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Abstract

The remote sensing community is constantly pushing technology forward to achieve bet-
ter system performance, this is often done by improving signal-to-noise ratio and spatial and
spectral resolution. However, improving one design parameter (such as spatial resolution)
could detract from another (such as signal-to-noise). A flexible imaging system simulation
tool capable of modeling the effects of changes in system parameters would be a great asset
to design engineers. In words, this tool would manipulate a “perfect” image and produce an
output image identical to one physically created by the imaging system. Having such a tool
available would make it possible to fully understand a design’s potential. In addition, this
tool can be used to understand the importance of changes in system parameters.

Modern space based remote sensing systems are taking on new forms using sparse and
segmented apertures with lightweight mirrors. The driving force for this is that systems are
constrained by the size and weight tolerances of the launch vehicles. The new designs come
with new problems, many of which are related to the geometry and aberrations of the aperture.
The tool developed in this effort will be able to examine the effects of different amounts and
types of aperture aberrations.

The task is to build an imaging system simulation tool, based on linear systems and stan-
dard radiometry, capable of accurately displaying the performance of a plausible design.
Using this tool, several designs will be tested using image quality analysis and image utility.
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Image quality/utility will be determined using three techniques. The first is an image quality
prediction technique called the Generalized Image Quality Equation (GIQE) which relates
system characteristics to the National Imagery Interpretability Rating Scale (NIIRS). How-
ever, due to the unusual aperture geometry of the sparse aperture systems Fiete et al. (2002)
showed that the GIQE is unable to accurately predict image quality. The other two approaches
are therefore somewhat unorthodox. These approaches do not actually define an image qual-
ity but allow systems to be ranked by their performance in a test of motion detection and
a test of spatial target detection. A multispectral motion detection algorithm developed and
implemented by Adams (2008) combined with motion truth show a given imaging system’s
ability to track motion. A similar experimental design is evaluated using the spatial target
detection algorithm.

The tests reveal how changes in parameters such as GSD; SNR; spectral band selection;
piston, tip, and tilt aberrations; and light weight optic aberrations affect a system’s NIIR’s
estimate, ability to detect motion, or ability to detect objects.
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Chapter 1

Introduction

Terrestrial remote sensing allows analysts to view areas of Earth that may be inaccessible.
There are many forms of terrestrial remote sensing and as one might imagine certain remote
sensing systems are better suited for a given application than others. It is important to note
that remote sensing is a diverse field and these systems are complex enough that it is nearly
impossible for a systems design engineer to have a complete understanding of a system’s
capabilities before it is fielded. However, modern scene simulation techniques combined
with accurate sensor and optics information can be used with a linear systems approach to
give an engineer an accurate estimate of a system’s capabilities. This research demonstrates
how a system can be modeled and how an engineer can use the model to evaluate a system’s
performance and capabilities.

In this field, there is a constant force driving technology to produce higher spatial and
spectral resolution imagery with better signal to noise ratios (SNR). In addition to this, the
community has become interested in systems that would be capable of acquiring imagery at
any time over a given expanse of land. To have this ability the space system must be located
in a geostationary orbit at an altitude of 35,786 km above the equator. But to have the desired
spatial resolution and SNR the systems must have a very large primary aperture.

There are some fundamental difficulties with putting a satellite in a geostationary orbit.
The two problems most commonly dealt with are the size and weight of the payload. A
spacecraft carried aboard a launch vehicle against the force of gravity for 35,786 km must

1



CHAPTER 1. INTRODUCTION 2

be as light as possible. It was mentioned that the primary aperture on the desired system
will have to be large. This means a traditional monolithic aperture space telescope cannot
be used. Monolithic apertures tend to be very heavy for their size (high areal density), and
to achieve the desired performance (of less than 1.5m GSD with good SNR) the monolithic
aperture could easily have a larger diameter than the launch vehicle expected to carry it.
Newer types of apertures include segmented and sparse (or dilute) apertures. These apertures
can be made light, durable, and foldable. This allows a large telescope to be folded, placed
within a launch vehicle, survive the launch without attaining additional aberrations, and then
unfold once deployed. With these new types of apertures comes a new a set of problems;
perhaps the largest problem is aligning the sub-apertures so they produce an image of equal
sharpness to the one created by a monolithic aperture of the same size.

This document will present the physics behind modeling a space-borne imaging system
and demonstrate how different telescope parameters can be quickly interchanged and com-
pared. The goal is to then use this tool to create imagery that can be applied to motion
detection and spatial target recognition tests. By observing the results of these tests (for ex-
ample, % of motion detected) it is possible to understand the capability of a proposed design.
This technique also allows designers to analyze the potential benefits of improving individual
features of a design. For example, they could analyze the cost and benefits of having a higher
signal to noise ratio or lower mirror aberrations. Perhaps these changes will produce an equal
performance increase while the cost of one improvement is radically different than the cost
of the other. Cost is always an issue and understanding the most efficient and cost effective
method of improving a system is vital to every large project.



Chapter 2

Work Statement

- Develop a flexible Fourier optics based model of a remote sensing platform at a geosta-
tionary orbit (35,786 km) above the equator. There should be full flexibility of detector
type (this includes various noise parameters, quantum efficiency, and pixel pitch); scene
content; aperture geometry; and optical parameters including focal length, reference
wavelength, flimsy style aberrations, and piston, tip, and tilt aberrations.

- The model should also have an alternate mode that allows users to specify GSD and
SNR.

- Demonstrate a novel way of modeling lightweight optic aberrations using a fractal
Brownian motion algorithm.

- Use GIQE to quantify image quality.

- Process video imagery using the modeling tool and then use a multispectral motion
detection algorithm developed by Adams (2008) for a test of motion detection ability.
This can be viewed as a test of information content in the data because it is affected by
all aspects of system design.

- Process imagery using the modeling tool and then use a Matched Filter with a spatial
target on the output image to test spatial image utility.

3
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- Use the tests mentioned above on many different imaging scenarios by individually
incrementing GSD, SNR, and aberration levels.

- Use the results to gain an understanding of the importance of the tested parameters.



Chapter 3

Background and Theory

This chapter will provide a basic theoretical background for the proposed research. To begin,
it is best to have a basic understanding of how an imaging system can be modeled. A common
way of doing this is through an image “chain” approach. Each link of the chain will describe
how information is transferred - in various forms of energy - from an input object to an
output image. Different types of imaging systems have different links in the chain; a standard
example for an optical system is listed below:

1. electromagnetic radiation from an energy source,

2. EM radiation interacts (reflects, absorbs, or scatters) with object material,

3. re-emitted energy then propagates from object to imaging system,

4. energy is then collected (by an aperture in an optical system) and propagated (by lens
and mirrors) through the imaging system,

5. energy is converted into some kind of quantifiable form (typically electrons),

6. image processing and storage (optional),

7. image display.

5
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Most of this research will address numbers 4, 5, and 6.
Light is emitted from a point source and diverges in all directions. This light is often

characterized by its wavelength (λ) and its power per unit area and solid angle - radiance
[W/(m2sr)]. Typically we are not interested in objects consisting of one point source, but
objects made of a distribution of point sources, all emitting light that spherically diverges
from its point of emission. The imaging system redirects the diverging light to converge
forming an image on a focal plane. In optical imaging systems, the measured quantity is the
time average of the squared magnitude of the complex valued amplitude of the electromag-
netic radiation. This is also referred to as irradiance and has units of W/m2. Much of what
will be discussed in the following sections covers the process from when we collect diverging
light (as radiance) in our aperture to the moment it falls on the focal plane (as irradiance).
From there we look at what happens when the light interacts with the sensor and how the
retrieved image can be enhanced. Lastly we discuss some of the challenges of working with
sparse and segmented apertures.

Much of what will be discussed in the following sections assumes the system is linear and
shift invariant (see Section 3.1); we will build mathematical representations of imaging sys-
tems based on this assumption. Despite this, it is important to recognize that imaging systems
are NOT linear and shift invariant and it is therefore impossible to completely represent them
in this fashion. What we CAN do is put forth the idea that imaging systems are a mapping
from one space to another. The simplest mathematical description of an imaging system is
done using an operator O on an input function f(x, y, z, t, λ) to yield an output g(x′, y′).

O{f [x, y, z, t, λ]} = g[x′, y′] (3.1)

where f(x, y, z, t, λ) is an object (a distribution of point sources) that vary in 3-dimensional
space (x, y, z), time (t), and emitted wavelength (λ). And g(x′, y′) is the resulting image
(perceived by the viewer) after f(x, y, z, t, λ) has been operated on by the nonlinear operator
O. During this process where O maps from the real world to our eyes the spatial, temporal,
and spectral properties are “averaged” and in most cases lost. It is the job of systems designers
to create systems that re-map this real world space in a fashion that allows the important
information to make it to the viewer.
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3.1 Linear Systems Theory for Imaging Systems

It is well known that most imaging systems are not mathematically linear and shift-invariant;
however, it can be assumed that the degree of error related to nonlinearity and shift-variance
is negligible. This makes it possible to characterize imaging systems from a linear systems
perspective. To characterize the imaging system’s spatial manipulation of the real world
we use a point spread function (PSF); this is often referred to as the impulse response. If
the system can be assumed noiseless, linear, and shift-invariant the system output can be
predicted through this convolution expression:

g[x, y] = f [x, y] ∗ h[x, y] =

∫ −∞
−∞

∫ −∞
−∞

f [α, β]h[x− α, y − β]dαdβ. (3.2)

where f [x, y] represents the object plane radiance, h[x, y] is the system impulse response
(PSF), g[x, y] is the output image, and “∗” is the mathematical symbol for convolution. Con-
volutions can be computationally expensive. Luckily, there is another method, through usage
of a Fourier transform, that achieves the same result far more efficiently. The continuous
Fourier transform is expressed mathematically as:

F [ξ, η] = F{f [x, y]} =

∫ +∞

−∞

∫ +∞

−∞
f [x, y]e−2πi(ξx+ηy)dxdy. (3.3)

where F [ξ, η] is the Fourier transform pair in the frequency domain, f[x,y] is the function
in the spatial domain, F{ } is the shorthand notation for the Fourier transform on the right
hand side of the equation, i is an imaginary number (

√
−1), and ξ and η are coordinates

in the frequency domain. The most powerful property of the Fourier transform for imaging
systems is the Filter Theorem. The theorem is derived from Eq. 3.2 through a simple Fourier
transform [Easton (2004)] and is expressed below as:

G[ξ, η] = F [ξ, η] ·H[ξ, η]. (3.4)

In the frequency domain Eq. 3.2 is greatly simplified by the fact that a convolution in
the spatial domain is equivalent to a multiplication in the frequency domain. The filter the-
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orem’s prevalence in imaging has lead to the naming of the system h[x, y] and its Fourier
transform pair H[ξ, η] as the point spread function (PSF) (as stated earlier) and the trans-

fer function respectively. Much of this research will focus on producing accurate PSFs and
transfer functions for various parts of the modeled imaging system.

As mentioned before the Fourier transform of the PSF is referred to as the transfer func-
tion; however in optical systems the transfer function is referred to as the optical transfer

function (OTF) and the normalized magnitude is the modulation transfer function (MTF).
The MTF of the optical system will be discussed further in Section 3.3.

The frequency response generated from Eq. 3.4 can be inverse Fourier transformed to give
us the output image g[x, y]. This is shown in the equation below for continuous functions:

g[x, y] = F−1{G[ξ, η]} =

∫ +∞

−∞

∫ +∞

−∞
G[ξ, η]e+2πi(ξx+ηy)dξdη. (3.5)

whereF−1{ } is shorthand for the inverse Fourier transform operator. In conclusion, a contin-
uous system free of noise where the PSF is known can be modeled by Fourier transforming
the input scene radiance and the PSF, array multiplying the two together, and then inverse
Fourier transforming to get the output image. Of course, the system modeling approach just
described is unrealistic because it is noiseless. To build a more correct model statistically
independent additive random noise can be introduced to Equations 3.2 and 3.4:

g[x, y] = f [x, y] ∗ h[x, y] + n[x, y]. (3.6)

where n[x, y] is the total statistically independent random noise in the system. This function
is simply reexpressed in the frequency domain as:

G[ξ, η] = F [ξ, η].H[ξ, η] +N [ξ, η]. (3.7)

where N [ξ, η] is the frequency spectrum of the system noise. Approaching this problem
through linear systems produces a concise mathematically tractable model for an imaging
system. This type of model also fits nicely within the frame work of the image chain. This
thesis will examine several potential imaging scenarios with various forms of output. The lin-
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ear system approach ensures that all changes within the model have a linear correspondence
with the model output.

3.2 Scene Radiance and Detected Signal

Because this model attempts to accurately represent a real world system using incoherent
radiation, it should have data that accurately represents the the world’s incoherent nature.
Schott (2007) describes the primary radiation transfer mechanisms in this equation:

Lr,total[λ] =

(
Es,exo[λ]cos[σ′]τ1[λ]

ρ[λ]

π
+ ε[λ]Lemis[λ, T ] + F

r[λ]

π

(
Eds[λ] +

Ede[λ]

)
+ (1− F )

[
Lbs[λ] + Lbe

]
r[λ]

)
τ2 + Lus[λ]

+Lue[λ] (3.8)

where:

• Es,exo[λ] is the exoatmospheric radiance

• σ′ is the solar zenith angle

• τ1 is the atmospheric transmission along the sun-target path

• ρ is the bidirectional reflectance

• ε is the target emissivity

• Lemis[λ, T ] is the self emitted radiance for a blackbody at temperture T

• F is the fraction of the hemisphere above the target that is sky

• Eds[λ] is the reflected downwelled irradiance

• r[λ] is the target reflectance

• τ2 is the atmospheric transmission along the sun-target path
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• Ede[λ] is the emissive downwelled irradiance

• Lbs[λ] and Lbe[λ] are the reflective and emissive background radiance

• Lus[λ] and Lue[λ] are the reflected and emissive upwelled radiance

Because this project will not be using the thermal portion of the EM spectrum we can
slim this equation down by omitting the thermal components.

Lr,total[λ] =

[
Es,exocosσ

′τ1[λ]
ρ[λ]

π
+FEds[λ]

r[λ]

π
+(1−F )Lbs[λ]

]
r[λ]τ2[λ]+Lus[λ] (3.9)

where Lr,total is the reflective (V/NIR) radiance at the aperture. The question now becomes,
how do we relate the measured signal to the radiance at the entrance aperture? We start by
using the G# equation [Schott (2007)] to relate the radiance at the entrance aperture to the
irradiance on the detector:

G#[λ] =
Lr,total[λ]

Einc[λ]
=

1 + 4(f#)2

Ffillτoptπ

[
1

sr

]
(3.10)

where f# is the ratio of the focal length over the aperture diameter, Ffill is the fill factor or
the percentage of aperture that would fill an unobscured aperture of equal diameter, and τopt
is the transmission of the optics. The above equation can be rearranged so that it is solved for
Eincident:

Einc[λ] =
Ffillτoptπ

1 + 4(f#)2
Lr,total[λ]

[
W

m2

]
. (3.11)

The flux onto a pixel can then be determined by multiplying this quantity by the area of the
pixel.

Φ[λ] = Einc[λ]Apixel =
ApixelFfillτoptπ

1 + 4(f#)2
Lr,total[λ][W ] (3.12)

The flux can then be multiplied by the integration time to get the total energy in Joules onto
the pixel:

ΦTotal[λ] = Einc[λ]ApixelTint =
ApixelTintFfillτoptπ

1 + 4(f#)2
Lr,total[λ][Joules] (3.13)
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This number can then be divided by the energy of one photon at the central wavelength λ to
yield the number of photons hitting the pixel:

#photons =
ΦTotal

hc
λ

(3.14)

where h is Planck’s Constant (6.626 x 10−34[J .s]) and c is the speed of light (2.9979 x10−8
[
m
s

]
).

The signal in electrons is computed as the # photons times the quantum efficiency (QE)
[

#electrons
#photons

]
, integrated over all wavelengths:

Selectrons =
ApixelTintFfillπ

hc(1 + 4(f#)2)

∫ +∞

0

Lr,total[λ]τopt[λ]QE[λ]λdλ[
sec sr m2 1

J .sec

sec

m

W

m2 sr µm
µm µm

]
. (3.15)

The signal in electrons is then converted to volts in a transistor. This is done mathematically
using a conversion gain, Gconv

[
V olts
electron

]
. There is also an electronic gain, Gelec from the focal

plane array to the A/D converter. These gains are shown below:

Svolts = GconvGelecSelectrons[V olts]. (3.16)

If Eq. 3.15 is substituted into 3.16 and is rewriten we find:

Svolts = GconvGelec
FfillTintπAdetector
hc(1 + 4(f#)2)

∫ +∞

0

Laper[λ]τopt[λ]QE[λ]λdλ[V olts]. (3.17)

This radiometric treatment is for one pixel in the absence of noise. It ignores the fact that
we are working with a 2D array of pixels and that system components like the aperture and
optics will degrade or blur the PSF and subsequently the image. The details about how
to accurately model the PSF will be discussed in the coming sections; however, now is an
appropriate time to look into how to apply the PSF to imagery. Equation 3.15 can be rewritten
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so that it includes spatial variation instead of one pixel:

Svolts[x, y] = GconvGelec
FfillTintπAdetector
hc(1 + 4(f#)2)

∫ +∞

0

Laper[x, y;λ]τopt[λ]QE[λ]dλ. (3.18)

The PSF is applied to this function through a convolution (Eq. 3.2) with the system reaching
radiance:

Svolts[x, y] = GconvGelec
FfillTintπAdetector
hc(1 + 4(f#)2)∫ +∞

0

(
Laper[x, y;λ] ∗ PSF [x, y;λ]

)
τopt[λ]QE[λ]dλ. (3.19)

Just for completeness and future reference it is necessary to apply the PSF to Eq. 3.15:

Selectrons[x, y] =
FfillTintπAdetector
hc(1 + 4(f#)2)∫ +∞

0

(
Laper[x, y;λ] ∗ PSF [x, y;λ]

)
τopt[λ]QE[λ]dλ. (3.20)

The analogue to this expression in the frequency domain (in the absence of noise) is expressed
as:

Svolts[ξ, η] = GconvGelec
FfillTintπAdetector
hc(1 + 4(f#)2)∫ +∞

0

F
(
Laper,FT [ξ, η;λ]MTF [ξ, η;λ]

)
τopt[λ]QE[λ]dλ (3.21)

. where Laper,FT [ξ, η;λ] is the Fourier transform of the sensor reaching radiance [Easton
(2005)].

