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ABSTRACT

Research over the last decade has led to technological advances in high frequency active 

and passive detection technology and signal processing. An emerging application area is 

the standoff detection of concealed objects such as weapons and explosives using 

penetrating electromagnetic radiation such as terahertz waves (THz). Here sensor arrays 

are employed in the near field to image the concealed objects. A new approach is 

investigated to improve upon methods such as Fourier inversion and sum and delay 

beamforming. A method based on the Minimum Variance Distortionless Response 

(MVDR) filter technique is developed to localize source points in the electric field 

coming from a subject. To pinpoint near field sources with precision, this MVDR routine 

calculates filter responses along a plane that has direction of arrival angle and range axes. 
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To understand its limitations, this new method is tested for angular resolution in various 

directions of arrival, ranges, and SNR levels. The results show that this technique has 

potential to accurately detect closely spaced point sources when only a few sensors are 

used to collect measurements.
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Chapter 1

Introduction

Security imaging devices have been an area of great interest for the last few 

decades, especially after an escalation in acts of terrorism involving government 

buildings and airports. After the events of 9/11/01 in particular, the political and scientific 

community have been aggressively searching for improvements to security screening 

measures. There were needs for close range sensing devices similar to walk-through 

metal detectors and stand-off detectors that could spot threats from secure distances. 

Concealed Weapon Detection, abbreviated as CWD, is an area of security research that 

was established to design methods that meet some of these security goals. Over a decade 

ago, CWD researchers found that terahertz and millimeter wave emissions had the ability 

to see through nonmetallic and nonpolar solids. Items such as clothing, leather, and 

plastics that were scanned by a high frequency sensor become partially transparent when 

imaged by these bands, and if metallic items are concealed, they will reflect high 

frequency radiation and produce distinct shapes in processed sensor scans (Federeci et al., 

2005),(Chen et al., 2005). There is no question that the desire for heightened security 

after 9/11/01 and technological advances in hardware developments and research have 

spurred recent growth in CWD.

To further motivate this research, scientists have found several explosive 

compounds such as RDX, C4, HMX, and TNT have characteristic peaks or features in 
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their absorption spectrum that will identify these bomb materials on a scanned subject.

The spectral peaks are in the range of 0.5-10 Terahertz (THz) and have been commonly 

found despite the sample’s preparation: as grains, powder or mixed in a matrix or 

container (Federeci et al., 2005). Similar research found that illegal drugs, such as 

methamphetamine and MDMA can also be recognized by distinct gigahertz (GHz) and 

THz spectra (Federeci et al., 2005). 

The Pacific Northwest National Laboratory was one of the first groups to develop 

a walk-through active detection millimeter wave scanner for close range CWD. Their 

portal scanner uses wideband holographic imaging technology that conducts planar or 

cylindrical scans within seconds (Sheen et al., 2001). The wideband frequencies of 27 –

33 GHz produced higher quality images with increased depth than narrowband CWD 

scans (Sheen et al., 2001). A company called Safeview commercialized the portal 

technology and has installed them in several U.S. and international security checkpoints.

Field testing is now being performed to confirm its improved reliability and efficiency 

over metal detectors and other security measures (National Research Council, 2007). 

The first conclusive near field results for a THz system were published in 1995 by 

Hu and Nuss, using an active detection technique called Terahertz Time Domain 

Spectroscopy, or THz-TDS (Hu and Nuss, 1995). This method created THz backscatter 

with femtosecond laser pulses that rapidly photo-induce currents upon a THz wave 

generating switch (Dorney et al., 2000). Dorney et al. coupled THz-TDS with a 
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Michelson interferometer to enhance the sensitivity in images of microscopic cracks and 

air bubbles that weaken materials in samples of industrial adhesives, formed plastics and 

ceramics (Johnson et al., 2000). Later, Zimdars performed high definition 2D scans 

within 8 minutes using hardware available at the time, but envisioned near video rates as 

new sensor arrays are developed (D. Zimdars, 2005).

To develop an improved high frequency source field reconstruction algorithm, 

requirements must be addressed. Since THz wavelengths are less than a millimeter in 

length, any increases in the imaging aperture size to capture distant sources with the 

required imaging resolution will force imaged subjects to be in the near field. For 

example, if a 6 cm object was to be resolved at a frequency of 3 THz from a distance of 

25 m, the aperture would need to be 4.2 cm across (Rao and Himed, 2005). This example 

has requirements that do not satisfy the far field approximation, which is calculated by:



22d
D  (1.1)

In this well-known equation variable d is the aperture width, D is the range from the 

central sensor to the source, and  is the source wavelength. In addition, the maximum 

sensing range of some THz and millimeter wave frequencies will also be constrained due 

to atmospheric attenuation. As a result of these factors, a near field imaging method is 

needed and a few complications are introduced that invalidate standard far field imaging 

techniques for uniform linear arrays of sensors.
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The focus of the research work underlying this thesis was on the development of a 

near field source localization method. Many areas of near field and far field imaging 

analysis were reviewed in this thesis research, specifically interferometry-based methods 

which contrast the incoming signal between pairs of sensors in a linear sensor array. To 

understand the workings of a near field algorithm and identify where progress can be 

made, a previously published least squares algorithm was constructed (Rao and Himed, 

2005). An improvement over Rao & Himed’s optimization routine was then chosen from

the realm of high resolution techniques, such as multiple signal classification (sometimes 

referred to by its abbreviation, MUSIC) and Auto Regressive methods. Finally, a

minimum variance distortionless response (MVDR) beamformer method was chosen and

modified to use near-field assumptions. This method was derived from recently published 

work in source localization and the Capon method. Several experiments were then 

simulated to test the new method’s resolution, noise performance, and efficiency when 

compared to a simpler Delay and Sum beamformer. The next chapter will provide an 

overview of several radiative point source measurement methods and their influences on 

the approach of this thesis.
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Chapter 2

Background

In imaging systems, the reconstruction of a source distribution using conventional 

sensing hardware is an intricate process. To clarify the principles of source reconstruction 

imaging, an example of a complex source incident upon an observation screen is shown 

in Figure 2.1. When a diffraction pattern is measured along the sensing line, these 

methods convert its spatial frequencies into a source distribution estimate. Many imaging 

methods also simplify the reconstruction for far and near field systems by reconstructing 

a planar projection of the source distribution, called an ‘extended source’. This approach 

can resolve distant far field objects and also reduce the complexity of items with uneven 

near field source distributions. To approach the thesis problem, a literature search was

conducted into published work that dealt with these specific source distribution

reconstruction issues. These areas of interest are discussed in this chapter.

Figure 2.1 – General illustration of complex source distribution upon a sensing line
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2.1 Fourier Inversion

In linear shift-invariant imaging systems, the inverse Fourier transform of the far-

field correlation is a common method of source distribution reconstruction. Fourier 

transforms of far field source illumination can reconstruct the spectrum well with 

standard linear sensor arrays due to the flat planar nature of far field wavefronts. 

Unfortunately, near-field imaging systems have nonlinear wavefronts so it is difficult to 

produce images without spherical aberrations. Walsh et al researched near field scanning 

methods for THz sources that used Fourier inversion techniques and found that spatial 

modifications were required to transform spherical wavefronts without distortion (Walsh 

et al., 2004). Fourier methods can commonly produce side lobe artifacts and other noise 

in the frequency plane that can only be diminished by gathering enough spatial data 

points on the imaged aperture plane to adequately cover the resulting frequency space. 

Walsh et al. first suggested transform enhancement strategies such as adding to the 

number of sensor elements or rotating smaller arrays and then taking multiple 

measurements to cover the Fourier space well (Walsh et al., 2004). Walsh et al. finally 

improved the spatial intensity distribution from the interferogram by positioning sensors 

along curves that match the wavefront’s shape. Their simulation results showed that 

sensors placed along a meniscus that matches a spherical surface works best at modeling 

the wavefront (Walsh et al., 2004). This can prove to be problematic, since specialized 

hardware is needed and any significant change in measured range or varied source field 
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sizes would require repositioning of the sensors along to avoid distortion. It is also 

uncertain how time consuming this method would be in achieving high resolution.

