- S72;

IRQ_11 INTERRUPT~NUMBER = 573;

IBM_PS2 MOUSE EVENT_INTERRUPT_NUMBER = 574;

COPROCESSOR^ERROR INTERRUPT_NUMBER - 575;

HARD_DISK EVENT_INTERRUPT_NUMBER - 576;

IRQ_15_INTRRUPT_NUMBER - $77;

(.*..*..*....*....*.................................................*...

(* This set of interrupts are supposedly used by BASIC. There is no
*

(*
other documentation to indicate which are actually interrupt *

(*

handlers, in fact examining a
'standard'

PC vector table shows that *

{*
most of these are actually nil (i.e., 0000:0000). *

(.......................................................................

BASIC_INTERRUPT NUMBERS - [$80..5F0];

(*
These interrupts are not used by MS-DOS and documented

(*
by MS-DOS application programs.

PROGRAM_USABL_INTERRUPT_NUMBERS = [560.-566, SF1. -5FF] ;

(*
Members of this set of interrupts are only generated by the B0x86

(

hardware in response to abnormal program operation.

SYSTEM_INTERRUPT_NUMBERS -

[

DIVIDE_BY_ZERO_INTERRUPT_NUMBER,

SINGLE_STEP_INTERRUPT_NUMBER,
NMI_INTERRUPT_NUMBER ,

BREAKPOINT_INTERRUPT_NUMBER ,

OVERFLOW_INTERRUPT NUMBER,
INVALID OPCODE INTERRUPT NUMBER

(* This set of interrupts comprises the Operating Service handlers of '

("
MS-DOS. This includes 'add-on'

services provided by device drivers
(*

and/or TSR programs. They are all software interrupts which can
'

(*
only be accessed by the B0xB6 machine instruction 'INT nn'.

OS SERVICES INTERRUPT NUMBERS -

DEFAULT_STACK_VALUE - S5ASA;

[
PRINT SCREEN_INTERRUPT_NUMBER,
VIDEO~SERVICES INTERRUPT_NUMBER,

EQUIPMENT_CHECK_INTBRRUP? NUMBER,
MEMORY SIZE_ INTERRUPT NUMBER,

DISK SERVICES_INTERRUPT NUMBER,

SERIAL COMM INTERRUPT_NUMBER,

CASSETTE 10 INTERRUPT_NUMBER,

KE INTERRUPT_NUMBER,

PRINTER_IO INTERRUPT_NUMBER,

TIME_OF_DAY_INTERRUPT_NUMBER,

KEYBOARD_BREAK INTERRUPT_NUMBER,

CLOCK_INTERRUPT_NUMBER,

PROGRAM TERMINATION_INTERRUPT NUMBER,

MSDOS BIOS_FUNCTION INTERRUPT~NUMBER,

ABSOLUTE_DISK_READ_INTERRUPT_NUMBER,

ABSOLUTE_DISK_WRITE INTERRUPTJJUMBER,

TSR_ INTERRUPT_NUMBER ,

IDLE_HANDLER_INTERRUPT_NUMBER ,

MSDOS TTY_HANDLER_INTERRUPT_NUMBER,

MSDOS~NETWORK INTERRUPT_NUMBER,

BATCH EXECUTE~INTERRUPT NUMBER,

MULTIPLEX_INTERRUPT_NUMBER,

MS MOUSE_INTERRUPT NUMBER,

DISKETTE_REQUEST_ INTERRUPT NUMBER,

ROM BIOS ALARM INTERRUPT_NUMBER,

99



NETWORK_FUNCTIONS_INTERRUPT_NUMBER,
REVECT0RED_19H_INTERRUPT_NUMBER,
NETWORK_USE_INTERRUPT NUMBER,
LIM_EMS_INTERRUPT NUMBER

];

The members of thi
RESERVED'

. The us

forbidden (in order

some programs do us

is DEC PathWorks Network dr.

of interrupts

unauthorized use

other programs).

only documented as
'

any of these interrupts is therefore '

.amtain100* compatibility) . Unfortunately
errupts from this set. An example of this -

which uses 568. Note that this
'

cause incompatibilities 'ith TASKING (and *)

RESERVED_INTERRUPT NUMBERS -

507, 52B..S2D, 532, 534..53F, $42, 544. .$45,
$47. .$49, $4B..55B, 55D..S5F, 56B..56F, $78..S7F

The members of this set of interrupts are used in an incompatible
manner. These incompatibilities were discovered by testing, there

documents which describe the way in which the interrupts are

purposes
used. These interrupts are supposed to be used for other
but are 'taken over'

by the applications listed below and

manner that is not standard and is not completely understood.

INCOMPATIBLE_INTERRUPT NUMBERS

DEC PathWorks Network Driver Software

It appears that as part of handling this interrupt the driver

modifies the vector address so that the next interrupt goes to a

different location in the driver. This is definitely not a good

approach and TASKING cannot deal with it. Because TASKING has

takes over the interrupt and the passes control to the actual

handler, if the handler then wants the next interrupt to go

somewhere else TASKING has no way of intercepting it. The only
alternative is to let the driver 'fend for itself and hope that

it can handle reentrancy or that reentrancy never occurrs.

The 18259A Programmable Interrupt Controller (PIC) chip must be

directly accessed by TASKING in order to support preemptive multi

tasking. These declarations provide the necessary PC hardware

specific information.

NON SPECIFIC_END_OF_INTERRUPT - $20;
PROGRAMMABLE_INTERRUPT_CONTROLLEREPORT - 520;

Areas of MS-DOS Data area used to support blocked keyboard input.
(*

DOS_DATA SEGMENT = S0040;

KYBD BUFFER HEAD PTRJ3FS = S001A;

kybd^buffer'tail^ptrjsfs = S001C;

KYBD_BUFFER~BEGIN_PTR_OFS = 50080;

KYBD BUFFER END PTR OFS - $0082;

('

General text processing control characters.

CR - chr(SOD) ;

LF - chr(SOA);

NULL_CHR - chr(SOO);

'

Carriage Return
1

Line Feed
'

Marks the beginning < xtended key
*

)

{* In order to allow efficient allocation/deallocat

( TASKING maintains a list of sets of TASK_IDs. Since each

{* hold 256 elements, this list defines the number (and range)

(
sets. Note that

'0'
must be the start of the range.

f TASK_IDs, *)

TASK_ID_SETS - 0. . ( (MAXIMUM_NUMBER_OF_TASKS div 256) it;

,...*.*.............*..........*.**.

(* When tasks use message passing then this data structure is used to

(*
manage the message lists within each mailbox. The size of the

(*
mailbox is dependent upon system heap space only because the

(*
messaged are managed by this linked list structure.

<*

MESSAGE_PTR - "MESSAGE;

MESSAGE - record

INFO ADDRESS : pointer;

: MESSAGE_PTR;

end;
(* MESSAGE )

(*

When tasks use message passing then this data structure is used to

maintain the list of mailboxes. Each mailbox must have an owner,
'

i.e. the task that will receive the mail and each task can have at
*

most one mailbox. Messages are managed using semaphores. The
'

number of tasks receiving mail is dependent upon heap space only
'

because the mailboxes are managed by this linked list structure.

For performance improvements this could be a binary tree sorted by

the OWNER field. Performance will only become an issue with very
'

large applications with many message passing tasks. Note that
'

performance will only degrade if the number of tasks that receive
'

messages is large NOT if the number of messages being passed is '

large.
.*...*.,***.

MAILBOX_PTR - "MAILBOX;

MAILBOX - record

OWNER : TASKIDS;

SEM : SEMAPHORE;

CONTENTS : MESSAGE_PTR;

NEXT : MAILBOX_PTR;

end;
(* MAILBOX *)

[* The task context is saved into and restored from this data *)

<*
structure. It is basically a representation of the 80B6 registers. )

(* Remember all applications under DOS actually run on an B0B6 no )

(*
matter what CPU is used in the PC.

,..,!

C

CONTEXT REGISTERS - record

AX : word; BX : word; CX : word; DX

BP : word; SI : word; DI : word;

ES : word; DS : word;

SS : word; SP : word;

end;
(* CONTEXT_REGISTERS

Basic pointer to

tasks are waiting

their addresses.

maphore, used to find the semaphore that the
'

Internally semaphores are distinguished by
'

SEMAPHORE_PTR - "SEMAPHORE;

This data structure is used to maintain the information about what

(and if) a task is waiting for. Since everything except time is

implemented as a semaphore a task waiting for a mail message (for

(*

example) would have a

(*

delay would have an ab,

WAITING_PTR - "WAITS;

WAITS - record

ABSOLUTE_TIME : longint;

SEM_PTR : SEMAPHORE_PTR;

end;
(* WAITS *)

I*

lemaphore entry. A task i

iolute time entry.

(*
This data structure is used to maintain a linked list of periodic

(*
events used by the application. Elements are added and removed

(* from the list as a result of starting and stopping periodic events.

PRIODIC_EVENTS PTR =
*

PERIODIC_EVENTS ;

PERIODIC_EVENTS~- record

PERIOD : longint;

EVENT_PTR : "EVENT;

NEXT : PERIODIC_EVENTS_PTR;

end;
(* PERIODIC EVENTS *)

C

This is the main TASKING data structuj

given a task control block, this contaj

about the task including: save context

task identifier, personal stack and pej

e. Each task created

ns all necessary informati'

I if it is blocked) , priori

sonal error handlers.

TASK_ID

CLOCK TICKS

PRIORITY

STACK_PTR

STACK_SIZE

CONTEXT

WAITING_FOR

ERROR_HANDLER

NEXT

PREVIOUS

TASK_IDS;

longint;

PRIORITIES;

word;

CONTEXT_REGISTERS ;

WAITING_PTR;

array [ SYSTEM_ERRORS ] of HANDLER_PROCEDURE;

TASK_CONTROL_BLOCK PTR;

TASK~CONTROL BLOCK PTR;

end;
(* TASK_CONTROL_BLOCK *)

{*
This data structure is used to maintain a linked list of TASKING *)

(*
constructs used by the application. This list is used to implement *)

(
priority inheritance (which can be used to guarentee that priority *)

<* inversion is controlled). *)

LOCKED RESOURCE PTR - "LOCKED RESOURCES;

LOCKED RESOURCES - record

OWNER : TA5K_C0NTRDL BLOCK PTR;

PRIORITY : PRIORITIES;

SEMAPHORE_PTR : "SEMAPHORE;

NEXT : LOCKED_RESOURCE_PTR;

end;
(*

LOCKED_RESOURCES *)

(*

ask is running and all

Tasks can be in any one of these states if they are

running. That is, at all t ime.

can be found in one of these states.

BLOCKED means that the task is waiting fo.

thing which will make it READY (signal evei

DELAYED means that the task is waiting fo.

READY means that the task has no reason b

that the scheduler has not given control ti

because Its priority is lower than another

Jthei

another task to

t, semaphore, etc. ) .

be not running except

it yet (this might be

READY task) .

TASK_STATES - (BLOCKED, DELAYED, READY);

These values are used to allow a single queue management routine

to know why a task is being removed from a queue . The search
'

criteria depends on the reason for the .

QUEUE_REMOVAL_REASONS -

(

BECAUSE_THE_BLOCK_WAS_SIGNALLED,

BECAUSE_THE_DELAY_HAS COMPLETED,

UNCONDITIONALLY

priority queues for

record HEAD, TAIL : TASK_CONTROL_BLOCK_PTR; end;
(*

QUEUES *}

This

allow

structure is used to manage the interrupts that TASKING must *)

into. Because it is a variant record the fields overlap and *)

direct decomposition of a pointer into segment and offset. *)

(OFFSET, SEGMENT

(VECTOR

(* HANDLER *)

word) ;

pointer) ;

variable contains the doubly
for tasks which are ready t<

linked list of task control *)

READY_QUEUE : QUEUES nil; TAIL : nil);

This variable contains the doubly linked list of task control

blocks for tasks which are blocked waiting for a semaphore, event,

binary semaphore, condition variable, message, mouse action or

keyboard action.

BLOCKED QUEUE : QUEUES - (HEAD : nil; TAIL : nil) ;

. doubly linked list of task

waiting for a delay to expire.

DELAYED_QUEUE : QUEUES

This pointer will be nil unless the user has installed a task to
'

handle the mouse, at that time an event will be created and this

pointer will then point to it. The user never knows that the mouse

is handled as an event.

USER MOUSE EVENT PTR : "EVENT - nil;

This variable is used when blocked console I/O is being used. The

semaphore is created and maintained by TASKING, the application is

only aware of the blocking, not the method used to achieve it.

USER KEYBOARD SEM PTR : SEMAPHORE_PTR - nil;

(* This variable is the head of the linked list of periodic events.

PERIODIC EVENTS_LIST_PTR : PBRIODIC_EVENTS_PTR - nil;

This variable is the head of the linked list of TASKING constructs

100



(*
used by the application (used when priority inheritance is enabled).*)

LOCKED_RESOURCE_LIST_PTR : LOCKED_RESOURCE PTR -
nil;

<
' " *

,I* These variables are used when TASKING statistics are gathered to *}(*
provide the user with various system parameters which can be of *)(* interest to the TASKING application developer. .1

TASKING_STATISTICS : record
***'

START_TIME : real;
NUMBERJDF_PERIODIC EVENTS : longint;
NUMBER_OF_PERIODIC_EVENTS MISSED : longint;
CONTEXT_SWITCHES ; longint;
COOPERATIVE_CONTEXT_SWITCHES : longint;
TOTAL_AVAILABLE_HEAP : longint;
SERVICE_CALLS .

array 1500. .SFF) of longint;
HARDWARE_INTERRUPTS : array [500. . SOF) of longint;

end
(*

TASKING_STATISTICS *) =

(

STARTJTDME 0.0;
NUMBER_OF_PERIODIC_EVENTS : 0 ;

NUMBER_OF_PERIODIC_EVENTS MISSED : 0;
CONTEXT_SWITCHES : 0;
COOPERAT IVE_CONTEXT_SWITCHS : 0;
TOTALJWAILABLE HEAP : 0;
SERVICE_CALLS

~

:

(

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0, 0, 0,0,0,0,0, 0, 0, 0, 0, 0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0, 0,0, 0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0,0, 0,0

0, 0, 0, 0, 0,0,0, 0, 0, 0,0,0, 0, 0,0, 0, 0

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,0,0,0,0,0.0.0.0. 0.0

HARDWARE INTERRUPTS

This variable keeps track of the
'locks'

that have occured, its w

10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

nesting level of the scheduler

lue can not be negative.

IN_PREEMPTABLE_REGION : integer - 0;

(*

(*5F+

Default Error Handlers (Preview) *

Handlers must be
'far'

because they are used as procedural variables
*

(*
This file is created (in the same directory as the application

*

{*
executable if LOG_ERRORS_TO_FILE is true) and contains a log of all

*

(*
errors and warnings detected by TASKING. *

ERROR_LOG : text;

procedure TASK_ALREADY_ACTrVE_ERROR_HANDLER (TASK ID :

procedure INSUFFICIENT_RES0URCES_ERROR_HANDLER (TASK~ID :

procedure TASK_IS NOT_ACTIVE_ERROR HANDLER (TASK~ID :

procedure TASK A1READY_SUSPENDED ERROR_HANDLER (TASK_ID :

procedure ILLEGAL TASK_ID_ERROR_HANDLER (TASK^ID :

procedure ILLEGAL_OPERAT ION ERROR HANDLER (TASK_ID

procedure DEADLOCK DETECTED~ERROR~HANDLER ;

TASK_IDS) ; forward;

TASK~IDS); forward;

TASK~IDS); forward;

TASK_IDS); forward;

TASK_IDS); forward;

TASK_IDS); forward;

forward;

(

<*$F-

End of Default Error Handlers (Preview)
*

(* Null Task Definition
*

procedure REQUEUE_AND_RESCHEDULE

(TASK : TASK_IDS; RESULTING_STATE

procedure NULLJTASK;

TASK STATES); fon

This task is used only to provide a place for the CPU to e.

it has absolutely nothing else to do. All that this task tri'

pass control to tasks which are ready to run by continuously

itself, since the null task has the lowest possible priority,

which are READY to run will be scheduled as soon as possible.

When it is not possible to pass control to another task (.

are no other tasks) then the application is terminated.

begin
(* NULLJTASK *)

asm sti end;

* If there are no other user tasks which are still activi

*

blocked, then the only remaining task is the null task. If

*
null task is the only one left then terminate everything,

*
pass control to some other task (or at least attempt to).

if (RADY_QUEUE.HEAD - nil) and (READYJJUEUE.TAIL - nil) and

(DELAYED_QUEUE.HEAD - nil) and (DELAYED_QUEUE.TAIL - nil)

then

if (BLOCKED QUEUE. HEAD - nil) and (BLOCKED_QUEUE.TAIL - ml)

then

PRIORITY

STACK_PTR

STACK_SIZE

CONTEXT

LOWEST PRIORITY;

addr (NULL_TASK_stack) ;

sizeof (NULL TASK_STACK) ;

50000; BX : 50000; CX : 50000; DX : 50000;

$0000; SI : $0000; DI : $0000;

$0000; DS : segfNULL TASKSTACK) ;

seg(NULL TASK_STACK[NULL TASK_STACK SIZE]);

ofs{NULL~TA5K_STACK[NULL~TASK_STACK~SIZE] ) ;

seg(NULLJTASK); IP : ofsTnULL_TASK)7

INTERRUPT_FLAG

(

TASK ALREADY ACTIVE ERROR HANDLER,
INSUFFICIENT_RESOURCES_ERROR HANDLER,

TASK_IS_NOT_ACTIVE_ERROR_HANDLER,

TASK_ALREADY_SUSPENDED_ERROR_HANDLER,
ILLEGAL_TASK_ID_ERROR_HANDLER ,

ILLEGAL_OPERATION ERROR_HANDLER

);

[*
End of Null Task Definition *

{*
This variable

(*
control block.

(*
point in time.

RUNNING_TASK_PTR .

always points to the cu

There can only be one

This variable will nev

TASK_CONTROL_BLOCK_PTF

rrently rur

task which

er be nil.

= @NULL;

ining task's

is running at

ask

any
*

(*
This variable

(*

mailboxes, of c

(*
attempted there

conta

are

ns a pointer to the beginning of

until a message is sent or a

0 mailboxes.

the list

ceive

of
*

is *

MAILBOX_LIST : MAILBOX_PTR -
nil;

("
This variable is used to hold the number

(*
elapsed since the program started running.

(*
task delay calculations.

MILLISECOND TICKS longint - 0;

This variable is used to prevent timer interrupts from occurring

until all processing for the present interrupt has completed. This

ensures that TASKING internal data structures are not compromised

due to re-entrant timer Interrupts (this can only occur when

interrupt handling takes longer than the clock timer period) .

TIMER NSEOI NEEDS TO BE DONE : boolean - false;

This variable is used to i

to preempt a running task.

full timeslice every time

tasking mode is preemptive

Llow TASKING to know when it is
'fair'

This ensures that all tasks get their

it course this is only used when the

PREEMPT IVE_TIMESLICE al - 0.0;
(*

Mien

(*
This is used to account for the possible inaccuracy between the *)

["
target timeslice and the time period that the clock is capable of "I

I*

providing (due to integer count values) -

*

)

(.......................................................................,
- 0.95;

(.
..........*............*......*.........*............]

(*
This counter is used to prevent the TASKING application from *)

(*

terminating if there are child programs still executing. Failure *)
(* to do this will almost certainly crash MS-DOS because a child will *)
I* live past its parent, MS-DOS never expects this and internal MS-DOS )
(*

data structures and memory allocation schemes do not support it. *)

NUMBER_OF_CHILD_PROGRAMS : integer

*)

This flag is set once the application
'main' h

ensures that a task created in
'main' does not

(rescheduling
'main'

is meaningless because it ot a task) .

ALLOW RESCHEDULE IN CREATE : booleai

When TASKING is st

the initialization

MS-Mouse parameters

(if and only if a m

irted there are no mouse events to report (hence

alues). This variable is used to transfer

from the TASKING mouse handler to the user task

-use task has been installed) .

C Shut down everything (via the exit procedure chain).

MOUSE_INFO_FROM_HANDLER : MS_MOUSE.MOUSE PARAMETERS

(

ACTIVITY_MASK : 0;

BUTTON_STATES : 0;

VERTICAL_TEXT_POSITION : 0;

HORIZONTAL TEXT POSITION : 0

(* Deadlock is defined as the condition where all tasks that
'

(* exist are blocked waiting for something to be signaled by
'

(*
another task. Since all tasks are blocked (and will not be '

(*
scheduled to run) the action necessary to unblock any of

<* the tasks cannot be satisfied. In TASKING, this deadlocked
'

(
condition exists when there are no READY or DELAYED tasks

(*
and all existing tasks are BLOCKED on things 'other

than* '

(* keyboard or mouse events (which can be signaled as a result

(*
of interrupts).

if (USER_KEYBOARD_SEM_PTR - nil) and

(USER_MOUSE_EVENT_PTR - nil)

then

DEADLOCK DETECTED_ERROR_HANDLER

else

(* for the dangling
'else'

*)

else
.,....,..*.,...

(*
Continuously attempt to surrender the CPU to another task.

REQUEUE_AND_RESCHEDULE (NULL_TASK_ID, READY) ;

until false;

end;
(* NULLJTASK *)

const NULL_TASK_STACK_SIZE - 511;

var
NULL_TASK_STACK : array [0. .NULL_TASK_STACK_SIZE] of word;

const NULL TASK CONTROL BLOCK

(

NULLJTASK ID;

0;

This set of interrupts are
*all*

revectored to the same interrupt

handler which determines the actual interrupt number, disables

preemption and then dispatches to the actual interrupt handler.

Only
'software* interrupts can be included in this set.

PROTECTED_INTERRUPTS -

OS SERVICES_INTERRUPT NUMBERS

+ PROGRAMJUSABLE INTERRUPT NUMBERS

- SYSTEM

+ RESERVED_INTERRUPT_NUMBERS

+ BASIC INTERRUPT NUMBERS

- INCOMPATIBLE_INTERRUPT_NUMBERS

- (REVECTORED INTERRUPT NUMBER];

(* System Software Interrupts *)
( User

"

)
(

System Hardware
"

*)
(*

Unused ?
"

*)
(* BASIC ? *)
(*

Non-standard usage
"

*)
(* TASKING Generic Interrupt *)

{.. ...... ......................**.*..*...................*..............

{* When TASKING is started there are no TASK_IDs allocated so the set
'

(*
of allocated task identifiers must be the empty set. The task

(*
identifier of the null task is not included in this set because it

1*
cannot be allocated to user tasks.

ALLOCATED TASK_IDS ray[TASK_ID_SETS] of set of byte;

[*
Loop control variable to initialize aHoc ited TASK ID sets

TASK_ID_SET : TASK_ IDJ3ETS

[* This variable contains

(* the exit call chain.

[* terminates.

the address of

This value

the

13

next exit

restored

procedure in *

when TASKING *

SAVE_EXIT : pointer;

101



(
Pointer to original clock interrupt handler, used to allow MS-DOS '

(* to see clock ticks at IB. 2 Hz rate (initialized at startup).

CLOCKJ/ECTOR : pointer;

|....,.......,ttt....,.,ttt...,t,( , ,

(*
This variable contains the original address of the interrupt that '

(* TASKING 'takes over*, it is saved here during initialization so
(*
that it can be restored upon termination.

{.....*...*..*....*.....**............*............................,

0LD_REVECTORED_INTERRUPT : HANDLERS;

(...........*.*.........*........*.............,,........,..............
(* This variable contains information used to manage interrupts which

'

(*
originate from hardware sources. This is necessary because add-on

'

(*
card driver software may (or may not) support preemption, this

'

(*
guarantees that it won't be preempted in case reentrancy will cause

(* the driver to crash.

HARDWARE HANDLER ay[0.,15] of HANDLERS;

This variable contains the addresses of the i

dispatcher in the call chains. These are n

INTERRUPT VECTOR HANDLER ay[SO0..$FF] of HANDLERS;

These variables define TASKING's view of clock timer ticks which *)
TASKING calculates based on the requested timeslice value. (Don't *)
worry. . .before termination it is restored back to what MS-DOS *)
expects it to be) . )

..........................j
Mic oseconds *)

The TASKING configuration is copied from the default (user) values *)

just prior to beginning multi-tasking, this variable holds the *)

configuration parameters used by TASKING. )

ACTUAL_TASKING_CONFIGURATION : CONFIGURATION;

Non-User functions

i COMPARE PRIORITIES

PRIORITY_A : PRIORITIES;

COMPARISON : COMPARISONS;

PRIORITY_B : PRIORITIES

) : boolean;

This routine compares the relative priorities passed in based on the

highest dynamic priority *at this time*. This is necessary so that a

priority rotation scheme can be used. Note that for static priorities

this routine will also return meaningful results (although direct

comparisons are possible).

be directly compared fo

NORMALIZED_A, NORMALIZED__B : 11

begin
(*

COMPARE_PRIORITIES *)

case PRIORITY_A of

LOWEST_PRIORITY : NORMALIZED_A

HIGHEST_PRIORITY : NORMALIZED_A

if PRIORITY_A

then

NORMALIZED_A

HIGHEST DYNAMIC_PRIORITY

integer (PRIORITY A) mod

integer (HIGHEST_DYNAMIC_PRIORITY)

lse if PRIORITY_A = HIGHEST_DYNAMIC_PRIORITY then

NORMALIZED_A :- integer (HIGHEST_DYNAMIC_PRIORITY)

lse (* PRIORITY A < HIGHEST_DYNAMIC_PRIORITY
'

NORMALIZED_A := PRIORITY_A

ase PRIORITYB of

LOWEST_PRIORITY

HIGHEST_PRIORITY

(HIGHEST_PRIORITY
- 1 -

integer (HIGHEST_DYNAMIC_PRIORITY) ) ;

if PRIORITY_A

NORMALI ZED_B

HIGHEST DYNAMIC PRIORITY

= integer (PRIORITY_B) mod

integer (HIGHEST_DYNAMIC PRIORITY)

else if PRIORITY_B = HIGHEST_DYNAMIC_PRIORITY then

NORMALIZED B :- integer (HIGHEST_DYNAMIC_PRIORITY)

else
(* PRIORITY_B < HIGHEST DYNAMIC_PRIORITY *)

NORMALIZED B :- PRIORITY + (HIGHEST_PRIORITY - 1 -

integer (HIGHEST_DYNAMIC_PRIORITY) ) ;

ise. *)

case COMPARISON of
,,

GREATER THAN : COMPARE PRIORITIES :- NORMALIZED_A > NORMALIZED_B;

LESS THAN : COMPARE PRIORITIES :- NORMALIZED_A < NORMALIZED_B;

EQUAL TO : COMPAR_PFlIORITIES :- NORMALIZED_A = NOPMALIZED_B ;

end;
(*

case. . .of *)

end;
{* COMPARE_PRIORITIES *)

procedure INSERT_INTO
..............

(var QUEUE : QUEUES; NEW_TCB_PTR : TASK_CONTROL_BLOCK_PTR) ;

This routine inserts the specified task control block into

specified using the task priority to insert the task into tl

place in the priority queue.
............

(* Task Control Block pointer which is
'walked'

WALKING PTR : TASK_CONTR0L_BLOCK_PTR;

through the queue
*

(*
Temporary pointer needed to perform insertio

(* control blocks.

n between two task *

TEMP PTR : TASK_CONTROL_BLOCK_PTR;

begin
(* INSERT_INTO *)

asm

pushf

cli

end;
(*

asm *)
(* Find place in queue to insert into *)

WALKING^PTR :- QUEUE. TAIL;

while (WALKING_PTR <> nil) and

COMPARE_PRIORITIES
(NEW_TCB_PTR"

. PRIORITY, GREATERJTHAN,

WALKING~PTR*. PRIORITY) do

WALKING PTR :-
WALKING_PTR"

. PREVIOUS;

(*
Insert element *)

If WALKING_PTR - nil

then
(* This task is highest p.

if QUEUE.HEAD - nil

then
(*
the list is empty

'

begin

QUEUE. HEAD

QUEUE .

HEAD"
. PREVIOUS

QUEUE. TAIL

QUEUE. TAIL".NEXT

end
(* if . . -then

els<

begin

NEWJTCB
JPTR"

. NEXT

QUEUE . PREVIOUS

QUEUE . HEAD

QUEUE .

HEAD"

. PREVIOUS

end
(*
if .. .then. . .else

1 NEW_TCB_PTR;

nil;

' NEWJTCBJPTR;

nil;

QUEUE. HEAD;
i NEWJTCB PTR;
< NEW TCB~PTR;

If WALKING_PTR = QUEUE. TAIL

then
(*

This task is lowest j

begin

QUEUE .

TAIL"

. NEXT : -

NEW_TCB_PTR"

. PREVIOUS :-

QUEUE . TAIL : -

QUEUE .

TAIL"

. NEXT ;

end
{* if.. .then *)

else
(* This task is somewhe;

TEMP_PTR : -

WALKING PTR". NEXT :-

NEW TCB
PTR*

. PREVIOUS :-

NEW~TCB~PTR"

. NEXT : =

TEMP_PTR". PREVIOUS :=

end;
(*
if .. .then... else

*

asm popf end;

end;
(*

INSERT INTO *)

NEW TCB PTR;

QUEUE. TAIL;

NEW_TCB_PTR;

nil;

e in the list *)

WALKING PTR".NEXT

NEWJTCB~PTR;

WALKINGJPTR;

TEMP_PTR;

NEW TCB PTR;

on REMOVE_FROM_HEAD

QUEUE : QUEUES) : TASKJCONTROL_BLOCK_PTR;

*
This routine removes i

*
specified queue and reti

*
the queue is empty

becai

block from the head

Note that this works i

ecessary for knowing the

as performed.

value of the

TEMP_PTR : TASK_CONTROL_BLOCK_PTR;

begin (* REMOVE_FROM_HAD *)

pushf

Cli

end;
(*

asm *)
TEMP_PTR :- QUEUE. HEAD;

if QUEUE. HEAD <> QUEUE. TAIL

then

QUEUE. HEAD :- QUEUE. HEi

QUEUE .

HEAD"
. PREVIOUS :- nil;

end
(* if. . -then *)

else

QUEUE. HEAD :- nil;

QUEUE. TAIL :- nil;

end;
(* if . . -then *)

if TEMP_PTR <> nil then

begin
TEMP_PTR"

. NEXT :- nil;
TEMP_PTR*

. PREVIOUS :- nil;

end;
(*
if . . -then *)

REM0VE_FROM_HEAD :- TEMP_PTR;

asm popf end;

end;
(* REMOVE *)

function FIND AND REMOVE

TASK : TASK_IDS;

;r QUEUE : QUEUES;

REASON : QUEUE_RMOVAL_REASONS ;

SEMPTR : SEMAPHOREPTR

TASK CONTROL_BLOCK_PTR;

This routine searches the spei

which matches the search enter.

being removed. If a matching t,

returned, nil is returned if no

ified queue for the

a implied by the reas

sk control block is

match is found in the

ask control I

n that the tas

found then i

specified queu

Task Control Block pointer which is
'walked'

through the queue

in search of the block which is to be removed.

WALKING_PTR : TASK_CONTROLJBLOCK_PTR;

i
(

FIND AND_REMOVE *)

cli

end;
(*

asm *)

WALKING_PTR :- QUEUE. HEAD;

case REASON of

UNCONDITIONALLY :

While (WALKING_PTR <> nil} and (WALKING_PTR*.TASK_ID <> TASK) do

WALKING_PTR 7- WALKING_PTR"

.NEXT;

3ECAUSEJTHE BLOCKJWAS_SIGNALLED :

while (WALKING_PTR <> nil) and

( (WALKING_PTR".WAITING_FOR - nil) or

( (WALKING_JPTR*.WAITING FOR <> nil) and

(WALKING_PTR*.WAITING~FOR".SEM_PTR <> SEMJPTR)

)

} do

WALKING_PTR :- WALKING_PTR*.NEXT;

BECAUSE_THE__DELAY_HAS_COMPLETED :

while (WALKING_PTR <> nil) and

((WALKING_PTR".WAITING_F0R".ABSOLUTE_TIME - NO_TIME_DELAY ) or

(WALKING PTR".WAITING_FOR".ABSOLUTEjnME > MILLISECONDJTICKS]

) do

WALKING PTR :-
WALKING_PTR"

.NEXT;

end;
(*

case. 7.of *)

if ((REASON <> BECAUSE_THE_BLOCKJWAS_SIGNALLED) and

(WALKING PTR <> nil)

) or

((REASON - BECAUSE_THE_BLOCK_WAS_SIGNALLED) and

(WALKING_PTR".WAITINGjFOR <> nil} and

(WALKING PTR".WAITING_FOR".SEM_PTR - SEM_PTR}

)

then

begin

if (WALKING_PTR". PREVIOUS <>

then

begin

WALKING PTR".
PREVIOUS"

nil) and
(WALKING_PTR*

. NEXT

NEXT :- WALKING PTR".NEXT;

102



WALKING_PTR". NEXT*. PREVIOUS :- WALKINGJPTR*

. PREVIOUS;
end

(*
if . . .then *}

else if (WALKING_PTR~. PREVIOUS -
nil) and

(WALKINGJPTR*. NEXT <> nil)

then

begin

QUEUE. HEAD :- QUEUE.
HEAD"

. NEXT;
QUEUE. HEAD". PREVIOUS :-

nil;

end
(* if . . .then *)

else if (WALKING_PTR*. PREVIOUS <> nil) and

(WALKING PTR-.NEXT -
nil)

then

begin

QUEUE. TAIL

QUEUE.TAIL". NEXT

end
(* if. . .then *)

; QUEUE.TAIL". PREVIOUS;

begin

QUEUE. HEAD := ml;

QUEUE. TAIL := nil;

end;
(* if ... then. . .else *)

WALKING_PTR".NEXT :-
nil;

WALKING_PTR*. PREVIOUS :-
nil;

if REASON <> UNCONDITIONALLY then

begin

WALKING_PTR".WAITING
FOR"

. ABSOLUTE TIME :- NO_TDME_DELAY;

WALKING_PTR".WAITING-FOR".SEM_PTR
~

:- nil;

end;
(* if . . .then *)

FIND_AND_REMOVE :- WALKING_PTR;

end
(* if.. .then *)

else

FIND_AND_REMOVE :- nil;

asm popf end;

end;
(*

FIND AND REMOVE *)

function FIND_OR_CREATE_MBOX_FOR

(TASK : TASK IDS) : MAILBOX PTR;

This routine searches the system mailbox list and returns a pointe

the mailbox owned by the specified task. If the task does not yet o'

mailbox then one is created and added to the mailbox list.

(* Pointer to mailbox structures which is 'v

(* in search of the matching owner.

WALKING_PTR : MAILBOX_PTR;

alked'

through the list *

(*
Temporary return value (function name ca

( hand side of an assignment statement).

mot be used on right
*

TEMP_PTR : MAILBOX_PTR;

begin
(* FIND_OR_CRATE_MBOX_FOR *)

Cli

end;
(*

asm *}

WALKING_PTR :- MAILBOX LIST;

while (WALKING PTR <> nil) and
(WALKING_PTR"

.OWNER

WALKING_PTR 7- WALKING_PTR"

.NEXT;

if WALKING PTR*. OWNER - TASK

then

TEMP_PTR := WALKING_PTR

begin

if WALKING_PTR - nil

then

new(WALKING_PTR)

begin

new
(WALKING_PTR"

. NEXT } ;

WALKING_PTR :-
WALKING_PTR"

.NEXT;

end;
(* if ... then. .. else )

TEMP_PTR :- MAILBOX_LIST;

MAILBOX_LIST :- WALKING_PTR;

MAILBOX LIST*. NEXT :- TEMP_PTR;

TEMP_PTR :- MAILBOX_LIST;

with
TEMP_PTR*

do

begin

OWNER :- TASK;

SEM :- 0;

CONTENTS :- nil;

end;
(* with. . .do *)

end;
(* if .. then. . .else*)

FIND_OR_CREATE_MBOX_FOR :- TEMP_PTR;

asm popf end;

end;
(* FIND_OR_CREATE_MBOX_FOR *)

procedure REMOVE_MBOX_OF

(TASK : TASK_IDS);

This routine searches the system mailbox list and removes the nu

owned by the specified task. If the task does not yet own a mailbo:

nothing is done.
......................

(* Pointer to mailbo structures

tching owne

which is
'walked' through the list

*

WALKING_PTR : MAILBOX_ PTR;

used to
re-arrange mailbox list links

*

TEMP_PTR : MAILBOX_PTR;

begin
(* REMOVEJMBOXJ3F *)

pushf

cli

end;
(*

asm *)

WALKING PTR :- MAILBOX_LIST;

while (WALKING_PTR <> nil) and (WALKINGJPTR". OWNER

WALKING_PTR :-
WALKING_PTR"

.NEXT;

if
WALKING_PTR"

. OWNER - TASK then

begin

TEMP PTR := WALKING_PTR;

( Patch link past element to delete *)

WALKING PTR :- MAILBOX_LIST;

while WALKING_PTR <> TEMP_PTR do

WALKING_PTR :-
WALKING_PTR"

.NEXT;

WALKINGJPTR". NEXT :-
TEMP_PTR*

.NEXT;

(* Free memory allocated to deleted mailbox *)

dispose (TEMP_PTR) ;

end;
(* if. -then *)

asm popf end;

end;
(* REMOVE_MBOX_OF *}

procedure CLOCK_INTERCEPTOR; interrupt;

(* This routine checks to see if the DELAYED queue is empty and if it

not then it attempts to remove all tasks that have waited long enough and
*

put them into the READY queue. After that has been done it implements *

preemptive multitasking if appropriate.
*

{* This counter is used to determine when the MS-DOS clock

(* interrupt handler should be called so that MS-DOS thinks that the

1* timer is running at a 55 msec period.

MSDOS CLOCK PERIOD al - DEFAULT_MSDOSjCLOCK_PERIOD (Sec)
* le6 / 2

This counter is used to generate TASKING millisecond clock ticks

MILLISECOND_PERIOD : real - 0.0; [uSec)

(* Task Control Block pointer used to release all tasks that ha'

(* been delayed for the proper amount of time.

DELAY COMPLETED TASKJPTR : TASK__CONTROLJBLOCK_PTR;

(* Pointer to the list of periodic events (possibly nil).

WALKING PTR : PERIODIC EVENTS_PTR;

(* Pointer to Task Control Block of waiting task to be made ready.

WAITING TASK PTR : TASK CONTROL_BLOCK_PTR;

begin ( CLOCK_INTERCEPTOR *)

LOCK_SCHEDULER;

lf ACTUAL_TASKING_CONFIGURATION. STATISTICS <> NO_STATISTICS then

inc (TASKING STATISTICS. HARDWARE
_

INTERRUPTS [0] ) ;

inc(RUNNING~TASK_PTR". CLOCK TICKS);

end;
{* if . -then *)

(
Perform all local processing *)

MILLISECOND PERIOD :- MILLISECOND_PERIOD +

if MILLISECOND_PERIOD >- ((1000 (uSec))
*

MILLISECOND PERIOD :- MILLISECOND_PERIOD

inc(MILLISECOND_TICKS) ;

end;
(* if . . .then *)

(1000.0 (usee));

if DELAYED_QUEUE.HEAD <> nil then

begin

DELAY_COMPLETED TASK_PTR :- FIND AND REMOVE

(

ANYJTASK,
(From the] DELAYED_QUEUE,

BECAUSEJTHE DELAY_HAS_COMPLETED,

THERE_IS NO~BLOCK_TO_MATCH

);

if DELAY COMPLETED_TASK_PTR <> nil then

INSERT~INTO (READY_QUEUE, DELAY_COMPLETED_TASK_PTR) ;

end;
(* if7. .then *)

(* Find the place in the list to insert the event ")

WALKING_PTR :- PERIODIC_EVENT5_LIST_PTR;

while WALKING PTR <> nil do

begin

if (MILLISECONDJTICKS mod
WALKINGJPTR"

. PERIOD) - 0 then

with
WALKING_PTR"

do

begin

if
EVENT_PTR"

- SIGNALED then

inc (TASKING_STATISTICS . NUMBER_OF_PERIODIC_EVENTSjMISSED) ;

WAITING_TASK_PTR :- FIND_AND_REMOVE

(

ANYJTASK,
(From the) BLOCKED QUEUE,

BECAUSE_THE_BLOCK_WAS_SIGNALLED,

[At} addr(EVENT_PTR")

);

if WAITING TASK_PTR - nil

then

EVENT
PTR"

:- SIGNALED

else

INSERT_INTO(READY QUEUE, WAITING_TASK_PTR) ;

inc(TASKING_STATISTICS.NUMBER_OF_PERIODIC_EVENTS);

end;
(*
with. . .do )

WALKING_PTR :-
WALKING_PTR"

.NEXT;

end;
(*
while... do *}

(* Call original interrupt handler? (once every 55 msec) *)

MSDOS_CL0CK PERIOD :- MSDO5_CL0CK_PERIOD + TIMER_PERIOD;

if MSDOS CLOCK PERIOD >= (DEFAULT_MSDOS_CLOCK PERIOD
*

all dword ptr ds :CLOCK_VECTOR

TIMER_NSEOI_NEEDS_TO_BE_DONE :- true;

UNLOCK_SCHEDULR;

if (ACTUAL_TASKING_CONFIGURATION.TASKING_MODEL - PREEMPTIVE) and

(IN PREEMPTABLE_REGION - 0) then

begin

PREEMPTIVEjriMESLICE :- PREEMPTIVEJTIMESLICE ? TIMER_PERIOD;

if PREEMPTTVEJTIMESLICE >-

ACTUALJTASKING CONFIGURATION. TARGETJTIMESLICE

then

RQUEUE_AND RESCHEDULE (
RUNNING_TASK_PTR"

. TASK_ID, READY};

end;
(* if . ..then"*)

if TIMER_NSEOI_NEEDSjrO_BE_DONE then

(* Issue NSEOI to PIC *)

port [PROGRAMMABLE_INTERRUPTjCONTROLLER_PORT] : -

NON SPECIFIC_ENDjOF_INfRRUPT;

TIMER_NSEOI NEEDS TO_BE_DONE :- false;

end;
(* if . ..then*7

end;
(' CLOCK_INTERCEPTOR *)

procedure KEYBOARD_INTERCEPTOR; interrupt;

This routine checks to see if the keyboard interrupt that was just
'

* detected corresponds to an incoming character or just some type of

keyboard activity (like pressing the SHIFT, ALT, CTRL or
'lock'

key). If

* the interrupt was because of a key pressed then the controlling semaphore

* is signaled (if and only if the semaphore was created as a result of a

* task waiting for a key to be pressed) .

(* Pointer to pointer to the head of the keyboard buffer.

HEAD PTR - ptr(DOS_DATA_SEGMENT, KYBD_BUFFER_HEAD_PTR_OFS) ;

103



lI..!*i"^".t polnter to the tail of the keyboard buffer. )
*********************.*.....................,.,

TAIL_PTR -

ptr(DOS_DATA_SEGMENT, KYBD_BUFFER_TAIL_PTR OFS ) ;

<*"
*

)
'l..ri?*t*.^*the beglnnina- oC the keyboard buffer (not the head). *)

BUFFER_START - ptr (DOS_DATA_SEGMENT, KYBD_BUFFER_BEGIN PTR OFS);

'

(
' * * *

)(* Pointer to the end of the keyboard buffer (not the tail). *)

BUFFER_END - ptr (DOS_DATA_SEGMENT, KYBD_BUFFER_END_PTR_OFS ) ;

(*
Pointer to Task Control Block which is

(*
semaphore (may very well be nil).

the keyboard *)

WAITING_TASK_PTR : TASK_CONTROL_BLOCK PTR;

Offset into the buffer of the tail *before*
the interrupt

processed by the MS-DOS handler (used to determine if a charac

was received) .

(
*

Pointer to original hardware interrupt handler.

VECTOR : pointer;

VECTOR ;- HARDWARE_HANDLER [$4 ] .VECTOR;

if ACTUAL TASKING_CONFIGURATION. STATISTICS <> NO_STATISTICS then

inc(TASKING_STATISTICS.HARDWARE_INTERRUPTS[$4] ) ;

(*
Call original interrupt handler

call dword ptr ss:VECTOR

cli

end; (
*
asm *)

procedure IRQ_5_INTERCEPT0R; interrupt;

Hardware interrupt handler

the actual interrupt

that preemptii disabled and
'

{*
The number of characters received into the buffer

I* for each interrupt but could be more.
j............*.......................................

NUM_CHARS : integer;

(*
Pointer to original hardware inte

VECTOR : pointer;

riginal keyboard handler

VECTOR : pointer;

begin (*
KEYBOARD_INTERCEPTOR *)

VECTOR :- HARDWARE_HANDLER[$1] .VECTOR;
if ACTUAL_TASKING_CONFIGURATION. STATISTICS <> NOJoTATISTICS then

inc (TASKING_STATISTICS .HARDWAREjINTERRUPTS [51 )T;

TAIL ord (TAIL PTR");

VECTOR ;- HARDWARE_HANDLER[$S] -VECTOR;

if ACTUAL_TASKING_C0NFIGURATION. STATISTICS <> NO_STATISTICS then

inc(TASKING_STATISTICS.HARDWAR_INTERRUPTS[$5] );

(*
Call original interrupt handler

call dword ptr ss:VECTOR

(
Call original interrupt handler *)

pushf

call dword ptr ss:VECTOR

cli

end;
(*

asm *)

if (TAIL <> word(TAIL_PTR") ) and (USER_KEYBOARD_SEM_PTR <> nil) then

begin (*
tall changed, therefore a character was received

*
]

WAITING_TASK_PTR :- FIND AND REMOVE

(

ANYJTASK,
[From the) BLOCKED_QUEUE,

BECAUSE_THE_BLOCK_WAS_SIGNALLED,

(At} addr(USER_KEYBOARD_SEM_PTR*)

);

if TAIL < word(TAIL_PTR")

NUM CHARS :- word(TAIL_PTR*}
- TAIL

else

NUM CHARS :- (word(BUFFER_END")
- TAIL) +

(word(TAIL_PTR~)
- word (BUFFER_START*) ) ;

(* Convert bytes in buffer to characters *)

NUM_CHARS : - NUM_CHARS div 2 ;

if WAITING_TASK_PTR - nil

then

inc
(USER_KEYB0ARD_5EM_PTR*

)

else

INSERT_INT0( READY QUEUE, WAITINGJTASK_PTR) ;

inc(USER_KEYBOARD_SEM_PTR", NUM_CHARS - 1);

end;
(* if . . .then *)

end;
(* KEYBOARD_INTERCEPTOR *)

procedure IRQ_2_INTERCEPT0R; interrupt ;

(* Hardware interrupt handler, ensures that preemption is disabled and

(
passes control to the actual interrupt routine.
(......*...*....*...........***...**.******************************"*

(* Pointer to original hardware interrupt handler.
,.....,............*.................*.*.....*****"************

VECTOR : pointer;

begin
(* IRQ_2_INTERCEPT0R *)

LOCK_SCHEDULER;

VECTOR :- HARDWARE_HANDLER[52] .VECTOR;

if ACTUAL_TASKING_CONFIGURATION. STATISTICS <> NO_STATISTICS then

inc(TASKING_STATISTICS.HARDWARE_INTERRUPTS[S2] );

procedure IRQ_6_INTERCEPT0R; interrupt;

Hardware interrupt handler, ensures that preemptii

passes control to the actual interrupt routine .

disabled and *)

(* Pointer to original hardware interrupt handler.

{
..................................................

VECTOR : pointer;

VECTOR :- HARDWARE_HANDLER[S6] -VECTOR;

if ACTUAL_TASKING_CONFIGURATION.STATISTICS <> NO_STATISTICS

inc(TASKING STATISTICS. HARDWARE INTERRUPTS [S6] ) ;

(*
Call original interrupt handler

pushf

call dword ptr ss:VECTOR

cli

end;
(*

asm *)

UNLOCK_SCHEDULER;

end;
(* IRQ_6_INTERCEPTOR *)

procedure IRQ_7_INTERCEPT0R; interrupt;

(
Hardware interrupt handler, ensures that preempti

(*
passes control to the actual interrupt routine.

is disabled and
*
)

(*
Pointer to original hardware interrupt handler

,. ................................................

VECTOR i pointer;

VECTOR := HARDWARE_HANDLER($7] -VECTOR;

if ACTUAL TASKING_C0NFIGURATION. STATISTICS <> N0J3TATISTICS then

inc (TASKING_STATISTICS. HARDWARE INTERRUPTS ($7] ) ;

(*
Call original interrupt handler *)

call dword ptr ss:VECTOR

cli

end;
(*

asm *)

UNLOCK SCHEDULER;

end;
(* IRQ_2_INTERCEPTOR *)

procedure IRQ_3_INTERCEPT0R; interrupt;
.............

(* Hardware interrupt handler, ensures that preemption is disabled and

(* passes control to the actual interrupt routine.
,,......*.**...

(.. .............
..........

..............*.*-***"-****

(* Pointer to original hardware interrupt handler.

VECTOR pointer;

begin
(*

IRQ 3_INTERCEPTOR *)

LOCK_SCHEDULER;

VECTOR :- HARDWAR_HANDLER[$3] -VECTOR;

if ACTUAL TASKING CONFIGURATION. STATISTICS <> NO_STATISTICS then

inc(TASKING_STATISTICS.HARDWARE_INTERRUPTS($3] );

(* Call original interrupt handle

call dword ptr ss:VECTOR

cli

end;
(*

asm *}

procedure IRQjB_INTERCEPTOR; interrupt ;

(* Hardware interrupt handler, ensures that preemption is disabled

(
passes control to the actual interrupt routine.

( Pointer to original hardware interrupt handler.

VECTOR : pointer;

begin
(*

IRQ 8_INTERCEPTOR *)

LOCK_SCHEDULER;

VECTOR :- HARDWAR_HANDLER[$8] .VECTOR;

if ACTUAL_TASKING_CONFIGURATION. STATISTICS <> NO_STATISTICS then

inc (TASKING_STATISTICS.HARDWARE_INTERRUPTS ($8 ] ) ;

( Call original interrupt handler *)

call dword ptr ss:VECTOR

UNLOCK SCHEDULER;

end;
I* IRQ_3_INTERCEPT0R *)

procedure IRQ_4_INTERCEPT0R; interrupt;

(* Hardware interrupt handler, ensures that preemption is disabled and *]

(* passes control to the actual interrupt routine. *i

|*
Call original interrupt handler *)

pushf

call dword ptr ss:VECTOR

cli

end;
{*

asm *)

UNLOCK SCHEDULER;

end;
(* IRQ_8_INTERCEPTOR *)

procedure IRQJ9_ INTERCEPTOR; interrupt;

(* Hardware interrupt handler, ensures that preemptii is disabled and *)

104



(*
passes control to the actual interrupt routine.

var I***********************************..**...*....*..*...,..,,..,...,.
(*

Pointer to original hardware interrupt handler.

VECTOR : pointer;

begin (*

IRQ_9_ INTERCEPTOR *)

LOCK_SCHEDULER;

VECTOR :=

HARDWARE_HANDLERI59] .VECTOR;
if ACTUAL_TASKING_CONFIGURATION. STATISTICS <> NO STATISTICS then
inc (TASKING_STATISTICS. HARDWARE

_
INTERRUPTS [S9]7;

(*
Call original interrupt handler *)

pushf

call dword ptr ss:VECTOR

cli

end;
(*

asm *}

UNLOCK_SCHEDULER ;

end;
(*
IRQ_9_INTERCEPTOR *)

procedure IRQ_A_INTERCEPTOR; interrupt ;

[*
Hardware interrupt handler, ensures that preemption is disabled and

(*
passes control to the actual interrupt routine.

var
[*******************.... .....................................
I*

Pointer to original hardware interrupt handler.

VECTOR : pointer;

begin (*
IRQ_A_INTERCEPTOR *)

LOCK_SCHEDULER;

VECTOR :-

HARDWARE_HANDLER[SA] .VECTOR;
if ACTUAL_TA5KING_C0NFIGURATI0N. STATISTICS <> NO_STATISTICS then

inc(TASKING_STATISTICS.HARDWARE_INTERRUPTS [SA] )
,-

1*
Call original interrupt handler *)

call dword ptr ss:VECTOR

cli

end;
(*

asm *)

UNLOCKJSCHEDULER ;

end;
{*

IRQ_AjINTERCEPTOR *)

procedure IRQ_B_INTERCEPTOR; interrupt ;

(*
Hardware interrupt handler, ensures that preemption is disabled and

(*
passes control to the actual interrupt routine.

var I....................................................................

(*
Pointer to original hardware interrupt handler.

.....................................................................

VECTOR : pointer;

begin (*
IRQ B_INTERCEPTOR *)

LOCK_SCHEDULER;

VECTOR := HARDWARE_HANDLER[$B] .VECTOR;

if ACTUAL_TASKING_CONFIGURATION. STATISTICS <> NO_STATISTICS then

inc (TASKING STATISTICS. HARDWARE__INTERRUPTS[SB] ) ;

(*
Hardware interrupt handler, ensures that preemption

(*
passes control to the actual interrupt routine.

disabled and *}

[*
Pointer to original hardware interrupt handler.

VECTOR : pointer.

VECTOR :- HARDWARE HANDLER[$E] .VECTOR;

If ACTUAL_TASKTNG_CONFIGURATION. STATISTICS <> NO_STATISTICS then

inc (TASKING_STATISTICS. HARDWARE INTERRUPTS [SE] ) ;

(*
Call original interrupt handle

pushf

call dword ptr ss:VECTOR

cli

end;
(

asm *]

procedure IRQ_F_INTERCEPTOR; interrupt;

Hardware interrupt handler, ensures that preemptioi

passes control to the actual Interrupt routine.

is disabled and *}

1*
Pointer to original hardware interrupt handler.

VECTOR : pointer;

VECTOR :- HARDWARE_HANDLER($F) .VECTOR;
if ACTUAL_TASKING_CONFIGURATION. STATISTICS <> NO STATISTICS then

inc(TASKING_STATISTICS.HARDWAR_INTERRUPTS($F)7;

(*
Call original interrupt handler

call dword ptr ss:VECTOR

procedure SW_INTERRUPT_INTERCEPTOR

This routine is used to intercept *all* software interrupts (accessed '

via 'INT
nn'

instruction). By inspecting the actual opcode before the
'

return address, the interrupt number is determined and control is '

transferred to that handler. This is done to ensure that all MS-DOS (and

add-on) software is not preempted (i.e. reentered).

Hexadecimal value for Intel 80x86
'INT'

instruction.

SW_INT OPCODE - $CD;

(*
Call original interrupt handler *}

call dword ptr ss:VECTOR

al value for MS-DOS
'execO'

function.

EXEC FUNCTION CODE

Intel 80x86 register variables used t

values to software interrupt handler.

pass original register

procedure IRQ_C_INTERCEPTOR; interrupt;

Hardware interrupt handler, ensures that preemption is disabled and

passes control to the actual interrupt routine.

(*
Pointer to original hardware interrupt handler.

VECTOR : pointer;

VECTOR :- HARDWAR_HANDLER[SC] -VECTOR;

if ACTUAL_TASKING_CONFIGURATION. STATISTICS <> NO_STATISTICS then

inc(TASKING_STATISTICS.HARDWARE_INTERRUPTS(5C]) ;

(*
Call original interrupt handler *}

call dword ptr ss:VECTOR

cli

end;
(*

asm *)

UNLOCK_SCHEDULER ;

end;
(*

IRQ_C_INTERCEPTOR *)

procedure IRQ_D_INTERCEPTOR; interrupt;

(* Hardware interrupt handler, ensures that preemption is disabled and

(*
passes control to the actual interrupt routine.
,.*........*.*....*....**.......****"*.*-**""*"******************

(* Pointer to original hardware interrupt handler.
(.................*.........................*.***"*********

VECTOR : pointer;

begin
(* IRQ_D_INTERCEPTOR *)

LOCK_SCHEDULER;

VECTOR : HARDWARE HANDLER[$D] .VECTOR;

if ACTUALJTASKING CONFIGURATION. STATISTICS <> NO_STATISTICS then

inc (TASKING STATISTICS. HARDWAR_ INTERRUPTS [$D] };

(* Call original interrupt handler

call dword ptr ss:VECTOR

cli

end;
(*

asm *}

UNLOCK SCHEDULER;

nd;
<* IRQ_D_INTERCEPTOR *)

procedure IRQ_E_INTERCEPT0R; interrupt;

(*
Pointer to position in interrupt vector table where the original

*

(* handler address must be installed prior to passing control to the *

(* handler (via software interrupt). *

(*..**,...*.*.*.*.*.......*........*..*...*......*....................

REVECTOR : pointer absolute 50000 : (REVECTORED_INTERRUPT_NUMBER shl 2);

(.....................................................................

(*

Flag that indicates that an call to the MS-DOS function 'exec' *

(* is being performed, this must be re-enterant to allow parallel
*

(*
execution of another program.

*

MSDOS_EXEC_FUNCTION_CALL : boolean;

Value to hold the software interrupt number being called.

INTERRUPT_NUMBER : byte;

begin
(*

SW_INTERRUPT_INTERCEPTOR *)

pushf

cli

end;
{*

asm *)

if mem[_CS -
- 2] - SW_INT OPCODE

then

begin

INTERRUPT NUMBER :- mem[ CS : IP - 1);

REVECTOR 7- INTERRUPT_VBCTOR_HANDLER[INTERRUPT_MUMBER] .VECTOR;

(* Gather statistics? )

if ACTUAL_TASKING_CONFIGURATION. STATISTICS <> NO_STATISTICS then

inc(TASKING_STATISTICS.SERVICE_CALLS[INTERRUPT_NUMBER] );

( Allow rescheduling during interrupt? *)

MSDOS EXEC_FUNCTION_CALL :-

(INTERRUPT NUMBER - MSDOS_BIOS_FUNCTION_INTERRUPT NUMBER) and

( AX - EXEC_FUNCTION_CODE) ;

if MSDOS_EXEC_FUNCTION_CALL

then

inc(NUMBER OF CHILD PROGRAMS)

else

LOCKjSCHEDULER;

with REGS do

AX; BX := BX;

- BP; SI SI; DI

DX

DI;

DS :- DS; ES :-

FLAGS 7- FLAGS;

intr(RVECTORED_INTERRUPT_NUMBER, REGS};

asm cli end;

AX :- AX; BX :- BX; :- CX; :-

~BP :- BP; ~SI :- SI; :- DI;

~DS :- DS; ~ES :- ES;

"FLAGS :- FLAGS or INTERRUPT FLAG;

105



end;
(*
with. . .do *)

if MSDOS_EXEC_FUNCTI0N CALL
then

dec(NUMBER_OF_CHILD_PROGRAMS)

with RUNNING_TASK_PTR"
do

ERROR_HANDLER[ILLEGAL_OPERATIQN) (TASK_ID) ;
asm popf end;

end;
(*

SW_INTERRUPT_INTERCEPTOR '

procedure DISPATCHJTASK;

!*
conttolCh7oS%CaH3e?

thC ta3k 3Pecified bY t"e RUNNING TASK I
1 control block to begin running.