3.3 Incoherent Light and Imaging Systems

A few assumptions need to be made before a model of an incoherent imaging system is built.
The first assumption is that that the imaging system can be assumed to be linear and shift-
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invariant so that the linear systems approach explained in 3.1 can be used to characterize the
system. The second assumption, is that the light is “quasimonochromatic”, which means that
the band pass, ∆λ, is much less than the reference wavelength, λ0. In more plain terms,
this means that the light can be described as a single wavelength but still has a bandwidth
broad enough that there will be no interference [Easton (2005)]. This is a valid assumption
for much of this work; we will be dealing with light that has 10nm band passes from 400
- 900nm; the motion detection experiment will have 100nm band passes from 400 - 700nm
and then a 200nm band pass from 700-900nm.

The impulse response of a single-lens incoherent imaging system at the focal plane can
be described as the squared magnitude of the coherent impulse response:

h[x, y; z1, f, z2] =

∣∣∣∣ 1

−λ2
0z1z2

e
+2πi

(z1+r+z2)
λ0 e

+iπ x
2+y2

λz2 P

[
x

λ0z2

,
y

λ0z2

]∣∣∣∣2 (3.22)

=

(
1

λ2
0z1z2

)2∣∣∣∣P[ x

λ0z2

,
y

λ0z2

]∣∣∣∣2. (3.23)

where z1 is the object distance, z2 is the image distance, f is the focal length and P is the
Fourier transform of the pupil function. Examples of various pupil functions are shown in
Section 3.8. If we assume that the object is located at a very large distance from the aperture
then z2 = f (which is always the case for remote sensing) and the above equation can be
rewritten as:

h[x, y; z1, f, z2 = f ] =

(
1

λ2
0z1f

)2∣∣∣∣P[ x

λ0f
,
y

λ0f

]∣∣∣∣2. (3.24)

We can get the incoherent optical transfer function (OT F), H, by separating the magni-
tude of h and then using the Filter Theorem, Transform of a Transform Property, and Trans-
form of a Conjugate Property to find that Eq. 3.24 is equivalently expressed in the frequency
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domain as:

H[ξ, η; z1, f, z2] = OT F [ξ, η; z1, f, z2] = F
{(

1

λ2
0z1f

)2∣∣∣∣P[ x

λ0f
,
y

λ0f

]∣∣∣∣2} (3.25)

=

(
1

λ2
0z1f

)2

F
{
P

[
x

λ0f
,
y

λ0f

]
P ∗
[
x

λ0f
,
y

λ0f

]}
(3.26)

=

(
f

z1

)2

p[−λ0fξ,−λ0fη] ∗ p∗[λ0fξ, λ0fη] (3.27)

=

(
f

z1

)2

p[−λ0fξ,−λ0fη] F p[−λ0fξ,−λ0fη]. (3.28)

This shows that the Fourier transform of the impulse response is the 2-D autocorrelation
(represented by the star) of the scaled pupil function. The incoherent modulation transfer
function (MT F) is the magnitude of theOT F normalized to 1. Because the maximum value
of autocorrelations is always at the central ordinate ([ξ = 0, η=0]) theOT F is normalized by
this value, as shown below:

MTF [ξ, η] ≡ OT F [ξ, η]

OT F [ξ, η]ξ=0,η=0

=
p[−λ0fξ,−λ0fη] F p[−λ0fξ,−λ0fη]

p[−λ0fξ,−λ0fη] F p[−λ0fξ,−λ0fη]|ξ=0,η=0

.

(3.29)
One thing worth noting here is that the incoherent MTF for an optical system will have a

cutoff frequency. This means that any frequencies higher than this cutoff frequency will NOT
pass from the scene radiance through the aperture to the focal plane. The cutoff frequency
for a cicular aperture is defined as:

νc =
D

λ0f
=

1

λ0f#
. (3.30)

This is incorporated in the MTF by the scaling factor. If we take for example a system with a
circular aperture we can define the pupil function as:

p[x, y] = CY L

(
r

D

)
. (3.31)

where r is the radial coordinate from the center of the cylinder function with diameter D.
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The MTF of this function would be defined as:

MTF (ρ) =

CY L

(
λ0fρ
D

)
FCY L

(
λ0fρ
D

)
CY L

(
λ0fρ
D

)
FCY L

(
λ0fρ
D

)∣∣∣∣
ρ=0

. (3.32)

where ρ is the radial frequency domain compliment to r.
For more exotic aperture designs that are not circularly symmetric, such as sparse and

segmented apertures, there won’t be a single cutoff frequency. Instead there will be a range
of frequencies that (if oriented at specific angles) will be passed through the system. This
will be discussed in more detail in Section 3.12

3.4 Detector Sampling

Once the radiance at the aperture has propagated threw the imaging system and has been low-
pass filtered by the optics, the scene irradiance forms an image on the focal plane. From this
point there is a transfer of energy from electromagnetic radiation to a quantifiable electronic
form. This transduction of energy is performed by the CCD. The CCD sits on the focal plane
and samples the image that is projected onto it. Because the light sensitive area of a single
CCD pixel is not a perfect point the spatial variation of the image that falls on the pixel is
averaged. Hence the CCD pixel acts as a low pass filter. This section will begin with a brief
discussion of ideal sampling for a basis of understanding realistic sampling.

The ideal detector (s[x, ∆x]) has an infinite length and is composed of unit-area Dirac
delta functions (detector elements e.g. single pixels) spaced at intervals of ∆x. This is often
known as a COMB function:

sideal[x; ∆x] =
∞∑

n=−∞

δ[x− n ·∆x] ≡ 1

x
COMB

[
x

∆x

]
. (3.33)
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The sampled signal is then defined as:

S{f [x]} = f [x] · s[x; ∆x] ≡ fs[x; ∆x]. (3.34)

Sampling theory tells us that as long as the input function f[x] does not contain spatial fre-
quencies greater than ξNyquist then the original function can be reconstructed without aliasing.
The Nyquist sampling frequency is defined as:

ξNyquist =
1

∆x
. (3.35)

Ideal sampling is completely unrealistic, it is not possible to have a sampling function with
infinite support, nor is it possible to have a detector element with an infinitesimally small
support. A more realistic example of a detector would include a sampling function that had a
finite support and detector elements with a support equal to the sampling function’s support
or some fraction of the sampling function’s support. As was eluded to in the introduction
of this section, this will have a detrimental effect on the system MTF because the detected
signal at each detector element is the average of the continuos signal over that element. The
sampling expressed in Eq. 3.34 takes on a more realistic form in the equation below:

S{f [x = n0 ·∆x; ∆x]} =

(
f [x] ∗ 1

p
RECT

[
x

p

])
· δ[x− n0 ·∆x]. (3.36)

where ∆x is the spacing between detector element centers (pixel pitch) and p is the width of
each detector element. Typically for a CCD the pixel pitch, ∆x, and the pixel pitch, p, are
about equal. In the next expression p ≡ ∆ x. Also, to make this more realistic the single
Dirac delta will be replaced by a COMB function which represents a 1-D detector similar to
a push broom array.

S{f [x; ∆x]} =

(
f [x] ∗ 1

p
RECT

[
x

p

])
· 1

∆p
COMB

[
x

∆x

]
. (3.37)

The mathematical expression shown above is the realistic sampling of a continuous func-
tion f . This is done by convolving the continuous function with a rect function of width p,
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followed by the ideal sampling (COMB function) at the centers of each detector. It should
be noted that this expression does not account for variations in detector response. Figure
3.1 shows this detector: As stated before the detector elements average (or blur) the con-

Figure 3.1: Pixel width and pixel pitch are almost equal for CCDs.

tinuous signal f . The MTF of the detector is the Fourier Transform of the RECT function
representing the detector:

MTF [ξ] = F
{
RECT

[
x

p

]}
= p SINC[pξ]. (3.38)

Figure 3.2 shows a portion of a SINC function.

Figure 3.2: A portion of a SINC function that is the detector MTF.

On a 2D array of pixels, one pixel can be represented as a 2D separable function:

pixel(x, y) = RECT

(
x

p
,
y

p

)
= RECT

(
x

p

)
RECT

(
y

p

)
. (3.39)
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which can be Fourier transformed to produce the 2D MTF of the detector, shown in Eq. 3.40:

MTFDetector(ξ, η) = F
{
RECT

(
x

p

)
RECT

(
y

p

)}
= p2SINC(pξ)SINC(pη). (3.40)

The detector MTF will be entered into the system MTF by multiplying it with the other
subsystem MTFs. This will be shown more explicitly in Section 4.2. Section 4.2 also has a
plot (Figure 4.2) that shows how much degradation can be attributed to the detector MTF in
relation to the other subsystem MTFs. From this plot the reader will notice that the effect of
the detector is relatively low for a system operating at Nyquist frequencies.

3.5 Linking the Detector and Optics

Section 3.3 explained the basic Fourier optics behind an incoherent imaging system; perhaps
the most important equation in Section 3.3 (for this section) is the equation for optical cutoff
frequency, νc:

νc =
D

λf
=

1

λF#
. (3.41)

Section 3.4 presented the basics behind realistic sampling behind the CCD. Another very
important equation that is found in this section is the equation for the Nyquist sampling limit,
νNyquist:

νNyquist =
1

2p
. (3.42)

These two equations present the highest spatial frequency produceable and the high spa-
tial frequency detectable respectively. An optimal system (a Nyquist limited system) will link
these two systems so that the highest spatial frequency produced by the optics is equal to the
highest spatial frequency detectable by the CCD. This can be done mathematically by simply
setting νc = νNyquist and solving for which ever parameter is undefined.

D

λf
= νc = νNyquist =

1

2p

f =
2Dp

λ
. (3.43)
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This equation is very useful for system designers. The above equation was solved for the
focal length (f ) for a reason. When building a space telescope the most difficult parameter
to adjust is the size of the primary mirror (D). The pixel pitch can also be somewhat difficult
to change. The easiest parameter to adjust is the focal length because it entails changing the
curvature of the mirrors, which is relatively simple. Fiete (1999) discusses Nyquist systems
as having λf#/p values of 2. λf#/p is the ratio of sampling frequency to optical cutoff
frequency.

λf#

p
= 2

νNyquist
νc

(3.44)

3.6 System Noise

System noise is a composite of many lesser noise sources. This section will look at the
most prominent sources of noise under plausible operation scenarios for Earth observation.
Noise ranges can vary depending on illumination conditions or the current state of the space
telescope. For example, we should not expect the signal-to-noise ratio (SNR) during daytime
surveillance to be equal to the SNR during night time surveillance. Or if the spacecraft is
unable to keep the detector at a constant temperature we would expect more noise at warmer
temperatures and less noise at lower temperatures. This behavior will be explained in full in
the coming sections.

To model the system noise the individual noise sources must be defined and somehow
combined to give us the total amount of noise. This can be done by making two assumptions.
The first assumption being that each noise parameter abides by random Gaussian statistics
(except for the photon noise) and can be quantified by its standard deviation (σnoisesource).
The second assumption is that the individual noise components are statistically independent.
This allows each noise component to be added in quadrature to produce the total system noise
[Strojnik and Anderson (2002)].

σtotal =

( N∑
i=1

σ2
i

)1/2

=
(
σ2
photon + σ2

read + σ2
dark + σchain + σ2

quatization

)1/2 (3.45)
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where five statistically independent sources of noise have been identified as photon noise
(σphoton), dark current noise (σdark), read noise (σread), electronic chain noise (σchain), and
quantization noise (σquantization). The following subsections will describe each noise source
in detail.

3.6.1 Photon Noise

Due to random fluctuations in photon arrival rate there is an uncertainty value associated with
the number of photons reaching the detector. Because photon arrival is a discrete process over
a fixed integration time where only an average value of the actual number of photons can be
calculated from the detected signal, it is said that photon arrival adheres to Poisson statistics.
A property of Poisson statistics is that the standard deviation of an occurrence is the square
root of the number of occurrences. Therefore, the standard deviation associated with photon
arrival rate is the square root of the signal in electrons (Eq. 3.15):

σ =
(
Selectrons

)1/2
. (3.46)

Photon noise is usually the dominating noise source when there is a large amount of light
entering the aperture. Whether or not it is the dominating noise source of course depends on
the magnitude of the other radiation independent noise sources; we will see later in Section
4.4 that different detectors have different amounts of noise.

3.6.2 Dark Noise

This noise source is a detector specific characteristic and is given or can be calculated from
values given in a detector performance specifications sheet. This noise can be observed when
there is no flux incident on the detector and is caused by imperfections in the crystalline struc-
ture of the detector. Thermally generated electrons become captured in the CCDs depletion
region and are read out with the other photo-generated electrons. The amount of dark noise
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on a given CCD is dependent upon integration time and CCD temperature:

σdark =
Jdark2

T−Tref
Tdouble (nTDI + 1)AdetTint

q
(3.47)

where Jdark is the classic temperature-dependent dark current density (typically in nA/cm2)
measured at reference temperature Tref , T is the temperature of the detector, Tdouble is the
dark current doubling temperature, Adet is the area of the detector, Tint is the integration
time, q is the charge of one electron, and nTDI is the number of time delay integration (TDI)
stages (unity for staring sensor). The parameters of the above equation are sometimes not
given in performance specifications sheets, there are luckily other ways of computing σdark:

σdark =

√
Tint

(
Dark Signal Integration[µV/s]

Output Sensitivity[µV/e−]

)
2
T−Tref
Tdouble . (3.48)

The Dark Signal Integration is the amount of dark signal over a given amount of time.
By dividing by the output sensitivity the number of dark signal electrons per second are
calculated. Similar to the classic-temperature-dependent dark current density from Eq. 3.47
the dark signal integration is dependent on temperature and has a doubling temperature. Due
to the Poisson nature of the electron arrival, the square root is taken to find the standard
deviation of the dark current.

Another parameter that is sometimes given in the performance specifications sheet is the
Dark Signal [e−/s]. The standard deviation of the dark current is calculated using this value
in a similar fashion:

σdark =

√
Tint ·Dark Signal[e−/s] · 2

T−Tref
Tdouble . (3.49)

Often times CCDs have special light shielded pixels on the side of the chip that can be
used to make measurements of dark signal, which can subsequently be used to calculate σdark.
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3.6.3 Read Noise

Another prevalent type of noise is read noise; read noise is similar to dark noise in that it
is independent of the flux onto the detector. The difference is in its origin as it is created
by the CCD readout electronics. A value for read noise can usually be found in the CCD
performance specifications sheet and is given in units of rms electrons. This term tends to be
constant through the imaging system and can be treated as a biasing term in the total noise.

3.6.4 Signal Chain Noise

The signal chain noise - similar to the read noise - can also be treated as a biasing term in the
total noise. This noise source is a combination of all the analog signal processing components
from the readout to the A/D converter. This noise source can be measured in volts; Strojnik
and Anderson (2002) explains that it can be converted to electrons applying the inverse of the
products of the electronic and conversion gain terms.

σchain,electrons =
σchain,V olts
GelecGconv

(3.50)

3.6.5 Quantization Noise

Finally, at the A/D converter there is a noise source associated with the digitization of the
analog signal. Because the input into the A/D converter is continuous and then quantized into
discrete bins there is a residual error or uncertainty in the new digital signal. The quantization
of signal can potentially result in a loss of information depending on the bit number of the
A/D converter and the prior noise sources. Strojnik and Anderson (2002) explains that if one
assumes that the quantization is uniformly distributed and because the standard deviation of
a uniform distribution is 1/

√
12 then the rms electrons can be expressed as:

σquan =
SADC

2nGconvGelec

√
12

=
QSE√

12
. (3.51)

where SADC is the A/D converter input voltage range, n is the number of binary digits as-
sociated with the A/D converter (bit number), and “QSE is the quantum step equivalence or
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effective bin size of the quantization scheme in rms electrons per count” [Introne (2004)].

3.6.6 Total Noise

The total system noise was written out in equation 3.45; however, this was only for a single
pixel. As one might imagine, these noise components will vary spatially over a 2-D array of
pixels due to either their random nature or the physical nature by which they are generated.
Introne (2004) suggests:

ntotal[x, y] ∼= P{s`electrons[x, y] ∗ h`[x, y]}+ σdarkn2[x, y] +

σreadn3[x, y] + σquann4[x, y] + σchainn5[x, y]. (3.52)

where the photon noise is modeled as the signal in electrons from spectral band ` convolved
with the system PSF for spectral band ` (h`(x, y)) and then operated on by the Poisson oper-
ator P . ni is a statistically independent Gaussian function with zero mean and unit variance.
Multiplying ni by the standard deviation of a noise source then creates a 2-D function with
a zero mean and standard deviation equal to that of the noise source it represents. The total
noise in the frequency domain is calculated by Fourier transforming each term:

Ntotal[ξ, η] ∼= F{P{S`electrons[ξ, η] ∗ h`[ξ, η]}}+ σdarkN2[ξ, η] +

σreadN3[ξ, η] + σquanN4[ξ, η] + σchainN5[ξ, η]. (3.53)

The two expressions are equivalent, however in the modeling situation described here the
first expression in Eq. 3.52 will be used.

3.6.7 Signal-to-Noise Ratio

The signal-to-noise ratio (SNR) of an image is going to be a very important parameter in this
research. The SNR is a value that defines how strong the signal is compared to the system
noise. Imagine imaging a flat gray scene, a system that has a low SNR would create an image
that has a high standard deviation about the mean. Conversely, a system that has a high SNR
would produce an image that has low standard deviation about the mean. If you swapped
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out this gray scene for a more interesting image you would notice that the high SNR system
is going to have a nice sharp quality while the low SNR system (provided the SNR is low
enough) is going to have a “grainy” less sharp quality.

There are numerous ways of defining the SNR (see Leachtenauer et al. (1997)). The
method used in this research is to take the scene-wide mean of the signal in electrons Selectrons
(from Eq. 3.20) and then divide by the scene-wide standard deviation of the total noise,
std{ntotal(x, y)} (from Eq. 3.52) [Introne (2004)]. This can be done because we are working
with synthetic data that has no noise. Observe Eq. 3.54.