2.2 The van Cittert-Zernike Theorem 

When examining the radiation from a complex source field, interferometry is an 

effective tool for increasing imaging sensitivity spatially. Spatial coherence in particular 

is important to this research because it allows one to measure a complex wavefront’s 

shape from the interferogram that a set of radiating sources produces on an observation 

plane (Hecht 1998). Initial experiments in this field found that source distributions could 

exhibit some measurable interference while the frequency of the illumination was not 

100% coherent. As a result, the term partial coherence was used to classify these 

situations. In 1938, the van Cittert–Zernike theorem was devised to measure the ‘degree 

of coherence’ that two random points in the interferogram have by correlating the 

composite source field measured at each point. To do this discretely, one must model the 

source field intensities on an extended projection line that lies parallel to the

interferogram, as mentioned in the introduction of this chapter. The projection line, 

labeled as source line in Figure 2.1, can be subdivided into several finite elements of 

extended sources regardless of their actual position in being in the near field or far field.

In theory, each finite element produces a field vibration equal to:
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To find the ‘likeness’ of the measured wavefront at two separate sensing positions P1 and 

P2, as depicted in Figure 2.2, the degree of coherence can be used.  Zernike called this 

expression the ‘mutual intensity’:
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Figure 2.2 – One of ‘m’ source line measurements to be used in the degree of coherence calculation
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The bar above the amplitudes in (2.3) indicates the use of their statistical mean amplitude 

value. Since waves from an illumination source have numerous statistically independent

points of origin, they are also spatially uncorrelated (Zernike, 1990). J12 then becomes:

     

(2.4)

To calculate the theoretical mutual intensity along the source line, an integral over the 

extended source is needed (Zernike, 1990). If the position of S in Figure 2.2 was moved 

across the extended source, the integration variables are the displacements from points P1

and P2, noted as x1 and x2 respectively. The resulting diagonal distances from P1 and P2 to 

S can then be denoted as rx1
 and rx2

, thus making the theoretical mutual intensity:
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By means of the coherence method, one can construct distinct intensities of the 

interferogram for any composite source field. When P1 and P2 are close together and the 

extended source is small when compared to the distance to the observation plane, the 

degree of coherence equals the normalized Fourier transform of the irradiance 

distribution across the source (Hecht, 1998). The areas of near field optical coherence 

tomography and visible band coherence imaging methods have already benefited from 
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this relationship (Marks et al., 1999). Correlative interferometry, also referred to as 

sensor interferometry, uses the mutual intensities for all unique pairs of a certain detector 

or antenna geometry to produce a spectrum. This is a common technique in other areas of 

research such as radio astronomy (Cohen, 1973). A correlative interferometry source 

reconstruction method for a uniform linear array signal is analyzed in the next section. 

2.3 The Periodogram and Correlative Interferometry

In the search for desirable spatial domain alternatives to the problematic Fourier 

inversion process, the well established methods of spectral estimation emerged. In order 

to compute a spectral estimate of an input waveform, the waveform must be sampled 

over a finite time window as a time function (Kay and Marple, 1981). An ideal spectral 

estimation technique called the ‘periodogram’ is a fast Fourier transform estimate that has 

been used in the past to discretely calculate the power spectral density, or spectrum, of 

incoming signals. To construct the periodogram, a waveform x(t) can be measured at N

samples per period using summation variable ‘n’. For each sampled frequency, as noted 

by ‘m’, the periodogram is calculated as follows:

   6.21,0
t

1

e xt

2
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n/Nmj2-
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Kay and Marple indicated that care must be taken in computing the spectrum due to the 

need to preserve its statistical consistency. Since actual data has random initial phases 

and some random additive noise over a time interval, the expectation operation needs to 

be achieved on the sample waveforms by producing correct time averages or ensemble 

averages (Kay and Marple, 1981). The ideas behind the periodogram can then be applied 

to a time-sampled spatial correlation estimate. For example, the spatial correlation of two 

source points can be formed from a slightly modified version of the degree of coherence 

equation (2.4) as follows:

   
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(2.7)
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Equation (2.7) calculates the autocorrelation of the sensed field over a linear sensor array. 

In the calculation, there are N time samples over a period T, and the angular temporal 

frequency ωo = 2/T. Since the two source waveforms coming into sensor 1 and 2 have a 

different incident random phase, 1 and 2 are shown outside the complex amplitudes. 

The source radii, denoted by r in the equation, are given subscripts to indicate the 

measuring sensor and secondly the source point to which the radii connects, since each 

will differ significantly in near field analysis. As more source points are added along the 

source line, polynomial terms will be added to the computed correlation product terms.
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Since the autocorrelation of a source distribution from several sensing positions

cannot reconstruct an extended source alone, one solution involved the use of an 

optimization framework. Rao and Himed theorized a least squares solution that

reconstructed a projected source distribution as several discrete samples along the source 

line. The minimum mean squared error between the spatial correlation estimate and the 

following computed correlation produced their result (Rao and Himed, 2005). 
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, 22
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In (2.8), x and y are angular displacement distances from a sensor to a source line sample, 

and D is the distance that a sensor array is separated from a parallel source line, similar to 

the illustration in Figure 2.2. To fit the least squares analysis, the computed correlation 

was reformed into a N2 by k matrix, where k is the number of finite source line samples, 

and the spatial correlation as a N2 long column vector. The least squares equation is then:
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The least squares solution vector Ik is the intensities along the source line at evenly 

spaced source line positions (xk) in the sensor array’s field of view. To produce realistic 

solutions, the least squares method is then computationally limited to being nonnegative 

and within the boundary of the source line width that is being measured. 
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2.4 Capon Beamforming

After using correlation-dependent equations to measure the simulated electric 

fields in this thesis work, more detail about the near-field signals is desirable. The best 

way to quantitatively examine the location and intensity of near-field sources is by 

employing spectrum analysis techniques. In spectrum analysis, the spatial sensor data is 

transformed into a spectrum of its frequency components. These components have 

significant traits in their magnitudes, phases and characteristic frequencies that can be 

used to identify the sources that are being imaged. When significant source distribution 

data is known, such as the field of view that they reside in, their approximate range, and 

their peak spectral frequencies, high resolution techniques can be used.

High resolution techniques can consist of many different formulations, but they 

all generate a spectral estimate of the gathered source data and improve the resolution and 

detectability by way of filtering, statistical data, or other means. Beamforming methods 

are generally known as FIR filtering techniques which use multiple frequency steering 

vectors to align the signal with a certain azimuth angle, commonly called the direction of 

arrival (DOA). The steering vector is an array of bandpass filters that boosts the 

frequencies relative to a desired DOA. Nikias and Mendel remarked that Capon’s

beamformer was ‘one of the most popular and important beamformers’ and it ‘has been 

the starting point for both signal enhancement and high-resolution DOA estimation’

(Nikias and Mendel, 1993). 
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To use Capon’s method, a spatial correlation estimate must be calculated to 

optimize this filter. Assume matrix R is an N x N spatial correlation of the detected field:

 HxxER  (2.10)

where superscript H distinguishes the use of the Hermetian, or complex transpose of the 

far field signal vector x. The Capon method then evaluates a set of spectra from the signal 

vector that are the result of a criterion being met (Stoica and Moses, 1997):

              1min  ahtosubjectRhh H (2.11)

In (11), the steering vector a() is a series of phase delays made for a sensor spacing d:

     


  sin21 2 d
whereeeea

Tjmjj    (2.12) 

The Power Spectral Density, or PSD, of the Capon method has been used in several 

journal articles to solve the optimization problem (2.11). The PSD is denoted by PCapon

below. A particular solution to (2.11) involves applying a finite impulse response (FIR)

distortionless filter h to a sample signal vector x to form XCapon as shown below:

                 11   aRaP H
Capon

(2.13)

    hxXPaRh H
CaponCapon  1

(2.14)

When using standard Capon beamforming, the filter selects weights that minimize the 

output power of the filter to ensure minimal distortion of the narrowband signal of 
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interest (Jiang et al., 2003). By consistently incrementing the value of  in the steering 

vector array, filter responses as shown by either equation (2.13) or (2.14) can be plotted 

and assessed for a series of DOA angles in the field of view. If any steering method like 

this is used, very specific and detailed information is needed to construct an effective

array steering vector. Source steering angles, array geometry, and receiver responses 

affect the accuracy of steering vectors, so a sufficient knowledge of incident radiation is

critical to the Capon MVDR process (Nikias and Mendel, 1993). 