{*

Temporary variable used to switch contexts (all registers')
!?;.f!.^.^Stant to focce U int ^e DSeg<

'"

VALUE : word 0;

begin (*
DISPATCHJTASK *)

asm cli end;
(*

Reset preemptive timeslice counter *)
PREEMPTIVE_TIMESLICE :- PREEMPTIVEJTIMESLICE -

ACTUAL_TASKING_CONFIGURATION.TARGET_TIMESLICE;
{*

Dispatch a new task *)

(*
Switch Stacks *)

VALUE := RUNNING_TASK_PTR". CONTEXT. SS;
asm mov bx, VALUE end;

VALUE := RUNNING_TASK_PTR". CONTEXT. SP;

mov sp, VALUE

mov 33, by.

end;
(*

asm ")

(*

Setup new context, enabling interrupts *)
VALUE := RUNNINGJTASK_PTR-. CONTEXT. FLAGS or INTERRUPT FLAG;
asm push VALUE end;

VALUE := RUNNING_TASK_PTR*.CONTEXT.CS;
asm push VALUE end;

VALUE := RUNNING_TASK_PTR*.CONTEXT. IP;
asm push VALUE end;

VALUE := RUNNINGJTASKJPTR". CONTEXT.AX;
asm push VALUE end;

VALUE := RUNNING_TASK_PTR". CONTEXT. BX;
asm push VALUE end;

VALUE :- RUNNINGJTASK PTR". CONTEXT. CX;
asm push VALUE end;

VALUE := RUNNING
TASK_PTR"

.CONTEXT. DX;
asm push VALUE end;

VALUE := RUNNING_TASK_PTR". CONTEXT. BP;
asm push VALUE end;

VALUE := RUNNINGJTASK PTR*. CONTEXT. SI;

asm push VALUE end;

VALUE :- RUNNING_TASK_PTR". CONTEXT.DI;
asm push VALUE end;

VALUE := RUNNINGJTASK
PTR*

.CONTEXT.ES;

asm push VALUE end;

VALUE :- RUNNING_TASK_PTR".CONTEXT.DS;

asm push VALUE end;

If TIMER_NSEOI_NEEDS_TO_BE_DONE then

(*
Issue NSEOI to PIC *)

port [PROGRAMMABLEjINTERRUPT CONTROLLER_PORT] :-

NON SPECIFIC_END_OF INTERRUPT;

TIMER_NSEOI_NEEDS_TO_BE_DONE :- false;

end;
(* if . . .then *)

(*
Switch Contexts *)

pop ds

pop es

pop di

pop si

pop bp

pop dx

pop ex

pop bx

pop ax

iret

end; [
*
asm *)

end;
(*

DISPATCH TASK

procedure RQUEUE_AND RESCHEDULE
(................7.................................

(TASK : TASK IDS; RESULTING STATE : TASK STATES);

*
This routine is used to preempt a task (which must either be running

*
or ready) and put it into the specified queue (either blocked or ready) .

*
This is useful for

'blocking'
a task or for allowing another ready task

*
to run (effectively used for context switching) .

(* Label within procedure for the return (i.e. 'Dispatch') addres.

(*
of a task which is going from RUNNING to some other state.

RQUEUE_AND_RSCHEDULE_CONTINUE;

*
Speed vs Storage trade-off. The queues are kept in an array so

* that no run-time decisions (case... of) are needed to access the

*
proper queue.

QUEUE_0F : array [TASK_STATES] of "QUEUES -

(t>BLOCKED_QUEUE, 6DELAYED_QUEUE , "READYJ3UEUE) ;

{*
Temporary storage used to dete

(*
registers.

of the 80x86

VALUE : word;

(*

Temporary pointer to a Task Control Block which
'was/is'

( but 'is/will
be'

rescheduled.

RESCHEDULED_TASK_PTR : TA5K_CONTR0L_BLOCK PTR;

PREVIOUSLY_RUNNING_TASK_ID : TASK IDS;

(*
RQUEUE_AND_RSCHEDULE ')

to be *)

cli

i;
(*

asm *)

(*
Don't reschedule a task in a

'locked'
region *)

if COMPARE_PRIORITIES(RUNNING_TASK_PTR". PRIORITY, EQUAL TO,

begin

asm popf end;

exit;

end;
(*
if . . .then

HIGHEST_PRIORITY) then

PREVIOUSLY_RUNNING TASK_ID :- RUNNINGJTASK PTR"
. TASK ID;

if RUNNING_TASK_PTR".TASK_ID TASK

begin
(*

Save context of the running task *}

push ax

pop VALUE

end;
(*

asm *)
RUNNINGJTASKJPTR"

. CONTEXT.AX := VALUE;
asm

push bx

pop VALUE

end;
(

asm *)
RUNNINGJTASK_PTR-

.CONTEXT. BX :- VALUE;

pop VALUE

end;
(*

asm *}
RUNNINGJTASK_PTR*

. CONTEXT . CX

asm

VALUE;

push dx

pop VALUE

end;
(*

asm *)
RUNNINGJTASK_PTR"

. CONTEXT. DX :- VALUE;

push bp

pop VALUE

end;
(*

asm *)

RUNNINGJTASKJPTR". CONTEXT. BP :- VALUE;

push si

pop VALUE

end;
(*

asm *)
RUNNING_TASK_PTR*

.CONTEXT.SI :- VALUE;

push di

pop VALUE

RUNNING_TASK_PTR".CONTEXT. DI :- VALUE;

push es

pop VALUE

end;
[*

asm *}
RUNNING TASK

PTR"

.CONTEXT. ES := VALUE;

push ds

pop VALUE

end;
(*

asm *)
RUNNINGJTASKJPTR"

. CONTEXT . DS
RUNNING_TASK_PTR"

. CONTEXT . SS
RUNNINGJTASKJPTR"

, CONTEXT . SP

- VALUE;
- sseg;

- sptr;

mov ax,seg REQUEUE_AND_RESCHEDULE_CONTINUE
push ax

pop VALUE

end;
(*

asm *)
RUNNING_TASK_PTR". CONTEXT. CS := VALUE;

mov ax, offset REQUEUE_AND_RESCHEDULE_CONTINUE
push ax

pop VALUE

end;
(+

asm *)

RUNNINGJTASK
PTR"

.CONTEXT.IP :- VALUE;

RESCHEDULED_TASK_PTR := RUNNINGJTASK PTR;
end

(* if . . .then *7
else

(*
The task must be in the Ready Queue *)

RESCHEDULED TASK_PTR :- FIND_AND_REMOVE

(

TASK,

(From the) READY QUEUE,
UNCONDIT IONALLY ,

THERE ISjNO_BLOCK TO_MATCH

>;

if RSCHEDULED_TASK_PTR <> nil

then

begin

RUNNING TASK_PTR :- REMOVE_FROM_HEAD(READY_QUEUE) ;
if (RUNNING_TASK_PTR <> nil) and

(RUNNING_TASK_PTR".TASK_ID - NULL_TASK_ID) then

INSERT_INTO(RADY_QUEUE, RUNNING TASK_PTR) ;

INSERT_INTO(QUEUE_OF[RESULTING_STATE]", RESCHEDULED_TASK_PTR) ;

if (RUNNINGJTASK PTR -
nil) or

(RUNNING_TASK_PTR".TASK_ID - NULL_TASK_ID) then

RUNNINGJTASKJPTR :=

REMOVE_FROM_HEAD(READY_QUEUE) ;

if (ACTUAL_TASKING_CONFIGURATION. STATISTICS <> NO_STATISTICS) and

(RUNNING_TASK_P?R".TASK_ID <> PREVIOUSLY_RUNNING_TASK_ID) then
begin

inc (TASKING_STATISTICS. CONTEXT SWITCHES);

if PREEMPTIVEJTIMESLICE <

ACTUALJTASKING CONFIGURATION. TARGETJTIMESLICE
then

inc(TASKING_STATISTICS.COOPERATIVE_CONTEXT SWITCHES) ;
end;

(* if. ..then )

if ACTUALJTASKING CONFIGURATION. PRIORITY_SCHEDULING_POLICY -

ROTATING PRIORITIES then

begin

if HIGHEST_DYNAMIC_PRIORITY - low(USER_PRIORITIES)
then

HIGHEST_DYNAMIC_PRIORITY :- high(USER PRIORITIES)
else

HIGHEST_DYNAMIC_PRIORITY - 1;
,tnen )

DISPATCHJTASK;

end (
* if . . . then *

)

else

With
RUNNINGJTASKJPTR"

do ERROR_HANDLER[TASK_IS_NOT_ACTIVE] (TASK_ID) ;

RQUEUE_AND_RSCHEDULE_CONTINUE :

asm popf end;

end;
(* REQUEUE_AND_RESCHEDULE *)

procedure MOUSE_EVENT_HANDLER

(MOUSE : MOUSE_PARAMETERS); far;

(* This routine is called by the MS-Mouse driver in response to registered
'

(*
mouse actions. The TASKING mouse event is signaled (or the waiting task

'

(* is made ready, whichever is appropriate) .

(* Pointer to Task Control Block which is i

(*
semaphore (may very well be nil).
..........................................

WAITING TASK PTR : TASK CONTROL BLOCK PTR;

iting on the MS Mous<

106



begin (*
MOUSE_EVENT_HANDLER *)

pushf

cli

end;
(*

asm *)
MOUSE_INFO FROM HANDLER :- MOUSE;

if USER_MOUSE_EVENT PTR <> nil then

begin

WAITING_TASK_PTR :- FIND_AND REMOVE

(

I
if WAITINGJTASK_PTR n

then

USER_MOUSE_EVENT PTR

ANYJTASK,
(From the) BLOCKED_QUEUE,

BECAUSE_THE_BLOCK_WAS_SIGNALLED,
(At) addrfUSER MOUSE EVENT PTR")

il

asm popf end;

end;
<*

MOUSE_EVENT_HANDLER *)

procedure CHECK_AND_SETUP_BLOCK

(DELAY_UNTIL_ABSOLUTE_TIME : longint; SEMAPHORE_ADDRESS : pointer);

This routine is used to establish the currently running task as being
blocked on a semaphore (for any number of reasons) or as being delayed
for some time period. These functions are integrated because many of the

tasking operations require this service.

begin (*
CHECK_AND_SETUP_BLOCK *}

cli

end;
(*

asm *)
if (RUNNINGJTASK_PTR".WAITING_FOR <> nil) and

(RUNNINGJTASK_PTR".WAITING_FOR*.SEM PTR <> nil)

then

begin

with
RUNNINGJTASKJPTR"

do

ERROR_HANDLER[TASK_ALREADY_SUSPENDED] (TASK_ID) ;
RQUEUE_AND RESCHEDULE (RUNNING TASK_PTR"

,TASK_ID, READY);

end
I* if . . .then }

else

if RUNNING_TASK_PTR*.WAITING_FOR nil then

new(RUNNING_TASK_PTR".WAITING_FOR) ;

with
RUNNING_TASK_PTR".WAITING_FOR"

do

begin

ABSOLUTEJTIME := DELAY_UNTIL_ABSOLUTE_TIME;

SEM_PTR := SEMAPHORE_ADDRESS;

if SEM_PTR <> nil

then

REQUEUE_AND_RESCHEDULE(RUNNING_TASK_PTR".TASK_ID, BLOCKED)

if ABSOLUTEJTIME <> NOJTIME DELAY

then

REQUEUE_AND_RESCHEDULE(RUNNING_TASK_PTR".TASK_ID, DELAYED)

else

with
RUNNING_TASK_PTR"

do

ERROR_HANDLER[ILLEGAL_OPERATION] (TASK_ID) ;

RQUEUE_AND_RSCHEDULE(RUNNING_TASK_PTR*.TASK_ID, READY);

end;
(*
with. . .do *)

end;
(* if ... then. .. else *)

asm popf end;

end;
(* CHECK AND SETUP_BLOCK *)

procedure CHECK_OR_ADD_RSOURCE_TO_LOCKED_LIST

(SEMAPHORE_ADDRESS : pointer) ;

This routine is used (when priority inheritance is enabled) to check to

see if the priority of a task needs to be promoted as a result of a task

attempting to lock a resource that is already locked. If the resource is

being locked for the first time them the resource is added to the linked

list of res

(* Pointer to locked

(*
all locked resourc

reso rce that is 'walked through the list of
*

WALKING_PTR : LOCKED_RESOURCE_PTR

(* Pointer

(*
priority

to Task control Block

promoted (as a result

for the task that is ha

of priority inheritance).

ing its
*

PROMOTED_TASK_PTR : TASK_CONTROL_BLOCK_PTR;

begin
(* CHECK_OR_ADD_RESOURCE_TO_LOCKED_LIST *}

asm

cli

end;
(*

asm *)
WALKING_PTR :<= LOCKED_RESOURCE_LIST_PTR;

while (WALKING_PTR <> nil) and

(WALKING_PTR".SEMAPHORE_PTR <> SEMAPHORE
_

ADDRESS ) do

WALKING_PTR :- WALKING_PTR"7NEXT;

lf (WALKING_PTR <> nil) and

(WALKING_PTR".SEMAPHORE_PTR - SEMAPHOR_ADDRESS)

then

begin

if WALKING_PTR". OWNER - nil

then

with
WALKING_PTR"

do

OWNER :- RUNNINGJTASK PTR;

PRIORITY :-
RUNNING_TASK_PTR"

. PRIORITY;

end
(*
with. . .do *}

else

begin

{* Promote priority? *)

if COMPARE PRIORITIES (WALKING_PTR*. OWNER*. PRIORITY, LESSJTHAN,

RUNNING_TASK_PTR". PRIORITY) then

begin

PROMOTED TASK PTR := FIND_AND REMOVE

(
WALKING_PTR". OWNER". TASK ID,

(From the) READY_QUEUE,

UNCONDITIONALLY,

THER_IS NO_BLOCKJTO_MATCH

};

PROMOTED_TASK_PTR". PRIORITY :- RUNNING
TASK_PTR*

. PRIORITY;

INSERT_INTO (RADY_QUEUE , PROMOTEDJTASK~PTR ) ;

end;
(* if. . .then )

end;
(* if . . . then. . . else *)

end
I* if. , .then )

else

begin
(* Find place to insert list element *)
WALKING_PTR :- LOGKED_RESOURCE__LIST_PTR;

if WALKING_PTR - nil

then

begin

new (WALKING_PTR) ;

LOCKED_RESOURCE_LIST_PTR := WALKING_PTR;

end
(* if . . .then *)

else

begin

while WALKING_PTR*.NEXT <> ml do

WALKING_PTR :- WALKING PTR". NEXT;

new
(WALKING_PTR"

. NEXT ) ;

WALKING_PTR :-
WALKING_PTR"

.NEXT;

end;
(*
if .. .then.. .else *)

(* Add new locked resource *)

with
WALKING_PTR"

do

begin

OWNER := RUNNING_TASK_PTR;

PRIORITY :- RUNNING_TASK_PTR"

. PRIORITY;

SEMAPHORE PTR :- SEMAPHORE_ADDRESS ;

NEXT :- nil;

end;
(*
with... do *)

end;
(* if ... then. .. else *)

asm popf end;

end;
(*

CHECK_OR_ADD_RESOURCE_TO_LOCKED_LIST *)

procedure FIND_AND_REMOVE_LOCKED_RSOURCE
I********

(SEMAPHORE_ADDRESS : pointer);

This routine is used to remov

task. This is necessary after

therefore no longer 'owned'.

(*
all locked resources.

WALKING_PTR : LOCKED_RESOURCE_PTR;

alked'

through the list

begin (*
FIND_AND_REMOVE_LOCKED_RSOURCE *]

asm

pushf

cli

end;
(*

asm *)

WALKING_PTR :- LOCKED RESOURCE_LIST_PTR;

while (WALKINGPTR <> nil) and

(WALKING_PTR".SEMAPHORE_PTR <> SEMAPHORE_ADDRSS) do

WALKING_PTR :-
WALKING_PTR"

.NEXT;

if (WALKING_PTR <> nil) and (WALKING PTR". OWNER <> nil} and

(WALKING_PTR"

. SEMAPHORE_PTR = SEMAPHORE_ADDRESS) then

if COMPARE_PRIORITIES (RUNNING TASK
PTR"

. PRIORITY, GREATERJTHAN,

WALKING~PTR"7pRIORITY) and

(WALKING PTR". OWNER - RUNNING_TASK_PTR) then

RUNNING TASK_PTR". PRIORITY :- WALKING_PTR*

. PRIORITY;

WALKING_PTR". OWNER :- nil;

end,- (* if . . .then *)
asm popf end;

end;
{*

FIND_AND_REMOVE_LOCKED_RESOURCE *)

End of non-user functions *

* User functions *

rocedure GETMEM

(var PTR : pointer; SIZE : word) ;

theThis procedure repl

procedure by the same name.

allocation and de-allocation

system. getmemf } procedure

standard Turbo

Since TASKING

this routine *mu:

'type

correct usage is 'getmemfpointer (P) , sizeof (T)
);'

.

system. new() procedure can also be used because it

interrupts are disabled.

:al memory allocation

perform all memory

>e used instead of the

i declared, then the

Within TASKING, the

is always used when

gin
(*

GETMEM *)

cli

end;
(*

asm *)

system. getmem(PTR, SIZE) ;

asm popf end;
(*

GETMEM *)

cedure FREEMEM

(PTR : pointer; SIZE ord);

This procedure replaces the standard Turbo Pas

procedure by the same name Since TASKING mus

allocation and de-allocation, this routine
*must*

system. f reememl ) procedure. If
'
type P : "T;

'
l

correct usage is ' f reememlpointer (P) , sizeof (T) );
'

system. dispose ( ) procedure can also be used becaus

when interrupts are disabled.

1 memory allocation

perform all memory

used instead of the

declared, then the

Within TASKING, the

it is always used

begin'

( FREEMEM *]

pushf

cli

end;
("

asm *)

system. freemem(PTR, SIZE);

asm popf end;

end;
(* FREEMEM *)

procedure CREATE

(var TASK : TASK_IDS; ATTR : TASK_ATTRIBUTES; ENTRY_POINT : TASKJTYPB};

(* This routine creates all system data structures for a parallel
"

(*
executing task. The task is made ready to run and will be available for '

(* execution. Actual execution will occur when the scheduler activates the

(* task (i.e. precise execution time is unknown and depends on availability
(*

of system resources and system load).

(* When a task implicitely terminates there must be room for calls

(*
to routines necessary for proper TASKING clean-up. This constant

(*
must be larger than the maximum bytes needed for these clean-up

(* routines to execute properly.

(.. ..................................................................

STACKJHEADROOM -48;

(....................*....*... ............................. ..........

(* Pointer to the to-be-created Task Control Block.

(. ......................*..........................*....*..... ......

NEW TCB PTR : TA5K_C0NTR0L_BL0CK_PTR;

107



(*
Pointer to the top of the task stack (as opposed to the(*
byte of the stack which is used to reference the Turbo

(*
variable returned when the memory is allocated).

TOP_OF_STACK_PTR : pointer;

resources to be used by other tasks and then removes all evidence of the

task ever having existed. An implied call to this routine is setup at

the time that a task is created (by setting up the stack to return here) .

This implied call ensures that a task that reaches its
"end"

statement is

properly terminated and does .ot become (o

Loop control variable of possible er.

task specific error handlers.
ised to initializi

ERROR : SYSTEM_ERRORS;

function NEW_TASK_ID : TASK_IDS;

(*
This function determines what the next available task identifier

(*
marks it as allocated and returns it to the caller.

(*

Temporary variable used to hold the potential new task ID.

THE_NEW_TASK_ID : TASK_IDS;

(*

Loop control variable to search .

{. ..................................

TASK_ID_SET : TASK_ID SETS;

of TASK ID sets

begin (*
NEW_TASK_ID *)

TASK_ID_SET :- low(TASK_ID_SETS) ;

THE_NEW_TASK_ID :- succ (NULL_TASK_ID) ;
while (THE_NEW TASK_ID in ALLOCATEDJTASK IDS [TASK ID SET]) and

(THE_NEWJTASK_ID <= high(byte)) and

" ~

(TASK_ID_SET <= high [TASK ID SETS)) do

begin
"" ~~

inc (THE_NEW_TASK_ID) ;
if (THE_NEW_TASK_ID > high(byte)} and

(TASK_ID_SET < high(TASK_ID_SETS) ) then

begin

TASK_ID SET := succ (TASK_ID_SET) ;
THE NEW_TASK_ID := low(TASK IDS);

end;
[ if . . .then *)

end;
(*
while... do *}

if not (THE_NEW_TASK ID in ALLOCATED_TASK_IDS [TASK ID SET))

then

ALLOCATED_TASK_IDS [TASK_ID_SET ] : -

ALLOCATED TASK_IDS [TASK ID_SET] + [THE_NEW_TASK ID] ;
NEW TASK ID := 7TASK_ID_SET shl 8) or THE_NEW_TASK ID7

end
(* if.7. then *)

else

with
RUNNING_TASK_PTR"

do

ERROR_HANDLER [ INSUFFICIENT RESOURCES] (TASK_ID) ;

end;
(

NEW_TASK_ID *)

(THE_PTR : pointer; INCREMENT word) : pointer;

*
This routine merely increme

*
specified.

ts a double word pointer by the value

(
*

Temporary variables to hold intermediate

SEGMENT, OFFSET : w

SUMJDFS : longint;

begin (* INC_PTR *)

SUMJDFS

SEGMENT

OFFSET

INCREMENT;ofs(THE_PTR")

seg(THE_PTR") ;

SUMJDFS and SOOOOFFFF;

(SUM_OFS and 5FFFFO0OO) <> 0 then

(* Overflowed 64k boundary by 1 (because INCREMENT :

inc (SEGMENT, S1000) ;

INC_PTR :- ptr(SEGMENT, OFFSET};

end;
{ INC PTR *)

begin
(*

CREATE *)

asm

cli

end;
(*

asm *)

TASK := NEW_TASK_ID;

new (NEWJTCB PTR) ;

NEWJTCB PTR". STACK SIZE :- ATTR.STACK_WORDS_NEEDED
'

with
NEW_TCB_PTR"

do

begin

getmem(STACK_PTR, STACKSIZE);

"'
Get pointer to Top-Of-Stack

'-'

2 (* Bytes/word *);

TOP OF STACK PTR - INC PTR (STACK PTR

TASK ID - TASK;

CLOCK TICKS - 0;

PRIORITY - ATTR. PRIORITY;

WAITING FOR - nil;

NEXT - nil;

PREVIOUS - nil;

STACK SIZE-12-STACK_HEADROOM) ;

for ERROR :- low(SYSTEM_ERRORS) to high (SYSTEM_ERRORS) do

if addr (ATTR. ERROR_HANDLERS [ERROR) ) - nil

then

ERROR_HANDLER [ERROR] :- NULL. ERROR_HANDLER[ERROR)

else

ERROR HANDLER(ERROR]
:- ATTR. ERROR_HANDLERS [ERROR] ;

with CONTEXT do

begin

50000; BX :- $0000; CX := 50000; DX :- SOOi

50000; SI :- 50000; DI : $0000; ES :- $00i

dseg;

seg(TOP_OF_STACK_PTR");

(ofs(TOP_OF_STACK_PTR")

seg(ENTRY_POINT);

FLAGS :- INTERRUPT_FLAG;

end;
(*
with. . .do

(* Clear the stack *)

fillchar(STACK_PTR-, STACK_SIZE-1, byte (DEFAULT_STACK_VALUE) ) ;

( Install task identifier and priority onto stack *)

meinw (CONTEXT. SS : CONTEXT. SP + 4] :- PRIORITY;

memw (CONTEXT. SS : CONTEXT. SP + 6] :- TASKJID;

{* Install implied call to DESTROY!) onto

1) and SFFFE;

P :- ofs(ENTRY_POINT) ;

- ofs (DESTROY);
-

seg (DESTROY);
- TASK ID;

if ALLOW_RESCHEDULE_IN_CREATE then

REQUEUE_AND_RSCHEDULE[RUNNING_TASK_PTR*.TASK_ID, READY);

popf end;

* CREATE *}

aw [CONTEXT SS CONTEXT SP ? 01

memw [CONTEXT SS CONTEXT SP + l\

memw [CONTEXT SS CONTEXT SP + 12|

end;
(* with. . do )

INSERT INTO(READY_QUEUE, NEW_ rcB .PTR);

end;

procedure DESTROY

(TASK : TASK_IDS};

(* This routine terminates (if appropriate) releases

(*
Pointer to the Task Control Block that is being destroyed.

(* NOTE: MUST be constant to force it into the DSeg'

(..............................................................

DESTROYEDJTASK_PTR : TASK_CONTROL_BLOCK PTR -
nil;

(*
Flag to indicate that the task that is being destroyed

(*
running, this has stack access consequences.

(*
NOTE: MUST be constant to force it into the DSeg'

DESTROYED TASK WAS RUNNING : boolean - false;

(*

Temporary variable used to switch stacks (SS and SP).
(*

NOTE: MUST be constant to force it into the DSeg1

VALUE : word - 0;

ocedure FREE TASK ID

(TASK_ID : TASK_IDS);

sk identifier back into the fr>

begin {*
FREE_TASK_ID *)

ALLOCATED_TASK_IDS[hi(TASK_ID) shr 8) :=

ALLOCATED_TASK_IDS[hi(TASK_ID) shr 8) - [lo (TASK ID)];

end;
(*

FREE_TASK_ID *)

begin ('
DESTROY *)

asm

pushf

end;
(*

. *>

{*
The null task cannot be destroyed1

*)
If TASK - NULLJTASK_ID then

begin

RUNNING_TASK_PTR".ERROR_HANDLER[ILLEGAL_OPERATION) (TASK) ;

asm popf end;

exit ;

end;
(* if . . .then *)

if TASK = RUNNING_TASK_PTR".TASK_ID

then

begin

DESTROYED_TASK_PTR ;- RUNNING_TASK_PTR;

DESTROYED_TASK_WAS_RUNNING :=~true;

end
(*
if . . .then *)

else

5gin

FIND_AND_REMOVE

<

TASK,
(From the) READY_QUEUE,

UNCONDITIONALLY,
THERE IS NO BLOCK TO MATCH

if DESTROYED_TASK_PTR - ]

begin

DESTROYED TASK PTR :<

Ll then

FIND_AND_RMOVE

(

TASK,

[From the) BLOCKED_QUEUE,

UNCONDITIONALLY,
THERE IS NO BLOCK TO MATCH

TASK,
(From the) DELAYED_QUEUE,

UNCONDITIONALLY,
THERE IS NO BLOCK TO MATCH

end;
(* if . . .then *)

DESTROYED_TASK_WAS_RUNNING :- false;

end;
(* if ... then. .. else *)

If DESTROYEDJTASK PTR - nil

then

begin
(*
Can't find the requested Task ID *)

RUNNING_TASK_PTR*.ERROR_HANDLER[ILLEGAL_TASK_ID] (TASK) ;

asm popf end;

exit;

end
(* if . . . then *)

else

(* Check to see if special control structures need to be .

if DESTROYED_TASK_PTR*.WAITING_FOR <> nil then

begin

if (USER_KEYBOARD_SEM_PTR <> nil) and

(DESTROYEDJTASK PTR".WAITING FOR*.SEM_PTR

USER_KEYBOARD~SEM PTR)

then

begin

dispose (USER KEYBOARD SEM_PTR);

USER KEYBOARD SEM PTR-:- nil;

end (*~if . . .then

else

if (USER_MOUSE_EVENT_PTR <> nil} and

(DESTROYED_TASK_PTR*

.WAITINGFOR". SEM PTR =

SEMAPHORE_PTR(USER_MOUSE EVENT PTR))""then

begin

dispose (USER_MOUSE_EVENT PTR);

USER_MOUSE_EVENT_PTR :- nil;

end;
<* if. . .then *)

(* Get rid of whatever the task was waiting for *)

dispose (DESTROYED
TASK_PTR*

.WAITING_FOR} ;

end;
(* if. . .then *7

{* De-allocate the task's mailbox (if applicable) *)

REMOVE MBOX_OF(DESTROYEDJTASK_PTR*.TASK_ID} ;

{* Switch stacks if user stack is going to be destroyed *

if DESTROYED_TASK_WAS__RUNNING then

RUNNINGJTASK PTR :- REMOVE_FROM_HEAD(READY_QUEUE) ;

VALUE :-
RUNNING_TASK_PTR*

. CONTEXT. SS;

asm

push VALUE

end;

VALUE :- RUNNING_TASK_PTR". CONTEXT. SP;

asm mov sp,VALUE end;

end;
<* if. . .then )

108



(* Remove task structures *}
FREEJTASKJIDIDESTROYEDJTASK

PTR"

,TASK_ID) ;

With DESTROYED
TASK_PTR*

do freemem(STACK_PTR, STACK SIZE)
dispose (DESTROYED_TASK_PTR) ;

if DESTROYED_TASK_WAS_RUNNING then
(*

Cannot come back here because stack is gone'

*)
asm jmp DISPATCHJTASK end;

end;
[*
if ... then. .. else *)

[*
DESTROY *)

procedure SUSPEND

(TASK : TASK_IDS) ;

This routine ca

unconditionally .

a previously running or ready task to be blocked *)

begin (*
SUSPEND *)

end;
(*

asm *)

REQUEUE__AND_RESCHEDULE(TASK, BLOCKED);

asm popf end;

end;
(*

SUSPEND *)

procedure RESUME

(TASK : TASK_IDS) ;

This routii

task is not i

of the other

es a previously suspended task to be made ready. The

rily the next to run, that is based on the priorities

RESUMED_TASK_PTR

begin (* RESUME *)

asm

pushf

cli

RESUMED TASK PTR

ol Block of the task that is be.

TASK CONTROL BLOCK PTR;

FIND_AND_RMOVE

(

TASK,
(From the) BLOCKED QUEUE,

UNCONDITIONALLY,
THERE_IS_NO_BLOCK_TO_MATCH

);

If RESUMEDJTASK_PTR

then

begin

INSERT_INTO(RADYj3UEUE, RESUMED_TASK_PTR) ;

REQUEUE READY);

end
(* if . . .then *)

else

If RUNNING_TASK_PTR".TASK_ID <> NULL TASK_ID then

with
RUNNING_TASK_PTR"

do

ERROR_HANDLER[TASK_IS_NOT_ACTIVE] (TASK_ID) ;

popf end;

* RESUME *)end.

function GET_MILLISECOND_TICKS : longint;

This routine retuns the number

(* the program started executing.

of milliseconds that have elapsed

(* *)

begin
(* GET_MILLISECONDJTICKS *)

pushf

cli

end;
(*

asm *)
GET_MILLISECOND_TICKS :- MILLISECONDJTICKS;

asm popf end;

end;
(* GET_MILLISECOND_TICKS *)

procedure WAIT_FOR_DELAY

(.............. ...7......................
...*.......*.*..............***

(DURATION : TIME);

(* This system call causes the currently running task to become blocked

(* for the specified length of time. There is no guarantee that the task

(*
will begin executing when the time expires, the only guarantee is that

(* the task will become ready to execute at that time.

( No attempt is made to detect 'Global
Ticks'

rollover, as a result of

(* this after the program has been running for a long time ( (2*30-1) *1 msec

(* i.e. 12.4 days) there is a possibility of a delay request resulting in

(*
near immediate rescheduling.

.,.*,......**.

(*

Temporary variable used to hold the MILLISECONDJTICKS value when

(* the task will be 'awakened'.
...................

ABSOLUTEJTIME : longint;

begin
(* WAIT_FOR_DELAY *)

cli

end;
(* asm *)

with DURATION do

ABSOLUTE TIME :- MILLISECONDJTICKS +

t rune (longint (DAYS)
* MILLISECONDS_PER_DAY +

longint (HOURS)
* MILLISECONDS_PER_HOUR ?

longint (MINUTES)
* MILLISECOND5_PER_MINUTE

longint (SECONDS)
* MILLISECONDS_PER_SECOND

longint (MILLISECONDS) +

1
{* Ensure that we always

'round'

up *}

};

CHECK_AND_SETUP_BLOCK (ABSOLUTEJTIME, nil } ;

asm popf end;

end;
(* WAIT_FOR_DELAY *}

procedure PREEMPTABLEDELAY
......................

(DURATION : TIME);

'* This system call causes the currently running task to be delayed by the

I* 3pecified number of milliseconds.

V*r

(. Temporary variable used to hold the MILLISECONDJTICKS value when

(* the task will be allowed to continue executing.

DELAY__COMPLETE_TIME : longint;

begin
(* PREEMPTABLEJDELAY *)

asm

pushf

cli

end;
(*

asm *)
with DURATION do

DELAY^OMPLETEJTIME :- MILLISECONDJTICKS

trunc

<
longint (DAYS)

*
MILLISECONDS PER_DAY +

longint (HOURS)
*
MILLISECONDS~PER HOUR +

longint (MINUTES)
*
MILLISECONDS_PER~MINUTE

longint (SECONDS)
*
MILLISECONDS_PER_SECOND -

longint (MILLISECONDS)

};

procedure CHANGE_PRIORITY

<

(PRIORITY : USER_PRIORITIES};

This routine simply changes the priority of the currently running task
'

and preempts the running task (causing a dispatch of the now highest
'

priority task) if appropriate.

begin (* CHANGE_PRIORITY *)

cli

end;
( asm *)

RUNNINGJTASK_PTR-. PRIORITY := PRIORITIES (PRIORITY) ;

RQUEUE_AND_RESCHEDULE (
RUNNING_TASK_PTR"

. TASK_ID, READY ) ;

end;
(*

CHANGE PRIORITY *)

procedure SIGNAL_SEMAPHORE

(............ ...............

(var SEM : SEMAPHORE);

This routine performs an Up ( ) operation on the specified semaphore.

there are tasks waiting on the semaphore then one is awakened. If tl

are none waiting then the semaphore is incremented.

Pointer to Task Control Block which is i

(may very well be nil).

liting on the semaphore *)

WAITINGJTASK_PTR : TASK_CONTROL_BLOCK_PTR;

begin
(*

SIGNAL_SEMAPHORE *)

cli

if TASKING_CONFIGURATION.PRIORITY_INHERITANCE_ENABLED then

FIND_AND_REMOVE LOCKED_RSOURCE (addr (SEM) ) ;

WAITING TASK PTR 7- FIND AND REMOVE

(

ANYJTASK,

(From the | BLOCKED_QUEUE,

BECAUSE_THE_BLOCK_WAS_SIGNALLED,

(At) addr (SEM)

};

nilif WAITING_TASK_PTR

then

inc (SEM)

else

INSERT INTO(READY_QUEUE, WAITING_TASK_PTR) ;

RQUEUE_AND RESCHEDULE
(RUNNINGJTASK_PTR*

.TASK_ID, READY) ;

asm popf end;

end;
(' SIGNAL_SEMAPHORE *)

rocedure WAIT ON SEMAPHORE

(var SEM : SEMAPHORE);

This routine performs a DownO operation on the specified

*
If the semaphore is zero then the running task is suspended.

*
non-zero then the semaphore is decremented.

If

aphore.
*

it is
*

[* WAIT_ON_SEMAPHORE

cli

if SEM > 0

then

dec (SEM) ;

if TASKING CONFIGURATION. PRIORITY_INHERITANCE_ENABLED and (SEM

then

CHECKJOR_ADD_RESOURCEjrO_LOCKED_LI5T (addr (SEM) ) ;

REQUEUE AND_PESCHEDULE(RuNNINGJTASK_'pTR".TASK_ID, READY) ;

end
(* if . . .then *)

else

begin

if TASKING_C0NFIGURATI0N.PRI0RITY_INHERITANCE_ENABLED then

CHECK_OR_ADD_RESOURCEJTO LOCKED_LIST (addr (SEM) ) ;

CHECK_AND SETUP BLOCK(NO_TIKE_DELAY, addr(SEM)};

end;
(*
if .7.then7..else *)

asm popf end;

end;
(* WAIT_ON_SEMAPHORE *)

procedure SIGNAL_EVENT

,....*......*..*...........

(var THE EVENT : EVENT);

This routine signals the event specified, if there are tasks waiting
* the event then one task is made ready. If there are no tasks waiting i

* the event then the signal is saved, only one signal is maintained i

*
matter how many times the event is signaled.

pointer to Task Control Block which is waiting on the event (may

very well be nil) .

WAITING_TASK_PTR : TASKJCONTROL_BLOCK_PTR ;

begin
{* SIGNAL_EVENT *)

cli

end;
(*

asm >

if TASKING_CONFIGURATION. PRIORITY INHERITANCE ENABLED then

FIND_AND_RMOVE LOCKED_RESOURCE7addr (THE_EVENT) ) ;

WAITING TASK PTR 7- FIND~AND_REMOVE

(
ANY TASK,

(From the) BLOCKED_QUEUE,

BECAUSE THE_BLOCK WAS_SIGNALLED,

(At) addr(THE_EVENT)

);

Lf WAITING_TASK_PTR - nil

then

THE_EVENT :- SIGNALED

else

INSERT_INTO (READY_QUEUE, WAITING_TASK_PTR} ;

109



REQUEUE_AND_RESCHEDULE(RUNNING_TASK_PTR".TASK ID, READY);
asm popf end;

end;
(*

SIGNAL_EVENT *)

procedure BROADCAST_EVENT

(.................*........................,..,....,...,.,...... ...........
(var THE EVENT : EVENT);

(.

(*

This routine signals the event specified, if there are tasks waiting .
(*

the event then they are all made ready. If there are no tasks waiting(*
the event then the signal is saved, only one signal is maintained i
--tter how many times the event is signaled.

(*

Pointer to Task Control Block which is waiting <

very well be nil) .

WAITINGJTASK_PTR : TASK_C0NTR0L_BL0CK_PTR;

begin (*

BROADCAST_EVENT *)

pushf

cli

end;
(*

asm *)
if TASKING_CONFIGURATION.PRIORITY_INHERITANCE_ENABLED then

FIND_AND_REMOVE_LOCKED_RESOURCE (addr (THE EVENT) ) ;
repeat

WAITINGJTASK PTR :- FIND AND_REMOVE

<

ANYJTASK,
(From the} BLOCKED_QUEUE,

BECAUSE_THE_BLOCK_WAS_SIGNALLED,
(At) addr (THE_EVENT)
);

if WAITINGJTASK_PTR <> nil then

INSERT_INTO(READY_QUEUE, WAITING_TASK_PTR) ;

until WAITING_TASK_PTR =
nil;

REQUEUE_AND_RESCHEDULE(RUNNINGjrASK_PTR".TASK_ID, READY);

asm popf end;

end;
(*

BROADCAST_EVENT *)

procedure START_PERIODIC_EVENT

(var THE_EVENT : EVENT; INTERVAL : TIME);

*
This routine starts the periodic signalling (by TASKING) of

*
specified at the specified interval- This routine cannot cau

* be suspended but a re-schedule may occur.

the event
*

se a task to *

(*
Pointer to the list of periodic events (possibly nil).

WALKING_PTR : PERIODIC_EVENTS PTR;

(
*

Amount of time between .

PERIOD_INTERVAL : longint;

begin (* START_PERIODIC_EVENT *)

Cli

end;
(*

asm *)

(* Compute period (in milliseconds)

with INTERVAL do

PERIOD INTERVAL := t

ssive signals on the event .

*)

(longint (DAYS)
* MILLISECONDS_PER_DAY +

longint (HOURS}
* MILLISECONDS_PER_HOUR +

longint (MINUTES}
* MILLISECONDS_PER_MINUTE

longint (SECONDS)
*
MILLISECONDS_PER_SECOND

longint (MILLISECONDS)

);

the event M

then

(* Insert element (i.e. create list} *)

new (WALKING_PTR) ;

with
WALKING_PTR*

do

begin

EVENT_PTR :- addr(THE_EVENT);

PERIOD := PERIOD_INTERVAL;

NEXT :- nil;

end;
(*
with. . . do *)

PERIODIC_EVENTS_LIST_PTR := WALKING_PTR;

end
(*
if . . .then *}

else

begin

WALKING_PTR :- PERIODIC_EVENTS_LIST_PTR;

while (WALKING_PTR".EVENTJPTR <> addr (THE_EVENT} ) and

(WALKING_PTR".NEXT <> nil) do

WALKING_PTR :
WALKING_PTR"

.NEXT;

(* There can only be one period for each event *)

if (WALKING
PTR"

. EVENT_PTR - addr (THE_EVENT) )

then

with RUNNINGJTASK
PTR" do

ERROR_HANDLER [ ILLEGAL_OPERATION] (TASK_ID)

else

begin
(* Insert element (always at the end of the list!) *}

new <
WALKINGJPTR"

. NEXT ) ;

WALKINGPTR :-
WALKINGPTR"

.NEXT;

with
WALKING_PTR"

do

begin

EVENT_PTR :- addr (THE_EVENT) ;

PERIOD :- PERIOD_INTERVAL;

NEXT :- nil;

end;
(
with. . .do *)

end;
(* if ... then. . .else *)

end;
(*
if ... then. . .else *)

REQUEUE_AND_RESCHEDULE {
RUNNING_TASK_PTR"

. TASK_ID, READY ) ;

asm popf end;

end;
(* START_PERIODIC_EVENT *}

procedure STOP_PERIODIC_EVENT

(var THE_EVENT : EVENT);

This routine stops the periodic signalling (by TASKING) of the event

specified. This routine cannot cause a task to be suspended but a

re-schedule may occur.

(* Pointer to the list of periodic events (possibly nil).

WALKING_PTR, PREVIOUS_PTR : PERIODIC_EVENTS_PTR;

begin
(* STOP_PERIODIC_EVENT *)

asm

pushf

cli

end;
<* asm *)

C Find the place in the list to delete the event )

PREVIOUS_PTR :- nil;

WALKING_PTR :- PERIODIC EVENTS_LIST_PTR;

while (WALKING PTR <> nil) and

(WALKING_PTR".EVENT_PTR <> addr (THE_EVENT) ) do

PREVIOUS_PTR :- WALKING_PTR;

WALKING_PTR : -
WALKING_PTR*

. NEXT;

end;
(*

while . . .do

*
)

(*
There must be one period for the event *)

if |PREVIOUS_PTR - nil) or
(PREVIOUS_PTR*

. EVENT_PTR <> addr (THE_EVENT) )

with RUNNING TASK
PTR"

do

ERROR_HANDLER[ILLEGAL_OPERATION) (TASK_ID)

begin

if PREVIOUS PTR <> nil

the.

PREVIOUS PTR
WALKING_PTR"

. NEXT

nil;PERIODIC EVENTS LIST PTR

dispose (WALKING_PTR7;

end;
(* if ... then. .. else *)

REQUEUE_AND_RESCHEDULE(RUNNING_TASK_PTR".TASK_ID, READY);

asm popf end;

end;
(*

STOP_PERIODIC_EVENT *)

procedure WAIT_ON EVENT

(............. ...7.... ................................ .......

(var THE_EVENT : EVENT);

This routine causes the calling task to be suspended wa

specified event to occur. If the event has already occu

calling task will immediately become ready, although a r

(*
WAIT ON EVENT *)

end;
(*

asm *)
if THE_EVENT = SIGNALED

then

THE_EVENT :- UNSIGNALED;

if TASKING_CONFIGURATION. PRIORITY INHERITANCE ENABLED then

CHECK OR ADD_PS0URCE_T0_LOCKED_LIST (addr (THE EVENT));

REQUEUE~AND_RSCHEDULE(RUNNINGjrASK_PTR".TASK_ID, READY) ;

end
(* if . . .then *}

else

begin

if TASKING_CONFIGURATION. PRIORITY INHERITANCE_ENABLED then

CHECK_OR_ADD_RESOURCE TO LOCKED~LIST (addr (THE EVENT));

CHECK_AND_SETUP_BLOCK(N0_TIME_DELAY, addr (THE_EVENT) );

end;
(* if ... then. .. else *)

asm popf end;

:nd;
(* WAIT ON EVENT *)

ocedure SIGNAL_BINARY_SEMAPHOR

(var SEM : BINARY SEMAPHORE);

tine performs an Up!) operation on the specified semaphore. If

tasks waiting on the semaphore then one is awakened. If there

a i ting then the semaphore is set.

begin (* SIGNAL_BINARY_SEMAPHORE *)

pushf

cli

end;
(*

asm *)

if SEM - 1

then

with RUNNING
TASK_PTR"

do

ERROR_HANDLER[ILLEGAL_OPERATION] (TASK_ID) ;

REQUEUE AND_PESCHEDULE(RUNNING_TASK_PTR".TASK_ID, READY);

end
|* if7. .then *}

else

SIGNAL_EVENT (EVENT (SEM) );

asm popf end;

end;
(' SIGNAL_BINARY_SEMAPHOR *)

irocedure WAIT ON_BINARY_SEMAPHORE

.............7..

(var SEM : BINARY SEMAPHORE);

*
This routine performs a Down() operation on the

*
If the semaphore is zero then the running task is s

*
non-zero then the semaphore is cleared.

specified semaphore.

ispended. If it is

begin (* WAIT_ON_BINARY_SEMAPHORE
'

WAIT ON EVENT (EVENT (SEM});

end;
{* WAIT_ON_BINARY_SEMAPHORE *;

cedure SIGNAL_CONDITION_VARIABLE

var C_VAR : CONDITION_VARIABLE) ;

This routine signals the condition variable specified, if there is a
'

task waiting on the condition variable then it is made ready (or one of

the multiple waiting tasks is made ready. If there are no tasks waiting

on the condition variable then the signal is lost.

Pointer to Task Control Block which is waiting on the eonditu

variable (may very well be nil).

WAITING_TASK_PTR : TASK_CONTROL_BLOCK_PTR;

begin
(* SIGNAL_CONDITION_VARIABLE *)

asm

cli

end;
(*

asm *)

WAITING TASK_PTR : F IND_AND_REMOVE

(

ANYJTASK,

(From the) BLOCKED_QUEUE ,

BECAUSE_THE_BLOCK WAS SIGNALLED,

[At) addr(CJVAR)

);

if WAITING_TASK_PTR <> nil then

INSERT INTO(READY_QUEUE, WAITING_TASK_PTR} ;

PEQUEUE_AND RESCHEDULE (RUNNING_TASK_PTR*.TASK_ID, READY);

asm popf end;

end;
(* SIGNAL_CONDITION_VARIABLE *)

procedure WAIT ON_CONDITION_VARIABLE

,.......*.....
T............T.................................

(var CJVAR : C0NDITI0NJ7ARIABLE) ;

110



This routine causes th calling task to become blocked. Because

become blocked Ju, aoon ae another t.ek signals the condition variable

begin (

WAIT_0N_CONDITI0N_VARIABLE ')

pushf

cli

end;
(*

asm *)

CHECK_AND_SETUP_BLOCK(NOJTIME DELAY,
asm popf end;

end;
(*

WAIT_ON_C0NDITI0N VARIABLE )

addr(CJVAR) ) ;

procedure SEND MESSAGE TO
j.....................T...................,,...,,..........

J
RECIPIENTJTASK : TASK_IDS; XMIT_MESSAGE_PTR : pointer);

This routine sends the message (actually the pointer) to the task by
placing it into the task's mailbox (which is automatically
necessary}. Although the calling task ca

message it is possible for

created

ot block while sending a the

reschedule to occur.

<*
Pointer to Task Control Block which is waiting on the message

(*

(may very well be nil).

I"*'*.**-"..........*...**.........................................

WAITINGJTASK_PTR : TASK_CONTROL_BLOCK_PTR;

(***".*.**"....*......*.*............,................,.,........,.
(*

Pointer to mailbox structure which is to receive the message.

RECIPIENT_MBOX_PTR : MAILBOX PTR;

(*
Pointer to message list elements, used to 'walk'

through the
lessage list until the end of the list is found (messages must be

(*
received in FIFO manner}. *

WALKINGJPTR : MESSAGE PTR;

1*

Temporary message pointer
(*

message list.

used to insert the message into the *

TEMP_PTR : MESSAGE_PTR;

begin (*
SEND_MESSAGE_TO *)

asm

cli

end;
(

asm *)

RECIPIENT_MBOX_PTR :- FIND_OR_CREATE_MBOX_FOR(RECIPIENT_TASK) ;

WALKING_PTR := RECIPIENTJ4BOX_PTR"

.CONTENTS;

(*
Find the end of the list, allocate storage and create link *)

If WALKING PTR = nil

then

begin

new(TEMP_PTR);

RECIPIENT_MBOX_PTR*. CONTENTS :- TEMP_PTR;

end
(* if . ..then *)

else

begin

while WALKING_PTR*.NEXT <> nil do WALKING PTR :-
WALKING_PTR*

.NEXT;

new
(WALKING_PTR*

. NEXT } ;

TEMP_PTR :-
WALKING_PTR"

.NEXT;

end;
(* if .. .then. . .else *)

(
*

Copy the mail into the recipient
'
s mailbox

*
)

TEMP_PTR*.INFO_ADDPESS :- XMIT_MESSAGE PTR;

TEMP_PTR".NEXT := nil;

(*
Tell the recipient that it is there, which enables interrupts *)

SIGNAL_SEMAPHORE(RECIPIENT_MBOX_PTR".SEM) ;

asm popf end;

end;
(* SEND_MESSAGE_TO *)

procedure RECEIVEJ4E5SAGE

(var RCV MESSAGE_PTR : pointer);

This routine retrieves a message (actually a pointer to a message

the caller's mailbox (which is created if necessary), if there

messages in the mailbox then nil is returned. The task cannot

blocked by calling this routine but a reschedule is possible.

TEMP_PTR : MESSAGE_PTR;

begin ( WAIT_AND_RECEIVE_MESSAGE *)

pushf

cli

end;
(

asm *)

RECIPIENT_MBOX_PTR : = FIND_OR_CREATE_MB0X_FOR (RUNNINGJTASK
PTR"

. TASK_ID) ;
(*

Check to see if there is mail to receive, which enables~interrupts *}
WAIT_ON_SEMAPHORE(RECIPIENT_MBOX_PTR".SEM) ;
(*

Copy the mail into the recipients buffer *)
TEMP_PTR :- RECIPIENT_MBOX_PTR". CONTENTS;

RCV_MESSAGE_PTR :- TEMP_PTR"

. INFO_ADDRESS;
("

Deallocate the mail storage *)

RCIPIENT_MBOX_PTR". CONTENTS :- TEMP PTR".NEXT;

dispose (TEMP_PTR) ;

asm popf end;

end;
(* WAIT__AND_RECEIVE_MESSAGE *}

procedure ENABLE_MOUSE_ACTIONS
...............................

(MOUSE_ACTIONS : word) ;

This routine enables the specified MS-Mouse events to be received by
'

the task which is (or will be} waiting to receive mouse actions.

begin (
ENABLE_M0USE_ACTIONS *)

cli

end; (
*
asm

*
)

if not MOUSE INSTALLED

then

with
RUNNING_TASK_PTR"

do

ERROR HANDLER[INSUFFICIENT_RESOURCES] (TASK ID]
else

if USER_MOUSE_EVENT_PTR - nil then

new(USER_MOUSE_EVENT_PTR) ;

USER MOUSE
EVENT_PTR"

:- UNSIGNALED;

end;
(* if. .7then *}

PUSH_MOUSE_EVENT HANDLER(MOUSE_ACTIONS, MOUSE_EVENT HANDLER};

ENABLE_MOUSE_DRIVER;

end;
(* if . . . then. . .else *)

asm popf end;

end;
(*

ENABLE_M0USE_ACTIONS *)

rocedure WAIT_AND_RECEIVE_MOUSE_ACTIONS

(var MOUSE_INFO : MOUSE_PARAMETERS) ;

outine receives MS-Mouse action parame

If none of the enabled mouse actions ha.

ed waiting for one (or more) action to 01

begin (*
WAIT_AND_RECEIVE_MOUSE_MESSAGE *)

cli

end;
{*

asm *)

if USER_MOUSE_EVENT_PTR - nil

then

with RUNNING
TASK_PTR"

do

ERROR HANDLER[INSUFFICIENT_RESOURCES] (TASK_ID) ;

REQUEUE~AND_RSCHEDULE(RUNNING_TASK_PTR*.TASK_ID, READY) ;

end
(* if7. .then *)

else

begin

WAIT_ON EVENT (USER_MOUSE_EVENT_PTR"|;
MOUSE INFO :- MOUSE_INFO_FROM_HANDLER;

end; (*~if .. .then. . .else )
asm popf end;

end;
(

WAIT_AND_RECEIVE_MOUSE_MESSAGE *)

tion WAIT ON READKEY cha.

*
This routine provides a means for an application task to perform I/O in

*
a
'blocking'

manner. This means that while there is no input from the PC
* keyboard the calling task is suspended, as soon as input arrives from the
* keyboard the caller is awakened and given the ASCII code of the key that
*
was pressed by the user (i.e.., a blocking equivalent of 'readkey').

Pointer to mailbox structure which ha.

very well point to empty mailbox) .

received the i assage (may *)

ailbox is empty *)

RECIPIENT MBOX PTR : MAILBOX_PTR;

(*

Temporary pointer used to extract the mail from the message list

TEMP_PTR : MESSAGE_PTR;

begin
(* RCEIVE_MESSAGE *)

asm

cli

end;
(*

asm *)
(*

Setup return value in casi

RCV MESSAGE PTR :- nil;

RECIPIENT_MBOX PTR :-

FIND_OR_CREATE_MBOX_FOR(RUNNINGJTASK_PTR*

.TA5K_ID} ;

(* Check to see if there is mail to receive *)

if RECIPIENT_MBOX_PTR".CONTENTS <> nil then

begin
(*

Copy the mail into the recipients buffer *)

TEMP_PTR :-
RCIPIENT_MBOX_PTR"

. CONTENTS;

RCV_MESSAGE_PTR :-
TEMP__PTR"

. INFO_ADDRESS;

(* Deallocate the mail storage *)

RECIPIENT MBOX
PTR"

. CONTENTS :- TEMP_PTR*.NEXT;

dispose (TEMP_PTR) ;

end;
(* if. . .then *)

REQUEUE_ANTJ_RESCHEDULE(RUNNING_TASK_PTR".TASK_ID, READY);

asm popf end;

end;
(* RCEIVE_MESSAGE *)

procedure WAIT_AND_RECEIVE_MESSAGE

(..................................

(var RCV_MESSAGE_PTR : pointer);

This routine retrieves a message (actually a pointer to a message) from
'

the caller's mailbox (which is created if necessary), if there are no

messages in the mailbox then the task is blocked waiting for the mailbox

to become non-empty, because of this the return pointer can never be nil.
'

Pointer to mailbox structure which has received the message (may

very well point to empty mailbox) .

RECIPIENT_MBOX_PTR : MAILBOX_PTR;

Temporary pointer used to extract the mail from the message list.*)

egister values to
*

}Intel 80xB6 register variables used to pass

software interrupt handler.

(*
WAIT_ON_READKEY *)

ell

end;
(
asm')

if USER_KEYBQARD_SEM_PTR - nil then

new(USER_KEYBOARD_SEM_PTR) ;
USER_KEYBOARD_SEM_PTR"

:- 0;
(* Flush keyboard buffer, throw away all characters in the buffer.

REGS. AH :- SOC;

REGS.AL :- $06;

REGS.DX :- $FFFF;

intr($16, REGS);

asm cli end;

end;
(* if . . .then *)

WAIT ON_SEMAPHOR(USER_KEYBOARD_SEM_PTR") ;
(

Using this service instead of
'readkey'

allows Fll F12 detection.

REGS.AX :- $0800;

intr($21, REGS);

asm cli end;

To ensure that the application will get extended keys the null part '

of the extended key is returned and the controlling semaphore is '

signaled to allow the application to come back and get the extended
'

part of the key without waiting.

WAIT_ON_READKEY :- chr (REGS.AL) ;

if REGS.AL - ordlNULL CHR) then

SIGNAL_SEMAPH0RE(USER_KEYBOARD_SEM_PTR");

asm popf end;

end;
(*

WAIT_0N_READKEY *1

Scheduler Handling Operatioi

procedure LOCK SCHEDULER;

This routine prevents all task rescheduling from occurring. Care must '

(* be taken to ensure that a call to UNLOCK_SCHEDULER is made for each call
'

(* to LOCK_SCHEDULER In order to maximize system performance, execution
(* time within 'locked

regions'

should be an absolute minimum.

(. ................................................................. ...........

Ill



begin (*
LOCK_SCHEDULER *)

pushf

cli

end;
(*

asm *)

inc ( IN_PREEMPTABLE_REGION } ;

asm popf end;

end;
(*

LOCK^SCHEDULER *)

procedure UNLOCK_SCHEDULER;

This routine allows task rescheduling to occur. Care must be taken to
ensure that this routine is only called after LOCK SCHEDULER has alreadv
been called.

- *

begin (*
UNLOCK_SCHEDULER )

asm

cli

end;
(*

asm *}

if IN_PREMPTABLE_REGION > 0

then

dec ( IN_PREEMPTABLE_REGION)
else

with RUNNINGJTASK_PTR" do ERROR_HANDLER [ILLEGAL OPERATION] (TASK ID) ;
asm popf end;

end;
(*

UNLOCK_SCHEDULER *]

End of user functions

t*

Default Error Handlers

st be 'far' because they are used as procedural variable,

type (******.....*. ......

(*
String used to create t

STAMP_STRING =

string [2"7 ] ;

procedure 0PEN_ERROR_L0G;

(
Creates (or appends) the TASKING er.

(*
the program executable file.

tamps for default er

log file in the .

Used to determine the directory of the applicati

that is where the error log file will be placed.

DIR dirstr; NAME EXT

begin {* OPEN_ERROR_LOG *)
(*

Open Error Log file (with append if possible) *)

fsplit (paramstr(O), DIR, NAME, EXT) ;

assign(ERROR_LOG, DIR + '
TASKING.