SNR =
mean{Selectrons(x, y)}
std{ntotal(x, y)}

(3.54)

3.7 Image Restoration

In Sections 3.1 and 3.4, it was shown that the pupil function and the detector act as low pass
filters on the radiance entering the aperture and flux incident onto the detector. In the previous
section, Section 3.6 the degraded image was further degraded by noise inherent in the system.
This section will describe a technique to high-boost filter the image and restore some of the
attenuated signal information. Let us revert back to the simple notation used in Section 3.1
to write out the mathematical description of an imaging system with additive noise:

g[x] = f [x] ∗ h[x] + n[x] (3.55)

G[ξ] = F [ξ] ·H[ξ] +N [ξ]. (3.56)

The idea presented in this section is that a linear filter, w, can be derived that will use
a priori knowledge of the system MTF (or PSF) to produce an estimate of f[x] (f̂ [x,y]) from
the output g[x]. Easton (2005) describes the action of this filter as:

g[x] ∗ w[x] = f [x] ∗ h[x] ∗ w[x] + n[x] ∗ w[x] = f̂ [x] (3.57)

G[ξ] ·W [ξ] = F [ξ] ·H[ξ] ·W [ξ] +N [ξ] ·W [ξ] = F̂ [ξ]. (3.58)

Thinking unrealistically and in the frequency domain the above equations could be used to
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reconstruct the original input function if the spectra of F [ξ] and N [ξ] were disjoint; meaning
that where |N [ξ]| = 0 then |F [ξ]| 6= 0 and where |F [ξ]| = 0 then |N [ξ]| 6= 0. This would allow
Eq. 3.57 to satisfy these two conditions:

N [ξ] ·W [ξ] = 0[ξ] (3.59)

F [ξ] ·W [ξ] = F [ξ]. (3.60)

A Wiener Filter, in this case, equal to 1 would satisfy these conditions. In a more realistic
scenario the spectra of the noise and signal,N [ξ] and F [ξ], will never be equal to 0; therefore,
a Wiener Filter that accounts for both the disjoint and overlapping of the signal and noise
spectra is necessary. This causes us to think of what characteristics a Wiener Filter might
have. First of all spatial frequencies that contain large amounts of noise power and low
amounts of signal power should not be transmitted by the filter:

where |N [ξ]|2 >> |F [ξ]|2 ⇒ W [ξ] ∼= 0. (3.61)

This can be rearranged as an expression that is small in this region:

1 >>
|F [ξ]|2

|N [ξ]|2
∼= 0 if |N [ξ]|2 >> |F [ξ]|2. (3.62)

And at spatial frequencies where the noise power is much less than the signal power, the
Wiener Filter should be approximately unity so that most of the useful frequencies are trans-
mitted.

|N [ξ]|2 << |F [ξ]|2 ⇒ W [ξ] ∼= 1 (3.63)

Norbert Wiener proved a relation that provided a smooth transition between the two con-
ditions defined by Eq. 3.62 and Eq. 3.63. The conclusion of his proof showed that the
“appropriate relation to minimize the squared error is the reciprocal of the sum of the recip-
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rocals of the two limiting cases.” This expression can be written in multiple ways:

W [ξ] =

[(
|F [ξ]|2

|F [ξ]|2

)−1

+

(
|F [ξ]|2

|N [ξ]|2

)−1]−1

(3.64)

=

[
(1)−1 +

(
|F [ξ]|2

|N [ξ]|2

)−1]
(3.65)

=
1

1 + |N [ξ]|2
|F [ξ]|2

≡ 1

1 + Γ[ξ]
(3.66)

=
|F [ξ]|2

|F [ξ]|2 + |N [ξ]|2
. (3.67)

where Γ[ξ] ≡ |N [ξ]|2
|F [ξ]|2 is the noise-to-signal power ratio.

Later, Carl Helstrom constructed the Wiener-Helstrom Filter using complete knowledge
of the system transfer function, an estimate of the noise spectrum, and an assumed or modeled
version of the power spectrum. To do this derivation Helstrom defined limiting cases similar
to those defined in Eq. 3.62 and Eq. 3.63, though this time it included the effects of the
system transfer function. He then solved to find the appropriate relation that minimized the
squared error between the two limiting cases.

When working with the Wiener Filter, the ratio of the power spectra was needed to deter-
mine the scaling factors between limiting cases. Again, this is needed but now the contribu-
tion from the system transfer function (H[ξ]) is also needed. The first condition states, when
|F [ξ] ·H[ξ]|2 << |N [ξ]|2 then:

N [ξ] ·W [ξ] = 0 ∼=
1

H[ξ]

(
|F [ξ] ·H[ξ]|2

|N [ξ]|2

)
if |F [ξ] ·H[ξ]|2 << |N [ξ]|2

= H∗[ξ] ·
(
|F [ξ]|2

|N [ξ]|2

)
= H∗[ξ] · (Γ[ξ])−1. (3.68)

The second condition states, where |F [ξ] · H[ξ]|2 >> |N [ξ]|2, the Wiener filter becomes a
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simple inverse filter:

F̂ [ξ] = G[ξ] ·W [ξ] = F [ξ] ·H[ξ] ·W [ξ] = F [ξ] if |F [ξ] ·H[ξ]|2 >> |N [ξ]|2

⇒ W [ξ] ∼= 1
H[ξ]
·
(
|F [ξ]·H[ξ]|2
|F [ξ]·H[ξ]|2

)
= 1

H[ξ]
(3.69)

These two boundaries are then brought together the same way that was used for the Wiener
Filter.

W [ξ] = (|F [ξ]|2)

[(
H[ξ]−1

|F [ξ]|2

)−1

+

(
H∗[ξ]

|N [ξ]|2

)−1]−1

(3.70)

=
H∗[ξ]

|H[ξ]|2 + Γ[ξ]|
(3.71)

Because the exact forms of the power spectra of the signal and noise are not known it
can be assumed that they have a constant ratio. An approximation to the Wiener-Helstrom
Filter called the Constrained Least-Squares Filter can be constructed using the assumption
that the parameter Γ, the noise-to-signal power ratio, is constant. Determination of Γ is done
experimentally, this process is discussed in Section 4.7. The Constrained Least Squares Filter
is shown in Eq. 3.72.

W [ξ] =
H∗[ξ]

|H[ξ]|2 + Γ
(3.72)

Another important point is that in a realistic situation there is never full knowledge
(if any knowledge) of the pupil phase or its subsequent effect on the transfer function,
H, used in this equation. The system model will have the ability to build restoration filters
that are partially derived from pupil functions that have a user specified degree of aberration
knowledge. Section 4.5 discusses how the user can define pupil function knowledge, and
Section 4.7 discusses the importance of aberration knowledge in this work. It should also be
noted that there are techniques available for determining aperture aberrations [Daniel (2009)].
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3.8 Apertures

In the previous sections much of the basic theory that will enable successful imaging system
modeling has been described. The remaining sections shall explain how the model can be
made more realistic. Section 3.3 displayed the importance of the pupil function to the sys-
tem’s MTF. This section will focus on the different types of pupils that will be used in this
project.

Each pupil is initially modeled as a simple real-valued “zero-one” function. This repre-
sents a perfect pupil with no aberations. In the real world a pupil will have aberrations, this
will be discussed in detail later in Section 3.9. Figure 3.3 shows side profiles of the three
different types of telescopes that will be modeled. Figure 3.3 a) is a conventional Cassegrain
telescope with a large monolithic primary mirror and a smaller secondary mirror along the
optical axis.

Figure 3.3 b) shows a sparse (or dilute) aperture telescope. This is a modern design that
can have two or more smaller sub-apertures; each sub-aperture is a miniature Cassegrain
telescope. Light from each telescope is then combined at the focal plane to achieve a spatial
resolution that is higher than that of a single sub-aperture. The sparse aperture design has
some advantages over the traditional Cassegrain for Earth observation and astronomy. The
main advantage of these systems for space-borne applications is size and weight because
they can be designed so that they are “foldable” allowing them to be larger and still capable of
being placed aboard a launch vehicle. After deployment they can unfold to have an effectively
very large aperture that would otherwise not be possible with current launch technology. In
addition to this the sub-apertures are less expensive and easier to manufacture. There are
of course disadvantages to this system. The main problem is phasing the apertures; once
the telescope has unfolded the sub-apertures will not be aligned properly. Actuators will be
required to control the exact alignment of each sub-aperture. The sparse aperture systems
suffer from additional problems related to the reduced fill factor which results in a lower
SNR. Lastly, the MTF for these types of systems will often severely attenuate many spatial
frequencies. This is easily seen in the MTF of the triarm (Figure 3.8) and the annulus (Figure
3.9).

Figure 3.3 c) shows a segmented aperture system. This system can be thought of as a
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compromise between the Cassegrain and the sparse systems. Here we have a large segmented
primary aperture with a fill factor comparable to the Cassegrain. The segmented aperture,
similar to the sparse aperture, is foldable and therefore easily placed on a launch vehicle,
but the system might have to have lightweight optics in order to satisfy the launch vehicle’s
weight contraints. This system will also suffer from the same phasing problems that the
sparse aperture design did.

Figure 3.3: Side profile for three telescope designs [Introne (2004)].
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Figure 3.4: Filled Aperture. We start out with a full aperture and move to the more exotic
segmented and sparse designs.

Figure 3.5: Cassegrain Aperture

Figure 3.6: Segmended Aperture
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Figure 3.7: Bi Aperture

Figure 3.8: Triarm Aperture

Figure 3.9: Annulus
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3.9 Aperture Aberrations

In Section 3.8, several different types of apertures were shown with their MTFs. In that
section, the pupil functions were modeled so that the spherical nature of the light would be
unperturbed after reflection. The idea of a mirror with no aberrations that could preserve the
spherical nature of light is rather unrealistic as aberrations are found in all lenses and mirrors.
In this document we are presented with a slightly more exotic imaging scenario that includes
segmented and sparse aperture systems. These systems are composed of smaller subapertures
that work in concert to achieve the performance of a larger monolithic aperture. The smaller
subapertures could in theory be aberration free and yet still not provide optimal performance
because they are not aligned properly. For example, a subaperture could be tipped, tilted,
or have a piston error. These would be considered aberrations on a multi-aperture system
and would effectively degrade the MTF and output. To make the system completely realistic
we would need to introduce aberrations in the subapertures that are exhibited in real mirrors.
Simple mirrors contain aberrations such as spherical, aspherical, coma, astigmatism, etc.
Many of these types of aberrations can be modeled using Sidel or Zernike Polynomials.
Other more complex lightweight mirrors that are very attractive for space-borne applications
contain aberrations that are not well explained using polynomials. To model these types of
aberrations we may need to look elsewhere or obtain an optical path difference map of the
mirror segment.

As was stated earlier the MTF is calculated by performing an autocorrelation on the scaled
pupil function. If the scaled pupil function includes information about the mirror’s aberra-
tions, how does this impact the MTF and image quality? This section will cover geometric
aberrations and how they degrade the MTF.

Goodman (1996) explains that optical path difference (OPD) error can be incorporated
into the Fourier optical model through the complex pupil function as a phase term. This
is done by breaking the pupil function into its magnitude and phase and then adding the
wavefront error to the existing phase. In the case where there is no pre-existing phase the
expression looks like:

paber[x, y] = p[x, y] · e
2πi
λ0
w[x.y] (3.73)
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where w[x, y] is a 2-D function that describes the OPD in units of wavelength, λ0. This
equation can be adapted to suit segmented and sparse aperture systems by introducing shift
parameters (xi, yi) for the centers of the ith subaperture.

paber[x, y] = p[x, y] · e
2πi
λ0
wi[x−xi,y−yi] (3.74)

Just so the reader can get a more complete understanding of the importance of aberrations, the
different types of aberrations, and what effect they might have on image quality, an example
is presented in Figure 3.10. Here we have a Bi-aperture sparse aperture system with the left
mirror severely tilted. As one might expect the model output has a double image.

To create a realistic MTF for a system including a pupil function with aberrations and
phase error, one simply needs to replace all zero-one pupil masks with the complex pupil
function expressed in Eq. 3.73. The following subsections will present the traditional Zernike
Polynomials, a interferogram from a light weight mirror, and a novel technique used to gen-
erate aberrations similar to those of the light weight mirror.

3.9.1 Zernike Aberrations

To model simple aberrations the two most commonly used approaches are through Seidel
and Zernike polynomials. This discussion will focus on Zernike polynomials because they
can produce aberrations similar to those observed in optical tests [Wyant and Creath (1992)].
Wyant explains that Zernike polynomials are not necessarily the best polynomials for fit-
ting data or generating typical aberrations, he goes on to provide his readers with multiple
examples of why this is so. They are however quite easily implemented and are used fre-
quently in the remote sensing and space telescope communities. Eq. 3.75 shows 36 Zernike
Polynomials.

The aberrations are usually good enough to simulate phase errors in large rigid optics,
however they are not useful for the abnormal aberrations found in light weight nano laminate
mirrors.
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(a) Bi Aperture with large
amount of tilt error on left aper-
ture.

(b) Pan-chromatic image before and after the being processed by the model. Notice that there is now
a double image effect caused by the tilted aperture.

Figure 3.10: Proof of concept Bi-aperture test.
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Figure 3.11: The first 8 Zernike Polynomials

WFE(ρ, θ) = 1

+ρ ∗ cos(θ)
+ρ ∗ sin(θ)

+(2 ∗ ρ2 − 1)

+(ρ2) ∗ cos(2 ∗ θ)
+(ρ2) ∗ sin(2 ∗ θ)
+(3 ∗ (ρ2)− 2) ∗ ρ ∗ cos(θ)
+(3 ∗ (ρ2)− 2) ∗ ρ ∗ sin(θ)

+(6 ∗ (ρ4)− 6 ∗ (ρ2) + 1)

+(ρ3) ∗ cos(3 ∗ θ)
+(ρ3) ∗ sin(3 ∗ θ)
+(4 ∗ (ρ2)− 3) ∗ (ρ2) ∗ cos(2 ∗ θ)
+(4 ∗ (ρ2)− 3) ∗ (ρ2) ∗ sin(2 ∗ θ)
+(10 ∗ (ρ4)− 12 ∗ (ρ2) + 3) ∗ ρ ∗ cos(θ)
+(10 ∗ (ρ4)− 12 ∗ (ρ2) + 3) ∗ ρ ∗ sin(θ)

+(20 ∗ (ρ6)− 30 ∗ (ρ4) + 12 ∗ (ρ2)− 1)

+(ρ4) ∗ cos(4 ∗ θ)
+(ρ4) ∗ sin(4 ∗ θ)
+(5 ∗ (ρ2)− 4) ∗ (ρ3) ∗ cos(3 ∗ θ)
+(5 ∗ (ρ2)− 4) ∗ (ρ3) ∗ sin(3 ∗ θ)
+(15 ∗ (ρ4)− 20 ∗ (ρ2) + 6) ∗ (ρ2) ∗ cos(2 ∗ θ)
+(15 ∗ (ρ4)− 20 ∗ (ρ2) + 6) ∗ (ρ2) ∗ sin(2 ∗ θ)
+(35 ∗ (ρ6)− 60 ∗ (ρ4) + 30 ∗ (ρ2)− 4) ∗ ρ ∗ cos(θ)
+(35 ∗ (ρ6)− 60 ∗ (ρ4) + 30 ∗ (ρ2)− 4) ∗ ρ ∗ sin(θ)

+(70 ∗ (ρ8)− 140 ∗ (ρ6) + 90 ∗ (ρ4)− 20 ∗ (ρ2) + 1)

+(ρ5) ∗ cos(5 ∗ θ)
+(ρ5) ∗ sin(5 ∗ θ)
+(6 ∗ (ρ2)− 5) ∗ (ρ4) ∗ cos(4 ∗ θ)
+(6 ∗ (ρ2)− 5) ∗ (ρ4) ∗ sin(4 ∗ θ)
+(21 ∗ (ρ4)− 30 ∗ (ρ2) + 10) ∗ (ρ3) ∗ cos(3 ∗ θ)
+(21 ∗ (ρ4)− 30 ∗ (ρ2) + 10) ∗ (ρ3) ∗ sin(3 ∗ θ)
+(56 ∗ (ρ6)− 105 ∗ (ρ4) + 60 ∗ (ρ2)− 10) ∗ (ρ2) ∗ cos(2 ∗ θ)
+(56 ∗ (ρ6)− 105 ∗ (ρ4) + 60 ∗ (ρ2)− 10) ∗ (ρ2) ∗ sin(2 ∗ θ)
+(126 ∗ (ρ8)− 280 ∗ (ρ6) + 210 ∗ (ρ4)− 60 ∗ (ρ2) + 5) ∗ ρ ∗ cos(θ)
+(126 ∗ (ρ8)− 280 ∗ (ρ6) + 210 ∗ (ρ4)− 60 ∗ (ρ2) + 5) ∗ ρ ∗ sin(θ)

+(252 ∗ (ρ10)− 630 ∗ (ρ8) + 560 ∗ (ρ6)− 210 ∗ (ρ4) + 30 ∗ (ρ2)− 1)

+(924 ∗ (ρ12)− 2772 ∗ (ρ10) + 3150 ∗ (ρ8)− 1680 ∗ (ρ6) + 420 ∗ (ρ4)− 42 ∗ (ρ2) + 1) (3.75)
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3.9.2 Interferogram Measurement

The surface plot in Figure 3.12 shows an interferogram of a 24 inch hexagonal light weight
mirror meant for a space-borne telescope. The interferogram was obtained through Lewis
(2008) at ITT Space Systems. These light weight optics use nonrigid nano-laminant tech-
nology that can have unusual aberrations caused by the manufacturing process. The problem
is that these aberrations are poorly described by polynomial techniques such as Zernikes. A
different technique proposed in the next section could be used to describe the aberrations
found in light weight optics.

Figure 3.12: A surface plot of the interferogram.

3.9.3 Fractional Brownian Motion Based Aberrations

The author noticed that the interferogram shown in Figure 3.12 has some visual (not neces-
sarily mathematical) resemblance to fractional Brownian motion (fBm). There are several
implementations of fBm that are commonly used to make clouds or mountainous terrain in
computer graphics [Barnsley et al. (1988)]. The ability to produce OPD maps quickly with
similar characteristics to the interferogram measurement could be useful and fBm can pro-
vide this easily. A quick and easy way of doing this is by using a Fast Fourier Transform
filtering algorithm to produce a surface that can be used as an OPD map. The algorithm
begins by constructing a 2D complex “white noise” function, W(ρ). W(ρ) is filtered with a
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transfer function T(ρ), where T(ρ) is defined as:

T (ρ) =
1

ρ
β
2

. (3.76)

where β is related to the fractal dimension by:

D = E +
3− β

2
. (3.77)

where E = 2 for images [Zwiggelaar and Bull (4-6 July 1995)]. In this effort D and E will
be ignored and only β will be used to describe the shape. After T(ρ) is used to filter W(ρ)
the output is inverse Fourier transformed to produce a 2D array that has a power spectrum
proportional to the spatial frequency raised to the power -β/2. This shows that for a true frac-
tal image the fractal dimension could be determined, and in this case the fractal dimension
of the mirror could be determined. This would be a wonderful accomplishment, however
the mirrors are not true fractals and their fractal dimension cannot be determined using these
techniques. The fBm algorithm does produce surfaces that are visually similar to the light
weight mirror interferogram. For example, observe Figure 3.13, the upper left aperture was
made from Zernikes, the upper right was taken from the interferogram, and the bottom two
were generated using the fractional Brownian motion approach. Control over the surface
roughness is determined by the β value. A larger β value produces a smoother surface be-
cause the higher spatial frequencies are attenuated more by the transfer function, in Eq. 3.76.
See Figure 3.14 for examples of different surface roughness. This work is presented here as
a demonstration and was not used in any of the experiments presented in Chapter 6.