This method has also been called the minimum variance distortionless response 

(MVDR) beamformer because it can perform well at identifying many signal component 

peaks by minimizing the variance in the solution weights, producing suitable results with 

signals traveling at any speed that may have good or poor SNR. It was first used by 

Capon to spectrally pinpoint centers of activity from seismic sensor data taken by the 

large aperture seismic array, or LASA, in eastern Montana (Capon, 1969). He went on to 

show that the optimizing ability of the frequency windows used outperformed traditional 

methods and pointed out the potential use of the method in radio astronomy. 

2.4 Source Localization

Similar to MVDR, source localization methods attempt to identify the origination

of complex field sources from the recorded sensor array signals. These methods have 

been applied to radar, sonar, radio astronomy, oceanography, geophysics, seismology, 
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and robotics in the past (Grosicki et al., 2005). To measure the field along a 2p+1 sensor 

ULA as a function of time in near-field, consider the geometry in Figure 2.3.

Figure 2.3 – Helpful illustration for source localization with a 2p+1 sensor array

Using the illustration, the field at array indexes –p ≤ k ≤ p is (Grosicki et al., 2005):

(2.15)

where sl (t) represents the lth source signal of m additive sources and wk(t) is a zero mean 

complex Gaussian random noise matrix. For a unique solution, Grosicki also assumes that 

m  p, and that τkl is the source signal delay between the central sensor ‘0’ and sensor k:
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rl and θl are the range and angle parameters of source l, and d is the sensor separation 

along the array. Since the delay term is difficult to resolve as the square root of a 

quadratic polynomial, a Fresnel approximation of the field’s phase delay across the 

sensors was suggested (Grosicki et al., 2005). The approximation below can replace τkl

with a second order Taylor expansion, allowing efficient localization by several methods.
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Grosicki et al. suggested solving for the possible binomial exponents of each individual 

field source by isolating coefficients of the spatial correlation that would allow solutions

for each of the quadratic terms. Two solution approaches were proposed: use a subspace-

based high resolution estimate, or proceed as the authors did by applying a weighted 

linear prediction criterion using a polynomial filter (Grosicki et al., 2005). This filter 

isolates coefficients from the correlation matrix that can be used to derive the unknown 

sources in the signal. The successful use of a Fresnel approximation to describe a random 

source field proved a Taylor expansion to be ideal for near field scanning technology, 

thereby inspiring the approach of this thesis.

Source localization techniques have been used to identify data in speech 

recognition, communication, radar, and sonar research (Grosicki et al., 2005). These 

areas have also been explored by many MVDR-influenced beamforming methods 
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(Vaidyanathan and Buckley, 1995). Research in near field source localization has 

previously benefited by merging aspects beamforming and steering methods together, 

showing potential for pairing the methods in this research. Chen et al. performed 

wideband near field source localization by initially transforming some sample wideband

signal data into the frequency domain and separating it into several narrowband 

frequency bins. They then used a Capon-influenced maximum likelihood criterion on 

each binned signal to localize the sources (Chen et al., 2002). The paper indicated that 

this work was based on sensing complex near field acoustic or seismic wave sources.

Another research paper (Arceo-Olague et al., 2006) went into detail about efficiency in a 

near field DOA estimation method called the unconditional maximum likelihood (UML)

approach. Their improvement on MVDR and similar techniques involved minimizing a 

negative log-likelihood function to create the maximum likelihood of the signal. Their

UML estimation function outperformed a MUSIC algorithm in root mean square error 

(RMSE) analysis of angular separation estimation along the range of 5 - 11, when 

averaging 1000 samples (Arceo-Olague, 2006). The MUSIC algorithm had much higher 

RMSE and wider range, for example, when a signal with SNR=11dB was used, it 

resulted in a 25 error for 5 of separation, to 0.25 error at 11 separation, and SNR 

values of 9dB-0dB performed worse. The UML function achieved a RMSE range of 

0.41 - 0.22 for the same angular separations when SNR values of 11dB – 0dB were 

plotted. When the algorithms were reused with 500 samples, similar behavior was noticed 

in UML data, and the MUSIC algorithm performed worse (Arceo-Olague, 2006). 
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Chapter 3

Approach

The goals of this research were to develop a technique for near field source 

localization that could be used in terahertz or millimeter wave security scanning, and to 

evaluate its strengths and limitations. To understand the needs of such a system, a 

correlative interferometry algorithm was generated from a previously published paper 

(Rao and Himed, 2005). The resulting program provided insight into the reconstruction of 

source distributions from their incident radiation without the use of Fourier Transform 

techniques. The performance of the Rao-Himed routine’s simulations then pointed out

efficient and sub-par imaging algorithm qualities. These developments and a desire to 

enhance the sensing ability of near field sources inspired the high resolution technique

approach of this thesis. As a result of this progressive research, a superior source 

distribution analysis method was derived that merged the MVDR method and Source 

Localization, as shown in the following sections.

3.1 Correlative Interferometry Method Results

In the background section of this thesis, equations 2.7 through 2.9 showed in 

detail how an accurate 1D reconstruction of a simulated source field can be produced

from Rao and Himed’s method. An implementation of their method in MATLAB
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requires several parameters: the distance between source line and center sensor (D), the 

number of sensors (N) and sensor element width, the number of finite source 

reconstruction points (k), the placement of example field points on the source line (xk), 

the signal-to-noise ratio (SNR), and the input frequency. Once the sensor size and the 

desired source line reconstruction points are listed by the user, the program can then 

simulate the spatial correlation as an ensemble average of several sample records, and the 

computed correlation (2.8) for all source points. As a result of the calculations, resolution 

accuracy of an optimized reconstruction can only be possible if the computed correlation 

matrix is full rank. Here, the rank of a matrix is the number of linearly independent rows 

or columns it has, and full rank certifies that the rank is equal to the shortest dimension of 

the matrix. To test the Rao-Himed method while ensuring accuracy in spatial 

reconstructions, its factors were tested while using a full rank correlation matrix. 

Several sets of narrowband test source simulations at a frequency of 1 THz were 

then used to verify the algorithm’s source line signal reconstruction accuracy. These

simulation inputs consisted of a source point pair with unit amplitude that was separated 

along the source line by several wavelengths. The reconstruction points selected for these 

input signals then occupy a field of view that reaches beyond the source point positions. 

In this way, accurate reconstruction of the source point pair can be verified while other 

sample reconstruction points around the source points remain zero.

This resolution accuracy technique was first applied to variations in sensor 

element size. An initial result of the measurement process identified that the Rao-Himed 



21

method had a maximum range limitation for each number of samples taken, where 

surpassing the range degraded the reconstruction and correlation matrix rank. As the 

number of reconstruction samples was increased, the max range decreased exponentially. 

Also, the maximum range required for resolution accuracy of a 6λ wide array did not 

change significantly as sensor elements were decreased to smaller than ⅓ λ.