ERR'

) ;

(*SI-*) reset (ERR0R_LOG); (*$I+*)

if loresult - 0

then

append (ERROR LOG)

i TEME_STAMP : STAMP_STRING; near;

irns a time stamp in the form :
'
DD/MM/YYMHH:MM:SSaj

ar YEAR, MONTH, DAY, DAYJ3FJWEEK :

HOUR, MIN, SEC, SEC100TH

STAMP : STAMP_STRING;

TEMP : string[6J;

begin
(* TDXE_STAMP

*

(
* Date stamp

*
}

getdatelYEAR, MONTH

STAMP : -
' "

DAY, DAY OF WEEK) ;

STAMP :

STAMP := STAMP

STAMP := STAMP

STAMP := STAMP

STAMP := STAMP

STAMP ;= STAMP

chr (ord(MONTH div 10)

chr(ord(MONTH mod 10)

chr(ord(DAY div 10)

chr(ord(DAY mod 10)

chr(ord( (YEAR mod 100) div 10)
- chr(ord(YEAR mod 10) + ord('O')}

ordCOM);

ord('O'))

ord('O'));

ord ('i

(* Time stamp *)

gettime(HOUR, MIN, SEC, SEC100TH);

str(HOUR mod 12, TEMP);

if TEMP -
'0'

then

TEMP :-
'12'

else if HOUR < 10 then

TEMP :- TEMP +
'0'

;

STAMP := STAMP + TEMP + ':';

if MIN < 10 then STAMP := STAMP + '0';

str(MIN, TEMP};

STAMP :- STAMP + TEMP + ':';

if SEC < 10 then STAMP :- STAMP + '0';

str(SEC, TEMP);

STAMP :- STAMP + TEMP;

if (HOUR div 12} - 0

then

TIME_STAMP :- STAMP +
'am'

else

TIME_STAMP :- STAMP + 'pm';

end;
(* TIME_STAMP *)

procedure
TASK_ALREADY_ACTIVE_ERROR_HANDLER(TASK_ID : TASK_IDS).

begin
(* TASK_ALREADY_ACTIVE_ERROR_HANDLER *)

OPEN ERROR_LOG;

writeln (ERROR_LOG, TBXE_STAMP, ': ',
Warning' Task is already active [', TASK_:

close (ERROR LOG};

end;
(* TASK_ALREADY_ACTTVE_ERROR_HANDLER *)

procedure
INSUFFICIENT_RESOURCES_ERROR_HANDLER(TASK_ID

begin
(* INSUFFICIENT_RESOURCES_ERROR_HANDLER *)

OPEN ERROR_LOG;

writeln (ERROR LOG, TIME_STAMP, ': ',

Warning! Insufficient resources [ ', TASK_ID,

close (ERROR_LOG);

halt(SFF);

end;
(* INSUFFICIENT_RESOURCES_ERROR__HANDLER *)

request ignored.
'
) ;

request ignored.');

procedure
TASK_IS_NOT_ACTIVE_ERROR_HANDLER(TASK_ID TASK IDS) ;

begin
<* TASK_IS_NOT_ACTIVE_ERROR_HANDLER *)

OPEN_ERROR_LOG ;

writeln (ERROR_LOG, TIME_STAMP,
'
: ',

'Warning! Task is not active [', TASK_ID, '], request ignored.

close (ERROR LOG);

end;
(* TASK_IS_NOT_ACTIVE_ERROR_HANDLER *)

procedure
TASK_ALREADY_SUSPENDED_ERROR_HANDLER[TASK_ID : TASK_IDS

begin (*
TASK_ALREADY_SUSPENDED ERROR HANDLER *)

OPEN ERROR_LOG;

writeln (ERROR_LOG, TIME_STAMP, ': ',
'Warning! Task already suspended [', TASK ID,

close (ERROR_LOG);

end;
(*

TASK_ALREADY_SUSPENDED_ERROR_HANDLER *)

), request ignored.');

procedure ILLEGAL_TASK_ID_ERROR_HANDLER(TASK_ID : TASK_IDS);

begin (*
ILLEGAL_TASK_ID_ERROR_HANDLER *)

OPEN_ERROR LOG7

writeln(ERROR_LOG, TIME_STAMP, ': ',
'Warning! Illegal task identifier [', TASK_ID,

Close (ERROR_LOG) ;

end;
(*

ILLEGAL TASK ID ERROR HANDLER *)

equest ignored.');

:edure ILLEGAL_OPERATION_ERROR_HANDLER (TASK_ID : TASK_IDS ) ;

begin (
ILLEGAL_OPERATION_ERROR_HANDLER *)

OPEN_ERROR_LOG;

writeln (ERROR_LOG, TIME_STAMP, *: ',
'Error1 Illegal operation on task [', TASK_ID,
RUNNING TASK

PTR*

-TASK_ID, ']');

DESTROY {RUNNINGjrASK_PTR".TASK_ID) ;
close (ERROR_LOG) ;

end;
(*

ILLEGAL_OPERATION_ERROR_HANDLER *}

l, destroying task [',

procedure DEADLOCK_DETECTED_ERROR_HANDLER;

begin (*
DEADLOCK_DETECTED_ERROR_HANDLER *}

OPEN_ERROR_LOG;

writeln (ERROR_LOG, TIME_STAMP,
'
: ',

'Error1 Deadlock detected' Terminating application!
'

) ;

writeln(TIME_STAMP, ': ',
'Error' Deadlock detected'

Terminating application!');

close (ERROR_LOG) ;

halt (SFF};

end;
(*

DEADLOCK_DETECTED_ERROR_HANDLER *)

procedure PROGRAM__CANNOTjrERMINATE_ERROR_HANDLER;

begin
(*

PROGRAM_CANNOT TERMINATE ERROR HANDLER *)

OPEN_ERROR_LOG ;

writeln(ERROR LOG, TIME_STAMP, ': ',
Error1 Termination delayed, [

'

, NUMBER_OF_CHILD_PROGRAMS,

'], child program(s) active.');

close (ERROR_LQG);

end;
(*

PROGRAM_CANNOT_TERMINATE ERROR HANDLER *)

i TASKING HEAP ERROR HANDLER(SIZE ord) : integer

handler statuThe run-time systems expects the heap error

.nformation according to the following rules:

0 indicates failure, and causes a
run-time error to occur immediately.

1 indicates failure, and causes new( ) or getmem( ) to return a ni.

2 indicates success, and causes a retry (which could also cause anothe.

call to the heap error function).

begin ( TASKING HEAP ERAOR_HANDLER *)

if SIZE <> 0

then

begin

OPEN_ERROR_LOG ;

writeln (ERROR_LOG, TIME_STAMP, ': ',
'Error' Unable to allocate Heap storage for ', SIZE,

'

bytes.');

writeln(TIME_STAMP, ': ',
Error! Unable to allocate Heap storage for ', SIZE,

' bytes. M;
(*

Cause run-time error *)

TASKING_HEAP_ERROR HANDLER :- 0;

close (ERROR_LOG};

end
(* if . . .then *)

(*
False alarm *)

TASKING_HEAP_ERROR_HANDLER :- 2;

end;
(* TASKING_HEAP_ERROR_HANDLER *)

(* End of Default Error Handlers

CSF-

procedure REPORT_TASKING_STATISTICS; far;

{* This routine is linked into the exit procedure chain if TASKING

{*
statistics are to be reported.

(............ .......................................................... ......

const
(***.*...********.'*************************>

{* Allows quick and easy conversion between hexadecimal digits and

(*
the corresponding ASCII character.

j....................................................................

HEX_DIGIT : array [0..15J of char - (
'0'

,
'
1

'
,

*

2 '
,

' 3*
,

' 4 '
,

' 5'
,

'
6

'

,
'7'

,

'B', '9', 'A', 'B', 'C, 'D', 'E', 'FM

r...............................*...................................

[* IRQ. RPT header for hardware IRQs at application termination.

(... ........*..*..............**...**..........*.....*.. .............

IRQJ.EADER -

CR + LF +

'
Vector IRQ Interrupts Period (msec)

'
+

'
Frequency (Hz)

'
;

(* SERVICES. RPT header for software service calls at application

(* termination.
,,...........*......................*................... .............

SERVICE_HEADER -

CR + LF +

'
Vector(s) Service Calls Period |iuec)'t

'

Frequency (Hz)
'

;

j......................................................*..**.*..*....

(* TASKING. RPT header for tasks at application termination.

TASKING_HEADER 1 -
'

Tasks at Termination;';

TASKING HEADER~2 -
'

Task State Task
'
+

'Stack Size Stack Used Stack Used CPU Used';

TASKING_HEADER_3 -
' (Delayed Until) ID Priority

'
+

'
(words) (words) (I) (I) ';

TASKING HEADER 4 -
' '

+

(*
String used to convert long integers (double words) into

(*
with commas embedded, i.e., worst case is -2,147,483,647.

strings
*

*

LONGINT_STRING - string[14);

(*

Loop control variable of task IDs, allows all task IDs

(*
checked for activity so none are missed in task report.

to be *

ACTIVEJTASK : TASK_IDS;

Set used to search/access all TASK_IDs.

112



TASK_ID_SET : TASK_ID_SETS;

found in any of the *
)

ACTIVE_TASK_PTR : TASK_CONTROL_BLOCK PTR;

(*
Total application execution time (as reported by TASKING).

ELAPSED EXECUTION TIME : real;

(* Used in computing ELAPSED TIME.
(*..*.........*.......... ....7... ......................... .........

LCV, YEAR, MONTH, DAY, DAY_OF_WEEK, HOUR, MIN, SEC, SEC100 : word;

I*
Absolute stop time (as reported by TASKING).

STOP TIME : real;

[*
Total application execution time (as reported by MS-DOS) .

ELAPSED TIME : real;

(*
Amount of the CPU that the application i

CPU_PERCENT, TOTAL_CPU_PERCENT : real;

(*

Loop control variables used to report on interrupt handlers
(*
protected by TASKING (both hardware and software).

IRQ, INTERRUPT_NUMBR : integer;

Temporary variables i

same report parameter;

sed to detect

(makes a less

of interrupt with

red report ) .

PREVIOUS INTERRUPT_NUMBER, START, FINISH : integer;

PREVIOUS~SERVICE_CALLS : longint;

{*
Counts the number of unprotected interrupt handlers so that

(*
output will not wrap to next output line.

NUM UNPROTECTED : integer;

each tasks stack area, used to determine how much

ias actually used by the task.

MAX_STACK_USED : longint;

sed to determine how much

STACK_PERCENT, MAX^STACK^PERCENT : real;

Total amount of memory used by the application tasks for

[only counts tasks which are active at termination1}.

APPLICATION_STACK_SPACE : longint;

(* Text filename usi

{............. .......

REPORT : text;

function ADD_COMMAS

(.....................................

(NUMBER : longint) : LONGINT_STRING;

all reports generated by TASKING.

This procedure simply adds commas into the NUMBER and

the corresponding character string.

CH

LONGINT_STRING;

integer;

begin
(* ADD_COMMAS *)

str (NUMBER, TEMP_STR) ;

CH :- length(TEMP_STR}
- 3;

while CH > 0 do

begin

insert (',', TEMP_STR, CH + 1);

CH :- CH - 3;

end;
(* while. .do *}

ADD_COMMAS :- TEMP_STR;

end;
!* ADDjCOMMAS *)

begin
(* REPORT_TASKING_STATISTICS *>

(* Restore exit procedure *)

exitproc :- SAVE_EXIT;

(* Determine program termination time *}

getdate(YEAR, MONTH, DAY, DAYJ3FJWEEK) ;

gettime(HOUR, MIN, SEC, SEC100);

STOPJTIME :- 0.0;

for LCV :- 1 to MONTH-1 do

STOP TIME :- STOP TIME + DAYS_IN(LCV] ;

STOP TIME :- (((STOPJTDME + DAY)
* 24 + HOUR}

* 60 + MIN)

SEC + SEC100 / 100;

ELAPSED TIME :- STOPJTIME
- TASKING_STATISTICS. STARTJTIME;

if ELAPSEDJTIME - 0 then ELAPSEDJTIME :- -1;

{* Determine elapsed execution time *)

ELAPSED_EXECUTIONJTIME :- MILLISECONDJTICKS / 1000 (Sec);

if ACTUAL TASKING CONFIGURATION. STATISTICS in

[HARDWAP_INTERRUPT_STATISTICS, ALL_STATISTICS] then

begin

(* Create Hardware Interrupt Report *)

assign (REPORT,
'
IRQ.

RPT'

) ;

(*$I-*t rewrite (REPORT);
(*

$1**)

writeln (REPORT, IRQ_HEADER) ;

for IRQ :- 0 to SF do

with TASKING_STATISTICS do

begin

if IRQ < 8

then

write (REPORT, HEX DIGIT [ (IRQ + SOB} shr 4] :

HEX DIGIT[ (IRQ + SOB) and $0F])

else

write (REPORT, HEX DIGIT[(IRQ + 368) ahr 4] :

HEX DIGIT [(IRQ + 568) and SOF])

se IRQ of

$0 : write (REPORT, Timer 0 1;

SI : write (REPORT, Keyboard );

$2 : write (REPORT, Slave 8259 )."

$3 : write (REPORT, COM 1 );

$4 : write (REPORT, COM 2 );

Floppy Disk

LPT 1

Real-Time Cloc

Co-processor

Fixed Disk

', IRQ,

$6 : write (REPORT,
S7 : write (REPORT,
38 : write (REPORT,
5D : write (REPORT,
$E : write (REPORT,

else write (REPORT,
end;

(*
case. . .of *)

writefREPORT, HARDWARE
_

INTERRUPTS [IRQ] 9);

If KARDWARE_INTERRUPTS[IRQ] <> 0

then

writeln(REPORT, (ELAPSEDJTIME
* 1000 (mSec]

HAROWARE_INTERRUPTS [ IRQ} ) :

(HARDWARE INTERRUPTS [IRQ] /

ELAPSEDJTIME) : 20 : 2)

writeln(REPORT,
'N/A'

16,
'N/A'

: 20);

end;
(*
with. . .do *)

close (REPORT};

end;
{* if . ..then *)

if ACTUALJTASKING_CONFIGURATION. STATISTICS in

[MSDOS~SERVICES STATISTICS, ALL_STATISTICS] then

begin
(*

Create Software Interrupt Service Report *)

assign (REPORT, 'SERVICES.
RPT'

) ;

CSI-*) rewrite(REPORT);
{*

Sit*)

NUM_UNPROTECTED :- 0;

FINISH :- 0;

START :-
-1;

PREVIOUS INTERRUPT_NUMBER : - -1 ;

writefREPORT, CR, LF,
'
Unp.

for INTERRUPT_NUMBER : - 0 t<

if not (INTERRUPT_NUMBER

If START - -1

then

(IRQ div 10) ) ;

tected Interrupts:', CR, LF,
SFF do

PROTECTED_INTERRUPTS) then

INTERRUPT_NUMBER ,

INTERRUPT_NUMBER;

.then *)

START

FINISH

end
{* if

else

if ( INTERRUPT_NUMBER - PREVIOUS_INTERRUPT_NUMBER + 1)
then

FINISH :- INTERRUPT_NUMBEB

else

begin

if START = FINISH

then

writefREPORT,
'

', HEX_DIGIT[START shr 4],
HEX_DIGIT [START and SOF]};

inc (NUM_UNPROTECTED} ;

If (NUM_UNPROTECTED mod 25) - 0 then

writefREPORT, CR, LF,
'
');

end
{* if . . -then *}

HEX_DIGIT [START shr 4],

HEX_DIGIT [START and SOF],
'.. \HEX_DIGIT[ FINISH shr 4],

HEX_DIGIT [FINISH and SOF] ) ;

inc (NUM UNPROTECTED, 3);

if (NUMjUNPROTECTED mod 25) < 3 then

writefREPORT, CR, LF,
'

');

end;
(* if .. .then. . .else )

START :- INTERRUPTJflJMBER;

FINISH := INTERRUPT_NUMBER;

end;
(* if ... then. . .else *)

PREVIOUS_INTERRUPT NUMBER := INTERRUPT_NUMBER;

end;
[* if.. .then

writeln (REPORT, SERVICE HEADER);

FINISH :- 0;

START : 1;

PREVIOUS_SERVICE_CALLS :- -1;

PREVIOUS_INTERRUPT NUMBER := -1;

for INTERRUPT NUMBER := 0 to SFF do

if INTERRUPT_NUMBER in PROTECTED_ INTERRUPTS then

begin

if START - -1 then START :- INTERRUPT_NUMBER;

if ( [TASKING_STATISTICS . SERVICE_CALLS [ INTERRUPT_NUMBER] -

PREVIOUS_SERVICE_CALLS) and

( INTERRUPTJ^UMBER-- ( PREVIOUS_INTERRUPT_NUMBER + 1))} or

(PREVIOUS_SERVICE_CALLS - -1)

then

FINISH := INTERRUPT_NUMBER

else

with TASKING_STATISTICS do

begin

if START - FINISH

then

writefREPORT. KEX_DIGIT [START shr 4) : b,

HEX_DIGIT [START and SOF],
SERVICE CALLS [INTERRUPT_NUMBER] IB)

writefREPORT, HEX_DIGIT [START shr 4] : 4,

HEX_DIGIT( START and 50F], '..-,
HEX_DIGIT[FINISH shr 4J,

HEX_DIGIT[ FINISH and $0F],
SERVICE_CALLS [ INTERRUPT_NUMBER1 : 16 ) ;

if SERVICE_CALLS[INTERRUPT_NUMBER] <> 0

writelnfREPORT, (ELAPSEDJTIME
* 1000 (mSec) /

SERVICE_CALLS [INTERRUPT NUMBER]}

: IB : 2,
(5ERVICE_CALLS[INTERRUPT_NUMBER] /

ELAPSEDJTIME) : 20 :2)

writelnfREPORT,
'N/A'

: 18,
'N/A'

: 20);

end;
(*
with. ..do *)

START :- INTERRUPT_NUMBER;

FINISH :- INTERRUPT_NUMBER;

end;
(* if .. .then. . .else )

PREVIOUS_SERVICE CALLS :>

TASKING STATISTICS. SERVICE_CALLS [INTERRUPT_NUMBER] ;

PREVIOUS_INfERRUPT NUMBER :- INTERRUPT NUMBER;

end;
(* if. . .then

If START <> FINISH

then

with TASKING_STATISTICS do

begin

writefREPORT, HEX DIGIT[START shr 4] : 4,

HEX_DIGIT [START and 50F], '..-,

HEX_DIGIT[ FINISH shr 4),

HEX_DIGIT[ FINISH and SOF],

SERVICE CALLS [INTERRUPT_NUMBERJ 16);

if SERVICE_CALLS[INTERRUPT_NUMBER] <> 0

then

writelnfREPORT, (ELAPSED TIME
* 1000 (mSec) /

SERVICE~CALLS[INTERRUPT_NUMBER)) : IB I,

(SERVICE CALLS [INTERRUPT_NUMBER] /

ELAPSED TIME) : 20 :2)

else

writeln (REPORT,

end;
(*
with. . -do *}

close (REPORT);

end;
(* if- . .then )

'N/A'

18,
'N/A'

20) ;

if ACTUAL_TASKING_CONFIGURATION.STATISTICS in

113



COOPERATIVE

writeln (REPORT,

writeln (REPORT,

[TASK_STATISTICS, ALL_STATISTICS] then

with TASKING STATISTICS do

begin
{*

Create Task Activity Report *)
APPLICATION_STACK_SPACE : 0;

MAX_STACK_PERCENT :- 0;
TOTAL_CPU_PERCENT :- 0.0;

assign(REPORT, "TASKING.RPT' ) ;

CSI-*) rewrite (REPORT) ;
(*

$1+*}
if ACTUAL_TASKING_CONFIGURATION.TASKING_MODEL '

then

write (REPORT, 'Cooperative Multi-tasking')
else

write (REPORT, 'Preemptive Multi-tasking'
) ;

writeln (REPORT,
'
Statistical Information');

writefREPORT, -Priority Inheritance ');
If ACTUALJTASKING_CONFIGURATION. PRIORITY INHERITANCE ENABLED
then

writelnfREPORT,
'Enabled'

)

writelnfREPORT,
'Disabled'

) ;
case ACTUAL_TASKING_CONFIGURATION.PRIORITY_SCHEDULING POLICY of

STATIC_PRIORITIES : writelnfREPORT,
'
-Static Priorities

'
);

ROTATING_PRIORITIES : writelnfREPORT,
'

-Rotating Priorities');
end;

(*
case. . .of *)

writeln(REPORT) ;
'

Task Activity: '
) ;

'
Context Switches ', CONTEXT_SWITCHES : 12,

'

(-', round (CONTEXT_SWITCHES / ELAPSEDJTIME),
'
per second)

'
) ;

COOPERATIVE_CONTEXT SWITCHES : 12,
' (- '

, round (COOPERAT IVE_CONTEXT_SWITCHES /

ELAPSEDJTIME), per second)');
*

Preemptive -
'
,

CONTEXT_SWITCHES-COOPERATIVE_CONTEXT SWITCHES: 12,
1

(-', round ( (CONTEXT_SWITCHES -

COOPERATIVE_CONTEXT_SWITCHES } /

ELAPSEDJTIME),
'
per second)');

if ACTUAL_TASKING_CONFIGURATION. TASKING MODEL = PREEMPTIVE then

writelnfREPORT,
'

Target Time Slice - ',
ACTUALJTASKINGJTONFIGURATION. TARGETJTIMESLICE,

if CONTEXT_SWITCHES <> 0 then

writelnfREPORT,
'

Achieved Time Slice -
-',

roundfELAPSEDJTIME / CONTEXT_SWITCHES
*

le6),

if HARDWARE_INTERRUPTS[0] <> 0 then

writelnfREPORT,
'

Available CPU Bandwidth - ',
(100.0

*
NULL. CLOCK TICKS /

HARDWAR_INTERRUPTsT0)) : 6 : 3,
'
');

if NUMBER_OF_PERIODIC_EVENTS <> 0 then

writeln (REPORT,
'

Periodic Event Faults - ',
(100.0

*
NUMBERJ3F_PERIODIC_EVENTS_MISSED /

NUMBER_OF_PERIODIC_EVENTS) : 6 : 3,
'

f);

writelnfREPORT, TASKING_HEADER_1) ;

writelnfREPORT, TASKING HEADER_2) ;

writelnfREPORT, TASKING~HEADER_3) ;

writelnfREPORT, TASKING_HEADER_4 ) ;

for TASK_ID_SET :- low(TASK_ID_SETS) to high (TASK_ID_SETS) do

for ACTIVEJTASK :- (ord(TASK ID SET shl 8) + low(byte)) to

(ord(TASK~ID~SET shl 8) + high(byte)) do

if lo (ACTIVEJTASK) in ALLOCATED_TASK_IDS [TASK_ID_SET] then

begin

if RUNNING_TASK_PTR".TASK_ID - ACTIVEJTASK

begin

ACTIVEJTASK_PTR :- RUNNING_TASK_PTR;

write (REPORT,
'

Running ',
' '

: 8);

end C if . . .then *)

else

writelnfREPORT,

writeln(REPORT);

writelnfREPORT,

writelnfREPORT,

writelnfREPORT,

writelnfREPORT,

writeln(REPORT);

writelnfREPORT,

writeln (REPORT,

writeln (REPORT,

Heap Information (bytes):');

Total Available: ',

ADD_CQMMAS fTOTAL_AVAILABLE_HEAP) : 7

Used for Application Stacks: ',
ADD^COMMAS (APPLICATION_STACK_SPACE )

Available to Application: ',

ADD COMMAS (TOTAL AVAILABLE_HEAP -

APPLICATION STACK_SPACE)

Exec

Effect!

seconds
'
) ;

Absolute

seconds
'
) ;

:ion Time : ') ;

ELAPSED_EXECUTION_TIME

ELAPSED TDME : 7 2,

f ACTIVE_TASK_PTR

then

ACT IVE_TASK_PTR

:- FIND_AND_REMOVE

(
~

ACTIVE_TASK,

(From the) READY QUEUE,

UNCONDITIONALLY,

~

THERE_IS_NO_BLOCK TO_MATCH

};

nil

if ACTIVE_TASK_PTR

then

begin

ACTIVE_TASK_PTR :-

(

F IND_AND_REMOVE

(

ACTIVE TASK,

(From the) BLOCKED_QUEUE,

UNCONDITIONALLY,

THERE_IS_NO_BLOCK TO_MATCH

);

FIND AND REMOVE

ACTIVE TASK,

(From the) DELAYED_QUEUE,

UNCONDITTONALLY ,

THERE_IS NO_BLOCK_TO_MATCH

};

'rite (REPORT,
' Delayed -',

ACTIVE_TASK PTR".

WAITING FORT.ABSOLUTEJTIME

if. *)

else *)

end C
else

writefREPORT,

end;
f* if. ..then.

with ACTIVE
TASK_PTR"

begin

MAX STACK_USED :- I

while memw[seg(STACK_PTR*) ofs(STACK_PTR")

MAX STACK USED) - DEFAULT_STACK_VALUE do

inc(MAX~STACKJJSED, 2);

dec (MAX_STACK_USED, 2 ) ;

STACK SIZE :- STACK SIZE div 2;

MAX STACKJJSED :- STACK_SIZE
- (MAX_STACK_USED div 2);

if PRIORITY > high|USER_PRIORITIES) then

PRIORITY :- high fUSER_PRIORITIES) ;

if STACK_SIZE - 0

then

STACK PERCENT :- -1

else

STACK_PERCENT := MAX_STACK_USED / STACK_SIZE
* 100;

if STACK PERCENT > MAX STACK_PERCENT

then MAX_STACK_PERCENT :- STACK_PERCENT;

CPU_PERCENT :- 100
* CLOCKJTICKS 7

HARDWAR_INTERRUPTS [ 0 ] ;

TOTAL_CPU_PERCENT :- TOTAL CPU_PERCENT * CPU_PERCENT;

writelnfREPORT, TASK_ID : 4, PRIORITY : B,

STACK_SIZE : 11,
MAX_STACK_USED : 11,
STACK PERCENT : 11 : 1,
CPU_PERCENT : 10 : 1);

inc (APPLICATION STACK_SPACE, STACK SIZE
* 2);

end;
(*
with. . -do"*)

end;
(* if. - .then *)

writeln (REPORT) ;

close (REPORT);

end;
|*
with. . .do *)

end;
(* REPORTJTASKING_STATISTICS *)

procedure TASKINGEXIT ; far;

*
This routine is linked into the exit procedure chain to ensure that all

* interrupt vectors that this unit hooks are unhooked before terminating.

*
The exit procedure chain is executed no matter what has happened to cause

*
the program to terminate.

* The first time this routine is executed it is because the
'main*

of the
*
user application terminated, at that time all tasks become alive. Any

*
subsequent execution of this routine actually terminates the program.

*
If the application

'main'
for any task) terminates abnormally then the

'

*
program will terminate (whether tasks are alive or not}.

Loop control variables used to res I

protected by TASKING (both hardware and :

rrupt handlers
*

)

IRQ, INTERRUPT_NUMBER

begin C TASKING_EXIT *}
(* Application~is trying to terminate, wait until it can if necessary...

*

if NUMBER_OF CHILD PROGRAMS <> 0 then

begin

PROGRAM_CANNOTJTERMINATE_ERROR_HANDLER ;

while NUMBER_OF_CHILD_PROGRAMS <> 0 do

ACTUAL_TASKING_CONFIGURATION.TASKING_MODEL :- PREEMPTIVE;

end;
(* if.. .then *>

end; (
* if . . . then *

)

' more context switches are performed *)

(*
Unprogram the timer chip *}

asm cli end;

port [TIMR_CONTROL PORT) :- SYSTEM_TIMER_CONTROL WORD,

port [TIMER_0_DATA PORT] :- lo (MSDOSJTIMER 0JVALUE);

port [TIMERJD_DATA~PORTl :- hi (MSDOS_TDMER~0_VALUE) ;

C Restore revectored interrupt handler *)

With OLD_REVECTORED_INTERRUPT do

begin

memw [50000 : REVECTORED_INTERRUPT NUMBER shl 2) :- OFFSET;

memw[$0000 : (REVECTORED_INTERRUPT_NUMBER shl 2) + 2] :- SEGMENT;

end;
(*
with. . .do *}

C Restore H/W Interrupt Handler (s) }

for IRQ :- 0 to 7 do

with HARDWARE_HANDLER[IRQ] do

memw[50000 : ( (S08 + IRQ) shl 2)) :- OFFSET;

memw[$0000 : | ($08 + IRQ) shl 2) + 2] :- SEGMENT;

end;
(*
with. . .do *)

for IRQ := 8 to 15 do

with HARJJWARE_HANDLER[IRQ] do

begin

memw[$0000 : ( (S68 + IRQ) shl 2}] :- OFFSET;

memw[30000 : { ($6B + IRQ) shl 2) ? 2) :- SEGMENT;

end;
(*
with. . .do *)

[* Restore S/W Interrupt Handlers *)

for INTERRUPT_NUMBER :- 0 to SFF do

if INTERRUPT_NUMBER in PROTECTED_INTERRUPTS then

with INTERRUPT_VECTOR_KANDLER[INTERRUPT_NUMBER] do

memw[$0000 : (INTERRUPT_NUMBER shl 2)] :- OFFSET;

memw[SQ0O0 : (INTERRUPT_NUMBER shl 2) + 2) :- SEGMENT;

end;
(*
with. . .do *)

(*
Restore exit procedure? *)

if ACTUAL TASKING_CONFIGURATION. STATISTICS <> NO_STATISTICS

then

exitproc :- 8REPORTJTASKING STATISTICS

else

exitproc :- SAVE_EXIT;

asm sti end;

end;
(*

TASKING_EXIT *>

procedure TASKING_START; far;

C This routine is linked into the exit procedure chain to ensure that all

(* interrupt vectors that this unit needs are hooked before initiating
multi-

(* tasking. The exit procedure chain is executed no matter what

(* happened to cause the program to terminate, but only nori

(* initiates TASKING.

ormal termination
'

(*

{* Creates a convenient way to install the TASKING hardwan

(*
interrupt handlers.

(.....*.............*................*...........
..................

HARDWAR_INTERCEPTORS : array[2..15] of pointer -

<

"IRQ_2_INTERCEPTOR, 8IRQ_3_INTERCEPTOR, "IRQ_4_INTERCEPTOR,

"IRQ_S_INTERCEPTOR, 8IRQ_6_INTERCEPTOR, eiRQ_7_INTERCEPTOR,

9lRQ_B_INTERCEPTOR, 8IRQ_9_INTERCEPTOR, 8IRQ_A_INTERCEPTOR,

8IRQ~B INTERCEPTOR, 8IRQ_C_INTERCEPTOR, 8IRQ_D_INTERCEPTOR,

eiRQ~E_INTERCEPTOR, 8IRQ_F_INTERCEPTOR

);

C Loop control variables used to save interrupt handlers

(*
by TASKING (both hardware and software}.

IRQ, INTERRUPT_NUMBER : integer;

protected
*

*

(* 80x86 registers user to make MS-DOS system calls.
*

REGS : registers;

(* Used to compute new value for the system clock timer. *

TEMP TBMER_0_VALUE : longint;

114



C Used In computing ELAPSEDJTIME.

LCV, YEAR, MONTH, DAY, DAY_OF_WEEK, HOUR, MIN, SEC, SEC100

(*

Temporary INI file configuration.

INI_FILE_CONFIGURATION : CONFIGURATION;

lon PROCESS_INI_FILE(var CONFIG : CONFIGURATION) : boolean;

Finds and reads the program INI file sear

if one is found then the TASKING parameter

file configuration can be over-ridden by
program

'main'
.

:hing for a TASKING :

i are taken from it.

parameters changed

The following are used to parse the INI file lines of text.C

C

TASKING_LABEL

COMMENT_DELIMITER

TRUE_FLAG

FALSE_FLAG

PRIORITY_SCHEDULING POLICY_CONTROL -

STATIC_FLAG

ROTATING_FLAG

PRIORITY INHERITANCE CONTROL

ENABLED_FLAG

DISABLED_FLAG

STATIST ICS_CONTROL

NO_STATISTICS_FLAG

TASK_3TATISTICS_FLAG

MSDOS_SERVICES_STATISTICS_FLAG

HARDWARE_ INTERRUPT STATISTICS_FLAG -

ALL_STATISTICS_FLAG

TASKING_MODEL_CONTROL

COOPERATIVE_FLAG
PREEMPTIVE_FLAG

TARGET TIMESLICE CONTROL

-
'

[TASKING]
'
;

-
'
TRUE '

;
'
FALSE

'

;
'
PRIORITYSCHEDULINGPOLICY '

;

'STATIC;

'ROTATING';
1 PRIORITYINHERITANCE '

;

'ENABLED';

'DISABLED';

'STATISTICS';

NOSTATISTICS';

'TASKSTATISTICS';
MSDOSSERVICESSTATISTICS'

;
'
HARDWAREINTERRUPTSTATISTICS

'

'ALLSTATISTICS';

'TASKINGMODEL';
'COOPERATIVE'

;

'PREEMPTIVE';
'
TARGETTIMESLICE

'

;

{*
State variable that defines the

(* is being parsed.

lection of the INI file that *)

UNDEFINED,
TASKING_SECTION

) = UNDEFINED;

INI file parsing variables.

INI_FILENAME

LINE

INI_FILE

POSITION

ion UP STRINGfS

of the string passed >

responding to the upper case

LCV

begin {* UP_STRING *)

UP_STRING[0) :- S[0];

for LCV := 1 to length(S) do

UP_STRING[LCV] := upcase f S [LCV] ) ;

end;
(* UP_STRING *)

procedure BOOLEANJVALUE (CONTROL : string; var PARAMETER : boolean);

(* This procedure examines the global LINE searching for CONTROL, if

(*
it is found, it's boolean value is set based on the rest of the LINE.

*)

begin
f* BOOLEANJVALUE *)

if UP_STRING(copy(LINE, 1, POSITION - 1)) - CONTROL then

begin

delete (LINE, 1, POSITION);

if (UP STRING(copy(LINE, 1, length (TRUE_FLAG} ) ) - TRUE_FLAG) or

(UP-STRING(copy(LINE, 1, length (ENABLED_FLAG) ) ) - ENABLED_FLAG]

PARAMETER := true

else

If (UP_STRING (copy (LINE,

(UP_STRING (copy (LINE,

DISABLED_FLAG) then

PARAMETER :- false;

end;
(* if . . .then*)

end;
(* BOOLEANJVALUE *)

procedure INTEGERJVALUE (CONTROL : string; ^.f^^^^R^longirit } ;

^

(* This procedure examines the global LINE searching for CONTROL,

(
it is found, it's real value is set based on the rest of the LINE.

length (FALSE_FLAG) ) } - FALSE_FLAG)

length (DISABLED_FLAG) }) =

procedure STATISTICSJVALUE

(CONTROL : String; var PARAMETER STATISTIC_OPTI0NS) ;

This procedure e.

t is found then

me of the valid

i the global LINE searching fo

*ing value is examined to see

.c gathering modes.

begin (*
STAT1STICSJ/ALUE *)

if UP_STRING(copyfLINE, 1, POSITION -

1)} = CONTROL then

delete (LINE, 1, POSITION);

while LINE(length(LINE) ) - ' '
do delete(LINE, length (LINE) , 1);

POSITION :- 1;

if UP_STRING(LINE) = NO_STATISTICS_FLAG

then

PARAMETER :- NO STATISTICS

else if UP STRING(LINE) - TASK_STATISTICS_FLAG

then

PARAMETER :- TASK_STATISTICS

else if UP_STRING(LINE) - MSDOS_SERVICES_STATISTICS_FLAG

PARAMETER :- MSDOS_SERVICES_STATISTICS

else if UP_STRING(LINE) - HARDWARE_INTERRUPT_STATISTICS_FLAG

then

PARAMETER := HARDWAR_INTERRUPT_STATI5TICS

else if UP_STRING(LINE) - ALL_STATISTICS_FLAG

then

PARAMETER :- ALL_STATISTICS;

end; C if . . . then
*

)

end;
(*

STATISTICS VALUE *]

edure MODEL_VALUE (CONTROL : string; PARAMETER : TASKING_MODELS ) ;

* This procedure examines the global LINE searching for CONTROL, if

* it is found then it's string value is examined to see if it matches

one of the valid tasking models.

begin C MODELJVALUE *)
if UP_STRING(copy(LINE, i, POSITION - 1}) = CONTROL then

begin

delete (LINE, 1, POSITION);

while LINE[length(LINE}] -
' '

do delete(LINE, length (LINE) , IM

POSITION :- 1;

if UP_STRING(LINE) - COOPERATIVE FLAG

then

PARAMETER :- COOPERATIVE

else if UP_STRING(LINE) = PREEMPTIVE^FLAG

PARAMETER ;= PREEMPTIVE;

end;
(* if. . .then *)

end; f MODEL_VALUE *}

begin C PROCESS_INI_FILE *)

PROCESS_INI_FILE :- false;

INI FILENAME :- paramstr (0} ;

delete (INI_FILENAME, length (INI_FILENAME) -

Z. 3);

INI_FILENAME :- INI_FILENAME +
'
INI

'
;

assign (INI FILE, INI_FILENAME) ;

CSI-*) reset (INI_FILE}; CSI+*>

if loresult 0 then

begin

PROCESS_INI FILE :- true;

while not eof (INI_FILE) do

begin

readln(INI_FILE, LINE);

POSITION :- pos(COMMENT_DELIMITER, LINE) ;

if POSITION <> 0 then

delete (LINE, POSITION, length (LINE) ) ;

if UP_STRING(copy(LINE, 1, length (TASKING_LABEL) ) ) -

TASKING_LABEL then

PARSING ;- TASKING SECTION;

readln(INI_FILE, LINE);

POSITION ;- pos (COMMENT DELIMITER, LINE);

if POSITION <> 0 then

delete (LINE, POSITION, length (LINE) );

end;
(* if . . .then *)

POSITION :- posf'-', LINE);

if (POSITION <> 0) and (PARSING - TASKING_SECTION) then

with CONFIG do

begin

POLICYJvALUE

(

BOOLEAN VALUE

STATISTICS VALUE

Used to convert text to integers.

VALUE : longint; CODE integer;

begin
(*

REAL VALUE *)

if UP STRING (copy (LINE, 1, POSITION
- 1}) - CONTROL then

begin

delete (LINE, 1, POSITION);

POSITION :- 1;

while LINE [POSITION) in ['0'..'9'] do inc (POSITION) ;

val (copy (LINE, 1, POSITION - 1}, VALUE, CODE);

if CODE - 0 then PARAMETER :- VALUE;

end;
{* if . . .then*)

end; C REALJVALUE *)

procedure POLICYJVALUE
....,*....*.*..

<#

(CONTROL : string; var PARAMETER : PRIORITY_SCHEDULING_POLICIES) ;

This procedure examines the global LINE searching for CONTROL, if

it is found then it's string value is examined to see if it matches

one of the valid priority modes.
.........

begin
<* POLICY VALUE *)

if UP_STRING(copy(LINE, POSITION - 1)) - CONTROL then

begin

delete (LINE, 1, POSITION);

while LINE (length (LINE)] - ' ' do delete (LINE, length (LINE) , 1);

POSITION :- 1;

if UP_STRING(LINE)
- STATIC_FLAG

then

PARAMETER :- STATIC_PRIORITIES

else if UP_STRING(LINE) - ROTATING_FLAG

then

PARAMETER :- ROTATING_PRIORITIES;

MODEL VALUE

INTEGER VALUE

};

end;
(*

Tasking Section *)

end;
(*
while. . .do *}

closeflNI FILE);

end;
(* if.7. then *)

end;
(* PROCESS_INI_FILE *)

begin
I* TASKING_START *)

if (exitcode - 0} and (erroraddr - nil)

then

begin

INI_FILE CONFIGURATION :- TASKING_CONFIGURATION;

if PROCESS_INI_FILE ( INI__FILE_CONFIGURATION)

then
(* 'Take'

INI file configuration parameters *)

ACTUAL TASKINGj:ONFIGURAT ION :- INI_FILE_CONFIGURATION

else

C
'Take'

user configuration parameters *)

ACTUALJTASKING_CONFIGURATION :- TASKINGJCONFIGURATION;

TASKING CONFIGURATION :- ACTUAL_TASKING_CONFIGURATION;

* Pass control to
'next'

exit procedure *)

xitproc :- 6TASKING_EXIT;

gettimefHOUR, MIN, SEC, SEC100);

getdatefYEAR, MONTH, DAY, DAY_OFJWEEK} ;

with TASKING STATISTICS do

115



begin

STARTJTDME :- 0.0;
for LCV :- 1 to MONTH-1 do

STARTJTDME :- STARTJTIME + DAYS IN [LCV]
STARTJTDME :- (((STARTJTIME + DAY7 *

24

end;
,*

with... do

7'
*
" * "^ * " + SEC + SEC10 ' '

C Save revectored interrupt handler *1

getintvec(REVECTORED_INTERRUPT NUMBER
OLD_REVECTORED_INTERRUPT.VECTOR) ;

C Chain into S/W Interrupt Handlers *)
for INTERRUPT NUMBER :- 0 to 3FF do

ifbeNiSBBUPf-NUMBER ^ PH0TECTED-INTERRUPTS then

getintvec (INTERRUPT_NUMBER,
INTERRUPT_VECTOR_HANDLER[ INTERRUPT NUMBER] .VECTOR) -

^
^tTtC|1N!ERRUPT-WUMBER' @SW INTERRUPT INTERCEPTOR);

ena,
(
n . . . then *

)

(*
Chain into Keyboard handler *)

getintvec (KEYBOARD_INTERRUPT_NUMBER,
HARDWAR_KANDLER [ 1 ] . VECTOR ) ;

setintvec(KEYBOARD_INTERRUPT_NUMBER, *KEYBOARD_INTERCEPTOR) ;

C Chain into IRQ 2 through IRQ 7 handlers *}
for IRQ := 2 to 7 do

begin

getintvec (508 ? IRQ, HARDWARE_HANDLER [IRQ) .VECTOR} ;
setintvec($08 + IRQ, HARDWARE^INTERCEPTORS [IRQ] ) ;

(*
Chain into IRQ 8 through IRQ 15 handlers )

for IRQ := B to 15 do

begin

getintvec ($68 + IRQ, HARDWARE
_HANDLER[IRQ) .VECTOR} ;

setintvec($68 + IRQ, HARDWARE_INTERCEPTORS [IRQ] ) ;

(*
Enable re-shceduling when creating tasks *)

ALLOW_RESCHEDULE_IN_CREATE :- true;

(*
Chain into Clock handler }

asm cli end;

with HARDWARE_HANDLER[0] do

begin

OFFSET :- memw[SO0O0: SYSTEM TIMER INTERRUPT NUMBER shl 2)
SEGMENT :- memw[SO0O0 : (SYSTEM~TDMER~INTERRUPT NUMBER shl 2)+2

end;
(*
with. ..do *}

~

CLOCKJVECTOR :- HARDWARE HANDLER [0] .VECTOR;
memw[50000 : SYSTEMJTIMER INTERRUPT_NUMBER shl 2)

ofs (CLOCK_INTERCEPTOR) ;
raemw[S0OO0 : (SYSTEM_TDMER_INTERRUPT NUMBER shl 2) + 2] :-

seg(CLOCK_INTERCEPTOR) ;

{*
Enforce target timeslice range restrictions (if necessary) *)

with ACTUAL_TASKING_CONFIGURATION do

if TARGETJTIMESLICE < MINIMUM TIMESLICE

then

TARGETJTIMESLICE :- MINIMUM TIMESLICE

else

if TARGETJTDMESLICE >

TARGETJTIMESLICE : =

(*
Compute new timer counter value *)

TEMP_TIMER_0_VALUE := round (TIMER_CLOCK FREQUENCY / le6 *

ACTUALJTASKINGJZONFIGURATION. TARGETJTIMESLICE);

(*

Verify that the tim>

if TEMP_TIMER_0_VALUE :

then

NEW_TIMER_0_VALUE :- ONE_MSEC TDMER_0_VALUE

else

NEW_TIMER_0_VALUE :- TEMPJTIMER_0_VALUE;

(*
Establish system clock scaling factors *}

TIMER_PERIOD :- NEW_TIMER_0_VALUE /

TIMER_CLOCK_FREQUENCY [Sec]
* lei

Reprogram the timer chip *)
port [TIMER_CONTROL_PORT]
port [TTMER_0_DATA_PORT]
port [TIMER_0_DATA_PORT]

C Talk about a 'goto'... *

asm imp DISPATCHJTASK end;

nd
(* if . . .then *)

- SYSTEM_TIMER_CONTROL_WORD;
lo (NEWJTIMER_0_VALUE) ;

hi(NEW~TIMER 0 VALUE};

This is the TASKING unit initialization, there is not much to do except

setup the system stack and install the exit procedure and interrupt

handlers.

memavail;

(* Clear the null task stack *)

fillchar(NULL.STACK_PTR", NULL.STACK_SI2E, byte (DEFAULT_STACK_VALUE) ) ;

(* Initialize TASK_ID array )

for TASK_ID_SET :- low(TASK_ID_SETS) to high(TASK_ID_SETS) do

ALLOCATED_TASK_IDS [TASK_ID_SBT] : - [ J ;

(*
Install exit procedure *)

SAVE_EXIT :- exitproc;

exitproc :- 8TASKING_START;

heaperror :- 8TASKING_HEAP_ERROR_HANDLER;

end.
(*

TASKING_INITIALIZATION *)

116



9. Appendix B Genetic Algorithm Source Code

9.1 RTOS-APP.PAS
program REAL PLICATION ;

(*
This program interprets a

C file to configure itself to
(*

design has been executed a

the design time restraints

i INI file and a CSV (Comma separated '

implement a multitasking design. After
:eport is generated which indicates how

C

C
CSA+

C3B-

CSD+

C

(*5L+

(*

CSF-

C3G-

C$1-

(*SM $6000,50000,100000
CSN-

1*50-

C5Q-

CSR-

C5S-

CST+

CSV-

CSX+

C

Compiler Options (Ver. 7.0)
Word Alignment

Short Circuit Boolean Evaluation

Debug Code Generation ON (Sort of}
Requires /V option to TPC to activ

Local Debug symbols ON (Sort of)
Requires /V option to TPC to activ

Far calls only as needed always

Generic 80xB6 code only
I/O Checking OFF

Memory (Stack, Minheap, Maxheap)

Software Emulation of 80xB7

No 80x87 run-time emulation

Overlays NOT allowed

Overflow Checking OFF

Range Checking OFF

Stack Checking OFF

Force Typed '@'
references

Var-string Checking OFF

Enable Extended syntax

Limit on the number of tasks allowed, basically the internal data

structure must fit within 64k, this limitation restricts the number

of tasks.

MAX TASKS

The application will execute for a

longest task period times this fact<

results gathered are statistically .

length of time equal to

c. This will ensure that

ignifleant .

EXECUTION_DWELL_TIME FACTOR

The absolute execution of the application is limited so that

results can be gathered in a reasonable amount of time.

MAXIMUM DWELL TIME 60;
(

Seconds *)

Intertask communication is accomplished via TASKING resources (e.g
events, semaphores, messages, condition variables) , the resources

can eitehr be recieved or signaled by the task.

RESOURCE ACTIONS - (SIGNAL RESOURCE, RECEIVE RESOURCE);

RESOURCEJTYPES -

(

MESSAGE_RSOURCE, SEMAPHORE_RESOURCE,

BINARY_SEMAPHORE_RESOURCE, EVENT_RESOURCE ,

CONDITION_VARLABLE_RESOURCE, GENERIC_RESOURCE

* The tasks are allowed to communicate with each other, this

*
structure defines the manner in which that communication can

*
place.

COMMUNICATION SPECIFICATION >

Not all tasks use all (or any) of

resources, this element is used to

active for each task.

DEFINED : booleai

RSOURCE_NAME : string [25];

communicati'

The TASKING types are used for all intertask communications, this

typemark defines those

The user defines the reource by
to determine when the same resoui

single task.

text string name, this is used

e is being used by more than a

* If a message is being used as the communication mechanism

*
the task ID of the task that is going to receive the messag

*
needed, this element holds this information (if applicable).

RESOURCE TASK ID : TASK_IDS;

The most important specifcation parameter for the resource

the absolute time from the beginning of the period) that

intertask communication is to take plcae.

RESOURCE TDME : word;

The actual intertask communication

allocated by the task itself.

rce is dynamically

case RESOURCEJTYPE

MESSAGE_RESOURCE

SEMAPHORE_RESOURCE : (SEM_PTR

BINARY_SEMAPHORE_RESOURCE : (B_SEM_PTR

EVENT_RESOURCE : (EVENT PTR

CONDITION VARIABLE_RESOURCE : (C_VAR~PTR

GENERIC_RESOURCE : (RESOURCE PTR

end;
(* COMMUNICATION SPECIFICATION *}

"longint) ;

"SEMAPHORE) ;

"BINARY_SEMAPHORE) ;

-EVENT) ;

*CONDITION_VARIABLE) ;

pointer) ;

*
Depending on the timing requirements of the task, the task is

* classified into one of the following categories.

* Note: All of the following timing descriptions assume that the

* workload time is less than (or equal to} the task period.

* The diagrams are
*not* to scale, only relative timing

* information is intended to be conveyed.

TASK_CATEGORIES <

Case II - Proactive task - deadline occurs during the task

execution, i.e., the task has a critical point in its

PROACTIVE,

before the 'deadli:

*
Deadline

*
Workload

*
Period

*
Time

Deadline

Workload

Period

Reactive task - deadline occurs after the task has

finished its execution, i.e. the critical event is

outside the realm of this task. It does not actually
perform the critical operation but the timing of that

operation is critical to the execution (actually next
'

execution) of this task.

1

H

Deadline

Workload

nve task -

no deadline. The tas

: work but does not have a crit

: (other than the implicit deadln

merely performs

al deadline to

of periodicity) .

1

H

e 14 -

Background task -

no deadline, no period. The task

performs continuous work, since it never completes a

cycle it "cannot* be late. A task such as this will

consume resources and force the application to execute
'

at 100* CPU utilization.

; 1Deadline

Workload

Time

BACKGROUND) ;

All of the information about the task is maintained in this data '

tructure. The task design and intertask constructs are maintained
'

-ere as well as all performance monitoring parameters.

TASK_SPECIFICATION - record

..............................

C Used to allow messages to i sent between the ta

TASK_ID : TASK_IDS;

C Used to allow the task priorities to be reported at termination.

TASK_PRIORITY : USER_PRIORITIES;

(*
Used to determine which task ID the user wants the message sent

C to (if messages are being used) . Also used when the report file

C is generated to make it more user friendly (i.e. the report is
(

made in terms of the users task names).

C

TASK NAME tring[25],-

the characteristics of the task it is categorized

correct statistics are computed for the task. Not <

s are valid for all task characteristics.

TASK CATEGORY : TASK CATEGORIES;

C Amount of time between .

,.... ......................

PERIOD : word;

of the task.

i the beginning of the tasks execution to its
(*
'critical tim

................

DEADLINE : word;

C How
'important'

the deadlin*

C the deadline is critical}, 1
( be 'nice'), linear scale for

is: 10 - Hard Deadline (meeting the '

< Soft (meeting the deadline would
'

.11 other values.

,. ........ ........

DEADLINE HARDNESS .10;

Each task is allowed to have up to two intertask communication
*

resources (for obvious reasons, each must include both types of
'

communication actions).

1..2] of COMMUNICATION_SPECIFICATION;

[*
As the various timing requirements of the tasks are monitored,

(* the application records how well the requirements are met using
(* the following data structure.
{* ............................................................ .......

PERIODIC_TDME_MONITOR, DEADLINE_TDME_MONITOR : record

Number of tii irred at the

SUCCESSFUL : longint;

of times that the event occurred.

TOTAL : longint;

end;
f*

TIME_M0NIT0R *)

end; C TASK SPECIFICATION

Used for creating the supervisor task.

The application report file is generated if the program command

line is blank. If anything is on the command line then *no*
report

report file is generated. Whether the file is generated or not the

result is returned via the MS-DOS errorlevel.

GENERATE RPORT_FILE : boolean;

117



The main database for the application, all ta

specified by the information in this array.

SK : array[l. .MAXJTASKS] of TASKJSPECIFICATION;

The number of tasks that the user has specified in the .CSV

NUMBER_OF_TASKS : integer;

C The largest task period is used to determine th

C the application, this variable hold that value.

MAXTMUM__MSEC_PERIOD : integer;

ion time of

(*
Name of this program .EXE file, used to determine the filenames of

C the .RPT, .INI and .CSV files.

(**...............*......*.......................,..,.,.....,....,...

PROGRAM_NAME : string;

procedure SUPERVISOR_TASK(TASK_ID : TASK_IDS; PRIORITY : USER_PRIORITIES) ; fa

This task is 'not*
specified by the user

task is needed to bring the application t

produce the .RPT file. In addition, this

to the total application timeliness.

(i.e. .CSV file). Instead this

an orderly shutdown and to

task sets the MS-DOS errorlevel

going to be allowed to
'

EXECUTIONJT IME : TIME;

(*
The number of seconds that the application is going to execute .

*

DWELL_SECONDS : integer;

<*
The file handle for the application report.

*

REPORT : text;

(*

Loop Control Variable for accessing all

(*
specification database.

TASK_LCV : integer;

tasks in the task
*

The
'timeliness'

of the applicatu

following areas of execution.

computed for each of the
('

C

PERIODICITY_RESULT, DEADLINE_RSULT, APPLICATION RESULT : record

TIMELINESS : real;

NUMBER_OF_TIMES : integer;

end; C TIMELINESS *)

begin (* SUPERVISORJTASK *}
(*
Calculate application dwell time *)

DWELL_SECONDS := round (MAXTMUM_MSEC PERIOD
*

EXECUTION_DWELL_TIME_FACTOR /

1000);

If DWELL SECONDS > MAXIMUM_DWELL_TIME then haltfl);

the application for the dwell ti

- DWELL_SECONDS div 60;
= DWELL_SECONDS mod 60;
- DWELL SECONDS;

results more ace

(* Calculate a time delay to

with EXECUTIONJTIME do

DAYS := 0;

HOURS

MINUTES

DWELL_SECONDS

SECONDS

MILLISECONDS :- 0;

end;
(*
with. . -do *)

(*
Wait for dwell time to elapse *)

WAIT_FOR_DELAY|EXECUTION_TIME) ;

(*

Destroy all application tasks [makes

for TASK_LCV : 1 to NUMBER_OF_TASKS do

DESTROY(TASK[TASK_LCV] .TASK_ID) ;

with PERIODICITY_RESULT do

begin

TIMELINESS :- 0.0;

NUMBER_OF_TLMES := 0;

end;
(*
with. . . do *)

with DEADLINE_RESULT do

begin

TIMELINESS :- 0.0;

NUMBER_OF_TIMES :- 0;

end;
(*
with. . .do )

with APPLICATION_RESULT do

begin

TIMELINESS :- 0.0;

NUMBER_OF_TIMES :- 0;

end;
(*
with. . -do *)

for TASK_LCV :- 1 to NUMBER_OF_TASKS do

with TASK[TASK_LCV) do

with PERIODIC_TIME_MONITOR do

begin

if TOTAL <> 0 then

PERIODICITY_RESULT. TIMELINESS :- PERIODICITY_RSULT. TIMELINESS

SUCCESSFUL / TOTAL
* 100;

inc ( PERIODICITY_RESULT .
NUMBER_OF_TIMES ) i

end; C with. . .do *)

case TASK_CATEGORY of

PROACTIVE,
REACTIVE :

begin

With DEADLINE_TIME_MONITOR do

begin

if TOTAL <> 0 then

DEADLINE_RESULT. TIMELINESS :- DEADLINE_RESULT. TIMELINESS

SUCCESSFUL / TOTAL
* 100 *

(1 - DEADLINE_HARDNESS / 10);

inc(DEADLINE_RESULT.NUMBER_OF_TIMES) ;

end;
(
with. . -do *)

end; C Proactive | Reactive Tasks *}

PASSIVE : begin (* Passive Task *) end;

BACKGROUND : begin C Background Task *) end;

end; C case. . .of *}

end;
(* with. . -do *)

if pERIODICITY_RESULT.NUMBER_OFJTIMES <> 0 then

with APPLICATION_RESULT do

begin

TIMELINESS :- PERIODICITY_RESULT. TIMELINESS + TIMELINESS;

NUMBER OFJTIMES :- PERIODICITY_RESULT. NUMBER OF TIMES +

NUMBERJDFJTDMES;

end;
(*
with. . .do *)

if DEADLINE_R5ULT.NUMBER_0F_TDMES <> 0 then

with APPLICATION_RESULT do

TIMELINESS := DEADLINE_RESULT.TIMELINESS + TIMELINESS;

NUMBER OFJTIMES :- DEADLINE RESULT . NUMBER_OF TIMES +

NUMBER_OF_TDMES;

end;
(*
with. . .do *)

with APPLICATION_RESULT do

if NUMBER_OF_TIMES <> 0 then

TIMELINESS :- TIMELINESS / NUMBER_OFJTIMES;

If GENERATE_REPORT_FILE then

begin
(*
Create Report File *)

assign(REPORT, PROGRAM_NAME + '.RPT');

(*SI-*1 rewrite (REPORT); CSI+ *}
if ioresuit <> 0 then haltfl);

writelnfREPORT,
*

Individual Task Timeliness');

for TASK_LCV : 1 to NUMBER_0F TASKS do

with TASK[TASK_LCV] do

writelnfREPORT,
'

Task Name: ', TASK_NAME,

', Priority - ', TASK_PRIORITY) ;

with PERIODICJTIME MONITOR do

begin

writefREPORT,
'

Periodicity: (', PERIOD,
' mSe.

'
= ', SUCCESSFUL, '/', TOTAL);

if TOTAL <> 0 then

writelnfREPORT,
'
f , SUCCESSFUL / TOTAL

*

100 : 2 : 2, ')'};

end;
(*
with. . .do )

case TASK_CATEGORY of

PROACTIVE,
REACTIVE :

with DEADLINE_TIME_MONITOR do

begin

write (REPORT,
'

Deadline: f
'

, DEADLINE,
' = ', SUCCESSFUL, V, TOTAL);

if TOTAL <> 0 then

writelnfREPORT,
'

(', SUCCESSFUL / TOTAL
*

100 : 2 : 2, ')');

end;
(*
with... do *)

PASSIVE : begin C Passive Task } end;

BACKGROUND : begin (*
Background Task *) end;

end;
(*
case. . .of *)

writelnfREPORT) ;

end;
f*
with. . .do *)

writeln(REPORT);

writeln (REPORT,
'

Average Task
Timeliness'

) ;

with PERIODICITY_RESULT do

if NUMBER_OF_TIMES <> 0 then

writelnfREPORT,
'

Periodicity: ',

'4');

with DEADLINEJ1ESULT do

if NUMBER_OF_TIMES <> 0 then

writelnfREPORT,
'

Deadline:

writelnfREPORT);

writelnfREPORT,
'
Application Timeliness = ',

APPLICATIONJ^ESULT. TIMELINESS : 2 2,
'
1

'
) ;

close (REPORT} ;

end;
(* if.. .then *}

{*
shut down the application in order to provide exit code... *)

halt ( round (APPLICATION_RESULT. TIMELINESS) );

end;
(* SUPERVISORJTASK *}

procedure GENERAL_TASK(TASK_ID : TASK_IDS; PRIORITY : USER_PRIORITIES) ; fa;
(............ ...... .......................................;...............

(* This task is used to emulate all user application tasks. It does th.

f*
by assuming the characteristics of the user task specification.

These are the absolute delays, they ;

well the task performed.

evaluating how *)

PERIODIC DELAY, DEADLINE DELAY

The periodic execution of the task

event is used to accomplish this.

.s handled by TASKING,

PERIODIC EVENT

evaluating performance.

STARTJTIME, STOPJTIME : longint;

(for "each*
periodic

ay [1..6J of record

The relative delay for the specific event (from the previous

event) .

(* The ac

C

al critical event classific

MILESTONE : (

NOT APPLICABLE,
DEADLINE_EXPIRES ,

WORKLOAD_EXPIRES,

WAIT_FOR_RESOURCE_l ,

SIGNAL RES0URCE_1,
WAIT FOR_RESOURCE_2 ,

SIGNAL_RES0URCE_2) ;

end;
<* CRITICAL *)

C

Loop Control Variables used to create the critical

(... ...................................... .............

TDME_LCV, INSERT : integer;

RES0URCE_ACTI0NS;

integer) ;

* This routine searches the ta

If it is found, the tasks ar

* is not found, a new resource

sks'

resources

made to point

is created.

for

to

the

the

resource specified.
*

same resouce, if it *

*

var

C

C

C

FO

C

Indicates the existanc

of the application free

than one task) .

e of thi;

all that

critical

resources

event within the events
*

can be shared by more
*

SUD : boolean;

Loop Control Variable to searcr all existing task specifications.*

TASK LCV : integer;

118



*
Check for existing resource *)

or TASK_LCV : - 1 to MAXJTASKS do

begin

if not ((ACTION - RECEIVE_RESOURCE) and (NUMBER - 1)) then
with TASK[TASK_LCV] . INTERTASK_COMMUNICAT ION [RECEIVE RESOURCE 11 do

1 f [BF.sniinrp. ptb <i nin
' '

if (RESOURCE_PTR -

(RESOURCE NAME

nil)

TASK[TASK_ID) .

INTERTASK_COMMUNICATION [ACTION, NUMBER]
RSOURCE_NAME) then

TASK[TASK_ID] .

INTERTASK_COMMUNICATION [ACTION, NUMBER] . RESOURCE PTR =

RESOURCE_PTR;
FOUND := true;

end;
( if . . .then *)

f not ({ACTION -

SIGNAL_RESOURCE) and (NUMBER - 1)} then
with TASK[TASK_LCV] . INTERTASK_COMMUNICATION[SIGNAL RESOURCE, 1] do
if (RESOURCE_PTR <> nil)

and

{RESOURCE_NAME -

TASK[TASK_ID) .