3.10 Jitter

A space telescope’s body has mechanical moving parts that create vibrations through the
structure. These vibrations disrupt the pointing stability of the telescope and cause the image
to blur. The traditional approach to modeling the MTF of the jitter is done by assuming the
line of sight vibrations have a high frequency in comparison to the integration time Tint; thus
allowing the assumption that platform jitter can be described by an isotropic random variable
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(a) Top view (b) Side view

Figure 3.13: interferogram

(a) β/2 = 3.333 (b) β/2 = 2.703 (c) β/2 = 2.243

Figure 3.14: This example shows how the roughness of the surface can be altered by changing
the β-value.



CHAPTER 3. BACKGROUND AND THEORY 39

that abides by Gaussian statistics over Tint. It is therefore possible to model the MTF as a
Gaussian function:

MTFjitter = e−2π2σ2
jitter(ξ

2+η2). (3.78)

where σjitter has units of mrad and is the standard deviation of the observed random line of
sight jitter. A σjitter value that produces a jitter less than 1/10th of a pixel is considered to be
unperceivable. Finally, it should be noted that jitter is not dependent upon wavelength and is
therefore not scaled with the aperture MTF in the polychromatic model.

3.11 The Polychromatic Model

Changing the model to enable polychromatic imaging is another step towards a realistic imag-
ing scenario. In Section 3.5 it was shown how the optics were matched to the detector at
the wavelength, λ0, so that the Nyquist sampling criterion discussed in Section 3.4 would
be satisfied. When the model is extended to wavelengths outside of the intended bandpass
the frequency information in the incident irradiance changes. Higher spatial frequencies are
found at lower spectral wavelengths and lower spatial frequencies are found at higher spectral
wavelengths. This relationship can be seen in the wavelength dependence of the incoherent
MTF seen in Eq. 3.29; the support of the scaled pupil function can extend to higher spatial
frequencies because of a lower spectral wavelength and to lower spatial frequencies at the
higher spectral wavelength. One might also argue that this makes intuitive sense because
the pupil will appear larger to a blue photon and smaller to a red photon and when they are
auto-correlated the MTF will be wider for the blue photon and narrower for the red.

As one might imagine this spectral dependence creates a problem because the system
no longer satisfies the Nyquist sampling criterion. If the system is designed for green light
(λ = 550nm) the blue light (λ = 450nm) may contain frequencies higher than the Nyquist
frequency, these frequencies will be aliased by the detector. On the other hand, that maximum
spatial frequency produced by the red light (λ = 650nm) will be lower than the Nyquist
frequency and therefore the red light will be under-sampled. A discussion of how this is
handled is found in the Approach chapter in Section 4.6.1. This was a topic of major interest
in the research performed by Block (2005).
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The other part of the model that changes with wavelength is the aberrations. The same
intuitive understanding that was used on the scaled pupil function can be used here. Aber-
rations look much smaller for larger wavelengths than smaller wavelengths. For example, a
photon of wavelength 500nm observes a piston error of 1/2 waves; this same piston error for
a wavelength of 1000nm is only 1/4 waves. The pupil function for each band can be redefined
using the equation below:

p(x, y) = |p(x, y)|e
2πi
λ0
WFE(x,y)

(
λ0
λl

)
. (3.79)

An interesting paradox can be observed from the spectral dependence of the MTF and
wavefront error (WFE). As the wavelength of light decreases the high spatial frequencies
get passed to the focal plane, which can manifest higher image quality provided the detector
is capable of sampling the higher spatial frequencies. At the same time this decrease in
wavelength will cause the wavefront error to increase which will have a negative effect on
image quality. Therefore there is a design tradeoff between wavelength, aperture size, and
aberrations that effect image quality. These design parameters will be part of the trade space
for the experiments performed in this thesis. There is a further discussion of this and how it
affects the results in Section 5.2.

3.12 Sparse Aperture Issues

3.12.1 Effective Diameter

Due to the geometry of the sparse aperture type telescopes the support of the encircled MTF
is less than that of the MTF of the filled aperture. To begin this explanation observe Figure
3.15 that shows a triarm aperture overlaying a filled aperture.

When the filled aperture is autocorrelated to produce its MTF the output is a circular
triangle function with a radius (or cutoff frequency, ρc) of D

λf
. The MTF of the triarm however

is not circularly symmetric, so it does not have an obvious ρc. Also, as stated before the
encircled support of the triarm’s maximum MTF, ρmax, is less than the encircled support
of the filled aperture MTF. Figures 3.5 and 3.8 in Section 3.8 shows surface plots of the
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Figure 3.15: Triarm overlaying a filled aperture.

Cassegrain MTF and the triarm MTF.
A thresholded view of the functions is also shown in Figure 3.16.

Figure 3.16: Thresholded Cassegrain MTF and triarm MTF.

Circles with radii equal to the radial distance of the minimum and maximum spatial fre-
quencies, ρmin and ρmax, have been drawn. As discussed before, the cutoff frequency, ρmax,
is directly related to the diameter of the aperture, what then is the diameter of the aperture
when the cutoff frequency is ambiguous like the case presented here with the triarm? Fiete
et al. (2002) has shown a variety of ways to calculate the “effective diameter”, Deff , for
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apertures that don’t produce circularly symmetric MTFs. The effective diameter can then
be defined as the diameter of a filled aperture that gives the same performance as the sparse
aperture. The effective diameter will therefore always be smaller than the encircling diameter
of the sparse-aperture.

At first this may seem as if it is a trivial way of analyzing the performance of a system,
but when one remembers the discussion presented in Section 3.5 one easily understands the
vital importance of the so called “effective diameter” and its relation to the sampling done by
the detector. For a sparse aperture system the detector should not necessarily be linked to the
optics using the method explained in Section 3.5. Instead using the effective diameter may
present a more optimal design. Modeling a system designed around an effective diameter,
rather than an encompassing diameter, will produce images with a potentially high amount
of aliasing. The physical aperture diameter is therefore used in this effort.

3.12.2 Fill Factor vs. Integration Time

When viewing Eq. 3.19 one might believe that the fill factor varies inversely with the inte-
gration time to preserve a given image fidelity. Fiete et al. (2002) has shown that this is not
necessarily the case as he found that integration times must increase by a factor of at least
1/F2. It was determined that different aperture types will require a different change in integra-
tion time for a given amount of reduction in fill factor. For example, a psycho-physical test
showed that for a 1/FP model the Annulus fit with a P = 3.09± 0.1, where the tri-arm fit with
a P = 2.22 ± 0.1. This research effort will not compare different fill factors for sparse aper-
tures, nor will there be any psycho-physical evaluation involved. This section merely shows
the need for a study that compares system parameters, as these models produce unexpected
results.



Chapter 4

Approach

This chapter will discuss how the mathematical tools described in the background and theory
section were used in the implementation of the model. The first section (4.1) provides a broad
overview of the model. The subsequent sections describe the inner workings of the model;
many sections will refer back to Chapter 3 while others may take a new approach toward
some of the problems. Much of the model is similar to the models build/used by Introne
(2004) and Block (2005). Some of the additions to their work include the segmented aper-
ture geometry, a novel way of modeling telescope jitter, flimsy-lightweight mirror aberration
modeling using foward Brownian Motion, and flimsy-lightweight mirror aberration modeling
using an interferogram of a flimsy mirror.

The later sections in this chapter will describe image quality metrics and different tests
that will be used to rank imaging systems based on their performance. By the end of this
chapter the reader will have a good understanding of how the model functions and the tests
that will be used to rank imaging systems.

4.1 Model Overview

At this point it is appropriate to have a general understanding of the model. This section will
be referred to multiple times over the coming chapter. Figure 4.1 is a flow chart showing
the model in its basic form. It begins by resizing the synthetic radiance cube to match the

43



CHAPTER 4. APPROACH 44

GSD of a system with a given altitude, pixel pitch, and focal length. At each spectral band
the image plane is Fourier transformed and multiplied by its respective band of the system
OTF, this action is defined by Eq. 3.4. The output is then inverse Fourier transformed, mul-
tiplied by the transmission of the optics and quantum efficiency of the detector, and summed
over the desired bandpass; in this example, the bandpasses are 400-490nm, 500-590nm, and
600-690nm. The video experiments will use both red, green, blue, and near-infrared bands
(RGBN). The output which is still in units of radiance

[
W
m2sr

]
is operated on by the detector

model which converts the radiance to the detector output which is in units of electrons. Then
various forms of noise that are described in Section 3.6 are added to the signal. The signal is
then passed through an amplifier which converts it from electrons to volts. This signal is then
restored using the Wiener-Helstrom Filter described in Section 3.7 and then finally quantized
to a user specified bit number.

4.2 Systems Integration

At this point all pieces of the system are in place to fully integrate a “simple” single broad
band imaging system from a geosynchronous orbit. To create a system MTF or system PSF
the effects of the aperture, detector, and jitter must be combined. This can be done in the
spatial domain by convolving the psfs:

psfsystem(x, y, λ) = psfaper(x, y, λ) ∗ psfdetector(x, y) ∗ psfjitter(x, y) (4.1)

or this can be done in the frequency domain by multiplying OTFs and MTFs:

OTFsystem(ξ, η, λ) = OTFaper(ξ, η, λ) ·MTFdetector(ξ, η) ·MTFjitter(ξ, η). (4.2)

It is important to note that the psfaper and the OTFaper are spectrally dependent. Each
spectral wavelength’s psf/OTF is operated on by the same detector and jitter functions
because they are not spectrally dependent. Figure 4.2 shows a Cassegrain aperture with no
aberations, a Gaussian jitter function with a σJitter = .1pixels, the detector MTF, and the
system MTF. The plot is along the ξ-axis of the reference band where the optical cutoff
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Figure 4.1: An overview of the model.
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frequency equals the detector sampling frequency at .5 [cycles/pixel].

Figure 4.2: Components of the system MTF

All that is needed is data to apply to the OTFsystem or PSFsystem. The Digital Imaging
Remote Sensing Group at the Rochester Institute of Technology has produced a synthetic
image generation tool called DIRSIG (Digital Imaging and Remote Sensing Image Genera-
tion) [Schott (2007)], which can produce radiometrically accurate at aperture radiance values
(Laper from Section 3.2). Given that this instrument is located in a geosynchronous orbit
(altitude of 35,786 Km) and has a focal length, f, it is possible to calculate the ground sample
distance (GSD) by projecting the pixel size through the imaging system onto the ground us-
ing similar triangles as shown in Figure 4.3. In addition to the GSD, DIRSIG also needs the
altitude and the viewing angle of the telescope. The DIRSIG data, which is in radiance units,
can be applied to Eq. 3.15 which gives the signal in electrons. The additive noise calculated
in Eq. 3.52 can be added to the signal in electrons. This value can then be multiplied by the
electronic and conversion gains and then applied to the PSFSystem or OTFSystem as shown
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Figure 4.3: Similar triangles projection of the pixel onto the ground to calculate the GSD.

below:

I(x, y, λ) = psfSystem(x, y, λ) ∗Gconv ·Gelec · (Se−(x, y, λ) + nelectrons(x, y, λ)). (4.3)

or in the frequency domain as:

IF(ξ, η, λ) = OTFSystem(ξ, η, λ) ·Gconv ·Gelec · (SF ,e−(ξ, η, λ) +Nelectrons(ξ, η, λ)). (4.4)

Doing a convolution operation is computationally expensive, therefore the author recom-
mends the far more efficient frequency domain implementation. Finally, a Wiener filter can
be applied in the frequency domain to restore some of the image quality that was attenuated.

FinalImage(x, y, λ) = F−1{I(F )(ξ, η, λ) ·W (ξ, η, λ)}

= F−1{OTFSystem(ξ, η, λ) ·Gconv ·Gelec · (Se−,F(ξ, η, λ)+

Nelectrons(ξ, η, λ)) ·W (ξ, η, λ)} (4.5)
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The flow chart in Figure 4.4 shows the entire model and all the parameters that can be ad-
justed. Take note of the complexity here and how understanding the importance of each
parameter would require a large amount of experimentation. Understanding all of these pa-
rameters is beyond the scope of this thesis and we have to limit ourselves to GSD; piston, tip,
and tilt aberrations; lightweight optic aberrations; spectral band choice; and SNR.

Figure 4.4: Flow chart of the all the parameters accounted for in the space telescope model.
This gives some idea of the inner workings of the space telescope model; however, for a more
indepth look at which terms are additive and multiplicative refer to Chapter 3.

4.3 Scene and Signal Modeling

DIRSIG allows easy generation of radiometrically accurate synthetic scenes from CAD mod-
els. An atmosphere can be generated using the U.S. Air Force atmospheric modeling soft-
ware MODTRAN [Schott (2007)]. The atmospheric transmission is applied within DIRSIG
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to produce an at aperture spectral radiance cube. Different data sets in this experiment have
different bandpasses. The “tile1” data set (see Figure 4.5) used to make RGB images is cen-
tered over Irondequoit, NY. This data set has 30 bands each with a bandpass of 10nm ranging
from 400-690nm. The tile 4 data set is used to make RGB (see Figure 4.6) and NIR images
for spatial target detection experiment. It has 51 bands each with a bandpass of 10nm ranging
from 400-900nm. The video data from tile 4 has only three bands each of a 100nm band pass
ranging from 400-700nm and a fourth NIR band with a 200nm bandpass ranging from 700-
900nm (see Figure 4.26). The radiance files are then interpolated to the proper pixel pitch
(see Section 4.2) before any processing is done. One attractive feature of the tile1 imagery is
that there are three images with a GSD of 1m, 2m, and 3m, it is therefore possible to produce
imagery with a wide range of sensor altitudes, pixel pitches, aperture diameters, and focal
lengths.

Figure 4.5: Unprocessed RGB image of Tile 1.
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Figure 4.6: Unprocessed RGB image of Tile 4.
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4.4 Detector Modeling

The space telescope imaging simulation tool was made so that it would be flexible when mod-
eling different detectors. This means that detector attributes such as pixel pitch, temperature,
dark current doubling temperature, output sensitivity, read noise, and quantum efficiency,
are inputs to the model. Figure 4.7 shows parameters for various Kodak detectors that have
been modeled. These parameters came from Kodak Specification sheets and are cited in the
bibliography [KAF (2006), KAF (2007a), KAF (2007b), KAF (2007c), KAF (2004), KAF
(2005)]. By modeling these detectors we are ensuring that the system attributes are being

Figure 4.7: Parameters of the modeled detectors.

modeled realistically. The flow chart shown in Figure 4.4 gives some semblance of how
these detector parameters are used. For a more in-depth view of each one of the blocks in
Figure 4.4 turn to Chapter 3 of this thesis.
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4.5 Aperture Modeling

This section will demonstrate how the segmented aperture pupil function was built. The
process for making an individual segment can be broken into two sections: one for the piston,
tip, and tilt (PTT) aberrations and another for the lightweight flimsy style aberrations. The
PTT WFE map is created by first making a plane with random amount of tip, tilt, and piston
bias. This is done by making a plane that has a slope of 1 in the x and y directions and a bias
of 0. This would be a plane defined as:

z = x+ y (4.6)

If a Gaussian random number generator - that has a population mean of 0 and a population
standard deviation of 1 - is used, three random coefficients can be obtained to modify the
slope and bias of the plane. At this point our plane has a RMS error of 1.

z = R1x+R2y +R3 (4.7)

The RMS error can be controlled by multiplying the random coefficients by a standard
deviation (σPTT ). The RMS error is now σPTT :

z = σPTT (R1x+R2y +R3) (4.8)

Finally, the plane can be multiplied by the segment mask shown in Eq. 4.9 (observe
Figure 4.8 to see the planes and segments).

PTT Segment WFE = SegmentMask
(
σPTT (R1x+R2y +R3)

)
(4.9)

Making the WFE map for the flimsy aberrations is somewhat similar. In this case an
interferogram of a lightweight segmented mirror is used to create the initial aberration form
(see Figure 4.9). The values of the initial surface are manipulated by dividing the surface by
its RMS WFE error value and then subtracting the surface’s mean value. This provides us
with a flimsy segmented mirror that has a standard deviation of 1 and a mean of 0, we refer
to it as Segment in Eq. 4.10. This surface can then be multiplied by a random number (R4)



CHAPTER 4. APPROACH 53

(a) 3-dimensional plane (b) Mask of a single segment. (c) A single segment with RMS
PTT WFE (σPTT ).

Figure 4.8: The plane in Figure 4.8(a) is multiplied by the mask of a hexagonal segment
shown in Figure 4.8(b) to produce a segment with PTT WFE shown in Figure 4.8(c).

to assign a random amount of flimsy WFE with a zero mean and standard deviation of 1.
RMS flimsy WFE is introduced by multiplying the array by σflimsy. The surface can then be
rotated some random interval of 60◦ by the operator Rotate where R5 is the random number
assigning the rotation:

Flimsy Segment WFE = Rotate(R5){σflimsy R4 Segment} (4.10)

Finally, the flimsy segment is then added to the PTT segment:

Segment WFE = Flimsy Segment WFE + PTT Segment WFE (4.11)

This process can be repeated to produce 18 hexagonal segments that can be placed in an
array to construct a pupil function (see Figure 4.10). Using this technique the RMS WFE
error caused by piston, tip, tilt, and flimsy aberrations can be controlled using σPTT and
σflimsy.

The reader may have noticed in Section 3.7 that if a Wiener-Helstrom filter is used then
there must be some knowledge of a system transfer function. A major component of the
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(a) Original flimsy mirror interfero-
gram.

(b) Scaled and rotated version
of the original interferogram.
Notice that a negative scaling
value was applied.

(c) The sum of the PTT segment
and the flimsy mirror segment.

Figure 4.9: The interferogram in Figure 4.9(a) is randomly scaled and rotated some random
interval of 60◦ (shown in Figure 4.9(b)). The flimsy mirror WFE is then added to the PTT
WFE to get a segment that contains both PTT and flimsy mirror aberrations (shown in Figure
4.9(c)).

(a) Magnitude (b) WFE

Figure 4.10: This Figure shows the magnitude and WFE of a pupil function that has .1 RMS
PTT WFE and .1 RMS Flimsy WFE.
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system transfer function comes from the pupil function. If there is no WFE knowledge of
the segments then the magnitude of the pupil function can be used in the transfer function
calculation. However, if WFE knowledge is going to be incorporated into the transfer func-
tion then the optimal situation would be to have full knowledge of the pupil’s WFE. This is
usually never the case. In this effort we will incorporate WFE knowledge into the system
transfer function used in the restoration filter. We do this by introducing some random error
to the original pupil function we used in the modeling process. This is simply done by cre-
ating another pupil function using the same techniques as before only this time it will have a
σPPT,WFE knowledge and σflimsy,WFE knowledge (shown in Eq. 4.12 and Eq. 4.13). It is impor-
tant to note that the random number (R5) that determined how much the flimsy mirror would
be rotated is used again in this calculation.