A second test observed the range limitation of a 6λ wide 19 sensor array as an 

effect of the sampling distance intervals. Initial simulations that sampled the source line 

reconstruction at increments of less than λ shortened the maximum range for accurate 

sample resolution significantly. An exponential increase in the number of ensemble 

average records was also needed to minimize reconstruction mean square errors below 

10% in these simulations, suggesting that sampling point sources at under λ intervals is 

not practical for this method. Finally, a separated source point pair was simulated for 

increasing amounts of samples and decreasing maximum range, as mentioned in the 

previous paragraph. The reconstruction samples were taken in intervals of λ and 2λ. The 

2λ intervals produced a 50% larger maximum range, as shown in Figure 3.1, while 

maintaining accurate reconstruction resolution.

A third test simulation was then devised to identify the change in the maximum 

range limitation as the sensor array width was varied from 10 sensors (3λ) to 19 sensors 

(6λ). This resulted in an average accurate resolution range increase of 21%. To enhance 

the possible accurate resolution range of the 6λ array by 50%, similar to the results in 3.1,

a 100 sensor (33λ width) array is needed. This information is also plotted in Figure 3.2.
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Figure 3.1 - Plot of maximum source line range in  for accurate resolution versus number of source 
samples being reconstructed. The data sets show results of doubling the separation between samples.

Figure 3.2- The effects of increasing the linear array width using the same criteria as Figure 3.1
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Further results concluded a few performance issues with the least squares method, 

particularly that hundreds sample measurements are needed to create an accurate 

ensemble average of distributions with more than two separated sources. A much larger 

sensor array is also needed in order to get quality imaging scans by this method alone.

The implementation of this method allowed insight toward desirable characteristics in a 

near field imaging method, such as variability in range and the field of view, and quality 

resolution. The attempt of this thesis approach is to improve these factors measurably.

3.2 Derivation of a Near Field MVDR Filter

A better understanding of the near field imaging methods and high resolution 

spectral estimation methods was required to improve results. Standard Capon 

beamforming, as discussed earlier, is strictly for far field signals because the wavefronts 

are assumed to be planar in equations (2.10) through (2.14). To consider a Capon-type

method’s potential in the near field required localizing waves with curved wavefronts, 

using phase delays that are a function of both range and DOA. This can be achieved by 

creating steering vectors with a Fresnel phase delay. The equation for a near field steering 

vector shown below was borrowed from an earlier mentioned research paper on 

unconditional maximum likelihood estimation (Arceo-Olague, 2006). The delay terms in 

the vector can be constructed using the Taylor expansion shown in (2.17) and the 

definitions of ω and  from (2.18). If the sensors in the interferometric array are indexed 

for all k in –p ≤ k ≤ p, the steering vector becomes
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Using this innovative steering vector, the Capon MVDR method can then be revamped as 

a function of two parameters, as shown in this modified derivation
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The power spectral density, calculated by equation (3.3), can be used as a general 

solution to localize a near field source distribution, or equation (3.4) can be used to 

produce the output of an MVDR filter and a certain signal of interest, XCapon. Equations 

(3.1) through (3.4) are functions of the angle θl which can be replaced by a series of 

distinct DOA values in a predetermined aperture or field of view. The range rl in the 

term can then be incremented over several MVDR iterations to perceive depth of the 

sources that impinge on the detecting array from significant DOA. The resulting filter 

responses give the user a set of spectral intensities for all (rl , θl) pairs in the field of view

of the sensor array, as illustrated in Figure 3.3. Depending on the desired sampling rate of 

rl and θl , and the ideal field of view size needed for certain targets, the scanned area can 

be manipulated to the desired dimensions of the user of this MVDR routine.
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Figure 3.3 – Geometry of a modified Capon MVDR method scan that uses Fresnel-influenced delays

To model actual fields that would impinge on a sensor array, equations (2.17) and 

(2.18) are used to create a test signal. Time averaging at a user defined sampling interval 

is then needed to treat the signal vector as a function of time, as shown in the 

periodogram spectral estimator. The following equation simulates an actual signal record:
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(3.5)

The signal record in (3.5) is obtained over 2p+1 sensors where k is the sensor position 

within –p ≤ k ≤ p. The second exponential term ensures that the signal is measured at T/t

samples per period. The algorithm will calculate this in matrix fashion, and ensure that 

random Gaussian noise matrix Wk(t) is the same size as the number of sensors -by- the 

number of samples. Since one random phased sample of the signal vector will produce a 
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correlation with limited accuracy, the equivalent to the use of the expectation operator on 

a correlation estimate is needed. This can be achieved by ensemble averaging several

signal record samples with random incident phases applied to each simulated source. To 

calculate the correlation of one random phase record using a signal record as shown in 

(3.5), the following matrix product is needed:

HXX
T

t
R 


ˆ

(3.6)

Equation (3.6) will perform a time average as the signal matrix is spatially autocorrelated, 

since t/T is the inverse of the number of time samples. When a desired number of 

random phased signal records is obtained using (3.5), a correlation estimate can be 

obtained by averaging the correlations from each record. As the number of records used 

is increased to achieve similar results to an expectation, the resolution of the MVDR 

method is expected to increase. Once a correlation of desired accuracy is computed, the 

algorithm requires several inputs:

 DOA, to establish the center of the field of view if larger DOA values are required 

 The perpendicular distance from the sensor to source line (minimum range)

o The range can be incremented smaller or larger as needed in the algorithm 

if the range sampling is not sufficient for peak detection in previous runs.

 The width of the field of view, which then passes the minimum and maximum

DOA angles to be used into the algorithm
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 The SNR of simulated noise for the test signal, if needed

 The distance increment to be used when subdividing the field of view 

To decode the detected field into individual source field points, equation (3.1) can be 

used to compute a steering vector for every unique (r
l
 , θ

l
) pair that can then produce

output spectra for each vector used. Each steering vector is then combined with the 

spatial correlation of the detected field using equations (2.13) and (2.14) to produce 

spectra. The spectra are collected in a ‘Range-DOA-space’ matrix. Automatic detection 

techniques or having a technician examine a 3-dimensional mesh plot of the complete 

matrix can then be used to identify signal component peaks. 

The idea of using a superresolution technique to scan across a target plane can be 

found in some Synthetic Aperture Imaging work as well. Benitz developed a technique 

called High-Definition Vector Imaging (HDVI) which scanned a plane across the ground 

using range and cross-range axes. Using techniques based on Capon’s method and 

MUSIC, he identified distant trucks and other vehicles in a forested area from overhead 

radar scans (Benitz, 1997). The results of this study showed lower false alarm rates, 

increased resolution, and reduced sidelobes, clutter and speckle (Benitz, 1997). The

Fresnel-Capon-Type method should have analogous benefits to the HDVI method, as 

shown by our results which are discussed in the next chapter.
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Chapter 4

Research Results

To determine the usefulness of the near field MVDR algorithm, an investigation 

into its abilities and limitations is needed. A MATLAB algorithm was generated using 

three functions: a sample signal generator that gathered several input values, a MVDR 

filtering function, and a SNR function that generated random complex Gaussian noise. To 

test the abilities of the newly-derived two parameter MVDR method in the near field, a

series of experiments were simulated. The MVDR source code is posted in Appendix 3.

4.1 Experimental Setup

The data sets that are discussed in these research results are gathered from several 

simulations. The sensor arrays are assumed to have an inter-element spacing d equal to 

/4, to avoid ambiguity in sensor measurements of a source with wavelength . The size 

of the sensor will be discussed in each experiment, since sensors with different amounts 

of elements will be simulated. The signals used in each of the experiments will consist of 

a pair of point sources that are located at the same range from the center sensor of the 

measuring array but separated in angle as shown in Figure 4.1. A field of view is then 

measured using the 2D scanning technique mentioned in the Approach, and pictured in

Figure 3.3. The resulting MVDR filter responses for each range and DOA intersection 

can then be plotted as a contour plot or mesh plot to examine the spatial frequency peaks.



29

Figure 4.1- Sensor array angular resolution of a pair of point sources, noted by the angle 

To have accurate resolution in angle and range, the resulting spectral peaks will have a 

crest that is located in the correct spatial frequency position of the contour or mesh plot. 