INTERTASK_COMMUNICATION [ACTION, NUMBER].

RESOURCE_NAME) then

begin

TASK[TASK_ID) .

INTERTASK__COMMUNICATION [ACTION, NUMBER] .RESOURCE PTR :-

RESOURCE_PTR;
FOUND :- true;

end;
(*
if . . .then *)

.f not ((ACTION - RECEIVE_RESOURCE) and (NUMBER - 2)) then
with TASK[TASK LCV] . INTERTASK_COMMUNICATION[RECEIVE RESOURCE, 2) do

if (RSOURCE~PTR <> nil)

= TASK[TASK_ID] .

INTERTASK_COMT-lUNrCATI0N [ACTION, NUMBER) .

RESOURCE__NAME ) then

begin

TASK[TASK_ID] .

INTERTASK_COMMUNICATION [ACTION, NUMBER] . RESOURCE_PTR :-

RESOURCE_PTR;

FOUND :- true;

end;
(* if. . .then *)

if not ((ACTION - SIGNAL_RSOURCE) and (NUMBER - 2)} then

with TASK[TASK_LCV] . INTERTASK_COMMUNICATION[SIGNAL_RSOURCE, 2] do

if fRSOURCE_PTR <>

(RESOURCE NAME

nil)

TASK[TASK_ID) .

INTERTASK_COMMUNICATION [ACTION, NUMBER]

RESOURCE_NAME) then

TASK[TAK_ID] .

INTERTASK_COMMUNICATION [ACTION, NUMBER] . RESOURCEPTR :=

RESOURC_PTR;

FOUND := true;

end;
(* if . . .then *]

end; f
* for. . . to. . . do

*

)

if not FOUND then

With TASK[TASK_ID) . INTERTASK_COMMUNICATION [ACTION, NUMBER] do

case RESOURCEJTYPE of

MESSAGE_RESOURCE : getmem(pointer (MSG_PTR) , sizeof (longint) ) ;

SEMAPHORE_RESOURCE :

begin

getmem(pointer|SEM PTR), sizeof (SEMAPHORE) ) ;
SEM_PTR*

:- 1;

end;
{* Semaphore *)

B INARY_SEMAPHORE_RESOURCE

begin

getmemlpointer (B_SEM_PTR) ,

B_SEM_PTR"
:= 1;

end;
(*

Binary Semaphore *)

EVENT_RESOUR.CE :

getmera (pointer 1EVENT_PTR) ,

EVENT_PTR" := SIGNALED;

end;
(* Event *)

CONDITIONJVARIABLE_RESOURCE

getmemfpointer (C_VAR_PTR) ,

end;
(*

case. . .of *)

FIND OR CREATE_RESOURCE *)

of (BINARY_SEMAPHORE) };

of (EVENT) );

lzeof (CONDITION VARIABLE) );

end ; {

begin
f* GENERALJTASK *)

with TASK(TASK_ID] do

begin

(* Initialize time sequences *)

for TIME_LCV : 1 to S do

with CRITICAL [TDME_LCV] do

begin

with DELAY do

begin

DAYS :- 0;

HOURS := 0;

MINUTES :- 0;

SECONDS :- 0;

MILLISECONDS :- 0;

end;
(*
with. . -do *)

MILESTONE := NOT_APPLICABLE;

end; C 'ith. .do *)

(* Determine critial time sequence (absolute times onlyM *)

if (DEADLINE <- WORKLOAD} and (WORKLOAD < PERIOD) then

begin

TASK CATEGORY :- PROACTIVE;

with~CRITICAL[l) do

begin

DELAY.MILLISECONDS :- DEADLINE;

MILESTONE :- DEADLINE_EXPIRES;

end; C with. . .do -)

with CRITICAL[2] do

begin

DELAY.MILLISECONDS :- WORKLOAD;

MILESTONE :- WORKL0AD_EXPIRES;

end;
{*
with. . -do *)

end
(* if. . -then *}

else if (WORKLOAD < DEADLINE) and (DEADLINE <- PERIOD) then

begin

TASKJCATEGORY : REACTIVE;

with CRITICAL[1] do

begin

DELAY.MILLISECONDS :- WORKLOAD;

MILESTONE :- WORKLOAD EXPIRES;

end;
(*
with. . .do )

with CRITICAL[2] do

begin

DELAY.MILLISECONDS :- DEADLINE;

MILESTONE :- DEADLINE_EXPIRS;

end;
f*
with. . .do *}

end
(* if . , .then *}

else if (WORKLOAD < PERIOD) and (PERIOD <- DEADLINE) then

begin

TASK_CATEGORY :- PASSIVE;

with CRITICAL[1] do

begin

DELAY.MILLISECONDS :- WORKLOAD;

MILESTONE :- WORKLOAD_EXPIRS;

end;
(*
with. . .do *)

end
(* if . . .then *)

else if (WORKLOAD - PERIOD) and (PERIOD <- DEADLINE) then

TASK_CATEGORY :- BACKGROUND;

with CRITICAL[1) do

begin

DELAY.MILLISECONDS :- WORKLOAD;

MILESTONE :- WORKLOAD_EXPIRES;

end;
(*
with. - .do *)

end
(* if. . .then *)

else

halt (1);

(*
Add resources to critical milestone list *)

with INTERTASK_C0MMUNICATI0N[RCEIVE_RSOURCE, 1] do

if DEFINED then

begin

FIND 0R_CREATE_RE50URCE(RECETVE_RES0URCE, 1);
TIME~LCV :- 1;

while (TDME LCV < 6) and

(RESOURCE TIME >= CRITICAL [TDME_LCV] . DELAY.MILLISECONDS) do

inc(TIME_LCV);

for INSERT :- 6 downto TDME_LCV+1 do

CRITICALflNSERT] :- CRITICAL [ INSERT-1 ] ;
with CRITICAL [TDME_LCV) do

begin

DELAY.MILLISECONDS := RESOURCEJTIME;

MILESTONE :- WAIT_FOR_RESOURCE_l ;

end;
f*
with... do *)

end; C with. . .do *}
with INTERTASK COMMUNICATION [SIGNAL RESOURCE, 1] do

if DEFINED then

FINDj"R_CREATE_RESOURCE(SIGNAL_RESOURCE, 1);

TIME_LCV :- 1;

while (TIME_LCV < 6) and

(RESOURCEJTIME >= CRITICAL [TIMEJ^CV] .DELAY.MILLISECONDS) do

inc(TEME_LCV);

for INSERT :- 6 downto TDME_LCV+1 do

CRITICAL [INSERT) :- CRITICAL[INSERT-1] ;
with CRITICAL[TIME_LCV] do

DELAY.MILLISECONDS :- RESOURCEJTIME;

MILESTONE := SIGNAL_RES0URCE_1;

end;
(*
with. . .do *)

end;
(*
with. . .do *)

with INTERTASK COMMUNICATION [RECEIVE_RSOURCE, ^] do

if DEFINED then

begin

FIND OR_CREATE_RESOURCE(RECEIVE_RESOURCE, 2) ;

TIME~LCV := 1;

while (TIME_LCV < 6} and

(RESOURCE_TDME >- CRITICAL [TIME_LCV] . DELAY .MILLISECONDS)
do

inc (TIME_LCV) ;

for INSERT := 6 downto TIME_LCV+1 do

CRITICAL (INSERT) := CRITICAL [ INSERT-1 ) ;
with CRITICAL [TLME_LCV] do

DELAY.MILLISECONDS :- RESOURCE TIME;

MILESTONE := WAIT FOR_RESOURCEj2 ;

end; C with. . .do *)

end;
(*
with. . .do *>

With INTERTASK_caMMUNICATION(SIGNAL_RESOURCE, 2] do

If DEFINED then

begin

FIND_OR_CREATE_RESOURCE(SIGNAL_RSOURCE, 2) ;

TTME_LCV :- 1;

while (TIME_LCV < 6) and

(RESOURCEJTIME >- CRITICAL [TDME_LCV] .DELAY.MILLISECONDS) do

inc(TTME_LCV);

for INSERT :- 6 downto TIME LCV+1 do

CRITICAL[INSERT] :- CRITICAL [ INSERT-1 ) ;

with CRITICAL [TDME_LCV] do

DELAY.MILLISECONDS := RESOURCEJTIME;

MILESTONE : SIGNAL_RESOURCE_2;

end;
(*
with. . .do *)

end;
(*
with. . .do *)

(*
Setup absolute deadline timer *)

with DEADLINE_DELAY do

begin

DAYS :- 0;

HOURS :- 0;

MINUTES := 0;

SECONDS :- 0;

MILLISECONDS - DEADLINE;

end;
(*
with. . .do *)

C Setup Periodic Event *)

PERIODIC_EVENT :- UNSIGNALED;

with PERIODIC_DELAY do

DAYS := 0;

HOURS := 0;

MINUTES :- 0;

SECONDS :- 0;

MILLISECONDS :- PERIOD;

end;
f*
with. . .do *)

C Setup relative delays *)

for TIME_LCV :- 6 downto 2 do

CRITICAL [TIME_LCV] .DELAY.MILLISECONDS :-

CRITICAL [TDME_LCV) .DELAY.MILLISECONDS -

CRITICAL [TDME_LCV-1] .DELAY.MILLISECONDS;

{* Start emulating the task behavior *)

START_PERIODIC_EVENT(PERIODIC_EVENT, PERIODICJDELAY) ;

repeat

(' Perform and evaluate delays (as appropriate) *)

STARTJTIME :- GET_MILLISECOND_TICKS;

for TIME_LCV :- 1 to 6 do

with CRITICAL [TIME_LCV) do

begin

case MILESTONE of

NOT APPLICABLE

W0RKL0AD_EXPIRES

DEADLINE_EXPIRES :

begin

PREEMPTABLE DELAY (DELAY ) ;

STOP TIME :- GET_MILLISECOND_TICKS;

if (STOPJTIME -

STARTJTIME) <-

DEADLINE_DELAY.MILLISECONDS then

inc (DEADLINE_TDME_MONITOR. SUCCESSFUL) ;

inc(DEADLINE TDME__M0NIT0R.TOTAL} ;

end;
(* if . . .then *T

WAIT_F0R RES0URCE_1 :

with TASK[TA5K_ID].

INTERTASK_COMMUNICATION[RCEIVE_RESOURCE, 1] do

case RESOURCEJTYPE of

MESSAGE_RESOURCE :

WAIT_AND RECEIVE_MESSAGE (pointer (MSG_PTR) ) ;

SEMAPHORE RESOURCE :

WAIT_ON_SEMAPHORE
(SEM_PTR"

) ;

BINARY SEMAPHORE RESOURCE :

119



WAIT_ON_BINARY_SEMAPHORE(B SEM PTR")-

EVENT_RESOURCE :

WAIT_ON_EVENT (
EVENT_PTR"

) ;

CONDITIONJVARIABLE^RESOURCE :

waitjdn_condit ion VARIABLE | C VAR PTR*)
end; C case... of *)

-
_

"

SIGNAL_RES0URCE_1 :

with TASK[TASK_ID] .

INTERTASK_C0MMUNICATI0N[SIGNA1 RESOURCE, 1] do
case RESOURCEJTYPE of

"~ '

MESSAGE RESOURCE :

SIGNAL_SEMAPHORE(SEM PTR");

BINARY_SEMAPHORE_RESOURCE :

SIGNAL_BINARY_SEMAPHORfB SEM
PTR"

)
EVENT_RESOURCE :

SIGNAL_EVENT (
EVENT_PTR"

) ;

CONDITION_VARIABLE_RESOURCE :

SIGNAL_CONDITION_VARIABLE(C VAR PTR")'

end;
(*
case... of *)

~

WAIT_F0R_RES0URCE_2 :

with TASK[TASK_ID] .

INTERTASK_COMMUNICATION[RECEIVE RESOURCE, 2] do
case RESOURCE TYPE of

MESSAGE_RSOURCE :

WAIT_AND_RECEIVE_MESSAGE (pointer (MSG PTR) } ;
SEMAPHORE_RSOURCE :

WAIT_ON_SEMAPHOR (SEM_PTR*
) ;

BINARY_SEMAPHORE_RESOURCE :

WAIT_ON_BINARY_SEMAPHOR(B SEM PTR"};
EVENT_RSOURCE :

WAIT_ON_EVENT(EVENT_PTR"} ;

CONDITION_VARIABLE_RESOURCE :

WAIT_ON_CONDITION_VARIABLE(C VAR PTR");

end;
(*

case. . .of )
SIGNAL_RES0URCE_2 :

with~TASK[TASK_ID] .

INTERTASK~COMMUNICATION[SIGNAL_RESOURCE, 2] do
case RESOURCEJTYPE of

MESSAGE_RESOURCE :

SEND MESSAGE_TO(RESOURCE_TASK_ID, pointer (MSG PTR)};
SEMAPHORE_RESOURCE :

SIGNAL_SEMAPHORE (SEM_PTR"

) ;

BINARY_SEMAPHORE_RESOURCE :

SIGNAL_BINARY_SEMAPHORE(B SEM PTR");
EVENT_RSOURCE :

S IGNAL_EVENT {
EVENT_PTR"

) ;

CONDITIONJVARIABLE RESOURCE :

SIGNAL_CONDITION~VARIABLE(C_VAR_PTR");
end;

(*
case. . .of *)

else
(* Do Nothing -) ;

end;
(*

case. . .of *}
end;

(* for. . .to. . .do *}

WAIT_ON_EVENT ( PERIODIC^EVENT ) ;

STOPJTIME : = GET_MILLISECOND_TICKS;
if (STOPJTIME -

STARTJTIME) <- PERIODIC_DELAY.MILLISECONDS then

inc ( PERIODICJTTME_MONITOR. SUCCESSFUL}7
mc[PERIODIC_TIMEJ40NIT0R. TOTAL) ;

until false;

end;
(*
with... do *)

end;
(*

GENERALJTASK *)

procedure PROCESS_APPLICATIONJTASK_SPECIFICATION_FILE;

C This reoutine parses the .CSV file and
crea'

(
*
database and creats the application tasks .

C Definition of the initial priority assignment gene (other

C definitions come directly from the TASKING unit).

,. .............................................................

PRIORITY ASSIGNMENT ALGORITHMS - (

All tasks are initially assigned the

UNIFORM_ASS IGNMENT ,

RANDOM ASSIGNMENT,

All tasks are initially assigned random priorities

Task priorities are assigned based on ex-

execution rate implies higher priority.

RATE MONOTONIC ASSIGNMENT,

sk priorities are assigned based on execution deadlii

lier execution deadline implies higher priority.

DEADLINE_MONOTONIC_ASS IGNMENT ,

Task priorities are assigned based

workload implies higher priority.

rkload level: higher

WORKLOAD MONOTONIC ASSIGNMENT);

Used to create the application tasks.

(* Used when determining how the task priorities should be assigned.

INITIAL_PRIORITY_ASS IGNMENT : PRIORITY_ASSIGNMENT_ALGORITHMS;

C Used to get the random number generator seed so that the results

(*
are reporducible.

RANDOM_NUMBER_SEED : longint;

(* Used to assign initial priorities
(* Monotonic) .

Workload and Deadline *)

MAXDMUM_MSEC DEADLINE : integer;
MAXDMUMJ4SECJWORKL0AD : integer;

Used to hold the actual priorities of the application tasks

PRIORITIES rray [1 . .MAXJTASKS] of USER_PRIORITIES;

Loop Control Variable for creating all application tasks.

LCV : integer;

function UP_STRING(S : string) : string;

(* This routine returns a string corresponding to the upper

{* of the string passed to it.

var LCV ; integer;

begin (* UP_STRING )

UP_STRING(0] := S[0];

for LCV : 1 to length fS) do

UP_STRING[LCV] := upcase (S [LCV] ) ;
end;

f*
UP_STRING *)

procedure PROCESS_INI_FILE;

C This routine parses the .INI file to determine how the task prioritie:

C should be assigned as they are created.

The following are used to parseC
(*

APPLICATION_LABEL

COMMENT_DELIMITER

INITIAL_PRIORITY_ASSIGNMENT_CONTROL

RANDOM_NUMBER SEED_CONTROL

UNIFORM_ASSIGNMENT FLAG

RANDOM ASSIGNMENT FLAG

RATE_MONOTONIC_ASS IGNMENT FLAG

DEADL INE_MONOTONIC_ASS IGNMENT_FLAG

WORKLOAD MONOTONIC FLAG

the INI file lines of text.

'

[APPLICATION]
'
;

*
IN1TIALPRI0RITYASSIGNMENT

'

;
1 RANDOMNUMBERSEED'

;
'
UNI FORMASS IGNMENT

'

;
'
RANDOMASSIGNMENT

'

;
'RATEMONOTONICASSIGNMENT'

;

'
DEADL INEMONOTONICASSIGNMENT

'

'WORKLOADMONOTONICASSIGNMENT'

(*

State variable that defines

is being parsed.

ection of the INI file that

UNDEFINED,
APPLICATION_SECTION

) - UNDEFINED;

INI file parsing
<

LINE : string;

INI_FILE : text;

POSITION : integer;

ocedure ASSIGNMENTJVALUE (CONTROL : String;

var PARAMETER : PRIORITY ASSIGNMENT ALGORITHMS);

This procedure exai

it is found then it '

one of the valid pm

Lnes the global LINE searching for CONTROL, if

string value is examined to see if it matches

city modes.

begin C ASSIGNMENTJVALUE )
if UP_STRING(copy(LINE, 1, POSITION - 1}) - CONTROL then

begin

delete (LINE, 1, POSITION);

while LINE(length(LINE) ] -
'

do deletefLINE, length (LINE) , IM
POSITION :- 1;

if UP_STRING(LINE) - UNIFORM_ASSIGNMENT FLAG

then

PARAMETER :- UNIFORM_ASS IGNMENT

else if UP_STRING(LINE) = RANDOM_ASSIGNMENT FLAG

then

PARAMETER :- RANDOM_ASSIGNMENT

else if UP STRING(LINE) - RATE_MONOTONIC_ASSIGNMENT_FLAG

then

PARAMETER :- RATE_MONOTONIC_ASSIGNMENT

else if UP STRING(LINE) - DEADLINE_MONOTONIC ASS IGNMENT_FLAG

then

PARAMETER :- DEADLINE_MONOTONIC_ASSIGNMENT

else if UP_STRING(LINE) = WORKLOAD_MONOTONIC ASSIGNMENT_FLAG
then

PARAMETER : WORKLOAD_MONOTONIC ASSIGNMENT;

end;
(* if . . .then )

end;
(*

ASSIGNMENTJVALUE *)

procedure INTEGERJVALUE (CONTROL : string; var PARAMETER : longint);

{*
This procedure examines the global LINE searching for CONTROL, if

{*
it is found, it's integer value is set based on the rest of the LINE.

(*
Used to convert text to integers.

VALUE : longint; CODE : integer;

CONTROL then

begin C INTEGER VALUE *)
if UP_STRING(copy (LINE, 1, POSITION

deletefLINE, 1, POSITION} ;

POSITION :- 1;

while LINE [POSITION] in ['0'..'9'] do inc (POSITION) ;

val(copy(LINE, 1, POSITION - 1), VALUE, CODE);

if CODE = 0 then PARAMETER :- VALUE;

end;
(* if ...then }

end;
(* INTEGERJVALUE *)

begin C PROCESS_INI_FILE *}

assign (INI_FILE, PROGRAM_NAME + '.INIM;

CSI-*) reset (INI_FILE); f*$I+*)
if ioresult - 0 then

while not eof(INI FILE) do

begin

readln(INI FILE, LINE);

POSITION :-
posICOMMENT_DELIMITER, LINE);

if POSITION <> 0 then

deletefLINE, POSITION, length (LINE) );

if UP_STRING (copy (LINE, 1, length (APPLICATION_LABEL) } ) -

APPLICATION_LABEL then

begin

PARSING :- APPLICATION_SECTION;

readln(INI_FILE, LINE);

POSITION :- pos(COMMENT DELIMITER, LINE);

if POSITION o 0 then

deletefLINE, POSITION, length(LINE) );

end;
(* if . . .then *)

POSITION :-pos('-', LINE);

if (POSITION <> 0} and (PARSING - APPLICATION SECTION) then

begin

ASSIGNMENTJVALUE (INITIAL PRIORITY_ASSIGNMENT_CONTROL,

INITIAL~PRIORITY_ASSIGNMENT) ;

INTEGERJVALUE (RANDOM NUMBER SEED CONTROL,

RANDOM~NUMBER~SEED7 ;

end;
(* if . . .then *}

end;
(*
while... do *)

closeflNI FILE);

end;
[ if.7. then *)

end;
(* PROCESS_INI_FILE *)

procedure PROCESS_CSV_FILE;

This routine parses the

the application tasks.

CSV file to deteri the characteristics of *)

120



*
The .CSV file organization is very strict. The tasks

* be specified with the following characteristics and they
* be in the order listed below.

FIELDS -

(
(*

Field Name

TASK NAME_FIELD,

PERIOD_FIELD,
DEADLINE_FIELD,

HARDNESS_FIELD,

WORKLOAD_FIELD,
RECETVE_RESOURCE_l_FIELD,

RECEIVEjRSOURCE_TYPE_l_FIELD,
RECE IVE_RESOURCE_TDME_1 ELD ,

SIGNAL_RES0URCE_1_FIELD,
SIGNAL_RESOURCE_TYPE_l_FIELD,
SIGNAL_RESOURCE_TIME_l_FIELD,
RECEIVE_RES0URCE_2_FIELD,
RECETVE_RESOURCEJTYPE 2 FIELD,
RECETVE_RESOURCE TIME~2~FIELD,
S IGNAL_RESOURCE_2_F IELD,
SIGNAL_RESOURCEJTYPE_2_FIELD,
SIGNAL_RESOURCE TIME_2_FIELD

Type Range Size (Chars)
C Text 25
(*

msec 0-1000
(*

mSec 0-1000 5

C mSec 0-1000 5
(*

mSec 0-1000

C Text 25
(*

Text 10
(*

msec 0-1000 5

C Text 25
(*

Text 10

f
*
mSec 0-1000 5

f*
Text 25

C Text 10
(*

mSec 0-1000 5
[*

Text 25
1*

Text 10
(*

mSec 0-1000 5

C CSV file format is 'comma seperated text '
.

*

COMMA =

C CSV file parsing v riables.

LINE : string;

CSV FILE : text;

POSITION : integer

(*
These are used as the task specification is parsed (i..

(* the fields are stripped from the line of text).

INTERPRT_FIELD(THE_FIELD : FIELDS; var FIELD_STR

TASK_NUMBER : integer) : boolean;

*
This routine examines the c

* is valid. Note that very li

intent

Ctle \

s of the

alidatio

field and de

i is actually

ermines if

performed.

it *

1*

Temporary variable to hold function retur value

VALID_RESULT : boolean;

(
*

Used to determine the validity of n j.eric fields

VALUE, CODE

with TASK[TASK_NUMBER] do

case THE FIELD of

TASK_NAME FIELD :

TASK_NAME :- FIELD__STR;

PERIOD__FIELD :

begin

val(FIELD_STR, VALUE, CODE);

if (CODE = 0) and (VALUE > 0)

then

PERIOD ;= VALUE

else

VALID_RESULT := false;

end;
(* Period *)

DEADLINE_FIELD :

begin

val(FIELD_STR, VALUE, CODE) ;

if (CODE - 0} and (VALUE >- 0)

then

DEADLINE := VALUE

else

VALID_RESULT :- false;

end;
(* Deadline *)

HARDNESS_FIELD :

begin

val(FIELD_STR, VALUE, CODE);

if (CODE - 0) and (1 <- VALUE) and (VALUE <- 10)

then

DEADLINE HARDNESS : VALUE

else

VALID_RESULT :- false;

end;
(* Hardness *)

WORKLOAD_FIELD :

val(FIELD STR, VALUE, CODE);

if (CODE - 0) and (VALUE > 0)

then

WORKLOAD :- VALUE

else

VALID_RSULT :- false;

end;
{* Workload *)

RECEIVE RESOURCE 1_FIELD :

with INTERTASK~COMMUNICATION[RECETVE_RSOURCE, 1] do

RESOURCE_NAME :- FIELD_STR;

RECEIVE RESOURCEJTYPE__l_FIELD :

with INTERTASK COMMUNICATION[RCETVE_RESOURCE, 1] do

begin

if FIELD_STR
'EVENT'

then

RESOURCE TYPE : - EVENT_RESOURCE

else if FIELD_STR -
'SEMAPHORE' then

RESOURCE TYPE :- SEMAPHOR_RESOURCE

else if FIELD STR -
'MESSAGE7

then

RESOURCE TYPE :- MESSAGE_RESOURCE

else if FIELD_STR -
'BSEMAPHORE'

then

RESOURCEJTYPE :- BINARY SEMAPHORE_RESOURCE

else if FIELD_STR -
'CONDJVAR' then

RESOURCEJTYPE : - CONDITIONJVARIABLE_RESOURCE

else if FIELD STR <>
'NONE'

then

VALID RESULT :- false;
DEFINED-:- VALID_RESULT and (FIELD_STR <> 'NONE');

end;
(* Resource Type *}

RECEIVE_RESOURCE_TIME_l_FIELD :

val(FIELD_STR, VALUE, CODE);

if (CODE - 0) and (VALUE >- 0}
then

INTERTASK COMMUNICATION(RECEIVE_RESOURCE, 1].

RESOURCE TIME :- VALUE

else

VALID_RSULT :- false;

end;
(* Communication Time *)

SIGNAL_RESOURCE_l_FIELD :

with INTERTASK_COMMUNICATION(SIGNAL_RESOURCE, 1] do

RESOURCE NAME :- FIELD_STR;

SIGNAL RESOURCE_TYPE_l_FIELD :

with INTERTASKJCOMMUNICATION[SIGNAL_RE50URCE, 1] do

begin

if FIELD STR -
'EVENT'

then

RESOURCE TYPE :- EVENT_RESOURCE

else if FIELD STR -
'SEMAPHORE'

then

RESOURCEJTYPE := SEMAPHORE_RESOURCE

else if FIELD STR -
'MESSAGE'

then

RESOURCEJTYPE :- MESSAGE SOURCE

else if FIELD_STR -
'BSEMAPHORE' then

RESOURCEJTYPE : BINARY_SEMAPHORE_RESOURCE

else If FIELD_STR =
'CONDJVAR'

then

RESOURCEJTYPE := CONDITION VARLABLE_RESOURCE
else if FIELD STR <>

'NONE'
then

VALID_RESULT :- false;

DEFINED :- VALID_RESULT and (FIELD_STR <> 'NONE');

end;
(*

Resource Type *)

SIGNAL_RESOURCEJTDME_l_FIELD :

val(FIELD_STR, VALUE, CODE) ;

if (CODE - 0) and (VALUE >- 0}

then

INTERTASK_C0MMUNICATI0N[SIGNAL_R50URCE, 1] .

RESOURCE TIME :- VALUE

else

VALID_RESULT :- false;

end;
(* Communication Time )

RECEIVE RES0URCE_2_FIELD :

with INTERTASK_COMMUNICATION [RECEIVE RESOURCE, 2] do

RESOURCE NAME :- FIELD_STR;

RECEIVE_RESOURCE_TYPE_2_FIELD :

with INTERTASK_COMMUNICATION [RECEIVE RESOURCE, 2] do

begin

if FIELD_STR -
'EVENT'

then

RESOURCEJTYPE := EVENT_RESOURCE

else if FIELD_STR -
'SEMAPHORE'

then

RESOURCEJTYPE := SEMAPHORE SOURCE

else if FIELD_STR =
'MESSAGE'

then

RESOURCEJTYPE : = MESSAGE_RESOURCE

else if FIELD_STR
'BSEMAPHORE'

then

RESOURCEJTYPE :- BINARY SEMAPHORE_RSOURCE

else if FIELD_STR -
'CONDJVAR'

then

RESOURCEJTYPE :- CONDITION VARIABLE RESOURCE

else if FIELD_STR <>
'NONE'

then

VALID_RESULT :- false;

DEFINED :- VALID_RESULT and (FIELD_STR <> 'NONE');

end; C Resource Type *)
RECETVE_RESOURCE_TIME_2_FIELD :

begin

val(FIELD_STR, VALUE, CODE);

if (CODE - 0) and (VALUE >= 0)
then

INTERTASK_COMMUNICATION[RECEIVE_RESOURCE, 2] .

RESOURCEJTIME :- VALUE

else

VALID_RESULT :- false;

end;
{*

Communication Time *)

SIGNAL_RESOURCE_2_FIELD :

with INTERTASK_COMMUNICATION(SIGNAL_RESOURCE, 2) do

RESOURCE_NAME :- FIELD_STR;

SIGNAL_RESOURCE_TYPE_2_FIELD :

with INTERTASK_COMMUNICATION[SIGNAL_RESOURCE, 2] do

begin

if FIELD_STR - 'EVENT'
then

RESOURCEJTYPE :- EVENT_RESOURCE
else if FIELD_STR - 'SEMAPHORE'

then

RESOURCEJTYPE :- SEMAPHOR_RESOURCE
else if FIELD_STR -

'MESSAGE'
then

RESOURCEJTYPE :- MESSAGE_RESOURCE

else if FIELD_STR - 'BSEMAPHORE'
then

RESOURCEJTYPE : - BINARY_SEMAPHORE_RESOURCE

else if FIELD_STR -
'CONDJVAR'

then

RESOURCEJTYPE :- CONDITIONJVARIABLE RESOURCE

else if FIELD_STR <>
'NONE'

then

VALID_RESULT := false;

DEFINED :- VALID_RESULT and (FIELD_STR <> 'NONE');

end; C Resource Type *)

SIGNAL__RESOURCE_TIME_2_FIELD :

begin

val (FIELD STR, VALUE, CODE);

if (CODE - 0) and (VALUE >- 0)
then

INTERTASK_COMMUNICATION[SIGNAL RESOURCE, 2].

RESOURCEJTIME :- VALUE

else

VALID_RESULT :- false;

end;
(*

Communication Time *)

else VALID_RESULT :-
true-

end;
f*

case. . .of *)

begin (* PROCESS_CSV_FILE *)
(*

Remove report file from previous run (if it exists) *)

assign (CSV_FILE, PROGRAM NAME + '.RPT');

CSI-*) reset (CSV_FILE) ;"{*5I+*}
if ioresult - 0 then

close (CSV_FILE);

erase(CSV_FILE);

end;
f* if . . .then *)

assignfCSV FILE, PROGRAM NAME + '.CSV');

f*$I-*} reset (CSV FILE) ;~(*$I+*)

if ioresult - 0 then

begin

NUMBER_OFJTASKS :- 0;

while not eof (CSV_FILE) do

begin

readln(CSV__FILE, LINE);
(* Make sure there is a comma at the end of the line *)

LINE :- LINE + COMMA;

while LINE(1J - ' ' do deletefLINE, 1, 1);

if UP_5TRING(copy(LINE, 1, pos (COMMA, LINE)-1)) -
'TASK-'

then

begin

delete (LINE, 1, pos (COMMA, LINE));
(* Parse valid task identification line *)

inc(NUMBER_OF_TASKS) ;

PARAM_LCV := low f FIELDS);

PARAMETER :- UP_STRING(copy (LINE, 1, pos (COMMA, LINE)-1));

If not INTERPRET FIELD (PARAM_LCV, PARAMETER,

NUMBER_OF_TASKS) then

haltfl};

PARAM_LCV :- succ (PARAM_LCV} ;

deletefLINE, 1, pos (COMMA, LINE));

until (length(LINE) - 0) or (PARAM_LCV > high(FIELDS) ) ;

end;
(*
if . . .then )

end; C while. . .do *)

close (CSV FILE} ;

end;
(* if.7. then *)

end;
(* PROCESS_CSV_FILE *)

begin
(* PROCESS_APPLICATION_TASK_SPECIFICATION_FILE *)

PROCESS_INI_FILE ;

(*

Setup default task parameters *)

with TASK_ATTR do

begin

121



STACK_WORDS NEEDED : - 4000;
f*

Use default error handlers *)

ERROR_HANDLERS [TASK_ALREADY ACTIVE] :-
nil;

ERROR_HANDLERS[INSUFFICIENT~RES0URCES] :-
nil;

ERROR_HANDLERS [TASK_IS_NOT_ACTIVE] : - nil;

ERROR_HANDLERS [TASKALREADY_SUSPENDED] : - nil;

ERROR_HANDLERS [ILLEGAL TASK_ID) :-
nil;

ERROR_HANDLERS[ILLEGAL7oPERATION] :- nil;

end;
1*
with. . .do *)

PROCESS_CSV_FILE;

(* Determine maximum execution period, deadline and workload *]
MAXIMUM_MSEC_PERIO0 :- 1;
MAXIMUM_MSEC_DEADLINE :- 1;

MAXIMUM_MSEC_WORKLOAD :- 1;

for LCV := 1 to NUMBER_0F_TASKS do

if TASK [LCV] .PERIOD > MAXIMUM_MSEC_PERIOD then

MAXIMUM_MSEC_PERIOD := TASKJLCV] . PERIOD;
if TASK[LCV] .DEADLINE > MAXTMUM_MSEC DEADLINE then

MAXDMUM_MSECJ3EADLINE :- TASK[LCV]7dEADLINE;
if TASK [LCV] .WORKLOAD > MAXLMUM_MSEC_WORKL0AD then

MAXDMUM_MSEC_WORKLOAD :- TASK[LCV] .WORKLOAD;

end;
(* for . . . to . . .do *)

C Assign initial task priorities *)
case INITIAL PRIORITY_ASSIGNMENT of

UNIFORM_ASSIGNMENT :

for LCV := 1 to NUMBER_OFJTASKS do

PRIORITIES [LCV] :- (high (USER_PRIORITIES) + low (USER_PRIORITIES) )
div 2;

RANDOM_ASS IGNMENT :

begin

randseed :- RANDOM_NUMBER_SEED;
for LCV := 1 to NUMBER_OFJTASKS do

PRIORITIES (LCV] := random (high (USER_PRIORITIES } -

low(USER_PRIORITIES) ) +

low(USER_PRIORITIES) ;

end;
f*

Random Assignment *)
RATE_MONOTONIC_ASS IGNMENT :

for LCV := l~tO NUMBERJDFJTASKS do

PRIORITIES [LCV] := low(USER_PRIORITIES) + high (USER_PRIORITIES )
-

round (high (USER_PRIORITIES) /

MAXIMUM_MSEC_PERIOD
*

TASK[LCV] . PERIOD) ;

DEADLINE MONOTONIC_ASSIGNMENT :

for LCV := 1 to NUMBER_0F_TASKS do

PRIORITIES [LCV] :- low(USER_PRIORITIES) + high (USER_PRIORITIES )
round (high (USER_PRIORlTIES ) /

MAXDMUM_MSEC_DEADLINE
*
TASK[LCV) . DEADLINE) ;

WORKLOAD_MONOTONIC_ASSIGNMENT :

for LCV := 1 to NUMBERJDFJTASKS do

PRIORITIES [LCV] := round! (high (USER_PRIORITIES)
- 1) /

MAXDMUM_MSEC_WORKLOAD
*
TASK(LCV) .WORKLOAD) ;

end;
{*

case. . .of *)

for LCV := 1 to NUMBERJDFJTASKS do

begin

TASK_ATTR. PRIORITY : PRIORITIES [LCV] ;

CREATE (TASK ID, TASK ATTR, GENERALJTASK) ;

TASK[LCV] .TASK ID
~

:- TASK_ID;

TASK(LCV] .TASK~PRIORITY:- TASK_ATTR. PRIORITY;

end;
(* for . . . to . . .do *)

end;
{* PROCESS_APPLICATIONJTASK_SPECIFICATION_FILE *)

begin (* REAL_TIME_APPLICATION *)
f* Determine whether report file is required or not *)

GENERATE_REPORT_FILE : = (paramcount - 0) ;

(* Determine base filename for input/output files *)

PROGRAM_NAME : paramstr(O);

deletefPROGRAM__NAME, length (PROGRAM_NAME)
- 3, 4);

(* Establish task database and create application tasks *)

PROCESS_APPLICATIONJTASK_SPECIFICATION_FILE;

(*

Setup the supervisor task *)

with TASK_ATTR do

begin

PRIORITY :- high(USER_PRIORITIES);

STACKJWORDS_NEEDED := 2000;
(* Use default error handlers *)

ERROR_HANDLERS[TASK_ALREADY_ACTIVE)
:- nil;

ERROR_HANDLERS[INSUFFICIENT RESOURCES]
:- nil;

ERROR_HANDLERS[TASK_IS_NOT_ACTTVE]
:- nil;

ERROR HANDLERS [TASK_ALREADY_SUSPENDED]
:- nil;

ERROR~HANDLERS(ILLEGAL_TASK_ID]
:- nil;

ERROR~HANDLERS[ILLEGAL_OPERATION]
:- nil;

end; C with. . .do *)

CREATE (SUPERVISOR, TASK_ATTR, SUPERVISORJTASK) 1

end. C REAL_TIME__APPLICATION *)

122



9.2 GRAPH-GA.PAS
program GENETICALGORITHMJTHESIS (input , output);

(*
This program uses a Genetic Algorithm (GA) to search the nrnhi

{^^^the^best^solution^to^the problem specified

Problem space

<*

Compiler Options (Ver. 7.0)
|*|A+

Word Alignment

.|n+
Short Circuit Boolean Evaluation

. Debug Code Generation ON (Sort of)

.SL+
Requires /V option to BPC to activate
Local Debug symbols ON (Sort of)

,,SF_
Requires N option to BPC to activate

.|I_
Ear calls only as needed

<;|M 5FFF0,SFFF0,5FFF0
He.or^ (St^k?"ih.,p, H.^.p,

.jL Software Emulation of 80x87

.tp
Overlays NOT allowed

.!

~

Standard 'string'
parameters

*~ Overflow Checking OFF

Range Checking OFF

)tlf._ Stack Checking OFF

.?. Var-string Checking OFF
" Force Typed '"' references

*..t.... ...... .........

Enable Extended syntax

uses dos, crt, graph, GRAPHICS, BMP UTIL,
(5IFDEF MATH GA *)

MATH_GA;

CSELSE *)

RTOS_GA;

CSENDIF *)

const (*'**************"*................*...............................
1*

Used to allow a single routine to be used as 'paint screen' or as
(*

'update as
needed'

drawing routine.

FORCE_UPDATE - true;

DO_NOT_FORCE_UPDATE - false;

(........*.*..........................................................

C Command line controllable parameters.

(*
Control flag used to specify that the reverse video colors

(*
should be used.

(*.**..........*.*.......*.............,...............,............

REVERSEJVIDEO : boolean = false;
(........................................,..........................

C Control flag used to specify that the display should be 640x480

C 800x600 or 1024x768, 12B0xl024.

type VIDEO_MODES = (NO DISPLAY_MODE, VGA, SVGA, VESA, SVESA) ;
const DISPLAY_MODE : VIDEO_MODES = NO DISPLAY MODE;

(..*.......*....................T....................................

type (*****.*..*.....*..***....................*.*.................*.

(* When in graphics mode the follow colors are used for drawing the

C screen.

......................................................................

GRAPHIC COLORS - record

BACKGROUND_COLOR : word;

AXIS_COLOR : word;

GRID_COLOR : word;

AXIS_LABEL_COLOR : word;

GRAPH COLOR : word;

STATUS_COLOR : word;

STATUS_HIGHLIGHT_COLOR : word;

MAIN_TITLE_COLOR : word;

BORDER_COLOR : word;

end;
(* GRAPHIC_COLORS *}

const (
* INI file only configurable parameters.

*

(*

Directory where DMAGE_XX.BMP files will be stored.
*

IMAGE DIRECTORY : dirstr - ";

[* The graphic display uses the following colors in no rmal video.
*

<

GRAPHIC_COLORS -

BACKGROUND COLOR

GRID_COLOR

AXIS_LABEL_COLOR

GRAPH_COLOR

STATUS_COLOR

STATUS_HIGHLIGHT_COLOR

MAIN_TITLE_COLOR

BORDER_COLOR

);

black;

lightgray;

darkgray;

white ;

yellow;

white;

lightcyan;

green

The graphic display uses the following colors in reverse video.

REVERSE : GRAPHIC_COLORS =

I
BACKGROUND_COLOR

AXIS_COLOR

GRID_COLOR

AXIS LABEL_COLOR

GRAPHJCOLOR

STATUS_COLOR

STATUS_HIGHLIGHT_COLOR

MAIN_T

BORDER^COLOR

);

white;

darkgray;

lightgray;

black;

blue;

red;

lightred;

lightblue;

green

The maximum number of graphs on the screen at any one time.

MAX_NUMBER_OF_GRAPHS >

User controllable parameters (run-time controls) .

Controls how many graphs are being displayed.

NUMBER_OF_GRAPHS_TO_DISPLAY : 0. . MAX_NUMBER_OF_GRAPHS = 0;

Allows the user to pause the display.

USER_PAUSED : boolean - false;

C Allows for an orderly shutdown of the application.
(................ ......................................

USER_QUIT : boolean - false;

The following constants are used to contn sizes/offsets of the
*

1*
graphic screen. *)

POINT_SIZ - 3; TICK_LENGTH - 4; EDGE_OFFSET - 4 CURSOR_3IZE 5;

1*
MS-DOS exit codes (i.e. 'errorlevel'} . *)

INVALID PARAMETER ERROR LEVEL - 20;

NON_SUPPORTED_VIDEO_MODE_ERROR_LEVEL - 30;

1*
General purpose special characters. *l

BELL - chr ($07); (*
Bell character

SPACE - chr ($20); (*
Blank character

CR - chr (SOD); C Carriage Return

LF - chr ($0A) ;
(*

Line Feed

BS - chr ($08) ;
(*

Backspace

ESC = chr (SIB); (*
Escape

NULL - chr(SOO); C Preceedes extended key

(*
The axis cross point can be placed anywhere on the graph.

AXISJTYPES fAUTO_AXIS, FORCE_LL, FORCE_LR, FORCE UL, FORCE_UR) ;

(..*.*..*..........*....*.,...........,.,,,.......................

1*
The graph can be positioned at various places on the screen.

(..........*...............................,......................

GRAPH_POSITIONS - (FULL_SCREEN, TOP HALF, BOTTOM__HALF, TOPJTHIRD,
MIDDLEJTHIRD, BOTTOMJTHIRD) ;

Type to specify par; leters for the two axis

(X_AXIS, Y_AXIS);

Type to specify how the graph should be drai

GRAPHJTYPES - (BAR_GRAPH, LINE_GRAPH};

{*
Graph lines are a sequence of points defined by this type.

GRAPH_PTR - "POINTS;

POINTS - array[0. . POPULATION_SIZE] of record

POSITION : array[AXIS] of real;

end;
(* LINES *}

(*
The user controllable attributes (as wel

(*
of the graph are kept in this record type.

ed paramters)
*

)

GRAPH SCALE INFO

GRAPHJTYPE : GRAPHJTYPES;

FIRST, LAST : integer;

title to the graph.

Line or bar graph indicator.

FIRST and LAST refer to the indices of the VALUES array.

*
For each axis the maximum, minimum and number of tick marks *)

*
must be specified. The range is calculated as the graph is setup.*)

,rray[AXIS] of longint;

The label for the axis

LABEL NAME ay[AXIS] of stnng[10];

Used to turn on/off peak detection for each of the -

PEAK_DETECTION : array [AXIS] of booleai

turn on/off average detection for the Y-Axis.

* Data stucture that keeps all of the information about a graph so

*
that the graph display functions can access the correct graph when

*
more than one is being displayed at a time.

GRAPH INFO '

Scaling for X and Y ax.

GRAPH SCALES : GRAPH SCALE INFO;

X and Y values for the pr>

verages to be removed} .

ages (allows peaks/ *|

PREVIOUS_PEAK, PREVIOUS_PEAK_VALUE , PREVIOUS_AVERAGE_VALUE

(*
Offset of the graph into the graphic window on the sen

HORIZONTAL_OFFSET, VERTICAL_OFFSET : real;

(*
Sizes of the graphic window <

(*
video mode selected) .

(function of the *)

HORIZONTAL_SIZE, VERTICAL_SI2E : real;

Offset of the graph axis within the graphic window.

X_AXIS_OFFSET, Y_AXIS_OFFSET : real;

The actual data that is being graphed, and the

VALUES : record

FIRST, LAST : integer;

DATA : array[0. . POPULATION_SIZE] of real;

end;
(* VALUES *)

{* Pointers to graphic points that are being graphed after

(* appropriate conversion from value to pixel has been done.

the *

GRAPH POINTS, PREVIOUS GRAPH POINTS : GRAPH PTR;

(* The color of the line being graphed. *

GRAPH COLOR : word;

end; (*~GRAPH_INFO ')

C Maximim X and Y values for the graphics mode selected. *

MAX X, MAXJY : integer;

123



(*
The data structure for the graphs being displayed.

PLOT : array [1.
.MAX_NUMBER_OF_GRAPHS] of GRAPH_iNFO;

ariables for both *)

SCREEN : GRAPHIC COLORS;

Y : Y + LOW_LABEL[Y_AXIS] ? 1;

end;
(*
with... do *)

end;
f*

Y_POSITION *)

function YJVALUEfPOSITION : integer; GRAPH NUMBER : integer) : real;

,............................*.*.... ......7.....*........**.*......... .......

(*
Determines the value of the function at the graphic position passed in,

1*
this function assumes the entire screen is the viewport.

The user is allowed to change the .

structure holds the user choices.
ised, this data

USER GRAPH SCALES

all of the graph <

SCALES : GRAPH^SCALE INFO;

Used to turn on/off peak detection for each of the .

PEAKJ3ETECTION : array [AXIS] of booleap

(*
Used to turn on/off average detection for the Y-Axis.

AVERAGE_DETECTION : boolean;
end; C USER_GRAPH_SCALES *)
USER_GRAPH :~array (1 .

-MAX_NUMBER_OF_GRAPHS] of USER GRAPH SCALES;

C
(*

The offset from the edge of the screen to the graph is ,

{*
of the graphics mode selected.

(*

GRAPH_OFFSET : integer; MESSAGE_RGION : integer

(*
Graphic Video Driver mode parameter.

GRAPHICS MODE

i of previous exit procedure

SAVE_EXIT : pointer;

ction INT_STR(I: longint): string;

Convert any integer type to a string.

begin C YJVALUE *}
with PLOT [GRAPH NUMBER] do

with GRAPH_SCALES do

begin

Y VALUE :- LOW_LABEL(Y_AXIS] +

(VERTICAL_SIZE + VERTICALjDFFSET

VERTICAL_SIZE
*

RANGE[Y_AXIS] ;

end;
(*
with. . -do *)

end;
(* Y VALUE *)

P05ITI0N)

;edure UPDATE_STATUS_MESSAGES (FORCE_UPDATE : boolean);

Updates the status messages with the present value of the

This type allows smaller strings to be manipulated for the date

status since the date is a fixed length.

DATE_STRINGS - string(B];

C Type used to contain strings for the present PC clock time.

TIME_STRINGS -
string [12];

ained static

....................

previous user_paused

previous'date

DATE

PREVIOUS INDIVIDUAL

PREVIOUS~GENERATION

DATE_STRINGS

DATE_STRINGS

POPULATION SIZE;

Values of the present and previously displayed PC clock time.

var S : string[ll];

begin
(*

INT_STR *)

TIME STRINGS;

r responding to the
m/pm'

.

esent TIME

function REAL_STR(R: real; Fl, F2 : integer) : string;

Convert real type to a string (same format as i te(R : Fl : F2) ) .

S : itringfll]

begin
(*

REAL_STR *)

str(R : Fl : F2, S);

RAL_STR :- S;

end;
(*

REAL_STR *)

unction X POSITION(var X : real; GRAPhJNUMBER : integer)

* Determines the X position within the graphics window

*
to the X value passed in.

: real;

that corresponds
*

(*
Temporary graphic screen position.

begin
(* X_POSITION *)

with PLOT[GRAPH_NUMBER] do

with GRAPH_SCALES do

begin

X :- X - LOWLABELfXAXISJ
- 1;

POSITION :- HORIZONTAL_OFFSET + 1 +

(X
* (HORIZONTAL_SIZE) ) / RANGE [X_AXIS] ;

if (HORIZONTALJDFFSET <- POSITION) and

(POSITION <- (HORIZONTAL_OFFSET + HORIZONTAL_SIZE) )

then

X := X + LOW_LABEL [X_AXIS]
- 1

else

X :- LOWJLABEL[X_AXIS) + 1;

X__POSITION := POSITION;

end;
(*
with. . .do *}

end;
(* X_POSITION *)

function XJVALUE1 POSITION : integer; GRAPHJ4UMBER : integer) :
E**^.........

["^Determines the value of the function at the graphic position passed in,

(* this function assumes the entire screen is the
vlewPr^;......,... , . .....

begin
(* XJVALUE *)

with PLOT[GRAPH_NUMBER] do

with GRAPH_SCALES do

begin

X VALUE :- LOW LABEL [X_AXIS] +

(POSITION - H0RIZONTAL_0FFSET) /

HORIZONTAL_SIZE
* RANGE [X_AXIS] ;

end; f with. . .do *)

end;
(* XJVALUE *)

function Y_POSITION(var Y : real; GRAPH_NUMBER : ^eger)^real;
^ ..........

( Determines the Y position within the graphics window that corresponds

( to the Y value passed in.
.......,...**...*....*.

(.......

............*.**...........*.*......**********

var

I*..***************************************
****'*****'*'*

*************

( Temporary graphic screen position.
^^

(.....,..*....*..............*.*.....**.......*.*
****** ********

POSITION : real;

begin
(* Y_P0SITION *}

with PLOT[GRAPH_NUMBER) do

with GRAPHJSCALES do

begin

Y :- Y - LOW_LABEL[Y_AXIS]
- 1;

POSITION :- VERTICAL OFFSET + 1 *

(VERTICAL_SIZE - (Y *
VERTICAL_SIZE) / RANGE [Y_AXIS] ) ;

if POSITION > (VERTICAL OFFSET + VERTICAL_SIZE - 1) then

Y POSITION :- VERTICAL_OFFSET + VERTICAL_SIZE - 1

else if POSITION < (VERTICAL_OFFSET + 1) then

Y POSITION :- VERTICAL_OFFSET ? 1

else

Y POSITION :- POSITION;

[*
Used to determine the presen t time (as reported by the PC).

HR, MIN, SEC, SEC100TH : i;ord;

(*
Temporary variables t.d hold the iritermediate string resuits.

*

S : TIME_STRINGS; TEMP . stri

begin
(* TDME_NOW *)

gettime(HR, MIN, SEC, SEC100TH);

str(HR mod 12, S};

if S -
'0'

then S :- '12';

S : - S +
'
:

'
;

if MIN < 10 then S :- S + '0';

str(MIN, TEMP);

S :- S + TEMP;

S :- S + ': ';

if SEC < 10 then S :- S + '0';

strlSEC, TEMP);

S := S + TEMP;

if (HR div 12) - 0

then

TDME NOW := S *
* am'

end;
(* TIME_N0W *)

function DATE_N0W : DATE_STRINGS;

This .

*
the PC.

routine

The st

returns a string corresponding

ring is of the form
'MM-DD-YY'

to the present DATE in *)

*)

C Used to determine the pres>;t date (as reported by the PC). ;

YEAR , MONTH, DAY, DAY_OF_WEEK :
"""

C Tempora ry v;triable to hold the intermediate string results.
*'

irdl'0'

)),
irdl'O'

n + '

irdl'O'

n.

irdf'O }) +

.v 10) + ord(
'0'

))

DATE STRINGS;

DAY, DAY_OF_WEEK) ;

S : =
' '

;

S := chr(ord(MONTH div 10)

S := S + chr(ord(MONTH mod 10)

S .= S + chr(ord(DAY div 10)

S :- S * chr(ord(DAY mod 10)

S := S + chr(ord((YEAR mod 100) div 10)

S :- S + chr(ord(YEAR mod 10) + ord('O'));

DATE_NOW :- S;

end;
(* DATE_N0W *)

begin
(*

UPDATE_STATUS SAGES *)
(* Update Time string *)

settextstyleldefaultfcnt, horizdir, 1);

settextjustifyfrighttext, centertext} ;

TIME :- TIME_NOW;

if FORCE_UPDATE or (TIME <> PREVIOUSJTIME} then

begin

setcolor (SCREEN. BACKGROUND_C0LOR) ;

outtextxy

(
MAX X - 2 *

EDGE_OFFSET,

MAX"Y + 2 * MESSAGE_REGION div 3,

PREVIOUS TIME

I;
PREVIOUSJTIME :- TIME;

setcolor(SCREEN.STATUS_COLOR) ;

outtextxy

(
MAX X - 2

*
EDGE_OFFSET,

MAX~Y + 2 * MESSAGE_REGION div 3,

PREVIOUSJTIME

124



(*
Update Date string *)

set text justify (righttext, centertext)

DATE :- DATE_NOW;

if FORCE_UPDATE or (DATE <> PREVIOUS_DATE ) then

begin

setcolor (SCREEN. BACKGROUND_COLOR) ;

outtextxy

(

MAX X - 2 *
EDGE_OFFSET,

MAX_Y + MESSAGE_REGION div 3,
PREVIOUSDATE

};

setcolor (SCREEN. STATUS_COL0R ) ;

PREVIOUS_DATE := DATE;

outtextxy

(

MAX_X - 2 *

EDGE_OFFSET,
MAXJY + MESSAGE_REGION div 3,
PREVIOUS_DATE

};

end;
(* if . . .then *)

(*
Update Generation/Paused status *)

settextjustifyflefttext, centertext);
setcolor (SCREEN. BACKGROUND COLOR);
if PREVIOUS_USER PAUSED

then

outtextxy
1

2 EDGE_OFFSET,
MAX_Y + 1 *

MESSAGE^REGION div 3,
'Paused ('

+ INT_STR(GENERATION) +
*

}
'

else if FORCE_UPDATE or (PREVIOUS_GENERATION <> GENERATION) then

outtextxy

(

2
*

EDGE_OFFSET,
MAXJY + 1 *

MESSAGE_REG ION div 3,
'Generation '

+ INT STR (GENERATION)
);

PREVIOUS_USER_PAUSED := USER_PAUSED;
setcolor (SCREEN. STATUS_COLOR)

,-

if PREVIOUS_USER_PAUSED

then

outtextxy

(
2 *

EDGE_OFFSET,
MAX_Y + 1 *

MESSAGE REGION div 3,
'Paused ('

+ INT_STR (GENERATION} +
')'

else If FORCE_UPDATE

outtextxy

(PREVIOUS GENERATION <> GENERATION) then

2 *
EDGE_OFFSET,

MAX_Y + 1 *
MESSAGE_REGION div 3,

'Generation '
+ INT_STR(GENERATION)

);

PREVIOUS_GENERATION :- GENERATION;

if FORCEJJPDATE or (INDIVIDUAL <> PREVIOUS_INDIVIDUAL) then

settext justify (lefttext, centertext);

setcolor ( SCREEN -BACKGROUND_COLOR} ;

outtextxy

(
2 *

EDGE OFFSET,

MAXJY + 2 *
MESSAGE REGION div 3,

Individual
'
+ INT~STR(PREVIOUS_INDIVIDUAL) +

'/'
+

INT_STR (POPULATION_SIZE )

);

PREVIOUS_INDIVIDUAL :- INDIVIDUAL;

setcolor (SCREEN . STATUS_COLOR) ;

outtextxy

(

2
*

EDGE_OFFSET,

MAX_Y + 2 *
MESSAGE REGION div 3,

'Individual
'

+ INT_STR(PREVIOUS_INDIVIDUAL) +
'/'

?

INT STR(POPULATION_SIZE}

procedure SET_GRAPH SCALES (var USER : USER_GRAPH_SCALES; GRAPH_NUMBER: :

( Takes the user scales and moves them into the global graph scales

begin
(* SET GRAPH_SCALES *)

with USER_GRAPH[GRAPH_NUMBER] -SCALES do

begin

case GRAPhJNUMBER of

1 : begin

FIRST :- 1;

LAST :- POPULATION SIZE.

end;

begin

FIRST :- 0;

LAST :- 100;

end;

begin

FIRST :- 0;

LAST := 100;

end;

(*
case. . .of *)

USER. SCALES . LOW_LABEL [X_AXIS ]

- USER. SCALES. HIGH_LABEL[X AXIS);

- USER. SCALES. LOW_LABEL(X_AXIS] ;

end; (
if USER. SCALES. HIGHJLABEL [X_AXIS

then

begin

HIGHJLABEL [X AXIS]

LOWJLABEL[X_AXIS]

end
(* if.. -then *)

else

write (BELL);

NUMBER OF TICK_MARKS [X_AXIS] :-

USER. SCALES. NUMBERjOF TICK_MARKS [X AXIS];

if USER. SCALES. HIGHJLABEL [Y_AXIS] > USER. SCALES .LOW_LABEL[Y_AXIS]

then

begin

HIGH_LABEL[Y_AXISJ
:- USER. SCALES. HIGHJLABEL [Y_AXIS] ;

LOW_LABEL[Y AXIS) :- USER. SCALES. LOW_LABEL(Y_AXIS) ;

end
(* if . . .then *)

else

write (BELL) ;

NUMBER OF_TICK_MARKS(Y AXIS) :-

USER. SCALES. NUMBERJDFJT ICKJ4ARKS (Y_AXIS ] ;

with USR_GRAPH[GRAPH_NUMBER] do

begin

PEAK_DETECTION[X_AXIS

PEAK_DETECT ION [Y_AXIS

end;
(* with. ..do *)

end;
(*
with. ..do*>

(. SET_GRAPH_SCALES )

USER. PEAK_DETECTION [X_AXIS ] ;

USER. PEAK~DETECT ION [Y_AXIS] ;

end;

rocedure INITIALIZE;
^

This procedure parses the command-line parameters, initialize

* global data structures, reads the INI file.

var

(.**************** *

(*
Loop Control Variable for parsing the command-line parameters.

LCV, GRAPH_NUMBER : integer;

(........................... ......................

(*
The command-line parameter begin parsed.

(.... ..............................................................

PARAM : string;

Used to detect invalid command-line paraj

info can be displayed.

INVALID_PARAM : boolean;

function UP_STRING(S : string) : string;

that the
'help'

This routine return;

of the string passed '

rresponding to the upper case

var LCV : integer;

begin (*
UP_STRING *)

UP STRING[0] :- S[0];
for LCV :- 1 to length(S) do

UP_STRING[LCV) :- upcase (S [LCV] ) ;

end;
{*

UP_STRING )

irocedure PROCESS INI FILE;

C This procedure finds and reads the INI file. All
'valid*

INI file
(*
lines are processed (invalid lines are silently ignored) .