PTT Segment WFE knowledge = SegmentMagnitude
(
σPTT,WFE knowledge

(R6x+R7y +R8)
)

(4.12)

Flimsy Segment WFE knowledge = Rotate(R5){σflimsy,WFE knowledge R9 Segment}
(4.13)

The pupil function knowledge is then computed by adding the PPT knowledge and flimsy
knowledge to the system pupil function.

Segment WFE knowledge = Segment WFE

+ PTT Segment WFE knowledge

+ Flimsy Segment WFE knowledge (4.14)

In the initial stages of this work there was a comparison between having a WFE knowl-
edge to within .05 and .1 RMS [waves] with a reference wavelength of 550nm. The results
showed very little (if any) improvement was made by increasing WFE knowledge from .1 to
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.05. This is discussed in more detail in Section 4.7. All experiments that utilized the Wiener-
Helstrom Filter use pupil functions that have phase knowledge to within .05 PTT and Flimsy
WFE.

4.6 MTF Modeling

This section describes the various types of transfer functions modeled and how they were
adapted to this problem. The first section is perhaps the most important as it is about the
modeling the OTF. The next section presents a novel technique for modeling a jitter MTF.
And finally the last two sections briefly describe the detector MTF modeling and system
OTF modeling, and provide references to other areas of this document that contain more
information.

4.6.1 OTF Modeling

Once the complex pupil function is generated, it is Fourier transformed, applied to Eq. 3.24,
then inverse transformed, and normalized so that the magnitude of the OTF equals 1. The
spectral effects discussed in Section 3.11 are introduced by first creating a new pupil function
that has a phase scaled using Eq. 3.79. Also, as mentioned in Section 3.11 the range of spatial
frequencies that reach the detector is spectrally dependent. A system that is designed for
green light will observe higher spatial frequencies for blue light and lower spatial frequencies
for red light. That means that the blue light is aliased by the detector and the red light is
always undersampled. This model has been chosen to be centered at the green band; Fienup
(1999) describes how the pupil function can be scaled using the equation below:

Ml = M0
λ0

λl
(4.15)

where M0 is the array size of the pupil function at the reference wavelength (λ0). It should
be noted for the following discussion that M0 is also the size of the image. Figure 4.11 will
aid in the description of how the pupil is treated for different wavelengths.

Each one of these pupils was scaled from the original reference wavelength (λ550nm). The
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Figure 4.11: Each figure is for a different spectral band. The OTF from the wavelength < λ0

is cropped and the OTF from the wavelength > λ0 is zero padded.

important thing to remember is that the scale on the OTF of the pupil function (∆ cyles
pixel

) does
not change. Again, this means that the focal plane will observe higher spatial frequencies
for the blue and lower spatial frequencies for the red. This causes aliasing for the blue and
undersampling for the red. Aliasing is done here when the MTF is created; the aliased spatial
frequencies are wrapped around by the autocorrelation and in turn weight the appropriate
lower spatial frequencies. The red pupil function was zero padded so that it had an array size
ofM0, this means that the red channel will never be sampled at the Nyquist frequency (always
undersampled). This is seen in Figure 4.12. Notice how the highest spatial frequencies close
to the ξ and η axis of the blue band OTF are amplified slightly by the aliasing, the green band
OTF stops right at the highest spatial frequency (Nyquist), and the red band will always be
undersampled.

4.6.2 Jitter MTF Modeling

Jitter was described in Section 3.10 as Gaussian and isotropic over Tint. This idea is a rather
poor assumption for a space telescope such as the one being modeled. The reason for this is
that the integration time is more than likely going to be fast (< 1/1000[sec]). Under certain
circumstances the telescope might be made out of lightweight optics which are rather flimsy.
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Figure 4.12: Each figure is a different OTF at the wavelength shown above the diagram.

A flimsy mirror will vibrate at a much lower frequency than a rigid mirror. If the vibrations
are low enough and the integration time is short enough the jitter can no longer be assumed
to be isotropic over the integration time. This means that over Tint the image motion might
look more like a smear.

The JWST has a fine steering mirror that compensates for large line of sight jitter. One
might imagine that there are different amounts (or amplitudes) of jitter at different frequen-
cies. From this reasoning one might then imagine that the telescope has a jitter spectrum.
Structural models of the JWST have shown that the jitter spectrum is closely related to the
telescope’s actuating system (Mather (2004)).

In this modeling example there are currently no available jitter spectra; therefore, a rea-
sonable jitter spectrum has been developed where low frequency movements have large am-
plitudes and high frequency movements have low amplitudes. This could be done in the fre-
quency domain by defining the amplitude as 1/

√
f and defining a random Gaussian phase.

It would be convenient if the user could define the mean and standard deviation of the jitter
function. This is done by first setting the mean to zero through usage of the Central Ordinate
Theorem, which states that the magnitude of the central ordinate defines the mean value of
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the transformed data. Therefore, the central ordinate (f=0) is set to 0.

|J IT T ER(f)| = 1√
f
with |J IT T ER(f = 0)| = 0 (4.16)

Φ{J IT T ER(f)} = Random(0, 1) (4.17)

Random(0, 1) is a random array with a zero mean and standard deviation of 1. This function
can be Fourier transformed into the spatial domain and separated into real and imaginary
parts to define the x and y-axis respectively.

Jitter(x) = Real{F{J IT T ER(f)}} (4.18)

Jitter(y) = Imaginary{F{J IT T ER(f)}} (4.19)

The standard deviation of the jitter for each axis is then calculated and that value is divided
from the jitter function for each respective axis. This simply scales the amplitude of the
jitter function so that its standard deviation is unity. By multiplying the jitter function by the
desired standard deviation the end function has zero mean and a user defined STD.

Jitterσx(x) = σx
Jitter(x)

std(Jitter(x))
(4.20)

Jitterσy(y) = σy
Jitter(y)

std(Jitter(y))
(4.21)

Figure 4.13 shows the 1/
√
f , random phase, x-coordinates, and y-coordinates centered at

255 for a 512x512 array.
When the x-coordinates and y-coordinates are combined they present a plausible line of

sight jitter. This is shown in Figure 4.14.
The jitter function can be converted into a PSF and subsequently into an MTF. This can

be done by creating a “floating pixel” that is centered above the line of sight projection onto
the CCD at any point during the integration time. If the LOS is projected perfectly on the
center of a pixel, 100% of the floating pixel will sit above that projected pixel (refer to Figure
4.15). If the LOS is not perfectly projected onto the center of a pixel, different percentages
of the floating pixel will fall on neighboring pixels (refer to Figure 4.16). These different
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(a) Magnitude (b) Phase

(c) x-axis (d) y-axis

Figure 4.13: The top plots show the magnitude and phase. The bottom plots show the x and
y coordinates for the jitter over 1/1000 of a second.
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Figure 4.14: Plausible jitter over 1/1000 of a second.

percentages can be used to form a PSF for that one moment in time because it shows where a
point on the ground would spread its energy if there were perfect optics. If for each movement
the percentages are calculated, saved, and then finally summed to create a cumulative PSF
over Tint (refer to Figure 4.17). This cumulative PSF can then be Fourier transformed and
normalized to produce a MTFJitter (refer to Figure 4.18).

It is worth mentioning that the example presented above produced an MTF that looks
quite Gaussian, which is just what the traditional modeling approach would have produced.
The importance here is that this is a result of the prescribed jitter spectrum; another jitter
spectrum might produce an MTF that looks nothing like a Gaussian. Using this technique in
another potential situation where the integration time is on the order of a “jitter oscillation”
we would find this technique produced a smear. Or with a few simple modifications this
technique could also be used on systems where the x and y jitter spectra are significantly
different.

This technique could be improved by using the system PSF instead of a floating pixel.
The impulse response of the system is not going to be a square, and therefore this technique
is mildly inaccurate.
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Figure 4.15: The LOS is projected perfectly onto the center of a pixel. The orange region is
the floating pixel.

Figure 4.16: The LOS is not projected onto the center of a pixel. Here there are different
percentages of the floating pixel spread over four pixels.
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Figure 4.17: The cumulative PSF.

Figure 4.18: The MTFJitter.
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4.6.3 Detector MTF Modeling

The detector MTF is modeled as was described in Section 3.4.

4.6.4 The System OTF

The system OTF is created by first replicating the detector and jitter MTFs so that there is one
for each spectral band and then multiplying the detector MTF, jitter MTF, and the spectral
OTF together to form a system OTF for each spectral band. This is shown below in Figure
4.19.

Figure 4.19: The system OTF.

4.7 Image Restoration via Wiener Filter

The final stage before image output is to apply the Wiener-Helstrom Restoration Filter de-
scribed in Section 3.7. It may be necessary to adjust the noise-to-signal power ratio in Eq.
3.72 to improve the final image sharpness. If phase knowledge of the mirrors is available it
can be used in the calculation of the transfer function. If it is not available the unaberratted
pupil function should be used. Initial motion detection experiments showed us that changing
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the pupil function phase knowledge from .05 RMS WFE to .1 RMS WFE did not produce
any noticeable improvement in the % of motion detected.

The restoration filter does have positive effects on the motion detection experiments. De-
termining the noise-to-signal power ratio was done by first stepping the noise-to-signal power
ratio incrementally from 0 to 2 in increments of .5 and selecting the minimum value. Then
the process was repeated from .1 to .4 in increments of .1. And finally from .27 to .33 in
increments of .01. All experiments were done with moderate aberrations (RMS PTT WFE of
.15 [waves] and RMS flimsy WFE of .3 [waves]), good pupil phase knowledge (RMS PTT
WFE knowledge of .5 [waves] and RMS flimsy WFE knowledge of .5 [waves]), and a mod-
erate SNR of 50. The best motion detection was achieved by a noise-to-signal power ratio of
.3.

4.8 Image Quality

The main objective of this project is to compare and contrast a variety of different imaging
scenarios. Perhaps the most accurate method would be to ask an analyst to view images
from different systems and then rank them in terms of image quality. Unfortunately, these re-
sources are not available and a more automated approach is necessary. Traditionally systems
designers have relied on the Generalized Image Quality Equation (GIQE) to provide them
with an estimate of image quality. This document will utilize the GIQE for some of the tests
carried out. Other MTF based techniques are proposed as well. The objective here is to show
that the GIQE does not work well with poorly behaved MTFs. This will hopefully provide
an understanding of why an image utility approach (see section 4.9) is a better technique for
assessing system performance.

4.8.1 The Generalized Image Quality Equation (GIQE)

The traditional approach to determining image quality associated with reconnaissance sys-
tems is the National Imagery Interpretability Scale (NIIRS) [Schott (2007)]. The scale relates
the analyst’s ability to perform exploitation tasks and ranges from 0 to 9, where 0 means the
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imagery is uninterpretable and 9 means that small objects such as spikes on railroad ties are
viewable. The scale is designed so that fractional values of .2 are usually perceptible.

Since the introduction of the NIIRS there has been a drive to relate system design parame-
ters to the NIIRS value. Leachtenauer et al. (1997) developed the General Image Quality Equation

(GIQE) to relate system design parameters or measurable quantities within the image to the
subjective NIIRS system. The GIQE is written as:

NIIRS = 10.251−aLog10GSDGM+bLog10RERGM−0.656HGM−3.44G/SNR (4.22)

where GSDGM is the geometric mean of the GSD in inches, RERGM is the geometric mean
of the normalized relative edge response (RER),HGM is the geometric mean height overshoot
caused by the edge sharpening, G is the gain due to the edge sharpening, SNR is the signal
to noise ratio, a = 3.32 if RER ≥ 0.9 and 3.16 if RER < 0.9, and b = 1.559 if RER ≥ 0.9
and 2.817 if RER < 0.9. Descriptions of how to obtain these values is well documented in
Leachtenauer et al. (1997) and Schott (2007).

There is a problem with this method. If the reader looks back to Section 3.8, all of the non-
cicularly symmetric apertures have non-circular MTFs, this means that the RER will change
depending on the direction of the edge and thereby produce inaccurate ∆NIIRS values. This
was demonstrated in Fiete et al. (2002) where there were large errors in ∆NIIRS values for
the triarm and Golay 6 aperture types. Fiete calls for an additional study to formulate a new
image quality equation that better suites sparse apertures.

A portion of Fiete et al. (2002)’s work will be repeated, however this time aberrated seg-
mented apertures will be tested in place of sparse systems. With the introduction of aberra-
tions the problem becomes somewhat more complicated because of global tip and tilt errors.
Tip and tilt errors cause the center of the edge spread function to shift making it impossible
to consistently determine the RER and the mean height overshoot. In order to get around
this problem a different approach must be taken; the RER is the slope of the normalized edge
spread function. Traditionally the RER is determined by blurring an oversampled edge with
the system MTF and then computing the slope between the center pixel and 1.25 pixels to ei-
ther side of the center. In this case because the center pixel moves due to global tip tilt errors
a different technique is employed in determining the RER. The normalized edge response can
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be found by numerically integrating the psf (see Figure 4.20(a) and Figure 4.20(b)) along
the x and y axis and then dividing by the total area under the psf slice. The RER is deter-
mined by taking the numerical derivative (see Figure 4.20(c)) of the normalized edge spread
function and then finding the maximum value.

The height edge overshoot (H) is computed by applying the Wiener Filter to the edge
(see Figure 4.20(d)) and taking the maximum value of the sharpened edge.

The next term that had to be determined was the noise gain which is computed from
the 3x3 MTFC restoration kernel. Unfortunately, the kernel could not be determined. The
approach for determining the kernel was to Fourier Transform the Wiener Filter and then crop
out a 3x3 kernel around the central ordinate. This technique proved to be unsuccessful and
unrealistic noise gain terms were obtained. Therefore all GIQE results given in this research
effort are for high SNR scenarios where noise is not an issue (where it would create less than
.2 ∆NIIRS).

If we take the values from the plots in Figure 4.20 and plug them into Eq. 4.23 then we
get the answer displayed below. The author believes that this is about right for the imagery
created from such a system [see Figure 4.21].

NIIRS = 10.251− 3.16 ∗ Log10 ∗ 39.4 + 2.817 ∗ Log10 ∗ 1.5 = 2.75 (4.23)

4.8.2 Other Approaches for Assessing Image Quality

There are several other ways of assessing image quality using image based parameters. The
Image Quality Model (IQM) judges image information content from the power spectrum of
the image Leachtenauer and Driggers (2001). Another approach that might prove useful is
using an idea derived from an analogue optical power spectrum classifier called a digital ring-
wedge detector [Leachtenauer and Driggers (2001)]. The ring-wedge is composed of wedge
shaped detectors on half a circle and ring shaped detectors on the other half of the circle, it
is used together with neural network software on the FFT of the image. This technique has
proven to be successful in sorting JPEG and gaussian blurred images with an accuracy of a
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(a) Point Spread Function (b) Edge Spread Function

(c) Edge Slope (d) Height Edge Overshoot

Figure 4.20: This figure contains several plots important to understanding the GIQE.
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Figure 4.21: This is a simulated blue band image of a swept wing aircraft created by the
imaging system that was analyzed by GIQE in Eq. 4.23.

95%. This might prove successful because of the shape of the FFT of the image will certainly
have some of the attributes that the non-circularly symmetric MTFs possessed.

A novel parameter based approach might involve the digital ring edge detector (or some
variant) used to assert the image quality from the system MTF. By using the pixel pitch and
the focal length of the system it is possible to convert the MTF of the system into ground
based units of cycles/meter (observe Eq. 4.24). In words, the MTF would be scaled by the
pixel pitch, focal length, and sensor altitude. The area under the MTF would then have some
indication of the image quality of the system.

MTF

(
ρground

[
cycles

m

])
= MTF

(
ρfocalplane

[
cycles

pixel

]
∗ focallength[m]

pixelpitch
[

m
pixel

]∗ 1

Altitude[m]

)
(4.24)

Where ρ is the spatial frequency value in units of
[
cycles
pixel

]
on the focal plane and units of[

cycles
m

]
on the ground. This can be used as an image quality metric if it is weighted by

ρground and integrated under.

Image Quality =

∫ ρmax

0

ρground ∗MTF (ρground)dρground (4.25)

This technique is based upon the MTF and therefore does not include the effects of noise.
This is a potential technique for quantifying image quality, but was not evaluated in this
effort.
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4.9 Alternative Techniques for Judging System Perfomance
via Image Utility

In Section 4.8.1, it was referenced that Fiete et al. (2002) demonstrated that GIQE is an unre-
liable technique for estimating system performance for sparse aperture telescopes. Another
method of characterizing image quality that uses the MTF was also proposed. In this section
we take another look at how to solve the problem, not from an image quality stand point
but more an image utility stand point. This is done using spatial target detection and video
detection to judge an imaging scenario’s ability to carry out specific tasks. For example, the
first experiment will examine how mirror aberration causes the detectability of an object to
decrease using only spatial characteristics, and the second experiment will use motion and
some spectral information to find the point at which motion can no longer be detected.

4.9.1 Spatial Target Detection

Using spatial target detection algorithms, such as a matched filter along with a peak-to-
sidelobe ratio (PSR) post processing step, users can find small objects (< 150 pixels) in
cluttered noisy scenes [Easton (2005)]. Assuming one has an idea of the shape of a target
one could create a type of image quality metric that would be based on a system’s ability to
recognize shapes.