If the source pair simulation parameters are manipulated to place the sources closer and 

closer, eventually the peaks of each source will start to converge, creating noise and 

incorrect spatial frequency peak positions. Minimum angular resolution data was then

taken from the smallest clear angular separation, and care was taken in visually 

confirming this data at all values in each experiment in the same manner. In the future, a 

peak identification routine can be written to confirm the resolution as well. To 

supplement this discussion, a contour showing acceptable resolution and poor resolution 

status can be seen in Figure 4.2. The poor resolution example has multiple noisy spiked 

peaks about the actual DOA and range positions of the input simulated source point pair. 

Since the DOA and Range positioning of the crest of each peak should correspond to the 

input source pair parameters, this fact becomes the most important resolution criterion.
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Figure 4.2 – Contour Plots of Near Field MVDR with poor resolution (a) and good resolution (b)
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The resolution measurements in the following research are gathered using these 

inferences. In order to achieve these results, the near field MVDR signal correlation input 

is created using ensemble averages of many random initial phase signal records and 

periodic time averages, as mentioned in the derivation. 

4.2 Experiment 1

The two parameter MVDR algorithm was first tested for imaging resolution of a 

source point pair as a function of mean DOA and sensing distance. To measure the 

effects of these factors alone, a signal correlation was simulated from 150 noiseless signal 

records. The minimum angular resolution was plotted at multiple range distances that 

incremented between 1 and 12, to keep within the far field approximation for an 11 

sensor array with /4 interelement spacing. The minimum angular resolution between

source point pairs for varying range measurements was then generated for several mean 

DOA: broadside (0 for this data), +10, +20, +30, and +40. A plot of resolution 

results for each of the signals is posted in Figure 4.2. The angular resolution 

measurements have an overall range of 2.5–3.6 10-4 radians, showing no significant

variations. It is valid to say that the angular resolution of this method should be quite 

uniform over a wide field of view at any DOA or fixed range. This positive attribute

makes this method much more useful than an imaging technique that suffers from

resolution inconsistency at larger ranges or wide angles.
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Figure 4.3 – Source pair resolution at several fixed range distances for a series of DOAs.

4.3 Experiment 2

This next experiment was conducted with a noiseless signal and 20 signal records 

to estimate the improvement in angular resolution by doubling the sensor array length. A 

plot in Figure 4.3 provides a resolution comparison of the 11 sensor array with 2.5

effective length and a 21 sensor array with 5 length at broadside (DOA = 0). The plot 
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indicated that angular resolution is almost 50% better on average for the larger sensor

array. Since a much larger sensor than these is needed for CWD in the near field, it can 

be concluded that resolution will not be an issue over these longer ranges.

Figure 4.4 – MVDR method angular resolution as a function of array length, at a broadside DOA

4.4 Experiment 3

To estimate the performance in noise using the same approach as previously 

noted, another experiment was simulated. Initial results were attempted by averaging 20 

sample records with the same 11 sensor array with /4 sensor separation that was 
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simulated for previous results. Source point pairs located at a mean DOA of broadside 

and fixed range of 10 were then resolved at various SNR values. These minimum 

angular resolution measurements are plotted for analysis in Figure 4.4. 

Figure 4.5 – Minimum angular resolution vs. SNR of spectral peaks for 20 averaged records

The y-axis range of the plot in Figure 4.4 corresponds to angular resolution of 

2.8 at 50dB and 55.85 at 3dB, which is not particularly reasonable. The resolution plots 

revealed a second issue as well, a flattening of the spectral peaks across their range axes. 

Once these spatial frequency peaks became plateau shaped due to the noise, the range 
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component of the peak was hard to identify when checking simulation results. This 

occurred particularly in plots as the SNR was increased past 40dB, so an increase to 60 

records was used to take better source range measurements at 3dB. The range was varied 

from 10 to 1 for a few measurements to see if proximity to the sensor array could 

increase range resolution. Figure 4.5 is a plot of the pair of spectral peaks identified by 

the MVDR filter, and Figure 4.6 shows improvement in range detection for the 1 data. 

Figure 4.6 – Angular resolution measurement taken at 10 with 60 records
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Figure 4.7 – Angular resolution measurement taken at 1 with 60 records

4.5 Experiment 4

Since the angular resolution and the resolution along the range axis are adversely 

affected by both larger range distances and poorer SNR, a better ensemble average is 

obviously needed. The objective of experiment 4 was to note the improvements in 

resolution as the number of sample records is steadily increased. To do this, the angular 

resolution of signals with SNR values of 10dB, 6dB, and 3dB was then obtained as a 

function of the amounts of records used in the ensemble average, as shown in Figure 4.8.
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Figure 4.8 – Effect of increasing the number of records used in the ensemble average

This plot suggests that using 100 records or more will especially be important to the 

sensor data resolution of signals with an SNR value around 3dB. The data taken at 6dB 

and 10dB indicate that fewer records are needed to increase the resolution notably, but it

also seems that a noise resolution limit for this small sensor configuration is met at 17.8. 

To increase the possible resolution in DOA and range, larger sensor arrays are needed.
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4.6 Experiment 5

For experiment 5, an increase in sensors is seen as another possible method of 

resolution enhancement. In addition, a longer aperture length will also allow a much 

deeper near field range. Signals were then simulated from an ensemble average of 140 

sample records at a SNR value of 10dB, 6dB, and 3dB. The size of the sensor array was 

varied using 11 -51 sensors, producing the data set in Figure 4.8.

Figure 4.9 – Resolution of sources as the number of sensors in the array are increased



39

The information given in Figure 4.8 proves that resolution is significantly enhanced while

the number of sensor elements is increased. This also provides proof that a near field 

MVDR method can excel at identification of noisy source distributions and lead to 

effective source intensity reconstructions as well. 

4.7 Experiment 6

The near field source localization work of Grosicki et al. was reviewed in this 

thesis due to its successful use of a desirable Fresnel approximation. The Grosicki et al. 

paper also ensured accuracy and prevented phase ambiguities by assuming m  p for a

2p+1 element sensor array, where m is the number of localized sources. To see if the 

assumption of Grosicki et al. should also be honored by the MVDR method of the thesis, 

an evaluation of this limitation using the two parameter source localization technique is 

needed. To test this, equally spaced sources were simulated along a source line in front of 

an 11 sensor array with /4 interelement spacing. After some trial and error, seven

sources were simulated over a field of view of 3 at positions shown in Figure 4.10. 

Figure 4.10 – Geometry of the simulated sources for Experiment 6
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These sources were then successfully localized as shown in Figure 4.11 using 1000 

ensemble average records. The results clearly indicate that this method can resolve more 

sources than the approach of Grosicki et al. Please note that the peak at 0 radians only 

looks broader than the rest because of the log units used in the plot. 

Figure 4.11 – Spatial frequency peaks of 7 sources from 1000 records in Log intensity units
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4.8 Near Field Delay and Sum Beamformer Data

To gauge the usefulness of the previous data taken by the Near-Field MVDR 

method, a simpler method was attempted in a data comparison effort. A simple delay and 

sum beamforming method was implemented to provide this comparison. A traditional 

delay and sum beamformer identifies the source DOA of far field signals by totaling the

signals from each sensor when the signal is delayed by a certain phase:

  pkpforkdjxX
p

pk
inputSumDelay 






 


 


 sin

2
exp (4.1)

Delay and sum (4.1) does not use the correlation matrix like a MVDR filter, but produces 

peaks when the phase product between the signal and steering vector produces a 

maximum. If d is measured in wavelength units, we can assume =1 in (4.1). The only 

drawback to the function is that excessive oversampling is needed to get a precise 

response in many far field cases. To reconfigure delay and sum for near field sources and

index the sensors as –p ≤ k ≤ p, the following expression involving range and DOA may 

be used:
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The square root in (4.2) is a geometrically derived expression for the diagonal distance 

from the source to each k-indexed sensor. Several results were then derived with this 

equation without noise using similar array sizes, ranges, and DOA measurements to the 