The following ; ed to
1*

C

config label

n0rmal_colors_label

reverse_colors_label

evaluations_label

fitness_histogram_label

divers ity_histogram_label

comment_delemiter

true_flag

false_flag

image_di rectory_control

video_mode_control

vga_mode_flag

svga_mode_flag

vesa_mode_flag

svesa_mode_flag

background_color_control

axis_color_control

grid_color_control

axi s_label_color_control

graph_color_control

status_color_control

status_highlight_color_control

mainjtitle_color_control

border_color_control

max x_control

min~x_control

x tick_marks_control

x_peak_detection_control

max_y_control

min_y_control

yjti ck_marks_control

y_peak_detection_control

y average detection control

INI file lines of te

'

[CONFIG]
'
;

'

[NORMALCOLORS] ';
'

[REVERSECOLORS] ';
'
[EVALUATIONS]

'
;

'

[FITNESSHISTOGRAM]
'

;
'
[DIVERSITYHISTOGRAM] ',

'
TRUE

'

;
1
FALSE

'

;

'IMAGEDIRECTORY';

'VIDEOMODE';

'VGA';

'SVGA';

'VESA';

'SVESA';
' BACKGROUNDCOLOR'

;

'AXISCOLOR';
'GRIDCOLOR'

;

'AXISLABELCOLOR';

'GRAPHCOLOR';

'STATUSCOLOR';
1 STATUSHIGHLIGHTCOLOR1

'MAINTITLECOLOR*;

'BORDERCOLOR';

'MAXX';

'MINX';

'XTICKMARKS';

XPEAKDETECTION';

'MAXY';

'MINY';

'YTICKMARKS';

'YPEAKDETECTION';
' YAVERAGEDETECTION'

;

C

State variable that defi;

is eing parsed.

of the INI file that *)

<

UNDEFINED,
CONFIG SECTION,

COLOR_SECTION,
REVERSE_SECTION ,

EVALUATIONS_SECTION,
FITNESS HI5TOGRAM_SECTION,
DTVERSITY_HISTOGRAM SECTION

) - UNDEFINED;

INI file parsing
(*

INI_FILENAME

LINE

INI_FILE

POSITION

CONTROL CHAR

riables.

string [sizeof (dirstr)+

string;

text;

integer.

char;

lizeof (namestrj+sizeof (extstr) ] ;

procedure BOOLEANJVALUE (CONTROL : string; var PARAMETER : boolean) ;

begin
{*

BOOLEANJVALUE *)
if UP_STRING{copy (LINE, 1, POSITION - 1)) - CONTROL then

begin

delete (LINE, 1, POSITION);

if UP_STRING(copy(LINE, 1, length (TRUE_FLAG) ) ) - TRUE_FLAG then

PARAMETER :- true

else if UP STRING (copy (LINE, 1, length(FALSE_FLAG} ) ) - FALSE_FLAG

then

PARAMETER :- false;

end;
(* if . . .then *}

end;
(* BOOLEANJVALUE *)

procedure INTEGERJVALUE (CONTROL : string; var PARAMETER : longint};

(* This procedure examines the global LINE searching for CONTROL, if *)
( it is found, it's integer value is set based on the rest of the LINE. *)

C Used to convert text to integers. *)

VALUE, CODE : integer;

begin
(* INTEGERJVALUE *}

if UP_STRING (copy (LINE, 1, POSITION - 1)) - CONTROL then

begin

deletefLINE, 1, POSITION);

POSITION :- 1;

while LINE [POSITION] in ['0'..'9'] do inc(POSITION) ;

val (copy (LINE, 1, POSITION -

1), VALUE, CODE};

if CODE - 0 then PARAMETER :- VALUE;

end;
(* if . . .then *)

end;
(* INTEGER_VALUE *)

procedure DIRECTORYJ/ALUE (CONTROL : string; var PARAMETER : dirstr);

(* This procedure examines the global LINE searching for CONTROL, if *)

125



(I..T!??"!;*.^"i*!?i!3 USed to 3tEiP characters f

DIRECTORY dirstr; FILENAME : namestr;

rom the pathnaj

begin C DIRECTORYJVALUE *)

ifbegInTBINGICPylLINE' *' P0SITI0N -*-)>- CONTROL then

PARAMETER:-
copyfLINE, POSITION + 1, lengthfLINE) ) ;if pos(SPACE, PARAMETER) <> 0 then

"

PARAMETERIpos (SPACE, PARAMETER)] - '\'-

if posf'W, PARAMETER) <> 0 then

PARAMETER^] :- chr (pos (
'
\\ '

, PARAMETER) ) ,-

fsplit (PARAMETER, DIRECTORY, FILENAME, EXTENSION)'

PARAMETER :-

UP_STRING(DIRECTORY) ;
end;

(*
if . . .then *)

end;
(*

DIRECTORY VALUE *1

?""^".y^?TY^i^^?h;.^^n?;.^^PW^BTER : V^EO_MODES)

! extmine3 the gio^l LINE searching for**cONTROL,""f '* i
*
one of ^ v mS

^,S "rin9 Vale iS """i-m to see if it matches
*

( one ot the valid video modes.
.(

POSITION - 1)} - CONTROL then

SVGA MODE FLAG

begin (*
VIDEOJVALUE *)

if UP_STRING(copy(LINE,
begin

delete (LINE, 1, POSITION);

LI^len9thaiNE)l SPACE do deletefLINE, length (LINE) ,

if UP_STRING(LINE) = VGA MODE FLAG

then

PARAMETER :- VGA

else if UP_5TRING(LINE)
then

PARAMETER := SVGA

else if UP STRING (LINE) - VESA MODE FLAG

then

PARAMETER := VESA

else if UP__STRING(LINE)
then

PARAMETER :- SVESA;

end;
(*
if . . .then *}

end;
(*

V!deo_value )

procedure COLORJ/ALUE (CONTROL : string; var PARAMETER : word);

SVESA__MODE_FLAG

This procedure examines the global LINE searching for CONTROL, if *

* it is found, it's string value is examined to see if it matches one
*
of the valid colors. .

C

C n

Temporary variable to hold the color value, needed because it *

ay not be valid. *

TEMP

function

: byte;

COLOR_MATCH( PARAMETER : string; var COLOR : byte) : boolean;

* This routine performs an associa

*
the list of possible color choices

*
of a color will match as long as e

* determine which color is desired.
* include blu, ble, bue & be.

ive match on the PARAMETER to

Any enumeration of the letters

ough letters are provided to

For example: matched to
'blue'

(*
Strings to match the colors to.

(...

COLOR_STRING : array [0..15] of string
-

BLACK', 'BLUE', 'GREEN', 'CYAN', 'RED', 'MAGENTA', 'BROWN',

'LIGHTGRAY', 'DARKGRAY', 'LIGHTBLUE',
'LIGHTGREEN'

,

LIGHTCYAN', 'LIGHTRED',
'
LIGHTMAGENTA

'
, 'YELLOW',

'WHITE'

(* Index into parameter characters.
*

PARAM_LCV . integer;

(*
Flag to indicate that the character

(* found or not.

being searched for =
:

FOUND : boolean;

(*
Local copy of the string being searched.

LOCAL_PARAMETER : string;

begin (* COLOR MATCH *]

COLOR :- 0;

repeat

LOCAL_PARAMETER :- PARAMETER;

FOUND :- pos(LOCAL_PARAMETER[l], C0L0R_STRING [COLOR] } - 1;

PARAM_LCV :- 1;

while FOUND and (PARAM_LCV <- length(PARAMETER) } do

begin

FOUND :- FOUND and (pos (LOCAL_PARAMETER[PARAM_LCV] ,

COLOR_STRING[COLOR] } <> 0);

inc(PARAM_LCV) ;

end;
(*
while. . . do *)

inc (COLOR);

until FOUND or (COLOR > 15);

if not FOUND

then

COLOR :- SFF

else

dec (COLOR) ;

COLOR_MATCH :- FOUND;

end; C COLOR_MATCH *)

begin
(* COLORJVALUE *)

if UP_STRINGjcopy(LINE, 1, POSITION - 1}) - CONTROL then

begin

delete (LINE, 1, POSITION);

while LINE [length (LINE)) - SPACE do deletefLINE, lengthfLINE), IM

POSITION :- 1;

if COLOR^MATCHfUP STRING (LINE) , TEMP COLOR) then

PARAMETER :- TEMP_COLOR;

end;
(* if. - -then *)

end; C COLORJVALUE *)

begin C PROCESS_INI_FILE *)

INI FILENAME :- paramstr 10} ;

delete (INI_FILENAME, length{INI_FILENAME) -

2, 3);

INI FILENAME :- INI FILENAME + 'INI';

assign (INI_FILE, INT_FILENAME) ;

CSI-*I reset (INI_FILE); CSI+*)

if ioresult - 0 then

begin

while not eof (INI_FILE) do

begin

readln(INI_FILE, LINE);

POSITION :-
pos(COMMENT_DELIMITER, LINE);

if POSITION <> 0 then

deletefLINE, POSITION, lengthfLINE) );
if UP_STRING (copy (LINE, 1, length (NORMAL COLORS LABEL})} -

NORMAL~COLORS_LABEL then

PARSING :- COLOR_SECTION;

readln(INI_FILE, LINE};
POSITION :- posfCOMMENT DELIMITER, LINE);

if POSITION <> 0 then

deletefLINE, POSITION, length (LINE) );
end

f* if . . .then *)
else if UP_STRING(copy (LINE, 1, length(REVERSE_COLORS_LABEL) ) ) -

REVERSE COLORS LABEL then

begin

PARSING := REVERSE_SECTION;

readln(INI_FILE, LINE) ;
POSITION :- posfCOMMENT DELIMITER, LINE);

if POSITION <> 0 then

deletefLINE, POSITION, lengthfLINE) };
end

f*
if.. .then *)

else if UP_STRING (copy (LINE, 1, length(CONFIG_LABEL) ) ) -

CONFIG LABEL then

begin

PARSING :- CONFIG_SECTION;

readln(INI_FILE, LINE);
POSITION :- posfCOMMENT DELIMITER, LINE);

if POSITION <> 0 then

deletefLINE, POSITION, lengthfLINE) );
end

(* if. . .then *)
else if UP_STRING(copy(LINE, 1, length (EVALUATIONS_IABEL) ) ) -

EVALUATIONS LABEL then

begin

PARSING := EVALUATIONS_SECTION;

readln(INI_FILE, LINE) ;

POSITION :=
pos(COMMENT_DELIMITER, LINE);

if POSITION <> 0 then

deletefLINE, POSITION, lengthfLINE) );
end

(*
if . . .then *)

else if UP_STRING (copy (LINE, 1,

length (FITNESS_HISTOGRAM LABEL) ) ) -

FITNESS_HISTOGRAM~LABEL then

PARSING :- FITNESS HISTOGRAM_SECTION;

readln(INI_FILE, LINE);

POSITION :- pos (COMMENTJDELIMITER, LINE);
if POSITION <> 0 then

deletefLINE, POSITION, length (LINE) } ;

end
f* if . . .then *)

else if UP_STRING( copy (LINE, 1,
length (DIVERSITY HISTOGRAM_LABEL) ) ) -

DIVERSITY~HISTOGRAM_LABEL then

begin

PARSING :- DIVERSITY_HISTOGRAM SECTION;

readln(INI_FILE, LINE);
POSITION :-

posfCOMMENT DELIMITER, LINE);

if POSITION <> 0 then

delete (LINE, POSITION, length (LINE) } ;

end;
(* if. . .then *}

POSITION :-

posf-', LINE};
if POSITION <> 0 then

case PARSING of

C0NFIG_5ECTION

DIRECTORY VALUE f DMAGE_DIRECTORY CONTROL, LMAGE_DIRECTORY) ;
if DISPLAY_MODE - NO_DISPLAY MODE then

VIDEOJVALUE (VIDEO_MODE_CONTROL, DISPLAY_MODE) ;

end;
f*

Configuration Section *)
COLOR SECTION :

begin

COLORJVALUE (BACKGROUND_COLOR_CONTROL,
NORMAL . BACKGROUND COLOR} ;

COLORJVALUE (AXIS_COLOR_CONTROL,
NORMAL.AXIS_COLOR) ;

COLORJVALUE (GRID_COLOR_CONTROL,
NORMAL. GRID_COLOR} ;

COLORJVALUE |AXIS_LABEL_COLOR_CONTROL,

NORMAL-AXIS_LABEL_COLOR) ;
COLOR VALUE (GRAPH_COLOR_CONTROL,

NORMAL. GRAPH_COLOR) ;

COLORJVALUE (STATUS_COLOR_CONTROL,
NORMAL. STATUS_C0LOR) ;

COLORJVALUE (STATUS_HIGHLIGHT_COLOR CONTROL,
NORMAL. STATUS_HIGHLIGHT_COLOR) ;

COLOR VALUE (MAIN_TITLE_COLOR_CONTROL,
NORMAL.MAIN_TITLE_COLOR) ;

COLORJVALUE (BORDER_COLOR_CONTROL,
NORMAL. BORDER_COLOR) ;

end;
(*

Color Section *)
REVERSE_SECTION :

begin

COLORJVALUE (BACKGROUND_COLOR_CONTROL,
REVERSE . BACKGROUND_COLOR) ;

COLOR VALUE (AXIS_COLOR_CONTROL,
REVERSE.AXIS_COLOR) ;

COLOR VALUE (GRID_COLOR_CONTROL,
REVERSE . GRID_COLOR) ;

COLORJVALUE (AXIS_LABEL_COLOR_CONTROL,

REVERSE.AXIS_LABEL_COLOR} ;

COLORJVALUE (GRAPH_COLOR_CONTROL,
REVERSE . GRAPH_COLOR) ;

COLORJVALUE f STATUS_COLOR_CONTROL,
REVERSE. STATUS_COLOR) ;

COLORJVALUE (STATUS_HIGHLIGHT_COLOR_CONTROL,
REVERSE. STATUS_HIGHLIGHT_COLOR) ;

COLORJVALUE (MAIN_TITLE_COLOR_CONTROL,
REVERSE.MAIN_TITLE_COLOR} ;

COLORJVALUE ( BORDER_COLOR_CONTROL,
REVERSE. BORDER_COLOR);

end;
(*

Reverse Color Section *}

EVALUATIONS_SECTION :

with USER_GRAPH[11. SCALES do

begin

INTEGER VALUE (MAX_X_CONTROL,

HIGH_LABEL[X_AXIS] ) ;

INTEGERJVALUE (MIN X CONTROL,
LOWJLABEL [X_AXIS ) ) ;

INTEGERJVALUE (X_TICK_MARKS_CONTROL,
NUMBER OF TICK MARKS[X_AXIS] ) ;

BOOLEANJVALUE (X_PEAK~DEfECTION_CONTROL,

PEAK_DETECTION[X_AXIS] ) ;

INTEGERJVALUE (MAX_Y_CONTROL,
HIGH_LABEL[Y AXIS) ) ;

INTEGERJVALUE (MINJY_CONTROL,

LOW_LABEL(Y_AXIS] ) !

INTEGER VALUE fY TICK_MARKS_CONTROL,
NUMBER~OF_TICK_MARKS[Y AXIS ) ) ;

BOOLEANJVALUE | Y_PEAK_DETECTION_CONTROL,

PEAK_DETECTION[Y_AXIS] ) ;

BOOLEANJVALUE f Y_AVERAGE_DETECTION_CONTROL,

AVERAGE_DETECTION} ;

end; C with. . -do *)

FITNESS_HISTOGRAM_SECTION :

with USER_GRAPH[2] .SCALES do

begin

126



INTEGERJVALUE [MAX_X_CONTROL,

HIGH_LABEL(X_AXIS] ) ;
INTEGERJVALUE (MIN X_CONTROL,

LOW_LABEL[X_AXIS] } ;

INTEGERJVALUE (X TICK_MARKS_CONTROL,
NUMBER OF_TICK_MARKS[X_AXIS));

BOOLEANJVALUE (X PEAK_DETECTION_CONTROL,
PEAK DETECTION(X_AXIS] );

INTEGERJVALUE (MAXJY CONTROL,

HIGH_LABEL[Y AXIS));

INTEGERJ/ALUE (MIN_Y_CONTROL,
LOW LABEL(Y_AXIS] );

INTEGERJVALUE ( YJTICK_MARKS_CONTROL,

NUMBER_OF_TICK_MARKS[Y_AXIS) ) ;
BOOLEANJVALUE (Y_PEAK_DETECTION_CONTROL,

PEAK_DETECTION[Y_AXIS] } ;
BOOLEANJVALUE fY_AVERAGE_DETECT ION_CONTROL,

AVERAGE_DETECTION} ;
end;

(*
with do *)

DIVERSITY_HISTOGRAM_SECTION :

with USER GRAPH [3] .SCALES do

begin

INTEGER VALUE (MAX X CONTROL,

LOW_LABEL[X_AXIS] ) ;
INTEGERJVALUE (X_TICK_MARKS CONTROL,

NUMBER_OF_TICK_MARKS[X_AXIS] ) ;
BOOLEANJVALUE (X_PEAK_DETECTION CONTROL,

PEAK_DETECTION[X~AXIS] } ;
INTEGERJVALUE <MAX_Y_CONTROL,

HIGH_LABEL[Y AXIS] );
INTEGERJVALUE (MIN_Y_CONTROL,

LOW_LABEL [Y_AXIS ] ) ;
INTEGERJVALUE (Y_TICK_MARKS_CONTROL,

NUMBER~OFJTICKJ4ARKS[Y AXIS]);

BOOLEANJVALUE (Y_PAK_DETECTIONJ30NTROL,

PEAK_DETECTION[Y_AXIS] );
BOOLEANJVALUE (Y_AVERAGE DETECT ION_CONTROL,

AVERAGE DETECTION) ;
end;

(*
with.

else
{*

Do Nothing! *);

end;
(

case. . .of *)
end;

(*
while... do *)

close(INI_FILE);

end;
{* if . . .then *)

end;
{*

PROCESS_INI_FILE *)

begin (*
INITIALIZE *)

C Initialize
"constants'

*)
directvideo := false;

(*
Parse Command-Line parameters *)

INVALID_PARAM : = false;

for LCV :- 1 to paramcount do

PARAM := UP_STRING (paramstr (LCV) ) ;

case PARAM[2] of

'R'
: if PARAM =

'-REVERSE'

REVERSEJVIDEO :- true

INVALID_PARAM := true;

'V . if PARAM -
"-VGA"

then

DISPLAY MODE := VGA

else if PARAM =
'-VESA'

then

DISPLAY_MODE :- VESA

else

INVALID_PARAM := true;
'S'

: if PARAM -
'-SVGA'

then

DI5PLAY_MODE := SVGA

else if PARAM -
'-SVESA'

then

DISPLAY MODE := SVESA

else

INVALID_PARAM ;= true;

else INVALID_PARAM := true;

end;
(*

case. . .of *)

end;
(* for. . .to. . .do *)

if INVALID_PARAM then

begin

writeln (LF,
'

Exolution of Solutio to Real-Time Problems', CR, LF,

LF,
Usage: CR, LF,

LF,

CSIFDEF MATH_GA *)

GMATH-GA [-VGAI -SVGAI -VESAI-SVE5A) [-Reverse]', CI

CSELSE *)
'

GRTOS-GA [-VGAI-SVGAI-VESAI-SVESA] [-Reverse]', CI

CSENDIF *)

LF,
'

Where. ', CR, LF,
1

-VGA
= 640x4B0 graphics mode", CR, LF,

'
-SVGA = 800x600 graphics mode', CR, LF,

'
-VESA - 1024x"76B graphics mode (default)', CI

-SVESA - 1280x102 J graphics mode', CR, LF,
1

-Reverse - Reverse Video Color Scheme', CR, LF

);

halt (INVALID_PARAMETER_ERROR_LEVEL) ;

end;
(* if - ..then )

GRAPH_OFFSET :- 6 *
EDGE_OFFSET;

with USER GRAPH [1] .SCALES do

begin

TITLE

GRAPHJTYPE

LABEL_NAME[X AXIS]

HIGH LABEL [X-AXIS]
LOW_LABEL[X AXIS]

NUMBER_OF_TICK_MARKS [X_AXIS]

PEAKJDETECTION [X_AXIS]

LABEL_NAME[Y_AXIS]

HIGH_LABEL[Y_AXIS]

L0W_LABEL [Y_AXIS )
NUMBER_OF_TICK_MARKS [Y_AXIS]

PEAK_DETECTION[Y_AXIS]

AVERAGE DETECTION

end;
(*
with. . -do )

with USER_GRAPH[2] .SCALESdo

begin

TITLE

graphjtype

label_name [x_axis ]

high_label (x_axis )

low label[x_axis]

number_of_tick_marks [x_axis )
peak_detection [x_axis )

label name[y axis)

highjlabel [y""axis)

low_label[y__axis]

number of_tick_marks[y_axis]

peak_detectionTy_axis]

average_detection

end;
(* with. . -do *)

with USER_GRAPH[3] .SCALES do

begin

TITLE

GRAPH TYPE

Fitness';

LINEJ5RAPH;

'Individual';

[Configuration I*) POPULATION_SIZE;

f*Conf iguration #*) 0;

= 'Diversity';

- fConfiguration I*) 100;
= ('Configuration #*) 0;
- 20;

LABEL NAME[X_AXIS]

HIGH LABELJXAXIS]

LOW LABEL(X_AXISJ

NUMBER OFjriCK_MARKS[X_AXIS)

PEAK_DETECTION (X_AXIS )
LABEL_NAME (Y_AXIS )

HIGH_LABEL(Y_AXIS)

L0W_LABEL [Y_AXIS ]
NUMBER OF_TICK_MARKS[Y AXIS]

PEAK_DETECTION[Y

AVERAGE_DETECTION

end;
f*

with. . .do

*

)

PROCESS_INI_FILE;

if REVERSE_VIDEO

SCREEN :- REVERSE

else

SCREEN :- NORMAL;

(*
Handle the case when no INI file (or parameter) was found

if DISPLAY_MODE - NO_DISPLAY_MODE then

DISPLAY_MODE :- VESA;

(* Allocate Plot data structures *)

for GRAPH_NUMBER :- 1 to MAX_NUMBER_OF_GRAPHS do

new(PLOT[GRAPH_NUMBER] .GRAPH POINTS);

for LCV := 0 to POPULATION_SIZE do

with PLOT(GRAPH_NUMBER) [LCV] do

POSITION[X_AXIS] :- 0.0;

POSITION[Y_AXIS] :- 0.0;

end;
( for. ..to. . .do *)

new ( PLOT [GRAPH_NUMBER] . PREVIOUSJSRAPH_POINTS ) ;

for LCV := 0 to POPULATION_SIZE do

with PLOT [GRAPH_NUMBER] .

PREVIOUS_GRAPH_POINTS"

[LCV] do

P0SITI0N[X_AXIS] :- 0.0;

P0SITI0N[Y_AXIS] :- 0.0;

end;
(* for . . . to. . .do *)

SET_GRAPH_SCALESfUSER_GRAPH[GRAPH_NUMBER], GRAPH_NUMBER ) ;

end;
(* for . . . to. . ,do *)

end;
(*

INITIALIZE *)

procedure INIT_GRAPHICS;

* This procedure initializes the video graphic

*
mode that has been selected.

card based o the videc

;

(*
Graphic Video Driver parameters.

DRIVER : integer;

begin C INIT_GRAPHICS *)

if DISPLAY_M0DE NO_DISPLAY_M0DE then DISPLAY_MODE :- VESA;

case DISPLAY_MODE of

VGA : begin

regiSterbgidriver(addr(EGAVGA_DRIVER) );

MESSAGE REGION :- 24;

end;
(* VGA *}

SVGA : begin

installuserdriver ( 'VESA1G', @DETECT_VESA_16) ;
registerbgidriver (addr (VESA16 DRIVER) } ;

MESSAGE_REGION :- 36;

VESA_16_M0DE :- 0;

end;
f*

SVGA *)
vesa : begin

installuserdriver ('VESA16', @DETECT_VESA_16} ;

registerbgidriver(addr(VESA16_DRIVER) ) ;

MESSAGE_REGION :- 36;

VESA_16_M0DE :- 1;
end,- (

VESA *)

SVESA . begin

installuserdriver CVESA16', SDETECT VESA_16};

registerbgidriver(addr(VESA16_DRIVER) };

MESSAGE REGION :- 36;

VESA 16~MODE :- 2;

end;
(*

SVESA *)
of )

DRIVER :- detect ;

initgraphfDRIVER, GRAPHICS_MODE, ');

if graphresult <> grOK then

begin

writeln(CR, LF, 'Fatal Error: Video mode not supported');

halt (NON SUPPORTED_VIDEO_MODE_ERROR_LEVEL) ;

end;
(* if?. .then *)

end;
(*

INIT_GRAPHICS *)

procedure SHUTDOWN_GRAPHICS; far;

Restores the video troller to standard DOS text mode.

begin (* SHUTDOWN_GRAPHICS

closegraph;

end;
f* 5HUTD0WN_GRAPHICS *

rocedure REDRAW_GRAPH(NUMBER_OF_GRAPHS : integer);

* Redraws the graph axis or displays the signon

*
active graphs .

logo if there *"

:

false;
'Fitness'

CScore*) 100;

(*Score*} 0;

10;

false;

false;

'Fitness Histogram

BAR GRAPH
'Fitness'

(*Score*) 100;

(Score*) 0;

20;

false;

[Percent *) 100;

(Percent ') 0;

(*
Graphic screen position of the next status text message.

STATUS_POS : integer;

:edure HIGHLIGHTEDJTEXT (STR : string);

*
Displays a text string in the status message box where

* letter of the string is highlighted.

the first *

(*
Loop Control Variable for indexing through string.

1 'Diversity Histogram';

BAR_GRAPH;

begin
(*

HIGHLIGHTEDJTEXT *)

setcolor (SCREEN. STATUS_HIGHLIGHT_COLOR);

outtextxy

(

STATUS POS,
MAX_Y + MESSAGE_REGION div 3,

STR[1]

);

STATUS_POS :- STATUS_POS ? textwidth(STR[l] ) ;

setcolor (SCREEN. STATUS_COLOR);

outtextxy

(

STATUS POS,
MAXJY + MESSAGE_RGION div 3,

copyfSTR, 2, length(STR)}

127



);

for LCV :- 2 to length (STR) do

STATUS_POS :- STATUS_POS ? textwidth(STR[LCV] ) ;

STATUS POS :- STATUS_POS +

end;
(*

HIGHLIGHTEDJTEXT *)

textwidthC

procedure DRAW_RIT_LOGO(X, Y : integer);

Draws the 'RIT' logo on the screen at the specifiedspecified coordinates

Pointer to a buffer that contains the drawn logo (valid only )
after the first call). This allows the logo to be displayed *)
more than once but only drawn once. .)

pointer =
nil;

(*
Work area of the screen coordinates

,*................,.....,.,...

WORK_X, WORK_Y : integer;

begin f
*

DRAW_RIT_LOGO *
)

X := X - 225;

if LOGO - nil then

begin
(*

Create Logo *)

setfillstylefsolidfill, red);

bar(X -

70, Y -

60, X + 520, Y + 60);
setcolor (white ) ;

rectanglefX -

65, Y -

55, X + 515, Y + 55);

setfillstylefsolidfill, white);

floodfillfx, Y -

10, white);
setcolor (red) ;

settextstyle (TriplexFont, vertdir, 5}
set text justify (centertext, centertext) ;

outtextxyfX
-

40, Y -

1, 'R I T');

setfillstylefsolidfill, red);

circlefX
-

32, Y + 17, 2); floodfillfx -

32, Y + 17, red);

circlelX
-

32, Y -

17, 2); floodfillfx -

32, Y -

17, red);

setfillstylefsolidfill, lightgray) ;

bar(X -

10, Y -

50, X ? 5, Y + 50);
settextstyle (SDMPLEX_FONT, horizdir, 0) ;

settextiustifydefttext, centertext) ;

setusercharsize (7, 8, 3, 4);
outtextxyfX + 40, Y + >, 'ROCHESTER INSTITUTE OF

TECHNOLOGY'

setlinestyle (solidln, 0, thickwidth) ;

setcolor (lightgray) ;

line fX ? 40, Y + 30, X + 470, Y ? 30);

with GRAPH_SCALES do

(* Determine position for X Axis (Low, Centered, High) *)

if ( (LOW_LABEL(Y_AXIS] >- 0) and (HIGH_LABEL[Y_AXIS] >- 0) ant

fAXISJTYPE - AUT0_AXIS)) or

(AXISJTYPE in [F0RCE_LL, F0RCE_LR] )

then

X_AXIS OFFSET :- VERTICAL_OFFSET + VERTICAL_SIZE

else if f (LOW LABEL[Y AXIS) <- 0) and (HIGH_LABEL[Y_AXIS) <

and (AXISJTYPE - AUTO_AXIS) } or

(AXISJTYPE in [FORCE UL, FORCE_UR] ] then

X AXIS_OFFSET := VERTICAL OFFSET

else

X_AXIS_OFFSET := VERTICAL_OFFSET t VERTICAL_SIZE / 2;

{*
Determine position for Y Axis (Left, Centered, Right} *)

if f (LOW_LABEL(X_AXIS) >- 0) and fHIGH_LABEL[X_AXIS] >- 0) and

(AXISJTYPE =AUT0_AXIS}) or

(AXISJTYPE in [F0RCE_LL, FORCE_UL] )
then

Y AXIS OFFSET : = HORIZONTAL_OFFSET

else if T(LOW_LABEL[X_AXI5] <- 0} and (HIGhJLABELlX AXIS] <-

and (AXISJTYPE - AUTO_AXIS)) or

(AXIS TYPE in [FORCE_LR, FORCE_UR] ) then

Y_AXIS OFFSET := HORIZONTAL OFFSET ? HORIZONTAL SIZE

else

HORIZONTAL SIZE / 2;

for LCV :- 0 to POPULATI0N_5IZE do

with PLOT [GRAPH_NUMBER] .PREVIOUS GRAPH
POINTS"

[LCV] do

begin

POSITION[X_AXIS] := HORIZ0NTAL_OFFSET ;

POSITION[Y_AXIS) :- VERTICAL_OFFSET;

end;
f*
with. . .do *)

end;
(*
with. . .do *)

; C CREATE GRAPH *)

C Keep a copy of the logo so it doe

getmemfLOGO, imagesizefX - 70, Y - 6

getimagefX
-

70, Y - 60, X + 520, Y

end
(*
if . . .then *j

else

putimage (X - 70,
'

end;
(* DRAW RIT LOGO

i
'

t need to redrawn
'

X + S20, Y + 60) };

60, LOGO");

rocedure DRAW_GRAPH_AXIS (GRAPH NUMBER : integer);

*
Draws the title, axis, grid lines, and tick marks for the graph.

*

C Loop Control Variable for creating tick marks.
*

LCV : integer;

1*
Value of axis tick mark graphic position.

*

TEMP : longint;

(*
Value of the tick mark label. *

LOGO", normalput);

procedure DRAW_COPYRIGHT;

(*
Draws the 'circle

c'

copyright

begin (*
DRAW_COPYRIGHT *)

outtextf'c'

) ;

I

getx,

gety ? round(0.3
* textheightf'

roundftextheight CC ) / 2.5)

) ;

end;
(*

DRAWJZOPYRIGHT *)

procedure CREATE_GRAPH

riCK_LABEL : real;

begin {*
DRAW_GRAPH_AXIS *)

with PLOT[GRAPH_NUMBER] do

begin
(*

Add Graph Title *)

setcolor (SCREEN.MAIN_TITLE_COLOR) ;

3ettext]ustify(centertext, centertext) ;

case DISPLAY_MODE of

VGA : settextstyle (TRIPLEX_FONT, horizdir, I)
SVGA : settextstyle (TRIPLEX_FONT, horizdir, 2)
VESA,
SVESA : settextstyle (TRIPLEX_FONT, horizdir, 3)

end;
(*

case. - .of *)

(

;txy

MAX_X div 2,
round (VERTICAL_OFFSET

GRAPH SCALES.TITLE

GRAPH_OFFSET) ,

AXISJTYPE : AXISJTYPES;

GRAPH_POS : GRAPH_POSITIONS;

GRAPH_NUMBER : integer;

SCALE INFO : GRAPH SCALE INFO

C Creates a graph by allocating memory for the
(*

and initializing them as directed by the varioi

graph data

s parameters.

structures
*

[*

Loop Control Variable for initializing=. po,ltion values.
*

LCV

begin (* CREATE_GRAPH *)

with PLOT[GRAPH_NUMBER] do

begin

GRAPHJSCALES :- SCALE_INFO;

VALUES. FIRST :- GRAPH_SCALES . FIRST;

VALUES. LAST :- GRAPH_SCALES. LAST;

with GRAPH_SCALES do

RANGE(X_AXIS) :- abs (HIGH_LABEL[X_AXIS)
- LOW_LABEL[X AXIS));

RANGE[Y_AXIS] :- abs fHIGH_LABEL(Y_AXIS)
- LOWLABEL [Y~AXIS) ) ;

end;
(
with...do *)

: SCREEN. GRAPH_COLOR;

getmaxx + 50;
1

getmaxy + 50;
1

getmaxy + 50;
:- 2 * EDGE_OFFSET + GRAPHjOFFSET;

:- MAX_X - 2 * (GRAPH_OFFSET * EDGE OFFSET);

:- 2
*

EDGE_OFFSET + GRAPH_OFFSET;

:- MAX Y - 2
*

(GRAPH_OFFSET + EDGE_OFFSET) ;

GRAPH_COLOR

PREVIOUS_PEAK

PREVIOUS_PEAK_VALUE

PRVIOUS_AVERAGE_VALUE

HORIZONTAL_OFFSET

HORIZONTAL_SIZE

VERTICAL_OFFSET

VERTICAL SIZE

case GRAPH POS

FULL SCREEN

T0P_HALF :

begin

VERTICAL_SIZE

end;

BOTTOM_HALF :

begin

VERTICAL SIZE

VERTICAL~OFFSET

end;

TOPJTHIRD :

begin

VERTICAL_SIZE

end;

MIDDLEJTHIRD :

begin

VERTICAL SIZE

VERTICALJDFFSET

BOTTOMJTHIRD :

begin

VERTICAL_SIZE

VERTICAL_OFFSET

end;

end; C case. . .of *)

Do Nothing
*

) ;

VERTICAL SIZE / 2 - VERTICAL OFFSET;

:- VERTICAL SIZE / 3 - i.S
* VERTICAL OFFSET;

1 VERTICAL SIZE / 3

VERTICAL_SIZE

:- VERTICAL_SIZE / 3 - :
:- 2 VERTICAL SIZE + !

C Add X Tick Marks *)

setusercharsize (1, 3, 1, 3);

settextstyle fsimplex^font, horizdir, 0) ;

settextjustifyfcentertext, toptext) ;

with GRAPH_SCALES do

if NUMBER_OF_TICK_MARKS[X_AXIS] <> 0 then

for LCV : 0 to NUMBERJ3F_TICK_MARKS[X_AXIS] do

begin

TEMP :- round (HORIZONTAL_OFFSET +

HORIZONTAL SIZE /

NUMBER_OF_TICK MARKS [X_AXIS)
*

LCV);

setcolor (SCREEN.

setlinestyle (solidlnT 0, normwidth);

line

+ TICK_LENGTH)
);

setcolor (SCREEN. GRID_COLOR);

setlinestyle (dottedln, 0, normwidth) ;

line

(

TEMP, round (VERTICAL_OFFSET),
TEMP, round(X_AXIS_OFFSET}

);

TICK_LABEL :- RANGE[X_AXIS] /

NUMBER_OF_TICK_MARKS[X_AXIS]
* L

LOW_LABEL[X_AXIS);

if TICK_LABEL - round (TICK_LABEL) then

begin

setcolor (SCREEN.AXIS_COLOR) ;

(

TEMP,
round (X_AXIS_OFFSET + TICK LENGTH - 1),
INT_STR(round(TICK LABEL))

end;
(* for . . . to. . .do *)

C Add Y Tick Marks *)

settextiustifyfrighttext, centertext) ;

with GRAPH_SCALES do

if NUMBER_OF_TICK_HARKS[Y_AXIS] <> 0 then

for LCV-:- 0 to NUMBER_OF_TICK_MARKS (Y-AXIS) do

begin

TEMP :- round (VERTICAL_OFFSET +

VERTICAL_SIZE /

NUMBER_OF_TICK MARKS [Y AXIS)
*

LCV} ;
setcolor (SCREEN.AXIS_COLOR} ;

setlinestyle (solidln, 0, nonnwidth) ;

line

(

round (Y_AXIS_OFFSET -

TICK_LENGTH) , TEMP,
round(Y AXIS_OFFSET), TEMP

};

setcolor (SCREEN. GRID_COLOR) ;

setlinestyle (dottedln, 0, nortnwidth) ;

line

1
round(Y AXIS_OFFSET), TEMP,
MAX_X - EDGEJ3FFSET - GRAPH_OFFSET, TEMP

128



);

TICK_LABEL :- RANGE [Y_AXIS ] /

NUMBER_OF_TICKJMARKS [Y_AXIS] *

(NUMBER_OF_TICK_MARKS[Y AXIS] -

LCV]
LOW_LABEL [Y_AXIS] ;

if TICK_LABEL -
round(TICK_LABEL) then

begin

setcolor(SCREEN.AXIS_COLOR) ;

outtextxy

(
round(Y AXIS_OFFSET - TICK LENGTH),
TEMP - 1,

INT_STR(round(TICK_LABEL) )
);

end;
(* if . . .then *)

(* Draw X Axis *)

setcolor (SCREEN.AXIS_COLOR) ;
setlinestyle (solidln, 0, normwidth) ;

(

round (HORIZONTAL OFFSET),
round (X_AXIS_OFFSET} ,

roundfHORIZONTAL OFFSET + HORIZONTAL SIZE),
round (X_AXIS_OFFSET)
);

(*
Draw Y Axis *}

setcolor (SCREEN.AXIS_COLOR),
setlinestyle (solidln, 0, normwidth) ;

line

(

round(Y AXIS_OFFSET) ,

round (VERTICAL_OFFSET) ,

round (Y_AXIS_OFFSET),
round (VERTICAL_OFFSET + VERTICAL_SIZE]
);

with GRAPH_SCALES do

(* Label Axis *}
setcolor (SCREEN.AXIS_LABEL_COLOR) ;
setusercharsize (1, 2, 1, 2) ;
settext justify (right text, centertext) ;

outtextxy

(

round(HORIZONTAL_OFFSET + HORIZONTAL_SIZE) ,

round (X_AXIS_OFFSET + round(0.75
*
textheight (

'M'
) ) } ,

LABEL_NAME [X_AXIS ]

0*textheight
(*H'

}

);

outtext (
' Evolutution of Solutions to

'

) ;

moverelfO, round(1.5
* textheight (

'H'

))) ;

outtext ( 'Real-Time Problems'};

case DISPLAY_MODE of

VGA,
SVGA settextstyle (TRIPLEX FONT, horizdir.

VESA,
SVESA : settext3tyle(TRIPLEX_FONT, horizdir.

end;
(*

case. . .of )

moverel{0, 4 *
textheight (

'H'
)) ;

outtext ( 'Greg P. Semeraro');

moverel(0, textheight (
'H'

) ) ;

case DISPLAY_MODE of

VGA,

SVGA settextstyle (SIMPLEX_FONT, horizdir, 2)

VESA,
SVESA : settextstyle (SIMPLEX_FONT, horizdir, 3}

end;
(*
case. . .of *)

moverell 1
*

textwidth(
'H'

) , 0);

outtext ('Copyright 1997');

moverel(-8
*
textwidth ( 'H') , 0);

DRAW_COPYRIGHT ;

DRAW_RIT_LOGO (MAX_X div 2 , (MAX_Y div 4 ) ) ;

end;
(*

No Graphs *)
: begin

DRAW_GRAPH_AXIS ( 1 ) ;

end;
(*

One, full-screen graph *)

begin

DRAW_GRAPH_AXIS ( 1 ) ;

DRAW_GRAPH_AXIS (2) ;

end;
(*

Two graphs *)
I begin

DRAW_GRAPH_AXIS ( 1 )

DRAW_GRAPH_AXIS ( 2 )

DRAW_GRAPH_AXIS ( 3 )
(*

Three graphs

4);

-of

*)

settextstyle (default font, horizdir, 1) ;

UPDATE_STATUS_MESSAGES (FORCEJJPDATE} ;

end;
(*

REDRAW_GRAPH *)

procedure UPDATE_GRAPHS (NUMBER__OF_GRAPHS : integer);

C This procedures updates then graphs on the screen by getting the

C from the Sound Blaster DMA buffer and then drawing the graph.

round(Y_AXIS_OFFSET - textwidth {
'M'

)) ,

round (VERTICAL OFFSET -

round(0.75
*
textheight (

'M'

))) ,

LABEL_NAME[Y_AXIS]

};

end;
[*
with. . .do *)

end;
(*
with. . . do *)

setlinestyle (solidln, 0, normwidth) ;

end;
{* DRAW_GRAPH_AXIS *)

procedure DRAW_B0X (UL_X, UL_Y, LR_X, LR_Y : integer; COLOR, LINE_WIDTH:word} ;

olored, unfilled, solid line rectangle the specified *)

begin (* DRAW BOX *)

setlinestyle(solidln, 0, LINE_WIDTH) ;

setcolor (COLOR) ;

rectangle (UL_X, UL 1, LR_X, LR_Y);

end;
(*

DRAW_BOX *}

begin
(*

REDRAW_GRAPH *)

DRAW_BOX(0, 0, getmaxx, getmaxy, SCREEN. BACKGROUND_COLOR,

setfillstylefsolidfill, SCREEN. BACKGROUNDJTOLOR ) ;

flOOdfill(l, 1, SCREEN. BACKGROUND_COLOR ) ;

MAX_X :- getmaxx;

MAX_Y := getmaxy;

DRAW BOX

MAX_X, MAX_Y,

SCREEN. BORDER_COLOR,

normwidth

MESSAGE REGION;

0, MAX_Y,

MAX_X, MAX_Y + MESSAGE_REGION,

SCREEN . BORDER_COLOR,

normwidth

VGA : begin

setusercharsize (2, 5, 2, 5) ;

settextstyle (SIMPLEX_FONT, horizdir, 0);

STATUS_POS : - MAX_X div 4 ;

end;
(*

VGA *)

SVGA : begin

setusercharsize(l, 2, 1, 2);

settextstyle (SIMPLEX_FONT, horizdir, 0);

STATUS_POS :- MAX_X div 4;

end;
(* SVGA }

VESA,
SVESA : begin

settextstyle |SIMPLEX_FONT, horizdir, 2);

STATUS_POS : = MAX_X div 4 ;

end;
(*

VESA|SVESA *}

and; C case.. .of *)
HIGHLIGHTED TEXT ( 'Evolve ') ;

HIGHLIGHTEDJTEXT (
'
Pause

'

) ;

HIGHLIGHTED-TEXT( "Grab image');

HIGHLIGHTEDJTEXT (
'
Reverse colors

'
) ;

HIGHLIGHTEDJTEXT ('Make
report'

};

HIGHLIGHTEDJTEXT (
'
Quit

'

) ;

(* Always display two graphs *}

CREATE GRAPHIFORCE LL, TOPJTHIRD, 1, USER GRAPH [1] .SCALES}

CREATE~GRAPH(FORCE_LL, MIDDLEJTHIRD, 2, USERJ3RAPH [2] .SCALES)

CREATE_GRAPH(F0RCE"LL, BOTTOMJTHIRD, 3, USER_GRAPH [3] .SCALES}

case NUMBER_OF_GRAPHS of

0 : begin

setcolor (SCREEN.MAIN_TITLE_COLOR);
case DISPLAY_MODE of

VGA,

SVGA : settextstyle (TRIPLEX_FONT, horizdir, 4);

VESA,
SVESA : settextstyle (TRIPLEX_FONT, horizdir, 5) ;

end;
(* case. . .of *)

settextjustify (centertext, centertext ) ;
moveto

1

(*

Flag that indicates which half of the DMA buffer
(*
present data samples.

FRONT HALF : boolean - false;

contains the *)

Static data to allow pr<C
(*

PREVI0US_GENERATION

PREV IOUS_STD_DEV

PREVIOUS_DTVERSITY_STD_DEV

PREVIOUS_BEST_INDTVIDUAL_FITNESS

PREVIOUS ALL TDME BEST INDIVIDUAL FITNESS

alues to be erased from the sc

longint = 0;

real - 0.0

real - 0.0

real - 0.0

real - 0.0

(*
Index into the data values arrays. *)

X_LCV, LAST_ELEMENT : integer;

(*
Keeps track of the number of DMA interrupts that occurred since *)

(*
the last one was serviced. *)

NUMBERJ)F_INTERRUPTS : integer;

(*

Loop Control Variable to update all graphs being displayed. *)

PLOT_NUMBER : integer;

procedure DRAW_LINE_GRAPH (GRAPHJNUMBER : integer);

(*
Draws an entire line graph using small line segments. If previous

C is erased if necessary (depending on the graph type selected).

line *

Used to hold the X-Axis value (converts integer to real) .

ACTUAL X VALUE real;

PEAKJVALUE, AVERAGEJVALUE : real; PEAK_DETECTED : boolean;

Used to index into the data value array.

alculate the posit of the Y-Axis peak/average.

used to hold the X-Axis position of the Y-Axis peak.

' Used to swap the present and previous lines.

TEMP_PTR : pointer,

Used to calculate the rage value of each sweep of the graph-

NUMBER_IN_AVERAGE : integer;

Used to hold the string value of the
'real'

peak-to-average.

EMP_STR : string[20];

Markers for the first and last X values that fit on the screes

(needed when the X-Axis limits are changed from the defaults) .

FIRST_X, LAST_X : integer;

X_VALUE_OFF_SCREEN : boolean;

procedure PUT_X_BLOCK (COLOR : word; X_P0S : real; GRAPH_NUMBER : integer);

[* Draws a
''

along the X-Axis corresponding to the X position. *)

(* Graphic screen position of X-Axis.

129



begin ( put_X_BLOCK *)

with PLOT[GRAPH_NUMBER) do

with GRAPHSCALES do

begin

Y_POS :- VERTICAL_OFFSET + VERTICAL_SIZE - 1 - POINT SIZE;

setfillstylefsolidfill, COLOR);

bar(round(X_POS -

POINT_SIZE), round(Y_POS -

POINT SIZE},
round(X_POS + POINT_SIZE), round(Y_POS + POINT~SIZE} ) ;

setcolor (COLOR) ;

set text justify (centertext, centertext);

outtextxy

I

round (X_POS}(
round(Y_POS - textheight (

'H'
)) ,

REAL_STR(X_VALUE(round(X_POS), GRAPH NUMBER) , 1, 1)
};

end;
(*
with. . .do *)

end;
(*

PUT_X_BLOCK *)

irocedure PUT_Y_BLOCK(COLOR : word; Y_POS : real; GRAPH NUMBER . integer);

> Draw:l a
''

along the Y-Axis corresponding to the Y position

1*
Graphic screen position of Y-Axis.

X POS real;

begin (*
PUT_Y_BLOCK *}

with PLOT[GRAPH_NUMBER] do

with GRAPhJSCALES do

begin

X POS :- HORIZONTAL_OFFSET + 1 + POINT SIZE;

setfillstylelsolidfill, COLOR);

bar (round(X_POS -

POINT_SIZE), round(Y_POS -

POINT_SIZE),
round(X_POS + POINT_SIZE), round(Y_POS + POINT_SIZE) } ;

setcolor (COLOR) ;

settextjustifyf left text, centertext) ;

i

txy

round(X_POS + textwidth ( 'H'} ) ,

round(Y_POS) ,

REAL STR(Y_VALUE(round(Y POS), GRAPH_NUMBER) , 1, 1)

procedure GRAPH_BAR (XI, Yl, X2, Y2 : integer);

C Draws a graph bar with diagonal hash mark

round
(GRAPH_POINTS"

[X
round(GRAPH_POINTS"

[X

round(GRAPH
POINTS"

[X

round (GRAPH_POINTS
"

[X

):

end
(* if.. -then *)

begin

GRAPnJBAR

(
round (PREVI0US_GRAPH_POINTS"[X

POSITION[X_AXIS] + 0.5),
round(PREVIOUS_GRAPH_POINTS"

[X

P0SITI0N[Y_AXIS] ? 1},
round(PRVIOUS_GRAPH_POINTS"[X +

POSITION[X_AXIS]
- 0.5),

round(X_AXIS_OFFSET}
- 1

);

GRAPH BAR

(

round (GRAPH_
POINTS"

[X

round
(GRAPH_POINTS"

[X

round (GRAPH_POINTS"[X +

round (X_AXIS_OFFSET)
-

);

*)

] .POSITION[X_AXIS] + 0.5),

] .POSITION[Y_AXIS] + 0.5),

1) .POSITION[X_AXIS]
- 0.5),

1) .POSITION(Y_AXIS]
- 0.5)

] .POSITION[X_AXIS]

] .POSITION[Y_AXIS]

1 ] . POSITION [X_AXIS ]

(* Draw last line segment I bar *)

if PLOT[GRAPH_NUMBER] .GRAPH_SCALES.GRAPHJTYPE - BAROGRAPH then

GRAPH_BAR

(

round(PREVIOUS_GRAPH_POINTS"[LAST_X] . POSITION [X_AXIS] + 0.5),

round(PREVIOUS_GRAPH_POINTS"[LAST_X] . POSITION [Y_AXIS] + 1},
round ( PREVIOUS

J5RAPH_POINTS"

[LAST_X] . POSITION [X_AXIS] +

(
PREVIOUS_GRAPH_POINTS"

[LAST_X] . POSITION [X_AXIS )
-

PREVIOUS_GRAPH_POINTS"

[LAST_X-1] . POSITION [X_AXIS ]

round (X AXIS_OFFSET}
- 1

);

GRAPhJBAR

(
round

(GPAPH_POINTS"

[LAST_X] . POSITION [X_AXIS] + 0.5),

round
(GRAPH_POINTS"

[LAST_X] . POSITION [Y_AXIS] + 1),

round(GRAPH_POINTS-[LAST_X] . P0SITI0N[X_AXIS) *

(

GRAPH
POINTS"

[LASTJC] . P0SITI0N[X_AXIS]
-

GRAPH-POINTS"(LAST_X-l] . POSITION [X_AXIS]

between diagonal ha:

round (X_AXIS_OFFSET)

);

OFFSET = 7;

C Position of diagonal line within bar.
(..................................................................

DIAGONAL : integer;

begin C GRAPH BAR *)

if (XI <> X2j and (Yl <> Y2) then

rectangle (XI, Yl, X2, Y2);

DIAGONAL :- Yl;

Yl :- Yl + OFFSET;

while (Yl < Y2) do

begin

line (XI, Yl, X2, DIAGONAL);

DIAGONAL := DIAGONAL + OFFSET;

Yl :- Yl + OFFSET;

end;
(* if . . -then *}

end;
{* if . . .then *}

end;
{* GRAPH_BAR *)

begin
(* DRAW_LINE_GRAPH *)

setwritemode (xorput) ;

with PLOT[GRAPH_NUMBER] do

with GRAPH_SCALES do

begin

X_VALUE_OFF SCREEN :- false;

FIRST_X :-
-1;

X :- VALUES. FIRST;

repeat

with
GRAPH_POINTS"

[X] do

begin

ACTUAL_X_VALUE :- X;

P0SITION[X_AXIS) := X_P0SITION (ACTUAL_XJVALUE, GRAPHJ-JUMBER ) ;

(*
Check for X value beyond graph boundaries *)

if (ACTUAL_X_VALUE >- LOW_LABEL[X_AXIS] ) and (FIRST_X -
-1)

then

FIRST_X :- X - 1;

if (ACTUAL_X_VALUE >- HIGH_LABEL [X_AXIS] ) or

(X - VALUES. LAST) then

begin

LAST_X :- X;

X_VALUE_OFF_SCREEN :- true;

end;
(* if. . .then *)

POSITION[Y_AXIS] :- Y_POSITION (VALUES.DATA[X] , GRAPH^NUMBER} ;

end;
(*
with. . .do )

inc (X) ;

until X_VALUE_OFF_SCREN;

AVERAGEVALUE := 0.0;

PEAK_DETECTED :- false;

PEAKJVALUE :- maxint;

setcolor (GRAPH COLOR xor SCREEN. BACKGROUND^COLOR ) ;

for X :- FIRSTJX to (LAST_X - 1) do

with GRAPH_POINTS"[X] do

AVERAGEJVALUE :- AVERAGE VALUE + POSITION [Y_AXIS ) ;

if POSITION [Y_AXIS] < PEAK_VALUE then

begin

PEAK :- POSITION [X_AXI3];

PEAKJVALUE :- P0SITI0N[Y_AXIS] ;

PEAK_DETECTED :- true;

end;
(* if . . .then *)

if GRAPHJTYPE - LINEJ3RAPH

then

begin

end;
(* if ... then. .. else *}

with
GRAPH_POINTS"

[LAST X) do

if POSITION[Y AXIS) < PEAKJVALUE then

begin

PEAK := POSITION[X AXIS];

PEAKJVALUE :- POSITION[Y-AXIS] ;

PEAK_DETECTED :- true;

end;
<* if - -then *)

NUMBER_IN_AVERAGE :- LAST_X - FIRST_X - 1;

TEMP_PTR :- GRAPH_POINTS;

GRAPH_POINTS := PREVIOUS GRAPH_POINTS;

PREVIOUSJSRAPhJPOINTS :-_TEMP_PTR;

settext^ustify (lefttext, centertext } ;

if AVERAGE_DETECTION and (NUMBER_IN_AVERAGE <> 0) then

begin

AVERAGE_VALUE := AVERAGEJVALUE / NUMBER_IN_AVERAGE;

PUTJY_BLOCK(SCREEN. BACKGROUND COLOR, PREVIOUS_AVERAGE_VALUE ,

GRAPH_NUMBER) ;

PUT_Y_BLOCK(SCREEN.AXIS COLOR, AVERAGEJVALUE, GRAPH_NUMBER) ;

end;
(* if. . .then )

if PEAK_DETECTION[X_AXIS] and PEAK_DETECTED then

begin

PUT_X_BLOCK (SCREEN. BACKGROUND_COLOR, PRVIOUS_PEAK,

GRAPH_NUMBER} ;

PUT_X_BLOCK(SCREN.AXIS_COLOR, PEAK, GRAPH NUMBER);

end;
(* if . . .then *)

if PEAK_DETECTION[Y_AXIS) and PEAK^DETECTED then

PUT_Y_BLOCK(SCREEN. BACKGROUNDJCOLOR, PREVIOUS_PEAK_VALUE,

GRAPH_NUMBER);

PUT_Y_BLOCK (SCREEN.AXIS_COLOR, PEAKJVALUE, GRAPH_NUMBER) ;

end;
(* if . . .then *)

PREVIOUS_PEAK

PREVIOUS_PEAK_VALUE

PRVIOUS_AVERAGE_VALUE

end;
(*

with- . .do *)

*)

- PEAK;

- PEAKJVALUE;
- AVERAGE VALUE;

lin.

round (PREVIOUS_GRAPH_POINTS"(X ] .

POSITION[X_AXIS] + 0.5),
round ( PREVIOUS_GRAPH POINTS"(X j.

POSITION[Y AXIS] + 0.5),

round ( PREVIOUSJ3RAPHJ
POINTS"

[X + 1].

POSITIONS AXIS]
-

0.5),
round(PREVIOUS_GRAPH_POINTS"

(X + 1).

POSITION[Y AXIS] - 0.5}

);

begin C UPDATE_GRAPHS *}

settextjustify(lefttext, centertext};

(*
Update Generation Counter *)

if GENERATION <> PREVIOUS GENERATION then

begin

setcolor (SCREEN. BACKGROUND_COLOR) ;

outtextxy

(

2 *
EDGE_OFFSET + textwidthCh'}

*
11,

MAX Y + 1 *
MESSAGE_REGION div 3,

INT-STR(PREVIOUS_GENERATION)

) ;

setcolor (SCREEN. STATUS_COLOR};

PREVIOUS_GENERATION :- GENERATION;

outtextxy

(

2 * EDGE_OFFSET + textwidth (
'h'

)
*
11,

MAX Y + 1 *
MESSAGE_RGION div 3,

INT-STR(PRVIOUS_GENERATION)

I;

if NUMBER_OF_GRAPHS <> 0 then

begin

settextjustifyf righttext, centertext) ;

(* Update Statistics *)
if LONG_TERM.STANDARD_DEVIATION <> PREVIOUS_STD_DEV then

begin

setcolor (SCREEN. BACKGROUND_COLOR) ;

outtextxy

1
MAX_X - 2 *

EDGEJ3FFSET,

round(PLOT[2) ,VERTICAL_OFFSET)
- 2 * textheight (

'H'

'Std.
Dev.-'

+ REAL STR(PREVIOUS_STD_DEV, 2, 2}

};

setcolor(SCREEN.AXIS_COLOR) ;

PRVIOUS_STD_DEV :-
LONG_TERM.STANDARD_DEVIATION,-

outtextxy

130



MAX_X - 2 *
EDGE OFFSET,

round(PLOT[2] .VERTICALJ3FFSET) - 2 *
textheight ( 'H ') ,

' ~
-

-

REAL_STR ( PREVIOUS_STD DEV, 2, 2)
Std. Dev,-

end;
(* if. . .then *)

if GENET IC_ALGORITHM FITNESS_CONVERGED

then

3etcolor{SCREN.AXIS COLOR)
else

setcolor (SCREEN. BACKGROUND_COLOR);

outtextxy

1
MAXX - 2 *

EDGE OFFSET - 3 *

textwidth CH'} ,

round(PLOT[2] . VERTICALJ3FFSET) - 1 *

textheight (
'H'

} ,
'Converged'

);

if LONG_TERM_DIVERSITY.STANDARD_DVIATION <>

PRVIOUS_DIVERSITY_STD_DEV then

begin

set colo r (SCREEN . BACKGROUND_COLOR } ;

outtextxy

(
MAX_X - 2 *

EDGE_OFFSET,
round(PLOT[3) .VERTICAL_OFFSET) - 2 *

textheight (
'H'

) ,

*Std.
Dev.-*

+ REAL_STR(PREVIOUS_DIVERSITY_STD DEV, 2, 2)

setcolor (SCREEN.AXIS_COLOR) ;

PRVIOUS_DIVERSITY_STD_DEV :- LONG TERM_DIVERSITY.