4.9.1.1 Matched Filter

The matched filter is used to detect known signals in clutter [Easton (2005)]. A measured
signal g(x) is made up of a known signal f(x) positioned at some unknown coordinate x0

with noise n(x) (see Eq. 4.26).

g(x) = f(x− x0) + n(x) (4.26)

The desired result is to construct a filter m(x) that when applied to g(x) will reveal the
location of x0. The impulse response, m(x), will be a function of the known signal, f(x),
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and is commonly referred to as the “matched filter”. This is shown below in Eq. 4.27.

g(x) ∗m(x) = f(x− x0) ∗m(x) + n(x) ∗m(x) (4.27)

The result of this convolution will be used to identify the location of x0 by taking the maxi-
mum of the correlation plane.

x0 = max(g(x) ∗m(x)) (4.28)

It is possible to derive an ideal matched filter by thinking of two criteria that an ideal
matched filter would have. The first is that when the matched filter passes over x0 it would
have an infinite amplitude and a relatively small (ideally zero) amplitude everywhere else.
This can be expressed using the Dirac Delta function:

g(x) ∗m(x) = δ(x− x0) ∗ f(x) ∗mideal(x) + n(x) ∗mideal(x)

= δ(x− x0) + 0(x). (4.29)

This expression can be restated in the frequency domain as:

G(ξ) ∗Mideal(ξ) = (F (ξ)e−2πiξx0) ·Mideal(ξ) +N(ξ) ·Mideal(ξ)

= e−2πiξx0 + 0(ξ). (4.30)

So from Eq. 4.29 and Eq. 4.30 we can see that two conditions must be satisfied in both the
spatial and frequency domains:

f(x) ∗mideal(x) = δ(x) =⇒ F{} =⇒ F (ξ) ·Mideal(ξ) = 1(ξ) (4.31)

n(x) ∗mideal(x) = 0(x) =⇒ F{} =⇒ N(ξ) ·Mideal(ξ) = 0(ξ). (4.32)

The ideal filter in the Fourier domain is evaluated as:

Mideal =
1

F (ξ)
=

F ∗(ξ)

|F (ξ)|2
=
e−iΦ{F (ξ)}

|F (ξ)|
. (4.33)
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This is derived in the spatial domain as:

mideal = F−1{F ∗(ξ)} ∗ F−1

{
1

|F (ξ)|2

}
= f ∗(−x) ∗ F−1

{
1

|F (ξ)|2

}
. (4.34)

Equations 4.33 and 4.34 clearly show the problem with the ideal matched filter. If g(x)

contains wideband random noise the filter will amplify noise frequencies at any frequency
where |F (ξ)| < 1. One way of obviating this problem is to throw out the second term in Eq.
4.34:

M(ξ) = F ∗(ξ) =⇒ m(x) = f ∗(−x). (4.35)

The correlation plane will often contain “false” peaks just as high as the peak created
by the actual object. In this case simply taking the maximum of the correlation plane (as
specified in Eq. 4.28) will often result in a false alarm. Luckily these erroneous peaks will
also have sidelobes that can be used to our advantage in a post-processing step shown by
Kumar et al. (2005). This is simply done by convolving a window over the correlation plane,
and within the window finding the standard deviation and mean, which can be used with
the pixel value the window is centered over (labeled as ”peak” in Eq. 4.36) to calculate a
peak-to-sidelobe ratio. The user can define the size of the window from which the PSR is
calculated. In this effort the window size was the same size and dimension as the array that
held the target for the matched filter.

PSR =
peak − µ

σ
(4.36)

This makes perfect sense because an area with sidelobes will have a large standard de-
viation and a large mean which will subsequently reduce the PSR value. Conversely, the
correlation plane over a target will have no sidelobes and therefore a lower mean and a lower
standard deviation, which will result in a higher PSR.

An example of this procedure is provided in the following paragraphs and figures. The
matched filter is applied to a green band (500− 590nm) “imaged” by a system with primary
aperture aberrations of .2 PTT and .2 flimsy WFE. The first step taken is to isolate the target
(shown in Figure 4.22(a)) and threshold it (shown in Figure 4.22(b)). If you have knowledge
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of your system OTF it can be used to degrade the target to produce an estimate of what it
might look like (shown in Figure 4.22(c), in this case we have .05 RMS WFE knowledge).

(a) Original jet tar-
get

(b) Thresholded jet
target

(c) Degraded esti-
mate of jet target

Figure 4.22: This figure shows several zoomed views the jet target at various stages of the
algorithm.

The original image (shown in Figure 4.23(a)) is then degraded using the model (shown in
Figure 4.23(b)) and the matched filter is applied. Figure 4.23(c) shows the correlation plane
of the matched filter. Notice that the peak above the target does not come to a sharp point, to
analyze how sharp the peak is we can use the PSR. Another thing to point out is that the values
above the buildings in the upper right of the image are noticeably higher than the target value.
These peaks would create false alarms in a target detection scenario; however, the after the
PSR is applied these false alarms are reduced to values below target value. This can be seen
in both Figure 4.23(d) and Figure 4.24. Figure 4.24 shows the column of correlation values
and PSR values that the target sits in. Notice for the correlation plane values (shown in black)
at approximately location 280 there is a spike corresponding to the target. Also notice the
peak at approximately location 460, this peak corresponds to the peak caused by the building.
After the PSR is applied the value over the target remains relatively high (observe red line)
while the value over the building is comparatively much lower. There is a further discussion
of how the target PSR value stands in relation to the PSR values of the scene (expressed in
standard deviations from the mean PSR value) in Section 5.4.

4.9.1.2 The Spatial Target Detection Experiment

The match filter relies heavily on good training data, this experiment will use synthetic
DIRSIG data which allow us to build a very good matched filter. In this experiment a fighter
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(a) Original green band. (b) Degraded green band.

(c) Correlation plane. (d) PSR plane.

Figure 4.23: This figure show various stages of the input image as it is fed through this
experiment.
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Figure 4.24: .

jet (see Figure 4.22) will be the target of interest and the main goal will be to observe the
peak corresponding to the target in the PSR plane for a multitude of imaging sensors. By
observing the peak over the target in the PSR plane for a given system scenario one could get
an idea of how well that system performs. The operator could then alter one parameter in the
system model, output another image, apply the matched filter and again observe the height
of the peak in the PSR plane. This process could be repeated many times (observe Figure
4.25) By recording all of the input values and heights of the PSR one could rank the different
imaging systems based on their ability to perform spatial target detection. There was some
interest in repeating these tests with the object rotated and/or scaled, but this was dismissed
because we are only interested in the relative performance between systems. We therefore
decided we would know the scaling and rotation and that we didn’t need to look into any
rotation or scaling invariant detectors.



CHAPTER 4. APPROACH 76

Figure 4.25: The output peak values can be used to understand the system parameters impor-
tant to spatial target detection.

4.9.2 Motion Detection

Another way of quantifying the potential utility of an imaging system is to process video
data with the system model and then use the degraded output video with a motion detec-
tion algorithm that will give us some information about how much motion was detected. A
DIRSIG video has been rendered that includes moving cars, trucks, a battle tank, helicopter,
a flying fighter jet, and several walking people (see 4.26). This video signal can easily be
broken up frame by frame and processed through the space telescope simulation tool. After
the video is run through the space telescope simulation tool it can be used with a motion
detection algorithm that Andrew Adams developed (Adams (2008)). Because the data came
from DIRSIG it is trivial to generate truth data that the algorithm will use to determine the
number of false alarms and missed detections. These two output values can be used to rank a
system’s performance.
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Figure 4.26: This is a NIR image with the moving objects labeled (except for the people).
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4.9.2.1 Motion Detection Algorithm

This section will provide a brief overview of Andrew Adams’s motion detection algorithm.
Figure 4.27 describes the algorithm in its most basic form. The author will refer back to this
figure through out the description of the motion detection algorithm.

Figure 4.27: Motion detection algorithm flowchart.

The interesting thing about this algorithm is that it is a hybrid algorithm that uses both
temporal and spectral information. The algorithm’s foundation depends upon two simplifying
assumptions: first, the scene collection was assumed to be from a stationary platform, and
second, the pixels were assumed to be registered to within one pixel of accuracy.

The algorithm begins by breaking each spectral image into 3x3 blocks (in this example).
It is within these blocks that the algorithm will “look” for motion over several temporal
frames. However, before it does this it first uses information from 1 (or more) frame(s) ahead
and 1 (or more) frame(s) behind its current temporal location. The pixels within each block
are then reordered into spatiotemporal texture (SP) vectors as shown in Figure 4.28. This is
also shown in the first box of Figure 4.27.

Figure 4.28 shows the single band case looking ahead and behind 1 frame, we therefore
have 27 values. If there are more bands, for example 3 bands, we would have 81 brightness
values. So turning this single band motion detection algorithm into a multi-spectral algorithm
is quite easy.

The dimensionality is reduced by doing Principle Components Analysis (PCA) on the
SP-vectors. This is done by processing one spatial block location (i,j) over the entire video
sequence (consisting of N frames). The SP vectors first are placed in the rows of a N x
27 matrix (for the single band case). PCA is then performed on the rows of this matrix
which reduces the dimensionality to N x k, where k is the number of principle components
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Figure 4.28: The diagram above shows how the image is broken up into 3x3 blocks. And
then how the 3x3 blocks are reordered into vectors.

that are kept. Observe Figure 4.29 where k = 10. To restate this more clearly, we had 27
brightness values that represented 1 block over one band at 3 different times, and if there
is any motion within this block there will be some variability within these 27 brightness
values. If PCA is performed on these 27 values and it is found that only 10 values are needed
to accurately explain the motion in the block, the motion detection algorithm will become
far more computationally efficient. So just to again restate what is going on here with an
example. Say we have 300x300 pixel images over 3 bands at 3 times, this would get broken
into 3x3 blocks, the resulting PCA output would be reordered into one 100x100x10 PCA
image. Each pixel in the PCA image would represent the variability over the three bands over
the three times within the 3 x 3 block.

The motion detection part occurs when the algorithm looks ahead and behind the current
frame. The algorithm takes a pixel in the PCA stack - which consists of 10 PCA values - for
the current frame, the past three frames, and the future three frames, and reorders each ”PCA
pixel” into the rows of a 7x10 matrix, where 7 represents the 7 frames and 10 represents
the 10 PCA values (observe Figure 4.30). The (10x10) covariance of the (7x10) array is
computed. Basically, this is just a simple measure of the variability between the 10 PCA
terms. Finally, the largest eigenvalue of this covariance matrix is computed and labeled as
the ”motion measure” (mm). Standing back what we have just done is simple, we broke
the frame up into little blocks and labeled each block with a single mm value where a large
mm value corresponds to a large amount of motion. Of course, there will be noise in the
sensor, and the trick now is to label motion that is not noise. This is done using the dynamic
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Figure 4.29: This diagram shows how the block data is placed into the rows of an N x 27
matrix. PCA is then performed on the rows of the data and the dimensionality is reduced
from N x 27 to N x 10.

threshold.

Figure 4.30: This figure shows the reordering of the PCA image for 3 frames ahead and 3
frames behind the current frame.

The dynamic threshold looks at the mm-value of the current block and uses information
of all previous mm-values for that block (observe Eq. 4.37). If it exceeds the threshold C1

the block is labeled as containing motion.

f(t)−mean(f(t0, t1, ...t))

std(f(t0, t1, ...t))
< C1 (4.37)

The block will remain labeled as containing motion until the computed value falls below
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C2.
f(t)−mean(f(t0, t1, ...t))

std(f(t0, t1, ...t))
< C1 where C2 < C1 (4.38)

Adams (2008) gives common values for C1 and C2 as 50 and 10 respectively.
The final step is to convert the detection data from pixel space to object space. Object

space is chosen over pixel space because this is what analysts care most about. Object space
pertains to the objects moving through the scene NOT the pixels that make up the moving
object. It doesn’t matter if an object fills 100 pixels or 1 pixel, the algorithm will detect and
record only one object. Ultimately, it will reduce the number of false alarms because in pixel
space if an object is blurred the detection algorithm will falsely detect pixels adjacent to the
object. In other words, in object space we don’t concern ourselves with erroneous detections
at the edge of the objects.

To convert the data from pixel space to object space we first reduce the size of the motion
map; by doing this the singular detections that are usually caused by white noise are removed.
The reduced motion map is then dilated to its original size, the remaining motion map con-
tains only the large moving objects. Doing this reduction and dilation is analogous to low
pass filtering the motion map. And because of this low pass filtering the blobs that remain
have lost much of their fine (high frequency) detail. Some of the original features can be
restored by comparing the filtered motion map to the original motion map and then eroding
the larger ‘rough’ blobs to match the original ones. The resulting motion map contains only
the objects that are larger than or equal in size to the reduction factor. The reduction factor
is a factor that describes the amount that the original motion map is resized. For example, a
reduction factor of 2 would reduce a 2x2 object to 1x1.

Because we are using synthetic imagery that contains no noise or global scene motion it is
easy to create motion truth. Motion truth data was created by first averaging 20 unprocessed
frames around the current frame (that is 10 frames ahead and 10 frames behind the current
frame). By differencing the average and the current frame the pixels that contain motion
will be the only pixels with any value. The differenced frame can then be thresholded and the
pixels containing motion can be given a numerical label. Once this is done Adams’s algorithm
will use the motion truth to present a number of missed detections and false alarms. These
two numbers can be used to calculate the percentage of moving objects detected.
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4.9.2.2 Output Interpretation

The algorithm will use the motion truth data to count the total number of moving objects
in all the frames. It then repeats this, counting the total number of moving objects in the
detected motion map. Then it compares the truth motion map to the detected motion map
and counts the number of correctly identified moving objects. Using this information the
algorithm can compute the percentage of detected motion and the percentage of false alarms.
The percentage of detected motion is calculated as:

%DetectedMotion = 100 ∗
(

1− TotalTruth− TotalCorrect
TotalTruth

)
(4.39)

The percentage of false alarms is calculated as:

%FalseAlarms = 100 ∗
(

1− TotalDetected− TotalCorrect
TotalTruth

)
(4.40)



Chapter 5

Results

The results presented in this section will begin with a study of space telescope capabilities
and demonstrate the model’s effectiveness as a tool for this problem. It then covers the results
from the motion detection experiments and uses several different visualization techniques to
illustrate the main results. Lastly it covers the spatial target detection and GIQE results.

It is important to say that when the author writes about a particular amount of aberration,
such as ‘.3 RMS PTT aberration’ the units are in waves with a reference wavelength of
550nm. This means that ‘.3 RMS PTT aberration’ could be more clearly stated as ‘.3 RMS
waves of PTT aberration with a reference wavelength of 550nm’.

5.1 Practical Space Telescope Capabilities

This section will provide several examples of segmented aperture space telescopes and their
capabilities in areas such as field of view, GSD and SNR. The objective of this section is to
give the reader an understanding of the capabilities of these systems. Hopefully they will
understand that a lot can be done to change the design of these telescopes. The very few
examples presented here should give a general idea of some potential design parameters and
the characteristics these systems will possesses. The effects of aperture aberrations will not
be considered here.

83
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5.1.1 Space Telescope Field of View

The telescope can be designed so that multiple sensors can be placed on the focal plane.
A diagram of the James Webb Space Telescope’s (JWST) focal plane is below in Figure
5.1. Any detector placed within the orange region of the focal plane will produce clean
images even at the shortest spectral wavelengths the JWST is capable of operating at. The
field of view can be determined by simple math: (| − 5.7| + |3.4|) ∗ (| − 9.1| + |9.1|) =

165.6arcmin2 This doesn’t take into account the regions that lie outside of the focal plane
which are marked as black, so this value is not accurate but it does give the reader an idea
of size of FOV. The amount of ground this would cover at a geo-stationary orbit (35,786,000
[m]) can be determined easily. An arc minute is 1

60
of a degree. The horizontal length is

tan(18.2
60

)∗35, 786, 000[m] = 189458.77[m] = 189.5[km] and the vertical length is tan(9.1
60

)∗
35, 786, 000[m] = 94728.72[m] = 94.7[km].

Figure 5.1: Focal Plane of the JWST [Gardner and et. al. (2006)]

The systems described in this paper operate at lower spectral wavelengths than the JWST,
and the amount of allowable error off the optical axis will be reduced; therefore the tele-
scope will likely have a smaller focal plane and subsequently a smaller FOV. Much of this
discussion really depends on the design. For the purpose of this discussion we will assign a
conservative value for the system’s FOV spanning 10 arc minutes in the horizontal direction
and 5 arc minutes in the vertical direction. If we converted this to kilometers on the ground
it would be tan(10

60
) ∗ 35, 786, 000[m] = 104097.55[m] = 104.1[km] and the vertical length
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would be tan( 5
60

) ∗ 35, 786, 000[m] = 52048.664[m] = 52.0[km]. Just so the reader gets
an idea of the amount of land that is covered by this FOV observe the image of a 52[km] x
104[km] section of New England that was taken from a Google Earth image in Figure 5.2.
This figure shows downstate New York, and Northern New Jersey; it was chosen because it is
a well known part of the world that readers will likely be familiar with. The telescope would
be capable of viewing any land within this FOV immediately. The resolution of the images
depend on a several parameters lightly discussed in the next section (5.1.2).

Figure 5.2: This figure shows the amount of land that is covered by the FOV.
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5.1.2 Segmented Aperture System Examples

This section is included so that in the following sections when the reader sees a system that
has 1m GSD and an SNR of 100 they understand what system parameters are necessary to
build such a system. The data that was used was created by DIRSIG and models a suburban
neighborhood on the equator during the summer at noon. Looking back to Figure 4.4, all
parameters in this figure were kept constant except the values showing change in Figure 5.3.
All detectors modeled here used the same read and dark noise values for each scenario.

Figure 5.3: Plausible system parameters.

5.2 Effects of Aberrations and Spectral Wavelength

Once work began with the more aberrated apertures it was apparent there was an interesting
paradox between the optical cutoff frequency and the aperture aberrations. This can be better
understood by viewing the equation for optical cutoff frequency:

νc =
D

λlf
=

1

λlf#
. (5.1)
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where D is the diameter of the primary mirror, λl is the wavelength, and f is the focal length.
The equation for the pupil function is:

p(x, y) = |p(x, y)|e
2πi
λ0
WFE(x,y)

(
λ0
λl

)
. (5.2)

where λ0 is the reference wavelength and the phase error is proportional to 1
λl

. The important
thing to notice is that as the wavelength increases the cutoff frequency decreases, this means
that only progressively lower valued spatial frequencies will be passed to the focal plane - de-
creasing image quality. Conversely an increase in wavelength causes the apparent wavefront
error

(
WFE
λ0

λ0

λl

)
from Eq. 5.2 to decrease, which results in an increase of image quality. We

find that in severely aberrated scenarios this becomes quite important. An example of this is
covered in the following paragraphs.

Figure 5.4(a) shows the MTF of the blue (450nm) band calculated from a highly aberrated
pupil function. The cutoff frequency extends beyond the Nyquist sampling frequency, this
results in some aliasing near the ξ and η axis. Note that the MTF is hardly passing any energy
at the mid and high spatial frequencies; this is a result of the large phase error caused by using
a relatively small (450nm) wavelength compared to the reference wavelength (550nm). The
effects of this are detrimental to the sharpness of the image. Figure 5.4(b) is a gray scale
image of the unrestored blue band; notice how the roads and buildings are not clear.

Figure 5.5(a) gives us some perspective on how the apparent aberration and spectral wave-
length can impact image sharpness. Here (at 800nm) we find that the cutoff frequency is much
lower. However, the apparent aberrations levels are now diminished and the effects of these
aberrations are not nearly as sever; this allows the MTF to inflate and pass mid-range spatial
frequencies. Notice in Figure 5.5(b) how the unrestored image shows the roads and buildings
are clearer and in the bottom center a swept wing airplane is now visible. The end result is that
the image sharpness for the NIR band is visibly better than the blue band. Image sharpness
is in many ways directly related to the information content of the image. Having knowledge
of the aberration level can be very useful because an estimate of image-information content
can be made. And in this case we can find out at what levels of aberration a band should be
dropped from a data set.
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(a) System MTF (b) Blue channel.