MVDR data. This data is posted in Table 4.1 and supported by a discussion of the results.
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Table 4.1 – Resolution Comparison of ‘Delay and Sum’ and Near Field MDVR Method 

Range from 11 Element 
Sensor Array

Delay and Sum Resolution
(radians)

MVDR Resolution
(radians)

1 0.795 0.00031
1.5 1.10 0.0003

Range from 21 Element 
Sensor Array

Delay and Sum Resolution 
(radians)

MVDR Resolution
(radians)

1 0.622 0.00018

2
0.827 (DOA = 0)

0.873 (DOA = 30)
0.00018

3 1.14 (DOA = 0) 0.0002

The spatial frequency peaks of the Delay and Sum method for 11 and 21 sensors that 

were generated within a 1 range were distinct but had large sidelobes. As the Delay and 

Sum measurements of both sensor arrays were attempted at slightly larger ranges, the pair 

of peaks increase in width at an exponential rate. As a result, increases in range beyond

1.5 for the 11 sensor array, and 3 for the 21 sensor array, lead to inconclusive Delay 

and Sum measurements. An example of the near field delay and sum plots used in these 

calculations is in Figure 4.12. The results posted in Table 4.1 and this discussion show 

that accuracy and resolution are faulty in this implementation of the Delay and Sum

method, and that the range limitations are an issue as well. This also establishes why 

there is a credible need for precise peak results from a method like the Near-Field MVDR 

routine that can be used more effectively.
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Figure 4.12 – Near field delay and sum beamformer output example
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Chapter 5

Conclusion

Through the course of this research, a new algorithm was developed to perform 

high resolution spectral analysis of source points in the near field. The need for effective 

field measurement algorithms in high frequency concealed weapon detection has been 

established. Several previous methods and procedures have been outlined, along with 

their groundbreaking results and restrictions. This thesis then outlined a desired 2D 

localization method based on a MVDR routine that calculates filter responses along range 

and DOA axes. This method was tested with signals of varying noise and direction, but 

continued to show promise in simulations. Simulations were able to predict limitations to 

resolution as a result of sensor size and distance from the array. Sources that are close to 

the array were much easier to resolve along the range axis than those placed towards the 

far field threshold. Direction of arrival resolution was maximized by both increasing the 

record samples used to calculate the ensemble average, and increasing the number of 

sensor elements to enhance sensitivity. Some of the background literature that has been 

analyzed in this thesis has shown that there are still more ways of increasing the 

efficiency and sensitivity of methods such as this.

In future studies, one of the first directions for research with a MVDR algorithm 

would be testing with actual data. If output from a uniform linear array of known size is 

available, it would be desirable to see how well this method can resolve actual data. This 
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could be attempted with lines of horizontal data initially, and then modified into a two 

dimensional method. In two dimensions, the algorithm would need to allow measurement 

of sources by horizontal DOA, vertical pitch angle, and by their approximate range. In 

order for this to be possible, a method must be coupled with the MVDR filter output to 

correctly identify the intensities of the localized field sources. This could be achieved by 

such means as an eigenspace solution, least squares routine, or a set of optimization 

commands. Another challenge that may be presented in actual data is obtaining desired 

results despite hardware limitations, since high frequency sources have brief periods. 

A second direction for accomplishment in an MVDR method would be to apply it 

to wideband data. There are several current methods for wideband data analysis, and

research such as that presented by J. C. Chen et al. provides a catalyst for weapon 

detection using wideband localization of high frequency sources (J. C. Chen et al., 2002). 

Wideband methods have already shown resolution improvements in their millimeter-

wave scanning portal technology as well (Sheen et al., 2001). Since certain terahertz 

frequencies would aid detector units in automatic identification of concealed explosive 

devices, a distinct wideband analysis would be a useful tool.  
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Appendix 1

Table of Abbreviations

CWD Concealed Weapon Detection

dB Decibels

DOA Direction of Arrival

GHz Gigahertz

MUSIC Multiple Signal Classification

MVDR Minimum Variance Distortionless Response

PSD Power Spectral Density, also referred to as the ‘Spectrum’ of a signal

RMSE Root Mean Square Error

SNR Signal to Noise Ratio

THz Terahertz

THz-TDS Terahertz Time-Domain Spectroscopy

UML Unconditional Maximum Likelihood
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Appendix 2

MATLAB Source Code for Correlative Interferometry

function thzImage(xv,ex,yv,snr)
% Written by Joseph Handfield ~ongoing revisions 6/12/06
%
% This function calculates an array of spatial correlations of the sensed field 
% using an appended array (first half of columns are real parts, others are
% imaginary). It also calculates a theoretical correlation using the
% solution to its integral. The output is an intensity array indicating the
% location of the sources from the least squares computation of both
% correlations.
%
% thzImage uses inputs:  
% yv = Array of sensor locations along the sensing line, less than 1/2 
%      wavelength-units is the average spacing).
%      * y = linspace(0,3,10) is an example of spacing
% 
% xv = Source phasor locations (the distance from 0 (LHS) for electric field points) 
% 
% ex = Electric field intensities corresponding to xv positions
% ** intensities in ex must correspond with the right position in array xv
% 
% User is prompted for: 
% 'dv'- distance from source to sensing line.
% 'xn'- number of positions along the source line.
% 'stepSize' - number of random phase samples to accumulate each time before
%   calculating the reconstruction and accuracy.
%                      
% Optional parameters:
% snr = signat to noise ratio in decibels (SNR = 10*log(signal/noise variance)
% x0- is the minimum starting point (greater than 0) for least squares
% xmax- is the source line width to be correlated
%      (set to the size of the sensing array if no value is entered)
% omega - radian frequency of the incoming waves, set to 2*pi THz for now
%______________________________________________________________________

% If the program lacks sufficient information, this line will exit.
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if nargin < 3, error('Not enough input arguments.'); end

% Note: dv must be < twice the square of the aperture width over lambda
% freq = input('What field frequency would you like to use, in THz units? ');
disp(' ');
freq = 10^12;
omega = freq * 2 * pi;
sy = size(yv,2);
sx = size(xv,2);

% This identifies the source line length 
xmax = input(['What is the end to end span (width) of the source line? ']);
if isempty(xmax), error('No source line span! Shutting down'); end
% Entering a neg or 0 will use the apeture width as a failsafe. 
if xmax <= 0
    disp(' ');
    disp('The aperture width will be used.');
    xmax = max(yv);
end
disp(' ');

% This part identifies the number of Ik's to be solved for by the lsq code
% and the max distance/span of the source field
ms = sy*sy - 1;
msg1 = strcat(['How many Ik values do you wish to solve for if ' ...
    num2str(ms) ' is the maximum? ']);
xn = input(msg1);
if isempty(xn), error('No Ik number, shutting down'); end
compCorr = zeros(sy*sy, xn);
disp(' ');
xvall = linspace(0,xmax,xn); % gives the placement of Ik's in the answer array
SrcInt = zeros(xn,1);     % Now to make sure spacing on source line is ok 
for count = 1:sx
    SrcInt(find(xvall == xv(count))) = ex(count); 
end
if max(SrcInt) == 0
    xmax = input('Your source field width is incorrect. Enter the new length.');
    if isempty(xmax), error('No source line span! Shutting down'); end
    xvall = linspace(0,xmax,xn);
    for count = 1:sx
        SrcInt(find(xvall == xv(count))) = ex(count);
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    end
end

if nargin > 3   % add some random noise according to the snr term
    xv = xvall;
    noiseVar = max(ex) / 10^(snr/10);  
    realnoise = normrnd(0,noiseVar,xn,1);
    randn('state',sum(100*clock));
    imagnoise = normrnd(0,noiseVar,xn,1) * i;
    ex = SrcInt + realnoise + imagnoise;
end