STANDARD DEVIATION;
outtextxy

<

MAX_X - 2 *

EDGE_OFFSET,
round(PLOT[3] . VERTICAL_OFFSET) - 2 *

textheight (
'H'

} ,

'Std. Dev.-'
+ RAL_STR(PREVIOUS_DTVERSITY STD_DEV, 2, 2)

end;
(* if . . .then *)

if GENETIC_ALGORITHM_DIVERSITY CONVERGED

then

setcolor (SCREEN.AXIS COLOR)
else

setcolor (SCREEN. BACKGR0UND_COLOR) ;

outtextxy

1

MAX_X - 2 *
EDGE OFFSET - 3 *

textwidth (
'H'

) ,

round(PL0T[3] . VERTICAL_OFFSET) - 1 *
textheight (

'H'

) ,
'Converged'

);
(*

Update Most Fit Individual )
if PRESENT_GENERATION.BEST <> PREVIOUS BEST_INDIVIDUAL_FITNESS then

begin

setcolor (SCREEN. BACKGROUND_COLOR) ;

outtextxy

<

MAX_X - 2 *

EDGE_OFFSET,
round(PLOT[l] .VERTICAL_OFFSET) - 2 *

textheight {
'H'

} ,

'Present Best-' +

REAL_STR ( PREVIOUS_BEST_INDIVIDUAL_FITNESS, z, 2 )

setcolor (SCREEN.AXIS_COLOR) ;

PREVIOUS_BEST_INDIVIDUAL_FITNESS

outtextxy

(

PRESENT GENERATION. BEST;

MAX_X - 2 *

EDGE_OFFSET,
round ( PLOT [ 1 ] . VERTICAL_OFFSET )
'Present Best-' *

REAL_STR(PREVIOUS BEST INDIVIDUAL_FITNESS, ^

);

height('H'),

6)

end;
(*
if . . .then *)

C Update Most Fit Individual *)
if LONGJTERM.BEST <> PREVIOUS_ALL_TIME_BEST_INDIVIDUAL_FITNESS then

begin

setcolor (SCREEN. BACKGROUND_COLOR) ,

outtextxy

(

MAX_X - 2 *
EDGE_OFFSET,

round(PLOT[l) .VERTICAL OFFSET) 1 *
textheight (

'H'

) ,

'All-Time
Best-*

+

REAL STR(PREVIOUS_ALL_TIME BEST_INDIVIDUAL_FITNESS, 2, 2}

);

setcolor (SCREEN.AXISjCOLOR);

PREVIOUS_ALL_TIME_BEST_INDIVIDUAL_FITNESS :- LONGJTERM.BEST;

outtextxy

(

MAX_X - 2 *

EDGE_OFFSET,

round(PLOT[l] . VERTICAL_OFFSET)
- 1 *

textheight
(' H'

) ,

'All-Time
Best-'

+

REAL_STR(PREVIOUS_ALL TIME_BEST INDIVIDUAL FITNESS, I, 2)

};

end;
(* if- . .then *)

end;
(* if . . -then *}

end;
(* if . . .then *)

if NUMBER_OF_GRAPHS <> 0 then

begin

with PL0T(1] do

for X_LCV :- GRAPH_SCALES . FIRST to GRAPH_SCALES .LAST do

VALUES. DATA[X_LCV] :- POPULATION [X_LCV] .FITNESS;

with PLOT[2] do

for X_LCV :- GRAPHJSCALES . FIRST to GRAPH_SCALES . LAST do

VALUES. DATA [X_LCV] :- LONG_TERM.HISTOGRAM[X_LCV] ;

with PLOT[3] do

for X LCV :- GRAPH_SCALES. FIRST to GRAPHJSCALES . LAST do

VALUES. DATA [X_LCV] :- LONGJTERM_DIVERSITY.HISTOGRAM (X_LCV) ;

DRAW_LINE_GRAPH ( 1 ) ;

DRAW LINE_GRAPH(2) ;

DRAW-LINE GRAPH ( 3 ) ;

end;
(* if.7. then *)

end;
(*

UPDATE_GRAPHS *)

function DMAGE FILENAME : string;
(.............T............................................................

C This routine determines the next available DMAGE xx.BMP filename.

Used to assign a unique filename to the image file

DMAGE_NUMBER : integer;

Result of I/O operation, used to find first available filei

RESULT : integer;

(* Filename of file to get image.

FILENAME : string [sizeof (namestr) + sizeof (dirstr) + 1];

repeat

FILENAME :- 'IMAGE_';

if DMAGE_NUMBER < 10 then

FILENAME :- FILENAME + '0';

FILENAME : - FILENAME + INT_STR(IMAGE_NUMBER) + '.BMP';
inc (IMAGE_NUMBER) ;
assign (DMAGE, IMAGE_DIRECTORY + FILENAME);

CSI-*) reset (DMAGE) ; C5I+*}
RESULT := ioresult;
if RESULT = 0 then

close (DMAGE) ;

until RESULT - 2;
IMAGE FILENAME :- FILENAME;

end; C~LMAGE_FILENAME *)

procedure HANDLE_KEYBOARD EVENT;

C This routine processes all user keyboard input by performing the action *)
(*

requested (if possible). *)

(*
Character to hold i

USER_INPUT : char;

aer input command.

begin (*

HANDLE_KEYBOARD_EVENT *]
USER_INPUT :- upcase (readkey) ;

case USER_INPUT of
'E'

; begin

If NUMBERJDF GRAPHS_TO_DISPLAY - 0

then

NUMBER_OF_GRAPHS_TO_DISPLAY :- 3

else

NUMBER_OF_GRAPHSJTO_DISPLAY := 0;
REDRAW_GRAPH (NUMBER_OF_GRAPHS_TO_DISPLAY) ;

end;
(*

Run Evolution *)
'G'

: begin

UPDATE_STATUS_MESSAGES ( FORCE_UPDATE ) ;
SAVE_IMAGE_AS_1 6_COLOR_BMP_FILE

(

LMAGE_DIRECTORY + DMAGE_FILENAME,
0, 0, getmaxx, getmaxy
);

UPDATE_STATUS_MESSAGES (FORCE UPDATE) ;

end;
(*

Grab Image *)
'Q'

: USER_QUIT :- true;
'P'

: begin

USER_PAUSED :- not USER_PAUSED;

UPDATE_STATUS_MESSAGES(FORCE_UPDATE) ;

end;
(* 'Pause )

'M'
; begin

USER_PAUSED :- true;

PRODUCE_GENETIC ALGORITHM_REPORT;

UPDATE_STATUS_MESSAGES (FORCE UPDATE) ;
end;

(* 'Pause *}
'R'

begin

REVERSEJVIDEO := not REVERSEJVIDEO;
if REVERSEJVIDEO

then

SCREEN :- REVERSE

else

SCREEN :- NORMAL;

REDRAW_GRAPH (NUMBER_OF__GRAPHS_TO_DISPLAY) ;

end;
(* Reverse Video Colors *)

else write (BELL) ;

end;
[*

case. ..of }
end;

(*
HANDLE_KEYBOARD_EVENT *}

begin (*
GENETIC_ALGORITHM_THESIS *)

(*
Install exit procedure *)

SAVE_EXIT := exitproc;

exitproc := 9SHUTDOWN_GRAPHICS;

C Initialization *)

INITIALIZE;

INIT_GRAPHICS;

REDRAW_GRAPH (NUMBER_OF_GRAPHS_TO_DISPLAY} ;
(* Go until user wants to exit )

if keypressed then HANDLE_KEYBOARD_EVENT ;

if not USER_QUIT and not USER PAUSED and not keypressed and

not (GENETIC ALGORITHM_FITNESS_CONVERGED and

GENET IC-ALGORITHM__DIVERSITY_CONVERGED) then

begin

if NUMBER_OF_GRAPHSJTO_DISPLAY <> 0 then

UPDATE_STATUS_MESSAGES (DO_NOT_FORCE_UPDATE ) ;

until lPROCESS_GENETIC_ALGORITHM_INDTVIDUAL
UPDATE_GRAPHS (NUMBER_OF_GRAPHS_TO_DISPLAY) ;

UPDATE_STATUS_MESSAGES(DO_NOT_FORCE_UPDATE) ;

end;
(*
while... do *)

until USER_QUIT or (GENERATION - maxlongint);

if GENERATION <> 0 then

PRODUCE_GENETIC ALGORITHM_RPORT;

end.
(*

GENETIC ALGORITHM THESIS *)

POPULATION_SIZE) ;

(* File used to find first available file.
{....... ......................... ...........

DMAGE : file;

131



9.3 RTOS GA.PAS
unit RTOS GA;

c

C This unit implements a Genetic Algorithm (GA) which evolves a
(*
to a real-time operating system (RTOS) optimization problem. Thi

C report five candidate solutions. The optimal solution is i

to among them but a reasonable solution will be among them

guarentted *}

C
(*

CSA+

CSB-

CSD+

C
CSL+

C
CSF-

CSI-

C5N-

CSO-

C3P-

CSQ-

CSR-

i'SS-

CST +

C$v-

csx*

c

Compiler Options (Ver. 7.0)
Word Alignment

Short Circuit Boolean Evaluation

Debug Code Generation ON (Sort of)
Requires /V option to TPC to activate

Local Debug symbols ON (Sort of)
Requires /V option to TPC to activate

Far calls only as needed

I/O Checking OFF

Software Emulation of 80x87

Overlays NOT allowed

Standard 'string'
parameters

Overflow Checking OFF

Range Checking OFF

Stack Checking OFF

Force Typed '9'
references

Var-string Checking OFF

Enable Extended syntax

C The following defines the number of individuals in the population.

POPULATION_SIZE - 200;

Genetic oper.

converges as i

probabilities; these define the speed that the GA *)
as the probability of false convergance. *)

PROBABILITY_OF_CROSSOVER - 0.30;

PROBABILITY_OF_MUTATION = 0.06;

CONVERGENCEJTHRESHOLD = 5;

(*
The name of the TASKING program that is to

(*
the RTOS configuration. This program 'must

(*
report file (TASKING. RPT) and a program spec

C an extension of .RPT.

>e executed to evaluate
'

create the TASKING

fie report file with
'

(*

PROGRAMJJAME - '
RTOS-APP

'

;

{*
Each aspect of the evaluation (RTOS and application) is assignei

[*
a percentage (of course the total must be 1.0).

(...........................................

RTOS_EVALUATION_PERCENTAGE = 1.0;

APPLICATION_EVALUATION_PERCENTAGE - 1.0 - RTOS_EVALUATI0N_PERCENTAGE;

Long term statistii

many previous gener,

computing using data

Number of
'best' individuals to mainta

[*

workload implies higher priority.

c

WORKLOAD MONOTONIC ASSIGNMENT);

Problem specific parameter. This structure defin

the individuals that will make up the population.

(*
Cooperative or Preemptive Mulittasking.

TASKINGJ40DEL : TASKING MODELS;

(*
Preemptive multitasking timeslice (microseconds).

TARGETJTIMESLICE : longint;

Enable/Disable Priority Inheritai

PRIORITY_INHERITANCE_ENABLED : booleai

Rotating priorities

PRIORITY_ALLOCATION : PRIORITY_SCHEDULING POLICIES;

Uniform, random, rate monatonic, deadline i

monatonic priority assignments.

INITIAL PRIORITY_ASSIGNMENT : PRIORITY ASSIGNMENT ALGORITHMS;
.......7. .............................T..........T.. ..........

C Genetic Algorithm bookkeeping variables used to determine
(*
individuals are allowed to 'live* in the next generation.

(*
The individual's fitness evaluation parameters.

FITNESS, RELATIVE_FITNESS, CUMULATIVE FITNESS : real;

The individual's diversity para)

of genotype values and diversity

1 : 1 mapping
*
)

DIVERSITY : longint;

Flag to indicate whether the individual will

next generation.

Seed for random number generator

reproduced.

,..*.........................................,.,..

(*
This data structure is used to determine how well the GA is doing.

C The only criteria used is convergence to a single solution (or to a
(*
single

'fitness'
value). The GA is assumed to be done when the

(*
population has converged reguardless of the actual fitness value

C achieved.

..............

STATISTICS - ;

BEST, MEAN, WORST : real;

C Statistics based on the <

VARIANCE, STANDARD_DEVIATION : real;

C Normalized histogram buckets.

NUMBER OF BEST TO REPORT

HISTOGRAM : array [round (MINIMUM FITNESS - 0.5) .,

round

(MAXIMUM-

FITNESS + 0.5)] of

end;
(*

STATISTICS *)

Defines the bounds of the histogram, values should be guarenteed *]

to be beyond the possible fitness values (this is verified and *)

reported any fitness is beyond this range). *)

List of all genes that make up the genotype.

RTOSJSENES - (

Tasking Model - Cooper.

TASKING MODEL GENE,

Preemptive CPU Timeslice

TARGET TIMESLICE GENE,

Priority Inheritance Protocol -

Enabled, Disabled

PRIORITY_INHERITANCE_GENE,

C Priority Allocation Algorithm -

Static, Dynamic (Rotating)
(........................................... ....................

PRIORITY_ALLOCAT ION_GENE ,

,. ........................................................ ......

(*
Initial Priority Assignment -

Uniform, Random, Rate Monotoi

(* Deadline Monotonic, Workload Monotonic
(...........*..*..........................

INITIAL_PRIORITY_ASSIGNMENT_GENE} ;

(* Definition of the initial priority assignment gene (the other gene
'

( definitions come directly from the TASKING unit).

PRIORITY_ASSIGNMENT_ALGORITHMS - (
,*...........*..*.*...*...*...........................*...*...*.....*

(* All tasks are Initially assigned the same priority.

UNIFORM_ASSIGNMENT ,

.............. ............................................ ...........

[* All tasks are initially assigned random priorities.

RANDOM_ASS IGNMENT ,

(*
Task priorities are assigned based on

(*
execution rate implies higher priority.

RATE M0N0T0NIC_ASSIGNMENT,

ecution rates

Task priorities are assigned based on execution deadlii

earlier execution deadline implies higher priority.

DEADLINE_MONOTONIC_ASSIGNMENT,

( Task priorities are assigned based rkload level: higher *)

(*
This is the current generation that has completed processing.

GENERATION : longint - 0;

C This is the current individual that has complete processing.

INDIVIDUAL : integer - POPULATION_SIZE;

This is the maximum value for the genotype diversity,
to scale the diversity display.

is used *)

MAX NORMALIZED DIVERSITY :

Indicates the status of the GA, i be used to terminate the GA.

(*
Statistics are availaible for each generation that is processed, )

[*
the data is independent from generation to generation. *)

PRESENT_GENERATION : STATISTICS;

{*
Cumulative statistics are availible for the

C generations (see FITNESS_MAX_AVERAGE_GENERATIONS) .

LONG TERM : STATISTICS;

(*
Diversity statistics for the present generation.

PRESENT_DIVERSITY STATISTICS;

(*
Cumumative diversity statistics for the

C (see DIVERSITY_MAX_AVERAGE_GENERATIONS) .

LONG TERM DIVERSITY : STATISTICS;

ecent generations *)

(* These are all of the genes of the population.

POPULATION : array [0.
,POPULATION_SIZE] of GENOTYPE;

(*

Used to verify the existance of the TASKING application program.

EXECUTABLE_FILE : file;

function PROCESS_GENETIC_ALGORITHM_INDIVlDUAL : integer;

C This routine performs all processing on the individual (i.e.. Selection,
|*
Crossover, Mutation and Evaluation). The individual that was processed

'

[
returned by this function.

132



procedure PROCESS_GENETIC_ALGORITHM_GENERATION;

C This routine performs all processing on the population for an entin
C generation (i.e., Selection/Crossover, Mutation and Evaluation).

procedure PRODUCE_GENETIC_ALGORITHM REPORT;
,*.... ......*.*.,,.......,......*..T............................... .........

C This routine produces a report on the 'best'
individuals found.

implementation

function PROCESS_GENETIC_ALGORITHM_INDIVIDUAL : integer;

This routine performs all processing on the individual (i

Crossover, Mutation and Evaluation). The individual that
Selection,
processed

'

eturned by this function. *

procedure RANDOM GENE (var GENES : GENOTYPE; GENE : RTOS GENES) ;

c Replaces the gene of the genotype with a new, randomly selected \ alue.
*

dos;

C List of all time best indivuals that will be rported.

ALL_TDME_BEST : array (0. . (NUMBER_0F_BEST_T0_REP0RT-1 } ] of GENOTYPE;

(*
The genes are allowed to range within these bounds so that each

C individual created is guarenteed to have genes that are reasonable
C for the problem (i.e. all individuals are viable).

UPPER_BOUND, LOWER_BOUND, RANGE : array [RTOS_GENES] of real;

; {..*..... ..............................................................
(*

The index of the lowest in the list is maintained so that the list
(*

can be kept as a circular buffer very efficiently.

LOWEST_IN_LIST_OF_BEST_INDIVIDUALS : integer = 0;

I****-*--...*-......*.**.....*.....*..... ...............................

C Flag that indicates that at least one fitness value was outside of

C the allowable range (0.0 through 100.0), used in report.

FITNESS_OUT_OF_RANGE : boolean = false;

f*
Text string of gene names (for INI file processing and report

(*
generating) .

GENE_NAME : array [RTOS_GENES] of string -

'TaskingModel'
,

'TargetTimeslice',
'

Prioritylnheritance '

,

'PriorityAllocation'
,

'

InitialPriorityAssignment *

begin C RANDOM_GENE *)

with GENES do

case GENE of

TASKING_MODEL_GENE :

TASKING_MODEL :-

TASKING MODELS

(

RANDOM VALUE

LOWER_BOUND[TASKING_MODEL_GENE] ,

UPPER_BOUND[TASKING_MODEL_GENE]

TARGETJTIMESLICEJ3ENE

TARGETJTDMESLICE : -

1

RANDOMJVALUE

LOWER_BOUND [TARGET_TIMESLICE_GENE] ,

UPPER_BOUND [TARGETJTIMESLICEJ3ENE]

PRIORITY_INHERITANCE_GENE :

PRIORITY_INHERITANCE_ENABLED :-

boolean

RANDOM VALUE

LOWER_BOUND [PRIORITY_INHERITANCE_GENE] ,

UPPER_BOUND[PRIORITY_INHERITANCE_GENE]

C Text strings for tasking model gene (for INI file processing and
(*
report generating).

(.
............*............,,.......,...,.......,.,.,.........,.......

TASKING_MODEL_NAME : array [TASKING_MODELS] of string
-

'Cooperative'

,
'

Preemptive
'

PRIORI!Y_ALLOCATION_GENE ;

PRIORITY_ALLOCATION :-

PRIORITY_SCHEDULING_POLICIES

RANDOM VALUE

LOWER_BOUND[PRIORITY_ALLOCATION_GENE],
UPPER_BOUND[PRIORITY_ALLOCATION_GENE)

(*
Text strings for priority inheritance gene (for INI file processing*

(*
and report generating).

PRIOITY_INHERITANCE_NAME array [boolean] of string -

INITIAL_PRI0RITY_A5SIGNMENT_GENE :

INITIAL_PRIORITY_ASSIGNMENT :-

PRIORITY ASSIGNMENT ALGORITHMS

Text strings for priority scheduling policy

processing and report generating) .

PRIORITY_ALLOCATI0N_NAME :

array [PRIORITY_SCHEDULING__POLICIES] of string

RANDOM VALUE

L0WER_B0UND [ INIT IAL_PRIORITY_ASS IGNMENT_GENE ] ,

UPPER_BOUND[ INIT IAL_PRIORITY_ASS IGNMENTJ3ENE]

Text strings for priority assignment algorithm gene

processing and report generating} .

INI file *)

procedure INITIALIZE_POPULATION;

(* This routine initializes the GA by randomly initializing the gem
(* the population and initializes the long term statistics.

INITIAL_PRIORITY_ASSIGNMENT_NAME :

array [PRIORITY_ASSIGNMENT_ALGORITHMS] of string
-

{
'
uniformAssignment

'

,

'
RandomAssignment

'
,

'
RateMonotonicAssignment

'
,

'
DeadlineMonotonicAssignment

'

,

'WorkloadMonotonicAssignment
'

);

function RANDOMJVALUE (LOWER, UPPER : real)

(*
Produces random floating point number between LOWER and UPPER.

begin (*
RANDOMJVALUE *)

RANDOM VALUE := (randomfm

end;
(* RANDOM VALUE *)

xint)
*

(UPPER

procedure WRITE_TO_INI_FILE (var INT_FILE : text; var GENES : GENOTYPE);

*
This routine takes the individual's genotype and creates a TASKING INI

* file that corresponds to it. The TASKING program will then use these

*
parameters to evaluate the effectiveness of the RTOS for the application.

begin <*
WRITE_TO_INI_FILE *)

writeln (INI FILE,
'

[Tasking) M;

writeln(INI-FILE, 'Statistics-TaskStatistics
'

) ;

with GENES do

begin

RANDOM_NUMBER SEED := (longint (random($FFFF) ) shl 16) or

longint (random(SFFFF) ) ;

writeln (INI_FILE, GENE_NAME [TASKING_MODEL_GENE] , '-",

TASKING_MODEL_NAME[TASKING_MODEL) ) ;

writeln[INI_FILE, GENE_NAME [TARGET TIMESLICE GENE], '=',
TARGETJT IMESL ICET ;

writeln (INI FILE,

GENE_NAME[PRIORITY_INHERITANCE_GENE] ,
''

,

PRIOITY_INHERITANCE_NAME[PRIORITY_INHERITANCE ENABLED] ) ;

writeln(INI_FILE,

GENE_NAME [PRIORITY_ALLOCATION_GENE ] ,

'
-

'

,

PRIORITY ALLOCATION_NAME [PRI0RITY_ALL0CATION] ) ;
writeln(INI FILE);

writeln (INI_FTLE,
'
(Application]

'
) ;

writeln (INI_FILE,
GENE_NAME [ INITIAL_PRIORITY_ASS IGNMENT_GENE ] ,

'
-

'
,

INITIAL_PRIORITY_ASSIGNMENT_NAME[INITIAL_PRIORITY_ASSIGNMENT] ) ;

writeln (INI_FILE,
'RandomNumberSeed-'

, RANDOM_NUMBER SEED} ;

end;
(*
with. ..do *}

end;
(* WRITE_TO_INI_FILE *}

C Loop control variables.

begin (*
INITIALIZE_POPULATION )

for INDIVIDUAL LCV : - 1 to POPULATION_SIZE do

with POPULATION [INDIVIDUAL_LCV] do

L0WER_BOUND[TASKING_MODEL_GENE]

UPPER_BOUND[TASKING_MODEL_GENE]
RANGE [TASKING_MODEL_GENE]

UPPER_BOUND [TASKING_MODEL_GENE]
LOWER_BOUND[TASKING_MODEL GENE];

eger (low (TASKING MODEL) );
eger (high (TASKING_MODEL) ) ;

LOWER_BOUND[TARGET_TIMESLICE_GENE] : MINT-MUMJTIME5LICE ;

UPPER_BOUND [TARGETJTIMESLICE_GENE] :- SFFFF;
RANGE [TARGET_TIMESLICE_GENE] : -

UPPER_BOUND [TARGETJTIMESLICE GENE)
-

LOWER_BOUND[TARGET_TIMESLICE-GENE] ;

LOWERJBOUND [PRIORITY_INHERITANCE_GENE ] : =

integer(low(PRIORITY INHERITANCE ENABLED));
UPPER_BOUND[PRIORITY_INHERITANCE GENE] :-

,
integer (high (PRIORITY_INHERITANCE_ENABLED) ) ;

RANGE [PRIORITY_INHERITANCE_GENE ] : -

UPPER_BOUND[ PRIORITY INHERITANCE_GENE] -

LOWER_BOUND[PRIORITY_INHERITANCE_GENE] ;

LOWER_BOUND [PRIORITY_ALLOCATION_GENE ) : -

integer (low(PRIORITY_ALLOCATION) ) ;

UPPER_B0UND[PRIORITY_ALLOCATION_GENE] :-

integer (high (PRIORITY ALLOCATION) ) ;
RANGE [PRIORITY_ALLOCATION~GENE] :-

UPPER_BOUND [PRIORITY_ALLOCATION_GENE] -

LOWER_BOUND[PRIORITY_ALLOCATION_GENE];

LOWER_BOUND[INITIAL_PRIORITY_ASSIGNMENT_GENE] ;-
integer (low (INIT IAL_PRIORITY ASSIGNMENT) ) ;

UPPER_BOUND[INITIAL_PRIORITY_ASSIGNMENT GENE) :=

integer (high (INITIAL_PRIORITY_ASSIGNMENT) ) ;
RANGE [INITIAL_PRIORITY_ASSIGNMENT_GENE] :=

UPPER_BOUND(INITIAL_PRIORITY ASSIGNMENT GENE] -

LOWER_BOUND[INITIAL_PRIORITY_ASSIGNMENT~GENE] ;
end;

(* for . . . to. . .do *)

*

Randomly initialize population *)
or INDIVIDUAL_LCV :- 1 to POPULATION_SIZE do

for GENE :- lowfRTOS GENE5) to high(RTOS_GENES) do

RANDOM_GENElPOPULAflON(INDIVIDUAL_LCV] , GENE) ;

133



C Initialize Statistics *)

with PRESENT_GENERATION do

BEST := -maxlongint;

WORST :- maxlongint;

MEAN :- 0.0;

VARIANCE :- 0.0;

STANDARD_DEVIATION :- 0.0;

for LCV := LOWEST_BUCKET to HIGHEST_BUCKET do

HISTOGRAM[LCV] :- 0.0;

end;
(*
with... do *}

LONGJTERM := PRESENT GENERATION;

PRESENT DIVERSITY :- PRESENT-GENERATION;

LONG TERM_DIVERSITY :- PRESENT_GENERATION;

for LCV :- 0 to (NUMBER_0F_BEST_T0_REP0RT-1} do

ALL_TDME_BEST[LCV] .FITNESS :-
-maxlongint;

end; C INITIALIZE_POPULATION *}

procedure EVALUATE (THIS_INDIVIDUAL : integer);

This routine evaluates the fitn>

population.

single individual of the

(* Text file to contain the RTOS application configuration.

INI_FILE : text;

function tasking report

This routine analyzes the TASKING report file and produces a floating*)
point number from 0.0 to 100.0 that corresponds to how well TASKING *)
thinks the RTOS parameters tune TASKING to the application. *)

The TASKING par

proportions that

course the total m st sum to 1.0) .

are measured are assigned

weight each parameter (of

PERIODIC_FAULTS PERCENTAGE;

The text file that the TASKING report file.

[*
Text string used to parse the TASKING report file. *)

LINE : string;

(.................*..........,..*.................,...............,
{*

Parameters from the TASKING report used to evaluate the RTOS *)
(*
configuration. *)

BANDWIDTH, PERIODIC_FAULTS : real;

(* Used to convert strings to real numbers (indicates status). *)

...................................................................

CODE : integer;

begin (* TASKING_REPORT *}

assign (REPORT, 'TASKING.
RPT'

) ;

CSI-*) reset (REPORT) ; (*$I+*)

readln (REPORT, LINE);

until pos ('Available CPU Bandwidth', LINE) <> 0;

deletefLINE, 1, post'-', LINE)};

while LINE[1] -
' ' do deletefLINE, 1, 1);

deletefLINE, length(LINE) - 1, 2};

valfLINE, BANDWIDTH, CODE);

PERIODIC_FAULTS := 0.0;

readln (REPORT, LINE) ;

if post 'Periodic Event Faults', LINE) <> 0 then

begin

deletefLINE, i, pos('=', LINE));

while LINE(l) -
' '

do deletefLINE, l, 1);

delete(LINE, lengthfLINE)
-

1, 2);

val(LINE, PERIODIC_FAULTS, CODE) ;

end;
(* if. . .then *)

TASKING_REPORT := PERIODIC_FAULTS_PERCENTAGE
* (100 - PERIODIC_FAULTS)

BANDWIDTH_PERCENTAGE
*

BANDWIDTH;

function APPLICATION_REPORT

This routine analyzes the TASKING report file and produces a
floating*

point number from 0.0 to 100.0 that corresponds to how well TASKING
*

thinks the RTOS parameters tune TASKING to the application.

begin
{* APPLICATION_REPORT *)

APPLICATION_REPORT : dosexitcode;

end;
(* APPLICATION_REPORT *}

begin
(* EVALUATE *)

assign (INI_FILE, PROGRAM_NAME + '.INI'};

CSI-*) rewrite (INI_FILE); C$I+*1

WRITEJTO_INI_FILE(INI_FIL, POPULATION [THIS_INDTVIDUAL] );

closeTlNI_FILE};

exec|PROGRAM_NAME + '.EXE', 'No Report File');

with POPULATION[THIS_INDIVIDUAL] do

begin

FITNESS :- RTOS EVALUATION_PERCENTAGE
* TASKING_REPORT +

APPLICATI0N_EVALUATION PERCENTAGE
* APPLICATION_RPORT;

DIVERSITY :- longint (TARGETJTIMESLICE and SOOOOFFFF) +

longint (TASKING_MODEL) shl 16 +

longint {PRIORITY_INHERITANCE_ENABLED} shl 17 +

longint (PRIORITY_ALLOCATION) shl IB +

longint (INITIAL_PRIORITY ASSIGNMENT) shl 19;

end;

. . do *
)

*}

procedure COMPUTE_POPULATION_STATISTICS

(* This routine computes bothe the

(* statistics.

present generation and long term
*

(*

Loop Control Variables.

INDIVIDUAL_LCV, LCV : integer;

(* For computing variance and correlation.

SUM OF_SOUAPES : real;

(*
For computing correlation.

*

SUM : real;

(*
Weight used to average for long term statistics.

*

AVERAGEJWEIGHT : real;

C For determining where to put the fitness value ( Ln histogram} .

*

BUCKET integer

begin f*
COMPUTE_POPULATION STATISTICS }

with PRESENT_GENERATION do

BEST := -maxlongint;

WORST :-
maxlongint;

end,
f*
with. - -do *)

with PRESNT_GENERATION do

MEAN := 0.0;

for INDIVIDUAL_LCV :- 1 to POPULATION_SIZE do

with POPULATION[INDIVIDUAL_LCV] do

begin

MEAN : MEAN + FITNESS;

if FITNESS > PRESENT GENERATION. BEST then

PRE5ENT_GENERA.TION.BEST :- FITNESS;

if FITNESS > LONGJTERM.BEST then

begin

LONGJTERM.BEST :- FITNESS;

ALL_TDME_BEST [LOWEST_IN_LIST_OF_BEST_INDIVIDUALS] : -

POPULATION [INDIVIDUAL_LCV] ;
LOWEST_IN LIST_OF_BEST INDIVIDUALS :-

(LOWEST_IN_LISTJ3F_BEST_INDIVIDUALS + 1) mod

NUMBER_OF_BESTJTO_REP0RT;

end;
(*
if . . .then *}

if FITNESS < PRESENT GENERATION.WORST then

PRESENTJ3ENERATION7WORST :- FITNESS;

if FITNESS < LONG TERM. WORST then

LONGJTERM.WORST-:- FITNESS;

MEAN :- MEAN / POPULATION_SIZE;

SUM_OF SQUARES :- 0.0;

for INDIVIDUAL LCV :- 1 to POPULATI0N_5 I ZE do

SUM_OF_SQUARS :- SUM_OF_SQUARS +

sqrf POPULATION [INDIVIDUAL LCV]. FITNESS -

MEAN} ;

VARIANCE :- SUM_OF_SQUARES /

STANDARD_DEVIATION := sqrt (VARIANCE) ;

for LCV := LOWEST_BUCKET to HIGHEST_BUCKET do HISTOGRAM[LCV] := 0.0;

for INDIVIDUAL_LCV :- 1 to POPULATI0N_SIZE do

begin

BUCKET :- round (POPULATION [INDTVIDUAL_LCV1 . FITNESS) ;

if (BUCKET < LOWEST_BUCKET) or (HIGHEST BUCKET < BUCKET) then

FITNESS_OUT_OF_RANGE :- true;

HISTOGRAM[BUCKET] :- HISTOGRAM[BUCKET] + 1;

end;
f* for. . . to. . -do *)

SUM := 0.0;

for LCV :-LOWEST_BUCKET to HIGHEST_BUCKET do

SUM :- SUM + HISTOGRAM[LCV] ;

for LCV :- LOWEST_BUCKET to HIGHEST BUCKET do

HISTOGRAM [LCV) : HISTOGRAM [LCV] 7
(SUM / (HIGHEST_BUCKET - LOWEST_BUCKET + 1});

end;
{*
with... do *)

C Compute long term statistics *)

if GENERATION > FITNESS_MAX_AVERAGE_GENERATIONS

then

AVERAGEJWEIGHT :- 1 / FITNESS_MAX_AVERAGE_GENERATION5

else

AVERAGEJWEIGHT :- 1 / GENERATION;

with LONGJTERM do

MEAN :- MEAN
*

(1 -

AVERAGE_WEIGHT) +

PRESENT_GENERATION.MEAN
*

AVERAGEJWEIGHT ;

VARIANCE :- VARIANCE
*

(1 - AVERAGEJWEIGHT ) +

PRSENT_GENERATION. VARIANCE
*

AVERAGEJWEIGHT;

STANDARD DEVIATION :- STANDARD_DEVIATION
* (1 -

AVERAGE_WEIGHT) +

PRSENT_GENERATION.STANDARD_DEVIATION
*

AVERAGE_WEIGHT;

for LCV := LOWEST BUCKET to HIGHEST_BUCKET do

HISTOGRAM [LCV]
""

:- HISTOGRAM [LCV]
*

(1 - AVERAGE WEIGHT) +

PRESENT_GENERATION. HISTOGRAM [LCV]
AVERAGE WEIGHT;

ith. .do *)

*
Compute Diversity Statistics *)

dth PRESENT_DIVERS ITY do

begin

BEST := -maxlongint;

TORST : - maxlongint ;

MEAN :- 0.0;

for INDIVIDUAL_LCV :- 1 to POPULATION_SIZE do

with POPULATION [INDIVIDUAL LCV] do

MEAN :- MEAN + DIVERSITY-/ MAX NORMALIZED_DTVERSITY *
100;

MEAN :- MEAN / POPULATION_SIZE;

SUM_OF_SQUARES :- 0.0;

for INDIVIDUAL LCV : - 1 to POPULATI0N_SIZE do

SUM_OF_SQUARES :- SUM 0F_SQUARS +

sqrTPOPULATION[INDIVIDUAL_LCV] .DIVERSITY /
MAX_NORMALIZED_DIVERSITY

* 100 -

MEAN);

VARIANCE :- SUM_0F SQUARES / POPULATION_SIZE;

STANDARD DEVIATION :-

end;
(*
with. . -do *)

sqrt (VARIANCE);

(* Compute long term statistics *)

if GENERATION > DIVERSITY_MAX_AVERAGE_GENERATIONS

then

AVERAGE_WEIGHT := 1 / DIVERSITY MAX_AVERAGE_GENERAT IONS

else

AVERAGEJWEIGHT :- 1 / GENERATION;

with LONG_TERM_DIVERSITY do

begin

MEAN

VARIANCE

STANDARD DEVIATION

= MEAN * fl -

AVERAGE_WEIGHT) +

PRESENT DIVERSITY.MEAN *
AVERAGEJWEIGHT;

- VARIANCE
* (1 -

AVERAGE_WEIGHT) +

PRSENT_DIVERSITY. VARIANCE
*

AVERAGEJWEIGHT;
= STANDARD_DEVIATION

*
(1 -

AVERAGEJWEIGHT} *

PRESENT DIVERSITY. STANDARD DEVIATION *

AVERAGE-WE IGHT ;

Cor LCV - LOWEST_BUCKET to HIGHEST_BUCKET do HISTOGRAM[LCV] := 0.0

for INDIVIDUAL :- 1 to POPULATION_SIZE do

begin

BUCKET :- round(POPULATION[INDTVIDUAL] . DIVERSITY /

MAX_NORMALIZED DIVERSITY *
100);

if (BUCKET < L0WE5T_BUCKET ) (HIGHEST_BUCKET < BUCKET) then

FITNESS_OUT_OF_RANGE :- true;

HISTOGRAM(BUCKET) :- HISTOGRAM[BUCKETJ + 1;

end;
(* for . . . to. . .do *)

SUM :- 0.0;

134



for LCV : -LOWEST BUCKET to HIGHEST_BUCKET do

SUM :- SUM + HISTOGRAM [LCV];

for LCV ;- LOWEST_BUCKET to HIGHEST_BUCKET do

HISTOGRAM[LCV] :- HISTOGRAM[LCVl /

(SUM / IHIGHEST_BUCKET - LOWEST BUCKET + 1));
end;

(*
with. . .do

*
)

CONVERGENCEJTHRESHOLD;

GENETIC_ALGORITHM_DIVERSITY_CONVERGED : -

absfLONG TERM_DIVERSITY.STANDARD_DEVIATION) < CONVERGENCE THRESHOLD;
end;

(* COMPUTE POPULATION_STATISTICS *)

procedure EVALUATE_POPULATION;

*
This routine evaluates the fitn

*
population.

ess for each individual in the

(*

Loop Control variables.

INDIVIDUAL, LCV : integer;

begin (* EVALUATE_POPULATION *}
for INDIVIDUAL 7- 1 to POPULATION SIZE do

EVALUATE f INDIVIDUAL) ;

COMPUTE_POPULATION_STATISTICS;

end;
(*

EVALUATE_POPULATION *)

procedure CR0SSOVER_P0PULATION;

s must be counted so that selec

sing only survivors.

NUMBER_OF_SURVIVORS : integer;

Loop Control Var

Indices of the pa.

offspring.

FIRST_PARENT, SECOND_PARENT : integer;

FIRST_INDEX, SECOND_INDEX, COUNT integer ;

.CR0SS0VER_P0INT-1 are taken from the first parent and
'

are taken from the second parent.

CROSSOVER POINT : RTOS GENES;

procedure NATURAL_SELECTION;

'Culls'
the population, retaining all individuals that are "above

average'

and also a percentage of the other individuals based on the

PROBABILITY OF CROSSOVER.

(*

Loop Control Variable.
(...................***.*.

INDIVIDUAL_LCV : integer;

Total of the fitness of all individuals in the population.

SUM real;

begin
(* NATURAL_SELECTION *}

SUM :- 0.0;

for INDIVIDUAL_LCV : - 1 to POPULATION SIZE do

SUM :- SUM + P0PULATION[INDIVIDUAL_LCV] .FITNESS;

for INDIVIDUAL^LCV : - 1 to POPULATION_SIZE do

with POPULATION [INDIVIDUAL_LCV] do

RELATIVE_FITNESS :- FITNESS / SUM;

POPULATIONd] .CUMULATIVE_FITNESS
:= POPULATION[l] .RLATIVE_FITNESS;

for INDIVIDUAL LCV : - 2 to POPULATION_SIZE do

with POPULATION[INDIVIDUAL_LCV) do

CUMULATIVE_FITNESS :-

POPULATION [INDIVIDUAL_LCV-1] .CUMULATIVE_FITNESS+

RELATIVE_FITNESS ;

NUMBER OF_SURVIVORS :- 0;

for INDIVIDUAL_LCV :- 1 to POPULATION_SIZE do

if (POPULATION[INDrvlDUAL_LCV] .FITNESS > PRESENT GENERATION.MEAN)

( (random (maxint) / maxint ) <- PROBABILITY_OF_CROSSOVER)

then

begin

POPULATION [INDIVIDUAL_LCV] .SURVIVOR
:- true;

inc(NUMBER_OF SURVIVORS);

end
(* if . ..then *)

POPULATION[INDTVIDUAL_LCV] .SURVIVOR

end;
(* NATURAL_SELECTION *)

fals<

begin
(* CROSSOVER_POPULATION *)

MATURAL_SELECTION;

for INDIVIDUAL_LCV :- 1 to POPULATIONSIZE do

with POPULATION[INDIVIDUAL_LCV) do

if not SURVIVOR then

begin

FIRST_INDEX :- random(NUMBER OF SURVIVORS) + If

SECOND_INDEX :- random (NUMBERJDF'sURVIVORS) + If

COUNT :- 0;

FIRST PARENT :- 1;

SECOND_PARENT :- 1;

for LCV :- 1 to POPULATION_SIZE do

if POPULATION[LCV] .SURVIVOR then

begin

inc (COUNT) ;

if COUNT - FIRST INDEX then FIRST_PARENT :- LCV;

if COUNT - SECONEjINDEX then SECOND_PARNT :- LCV;

end;
(* if . ..then *)

CROSSOVER_POINT :- RTOS_GENES (random(integer (high (RTOS_GENES) ) } ) ;

if CROSSOVER_POINT <> low(RTOS_GENES) then

for GENE :- low(RTOS_GENES) to pred (CROSSOVER_POINT) do

case GENE of

TASKING MODEL_GENE :

TASKING_MODEL :- POPULATION[FIRST_PARENT] .TASKING_MODEL;

TARGET_TIMESLICE_GENE :

TARGET TIMESLICE :-

POPULATION[FIRST_PARNT) .TARGET TIMESLICE;

PRIORITY INHERITANCE_GENE :

PRIORITY INHERITANCE_ENABLED :-

POPULATION [FIRST_PARENT] . PRIORITY_INHERITANCE_ENABLED;

PRIORITY ALLOCATI0N_GENE :

PRIORITY ALLOCATION :-

POPULATION (FIRST PARENT] . PRIORITY_ALLOCATION;

INITIAL_PRIORITY_ASSIGNMENT GENE :

INITIAL_PRIORITY_ASSIGNMENT : =

POPULATION(FIRST_PARENT] . INITIAL_PRIORITY_ASSIGNMENT;

end;
(*
case. . .of *)

for GENE :- CROSSOVER_POINT to highfRTOS GENES) do

case GENE of

TASKING MODEL_GENE :

TASKING MODEL :- POPULATION [FIRST_PARENT] . TASKING_MODELf

TARGET TIMESLICE GENE :

TARGETJTIMESLICE :=

POPULATION [FIRST_PARENT] .TARGETJTDMESLICE;

PRIORITY_INHERITANCE_GENE :

PRIORITY INHERITANCE ENABLED :-

POPULATION [FIRST_PARENT] . PRIORITY_INHERITANCE_ENABLED;

PRIORITY_ALLOCATION_GENE :

PRIORITY_ALLOCATION :-

POPULATION[FIRST PARENT] -PRIORITY_ALLOCATION;

INITIAL_PRIORITY_ASSIGNMENT_GENE :

INITIAL_PRIORITY_ASSIGNMENT :-

POPULATION [FIRST_PARNT] . INITIAL_PRIORITY_ASSIGNMENT;

end;
(*
case. . .of *)

end
(* if . . .then *)

end;
(

CROSSOVER_POPULATION *)

procedure MUTATE_POPULATION;

(*
This routine performs the population wide mutation on individuals. *)

(*
Maximum number of mutations that

C generation (directly derived from

will be performed for

probability of mutation) .

this
*

MAX_MUTATIONS : integer;

C The individual in the population being mutated.

MUTANT_INDIVIDUAL : integer;

(*
The gene in the individual being

MUTANT_GENE : RTOS_GENES;

f*

Loop Control variable.
*

LCV : integer

(integer (highfRTOS genes})

integer(low(RTOS GENES}) *

PROBABILITY_OF_MUTATION) ;

for LCV :- 0 to random(MAX_MUTATIONS) do

begin

MUTANT INDIVIDUAL

MUTANT-GENE

random (POPULATION_SIZE) + 1;

RTOS_GENES(random(integer(high(RTOS_GENES) )

RANDOM_GENE( POPULATION [MUTANT_INDIVIDUAL], MUTANT_GENE) ;

end;
( for . . . to. . -do *)

end; C MUTATE_POPULATION *)

begin (* PROCESS_GENETIC_ALGORITHM_INDIVIDUAL *)

If INDIVIDUAL - POPULATION_SIZE then

begin

INDIVIDUAL :- 0;

if GENERATION - 0

then

INITIALIZE_POPULATION

begin

CROSSOVER_POPULATION ;

MUTATE_POPULAT ION;

end;
(* if ... then. . -else *)

end;
{* if. ..then *)

PROCESS_GENETIC ALGORITHM^INDIVIDUAL :- INDIVIDUAL;

if INDIVIDUAL =-P0PULATION__SIZE then

begin

inc (GENERATION) ;

COMPUTE_POPULATION STATISTICS;

end;
(*
if. . .then

end;
(* PROCESS_GENETIC ALGORITHM INDIVIDUAL *)

procedure PROCESSJ3ENETIC_ALGORITHM_GENERATI0N;

This routine performs all processing on the population for

generation (i.e., Selection/Crossover, Mutation and Evaluation

var INDIVIDUAL_LCV : integer;

begin
(* PROCESS_GENETIC_ALGORITHM_GENERATI0N *)

INDIVIDUAL_LCV :- 1;

PROCESS_GENETIC_ALGORITHM_INDIVIDUAL;

inc(INDIVIDUAL_LCV);

until (INDIVIDUAL LCV > POPULATION SIZE) ;

end;
(* PROCESS_GENETIC_ALGORITHM_GENERATION *)

procedure PRODUCE_GENETIC_ALGORITHM_REPORT;

This routine produces a report on the
'best'

individuals found.

c General purpose special characters. *

CR

LF

chr

chr

(SOD)

($0A)

(* Carriage Return *)

C Line Feed *)

I*
Loop Control Variables. *

LCV, COUNTER

GENE

integer;

RTOS_GENES;

I* Text file for report.

REPORT : text

Temporary variable to hold the fitness of the individuals in the *)

135



TEMP : real;

Used to extract the genotype from

value within the entire population.

he most popular diversity

CHOICE : longint;

function REPORT_FILENAME : string;

This routine deten

const
(*

;.RPT filename.

Used to assign a un;

REPORT_NUMBER . integer

to the report file.

(*
Filename of file to get repor

FILENAME : string [sizeof (namestr)

1*
File used to

(***"********

REPORT file;

izeof (dirstr) + 1];

lable file.

begin C REPORT_FILENAME

FILENAME := 'GA ';
FILENAME := FILENAME chr ford

f'O'

)

chr(ordf'O')
'

. RPT
'
;FILENAME := FILENAME

inc(REPORT_NUMBER);

assignfREPORT, FILENAME) ;

(*SI-*1 reset (REPORT); (*SI**)
RESULT :- ioresult;
if RESULT = 0 then

close (REPORT},
-

until RESULT - 2;

REPORT_FILENAME :- FILENAME;

end;
(*

RPORT_FILENAME *)

begin f*
PRODUCE_GENETIC ALGORITHM_REPORT

assignfREPORT, REPORT_FILENAME) ;

f*SI-*) rewrite (REPORT); (*$I+*)

if FITNESS OUT OF RANGE then

riteln (REPORT, Fatal Er Fitness out of range (0..100)!

If GENETIC_ALGORITHM_FITNESS CONVERGED then

writelnfREPORT, '; Fitness converged, ');

if GENETIC_ALGORITHM_DIVERSITY_CONVERGED then

writelnfREPORT, '; Diversity converged, ');

writelnfREPORT,
'
;

'

, GENERATION,
' Generations'

) ;

for COUNTER :- 0 to (NUMBER_OF_BEST_TO_RPORT-l ) do

begin

TEMP :- ALL_TEME_BEST[(LOWEST_IN_LIST_OF_BEST_INDIVIDUALS

NUMBR_OF_BEST_TO_REPORT] -FITNESS;

if TEMP <> -maxlongint then

begin

writelnfREPORT, '; ');

iteln (REPORT,

iteln (REPORT,

iteln(REPORT,
iteln(REPORT,

;
'
) ;

*);

Rank: ', NUMBER_OF_BEST_TO_REPORT - COUNTER);

Fitness: ', TEMP : 3 : 3);

WRITE_TO_INI_FILE (REPORT, ALL_TIME_BEST [
(LOWEST_IN_LIST_OF_BEST_INDIVIDUALS + COUNTER) mod

NUMBER_OF_BEST_TO_REPORT] ) f

writelnfREPORT,
'
;

'

) ;

end;
[* if . . .then *)

end;
(* for. . . to. . . do *)

close (REPORT);

end; C produce_genetic_algorithm__report *)

begin (*
GENETIC_ALGORITHM )

randomize;

MAX NORMALIZED DIVERSITY :- S003FFFFF; 22 bits are used *)

(*
make sure application executable exists in this directory! *]

assign (EXECUTABLE_FILE, PROGRAM_NAME + '.EXE');

CSI+*) reset (EXECUTABLE_FILE); C$1-*)

if ioresult <> 0 then

writeln;

writeln ('RTOS_GA: TASKING application does not exist, r,

PROGRAM NAME, '.EXE]'};

haltfl);

end;
(* if . . .then *}

end.
(* GENETIC ALGORITHM *}

9.4 MATH GA.PAS

unit MATH^GA;

Genetic Algorithm (GA) specification to determine

a multi-dimensional function. This specification is

the basic operation of the GA.

:he maximum value for

merely used to test

C$A*

CSB-

CSD+

(*

C5L+

C
CSF-

f*SI-

C$N>

f*SO-

CSP-

C$0-

CSR-

CSS-

C$v-

C$T +

CSX+

C

interface

Compiler Options (Ver. 7.0)
Word Alignment

Short Circuit Boolean Evaluation

Debug Code Generation ON (Sort of)

Requires /V option to TPC to activate

Local Debug symbols ON (Sort of)

Requires /V option to TPC to activate

Far calls only as needed

I/O Checking OFF

Hardware B0xB7 Used (if available)

Overlays NOT allowed

Standard
'string'

parameters

Overflow Checking OFF

Range Checking OFF

Stack Checking OFF

Var-string Checking OFF

Force Typed
'8'

references

Enable Extended syntax

The following defit

POPULATION SIZE ;

of individuals in the populatio

Genetic operator probabilities; these define the speed that the GA

converges as well as the probability of false convergance.

PROBABILITY_OF_CROSSOVER - 0.25;

PROBABILITY_OF_MUTATION - 0.03;

CONVERGENCE THRESHOLD - 6;

Long ten

many prev.

computing using data from (up to) this

Number of
'best'

individuals to i

NUMBER OF BEST TO REPORT '

for reporting.

i
-

Defines the bounds of the histogram, values should be guar enteed
(*
to be beyond the possible fitness values (this is verified and

(*
reported any fitness is beyond this range).

is the number of dimensii

NUMBER OF VARIABLES

. This structure defii

ake up the population.

GENOTYPE - i

The actual problem
'

genes
'

, for this problem

same. In general this will not be the case.

rray (0. .NUMBERJDFJVARIABLES-1] of real;

(*
The genes are allowed to range within these bounds so that each *)

(* individual created is guarenteed to produce genes that are *)
(*

reasonable for the problem (i.e. all individuals are viable). )

UPPER_BOUND, LOWER_BOUND : array (0.
.NUMBER_0F_VARIABLES-1] of real;

.......................................................................
[*

Genetic Algorithm bookkeeping variables used to determine which *)
(* individuals are allowed to

'live'
in the next generation. *)

c*******

......................*.................................,
1*

The individual's fitness evaluation parameters. *)

FITNESS, RELATIVE FITNESS, CUMULATIVE FITNESS

C The individual's diversity parameter (there is a 1:1 mapping
1*
of genotype values and diversity value}.

DIVERSITY : real;

Flag to indicate whether the individual will
'live'

in the *)

* This data structure is used to determine how well the GA is doing.
* The only criteria used is convergence to a single solution for to a

*
single

'fitness'
value). The GA is assumed to be done when the

'

*
population has converged reguardless of the actual fitness value

-
achieved.

STATISTICS - record

Basic values for the population. . .

BEST, MEAN, WORST : real;

Statistics based on the entire population.

VARIANCE, STANDARD_DEVIATION : real;

Normalized histogram buckets.

HISTOGRAM : array [round (MINDMUM_FITNESS - 0.5} ..

roundfMAXIMUM FITNESS + 0.5)] of real;

end;
(* STATISTICS *)

This is the current generation that has completed processing.

GENERATION : longint - 0;

136



(*
This is the current individual that has complete pr<

INDIVIDUAL : integer - POPULATION_SIZE;

C This is the maximum value for the genotype diversity,
(
to scale the diversity display.

MAX NORMALIZED DIVERSITY : real - 0.0;

[* Indicates the st; i be used to terminate the GA.

(* Statistics are availaible for each generation that is processed,
(*

the data is independant from generation to generation.

PRESENT GENERATION : STATISTICS;

(* Cumulative statistics are availible for the
(*

generations (see FITNESS_MAX_AVERAGE_GENERATIONS) .

LONG TERM : STATISTICS;

Diversity statistics for the present gei

PRESENT_DIVERSITY : STATISTICS;

LONG TERM DIVERSITY STATISTICS;

These are all of the genes of the population.

POPULATION : array [0. . POPULATION_SIZE] of GENOTYPE;

inction PROCESS_GENETIC_ALGORITHM_INDIVIDUAL : integer;

This routine performs all processing on the individual (i.e.. Selection,

Crossover, Mutation and Evaluation) . The individual that was processed

returned by this function.

procedure PROCESSJ3NETIC_ALG0RITHM_GENERATI0N;

(*
This routine performs all processing on the

1*
generation (i.e.. Selection, Crossover, Mutat

population for an

ion and Evaluation) .

entire
*

procedure PRODUCE GENETIC_ALGORITHM_REPORT;

C This routine produces a report on the 'best
' individuals found .

implementation

uses dos;

(* List of all time best indivuals that will be rported.
*

ALL TIME BEST : array [0. . (NUMBER_OF_BESTJTO_REPORT-l) ] of GENOTYPE;

[* The index of the lowest in the list is maintained so that

[*
can be kept as a circular buffer very efficiently.

LOWEST IN LIST OF BEST_INDIVIDUALS : integer - 0;

the list *

*

C Flag that indicates that at least one fi

<* the allowable range (0.0 through 100.0), sed in report .

itside of
*

*

FITNESS_OUT_OF_RANGE : boolean - false;

var

C INI file that cont *ins the bounds for ea ;h v riable.
*

INI_FILE : text;

(*
Loop control variables.

VARIABLE : integer;

(* Bounds for each variable (from INI file).

LOWER, UPPER : real;

function RANDOM VALUE(LOWER, UPPER : real) : real;

Produces a random floating point number between LOWER and UPPER.

begin
(* RANDOMJVALUE *}

RANDOMJVALUE :- (random(maxint ) / maxint)

end;
(* RANDOM VALUE *)

(UPPER - LOWER) + LOWER;

function PROCESSJ5ENETIC_ALGORiTHM_INDTVIDUAL : integer;

(* This routine performs all processing on the individual (i.e., Selection,

(*
Crossover, Mutation and Evaluation). The individual that was processed

<

(*
returned by this function.

..*....!

procedure INITIALIZE_POPULATION;

This routine initializes the GA by determining the bounds of the math

problem to be solved (via MATH_GA.INI). It also randomly
initializes

the population and initializes-the long term statistics.

(*

Loop control variables.

INDIVIDUAL, LCV : integer;

begin
(* INITIALIZE_POPULATION *)

(*
Randomly initialize population *)

for INDIVIDUAL := 1 to POPULATION_SIZE do

for VARIABLE :- 0 to NUMBERjDFJVARIABLES-1 do

with POPULATION [INDIVIDUAL] do

GENE [VARIABLE]
:- RANDOMJVALUE (LOWER_BOUND[VARIABLE) ,

UPPER__BOUNDIVARIABLE) ) ;

(* Initialize Statistics )

with
PRESENT_GENERATION do

begin

BEST : -maxlongint;

WORST : maxlongint ;

MEAN :- 0.0;

VARIANCE :- 0.0;

STANDARD_DEVIATION :- 0.0;

for LCV := LOWEST_BUCKET to HIGHEST_BUCKET do

HISTOGRAM[LCV] :- 0.0;

end;
(*
with. . .do *)

LONGJTERM := PRESENT_GENERATION;

PRESEMJDIVERSITY :- PRSENT_GENERATION;

LONG_TERM_DXVERSITY :- PRESENT_GENERATION;

for LCV := 0 to (NUMBER_OF_BEST_TO_REPORT-l ) do

ALL TIME_BEST(LCV] .FITNESS
:- -maxlongint;

end; (*-INITIALIZE_POPULATION *)

procedure EVALUATE (THIS_INDIVIDUAL : integer};

This routin

population.

single individual of the }

begin (*
EVALUATE *)

with POPULATION[THIS_INDIVIDUAL] do

begin

FITNESS :- 21.5 +

GENE10]
*
sin( 4 *

pi
*

GENE[0)) +

GENEIl]
*
sin(10

*
pi

* GENE[1));

end;
(*
with... do *}

end;
(*

EVALUATE *}

procedure COMPUTE_POPULATION_STATISTICS;

"
This routine computes both the present generation and long term

*

*
statistics.

C Loop Control Variables.
*

INDIVIDUAL, LCV : integer;

C For computing variance and correlation.

SUM_OF_SQUARES : real;

(* For computing correlation.

SUM : real;

(* Weight used to average for long term statistics.

AVERAGEJWEIGHT : real;

(*
For determining where to put the fitness value fin histogram}.

*

BUCKET : integer.

(*
Loop Control Variable used to compute diversity value for each

*

(
genotype value (i.e., individual).

GENE_LCV : integer;

begin
(*

COMPUTE POPULATION_STATISTICS *)

with PRESENT GENERATION do

begin

BEST :- -maxlongint;

WORST : - maxlongint ;

end;
(*
with. . .do *)

with PRSENT_GENERATION do

MEAN :- 0.0;

for INDIVIDUAL I- 1 to POPULATION SIZE do

with POPULATION(INDIVIDUAL) do

begin

MEAN := MEAN + FITNESS;

if FITNESS > PRESENT_GENERATION.BEST then

PRSENT_GENERATION.BEST :- FITNESS;

if FITNESS > LONGJTERM.BEST then

LONGJTERM.BEST :- FITNESS;

ALL_TTME_BEST[L0W5T_IN_LIST_0F_BEST_INDIVIDUALS] :-

POPULATION [INDIVIDUAL] ;

LOWEST_IN_LIST_OF_BEST_INDTVIDUALS : -

(LOWEST IN_LI5T_0F_BEST_INDTVIDUALS + 1) mod

NUMBER_OF_BEST_TO_REPOR?;

end;
( if . . .then *)

if FITNESS < PRESENT_GENERATION.WORST then

PRESENT GENERATION.WORST :- FITNESS;

if FITNESS < LONGJTERM.WORST then

LONGJTERM.WORST :- FITNESS;

end;

MEAN :- MEAN / POPULATION_SIZE;

SUM_OF_SQUARES : = 0.0;

for INDIVIDUAL :- 1 to POPULATION_SIZE do

SUM_OF SQUARES :- SUM_OF_SQUARES +

sqrfPOPULATION[INDIVIDUAL] .FITNESS
- MEAN};

VARIANCE :- SUM_OF_SQUARES / POPULATION_SIZE;

STANDARD_DEVIATION :- sqrt (VARIANCE) ;

for LCV :- LOWEST BUCKET to HIGHEST_BUCKET do HISTOGRAM[LCV] :- 0.0;

for INDIVIDUAL :=~1 to POPULATION_SIZE do

begin

BUCKET :- round! POPULATION ( INDIVIDUAL) FITNESS) ;

if (BUCKET < LOWEST_BUCKET ) or (HIGHEST_BUCKET < BUCKET) then

FITNESSJ3UTJDF_RANGE :- true;

HISTOGRAM1BUCKETJ :- HISTOGRAM [BUCKET] + 1;

end; C for . . .to. . -do *)

SUM :- 0.0;

for LCV :-LOWEST_BUCKET to HIGHEST_BUCKET do

SUM :- SUM + HISTOGRAMILCV];

for LCV :- LOWEST_BUCKET to HIGHEST_BUCKET do

HISTOGRAMILCV] := HISTOGRAM[LCV) /

(SUM / (HIGHEST_BUCKET - LOWEST_BUCKET +1});

end;
{*
with. . . do *)

(* Compute long term statistics *)

If GENERATION > FITNESS_MAX_AVERAGE_GENERATIONS

AVERAGE_WEIGHT := 1 / FITNESS_MAX-AVERAGE_GENERATIONS

else

AVERAGE WEIGHT :- 1 / GENERATION;

with LONGJTERM do

begin

MEAN - MEAN
* (1 - AVERAGEJWEIGHT) +

PRESENT_GENERATION.MEAN *
AVERAGEJWEIGHT;

- VARIANCE
* (1 - AVERAGE_WEIGHT) +

PRESENT_GENERATION.VARIANCE
*

AVERAGE_WEIGHT;
- STANDARDJDEVIATION

* (1 - AVERAGE WEIGHT) +

PRESENT GENERATION. STANDARD_DEVIATION *

AVERAGEJWEIGHT;

for LCV :- LOWEST BUCKET to HIGHEST_BUCKET do

HISTOGRAM [LCV]
""

:- HISTOGRAM[LCV]
* (1 -

AVERAGEJrtEIGHT} +

VARIANCE

STANDARD DEVIATION

137



end;
f*
with. . .do *)

C Compute Diversity statistics *)
with PRSENT_DIVERSITY do

begin

BEST :-
-maxlongint;

WORST :- maxlongint;

MEAN : - 0.0;

for INDIVIDUAL : - 1 to POPULATIONSIZE do

with POPULATION [INDIVIDUAL] do

begin

DIVERSITY := 0.0;

for GENE_LCV :- 0 to NUMBER_OF VARIABLES-1 do
DIVERSITY := DIVERSITY + GENE [GENE LCV];

DIVERSITY ;- 100 *
DIVERSITY / MAX NORMALIZED DIVERSITY;

MEAN :- MEAN + DIVERSITY;
end;

MEAN :- MEAN / POPULATION_SIZE,"

SUM_OF_SQUARES : 0.0;
for INDIVIDUAL :- 1 to POPULATION SIZE do

SUM_OF_SQUARES : - SUM_OF SQUARES +

sqr (POPULATION [INDIVIDUAL] .DIVERSITY - MEA)
VARIANCE :-

SUM_OF_SQUARES / POPULATION_SIZE;

STANDARD DEVIATION

end;
[*
with. . .do *)

sqrt (VARIANCE);

(*
Compute long term statistics *)

if GENERATION > DIVERS ITY_MAX AVERAGE_GENERAT IONS
then

AVERAGEJWEIGHT := 1 / DIVERSITY MAX AVERAGE GENERATIONS
else

~

AVERAGEJWEIGHT :- 1 / GENERATION;

with LONG_TERM_DIVERSITY do

begin

MEAN := MEAN * (1 -

AVERAGEJWEIGHT) +

PRESENT_DIVERSITY.MEAN *
AVERAGE WEIGHT;

VARIANCE := VARIANCE *
(1 - AVERAGE WEIGHT) ?