Figure 5.4: This figure shows MTF for the blue channel and a grey scale image of the unre-
stored blue channel.

(a) System MTF (b) NIR channel.

Figure 5.5: The MTF for the NIR channel and a grey scale image of the unrestored NIR
channel.
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5.3 Results from Motion Detection Experiments

The following subsections will look at the data from a variety of different ways. Mostly
the sections will compare different band configurations, SNR levels, and GSD using surface
plots where the x and y axis represent flimsy and PTT aberration levels respectively, while he
z-axis will represent the % of motion detection. The last subsection utilizes iso-performance
plots to visualize the same data in another insightful way.

The data used in this experiment is appropriate because it has objects of all different sizes,
shapes, and spectral character - we assumed that having this kind of a varied environment
would give us a general idea of a imaging scenarios capability. The reader can imagine
that if all the objects were all the same shape, size, spectral character, and against the same
background, that once a certain limit of aberration level, GSD, or band configuration, were
approached the percentage of motion detection would drop dramatically.

The moving objects include two people, two cars, a convoy of cars and trucks, a battle
tank, a helicopter, and a swept wing aircraft. All of these objects are accounted for in the
motion truth. The reader might notice that even at the very best of imaging scenarios the
highest % of motion detected is 80%. This 20% left undetected is the walking people which
are too small to detect at 1m GSD. Acronyms were used to name the band combinations -
“B” is “blue”, “R” is “red”, “G” is “green”, and “N” is “near-infrared”. “BGRN” would be a
system that utilized blue, green, red, and near-infrared bands.

5.3.1 Comparison of 1m GSD, BGRN, and BGR Systems

This section compares BGRN and BGR systems at 1m GSD and three SNR levels. Each
figure below has two subplots that show the front and side profiles of the motion detection
data. The plots reveal a few general results that we would hope to find. In all cases as the
aberrations increase the % of motion detection decreases. Notice that even at the lowest
aberration levels the people are not detected and the highest % of motion detection is about
80%. An interesting result that can be seen in all figures is that the flimsy aberrations are not
nearly as detrimental to motion detection as PTT aberrations. An example of this can be seen
on the the BGRN surface in Figure 5.6(a). This figure shows that .1 RMS PTT and .6 RMS
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flimsy system produces an equal % of detection as a .3 RMS PTT and .1 RMS flimsy system
would - slightly under 60% detection. When comparing the flimsy aberrations to the PTT,
the flimsy aberrations will have about twice as high % of motion detection for equal amounts
of RMS WFE. This will be seen in every example presented in this document.

Many interesting things begin to happen when the SNR is lowered from 100 to 50 and
then lowered again from 50 to 25. Figure 5.6 shows the data for the SNR of 100 scenario.
We see that the BGRN setup produces a higher percentage of detection than the BGR. This
is because adding the NIR band increases the amount of information that is useful to the
motion detection algorithm. Figure 5.6(b) shows us a side profile of the data. Observe the
BGR surface and notice that once aberrations increase to .3 RMS flimsy and .2 RMS PTT
there is a rapid decline in motion detection. Thinking back to Eq. 5.2 we might expect this;
as aberration levels increase linearly their effect on the pupil function is exponential and they
therefore cause a rapid decrease in sharpness. The BGRN system is helped by the NIR band;
the NIR band which is centered around 800nm has a longer wavelength and is therefore not
affected as drastically by the aberrations. This is also a relationship that was predicted after
viewing Eq. 5.2. In summary, the results presented here in this high SNR case could be
easily understood and even predicted after viewing a few simple equations. The following
results, which express system performance at lower SNR show that these systems have a
more complex behavior.

Figure 5.7 shows BGRN and BGR systems with 1m GSD at an SNR of 50. At low
aberration levels the BGR system outperforms the BGRN. As aberration levels increase the
two systems have similar performance levels. Finally, as aberrations increase to high levels
we see that the BGRN system outperforms the BGR. To understand this we must think back
to the motion detection algorithm and realize that adding more bands doesn’t necessarily
provide more information. In fact, when working at low aberration levels adding the NIR
band actually adds more noise than useful information to the data. This causes the % motion
detection to drop. As aberration levels increase, the introduction of the NIR band provides no
additional information to the data and the BGRN and BGR systems therefore produce equal
performance. As aberration levels increase even further the NIR band is only band that still
contains usable information, this increase in the % detection causes superior performance in
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the BGRN system.
As SNR decreases to 25 the overall performance drops substantially; it is therefore only

necessary to test low and mid range aberration levels. This can be seen in Figure 5.8. In this
test we find that BGR systems consistently outperform the BGRN; this is a complete reversal
from what was observed when the SNR was 100. What we find in this case is that the NIR
band always brings more noise than information to the data. This causes the performance to
decrease under all levels of aberration.

(a) Front view (b) Side view

Figure 5.6: BGRN and BGR, SNR = 100, and GSD = 1m.

5.3.2 Comparison of 1m GSD, BGRN, and RN Systems

This section compares BGRN and RN systems that have 1m GSD, allowing us to examine
the importance of the blue and green bands. This experiment was done because the blue and
green bands become optically degraded first as aberration levels increase.

When looking at Figure 5.9 we see that if the SNR equals 100 and aberration levels are
low the BGRN systems have a higher % of motion detection than the RN systems. This
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(a) Front view (b) Side view

Figure 5.7: BGRN and BGR, SNR = 50, and GSD = 1m.

(a) Front view (b) Side view

Figure 5.8: BGRN and BGR, SNR = 25, and GSD = 1m.
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is expected because the blue and green bands still have a good quality and provide useful
information. However, as the aberration levels increase towards moderate levels, and the blue
and green bands blur, the RN performs slightly better than the BGRN. Introducing aberrated
blue and green bands brings more noise than useful information to the data when the aperture
is moderately to highly aberrated.

As SNR decreases to 50 (observe Figure 5.10) we find that the RN scenario mimics that of
the BGR system described in Section 5.3.1. At low aberration levels the RN system slightly
outperforms the BGRN, however at mid and high level aberrations it underperforms. With
the addition of more sensor noise and higher levels of aberration the blue and green bands
contain a small amount of information that is not available within the RN bands. This is
interesting because with a higher SNR (of 100) we deduced that the highly aberrated blue
and green bands introduced noise to the data, however now that there is an increase in sensor
noise the effects of the aberrations is somehow not as severe in a relative spectral sense.

Figure 5.11 shows systems with an SNR of 25. Here we see that the BGRN systems
narrowly (but consistently) outperform the RN systems. The blue and green bands bring
some useful information to the data in this high sensor noise case.

5.3.3 Comparison of 1m GSD, GRN, and RN Systems

The GRN and RN systems appear to perform equally well; this section will compare the two.
Looking at Figure 5.12, we see when the SNR equals 100 the GRN outperforms the RN sys-
tems at most levels of aberration; however, overall the two systems have similar performance
characteristics. There doesn’t appear to be any trend that could be followed in these results
that would allow us to say one system performs better than the other.

For an SNR of 50 (shown in Figure 5.13) we see some similarities between the results
discussed in Section 5.3.2, only here the GRN system acts as a dampened version of the
BGRN system. These band configurations have very similar performances; though, at low
levels of aberration the RN band systems consistently outperform the GRN systems and at
mid to high levels of aberration the GRN systems outperform the RN systems.

When the SNR is lowered to 25 (in Figure 5.14) we find that the GRN systems are con-
sistently (although only slightly) better than RN systems. Again this mimics the SNR of 25
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(a) Front view (b) Side view

Figure 5.9: BGRN and RN, SNR = 100, and GSD = 1m.

(a) Front view (b) Side view

Figure 5.10: BGRN and RN, SNR = 50, and GSD = 1m.



CHAPTER 5. RESULTS 95

(a) Front view (b) Side view

Figure 5.11: BGRN and RN, SNR = 25, and GSD = 1m.

results of Section 5.3.2.

5.3.4 Comparison of 1m GSD, GRN, and BGR Systems

Up until this point we have observed how BGR and GRN system compare against other
systems. It is only natural to compare the two and determine if there is a superior band
configuration. What we find is that these results closely resemble those of 5.3.1.

Figure 5.15 shows the SNR of 100 scenario and the GRN system consistently outperforms
the BGR system. However, at the lowest aberration level the BGR does have a higher value.
This can be explained when we realize that the blue band (which is still sharp) has a higher
cut off frequency than the NIR band and is therefore sharper (and containing more useful
information). Please note that in these scenarios the background is quite important. If the
NIR band produced higher contrast than the blue band this result could be different.

In Figure 5.16 we see that lowering from 100 to 50 has a large effect on the GRN scenario.
Initially, at low levels of aberrations the BGR system is superior. Then, once aberration levels
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(a) Front view (b) Side view

Figure 5.12: SNR = 100

(a) Front view (b) Side view

Figure 5.13: SNR = 50
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(a) Front view (b) Side view

Figure 5.14: SNR = 25

increase to moderate levels the two systems have equal performance. Finally, at the highest
levels of aberration the GRN system outperform the BGR. This is because the NIR band is
less aberrated than the other three and significantly improves detection performance.

If the SNR is lowered to 25 (shown in Figure 5.17) we see a complete reversal from what
was observed in Figure 5.15. Here the BGR systems have better performance than the GRN
systems. What we can conclude from this section and Section 5.3.1 is that the NIR band is not
improving % motion detection when the SNR is low. This is an unusual result because with
higher SNR the NIR band improves % motion detection. What we can infer from this is that
the contrast between the moving objects and the background is low for the NIR band. This
idea is reinforced when when we think about the comparison between BGR and GRN. The
blue band has more contrast in between the objects and the background so even though it is
less sharp than the NIR band (when the system is aberrated) it still provides more information
in a low SNR scenario.

Notice that when the SNR equals 100 and the aberrations are low the % motion detection
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is about equal (about 80% motion detection) for all band combinations.

(a) Front view (b) Side view

Figure 5.15: GRN and BGR, SNR = 100, and GSD = 1m.

5.3.5 Comparison of 1m GSD, BGRN, GRN, and RN Systems at Iso-
lated Levels of Noise

This section shows how the BGRN, GRN, RN, and BGR perform at noise levels of 100, 50,
and 25. Figure 5.18 shows surface plots for BGRN systems at three noise levels. With each
reduction in SNR we observe the expected drop in % of detected objects. One should note
that the performance drops off more for the SNR interval of 50 to 25 than it does from 100 to
50.

Looking at Figure 5.19 we find surface plots of GRN systems at the three noise levels.
The overall performance at an SNR of 100 might be a little better than the BGRN systems;
at SNRs of 50 and 25 the performance looks very similar to the BGRN systems.

The RN systems shown in Figure 5.20 show how well these systems can operate as the
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(a) Front view (b) Side view

Figure 5.16: GRN and BGR, SNR = 50, and GSD = 1m.

(a) Front view (b) Side view

Figure 5.17: GRN and BGR, SNR = 25, and GSD = 1m.
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optics become slightly aberrated. In the SNR of 100 scenario this is particularly true. How-
ever, once a certain level of aberration is reached the performance drops off steeply with
every subsequent addition of aberration. This can also be seen when the SNR equals 50;
the performance is quite good at the first levels of aberration and then suddenly it drops off
steeply.

(a) Front view (b) Side view

Figure 5.18: BGRN Systems

5.3.6 Comparison of 1m and 1.5m GSD BGRN Systems

This section compares 1m and 1.5m GSD BGRN systems at SNR levels of 100, 50, and 25.
Looking at Figure 5.21 we see 1m and 1.5m systems at an SNR of 100. At the lowest level
of aberration (.1 RMS flimsy and .1 RMS PTT) the 1m GSD system can detect about 80%
of the motion; the 1.5m GSD system performs almost equally well at about 75% motion
detection. Observing values along the axis, as aberrations increase to either .2 RMS flimsy
or .15 RMS PTT there is no change in performance for the 1m GSD system, while the 1.5m
GSD system’s performance decreases dramatically. With every increase in aberration level
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(a) Front view (b) Side view

Figure 5.19: GRN Systems

(a) Front view (b) Side view

Figure 5.20: RN Systems
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there is a decrease in detection performance until high levels of aberration are reached and
the detection performance begins to stabilize under 10%.

When the SNR equals 50 (see 5.22) we see that the 1m GSD system has only decreased a
few percent for the .1 RMS flimsy and .1 RMS PTT case; however, the 1.5m GSD system has
decreased from about 75% to about 63%. This is a substantial decrease in performance when
compared to that of the 1m GSD. Again we see the 1.5m GSD case steadily declines with
every increase in aberration level until higher levels of aberration are reached. In this medium
level noise scenario we see that it does level out earlier than the low noise level scenario.

Figure 5.23 shows that the 1.5m GSD system is largely affected by detector noise. Here
the SNR was again reduced by half, down to an SNR of 25, and the % of motion detection
was also nearly reduced by half to about 35%. The 1m case also showed a relatively smaller
decline from just under 80% down to just over 60%.

System engineers should pay attention here because a system’s GSD often relates to im-
portant design characteristics such as F-number and SNR. This shows that a smaller diameter
telescope with very low aberrations can perform as well as a potentially larger system that
has a 1m GSD and moderate level aberrations. Smaller overall size could lead to a dramatic
reduction in system cost because much of the total cost is related to payload size and weight.
In addition to this a smaller system might be easier to build and operate.

Lastly, the results from 2m GSD experiments were not shown here or in the results chapter
because they were completely unsuccessful. The motion contained in this video could not be
detected at 2m GSD.

5.3.7 Comparison of 1.5m GSD, BGRN and RN Systems

This section will compare the BGRN systems to the RN systems at 1.5m GSD. Figure 5.24
shows that RN systems almost always outperform the BGRN systems at an SNR of 100.
At low and mid-levels of aberration the RN systems significantly outperform the BGRN. At
high levels of aberration the two systems are almost always equal and in one case the BGRN
system outperforms the RN. As long as the sensor noise and aberrations are low an RN system
will outperform a BGRN system. Section 5.3.2 revealed a slightly different behavior for the
1m GSD case.
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(a) Front view (b) Side view

Figure 5.21: BGRN Systems, with 1m and 1.5m GSD, and an SNR = 100.

(a) Front view (b) Side view

Figure 5.22: BGRN Systems, with 1m and 1.5m GSD, and an SNR = 50
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(a) Front view (b) Side view

Figure 5.23: BGRN Systems, with 1m and 1.5m GSD, and an SNR = 25

When the SNR is lowered to 50 (shown in Figure 5.25) the RN systems still outperform
the BGRN at low and mid range aberration levels. As aberrations increase to high levels the
BGRN systems perform best. These results are nearly identical to those shown in Section
5.3.2, where the main difference is the overall reduction in performance. Other subtler char-
acteristics can be seen, for example in the larger difference in performance between the two
systems - particularly at low aberration levels.

The final case where the SNR equals 25 (see Figure 5.26) shows that the BGRN systems
always perform better than the BGR systems at low aberration levels (where the % of motion
detection is useable). These results closely resemble those found in Section 5.3.2.

5.3.8 Comparison of 1.5m GSD, BGRN and BGR Systems

The results presented in this section will have some resemblance to those presented in Section
5.3.1. This scenario gives us the opportunity of understanding the importance of the NIR
band. In Figure 5.27 the red surface represents the BGRN scenarios and the gray surface
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(a) Front view (b) Side view

Figure 5.24: BGRN and RN, SNR = 100, and GSD = 1.5m.

(a) Front view (b) Side view

Figure 5.25: BGRN and RN, SNR = 50, and GSD = 1.5m.
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(a) Front view (b) Side view

Figure 5.26: BGRN and RN, SNR = 25, and GSD = 1.5m.

represents the BGR scenarios. We see that in this case adding the NIR band adds useful
amounts of information to the data and the BGRN scenario always produces a higher % of
detection than BGR.

As the SNR is lowered to 50 (see Figure 5.28) the amount of noise in the data increases.
In this case we see that for low and mid-range aberrations the BGR has a higher % of objects
detected. Adding the NIR band adds more noise than useful information to the data. This
increase in noise confuses the motion detection algorithm and causes a decrease in perfor-
mance.

When the SNR is lowered to 25 (see Figure 5.29) we see that the BGR system does much
better than BGRN at low aberration levels. At higher levels of aberration the BGRN does
outperform the BGR, however by this point the % motion detection is so low that this result
is of little importance.
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(a) Front view (b) Side view

Figure 5.27: BGRN and BGR, SNR = 100, and GSD = 1.5m.

(a) Front view (b) Side view

Figure 5.28: BGRN and BGR, SNR = 50, and GSD = 1.5m.
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(a) Front view (b) Side view

Figure 5.29: BGRN and BGR, SNR = 25, and GSD = 1.5m.

5.3.9 Comparison of 1.5m GSD, BGRN, GRN, and RN Systems

This section will examine the behavior of BGRN, GRN, and RN systems at a GSD of 1.5m.
We see in Figure 5.30 that the overall BGRN systems perform as expected with % of ob-
jects detected declining with the SNR and increased aberration levels. Notice that the SNR
transition from 100 to 50 produces a smaller decline in system performance than the SNR
transition from 50 to 25.

Figure 5.31 shows the GRN systems, notice that they appear to do slightly better than the
BGRN. Here we find the overall performance to be slightly higher for all SNR tests. Looking
at the SNR of 100 case we see that the values remain high after the first increase of aberration.

The 1.5m GSD RN systems, shown in Figure 5.32, do not perform nearly as well as the
1m GSD RN. At a SNR of 100 the RN system’s performance drops off with the first increase
in aberration. At an SNR of 50 the 1.5m GSD overall performance is lower than the 1m GSD,
however it appears to drop off at a similar rate. The SNR of 25 case is much worse at 1.5m
GSD than 1m GSD; at 1.5m GSD it detects only 30% of the motion.
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These results are different than those in Section 5.3.5, which showed 1m GSD results, in
that they show as expected a slightly lower overall performance and the difference between
SNR 100 and SNR 50 is a bit larger.

(a) Front view (b) Side view

Figure 5.30: BGRN Systems

5.3.10 Iso-Performance Surfaces Using the Motion Detection Data

Another interesting way of looking at the motion detection data is to make surface plots that
show a performance boundary. The purpose of the plots presented in this section is to show
boundaries that will produce results at the iso-performance level or better. For example, all
experiments at 50% motion detection or better were collected. Surface plots were then made
where the x, y, and z axis represented PTT aberrations, flimsy style aberrations, and SNR
respectively. In words, there are three independent parameters (PTT, flimsy aberrations, and
SNR) and the surface demarcates a boundary where all system designs within this boundary
will detect motion at the designated level or better. Notice that there are blue dots within the
boundary; these blue dots represent imaging scenarios that detect more motion than the value
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(a) Front view (b) Side view

Figure 5.31: GRN Systems

(a) Front view (b) Side view

Figure 5.32: RN Systems
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on the boundary. They are also useful to the reader because they make it easier to determine
the aberration and SNR levels on the boundary. This technique of displaying the data is very
useful to system designers as it clearly shows regions where a given design will perform at a
desired level or not.