% This part will align the sensor across from the central position
% of the source field. If it is not needed later, discard these lines.
ymin = min(yv);
ymax = max(yv);
if min(yv) ~= 0
    yv = yv - ymin; % used to zero the first entry of the sensing array.
end
apwidth = ymax-ymin;
lomiddle = (xmax/2) - (apwidth/2);
yv = yv + lomiddle;

% Source-Sensing distance note: dv must be <= twice the square of the aperture width.
msg2 = strcat(['Your next input must be <= ' num2str((apwidth^2)*2)]);        
disp(msg2);
dv = input('What is the wavelength distance between source and sensing lines? ');
if isempty(dv), error('No source-sensing distance, shutting down'); end

% This calculates the 'Theoretical' Computed Correlation as a distance matrix.
% First, the sampled solution AFC using seriesSamp.m
% I'm using the below step to compute the kernel values for all y value
% combinations. Two arrays of horizontal displacements of each field point 
% position from the sensors correlatied are picked by a cyclic order 
% (sensors 1,1 to n,n) and put into the kernel (autocorrelation operation).
rowCt = 0;
for J = 1:sy
    karray1 = yv(J) - xvall; % 1st set of sensor-field pt. horizontal displacement 
    for H = 1:sy
        rowCt = rowCt + 1;  
        karray2 = yv(H) - xvall;  % This produces the 2nd sensor-field pt. set
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          % The next step creates a autocorrelation of the spatially vaying
          % kernel- does not produce phase information well, but abs values ok
%         compCorrSpa(rowCt,:) = kernel(dv, karray1, karray2);
         
        % ADDED 12/4/06 - New Theoretical Correlations:
        % Integral Solution method, since spatial kernel is not exact 
        % - ABS value is equal for both Theoreticals but they have different 
        % phase components. This is used for checking the actual correlation.
        % Radial assumption used - produces all source displacements from sensor 1 & 2
        r1 = (dv + karray1.^2 ./(2*dv)); 
        r2 = (dv + karray2.^2 ./(2*dv));

% Now to calculate the exponential part that will produce the
% answer for any Ik's, using the expectation derived integral answer.

        compCorr(rowCt,:) = exp((i*2*pi).*(r2 - r1)) ./ (r2 .* r1);
    end
end % And now in order to have a appended real/imaginary matrix
compCorr2 = cat(1,real(compCorr), imag(compCorr));

% A rank check
if rank(compCorr2) < xn
    disp('Warning! Computed Correlation Matrix is not full rank.');
end

% This is the Theoretical R Correlation, using an array of correctly placed
% phasor values and zeros, and the computed correlation matrix (g's). 
% bigRspa =  compCorrSpa * abs(SrcInt).^2;
bigR = compCorr * abs(SrcInt).^2;
bigR2 = cat(1,real(bigR), imag(bigR));

% This is the Actual Field Correlation code. It continues to add records and 
% compute average until a suitable number of random variable phases give a 
% correlation average close to the theoretical correlation values.

% Instantiate my data-keeping arrays & tracking variables (step size & out)

stepSize = input('How many samples per step?');
if isempty(stepSize), error('No step size! Shutting down'); end
x0 = input('Enter a nonzero starting point for lsq solver, or "" to use zero')
if x0 ~= []
    x0= x0*ones(xn,1);
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end

trial = 1; errSet = []; samp = 10;
while trial == 1

out = 1; records = [];
    phaseA = []; phases = [];

cAT = []; phaseAvg = []; errPct = [];
while out == 1

        fpCorr = []; field = []; 
        % Next, I'll calculate randomly phased samples of the source field
        [field, phaseA]= seriesSamp(dv,xv,ex,yv,omega,samp);
        
        % Now to multiply by a exponential array to sample field over one period

corr = (field*exp(i*2*pi/samp*(1:samp)));
% The field conjugates are transposed to facilitate matrix multiplication
corrConj = ctranspose(field*exp(i*2*pi/samp*(1:samp)));
% Now, to compute the mean of the 10 samples per period
corrSquare = 1/samp*(corr*corrConj);

        yl = length(yv);
        fpCorr = reshape(transpose(corrSquare),yl^2,1);
        records = [records fpCorr];
        phases = [phases phaseA];
        p2 = mean(phases,2);
        phaseAvg = [phaseAvg p2];
        dpAvg = mean(records,2);
        recnum = size(records,2);
        if mod(recnum,stepSize) == 0
            disp('Random Phases for each reconstruction component:');
            disp(p2'); % Show me the random phase average at this step            
            str1 = strcat([num2str(recnum),' records averaged.']);
            disp(str1);
            if x0 ~= []
                [xAns,RESNORM] = lsqnonneg(compCorr2,[real(dpAvg); imag(dpAvg)] ,x0)
            else
                [xAns,RESNORM] = lsqnonneg(compCorr2,[real(dpAvg); imag(dpAvg)])
            end
            % this threshold may need correction for good error analysis
            noiseThr = xAns > 0.5*max(xAns);
            hiFreq = xAns(noiseThr);
            div = sum(SrcInt.^2);
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            errAvg = sum(abs(xAns - SrcInt.^2)) / div *100; % use xn to avg over all IK's
           errPct = [errPct errAvg];

            disp(['Percent error divided by ' num2str(div)]); disp(errAvg);
            
            % many conditions can be used here to adjust when the random phase 
            % iterations can be stopped
            if mod(recnum,200) == 0 % errAvg < 10 
                figure;
                plot(errPct);
                out = input('If you would like to sample again type 1:');
            end
        end
        if out ~= 1
            disp('Records finished. Press a button to continue');
            pause;
        end

end
    errSet = [errSet errPct'];
    trial = input('Another record set to find best error cutoff? 1=yes');
end
dpEstim = cat(1,real(dpAvg), imag(dpAvg));
phaseAvg = mean(phases,2);

if nargin > 5 % Execute a 'check' - Match lsq computations and theoretical data
disp('');
disp('Theoretical Solution Check');
sol1= compCorr2*x2;
figure;
plot([abs(bigR) sol1]); % Plot of the (solution x compCorr) versus theoretical
legend('Theoretical','LSQ Solution');

    title('Theoretical Correlation Vector vs. LSQ Solution');
ylabel('Correlation Value');
xlabel('Row (Correlations from 1,1 to n,n)');

if norm(abs(sol1 - timeAvg2)) > max(timeAvg2)
        disp('This solution is not correct (paused)');
        pause;

else
        disp('Checks out ok!')

end
disp('End of Run');    end
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function [nv1,nv2] = seriesSamp(d,x,ex,y,f12,samp)
% written by Joseph Handfield 5/28/06
%
% This function inputs: 
% d = the distance value between sensor and source positions 
% y = sensor location/separation in wavelengths (also gives # of sensors)
% f12 = frequency of THz waves being examined in radians
% x = wavelength-unit position of x (for example, at 1.3 wavelengths)  
% ex = Source phasor coefficients at x position(s)
% samp = number of samples summed throughout the period interval 
%
% Other important data:
% Phase = The phase data kept from each sample in units of pi [-1:1]
% (has rows = # of field pts, columns = # of samples)
%
% Output is a randomly phased sample of the source field that is generated 
% using the field equation. This simulation of sensor input will be used 
% multiple times in the main program to calculate samples that will be be 
% ensemble averaged and correlated. The correlation matrix will then be used 
% to calculate a reconstruction of the sources.
%____________________________________________________________

per = 2*pi/f12;
ymax = length(y);
xmax = length(x);

% pick random phases to use depending on # of points along the source line
phase = (rand(xmax,1)*2 - 1) * pi;

% First the source-sensor radii and the amplitude part must be generated  
% to be ymax x xmax to make vector math work.
rad = (d + (repmat(y',[1 xmax]) - repmat(x,[ymax 1])).^2/(2*d));
amp = repmat(ex,[ymax 1]) ./ rad;

% Now the first half of the field expression is produced by multiplying in
% the radial part and the random phases
p1 = amp .* exp(-i*f12*per*rad) .* exp(i*repmat(phase',[ymax 1]));