PRESENT_DIVERSITY. VARIANCE *
AVERAGE WEIGHT;

STANDARD_DEVIATION : = STANDARD_DEVIAT ION *
fl -

AVERAGEJWEIGHT) +

PRESENT DIVERSITY. STANDARD_DEVIATION *

AVERAGEJWEIGHT;
for LCV := LOWEST_BUCKET to HIGHEST_BUCKET do HISTOGRAM[LCV] := 0.0;
for INDIVIDUAL : - 1 to POPULATION SIZE do

begin

BUCKET :- round(POPULATION[INDIVIDUAL] .DIVERSITY) ;

if (BUCKET < LOWEST_BUCKET ) or (HIGHEST BUCKET < BUCKET) then

FITNESSJDUT_OF_RANGE :- true;

HISTOGRAM[BUCKET] :-

HISTOGRAM[BUCKET] + 1;
end;

f* for . . . to. . .do *}

SUM :- 0.0;

for LCV : -LOWEST_BUCKET to HIGHEST_BUCKET do

SUM :- SUM + HISTOGRAM[LCV] ;
for LCV : LOWEST^BUCKET to HIGHEST_BUCKET do

HISTOGRAM [LCV] :- HISTOGRAM[LCV] /
(SUM / (HIGHEST_BUCKET - LOWEST_BUCKET +1)};

end;
f*
with. . .do *)

CONVERGENCEJTHRESHOLD;

GENETIC_ALGORITHM_DrVERSITY_CONVERGED :-

absfLONG TERM_DIVERSITY. STANDARD DEVIATION)
end;

(*

COMPUTE_POPULATION_STATISTICS *)

procedure EVALUATE_POPULATION;

CONVERGENCE THRESHOLD;

This routine

population.

aluates the fitness for each individual in the

INDIVIDUAL, LCV : integer;

begin (*
EVALUATE_POPULATION *)

for INDIVIDUAL := 1 to POPULATION SIZE do

EVALUATE (INDIVIDUAL) ;

COMPUTE POPULATION STATISTICS;

end;
(* EVALUATE_POPULAT ION *}

procedure CROSSOVER_POPULATION;

C Determ.
(*

the plai

tsed to reproduce offspring to take
*

Each generation, the survivors must be counted so that selecti

for reproduction can be done using only survivors.

C
(*

C

C

NUMBER_OF_SURVIVORS : integer

Loop Control Variables.

C

INDIVIDUAL, LCV : integer

1*

Indices of the parents that will be

offspring.

produce the

FIRST_PARENT, SECOND_PARNT integer

FIRST_INDEX, SECOND_INDEX, COUNT

Genes 0. -CROSSOVER_POINT-l are taken from the first parent and

the rest are taken from the second parent.

CROSSOVER_POINT integer;

procedure NATURAL_SELECTION,

'Culls'
the population, retaining all individuals that are

average'

and also a percentage of the other individuals based i

PROBABILITY_OF_CROSSOVER.

var

(
Loop Control Variable.

INDIVIDUAL : integer;

C Total of the fltness of all individuals in the population.
*

SUM : real;

begin
(* NATURAL_SELECTION *)

SUM :- 0.0;

for INDIVIDUAL :- 1 to POPULATION_SIZE do

SUM :- SUM ? POPULATION [INDIVIDUAL] -FITNESS;

for INDIVIDUAL :- 1 to POPULATION_SIZE do

with POPULATION[INDIVIDUAL] do

RELATIVE_FITNESS :- FITNESS / SUM;

POPULATIONfl] .CUMULATIVE_FITNESS
:= POPULATION[l] . RELATIVE FITNESS;

for INDIVIDUAL :- 2 to POPULATION_SIZE do

with POPULATION[INDIVIDUAL) do

CUMULATIVE_FITNESS :- POPULATION [ INDIVIDUAL-1 ) .CUMULATIVE FITNESS

RELATIVE_FITNESS ;

NUMBERjDF_SURVIVORS :- 0;

for INDIVIDUAL : - 1 to POPULAT ION_SIZE do

If (POPULATION[INDIVIDUAL] .FITNESS > PRESENT_GENERATION.MEAN) xor

( (random (maxint) / maxint) <= PROBABILITY OF CROSSOVER)
then

~ _

POPULATION[INDIvrDUALl .SURVIVOR : true;

inc(NUMBER_OF_SURVIVORS) ;
end

(* if . . .then *)
else

POPULATION [INDIVIDUAL] .SURVIVOR :- false;
end;

(*

NATURAL_SELECTION *)

begin (*

CROSSOVER_POPULATION *)
NATURAL_SELECT ION ;

for INDIVIDUAL :- 1 to POPULATION SIZE do

with POPULATION [INDIVIDUAL) do

if not SURVIVOR then

FIRST_INDEX :- random (NUMBERJ)F_SURVTVORS} + 1;
SECOND_INDEX := random (NUMBER_OF_SURVIVORS ) + 1;

COUNT := 0;

FIRST_PARENT := 1;

5ECOND_PARENT :- 1;

for LCV :- 1 to POPULAT ION_SIZE do

if POPULATION[LCV] .SURVIVOR then

inc (COUNT) ;

if COUNT - FIRST_INDEX then FIRST PARENT :- LCV;

if COUNT = SECOND_INDEX then SECOND_PARENT :- LCV;
end;

(*
if . . .then *)

CROSSOVER_POINT :- random (NUMBERJDFJVARIABLES) ;

for LCV :- 0 to CROSSOVER_POINT-1 do

GENE[LCV) :- POPULATION[FIRST_PARENT] -GENE[LCV];
for LCV :- CROSSOVER_POINT to NUMBER OFJVARIABLES-1 do

GENE [LCV] :- POPULATION [SECOND_PARENT] .GENE [LCV]
end

(*
if . . .then *)

end;
(

CROSSOVER_POPULATION *)

procedure MUTATE_POPULATION;

(*
This routine performs the populat Lon wide mutation on individuals

.

C

C

Maximum number of mutations

generation (directly derived

that will be

probability

ser

of

iormed

mutati

for

on}.

this
*

MA>

(*
The individual in the population being mutated.

MUTANT INDIVIDUAL : integer;

(*
The gene in the individual being mutated.

MUTANT_GENE : integer;

C Loop Control variable.

LCV : integer;

begin (*
MUTATE_POPULATION *)

MAX_MUTATIONS-:-
round(POPULATION_SIZE

*

NUMBER_OF_VARIABLES

PROBABILITY_OF_MUTATION) ;

for LCV :- 0 to random (MAX_MUTATIONS) do

MUTANT_INDIVIDUAL :-

random(POPULATION_SIZE} + 1;

MUTANT_GENE : - random (NUMBERJDFJVARIABLES ) ;

with POPULATION [MUTANT_INDTVIDUAL ) do

GENE[MUTANT_GENE] :- RANDOMJVALUE

{
LOWER_BOUND [MUTANT GENE),
UPPER^BOUND [MUTANT-GENE J

begin (*

PROCESS_GENETIC_ALGORITHM_INDIVIDUAL *}
If INDIVIDUAL - POPULATION_SIZE then

begin

INDIVIDUAL :- 0;

if GENERATION - 0

then

INITIALIZE_POPULATION

else

CROSSOVER POPULATION;

MUTATE_POPULATION ;

end; f if ... then. .. else *)
end;

(* if.. .then *}

inc (INDIVIDUAL) ;

EVALUATE (INDIVIDUAL} ;

PROCESS_GENETIC ALGORITHM INDIVIDUAL :- INDIVIDUAL;

if INDIVIDUAL --POPULATION_SIZE then

begin

inc (GENERATION) ;

COMPUTE_POPULATION_STATISTICS ;

end;
(* if. . .then *)

end;
(*

PROCESS_GENETIC_ALGORITHM_INDIVIDUAL *)

procedure PROCESS_GENETIC_ALGORITHM GENERATION;
(*..............*.......*..*.*.*...7..**.......,.......................,...,

(* This routine performs all processing on the population for an entiri
(*

generation (i.e., Selection/Crossover, Mutation and Evaluation).

var INDIVIDUAL_LCV : integer;

begin
(*

PROCESS_GENETIC_ALGORITHM GENERATION *)
INDIV1DUAL_LCV :- 1;

PROCESS_GENETIC_ALGORITHM_INDIVIDUAL ;

inc(INDIVIDUAL_LCV};

until (INDIVIDUAL_LCV > POPULATION SIZE};

138



end;
I* PROCESS_GENETIC_ALGORITHM_GENERATION *}

rocedure PRODUCE GENETIC ALGORITHM REPORT;

This routine produces the
'best'

individuals found.

(
*

General purpose special characters. *

CR - chr (SOD);
(*

Carriage Return *)

LF - chr(SOA);
(* Line Feed *)

C Loop Control Variables. *

LCV, COUNTER : integer.

C Text file for report. *

REPORT : text;

function REPORT_FILENAME : string;

(*
This routine determines the next available GA xK.RPT filename.

to the report file.

REPORT_NUMBER : integer - 0;

C Result of I/O operation, used to find first available

C filename. *

RESULT : integer;

I* Filename of file to get report.

FILENAME : string [sizeof fnamestr} + sizeof fdirstr) + 1];

C File used to find first available file.

REPORT file

begin
(*

REPORT_FILENAME *)

repeat

FILENAME :-
'GA_'

;

FILENAME = FILENAME + chr(ordf'O') + REPORT_NUMBER div 10) +

chrfordf'O'} + REPORT_NUMBER mod 10);

FILENAME :- FILENAME + '.RPT';

inc(REPORT_NUMBER) ;

assignfREPORT, FILENAME) ;

CSI-*} reset (REPORT) ; CSI+*)

RESULT :- ioresult;

if RESULT > 0 then

closefREPORT) ;

until RESULT - 2;

RPORT_FILENAME := FILENAME;

end;
(* REPORT_FILENAME *)

begin
(* PRODUCE_GENETIC_ALGORITHM_REPORT *)

assignfREPORT, REPORT FILENAME)

CSI-*} rewrite (REPORT ) ; C$I+*}

if FITNESS_OUT_OF_RANGE then

writelnfREPORT, 'Fatal Error! Fitness out of range [0..100]!');

writeln;

lf GENETIC_ALGORITHM_FITNESS_CONVERGED then

write (REPORT, 'Algorithm converged,
'

) ;

writeln(REPORT, GENERATION,
'
Generations');

write (REPORT,
'

Rank
Fitness'

) ;

for LCV := 0 to NUMBER_0FJVARIABLES-1 do

writefREPORT,
'

Var[\ LCV, ']');

for COUNTER :- fNUMBER_OF_BEST TO_REPORT-l} downto 0 do

with ALLJTIME_BEST[ (LOWEST_IN_LIST_0F_BE5T_INDIVIDUALS + COUNTER} mod

NUMBER_OF_BEST_TO_REPORTT do

if FITNESS <> -maxlongint then

begin

writelnfREPORT);

writefREPORT, NUMBER_OF_BEST_TO_REPORT
- COUNTER : o,

FITNESS : 10 : 3);

for LCV : 0 to NUMBER_OF_VARIABLES-l do

writefREPORT, GENE[LCV] : 10 : 3>;

end; C with. . -do >

close (REPORT) ;

end; C PRODUCE_GENETIC_ALGORITHM_REPORT *)

begin
(* GENET IC_ALGORITHM *)

(* Process INI File *)

assign <INI_FILE,
'MATH_GA.INI'

};

(Sit*) reset (INI_FILE) ; f*5I-*)

if ioresult <> 0 then

begin

writeln'f 'MATH_GA: Unable to open INI file [MATH_GA.INI]');

halt(l) ;

end;
(* if . . -then *)

readln{INI_FILE, randseed) ;

for VARIABLE : - 0 to NUMBER_OF_VARLABLES-l do

begin

readln (INI_FILE, LOWER, UPPER);

for INDIVIDUAL :- 1 to POPULATION_SIZE do

with POPULATION[INDIVIDUAL] do

begin

LOWER BOUND[VARIABLE] :- LOWER;

UPPER^BOUNDivARIABLE]
:- UPPER;

end;
(* for. . .to. . .do *)

MAX NORMALIZED_DIVERSITY :- MAX_NORMALIZED_DIVERSITY + UPPER;

end;
7* for. . -tot. .do *}

close fINI_FILE);

end.
(* GENET IC_ALGORITHM *}

139



10. Appendix C Support Software Source Code

10.1 DINING.PAS
program DINING_PHILOSHERS (input, output);

C This is a solution to the 'classic'

(*

'Dining Philosophers'. This solution was

C
Systems"

by Andrew Tanenbaum.

multi-tasking problem

taken from "Modern Ope

lied

CSA+

I'SB-

CSD+

I*

CSL+

I*

CSF-

(-SG-

C5I-

CSM 102
[*SN-

CSE-

CSO-

CSP-

CSQ-

CSR-

CSS-

C$T-

(*$V+

CSX-

4,150000, 655360

Options (Ver. 7.0)
Word Alignment

Short Circuit Boolean Evaluation

Debug Code Generation ON (Sort of}
Requires /V option to TPC to activate

Local Debug symbols ON (Sort of)
Requires /V option to TPC to activate

Far calls only as needed

Generic 80xB6 code only
I/O Checking OFF

Memory (Stack, Minheap, Maxheap)
Software Emulation of 80x87

No 80x87 run-time emulation

Overlays NOT allowed

Standard
'

string
'
parameters

Overflow Checking OFF

Range Checking OFF

Stack Checking OFF

Force Typed
'@'

references

Var-string Checking ON

Disable Extended syntax

crt, TASKING;

In order to have the program run consistantly across computers

widely varying processing power, the philosophers must include time
to 'delay'

when eating and thinking.

DELAY

(

TIME >

DAYS

HOURS

MINUTES

SECONDS

MILLISECONDS

);

General purpose special i

DELAY_COUNT - 100000;

(*
Default valueNUMBER_OF_PHILOSOPHERS : integer = 20;

MAX_NUMBER_OF_PHILOSOPHERS = MAXIMUM_NUMBER_OFjrASKS

The size of the activity percent bar graph.

BAR SIZE - 60;

This software event is broadcasted to all philosophers so that all

are ready to eat at the same instant.

DINNER IS SERVED : EVENT <= UNSIGNALED;

=
chr(SOD) ;

=
chr($0A);

*
These are used to maintain/limit the number of philosophers that

*
the user has indicated are present.

Controls mutually exclusive access to the
'forks'

on the table.

MUTEX : BINARY_SEMAPHOR - 1;

Philosophers only want to think and eat, being hungry is necess.

before eating is possible.

ACTIVITIES = (THINKING, HUNGRY, EATING);

Table of philosopher activities (one for each guest).

ACTIVITY array[0. . (MAX_NUMBER_OF_PHILOSOPHERS-l) ) of ACTTVITIES;

Table of semaphores for philosophers to wait on if they need but
'

cannot get forks.

NEED_FORKS : array [0. .MAX_NUMBER_0F_PHIL0S0PHERS-1] of BINARY_SEMAPHORE,

Statistics for bar graph display of philosopher activities.

NUMJTHINKING, NUM_EATING : integer;

These are the task identifiers used in the applicati-

CONTROL, GUEST : TASK_IDS;

Generic task attribute variable used to create all tasks.

TASK_ATTR : TASK_ATTRIBUTES;

For command line timeslice string conversion.

CODE, TEMP : integer; VALUE : longint;

For user guest number prompt.

Loop Control Variable for philosopher table initializati

LCV : integer;

procedure UPDATE_DISPLAY(NUM_THINKING, NUM_HUNGRY, NUM_EATING : integer);

C This routine updates all of the bar graphs and averages,
(*

whenever the philosopher has changed activities.

Maintains the averages of philosopher states over all updates.

AVGJTHINKING : real - 0;
AVG_HUNGRY : real - 0;
AVG_EATING : real - 0;

cedure BAROGRAPH (NUM : integer; var AVERAGE : real);

This routine draws a bar graph which is proportional to the NUM
'

*
parameter passed in. In addition the average bar position is updated

'

*
to reflect the new bar graph.

Used to reduce
'jitter'

C Tempor ariable to hold the percent graphed and displayed.

PERCENT :

C Loop Contr

LCV : integer;

>1 Variable to draw bar graph.

begin (*
BAR_GRAPH *)

AVERAGE :- (AVERAGE *
WEIGHT + NUM) / (WEIGHT + 1 )

,-

PERCENT := (AVERAGE / NUMBER_OF_PHILOSOPHERS) *
100;

write (round (PERCENT) : 4, '\ |
'

) ;
PERCENT :- (NUM / NUMBER_0F_PHILOSOPHERS )

*

BAR_SIZE;
for LCV :- 1 to round (PERCENT) do write('"');

writer |
'

: BAR_SIZE ? 1 -

round (PERCENT) ) ;
PERCENT :- (AVERAGE / NUMBER_OF PHILOSOPHERS)

*
BAR SIZE;

gotoxy{16 ? round(PERCENT), wherey}; write('j');

end;
(*

BAR_GRAPH *)

begin (*
UPDATE_DISPLAY *)

gotoxyd, 10); write ( 'Thinking '); BARjGRAPH (NUMJTHINKING, AVGJTHINKING) ;

gotoxyd, 12); write ( 'Hungry '); BAR_GRAPH(NUM_HUNGRY, AVG_HUNGRY) ;
gotoxyfl, 14); write f "Eating '); BAR_GRAPH (NUM EATING, AVG EATING};

'

UPDATE DISPLAY *)
~

edure PHILOSOPHERJTASK(TASK_ID : TASK_IDS; PRIORITY : USER_PRIORITIES) ; far

*
This task represents each philosopher. Each one will act completely

*

independently, i.e., they will not cooperate. Of course 'no man (or
*

philosopher) is an island", all philosophers must interact with each
*

other but not cooperatively.

C In order to perform the simulation each philosopher must know *)
f* his/her seat at the table. This variable does that. *)

PHILOSOPHER_NUMBER : integer;

procedure THINK (PHILOSOPHERJJUMBER : integer) ;

This routine models the thinking activity of a philosopher, all that
it really does is give the philosopher a place to be when it is in the
THINKING state.

C

Loop Control Variable and dummy to 'do work'.

THINK_COUNT, DUMMY : longint;

begin (*
THINK *}

(* Do some non-blocking work *)
for THINK_COUNT : - 1 to DELAY_COUNT do

C Nothing really *) DUMMY := THINK_COUNT;

(*
Do some blocking work *)

WAIT_FOR_DELAY(DELAY) ;

end;
(*

THINK *)

procedure EAT { PHILOSOPHER_NUMBER : integer);

This routine models the eating activity of a philosopher, all that

really does is give the philosopher a place to be when it is in <

EATING state.

Loop Control Variable and dummy to 'do work'.

EAT_COUNT, DUMMY : longint ;

begin C EAT *)
(*

Do some non-blocking work *)

for EAT_C0UNT : - 1 to DELAY COUNT do
(*

Nothing really *) DUMMY :- EAT_C0UNT;

(* Do some blocking wor

WAIT_FOR DELAY (DELAY) ;

end;
(*

EAT *}

*)

function LEFT_NEIGHBOR(PHILOSOPHER_NUMBER : integer) : integer;
(** **"** * * "

,
C This function calculates the place setting (i.e., philosopher number) *)
(*
of the philosopher to the left.

.)

begin (* LEFT_NEIGHBOR *)

LEFT_NEIGHBOR :- (PHILOSOPHER_NUMBER + (NUMBER_OF_PHILOSOPHERS -

1)} mod

function RIGHT_NE IGHBOR (PHILOSOPHER^NUMBER : integer) : integer;

C This function calculates the place setting (i.e., philosopher number) *)
(*
of the philosopher to the right. .,

begin (*
RIGHT_NEIGHBOR *)

RIGHT_NE IGHBOR :- (PHILOSOPHER_NUMBER + 1) mod NUMBER_OF_PHILOSOPHERS;

140



end;
(*

RIGHT__NEIGHBOR *}

procedure CHECK_FORKS (PHILOSOPHER_NUMBER : integer);

This procedure models the action of the philosopher looking at the

table to see if there is a fork on each side of his plate (of course

this is prefaced with the fact that the philosopher must be HUNGRY}.

begin (* CHECK_FORKS *)
if (ACTIVITY[PHILOSOPHER NUMBER) - HUNGRY) and

(ACTlVITY(LEFT_NEIGHBOR(PHILOSOPHER_NUMBER) ) <> EATING) and

(ACTIVITY[RIGHT_NEIGHBOR(PHILOSOPHER_NUMBER}] <> EATING) then

ACTIVITY[PHILOSOPHER_NUMBERl := EATING;

inc(NUM_EATING};

UPDATE DISPLAY (NUMJTHINKING, NUMBER_OF PHILOSOPHERS - NUM THINKING
-

NUM_EATING, NUM EATING) ;

SIGNAL_BINARY__SEMAPHORE(NEED_FORKS[PHILOSOPHER_NUMBER] ) ;

end;
( if . . .then *)

end;
(* CHECK_FORKS *)

procedure GET_FORKS (PHILOSOPHER_NUMBER : integer);

(* This routine models the act of a philosopher (who is hungry) trying to
(*
eat. Before he can eat he must get two forks.

ACTIVITY [PHILOSOPHER NUMBER] := HUNGRY;

dec (NUMJTHINKING) ;

UPDATE_DISPLAY(NUMJTHINKING, NUMBER_OF_PHIL050PHERS - NUMJTHINKING

- NUM EATING, NUM_EATING);

CHECK_FORKS(PHILOSOPHER_NUMBER) ;

SIGNAL_BINARY_SEMAPHORE(MUTEX) ;

WAIT_ON_BINARY_SEMAPHORE (NEED_FORKS [PHILOSOPHER_NUMBER] ) ;

end;
(*

GET_FORKS *)

procedure PUT_FORKS (PHILOSOPHER_NUMBER : integer);

NUM THINKING

This routine models the act of a philosopher (who has finished eating)

putting his forks back on the table.

dec(NUM_EATING) ;

ACTIVITY [PHILOS0PHER_NUMBER] := THINKING;

inc (NUMJTHINKING) ;

UPDATE_DISPLAY (NUMJTHINKING, NUMBER OF_PHILOSOPHERS
-

- NUM_EATING, NUM_EATING);

CHECK_FORKS(LEFT NEIGHBOR(PHILOSOPHER_NUMBER) ) ;

CHECK_FORKS(RIGHT_NEIGHBOR(PHILOSOPHER_NUMBER) );

SIGNAL_BINARY_SEMAPHORE(MUTEX) ;

end; C PUT_FORKS *)

begin 1* PHILOSOPHERJTASK *)

(
* Determine philosopher number (must be 0 to N-l)

*

)

PHILOSOPHER_NUMBER := TASK_ID - 2,

(* Wait so that all philosophers start at the same instant *)

WAIT_ON_EVENT (DINNER_IS_SBRVED) ;

[*
Do philosopher stuff. .. (forever) *}

THINK(PHILOSOPHER_NUMBER) ;

GET_FORKS(PHILOSOPHER_NUMBER} ;

EAT ( PHILOSOPHER_NUMBER) ;

PUT FORKS (PHILOSOPHER NUMBER);

until~false;

end;
(* PHILOSOPHERJTASK *)

procedure CONTROL_TASK(TASK_ID : TASK_IDS; PRIORITY : USER_PRIORITIESU^tar;

This is just

that dinner i;

basic bookkeeping task that sets up the dinner,

served and then terminates the simulation upon

writeln ('TASKS: Invalid parameter: [', |

haltfl);

end;
(* if ... then. . .else *]

if paramcount > 2 then

if UP_STRING(paramstrf2) ) -
'-TDXESLICE'

then

begin

valfparamstr(3), VALUE, CODE);

if CODE <> 0 then

begin

writelnf 'TASKS: Invalid number: (',

haltfl};

end;
(* if. . .then*)

TASKING_CONFIGURATION.TARGETJTIMESLICE

end
f* if . . .then *)

else

begin

writelnf 'TASKS: Invalid parameter: (', ]

haltfl);

end;
( if ... then. .. else *]

istrfl), MM;

str(2), ']');

(*
Create TASKING startup attributes fo

with TASK ATTR do

begin

PRIORITY :- 20;

STACK WORDS NEEDED :- 500;
(*

Use default error handlers, c ied through all ta

ERROR_HANDLERS[TASK ALREADY_ACTIVE] :- nil;

ERROR HANDLERS[INSUFFICIENT_RESOURCES] :- nil;

ERROR_KANDLERS[TASK_IS_NOT_ACTIVE) :- nil;

ERROR_HANDLERS(TASK_ALRADY_SUSPENDED] := nil;

ERROR_HANDLERS[ILLEGAL_TASK_ID] := nil;

ERROR_HANDLERS[ILLEGALjOPERATION] := nil;

end; f
*
with. . . do

*

)

C Create the control task *)

CREATE (CONTROL, TASK_ATTR, CONTROLJTASK);

C Inquire as to the number of philosophers to simulate
"

writef 'Number of guests > ');

reset (input) ;

TEMP :- 0;

CH :- readkey;

write (CH};

if CH in ['0'..'9'] then

TEMP :- TEMP
* 10 + (ordfCH)

-

ordf'0*)};

until not (CH in
['0'

. . '9'] );

if (CH - CR) and (TEMP <- MAX_NUMBER_OF_PHILOSOPHERS)

then

if TEMP <> 0

then

NUMBR_OF_PHILOSOPHERS

else
(* Remember Pascal's

else

writeln (CR, LF,
'
Error '

haltfl);

end;
(* if .. .then. . .else

Invalid digit

Character to hold command from user (i.e.. Start or Quit}.

(* Initialize bookkeeping structures *]

NUMJTHINKING :- NUMBER_OF_PHILOSOPHERS;

NUM_EATING :- 0;

for LCV :- 0 to {NUMBER_OF_PHILOSOPHERS
- 1) do

begin

ACTIVITY[LCV)
:- THINKTNG;

NEED_FORKS[LCV] :- 0;

end;
f* for. . .to. . .do *)

(*

Modify the startup attributes for philosopher

with TASK_ATTR do

begin

PRIORITY :- 10;

STACK WORDS_NEEDED :- 500;

end; (*-with. . .do *}

(* Create the philosopher tasks *)

for LCV :- 1 to NUMBER_OF_PHILOSOPHERS do

CREATE (GUEST, TASK_ATTR, PHILOSOPHERJTASK) ;

end.
(* DINING PHILOSOPHERS *}

begin C CONTROLJTASK *)
(*

Display Startup Message *)

writelnfCR, LF,
'
[5] -

Start'
: 29,

'
[Q] -

Quit-

repeat COMMAND :- WAIT_ON_READKEY until COMMAND :

'

] then

['

if COMMAND in (
'
s

begin

gotoxyd, 6); writelnf 'Guests
- \ NUMBER_OF_PHILOSOPHERS) ;

gotoxyd, 8); writelnf 'Activity Avg \
'

) ;

gotoxy(16,9) ;
, , , .,

write (M/M; for LCV :- 1 to BAR_SIZE do write C-M; write ( -\ );

gotoxy|16+BAR_SIZE div 2, 9) ;write f '+'} ;

gotoxy (16, B} ;write(
'0'

) ;

gotoxy
(16-tBAR_SIZE div 2, B } ;write (

'

50') ;

gotoxy (16+BAR_SIZE,B)
,-write (

' 100
'
) ;

gotoxy(16,ll)7 writeC I',
M'

: BAR_SIZE + 1);

gotoxy(16,13}; writef |\
'["

= BAR_SIZE + 1);

gotoxy (16,15) ;

write
("t"),- for LCV :- 1 to BAR_SIZE do write ('-'); write ( J );

UPDATE_DISPLAY (NUMJTHINKING,
NUMBER_OF_PHILOSOPHERS

- NUMJTHINKING

- NUM_EATING, NUM_EATING) ;

BROADCAST_EVENT (DINNER_IS_SERVEDTf

repeat until WAIT_ON_RADKEY in ['q', 'QM;

end;
f* if.. -then *)

writelnfCR, LF) ;

halt(0) ;

end;
(* CONTROLJTASK *)

function UP_STRING(S : string} : string;
...............

(* This routine returns a string corresponding to the upper case value o.

(* the string passed to it.
...................

var LCV : integer;

begin C UP_STRING *}

UP_STRING[0]
:- S[0] ;

for LCV :- 1 to length(S) do

UP_STRING[LCV]
:- upcase (S [LCV] ) ;

end;
(* UP_STRING *)

begin C DINING_PHILOSOPHERS *)

(* Parse parameters to setup TASKING envir<

if paramcount > 0 then

if UP_STRING(paramstr(l) } -
'-PREEMPT'

then

TASKING CONFIGURATION. TASKING_MODEL

141



(Context Switch Percentage]

10.2 TSK-BNCH.PAS

i TASKING_BENCHMARK(input, output);

BMP Filename of graphs

array [GRAPHS] of string[20)

CSA+

CSB-

CSD+

C

CSL4

C
CSF-

CSI-

CSM SI

CSN+

CSE+

C$0-

C$Q+

CSR+

CSS +

C$v+

CSX+

c

his program executes a fixed TASKING application in a controlled manner

an attempt to characterize the performance, and therefore aid in the

lection of parameters, for TASKING.

Compiler Options (Ver. 7,0)
Word Alignment

Short Circuit Boolean Evaluation

Debug Code Generation ON (Sort of)
Requires /V option to TPC to activate

Local Debug symbols ON (Sort of)

Requires /V option to TPC to activate

Far calls only as needed

I/O Checking OFF

Memory (Stack, Mlnheap, Maxheap)
Hardware 60x87 Required

80x87 Run-Time Emulation Allowed

Overlays NOT allowed

Overflow Checking ON

Range Checking ON

Stack Checking ON

Var-string Checking ON

Disable Extended syntax

000, 50000,100000

I

[Relative Performance)
{Context Switch Overhead)
[Context Switch Time)
[Context Switch Time Average}
(General Overhead}
(Context Switch Percentage]

);

'REL-PERF.BMP',

'CTX-OVHD.BMP',

'CTX-TDME.BMP',
'
CTX-TAVG . BMP

'
,

'GEN-OVHD.BMP',
'CTS-PRCT.BMP*

(*
Collection of data records for all runs of TASKS-A.EXE that

(*
be made.

will
*

DATA : array[l. ,MAX_DATA] of DATA_RECORD;

C Baseline data from the runs of TASKS-A.EXE and TASKS-B.EXE.

BASE_ABS0LUTEJTIME

MINIMUM_ABSOLUTE TIME

MINIMUM EFFECTIVEJTIME

AVERAGE SWITCH TIME

double;

double;

double ;

double;

uses dos, crt, graph, GRAPHICS, BMP_UTIL;

(*
Duration parameter to TASK-A.EXE, controls the length of exec

(*
and therefore the resolution of the benchmark. In general,

(
* longer the better (minimum reliable parameter is -20} .

(*
Used to convert command line parameters from strings to integers.

COMMAND_LINE : string; CODE : integer;

procedure GENEPATE_RAW_DATA( DURATION : integer);

integer - MIN_DURATION;

1*
Flag to allow data files

C prompts to the user) .

to be created ally (without *}

AUTOMATIC_M0DE : boolea

TASKING timeslice

MAX DATA = 250;

TITLE_OFFSET - 26;

MIN_LINE_X - 24;

MIN LINE Y - 5;

asic screen

BACKGROUND COLOR - white;

BORDER COLOR -
green;

TITLE COLOR - blue;

LEGEND COLOR - red;

AXIS COLOR - darkgray
GRID COLOR - lightgra

SCALE COLOR - darkgray

i output control characters.

C This routine generates a

C benchmark program with the

C

all of the TASKING. RPT data

(...

Lcv : longint;

(*
Used to rename the TASKING. RPT file to the specific data file.

LCV_STR : string[9);

...... . ........................................................

(*
Text file for parsing the baseline TASKING. RPT files.

REPORT : text;

REPORT_NAME : stringtll];

f*
Used to pass the duration parameter to the subprogram command line.*]

DUR_STR : string[5];

Time variables used to compute the overhead associated with the

subprogram execution (so that it does not effect the results) .

C

HOUR, MIN, SEC, SEC100 : word;

HOUR_2, MIN_2, SEC 2, SEC100_2 : word;

ELAPSEDJTLME : double;

OVERHEAD, TEMP : longint;

(....................................................

f* Command line sent to DOS to execute the subprograj

COMMAND_LlNE : string[8Q);

(*
User response to somraand prompts

(...................................

ANSWER : char;

(

RELATIVE_PERFORMANCE ,

CONTEXT_SWITCH_OVERHEAD ,

CONTEXT_SWITCHJTDME ,

CONTEXT SWITCHJT IME_AVG,

GENERALjOVERHEAD,
CONTEXT~SWITCH_PERCENTAGE

);

String buffers to parse the TASKING. RPT file.

(* This data structure is used to hold all of the TASKING dat.

(*
particular run of TASKS-A.EXE.

DATA_RECORD - recorc

CONTEXT_SWITCHES :

ABSOLUTEJTIME

EFFECTTVEJTDME

ACTUALJTIMESLICE ;

POINTS

end;
(*

DATA RECORD

longint;

double;

double ;

array [GRAPHS] of double;

M

Colors of graphs.

GRAPH_C0L0R : array (GRAPHS] of word -

[
(Relative Performance} red,

[Context Switch Overhead) lightmagenta

(Context Switch Time) blue,

[Context Switch Time Average] lightblue,

[General Overhead) green,

[Context Switch Percentage) black

);

Legends of graphs.

<

rray (GRAPHS] of string[30) -

[Relative Perfoj

[Context Switch Overhead}

[Context Switch Time}

[Context Switch Time Average)

[General Overhead)

[Context Switch Percentage}

'Relative Performance',

'Context Switch Overhead',

'Context Switch Time',

'Context Switch Time Average

'General Overhead",

'Context Switch
Percentage'

Y-Axis Labels of graphs.

BELS : array (GRAPHS] of string[20]
-

(
(Relative Performance) 'Percent',

(Context Switch Overhead] 'Percent',

(Context Switch Time] 'Microseconds',
(Context Switch Time Average] 'Microseconds',
(General Overhead} 'Percent',

BUFFER, LINE : string;

all data files
(*

Flag used to gener

GENRATE_ALL : boolean;

begin C GENERATE_RAW DATA *)

GENERATE ALL :- false;

str (DURATION, DUR_STR) ;

write (CR,
'

Base Time - ? > M;

if AUTOMATIC_M0DE

then

COMMAND_LINE : -
' '

readln(COMMAND_LINE) ;

valfCOMMAND_LINE, BASE_ABSOLUTE_TDME, CODE);

if CODE <> 0 then

begin

( Calculate
'
exec

'
overhead

*

)

writefCR,
'

Base Time = ?');clreol;

OVERHEAD :- 0;

for LCV :- 1 to 3 do

gettlme (HOUR, MIN, SEC, SEC100);

exec(getenv('COMSPECM. '/CM;

gettime(H0UR_2, MIN_2, SEC_2, SEC100_2);

TEMP :- (longint (H0UR_2) - longint (HOUR) )
*
360000;

TEMP :- TEMP + (longint (MIN_2)
- longint (MIN) )

*
6000;

TEMP := TEMP + (longint (SEC_2)
- longint (SEC) )

*
100;

TEMP :- TEMP + (longint (SEC100_2)
- longint (SEC100) } -

OVERHEAD;

if TEMP > OVERHEAD then OVERHEAD :- TEMP;

until OVERHEAD <> 0;

(* Calculate 'base
'
time *)

COMMAND_LINE :- DUR_STR +
'
-PREEMPT -TIMESLICE 60000000';

gettime(HOUR, MIN, SEC, SEC100);

exec f 'TASKS-B.EXE', COMMANDLINE) ;

gettime|HOUR_2, MIN 2, SEC 2, SEC100_2};

ELAPSED TIME :- (longint (HOUR_2)
- longint (HOUR) )

* 60 *

60;
ELAPSED-TIME :- ELAPSEDJTIME + (longint (MIN_2} - longint (MIN) )

*
60;

ELAPSEDJTIME :- ELAPSEDJTIME + (longint {SEC_2} - longint (SEC) ) ;
ELAPSEDJTIME :- ELAPSEDJTIME + (longint (SEC100 2) - longint (SEC100)

OVERHEAD) / 100;

BASE_ABSOLUTE TIME :- ELAP5EDJTIME;

end;
(* if . . -then M

wnteln(CR,
'

Base Time = ', BASE_ABSOLUTEJTIME
6:2,' sec'

) ;clreol;

writefCR,
'

Minimum Absolute Time -?>'};

if AUTOMATIC^MODE

then

COMMAND LINE :
' '

142



MINIMUM_ABSOLUTE_TIME :

readln (COMMAND LINE);
val (COMMAND LINE, MINIMUM ABSOLUTE TIME, CODE);
if CODE <> 0 then

(*
Calculate Minimum absolute time *)

writefCR,
'

Minimum Absolute Time - 7');clreol;
COMMAND_LINE : - DUR_STR +

'

-PREEMPT -TLMESLICE 6000000';
exec(

'TASKS-A.EXE'
, COMMANDJuINE ) ;

assignfREPORT, 'TASKING. RPT' } ;

CSI-*} reset (REPORT) ; (*$!+*)
if ioresult - 0 then

while not eof (REPORT) do

begin

readln (REPORT, LINE) ;
if pos ('Absolute =', LINE) <> 0 then

begin

BUFFER :=

copyfLINE, pos{'-', LINE) + 1, pos
(

seconds
'

LINE} -

posf-', LINE) - 2);
val(BUFFER, MINIMUM ABSOLUTE TIME, CODE) ;

end;
(*
if. . .then *)

end;
(*
while. . . do *)

close(REPORT) ;

end;
(*
if. . .then *)

end;
(* if . . .then *}

writelnfCR,
'

Minimum Absolute Time
' sec'

) ,-clreol;

writefCR,
'

Minimum Effective Time = 7 >
'

)
if AUTOMATIC_MODE

COMMAND_LINE := "

readln I COMMAND_LINE ) ;

val(COMMAND_LINE, MINIMUM_EFFECTIVE TDME, CODE);
if CODE <> 0 then

begin

C Calculate Minimum effective time *)
writefCR,

'
Minimum Effective Time = ?M (clreol;

assignfREPORT, 'TASKING.RPT' ) ;
CSI-*) reset (REPORT) ; (*$!+*)
if ioresult <> 0 then

begin

COMMAND_LINE := DUR_STR +
'
-PREEMPT -TIMESLICE 6000000';

exec( 'TASKS-A.EXE', COMMAND_LINE) ;
assignfREPORT, 'TASKING. RPT '

) ;

(*$I-*) reset (REPORT); (*$I+*)
end;

(
if . . .then *)

if ioresult - 0 then

begin

while not eof (REPORT) do

begin

readln (REPORT, LINE};

if pos ( 'Effective -', LINE) <> 0 then

begin

BUFFER :=

copy(LINE, posf'-', LINE) + 1, pos
(' seconds'

LINE)
-

pos{'=', LINE) - 2);

valfBUFFER, MINIMUM_EFFECTIVE_TIME, CODE);

end;
(* if . . .then *)

end;
("
while... do *)

close (REPORT);

end;
(* if . . .then *)

end;
(* if . . .then *)

writeln (CR,
'

Minimum Effective Time = ', MINIMUM_EFFECTIVE_TIME : 6

M; eol;

assignfREPORT,
'BASELINE'

) ;

rewrite (REPORT) ;

wnteln(REPORT, DURATION) ;

writelnfREPORT, BASE_ABSOLUTE TIME : 6

writelnfREPORT, MINIMUM_ABSOLUTE_TIME :

write (REPORT, MINIMUM_EFFECTIVE_TI>IE

close (REPORT) ;

or LCV

begin

if keypre

MAX_DATA downto 1 do

d then

'A'];

writef'User break! ');

haltfl);

end;
{* if . . .then *)

str(LCV, LCV_STR);

REPORT_NAME :-
'TASKING.*

t LCV_STR;

assignfREPORT, REPORT_NAME) ;

C$1-*) reset (REPORT); CSI+*)
if ioresult <> 0

then

begin

if AUTOMATIC_MODE then

GENERATE ALL := true;

if not GENERATE_ALL then

repeat

write (CR,
'
File not found:

'], (A)bort, (C)alculat.

ANSWER := upcase (readkey) ;

GENERATE_ALL := ANSWER - 'G';

until ANSWER in ['C, 'S', 'G',
if ANSWER -

'A'
then

begin

writeln;

write ( 'User break!
'
);

haltfl);

end;
(* if . . .then *)

if GENERATE_ALL or (ANSWER - 'C') then

begin

COMMAND_LINE :- DUR_STR +
'
-PREEMPT

writefCR,
'

Generating Data File
{'

swapvectors;

execf 'TASKS-A.EXE', COMMANDLINE) (

exec (get env ( 'COMSPEC ) ,

swapvectors;

writefCR) ; clreol;

end;
(* if. . .then )

end
(* if . . .then *}

else

close(REPORT) ;

end;
(* for . . . to. . .do *}

writefCR,
'

Generated Data File(s)');

writeln;

end;
(* GENERATE_RAW_DATA *)

REPORT_NAME,

(S)kip, (G)ene

procedure PARSE_RAW_DATA;

(* Parses the
TASKING.* data files for the perfo information.

C Search data structure for finding
TASKING.* file.'

SEARCH : searchrec;

(*
Loop Control Variable to

LCV : integer;

all data files.

C Text file for parsing the TASKING. RPT files.

REPORT : text;

C String buffers to par:

BUFFER, LINE : string;

the TASKING. RPT file.

C Parameters that are extracted from the TASKING.1

TIMESLICE : longint;
SWITCHES ; longint;

TIME1, TIME2 : double;

ert strings to numbers.

CODE ord;

begin (*

PARSE_RAW_DATA *)
write

('

Parsing Data Files');
for LCV := 1 to MAX_DATA do

with DATA[LCV) do

CONTEXT_SWITCHES :- 0;

ACTUAL_TIMESLICE :- 0;
POINTS [CONTEXT_SWITCH_TLME_AVG] : =

end;
(*
with. . .do *}

findfirstf'TASKING.*', anyfile, SEARCH);
while doserror - 0 do

begin

TIMESLICE :- 0;

assignfREPORT, SEARCH. NAME) ;

CSI-*) reset (REPORT) ; (*$I+*)
if ioresult - 0 then

begin

writefCR,
'

Parsing Data Files:

while not eof (REPORT) do

readln (REPORT, LINE) ;

if pos ( 'Achieved Time Slice

BUFFER :=

copy(LINE, posf'-', LINE)
-

pos
(''

, LINE)
- 4)

valfBUFFER, TIMESLICE, CODE);

TLMESLICE := round (TIMESLICE / 1000);

if pos ('Context Switches = ', LINE) <> 0 then

begin

BUFFER :-
copy(LINE, posf'-1, LINE) + 2, pos (

'

(
1

pos( '-', LINE) - 3);

valfBUFFER, SWITCHES, CODE) ;

if pos ( 'Effective -', LINE) <> 0 then

begin

BUFFER :-
copy(LINE, posf'-1, LINE) +

LINE)
-

posf1-', LINE)

aKBUFFER, TDME1, CODE);

SEARCH. NAME,

LINE) <> 0 then

3, posf'u

LINE) <> 0 thenif pos ( 'Absolut.

begin

BUFFER :=
copyfLINE, posf'-1, LINE) +

LINE)
-

posf'-', LINE)
val (BUFFER, TIME2, CODE);

end;
(*
while... do *)

If (TIMESLICE <- MAX_DATA) and {TLMESLICE <> 0)
then

if DATA(TTMESLICE) . CONTEXT_SWITCHES <> 0

then

with DATA[TDMESLICEJ do

begin
(*

Duplicate Data Record *}
CONTEXT_SWITCHES :- (CONTEXT SWITCHES

EFFECTTVEJTIME

ABSOLUTEJTIME : -

end
(*
if . . .then *)

with DATA[TIMESLICE] do

begin

2;

SWITCHES ) div

:= SWITCHES;
:- TDME1;
: TTME2;

f bounds' Ignore it!? *}

CONTEXT_SWITCHES

EFFECTIVEjriME

ABSOLUTEJTIME

end
{*
with. . .do *)

begin

C Timeslice out

end;
{* if .. .then. . .else *)

close (REPORT);

end;
(* if . . .then *)

findnext (SEARCH);
end ; (

*
while ... do *

)

writefCR,
'

Parsed Data Files'); clreol;

writeln;

end;
(*

PARSE_RAW_DATA )

procedure CALCULATE_PERFORMANCE_CURVES;
....................................................................

(*
Calculates the performance values for all of the TASKING.*

file:

C Loop Control Variable to access all data files

LCV : integer;

(*
Number of elements that .

NUM_AVG : integer;

included in the average.

f*
Temporary data records for creating the curves.

PREVIOUS, FIRST : DATA_RECORD;

(*
Pased data output file (for importing into a spreadsheet) .

PARSE_FILE : text;

begin (*
CALCULATE_PERFORMANCE_CURVES *}

write!1

Calculating Performance Curves');

FIRST. CONTEXT_SWITCHES :- 0;

assign (PARSE_FILE, 'PARSE.OUT')-'

rewrite (PARSE_FILE);

for LCV :- 1 to MAX_DATA do

if DATA [LCV] . CONTEXT_SWITCHES <> 0 then

with DATA[LCV) do

writefCR,
'

Calculating Performance Curves: [TASKING.1

clreol;

ACTUALJTIMESLICE :- ABSOLUTEJTIME * 1000 / CONTEXT_SWITCHES ;
POINTS [RELATTVE_PERFORMANCE] :-

(BASE_ABSOLUTE_TIME -

ABSOLUTEJTIME} /
BASE ABSOLUTEJTIME *

100;

POINTS [CONTEXT_SWITCHJTIME] := abs (EFFECTTVEJTIME * le6 -

MINIMUM_EFFECTTVEJTIME *
le6) /

LCV,

143



CONTEXT SWITCHES;
POINTS(CONTBXT_SWITCH_TIME_AVG)-

:- POINTS [CONTEXT SWITCH TDME)-

POINTS(CONTEXT_SWITCH_OVERHEAD] :- 100 -

~~
"

((EFFECTIVE TIME *
le6 /

CONTEXT_SWITCHES

} - POINTS [CONTEXT_SWITCH TIME]) /
(EFFECTTVEJTIME *

le6 /

CONTEXT_SWITCHES ) 100;
POINTS [GENERAL_OVERHEAD] :- POINTS [RELATTVE_PERFORMANCE] +

POINTS [CONTEXT SWITCH OVERHEAD];
POINTS[CONTEXT_SWITCH_PERCENTAGE] :-

(POINTS [CONTEXT_SWITCH_TIMEJ / 1000) /
ACTUAL_TLMESLICE *

100;
if FIRST. CONTEXT_SWITCHES - 0 then

FIRST :-

DATA[LCV] ;

writeln (PARSE_FILE,
ACTUALJTIMESLICE : 3 : 3,

'
, ,

POINTS [RELATIVE^PERFORMANCE] : j 3, ',',
POINTS [CONTEXT SWITCH_OVERHEAD] : 3 : 3, ',,
POINTS [CONTEXT_SWITCH TIME] : 3 : 3,

'

POINTS [GENERALJDVERHEAD] : 3 : 3,
'

,
'
,

'

POINTS [CONTEXT_SWITCH_PERCENTAGE] : 3

end;
(*
with. . . do *)

close <PARSE_FILE) ;

PREVIOUS :- FIRST;
for LCV :- 1 to MAX DATA do

with DATA[LCV]
do-

if (CONTEXT_SWITCHES <> 0) then

begin

POINTS [CONTEXT_SWITCH TIME_AVG) :-

(PREVIOUS. POINTS [CONTEXT_SWITCH TDME_AVG] +

POINTS [CONTEXT SWITCHJTIME AVGT) / 2;
PREVIOUS :- DATA [LCV];

end;
(*
if . . .then *)

NUM_AVG :- 0;

AVERAGE_SWITCH TIME :- 0;
for LCV-:- 1 to MAX_DATA do

with DATA[LCV] do

if (CONTEXT_SWITCHE5 <> 0) then

begin

AVERAGE_SWITCHJTDME :- AVERAGE_SWITCHJTIME +

POINTS [CONTEXT SWITCH TIME AVG] ;
inc (NUM_AVG) ;

end;
f* if. . .then *)

if NUM_AVG <> 0 then

AVERAGE_SWITCH_TIME :- AVERAGE_SWITCH TIME / NUM_AVG;

writefCR,
'

Calculated Performance Curves'}; clreol;
writeln;

end;
(*

CALCULATE_PERFORMANCE_CURVES *)

rocedure GRAPH_DATA;

This routine creates the axis and draws the graphs on the screen. The

user is allowed only two options
'Q'

to quit the program and
'G'

to grab

the screen image as a Windows Bit-Map (BMP) file.

f* The length of the legend lines.

LEGEND_LENGTH - 30;

C Graphic video driver parameters.

MODE, DRIVER : integer;

(*
Loop Control Variable to process the data points.

LCV : longint ;

{*
Graph critical screen positions. .

MAX LINE X, MAX LINE Y, MID LINE Y, MID LINE X : integer;

MAX_X, MAX_Y, MID_X, MID_Y : integer;

i*
Flag used to detect the first point to be graphed.

*

STARTED : boolean;

(*
Flag used to allow the user to exit the program.

USER_QUIT : boolean;

(*
Used to create the appropriate

'tick'
marks on the graph axis.

*

SCALE_FACTOR : integer;

THE_GRAPH : GRAPHS;

procedure DRAW_GRAPH (GRAPH : GRAPHS);
f"

( This routine draws the graph onto the screen. *)

(*
String used to display text o i the ,cree *]

TEMP_STR : string;

(*

Loop Control Variable o access all data points. *)

LCV : integer;

(* Graph scales are dynar
(* displayed by the graph.

lically calculated based on the data to be *)

*)

MAX_Y_SCALE, MIN Y_SCALE : double;

MAX_X_SCALE : integer;

HID_Y_SCALE : integer;

function REAL_STR(R: real; Fl, F2 : integer): string;

(......... ................................. ..........

{* Convert real type to a string.

var S string [11]

begin
f* REAL_STR *)

str(R : Fl : F2, S) ;

REAL_STR :- S;

end;
(* REAL_STR *)

begin
(* DRAW_GRAPH

*

setgraphmode(MODE) ;

MAX X := getmaxx;

MAXJY :- getmaxy;

MIN LINE_X;

TITLE_OFFSET - 5;
+ MIN_LINE X) div 2;
+ MIN_LINE-Y) div 2;

MIDX :- MAX X div 2;

MIDY :- MAX-Y div 2;

MAX_LINE_X :- MAX X - 3

MAX LINEJY ;- MAX~Y - 2 *

MID_LINE_X :- (MAX_LINE_X

MID_LINE_Y :- (MAX_LINE_Y

cleardevice;

(setcolor (BORDER_COLOR) ;
setlinestyle (solidln, 0, thickwidth);
rectangle (0, 0, getmaxx, getmaxy) ;

setfillstylefsolidfill, BACKGROUND COLOR);)
floodfillflO, 10, BORDER_COLOR) ;

setcolorfBORDER_COLOR) ;

linetofO, MAX Y);

lineto(MAX_X,-MAX_Y);

lineto(MAX_X, 0);

linetofO, 0);

linefO, TITLE_OFFSET, MAX_X, TITLE OFFSET) ;
linefO, MAX_Y - TITLE OFFSET, MAX_X, MAX Y

settextstyle (SIMPLEX_FONT, horizdir, 1)

settextjustifyfcentertext, centertext) ;

setcolor (TITLE COLOR);

TITLEJ3FFSET) ;

(

:txy

MAX_X div 2,
TITLEJ0FFSET div 3,
'TASKING Performance Benchmark Display (Q-Quit; G-Grab;

N-Next)'

(*
Create Legend *)

setcolor (LEGEND_COLOR) ;
movetofMAX X div 2, MAX_Y - 2

outtext (LEGENDS [GRAPH] ) ;
moverel (length (LEGENDS [GRAPH] )
setcolor (GPAPH_COLOR [GRAPH] } ;
setlinestyle (solidln, 0, thickwidth)

linerel(LEGEND_LENGTH, 0) ;

(TITLE_OFFSET div 3));

textwidth( 'h') div 2, 4};

;etcolor(SCALE_COLOR);

et text justify (centertext, centertext) ;

iettextstyle(deaultfont, vertdir, 1);

uttextxy(12, MAXJY div 2, LABELS (GRAPH) ) ;

et textstyle (default font, horizdir

uttextxy

1);

[MAX LINE_X -

(MAX-Y div 2)
'Actual Timeslice (mSec)

MIN_LINE_X) div 2,

normwidth) ;setlinestyle (solidln,
setcolor (AXIS_COLOR};
setviewport

(

MIN LINE_X

MAX-X,

line(MIN_LINE_X, MIN LINE_Y, MIN LINE_X, MAX LINE_Y} ;

line (MAX_LINE_X, MIN_LINE_Y, MAX~LINE_X, MAX-LINE Y) ;

line (MIN_LINE_X, MID_LINEJY, MAX_LINE_X, MID~LINE-Y) ;

MAXJiJSCALE :-
-maxint;

MIN_Y_SCALE :-
tmaxint;

MAX_X_SCALE : - 0;

for LCV :- 1 to MAX_DATA do

if DATAfLCV] .CONTEXT_SWITCHES <> 0 then

with DATA[LCV] do

begin

if ACTUALJTIMESLICE > MAX_X_SCALE then

MAX_X_SCALE :- round (ACTUALJTIMESLICE + 0.5);

if POINTS [GRAPH) < MIN_Y_SCALE then

MIN_Y_SCALE :- round(POINTS [GRAPH] -

0.5);
if POINTS [GRAPH] > MAX_Y_SCALE then

MAX_Y_SCALE :- round (POINTS (GRAPH] + 0.5};

(*
Make sure everything is even *j

if (MAX X_SCALE mod 5} <> 0 then

MAX_XjSCALE :- ( (MAX_X_SCALE div 5) + 1) 5;
if odd(round(MIN Y SCALE)) then MIN Y SCALE :- MIN_Y_SCALE -

if odd { round (MAX-Y SCALE)) then MAX~Y_SCALE := MAX Y SCALE

end;
(*
with.. .do

MID_Y_SCALE := round (MAX_Y_SCALE + MIN_Y_SCALE} div 2;

settextjustify (centertext, centertext) ;

C Vertical axis *)

setcolor (AXIS_COLOR) ;

(

MIN_LINE_X - 5,
MID_LINE-Y -

round |MID_Y SCALE MAX_LINE_Y /
(MAX Y SCALE - MIN_Y SCALE}),

MIN_LINE_X + 5,
MID-LINE-Y -

round (MID Y SCALE
*
MAX_LINE_Y /

(MAX_Y SCALE -

MIN_Y_SCALE} )
).