Figure 5.33 shows two iso-performance surfaces for a BGRN system at 1m GSD. The red
surface demarcates systems that will detect 75% of the motion or better. The green surface
demarcates systems that will detect 50% of the motion or better. Notice that as SNR decreases
from 100 to 25 the tolerable level of aberration goes down as well. At an SNR of 100 you
can also see that the flimsy aberration level increases to .6 RMS OPD and still the system
can detect 50% of the motion. On the other hand as the PTT aberration increases to .35 RMS
OPD we see that the system will NOT detect 50% of the motion. We see this result again
for the 75% motion detection surface; the flimsy aberrations increase all the way to .4 RMS
OPD before the system is unable to detect 75% of the motion while the PTT aberrations can
only increase to .2 RMS OPD. This shows that PTT aberrations have a much larger effect on
system performance.

Another thing to note is that the highest level of detection for these systems is just over
80% and that the capability of these systems to detect motion falls apart very quickly. In
the previous paragraph it was mentioned that systems with .1 flimsy and .1 to .2 PTT OPD
can detect 75% of the motion or more; this is a 5% drop in motion detection. If we were to
increase the PTT OPD error from .2 to .3 (which is a equally large jump in phase error) the
% of motion detection drops 25%.

If we repeat the experiments described in the above paragraph, but this time drop the
blue band we get the results displayed in Figure 5.34. If we compare Figure 5.34 and Figure
5.33 we see that both the 75% and 50% motion detection boundaries expand when the blue
band is dropped (Figure 5.33 shows BGRN systems and Figure 5.34 shows GRN systems).
This clearly shows that the blue band introduces more noise than useful information - for the
experiments that are on the surface and but not necessary within the boundary.

The natural progression of this work is to reduce the number of bands again. Figure 5.35
shows the results if just the RN bands are used. What we find is that using only two bands did
not help us and that the there must have been useful information in the green band. The other
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interesting thing here is that there are a few data points that are lying separate from the 75%
surface. If you observe Figure 5.20 you will see that this is merely a coincidence - there are
several values that hover around 75% and these few happen to be over the boundary. What
we can conclude from the RN experiments is that 3 bands is a good number to go with. The
question then becomes is there a better configuration of bands that could be used. Perhaps
BRN would be better than GRN or BGR.

In this research effort the only other 3 band configuration tested was BGR. Comparing
GRN surfaces in Figure 5.34 to the BGR surfaces in Figure 5.36 you will notice that the
BGR SNR 100 and SNR 50 cases do not perform as well the GRN. However, if you observe
the SNR 25 scenario we see that the BGR cases outperform all other sensor configurations
(operating at an SNR of 25) presented here.

Figure 5.37 shows difference in the behavior between the GRN and BGR scenarios. Here
we can clearly see that the BGR scenario outperforms GRN at low SNR while at high SNR
the GRN outperforms BGR. There results agree with those presented in Section 5.3.4.

The last Figure (Figure 5.38) compares all of the systems at 1m GSD that have 50% mo-
tion detection. This figure was added because some readers might find it easier to compare
the systems on a single graph; this information was displayed previously in the 50% motion
detection iso-surfaces in Figures 5.33, 5.34, 5.35, and 5.36. The bad thing about this plot is
that there overlap between the different systems; for example, the SNR 25 case for BGRN,
GRN, and RN overlap. The interesting thing about this plot is that we can see all the systems
at once and we can quickly draw some conclusions between the BGR system and the other
systems that include a NIR band. Notice that the SNR 25 BGR system has better performance
than the other low SNR systems. The SNR 100 BGR systems have worse performance than
the other systems and also notice that the SNR 50 BGR systems have about average perfor-
mance compared to the other systems. Basically what we can conclude from this is that BGR
systems perform better in low SNR scenarios, average in mid-level SNR scenarios, and worse
in high SNR scenarios.

The results-data used to make the figures below can be found in Appendix A.
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(a) Side view (b) Front view

Figure 5.33: Iso-performance surfaces BGRN at 1m GSD.

(a) Side view (b) Front view

Figure 5.34: Iso-performance surfaces GRN at 1m GSD.



CHAPTER 5. RESULTS 114

(a) Side view (b) Front view

Figure 5.35: Iso-performance surfaces RN at 1m GSD.

(a) Side view (b) Front view

Figure 5.36: Iso-performance surfaces BGR at 1m GSD.
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(a) Side view (b) Front view

Figure 5.37: Iso-performance surface comparison for BGR and GRN at 1m GSD and 50%
motion detection.

5.4 Spatial Target Detection Results

Section 5.3 compared results using motion detection as an image utility metric. This section
covers the results of a similar test of image utility that involves spatial target detection. Here
it is demonstrated that using the correlation plane of a matched filter together with a PSR
kernel on single bands will produce sound results. It is important to remember when viewing
these results that they are scene and target dependent. In these examples a swept wing aircraft
was used as the target; this target was quite small - taking up approximately 100 pixels. Had
the target been larger then a stronger return would have been observed and the PSR value
wouldn’t drop off as steeply when the system became aberrated.

Figure 5.39 demonstrates how well the matched filter and PSR detection method work on
the blue band with .1 PTT WFE and .1 flimsy WFE. The PSR value (shown in green) above
the target is over 4 standard deviations (observe 4 blue lines) above the mean value (observe
the red line), this means that it is higher than 99.994% of the PSR values. This shows the
technique is producing very high PSR detection levels for a cluttered scene. This analysis
was repeated for all experimental setups and in all cases the target PSR value was always 2
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Figure 5.38: Iso-performance boundaries comparing all systems at 1m GSD and 50% motion
detection.
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standard deviations or more above the mean PSR value.

Figure 5.39: This plot shows the histogram of the PSR plane in black; the mean of the PSR
plane shown in red; the 1st, 2nd, 3rd, and 4th standard deviations shown in blue; and the PSR
value above the target shown in green. What we gather from this plot is that the PSR target
value is over 4 standard deviations above the mean of the PSR plane - this is a very high level
of detection as over 99.994% of the PSR values are lower than the target PSR value.

Figure 5.40 is a plot of the results generated from the blue band. Notice that the PSR
drops off very steeply as aberration levels increase. Remember that the blue band sharpness
deteriorates quickly as aberration levels increase, this causes a rapid decrease in spatial target
detection performance. As the spectral wavelength becomes longer and the effect of aber-
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rations is less we see in Figure 5.41 that the surface inflates slightly. Figures 5.42 and 5.43
represent the results from the red and NIR bands. With each increase in wavelength there
is an increase in overall performance (compare the Blue band results with the NIR). This is
an interesting because one might also expect a decrease in performance due to a decrease in
cutoff frequency as the spectral wavelength increases. Even in the low aberration scenarios
there were no observed trends that would indicate this. A reason for this could be different
object-background contrast levels at the different spectral bands.

The following figures show the results for a system that has an SNR of 100. The initial
investigation of this experiment showed that this technique was not sensitive to noise in any
way that was informative. The data used to make the figures below is presented in Appendix
B. There is also some data from experiments conducted with SNR values of 25 and 50; the
data shows little sensitivity to noise.

(a) Front view (b) Side view

Figure 5.40: PSR Blue
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(a) Front view (b) Side view

Figure 5.41: PSR Green

(a) Front view (b) Side view

Figure 5.42: PSR Red
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(a) Front view (b) Side view

Figure 5.43: PSR NIR

5.5 GIQE Results

The GIQE technique is the only conventional image quality/utility assessment technique pre-
sented in this document. It is also the most popular technique available. Being heavily reliant
on a well behaved MTF, it was hypothesized that the GIQE would not produce accurate or
consistent results because of the poorly behaved MTF. An attempt was made to find the noise
gain term in the GIQE but because of the poorly behaved MTF an appropriate value was
not found(refer to Section 4.8.1). The GIQE did function in some capacity, however to truly
understand how well it functioned we would need an analyst to help with the determination
of accurate NIIRS values for these systems.

As aberration levels increased the NIIRS estimate usually decreased. This is clear in
Figure 5.44. However, some of the other figures show some exceptions; in Figures such
as Figure 5.45 and Figure 5.46 we see that once PTT aberrations increased to the highest
levels (.35 RMS OPD) the NIIRS estimates did not decrease with increased levels of Flimsy
aberration. This is likely a problem with the GIQE because the other tests performed in this
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document consistently show decreases in performance as aberration levels increase.
While there are similarities between bands the surfaces do have somewhat different struc-

ture than those shown in Section 5.4 and Section 5.3. Looking at the four surfaces notice
that the effect of the flimsy aberrations are not nearly as great as the PTT aberrations. Also
keep in mind that the flimsy aberration levels go up to nearly twice the level of PTT. The
GIQE is not very sensitive to flimsy style aberrations. A specific example can be seen in the
NIR band data (Figure 5.47) looking at .1 RMS PTT OPD systems with flimsy aberrations
ranging from .1 to .6 RMS OPD. Notice that over this range the NIIRS estimate decreases by
.2 which on the NIIRS is considered a just noticeable difference Leachtenauer et al. (1997).
However, if we look at image created by these two scenarios we can easily observe a large
difference between the sharpness and quality of the images.

Despite these problems there are some promising attributes. Upon closer inspection it
is possible to see that the surfaces inflated as the spectral wavelength increased. This was a
behavior also observed in Section 5.4; it is caused by the decrease in the apparent phase error
of the optics as the spectral wavelength increases. This decrease in phase error leads to an
increase in image sharpness.

The experiments done here did not include a noise term in the GIQE. It was impossible
to include the last term of Eq. 4.22 because the noise gain could not be determined; therefore
all results presented here do not include this term.

Since the GIQE assumes a well behaved MTF these results should be interpreted cau-
tiously. To have absolute certainty of what was reported it would be necessary to have a
trained analyst determine the actual NIIRS value for an image generated by each system.

The results-data used to make the figures below can be found in Appendix C.
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(a) Front view (b) Side view

Figure 5.44: GIQE Blue

(a) Front view (b) Side view

Figure 5.45: GIQE Green
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(a) Front view (b) Side view

Figure 5.46: GIQE Red

(a) Front view (b) Side view

Figure 5.47: GIQE NIR
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(a) .1 RMS PTT OPD and .1 RMS Flimsy OPD. (b) .1 RMS PTT OPD and .6 RMS Flimsy OPD.

Figure 5.48: NIR bands from systems with different amounts of flimsy aberration.
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Conclusions

The primary goal of this work was to build a flexible imaging modeling tool that could process
synthetic data to look like imagery collected from a segmented aperture space telescope at a
geosynchronous orbit. The model was successfully built and has full flexibility of reference
wavelength, PTT aberration, flimsy aberration, aperture geometry, input data, GSD, detector
sampling, spectral resolution, quantum efficiency, focal length, optical transmission, various
detector noise effects, altitude, and jitter. It also has a mode where some of these parameters
can be overridden and GSD and SNR can be specified by the user.

Other goals that were not included in tests were to model nano-laminant mirror aberra-
tions using fractal Brownian motion. This technique produced mirror segments that appeared
visually similar to the interferogram of the mirror, however it is unknown if they are mathe-
matically similar. It is left undetermined if the aberrations observed in the interferogram are
in fact fractals.

6.1 Experimental Conclusions

One of the main goals of this work was to demonstrate that there is more than one way of
assessing an imaging systems potential. The word “potential” was used here because it is
fairly general and traditionally these remote sensing systems are rated using the NIIRS Scale,
which is an image interpretability scale. We felt that this metric was lacking - particularly
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for today’s multispectral systems which have video capability. These systems aren’t going to
be built for analysts who will manually comb over every image; it is much more likely that a
computer will do the majority of the work; therefore, looking at this problem from an image
utility standpoint made more sense.

6.1.1 Motion Detection Conclusions

Initially, we were interested in seeing if any of these techniques worked. The motion detection
experiment was perhaps the most promising. This experiment revealed all the things we knew
would happen, which allowed us to build confidence in what the results were telling us and
then look more closely to find some of the more interesting and subtle behavior of these
systems.

Upon first viewing these results we could see that if either the GSD or aberrations in-
creased or the SNR decreased there would be a decrease in performance. These were ex-
pected results because changing these parameters would naturally lead to a decrease in the
amount of information in the data.

The first surprising result was that the flimsy aberrations did not have the same propor-
tional negative effect that the piston, tip, and tilt did. Looking at any of the result plots from
the motion detection algorithm we can see that a ∆WFEflimsy = .1 would produce approx-
imately the same change as a ∆WFEPTT = .05. This is a particularly interesting result
because if we wanted to spend money on reducing the mirror aberrations it makes much
more sense to invest in better PTT alignment.

Another thing that we suspected would impact performance was the band selection. We
knew that the NIR band would sustain a higher level of aberration than the other bands,
and therefore any configuration that contained the NIR band would perform well in highly
aberrated scenarios. What wasn’t known was how the systems would perform at low levels of
aberration. This was answered with the comparison of BGR and GRN (Section 5.3.4). This
is perhaps the best example to show the complexity of these systems when band selections,
aberrations, and SNR are taken into account.

In Figure 5.15, when the SNR is very high and there are little to no aberrations we see
that the BGR has a better performance than GRN. In some ways this is an expected results
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because the blue MTF will pass more information than the NIR. The catch here is that the
objects in the blue band must have enough contrast against the background so that it adds
more information to the data than the NIR band does. Once aberration levels increase the
blue band is the first band to experience the effects of the aberrations, while GRN bands
remain relatively unaltered. This causes the GRN systems to outperform the BGR.

Things get more interesting though when the SNR is lowered to 50. At this level the
BGR systems achieve the best performance at low aberration levels. Once the aberration
levels increase to mid range the GRN systems don’t experience the same rate of decline in
performance as the BGR systems do because they have the NIR band which remains fairly
sharp. From mid to high aberration levels the GRN systems outperform the BGR.

Once the SNR is lowered even further to 25 the BGR systems consistently and signif-
icantly outperform the GRN systems. In this case, we have a blue band that is blurry but
has a large amount of contrast between the moving objects and the background, while the
NIR band is relatively sharper but has a relatively smaller amount of contrast between the
moving objects and the background. Another way of thinking about this is to realize that the
NIR band is introducing more noise than useful information when compared to the amount
of noise and information being introduced by the blue band. This shows us that in low SNR
scenarios it is important to select bands that will have a large amount of contrast even if they
will be blurred by the optics.

6.1.2 Spatial Target Detection Test Conclusions

This test is heavily dependent on the shape and size of the object being searched for. In our
case we used a small swept wing fighter. These results show some of the basic features that
were observed in the motion detection results (in Section 6.1.1). Here we have to observe the
effects on individual bands that have a high SNR. The most general result is that the flimsy
aberrations do not have the same substantial effect on performance as the PTT.

The next thing that can be observed as we increase in wavelength from blue to NIR is that
the performance increases with wavelength. As the blue band’s aberration levels increase we
see that the performance quickly drops away. However if we look at the NIR band we see
that performance doesn’t drop off as quickly. This is the result of the reduced optical phase
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error at the larger wavelengths.

6.1.3 GIQE Conclusions

The GIQE produced some interesting results. Remember that the GIQE does not take full
account of the effects of the complex MTFs we have in this work. The previous sections have
shown that the flimsy aberrations do cause a decrease in performance that is about half of
what PTT aberration level would produce. The GIQE tells us that the flimsy optics have even
less of an effect on performance than the other tests show. This demonstrates how the GIQE
may not be as sensitive a test for these types of systems.

6.2 Limitations

There are quite a few limitations for this work. Most of the limitations are related to the
computational time needed to process data and complete tests.

For the system model the largest limitation is the processing time and memory require-
ments. The CCDs available now have many mega pixels producing 16-bit data. Accurately
modeling the large images that would come from those systems is not possible on the com-
puters used in this research.

The motion detection experiments had some limitations. The spectral resolution of the
data was very poor (bandwidths of 100nm or more) and because of this the spectral effects of
the MTF could have been modeled better. However, if higher spectral resolution data were
available the amount of storage space needed would have been so large that conventional hard
drives would not have had enough room. In addition to this the processing time would have
also increased and the computers that were available would not have been fast enough.

The primary limitation for the spatial target detection experiment was that it didn’t reveal
the deleterious effects of noise. The GIQE also had this problem in addition to not fully
accounting for the MTF effects.
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6.3 Future Work

There is a great deal of future work that could be done. Other optical effects cause by the
secondary and tertiary mirrors could be tested. The focusing effects of the detector’s position
on the focal plane array could be modeled. All of these experiments were carried out from a
geostationary orbit looking straight at the equator. These experiments could be repeated using
oblique imagery. The sensor’s altitude could be changed. This would call for other motion
effects such as smear to be incorporated into the model. The motion detection experiment
could be repeated using different integration times and frame refresh rates. The objects also
could have been tested against a different background such as a desert scene.

6.4 Closing Statement

What was done in this research should be taken with the proverbial grain of salt. The exper-
iments carried out were not of the highest fidelity and there were certainly sources of error.
What this work did do was demonstrate that it is possible to look at these systems from a
different perspective than what is traditionally done. We need to understand how these sys-
tem will perform doing the tasks they are built for - the system modeling approach is the best
way of doing this. What we ultimately showed was that these systems are not simple and that
understanding their performance can’t be determined from system parameters like GSD and
SNR. Additional tests must be done; preferably ones that are similar to the tasks the system
will be assigned to do in the real world.



Appendix A

Motion Detection Data

N.B. All experimental results reported in this document were carried out with a noise to signal
power ratio of .3 (variable within Wiener-Helstrom Filter), PTT RMS WFE knowledge of .5
[waves], and flimsy RMS WFE knowledge of .5 [waves].
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Figure A.1: Motion detection data.
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Figure A.2: Motion detection data continued.
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Figure A.3: Motion detection data continued.



APPENDIX A. MOTION DETECTION DATA 134

Figure A.4: Motion detection data continued.
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Figure A.5: Motion detection data continued.
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Figure A.6: Motion detection data continued.



Appendix B

Spatial Target Detection Data

N.B. Image restoration was not utilized in these experiments.

Figure B.1: PSR data - SNR 25.
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Figure B.2: PSR data - SNR 50.
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Figure B.3: PSR data - SNR 100.



Appendix C

GIQE Data

N.B. In this effort noise was not an experimental variable for the GIQE. All experimental
results reported in this document were carried out with a noise to signal power ratio of .3
(variable within Wiener-Helstrom Filter), PTT RMS WFE knowledge of .5 [waves], and
flimsy RMS WFE knowledge of .5 [waves].
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Figure C.1: GIQE data.
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