C
'Y'

Ticks *)

for LCV :- 0 to 19 do

begin

setcolor (GRID_COLOR);

setlinestyle (dottedln, U, normwidth) ;

line

(
MIN_LINE_X - 5,
MAX LINE Y -

round (LCV

MAX-LINE-X * 5,
MAX^LINE-Y -

round (LCV

).'

setcolor (SCALE_COLOR);

outtextxy

MAX_LINE_Y / 20),

MAX LINE Y / 20}

I
MIN_LINE X - A - 2 *

textwidth
CH"

) ,

MAX_LINE-Y -

round(LCV
*

MAX LINE_Y / 20),
REAL_STR(MIN_Y_SCALE + (MAX Y^SCALE - MIN Y SCALE} / 20

LCV, 2, 1)
);

end;
(* for. . .to. . .do *)

setcolor (AXIS_COLOR) ;

setlinestyle (solidln, 0, normwidth) ;

line

(
MIN LINE_X + round (1 *

MAX_LINE_X div (MAX_X_SCALE div 20)),
MID-LINE_Y +5,

MIN_LINE_X + round (1 MAX_LINE_X div (MAX_X SCALE div 20)),
MID_LINEJY - 5

);

* 'X'
Ticks

or LCV :- 1

setcolor (GRID COLOR);

(MAX_X_5CALE div 20)

144



'
usee

'
) ;

write ('TASKING Benchmarks Complete');

'MIN_LINE_X + round(LCV *
MAX_LINEJX div (MAX X SCALE div 20))

^ '*

TASKIfJG-BENCHMARK *}

MIN_LINEJY +5,

MAX_LINE_X div (MAX_X_SCALE div 20)),

setcolor (SCALE COLOR);

str(LCV
*

20, TEMP_STR) ;

outtextxy

(

MIN_LINE_X ? round(LCV
*

MAX LINE X div (MAX X SCALE div 201)
MID_LINE_Y ? 8,

~~ "'

TEMP_STR

);

end;
(* for . . . to. . .do *)

setcolor (GRAPH_COLOR[GRAPH] ) ;
setlinestyle (solidln, 0, thickwidth};
STARTED := false;
for LCV :- 1 to MAX_DATA do

if DATA[LCV) . CONTEXT_SWITCHES <> 0 then

with DATA(LCV] do

if STARTED

then

lineto

(

MIN_LINE_X + round (ACTUALJTIMESLICE / MAX_X_SCALE *

(MAX_LINE X -

MIN_LINE X)),
MID_LINEJY -

round! (POINTS [GRAPH] - MID Y_SCALE) /
(MAXJY_SCALE -

MIN_Y~SCALE) *

(MAX_LINE Y -

MIN_LINE Y) )

(

MIN_LINE_X + round (ACTUALJTIMESLICE / MAX_X_SCALE *

(MAX_LINE X -

MIN_LINE_X}),
MID_LINE_Y -

round ( (POINTS [GRAPH] -

MID_Y_SCALE) /

(MAX_Y_SCALE -

MIN_Y_SCALE)
"

(MAX_LINE_Y -

MIN_LINE_Y))

STARTED :- true;

end;
( if ... then. . .else )

end;
(*

DRAWJGRAPH *)

begin (*
GRAPhJDATA *)

installuserdriver ( 'VESA16', 8DETECT_VESA_16) ;
registerbgidriver (addr (VESA16_DRTVER) ) ;
DRIVER :- detect;
initgraph (DRIVER, MODE,

'

');

THE_GRAPH := RELATIVE_PERFORMANCE;
DRAW_GRAPH(THE GRAPH);

user_QUIT := false;

if keypressed then

case upcasefreadkey} of
'N'

: begin

if THE GRAPH = high(GRAPHS)

THE_GRAPH : - low(GRAPHS)
else

THEJSRAPH := succ (THE_GRAPH) ;

DRAW_GRAPHfTHE_GRAPH) ;

end; C Next Graph *)
'G'

: begin

setviewport (0, 0, getmaxx, getmaxy, true);

SAVE IMAGE_AS_16_C0L0R_BMP_FILE

(

FILENAME [THE_GRAPH ] ,

0, 0, getmaxx, getmaxy

end; C Grab picture of graph *)
Q'

: USER_QUIT :- true;

end;
(*

case. . .of *)

until USER_QUIT;

closegraph;

end;
(

GRAPHJDATA *)

function UP_STRING(S : string) : string;

(*
This routine returns a string corresponding to the upper case value o

(* the string passed to it.

var LCV : integer;

begin (*
up_STRING *)

UP STRING[0] :- S[0);

for LCV := 1 to length(s) do

UP_STRING[LCV) :- upcase (S [LCV] ) ;

end;
(*

UP_STRING *)

begin (*
TASKING_BENCHMARK *)

if (paramcount - 1} and (UP_STRINGfparamstr (1 ) ) - '-AUTO') then

AUTOMAT IC_MODE :- true;

directvideo :- false;
(*

Allow baseline info to be redirected from a file *)

assign (input,
'
') ;

reset (input) ;

writelnf 'TASKING Benchmarks');

writefCR,
'

Duration - 7 ');clreol;

readln (COMMAND_LINE) ;

val(COMMAND_LINE, DURATION, CODE};

if (CODE <> 0) or (DURATION < MIN_DURATION) then

begin

writelnfCR, LF, "TSK-BNCH: Invalid Duration: [', COMMAND_LINE, MM;

haltfl);

end;
{* if. . -then *)

writelnfCR,
' Duration - ', DURATION) ;clreol;

(* Perform benchmarking *)

GENERATE_RAW_DATA(DURATION) ;

PARSE_RAW_DATA;

CALCULATE_PERFORMANCE_CURVES ;

GRAPH_DATA;

C Echo results to the user *)

writeln;

writelnf 'TASKING Benchmarks (Duration - ', DURATION, ')'}(

writelnf Base Time - ', BASE_ABSOLUTEJTIME : 6 : 2,
'
sec');

writelnf Minimum Absolute Time - ', MINIMUM_ABSOLUTE_TIME : 6 : 2,
'
sec1);

writelnf Minimum Effective Time - ', MINIMUM_BFFECTIVE TIME 6 : i,
sec');

writelnf
Average Context Switch Time - ', AVERAGE_SWITCH_TDME : S 1,

145



10.3 TASKS-A.PAS

program TASKS (input,

(*
This program is merely a sample tasking program

(* the capabilities and benefits of the TASKING unit.

illustrate some of

CSA+

CSB-

C5D+

(*

C$L+

I*

C$F-

C$1-

(*$M $l

(*$N-

C$E-

C$0-

CSR-

C$S-

C$T-

(*SV-

000,20000, 50000

Options (Ver. 7.0)
Word Alignment

Short Circuit Boolean Evaluation

Debug Code Generation ON (Sort of)

Requires /V option to TPC to activate

Local Debug symbols ON (Sort of)

Requires /V option to TPC to activate

Far calls only as needed

I/O Checking OFF

Memory (Stack, Minheap, Maxheap)

Software Emulation of 80x87

No 80x87 run-time emulation

Overlays NOT allowed

Range Checking OFF

Stack Checking OFF

Force Typed
'9'

references

Var-string Checking OFF

:rt, dos, TASKING;

(, ................................................. .....................j
(* This application is so simple that the commands can be as simple *)
(*

as an enumerated data type. In a
'real'

application the commands *]

C passed around would probably be a record to allow command parameters*)

(*
to be passed. The TASKING mechanisms would be exactly the same in *)

C either case. There is no reason that message passing be restricted *)
(* to strict data types, strings (or any data type) can be passed just *]

C as as easily. *)
,.................*.....................................................

j

APPLICATION COMMANDS -

with TASKJVTTR do

begin

PRIORITY :- 10,

STACK_WORDS_NEEDBD

Use default err.

ERROR_HANDLERS[TASK ALREADY_ACTIVE ]
ERROR_HANDLERS[INSUFFICIENT-RESOURCES)

ERROR_HANDLERS [TASK_IS_NOT_ACTIVE]

ERROR_HANDLERS [TASK_ALREADY_SUSPENDED]

ERROR_HANDLERS [ ILLEGAL_TASK_ID)
ERROR_HANDLERS [ILLEGAL_OPERATION)

end;
(*
with. . .do *)

for LCV := 1 to 10 do

CREATE (BUSYJWORK, TASK ATTR, BUSYJTASK) ;

end.
(*

TASKS *}

carried through all task creations *)

nil;

> nil;

nil;

< nil;

);

var
{...*................*........*....-..***"***'"***

(* These are the task identifiers used in the application.

SUPERVISOR, KYBDJTASK : TASK_IDS;

(.............. ........................*.....................*...

<* Generic task attribute variable used to create all tasks.

TASK_ATTR : TASK_ATTRIBUTES;

C For command line timeslice string conversion.

(......................*......*........*...........******

DURATION, CODE : integer; VALUE : longint;

C
*******************""*** *"******* **************************

LCV : integer;

BUSYJWORK : TASK_IDS;

procedure BUSYJTASK (TASK_ID : TASK_IDS; PRIORITY : USER^PRIORITIES) ;

{*

Busy work, no real purpose except for demonstration.

LCV

DELAY_COUNT

CPU_LOAD

CH

integer;

longint;

longint;

: char;

begin
(* BUSYJTASK *)

LCV :- 0;

inc ( LCV);
{* Do some non-blocking work *)

for DELAY_COUNT : - 1 to TASKJID do

for CPU_LOAD : 1 to 500000 do
(*

Nothing i

until LCV = DURATION;

end; C BUSYJTASK *)

function UP_STRING(S : string} : string;

This routine returns a

the string passed to it.

:sponding to the upper

var LCV integer;

begin
(* UP_STRING *)

UP_STRING[0)
:= S[0];

for LCV :- 1 to length(S) do

UP STRING(LCV) := upcase (S [LCV] ) ;

end;
( UP_STRING *)

begin C TASKS *}

if paramcount - 0

then

begin

writeln ('TASKS-A: Duration must be specif i'

halt(l);

end

else

val(paramstrd), DURATION, CODE);

-PREEMPT'

-TDMESLICE'

if paramcount > 1 then

if UP_STRING(paramstr{2) )

TASKING CONFIGURATION. TASKING_MODEL :- PREEMPTIVE

else

begin

writelnf TASKS: Invalid
parameter: [', paramatr(l), ] );

haltfl);

end;
[* if .. .then... else *)

if paramcount > 3 then

if UP_STRING(paramstrf3) )

then

begin

val (paramstr (4), VALUE, CODE);

if CODE <> 0 then

begin

writeln! 'TASKS: Invalid number: ( ', paramstr (3) ,

'

] ) i

halt(l};

end;
(* if - . .then*}

TASKING CONFIGURATION. TARGETJTIMESLICE :- VALUE
*
1000;

end
I* ifT. .then*)

else

f , par, ,strl3}.

146



10.4 TASKS-B.PAS 10.5 GRAPHICS.PAS

l TASKS (input, output);
. GRAPHICS;

This program i.

he capabilities

CSA+

CSB-

CSD+

C
CSL+

C
CSF-

(*SI-

CSM 58000,20000, 50000
CSN-

CSE-

C$0-

CSR-

CSS-

C5T-

CSV-

Options (Ver. 7.0)
Word Alignment

Short Circuit Boolean Evaluation

Debug Code Generation ON (Sort of)

Requires /V option to TPC to activa'

Local Debug symbols ON (Sort of)

Requires /V option to TPC to
activa'

Far calls only as needed

I/O Checking OFF

Memory (Stack, Minheap, Maxheap)
Software Emulation of 80xB7

No 80x87 run-time emulation

Overlays NOT allowed

Range Checking OFF

Stack Checking OFF

Force Typed '9'
references

Var-string Checking OFF

uses crt, dos;

(*
Loop Contr

LCV integer;

ol Variable to create all 'tasks1 .

C Used to convert command line arguements to number,

DURATION, CODE integer; VALUE longint;

procedure BUSY TASK(TASK_ID : word; PRIORITY : byte); far;
,...*.....*...T.........T.......................... ........

C

c

Busy work, real purpose except for demonstr

var LCV integer;
DELAY COUNT longint;

CPU LOAD longint;

CH char;

begin (* BUSY TASK *)

LCV := 0;

repeat

inc (LCV),
-

(*
Do some non-blocking work *}

for DELAY COUNT :- 1 to TASK ID do

for CPU LOAD :- 1 to 500000 do
(*

Nothing
until LCV = DURATION;

end;
(*

BUSYJTASK *)

egin
(*

TASKS *)

if paramcount = 0

then

begin

writeln ('TASKS-A: Duration must be specif

haltfl);

end

trfl), DURATION, CODE);

for LCV := 1 to 10 do

BUSYJTASK (LCV, 10);

end.
(*

TASKS M

graphics drivei

entrates the code for VGA (640x480),
and useful fonts into a single code

VESA-16

legment .

(1024x768) *)

-

Options (Ver. 7.0)

Word Alignment

Short Circuit Boolean Evaluation

Debug Code Generation ON (Sort of)

Requires /V option to BPC to activate

Local Debug symbols ON (Sort of)

Requires /V option to BPC to activate

Far calls only as needed

I/O Checking OFF

Software Emulation of 80x87

Overlays NOT allowed

Standard 'string'
parameters

Overflow Checking OFF

Range Checking OFF

Stack Checking OFF

Var-string Checking OFF

Force Typed
'fl1

references

Enable Extended syntax

(*
Stroked font 'handles' - Bold is

(*
a very simple font (similar to th

C triplex is a more elegant font.

jtlined, block type. Simplex is *)
default graphics font ) and

*
)

BOLD_FONT,

nst
(*

SIMPLEX_FONT, TRIPLEX_FONT, SMALL_FONT : integer

This variable is used to force the VESA driver

.s not its highest capability.

, mode which *)

VESA_16_M0DE : -1..2 - -1;

function DETECT_VESA_1 6 :
integer,"

procedure VESA16_DRTVER;

The actual VESA-16 video

Called as: registerbgidriv

driver.

:r(addr(VESA16_DRIVER) );

edure EGAVGA DRIVER;

The actual VGA video driver.

Called as: registerbgidriver (addr {EGAVGA_DRIVER} ) ;(

C

uses graph;

function VESA_CAPABILITY

1*

C

(TABLE : pointer; MODES : word; SIZE : integer) : integer; ne.

Determines the highest graphics capability of the VESA-16 i

VESA CAPABILITY
*

xor

les di, TABLE

mov si, MODES

add si, SIZE

add si, SIZE

mov bx,es: [di]

cmp bx.OFFFFh

cmp bx, [si]
JZ 993

dec 31

dec Si

loop 992

9@3:

ja 991

]mp 901

904:

cmp VESA 16 MODE, -1

995

al,VESA 16 MODE

mov ah,0

965:

nd;
1*

VESA CAPABILITY *)

function DETECT_VESA_16 : integer; assembler;

(* Determines if the video controller is VESA-16 compatible.

(* The video modes supported by VESA-16.

VESA 16_MODES : array(0..2) of word - ($0102, $0104, S0106);

(* Data structure that defines the video controller.

VGA_INFO_BLOCK - record

VESA_SIGNATURE : arrayl0..3) of byte;

VESAJVERSION : word;

OEM STRING PTR : pointer;

CAPABILITIES : array[0..jj of byte;

VIDEO_MODE PTR : pointer;

end;
(* VGA_INFO_BLOCK *)

(* Data structure used to determine VESA-16 capabilities.

VESA_INF0 : array [0 . .255] of byte;

;* DETECT_VESA_16 *)

mov ax, ss

mov es,ax

lea di,VESA_INF0

147



int

mov

]nz

jnz

push

ord[0],

fiSExit:

end;
(*

DETECT 6

ax, 4F0Oh

lOh

ax,004Fh

ax,grError

SSExit

es:[di].VGA INFO BLOCK.VESA SIGNATURE.w

e9Exit

es: [di) .VGA INFO_BLOCK.VESA_SIGNATUR.word(2]
eeExit

di.es: [di] .VGA_INFO_BLOCK.VIDEO_MODE_PTR

di

ax, offset VESA 16 MODES

VESA_CAPABILITY

C

C

rland supplied drivers and fonts (derived from BGI files).

procedure VESA16_DRIVER,

procedure EGAVGA_DRIVER;

procedure TRIP_FONT_PROC

procedure SIMP_FONT_PROC

procedure B0LD_FONT_PR0C

procedure LITT FONT PROC

(..... .............

begin [*
GRAPHICS

C Register Font;

TRIPLEX FONT

SIMPLEX_FONT

BOLD_FONT

SMALL_FONT

end.
{*

GRAPHICS

(*
BINOBJ VESA16.BGI VESA16.0BJ VESA16_DRIVER

external; (*SL BINARYWESA16.0BJ
(*

BINOBJ EGAVGA.BGI EGAVGA.OBJ EGAVGA_DRIVER

external; (*$L BINARYVEGAVGA.OBJ
(*

BINOBJ TRIP. CHR TRIP.OBJ TRIP_FONT_PROC

external; (*$L BINARYXTRIP.OBJ
(*

BINOBJ SIMP. CHR SIMP. OBJ SIMP_FONT_PROC

external; C5L BINARY\SIMP.OBJ
(*

BINOBJ BOLD. CHR BOLD.OBJ BOLD_FONT_PROC

external; (*SL BINARY\BOLD.OBJ
(*

BINOBJ SANS.CHR SANS . OBJ LITT_FONT_PROC

external; (*$L BINARY\LITT.OBJ

*)
=
registerbgifont (0TRIP_FONT_PROC)

=
registerbgifont (9SIMP_FONT_PROC)

= registerbgifont (9BOLD FONT_PROC)
registerbgifont (9LITT_FONT_PROC)

M

10.6 BMP UTIL.PAS

This unit allows portions of the graphic screen to be saved

rritten from Windows v3.1 compatible 16 color, Bit-Map (BMP) file:

Compiler Opti< (Ver 7.0)

CSL+

(*

C$F-

C$1-

[*$N-

C$0-

CSP-

C$Q-

C$P-

C5S-

C$V-

(*$T*

(*$X+

(*****

Word Alignment

Short Circuit Boole.

Debug Code Generate

Requires /V option

Local Debug symbols

Requires /V option

Far calls only as n>

I/O Checking OFF

Software Emulation of B0xB7

Overlays NOT allowed

Standard
' string'

parameter.

Overflow Checking OFF

Range Checking OFF

Stack Checking OFF

Var-string Checking OFF

Force Typed
'9'

references

Enable Extended syntax

<n Evaluation

n ON (Sort of)

to BPC to activate

ON (Sort of)

to BPC to activate

:eded

.nterface

.rocedure DISPLAY_16_C0L0R_BMP_FILE_AS_IMAGE

(FILENAME : string; X, Y : integer);

C This routine reads the BMP file (must be 16 color}
(*
the screen (viewport releative) .

and displays it on
*

procedure SAVE_IMAGE_AS_1 6_C0L0R_BMP_FILE

(FILENAME : string; UL_X, UL_Y, LR_X, LRJf : integer);

This routine takes the pixels o.

olor) from them (viewport
relati'

the screen and create BMP file (16

type

Windows Bit Map File (BMP) header

BIT_MAP_FILE_HEADER = record

(*
File type must be 0x4D42 I'BM' for Bit Map).

FILE TYPE

ries, ignored when read, written 0.

SIZE : longint;

C Offset within file to beginning of bit map.

( Windows Bit Map (BMP) header

BIT MAP HEADER = record

WIDTH : longint;

HEIGHT : longint;

C Must be 1 for windows bit maps. *

NUMBER_OF_BIT_PLANES : integer ;

C Indicates color depth, allowable alues: 1, 4 or B.

NUMBERJDF_BITS_PER_PLANE : integer;

Size of this structure.

IZE : longint;

Width of imag'

Height of image fin pixels), origin is lower left corner,
* image origin is upper left corner then this value is negat:

Zero for no compression.

C0MPRESSI0N_SCHEME : longint;

Number of bytes the image data consumes, normally 0 if there

no compression. The size is them computed from width, height .

color depth.

IZE_OF_IMAGE_DATA : longint;

this is used to scale the image.

RESOLUTION : longint;

zero this is used to scale the image.

RESOLUTION : longint;

alid entries in the color table, 0 meal

NUMBER_OF_COLORS_USED : longint;

Defines the number of necessary entries in the color table,
means 'all of

them'
.

NUMBERJ3F_IMP0RTANT_C0LORS : longint ;

end;
(* BIT_MAP_HEADER *}

Windows color palette structu

lake it 32-bits long.

RGB - record

BLUE : byte

Red, Green, Blue and padding to

148



GREEN : byte;

RED : byte;

PADDING : byte;

end;
f*

RGB *)

The file being displayed.

(* The BMP color palette is

(
*
color images are supportec

stored in the BMP

this structure ca

file,
n be a fixed

i only
length.

16

COLORJTABLES - array(0. .15] o f RGB;

(*
Images are processed on

C to 1280 pixels wide to be

a per line

supported

basis,
(two pix

this a

els pe

Hows

r byte

images up

SCAN_LINES - arraytO. .639] of byte;

(* Borland and Microsoft have different color

C translation is done using this structure to create
look-

the cc

up table

lor *

COLORS - record

BMP : RGB;

VGA : word;

end;
{*

COLORS
*

TRANSLATE COLOR TO

nd/microsoft color translation look-up table.

rray[0..15] of COLORS -

(BMP (BLUE 0; GREEN 0; RED 0; PADDING 0), VGA f$0})

(BMP (BLUE 192; GREEN 0; RED 0; PADDING 0), VGA ($4) )

(BMP (BLUE 0; GREEN 192; RED 0; PADDING 0), VGA ($2))

(BMP (BLUE 192; GREEN 192; RED 0; PADDING 0), VGA (56))

(BMP (BLUE 0; GREEN 0; P.ED 192; PADDING 0), VGA (51))

(BMP (BLUE 192; GREEN 0; RED 192; PADDING 0) VGA (S5) )

(BMP (BLUE 0; GREEN 192; P.ED 192; PADDING 0) VGA ($3})

(BMP (BLUE 192; GREEN 192; RED 192; PADDING 0) VGA ($7))

(BMP (BLUE 128; GREEN 128; RED 128; PADDING 0} VGA (SB))

(BMP (BLUE 255; GREEN 0; RED 0; PADDING 0) VGA <$C)>

(BMP (BLUE 0; GREEN 255; RED 0; PADDING 0) VGA (SA))

(BMP (BLUE 255, GREEN 255; RED 0; PADDING 0) VGA <SE))

(BMP (BLUE 0, GREEN 0; RED 255; PADDING 0) VGA ($9))

(BMP (BLUE 255, GREEN 0, RED 255; PADDING 0) VGA ($D))

(BMP (BLUE 0, GREEN 255, RED 255; PADDING 0) VGA (SB))

(BMP (BLUE 255, GREEN 255, RED 255; PADDING U) VGA ($F))

procedure DISPLAY_16_COLOR_BMP_FILE_AS_IMAGE

(FILENAME : string; X, Y : integer);

(* This routine reads the BMP file

(*
the screen (viewport releative).

'"' be 16 ;olor) and displays it on
*

*

(* The file being displayed.

BMP : file;

(* BMP file data structures.

FILE_HEADER

BMP_HEADER

COLOR_DEPTH

COLOR TABLE

BIT MAP_FILE_HEADER;

B IT-MAP_HEADER ;

integer;

COLOR TABLES;

(*

Loop control variables to process lines and pixels.

LCV, PIXEL_LCV : integer;

(* Pixels are processed in lines.

SCAN_LINE : SCAN_LINES;

SCAN_LINE_SI2E : mteger;

PIXEL : word;

begin
(* DISPLAY_16_COLOR BMP_FILE_AS_IMAGE *)

assignfBMP, FILENAME);

CSI-*) reset (BMP, 1); (*$I+*1

[* Get headers *)

blockread(BMP, FILE_HEADER,

blockread(BMP, BMP_HEADER, :

(* Get color table *)

COLOR DEPTH : 1;

with BMP HEADER do

for LCV :- 1 to NUMBER_OF_BIT_PLANES
* NUMBER_OF_BITS_PER_PLANE do

COLOR_DEPTH := COLOR_DEPTH
*
2;

if COLOR_DEPTH - 16 then

begin

for LCV :- 0 to (COLOR_DEPTH
- 1 ) do

blockread(BMP, COLORJTABLE [LCV] ,
sizeof (RGB) } ;

(* Get pixel data *)

SCAN LINE_SIZE :- ( (BMP_HEADER.WIDTH + 3} div 4} 2;

seek(BMP, FILE HEADER.OFFSETJTO BITS);

for LCV :- 0 to BMPJ1EADER.HEIGHT-1 do

begin

blockreadfBMP, SCAN_LINE, SCAN_LINE_SIZE) ;

C Display this Line of pixels *)

for PIXEL_LCV : 0 to SCAN_LINE_SIZE-1 do

begin

PIXEL :- SCAN_LINE[PIXEL_LCV) shr 4;

putpixel

(

X + 2 * PIXEL_LCV,

Y + BMP_HEADER. HEIGHT
- LCV - 1,

PIXEL

(* BMP file data structures

FILE_HEADER : BIT_MAP_FILE_HEADER;

BMP_HEADER : BIT_MAP_HEADER;

COLOR_DEPTH :

COLOR TABLE : COLORJTABLES;

(*
Loop control variables to process lines and pi eels.

LCV, PIXEL_LCV : integer;

C Pixels are processed in lines.
*

SCAN_LINE : SCAN_LINES;

SCAN_LINE_SIZE : integer;

PIXEL_1, PIXEL_2 : word;

begin f SAVE_TMAGE_AS 16_COLOR BMP_FILE *)

assignfBMP, FILENAME!;

C$1-*} rewntefBMP, 1); (*$! + *}

*
Put headers *)

ath FILE_HEADER do

begin

FILEJTYPE

SIZE

X_HOT_SPOT

Y_HOT_S POT

OFFSET_TO_BITS

- sizeof (BIT_MAP_FILE_HEADER) ;

= 0;

- 0;

- sizeof (BIT_MAP_FILE_HEADER) +

sizeof (BITJMAP_HEADER) + 16
*

lzeof (BIT_MAP_FILE_HEADER) ) ;

with BMP_HEADER do

begin

SIZE

WIDTH

HEIGHT

NUMBER_OF BIT_PLANES

NUMBER_OF-BITS_PER_PLANE

COMPRESSION_SCHEME

SIZE_OF_LMAGE-DATA

X_RESOLUTION

Y RESOLUTION

NUMBER_OF_COLORS_USED

NUMBER_OF_IMPORTANT_COLORS

end;
f*
with. . .do *)

blockwritefBMP, BMP_HEADER, si;

= sizeof (BIT MAP HEADER);

- LR_X - UL X ? 1;
- LRJY - UtTy ? 1;

- If

- 0

of (BIT MAP_HEADER) ) ;

f Put color table *)

COLOR_DEPTH :- 16;

for LCV : 0 to COLOR_DEPTH-l do

blockwritefBMP, TRANSLATE_COLOR TO(LCV].BMP, of (RGB)) ;

(*
Put pixel data *)

SCAN_LINE SIZE :- ( (BMP_HEADER.WIDTH + 3) div 4}
* 2;

seek (BMP, -FILE_HEADER.OFFSET_TO_BITS);

for LCV :- 0 to BMP_HEADER.HEIGHT do

begin

(* Get pixels from screen into this Line *)

for PIXEL LCV :- 0 to SCAN_LINE SIZE-1 do

begin

PIXEL 1 := getpixel[2
*

PIXEL_LCV, BMP_HEADER.HEIGHT - LCV

PIXEL~2 := getpixel(2
* PIXEL_LCV + 1, BMP_HEADER. HEIGHT - LCV

SCAN_LINE[PIXEL_LCV] :- (PIXEL_1 shl 4} or <PIXEL_2 and SF);

end; C for . . . to. . .do *)

blockwrite (BMP, SCAN_LINE, SCAN_LINE_SIZE) ;

end;
(* for. . .to. . .do

*

)

close(BMP) ;

end;
(* SAVE_IMAGE_AS_16_COLOR_BMP_FILE *)

D;

PIXEL :- SCAN_LINE[PIXEL_LCV] and $F;

putpixel

I
X + 2 * PIXEL_LCV + 1,

Y + BMP_HEADER. HEIGHT
- LCV - 1,

PIXEL

);

end;
{* for. . .to. . -do *)

end;
{* for . . . to. . . do *)

end;
(* if - -then *)

close (BMP} ;

end;
(* DISPLAY_16_COLOR_BMP_FILE_AS-IMAGE *}

procedure VE_IMAGB M^lfi.MWR.W.FlLB^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

(FILENAME : string; UL_X, UL_Y, LR_X, LRJY : integer) ;

C This routine takes the pixels on the screen and creates a BMP file (16 )

(
color) from them (viewport^relatiVe|.

^ .............I!

149



10.7 MS MOUSE.PAS
unit MS_MOUSE;

C This unit provides access to a Microsoft Mouse Driver for
C graphics mode Turbo Pascal application.

C5A+

CSB-

CSD-f

CSF-

CSI-

CSN-

CSO-

CSR-

CSS-

CSV-

Compiler Options (Ver. 7,0}
Word Alignment

Short Circuit Boolean Evaluation

Debug Code Generation ON (Sort of)
Requires /V option to TPC to activa

Local Debug symbols ON (Sort of}
Requires /V option to TPC to activa'

Far calls only as needed

I/O Checking OFF

Software Emulation of 80x87

Overlays NOT allowed

Range Checking OFF

Stack Checking OFF

Var-string Checking OFF

This code is very sensitive to compiler options, i.e. the event

handler won't work if checks which change code at the entry poim

of a routine are added ($S, 5V) .

MOUSE INSTALLED

This type is used to allow communicatii

mouse handler and the mouse driver.

i between the application

MOUSE_PARAMETERS

(*
Indicates why the application was activated. See allowable

(*
events defined below. Note that it is possible for more than i

(*
event to be active at the same time.

ACTIVITY MASK

status of both mouse buttons at the time of activation.

BUTTON STATES

relative to upper

VERTICAL_TEXT_POSITION, HORIZONTAL_TEXT_POSITION : word;

(* Absolute screen position of the mouse cursor, relative to

C left corner which is at (0, 0).

The procedure used to handle the mouse events must be declared of

this type. Note that the actual procedure declared must be 'far'.

HANDLER_PROC - procedure { PARAMS : MOUSE_PARAMETERS ) ;

Maximum values fo use mickey positi

var MAX_HORIZONTAL_MICKEY_POSITI0N, MAXJVERTICAL_MICKEY_POSITION : integer;

procedure GET_MOUSE_CURSOR_POSITION (var HORIZONTAL, VERTICAL : word);

procedure SET_MOUSE_CURSOR_POSITION ( HORIZONTAL, VERTICAL : word);

(*
These procedures manipulate the MS Mouse cursor on the text mode video

*

c screen MS Mouse cursor positions are independent of the keyboard cursor
*

c position bu1 are otherwise positioned similar Ly. The maximum vertical
*

c positi n is a function of the video mode selected.

c Horizontal >

c V >n
I*

e (1,1)
*

{. t

( i
I*

c

a

!;'

1

(80,25)
or

c v (80,43)

!; {B0, 50}

procedure SET HORIZONTAL CURSOR RANGE (MIN, MAX : word) ;

j. This rout ine restricts the mouse to movement within a column of the text
*

( screen When combined with row restrictions :hia can bo used to

C arbitrarily restrict mouse movement.

c Horizontal >

'

V
\-i

1 \ \
(.

e \ \ 1 (MIN.Any) l\ \
(.

r \ \l 1 \ \
(. t \ \ 1 (MAX, Any} l\ \

i

f c \ \ 1 l\ \
I* a \ \l 1 \ \

.

1 \ S 1 MS-Mouse movement i

\ \| restricted to the

J l\ \

1 \ \

'

v

\ \ 1
'column'

specified

\ \l

\ \ 1

\ \l

\ \ 1

\ \l

\ \ 1

\ \l

l\ \

1 \ \

l\ \

1 \ S

l\ \

1 \ \

l\ \

1 \ \

procedure SET_VERTICAL__CURSOR_RANGE (MIN, MAX : word);

This routine restricts the

screen. When combined with

arbitrarily restrict mou

:olumn restr

movement is restricted I

w'

specified.

\S\\\\\\\\\\\\\\\\\

SHOW MOUSE CURSOR;

If the cursor is off then this routine turns the mouse cursor

the cursor is on then it becomes 'more on', i.e. the number of

it was turned on is retained such that the same number of 'off

must be issued before the cursor will actually disappear.

procedure HIDE_MOUSE_CURSOR;

commands

irsor is on then this routine turns the mouse cursor

is off then it becomes 'more off1, i.e. the number

,s turned off is retained such that the same number <

lust be issued before the cursor will actually appeal

The following events can

mouse (and hence this uni

buttons (left and right).

be handled by a Microsoft compatible

:). Note that the MS Mouse has only two

CURSOR_MOVEMENT

LEFT_BUTTON_PRES3ED

LEFT_BUTTON_RELEASED

LEFT_BUTTON_ACTIVITY

RIGHT_BUTTON_PRESSED

RIGHT BUTTON RELEASED

- $01;
- $02;
- $04;
- LEFT BUTTON_PRESSED <

-

SOB;-

$10;

LEFT BUTTON RELEASED;

RIGHT_BUTTON_ACTIVITY - RIGHT_BUTTON_PRSSED or RIGHT_BUTTON_RLEASED;

BUTTON_PRESSED - LEFT_BUTTON_PRESSED or RIGHT_BUTTON_PRESSED;
BUTTON_RLEASED - LEFT_BUTTON_RELEASED or RIGHT_BUTTON_RELEASED;
BUTTON_ACTIVITY - LEFT_BUTTON_ACTIVITY or RIGHT_BUTTON_ACTTVITY;

ANY_ACTTVITY - CURSOR_MOVEMENT or BUTTON_ACTIVITY;

procedure PUSH_MOUSE_EVENT_HANDLER (MASK : word; HANDLER : HANDLER PROC);

*
This routine establishes the mouse activities which will cause the user

*
application handler to be called. The user application should consider

*
the mouse handler call to be an interrupt in so far as not returning from

*
the handler call will cause system interrupts to be disabled and may

*
result in erratic system behavior. The best approach to mouse activity

*

handling is for the mouse handler to manipulate global data structures
*
and for the application to periodically check the structure in order to

*
take appropriate action.

*
The activity mask bits are defined as follows (see above definitions}:

procedure POP_MOUSE_EVENT_HANDLER;

7 6 5 4 3 2 10

- Cursor Movement

Left button pressed

- Left button released

' Right button pressed

Right button released

Unused (Must be Zero}

NOTE: Using the handler 'push'
concept for more than a single installati-

requires that the application provide adequate heap-space (each

mouse handler push requires -10 bytes of heap) .

This routine restores a previously installed handler and activity mask,
the present handler is removed. This is useful for layered applications

where mouse actions are different based on entry/exit of procedures or

displaying of windows (i.e. handler must change as windows are brought to
to foreground) .

function LEFT BUTTON HELD : boolean;

(*
This routine merely returns the status of the left mo

(*
the button is pressed and false otherwise.

se button, true if *

function RIGHT BUTTON HELD : boolean;

(*
This routine merely returns the status of the right mt

(* if the button is pressed and false otherwise.

use button, true *

procedure DISABLE_MOUSE_DRIVER;

This routine shuts down the mouse driver

reported and status will not be available

edure ENABLE_MOUSE_DRIVER;

that events will not be

that events will be reported

procedure RESET_MOUSEJ)RTVER ;

routine causes all mouse driver par.

s. This includes activity mask and ]

const

(*
The following c

(* the mouse cursor

C given time using

instants are used to control

Only one from each group c

SET/CLEAR CURSOR SCREEN BITS

the ch

an be

aracteristics

specified at

ions.

of

any

(* Controls mouse cursor blinking.

BLINK__MOUSE - $80,"

Controls mouse cursor background <

standard text/background colors) .

i manner similar to

150



(.................,.,

BACKGROUND BLACK

BACKGROUND-BLUE
BACKGROUND_GREN
BACKGROUND_CYAN
BACKGROUND_RED

BACKGROUND_MAGENTA
BACKGROUND BROWN

BACKGROUNDJLIGHT GRAY

- $00;
- $10;
- 520;
- 530;
- $40;
- $50;
- 560;
= S70;

Controls mouse cursor foreground i

standard text /background colors).(

C

foreground
foreground-

foreground"

foreground"

foreground"

foreground"

foreground"

foreground'

foreground"

foreground"

foreground"

foreground"

foreground"

foreground"

foreground"

foreground"

>lor (in a manner

BLACK

BLUE

"green
"cyan
RED

MAGENTA

BROWN

"light_gray
dark_gray

light_blue

light_green

light_cyan

^light_red
"light-magenta
"yellow
WHITE

S00;

$01;

$02;

$03;

$04;

$05;

$06;

$07;

508;

$09;

$0A;

50B;

50C;

S0D;

SOE;

SOF;

procedure SET_CURSOR_SCREEN_BITS (SCREN_BITS : byte);

Causes the specified attribute (s) of the i

all unspecified attributes remain the same

i cursor to become active,

cedure CLEAR_CURSOR_SCREN_BITS (SCREEN_BITS : byte) ;

Causes the specified attribute(s) of

all unspecified attributes remain the

rsor to become don

procedure SET_CURSOR_CHARACTER (CURSOR : char);

Changes the mouse cursor to the specified character, if the character

requested is the null character, i.e., chr(O), then the default mouse

cursor is used. The default mouse cursor is the character which is
beneath the cursor.

GRAPH IC_CURSOR - record

IMAGE-: array (1..32] of word;

X_HOT, Y_HOT : word;

end;
(*

GRAPHIC CURSOR *)

i the shape of a check i

CHECK MARK CURSOR : GRAPHIC CURSOR -

IMAGE :

5FFF0, SFFE0, $FFC0, $FF81,
SFF03, $0607, S000F, S001F,
SC03F, SF07F, SFFFF, SFFFF,

SFFFF, SFFFF, SFFFF, $FFFF,
SOOOO, $0006, $O00C, $0018,

$0030, $0060, $70C0, $1D60,

$0700, $0000, $0000, SOOOO,

$0000, $0000, $0000, $0000

X HOT : 6;

Y HOT : 7

Cursor in the shape of an arrow pointing left.

LEFT ARROW CURSOR : GRAPHIC CURSOR

(

$FE1F, $F01F, $0000, $0000, ( scree:

SOOOO, SF01F, $FE1F, SFFFF,

SFFFF, SFFFF, SFFFF, SFFFF,

SFFFF, SFFFF, SFFFF, $FFFF,

SOOOO, S0OCO, S07C0, $7FFE, ( curso.

S07CO, S0OCO, 50000, $0000,

SOOOO, SOOOO, 50000, $0000,

SOOOO, SOOOO, 50000, $0000

(*
Cursor in the shape of an 'I'-Beam (for text editing).

I_BEAM_CURSOR : GRAPHIC_CURSOR -

SFFFF, 5FFFF, SFFFF, SFFFF,
SFFFF, 5FFFF, SFFFF, SFFFF,
SFFFF, $FFFF, $FFFF, SFFFF,
SFFFF, SFFFF, SFFFF, SFFFF,
SFOOF, $0C3O, S0240, 50240, (
$0180, $0180, S0180, 50180,
$0180, S0180, S0180, soieo.
$0240, 50240, 50C30, SFOOF

X HOT : 7

Y HOT : 7

procedure SET_GRAPHIC_CURSOR(var CURSOR : GRAPHIC_CURSOR)
,-

Causes the specified graphic cursor to be used for display. The video

mode must be graphics
*before*

the mouse is reset for the graphic cursor

to be visible.

implementation

const MOUSE_SERVICE_NUMBER - $33;

(*
Mouse functions, always passed

MOUSE_RESET_AND STATUS

SHOW_CURSOR - $01

HIDE_CURSOR - 502

GET_BUTTON_STATUS_AND_POSITION = 503

SET_CURSOR_POSITION - 504

GET_BUTTON_PRESS_INFORMATION - 505

GET_BUTTON_RELEASE INFORMATION = S06

SET-MIN_MAX_HORIZONTAL_POSITION - 507

SET_MIN_MAX_VERTICAL_POSITION - 508

SET GRAPH ICS_CURSOR_BLOCK - 509

SET~TEXT_CURSOR - $0A,

READ_MOTION_COUNTERS - SOB

SET_CALL_MASK AND_ADDRSS - 50C

SBT_LIGHT PEN-EMULATION_ON - $0D,

set_light_pen_emulationjdff - $0E,
SET_MICKEY_TO PIXEL RATIO - SOF

CONDITIONAL_OFF - 510

SET_DOUBLE_SPEED THRESHOLD - 513

SWAP_INTERRUPT_SUBROUTINES - 514

GET_DRIVER_STATE_STORAGE RQMTS - $15

SAVE_DRIVER STATE - $16

RESTOR_DRTVER_STATE - $17

SET_ALT_CALL_MASK AND_ADDRESS = SIB

GET_USER_ALT_INTERRUPT_ADDRRESS - S19

SET_SENSITIVITY - S1A,

GET_SENSITIVITY - $1B.

SET_INTERRUPT_RATE - $1C

SET_CRT_PAGE NUMBER - 51D

GET_CRT_PAGE~NUMBER - 51E

DISABLE_DRTVER - $1F

ENABLE_DRIVER - 520

SOFTWARE_RESET - $21

SET_LANGUAGE_FOR_MESSAGES - $22

GET-LANGUAGE_NUMBER - $23

GET DRIVER_VER_TYPE_AND_IRQ__NUM - S24

GET-GENERAL_DRIVER_ INFORMATION - 525

GET-MAXIMUM VIRTUAL_COORDINATES - 526

GET_CURSOR MASKS AND_MICKEY_CNTS - 527

SET_VIDEO_MODE
-

- 528

ENUMERATE_VIDEO_MODES - $29

GET_CURSOR_HOTSPOT - $30

LOAD ACCELERATION_CURVES - S31

READ-ACCELERATION CURVES - $32

SET GET ACCELERATION_CURVES - S33

MOUSE_HARDWARE RESET - 535

ST_GET_BALLPOINT_INFORMATION - 536

GET~MIN-MAX VIRTUAL_COORDINATES - 537

GET_ACTTVE_ADVANCED_FUNCTIONS - S3B

GET_SWITCH_SETTINGS - $39

GET_MOUSE_INI_LOCATION - S40

(
Address of exit procedure for previous member of exit chain.

(..............*..........*.................

var MOUSE_SAVE_EXIT : pointer;

procedure GET_MOUSE__CURSOR_POSITION(var HORIZONTAL, VERTICAL : word);

This routine merely asks the mouse driver what the current cursor

coordinates are are returns those values to the caller.

NOTE: An installed MS-Mouse driver is assumed.

Cursor in the shape of a
cros.'

CROSS CURSOR : GRAPHIC CURSOR -

SFC3F, SFC3F, 5FC3F, 50000,

$0000, $0000, SFC3F, SFC3F,

$FC3F, $FFFF, SFFFF, SFFFF,

SFFFF, SFFFF, SFFFF, SFFFF,

SOOOO, $0180, $0180, $0180,

$7FFE, SO1B0, S018D,

SOOOO, 50000, $0000,

50000, SOOOO, 50000,

50180,

SOOOO,
SOOOO

( cursor mask )

the shape of a hand with a pointing finger.

POINT ING_HAND_CURSOR : GRAPHIC_CURSOR <

I
$E1FF, 5E1FF,

$E1FF, 5E0O0,

$0000, $0000,

$0000, $0000,

51EO0, $1200,

SE1FF, SB1FF,

5E000, SEO0O,
50000, $0000,
$0000, $0000,
$1200, $1200,

51200, 513FF, S1249, S1249,

51249, 59001, 59001, 59001,

58001, 58001, 58001, SFFFF

REGS registers;

lin
(*

GET_MOUSE_CURSOR_POSITION *)

Parameter (s) Return Values

AX GET_BUTTON_STATUS_AND POSITION

BX Button Status

O-Button up

1-Button held down

Bit 0 used for left button

Bit 1 used for right button

CX Horizontal position (mickeys)

DX Vertical position (mickeys)

with REGS do

AX :- GET_BUTTON_STATUS_AND_POSITION;

CX :- 0;

DX :- 0;
intr(MOUSE SERVICE_NUMBER, REGS};
HORIZONTAL-:- CX shr 3;

VERTICAL :- DX shr 3;

end;
(*
with. . .do *)

end; C GET_MOUSE_CURSOR_POSITION *)

procedure SET_MOUSE_CURSOR_POSITION(HORIZONTAL, VERTICAL : word);

var REGS : registers;

begin
(*

SET_M0USE_CUR50R_P0SITI0N

Return Values

AX SET CURSOR POSITION

151



CX Horizontal position (mickeys)

DX Vertical position (mickeys)
c

c

with REGS do

begin

AX :=

3ET_CURS0R_P0SITI0N;
BX :- HORIZONTAL shl 3;
DX := VERTICAL shl 3;

end;
(
with. . .do *)

intr{MOUSE_SERVICE_NUMBER, REGS},-

nd; (*
SET_MOUSE_CURSOR POSITION *

P^dure SET_HORIZONTAL_CURSOR_RANGE{MIN, MAX : word);

1 Sets the limit on the mouse movement in the horizontal direction.
C NOTE: An installed MS-Mouse driver is assumed.

var REGS . registers;

begin (*
SET_HORIZONTAL_CURSOR_RANGE *)

c Parameter (s) Return Values

(*
AX SET_MIN_MAX_HORIZONTAL POSITION

{*

c

CX Minimum horizontal position

(mickeys)

1:
c

DX Maximum horizontal position

(mickeys)

(*
NOTE: if minimum is greater than maximum then the values are swap

with REGS do

begin

SET_MIN_MAX_HORIZ0NTAL_P0SITION;
MIN shl 3-1;
MAX shl 3-1;

end;
{*
with. . .do *)

intr (MOUSE_SERVICE_NUMBER, REGS)
,-

end;
(*

SET_HORIZONTAL_CURSOR_RANGE *)

procedure SET_VERTICAL_CURSOR_RANGE (MIN, MAX : word);

1*
Sets the limit on the mouse movement in the vertical direction.

(*
NOTE: An installed MS-Mouse driver is assumed.

var REGS registers;

begin {*

5ETJ/ERTICAL_CURSOR_RANGE *)

Parameterfs) Retu cn Values

* AX SET_MIN_MAXJVERTICAL POSITION

*
CX Minimum vertical position

(mickeys)

:
DX Maximum vertical position

(mickeys)(

(
(*

NOTE: if minimum is greater than maximum then

with REGS do

begin

AX := SET_MIN_MAX_VERTICAL_POSITION;

CX :- MIN shl-3
- 1;

DX :- MAX shl 3-1;

end;
(*
with. . .do *)

intr (MOUSE_SERVICE_NUMBER, REGS ) ;

end;
(*

SET_VERTICAL_CURSOR_RANGE *)

procedure SHOW_MOUSE_CURSOR;

var REGS : registers;

begin C SHOW_MOUSE_CURSOR *)

Parameter (s) Return Values

AX SHOW CURSOR

REGS. AX := SHOWJCURSOR;

intr (MOUSE SERVICE_NUMBER, REGS);

end; C show_mouse_cursor *)

procedure HIDE_MOUSE_CURSOR;

is assumed.

var REGS registers;

begin (* HIDE_MOUSE_CURSOR *}

AX HIDE CURSOR

Return Values

REGS. AX :- HIDE_CURSOR;

intr (MOUSE_SERVICE_NUMBER, REGS);
end," (* HIDE_MOUSE_CURSOR )

These declarations ensure that the user application won't crash if the

mouse is enabled before the application has installed a handler. And

allow handlers to be pushed/popped to accommodate layered applications.

procedure NULL_MOUSE_KANDLER(PARAMS : MOUSE_PARAMETERS) ; far;

begin
(* No Op *) end;

type HANDLER_NODE_PTR -
"

HANDLER_NODE;

HANDLER_NODE - record

HANDLER : HANDLER_PROC;

MASK : word;

NEXT : HANDLER_NODE_PTR;

end; C HANDLER_NODE *)

const DEFAULT_HANDLER : HANDLER_NODE -

HANDLER

MASK

NEXT

NULL_MOUSE_HANDLER ;

0000;

nil

DEFAULT_HANDLER *)

TOP_OF_HANDLER_STACK : HANDLER_N0DE_PTR - 8DEFAULT_HANDLER;

procedure GENERIC_MOUSE_EVENT_HANDLER; far;

This routine i

Pascal application.

i installed to interface the Mouse Driver call to t!
The Pascal handler must be defined to be of type

ailed MS-Mouse driver is .

var PARAMS : MOUSE_PARAMETERS;
MAXJX, MAX_Y : integer;

begin (*
GENERIC_MOUSE_EVENT_HANDLER *)

"
NOTE: Subroutine is passed information as follows:

AX Mask with condition bitfs} set that triggered call

BX Button State

0-But ton up
1 -But ton held down

Bit 0 used for left button
Bit 1 used for right button

CX Horizontal cursor position (mickeys}

DX Vertical cursor position (mickeys)

SI Horizontal mouse counts since last reset (mickeys)

DI Vertical mouse counts since last reset (mickeys)

(*
Move mouse parameters from registers into variable *)

mov PARAMS
.ACTTVITY_MASK, ax

mov PARAMS . BUTTON_STATES, bx
mov PARAMS.HORIZONTAL_MICKEY_POSITION, ex
mov PARAMS.VERTICAL_MICKEY_POSITI0N,dx

C Convert CX from mickeys-to character cursor coordinates

mov bx, ex
mov ex, 3

shr bx, cl

mov PARAMS . H0RIZONTAL_TEXT_P0SITI0N, bx
C Convert DX from mickeys to character cursor

shr dx.cl

inc dx

mov PARAMS.VERTICAL_TEXT_POSITION,dx
[*

Save Mouse Driver's registers *)
push es

push ds

C Setup application data segment *}
mov ax, seg @DATA

mov ds,ax

coordinates

1*
Restore Mouse Driver's registers

'

end;
(*

asm *)

end;
(*

GENERIC_MOUSE_EVENT_HANDLER *)

procedure PUSH_MOUSE_EVENT_HANDLER(MASK :

Must be called to install the appl

before the application can receive events.

NOTE: An installed MS-Mouse driver is assumed

-

TEMP_PTR : HANDLER_NODE_PTR;

REGS : registers;

rd; HANDLER : HANDLER_PROC ) ;

ation mouse handler procedur

iegin
f*

PUSH_MOUSE_EVENT_HANDLER *)
if

@TOP_OF_HANDLER_STACK-
. HANDLER <> 9NULL MOUSE HANDLER then

begin

new(TEMP_PTR);

TEMP_PTR".NEXT :- TOP_OF_HANDLER_STACK;
TOP_OF_HANDLER_STACK := TEMP_PTR;

end; {
* if . . . then

*

)
TOP_OF_HANDLER_STACK~. HANDLER :- HANDLER;

TOP_OF_HANDLER_STACK".MASK := MASK;

Parameterfs) Return Values

AX SET_CALL_MASK_AND_ADDRESS

CX Call mask

Bit O-Cursor position changes

Bit l=Left button pressed

Bit 2=Right button pressed

Bit 3=Left button released

Bit 4=Right button released

Bit 5-15Unused

DX Offset of subroutine

ES Segment of subroutine

with REGS do

begin

AX := SET_CALL_MASK_AND_ADDRESS ;

CX :- MASK;

DX :- ofs(GENERICJMOUSE_EVENT HANDLER);

ES :- seg(GENERIC MOUSE_EVENT-HANDLER) ;

end;
{*
with. . .do *T

intr (MOUSE_SERVICE_NUMBER, REGS ) ;

end;
(.*

PUSH_MOUSE_EVENT_HANDLER *)

procedure POP_MOUSE_EVENT_HANDLER;

C

C This routine restores a previously installed handler and activity )

var TEMP_PTR : KANDLER_NODE_PTR;

MASK : word;

REGS : registers;

begin f POP_MOUSE_EVENT_HANDLER *)
TEMP_PTR :- TOP_OF_HANDLER_STACK".NEXT;

if TEMP_PTR - nil

then

begin
TOP_OF_HANDLER_STACK"

.HANDLER

TOP_OF_HANDLER_STACK"

.MASK

end
(* if. ..then *)

else

begin

dispose (TOP_OF_HANDLER_STACK) ;
TOP_OF_HANDLER_STACK :- TEMP_PTR;

end;
{* if .. .then. . .else *}

Parameter (s) Return Values

AX SET_CALL_MASK_AND_ADDRESS

152



[CX Call mask

Bit 0=Cursor position changes

Bit 1-Left button pressed

Bit 2=Right button pressed

Bit 3-Left button released

Bit 4-Right button released

Bit 5-lS=Unu3ed

DX Offset of subroutine

ES Segment of subroutine

with REGS do

begin

AX :- SET_CALL_MA5K AND_ADDRESS ;

MASK;
'

ofs(GENERIC_MOUSE_EVENT_HANDLER) ;

seg(GENERIC_MOUSE_EVENT_HANDLER);

end;
(*
with. . .do *}

intr(MOUSE_SERVICE_NUMBER, REGS};

end;
(*

POP_MOUSE_EVENT_HANDLER *}

function LEFT_BUTTON_HELD : boolean;

begin (*
RESET_MOUSE_DRIVER *)

var REGS registers;

begin f LEFT_BUTTON_HELD }

Parameter (s) Return Values

AX GET_BUTTON_STATUS AND POSITION

BX Button Status

O^Button up

l=Button held down

Bit 0 used for left button

Bit 1 used for right button

CX Horizontal position (mickeys)

DX Vertical position (mickeys)

with REGS do

begin

AX := GET_BUTTON_STATUS_AND_POSITION;

BX := 0;

intr(MOUSE_SERVICE_NUMBER, REGS) ;

LEFT_BUTTON_HELD :- (BX and 501) - 501;

end;
(*
with. . .do *}

end;
(*

LEFT_BUTTON_HELD *)

unction RIGHT BUTTON HELD : boolean;

var REGS : registers;

begin (*
RIGHT_BUTTON_HELD *}

Parameter (s) Return Values

AX GET_BUTTON_STATUS_AND_POSITION

BX Button Status

0=Button up

l=Button held down

Bit 0 used for left button

Bit 1 used for right button

CX Horizontal position (mickeys)

DX Vertical position (mickeys)

with REGS do

AX := GET_BUTTON STATUS_AND_POSITION;

BX := 0;

intr(MOUSE_SERVICE_NUMBER, REGS);

RIGHT_BUTTON_HELD := (BX and S02) = $02;

end;
(*
with... do *)

end;
(* RIGHT_BUTTON_HELD *}

procedure DISABLE_MOUSE_DRIVER;

Simply disables mouse events by turning off the driver.

NOTE: An installed MS-Mouse driver is assumed.

var REGS : registers;

begin (*
DISABLEJMOUSE_DRIVER *)

Parameter (s) Return Values

l DISABLE_DRIVER Status

-1-Error occurred

BX Offset of old interrupt handler

(MOUSE_SERVICE_NUMBER)

\J Segment of old interrupt

handler (MOUSE_SERVICE_NUMBER)

REGS.AX := DISABLE_DRIVER;

intr (MOUSE_SERVICE_NUMBER, REGS) ;

end;
(* DISABLE_MOUSE_DRIVER *}

procedure ENABLE_MOUSE_DRIVER;

var REGS : registers;

begin
(* ENABLE_MOUSE_DRIVER *)

AX ENABLE_DRTVER

REGS. AX :- ENABLEJDRIVER;

intrfMOUSE SERVICE_NUMBER, REGS);

end; C DRIVER )

procedure RESET_MOUSE DRIVER;

ariables to initialized state.

mouse driver is installed or not.

REGS : registers;

Parameterfs) Return Values

AX SET_SENSITIVITY

BX Horizontal mickey sensitivity

CX Vertical mickey sensivity

DX Threshold for double speed

with REGS do

begin

' SET_SENSITTVITY;
> 200;

200;

DX

Parameterfs) Return Values

AX GET_MAXIMUMJVIRTUAL_COORDINATES

BX Mouse disabled flag
0=Enabled

-1-Disabled

CX Absolute virtual X maximum

DX absolute virtual Y maximum

with REGS do

begin

AX :- GET_MAXIMUM_VIRTUAL_COORDINATES;

intr[MOUSE_SERVICE_NUMBER, REGS) ;

MAX_HORIZ0NTAL_MICKEY_POSITION - CX;

MAX_VERTICAL_MICKEY_POSITION .= DX;

end;
(
with. . .do *)

Parameterfs) Return Values

t SOFTWARE_RESET Status

-1-Mouse driver installed,
SOFTWARE_RESET otherwise

BX 2 (if Status1)

with REGS do

begin

AX :- SOFTWARE_RESET ;

intr (MOUSE_SERVICE_NUMBER, REGS) ;

MOUSE_INSTALLED := (AX - SFFFF} and (BX - 2);

end; (
*
with. . .do *}

end;
[*

RESET_M0USE_DRIVER *)

rocedure GET_SCREEN_AND_CURSOR_MASKS fvar SCREEN_MASK, CURSOR MASK

This routine :

used to modify the

with SET_SCREEH_AND_CURSOR_MASKS ,

iven in the following tables.

Screen Mask Cursor Ma3k Screen Bit

0 0 0

0 1 1

1 0 Unchanged

1 1 Inverted

Bit Number Description Comments

15 Blink Ctrl 1-Blink

14-12 Background Color

11 intensity 1-High

10-8 Foreground Color

7-0 Character ASCII

NOTE: Not

var REGS : registers;

begin C GET_SCREEN_AND_CURSOR_MASK5
'

Parameter (s) Return Values

h GET CURSOR MASKS AND MICKEY CNTS Screen mask value (or sea

start)

line

BX Cursor mask value (or sea

stop)

line

CX Raw horizontal mickey com t

DX Raw vertical mickey count

with REGS do

AX :- GET_CURSOR_MASKS_AND_MICKEY_CNTS;

intr (MOUSE_SERVICE NUMBER, REGS);

SCREN_MASK :-

CURSOR_MASK :- BX;

end;
f*
with... do *)

end; C GET_SCREEN_AND_CURSOR_MASKS *)

rocedure SET_SCREEN_AND_CURSOR_MASKS (SCREN_MASK, CURSOR_MASK :

This routine in conjunction with GET_SCREN_AND_CURSOR_MASKS are

*
used to modify the mouse cursor given in the following tables.

Screen Mask Cursor Mask Screen Bit

0 0 0

0 1 1

1 0 Unchanged

1 1 Inverted

NOTE: Not a < allable procedure.

var REGS registers;

begin
(*

SET SCREEN_AND_CURSOR_MASKS *)

Parameter (s) Return Values

AX SET TEXT_CURSOR

BX Cursor Type

0-Software Cursor

1-Hardware Cusror

Bit Number Description Comments

15 Blink Ctrl 1 -Blink

14-12 Background Color

11 Intensity 1-High

10-8 Foreground Color

7-0 Character ASCII

153



;:mScreen mask-Software cursi

Scan line start-Hardware i

with REGS do

begin
'

SET_TEXT_CURSOR;
BX

CX

1 0;
'

SCREEN_MASK;
DX :-

CURSOR_MASK;
end;

(*

with. . .do *)

intr{MOUSE_SERVICE_NUMBER, REGS ) ;
end;

(*

SET_SCREEN_AND_CURSOR_MASKS *)

P^dure SET_CURSOR_SCREEN_BITS{SCREEN_BITS : byte);

(*
Causes the specified attributefs) of the mouse cur

(*
all unspecified attributes remain the same.

var SCREEN_MASK, CURSOR_MASK, MASK : word;

begin (*

SET_CURSOR_SCREEN_BITS *]

GET_SCREEN_AND_CURSOR_MASKS(SCREEN_MASK, CURSOR MASK};

MASK :-
word(SCREEN_BITS shl 8);

SCREEN_MASK :- SCREEN_MASK and not MASK;
CURSOR_MASK := CURSOR_MASK or MASK;

SET_SCREN_AND_CURSOR MASKS (SCREEN_MASK, CURSOR MASK) ;
end;

(*
SET_CUPSOR_SCREEN_BITS *)

procedure CLEAR_CURSOR_SCREEN_BITS (SCREN_BITS : byte);

Causes the specified , ribute (s) of the ]

var SCREEN_MASK, CURSOR_MASK, MASK : word;

begin (*
CLEAR_CURSOR_SCREEN_BITS *)

GET_SCREEN_AND_CURSOR_MASKS (SCREEN_MASK, CURSOR_MASK) ;

MASK : word(SCREEN_BITS shl B);
SCREEN_MASK := SCREEN_MASK and not MASK;

CURSOR_MASK := CURSOR_MASK and not MASK;

SET_SCREEN_AND_CURSOR_MASKS(SCREENJMASK, CURSOR MASK);

end;
(*

CLEAR_CURSOR_SCREEN_BITS *)

procedure SET_CURSOR_CHARACTER (CURSOR : char);

Changes the mouse cursor to

requested is the null charact

cursor is used. The default

beneath the cursor.

:he specified character, if the characte

:z, i.e., chr(0), then the default mouse

louse cursor is the inverse of the charai

var SCREEN_MASK, CURSOR_MASK : word;

begin C SET_CURSOR_CHARACTER *)

GET_SCREEN_AND_CURSOR_MASKS (SCREEN_MASK, CURSOR_MASK) ;

if CURSOR - chr (255}

then

begin

SCREEN_MASK : - SCREEN_MASK or SOOFF;

CURSOR_MASK :- CURSOR_MASK and SFFOO;

end
(* if . . .then *)

else

SCREEN MASK := SCREEN_MASK and SFFOO;

CURSOR-MASK := (CURSOR_MASK and SFFOO) or ordfCU

end;
{*
if .. .then. . .else *)

procedure SET_GRAPHIC_CURSORfvar CURSOR : GRAPHIC_CURSOR) ;

Changes the grphics mode <

var REGS : registers;

begin (* SET_GRAPHIC_CURSOR

Parameterfs) Return Values

AX SET_GRAPHICS_CURSOR_BLOCK

BX Horizontal hotspot [-128 D 127)

CX Vertical hotspot {-128 D 127)

DX Offset of pointer to screen and

cursor masks

H Segment of pointer to screen and

cursor masks

with REGS do

- SET_GRAPHICS_CURS0R_BLOCK;

- seg (CURSOR. IMAGE);

- Of3 (CURSOR. IMAGE);
- CURSOR. X HOT;

- CURSOR. Y~H0T;

<ith. .do *}

procedure MOUSE_EXIT; fa

f* This exit procedure is chained into the exit code so that the

(* driver can be restored to its original state.

begin
(* MOUSE_EXIT *)

exitproc :- MOUSE_SAVE_EXIT;

begin
(* Initialization *)

MOUSE_SAVE_EXIT :- exitpr.

exitproc :- eMOUSE_EXIT;

RESET MOUSE_DRTVER;

end. (*-MS-Mouse Unit *|

154



Evolution of Solutions to Real-Time Problems

by

Greg P. Semeraro

A Thesis Submitted

in

Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in

Computer Engineering
April 1997

i i

ROCHESTER INSTITUTE OF TECHNOLOGY


	Evolution of solutions to real-time problems
	Recommended Citation