% This sums up the multi-phased field parts to return the field
nv1 = sum(p1,2); 
nv2 = phase; 
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Appendix 3

MATLAB Source Code for Near Field MVDR Method

function fresnel(ks, doa)
% 
% by Joseph Handfield
% This function calculates near field source fields and inputs the field
% into the Capon function. The DOA, range and intensity of each sensed
% source is returned to this function for MSE analysis with the simulated
% input.
%______________________________________________________________________
_

dataType = 1; % 1 = Actual Correlation, 2 = Theoretical Correlation (not used)
msg2 = strcat(['Your sensor source D must be <= ' num2str(2*(ks/2)^2) 'wl.']);        
disp(msg2);

% The following line can locate the point sources of the test signal along
% an arc of fixed range equal to sfnd(2). Otherwise the sources are located
% along a parallel source plane/line at a distance away determined by sfnd(2).
arc = 0; % input('Fixed range mode for test signal? 1=Yes:');
% sfnd will be a 1 X 2 array of system parameters
sfnd = input('Enter source field width and distance from sensor to source line.');

% loc will be n wide depending on number of sources
loc = input('Enter source locations in array form.');
% The next step will translate the test source locations if a certain DOA is desired
loc = loc + sfnd(2)*tan(doa) 
if isempty(loc), error('No location data'); end
% if any(abs(loc) > sfnd(1)/2), error('Need a wider source field'); end

% If simulating non unity intensities for the sources, uncomment next 
% line and remove []
val = [1/2 1 1 1/2]; % input('Enter the respective source intensities.');
sources = length(loc); % How many source points are being simulated
if isempty(val) || (length(val) ~= length(loc))
    val = ones(1,sources);
end
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index = -ks:ks;
snsrs = length(index);
phases2 = [];
sensArray = [];
senstotal = 0;
covSum = zeros(snsrs);
rate = zeros(snsrs,sources);
sens = zeros(snsrs,sources);

angleA = atan(loc./sfnd(2))
% The following lines are true for angles that pertain to source line spacing
if arc == 1
    % Lock in broadside distance from sensor to source line sfnd(2) = range
    rate = pi./(16*sfnd(2))*(index').^2*(cos(angleA)).^2 ;
else
    % Normal mode : cos(theta)/sfnd(2) = stretching radius along source line 
    rate = pi./(16*sfnd(2))*(index').^2*(cos(angleA)).^3 ; 
end
noisy = input('Enter SNR for additive noise, or enter _ for no noise:');
records = 140; %input('Number of records to average?');

% Now to generate samples every 1/10 of a period
timeSamp = exp(i*2*pi/10*(1:10));   
if dataType == 1

for p= 1:records
        phases = [];
        sens = 0;
        for u = 1:sources
            % Separate random phases will be used to 'unlock' simulated sources
            rphase = (rand(1)*2 - 1) * pi;
            part = exp(i*(-pi/2*sin(angleA(u))*index' + rate(:,u)));
            % In the next step, a random phase and time samples are
            % generated for the source signal making 'sens' an array 
            % that is # of sensors -by- 10 time samples
            npart = part*timeSamp*exp(i*rphase)*val(u);
            if isempty(noisy) ~= 1
                npart = addNoise(npart,[snsrs 10],noisy);
            end
            sens = sens + npart;
            % Extra sources are added on with different phases 



56

            phases = [phases rphase]; 
        end
        corrAvg = 0;
        % Now to time average the correlation of each time sample:
        for ts = 1:10 
            corrAvg = corrAvg + sens(:,ts)*ctranspose(sens(:,ts));
        end
        % Now, to time average the sum of the correlations:
        covSum = covSum + corrAvg/10; 
        phases2 = [phases2; phases];

end
    % Now, to ensemble average the sum of the time correlations at random phases:
    covFinal = covSum/records;
end    

% Now to calculate the Capon weights and frequency matrix
srcSep = input('What is the distance between positions on the source line?');

% Capon2 takes the correlation matrix and the last sensor output over time
fresp = capon2(index,sens,sfnd,covFinal,srcSep);

if fresp ~= 0
% These lines produce a crude source line reconstruction, so
% errors can be computed.
spos = sfnd(1)/srcSep; 
pvals = length(loc);
srcLine = zeros(spos,1);
spacing = (0:spos)*srcSep - sfnd(1)/2;
for yval = 1:pvals

        p = find(spacing == loc(yval));
        srcLine(p) = val(yval);
        p=0;

end
avals = size(fresp,1);
reconst = zeros(spos,1);
for ansval = 1:avals

        resp = find(spacing == sfnd(2)*tan(fresp(ansval,1)));
        reconst(resp) = fresp(ansval,3);

end
errs = reconst - srcLine;
disp('The mean squared error is:');
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meanSqEr = mse(errs)
disp('end'); disp(' ');

end
prompt1 = input('Another try?'); 
if prompt1 == 1
    fresnel(ks, doa);
end

function xout = addNoise(ex,xn,snr)
%
% by Joseph Handfield
% ex = values at xv source positions
% xn = number of reconstruction points & number of time samples
% snr = signal to noise ratio

if nargin < 3, error('Not enough input arguments.'); end  
% add some random noise according to the snr term

noiseVar = max(max(abs(ex))) / 10^(snr/10);  % From Reisenfeld & Aboutanios
% The below takes into consideration that the real and imaginary noise proportion is 
random
% randPct = rand(1); 
noise = sqrt(noiseVar)*randn(xn(1)*2, xn(2));
realnoise = noise(1:xn(1),:);
imagnoise = noise(xn(1)+1:xn(1)*2,:)*i;
xout = ex + realnoise + imagnoise; 
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function sArray = capon2(index,sens,sfnd,cov,srcSep)
%
%  Written 5/9/07 by: Joseph Handfield  
%  Objective of this function is to execte the Capon Spectral Analysis 
%  method on input field data to locate nearfield sources by their 
%  incident angle from the central sensor and their radial distance 
%  from that sensor. This is done using a manifold array of specially-built
%  frequency filters that combines with the input field signal at various 
%  values of theta and r. The ideal value(s) of xc are approximately one.
%_______________________________________
% 'guess' will tell the algorithm to search the gradient of the spectra for
% a number of peaks
guess = 3; %input('How many sources are you assuming?');
if isempty(guess) || guess == 0, error('No Sources'); end
fov= sfnd(1); distL = sfnd(2);

spos = fov/srcSep;
offs = 0; %input('offset to source line spacing?');
if isempty(offs), offs = 0; end

plotmode = 1; % Enter 1 for mesh/contour plot, 2 for normal 2D plot of a fixed range arc
% Corresponding radii in wavelengths, change the below fraction to modify sampling 
distance
if plotmode == 1
    rad = ((0:50)/1000 + 0.98)*sqrt(distL^2 + offs^2); 
else
    rad = distL;
end
spacing = (0:spos)*srcSep - fov/2 + offs;
% thetas is set to angles that pertain to the spacing of the source line
thetas = atan(spacing/distL);

invcov = inv(cov);
counter = 0;
%This is here in case diagonal loading is needed (singular correlation matrix)
if any(invcov) == inf  
    while estimate < 0.5e-16
        counter = counter + 1;
        cov = cov + eye(length(cov))*0.2; %Amount added can be adjusted to converge 
quicker
        estimate = rcond(cov) 
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    end
    invcov = pinv(cov);
end

% The next few lines generate the MVDR (Capon?) spectrum
xc = zeros(length(thetas),length(rad));
minvar = zeros(length(thetas),length(rad));
for a = 1:length(thetas)
    for b = 1:length(rad)
        % These calcultions assume that the sensor spacing is lambda/4
        rate = pi/(16*rad(b))*(cos(thetas(a))*index').^2;
        man = exp(i*(-pi/2*sin(thetas(a))*index' + rate));
        minvar(a,b) =  1/ (ctranspose(man)*invcov*man);
        weights = ctranspose(sens)*(invcov*man*minvar(a,b));
        xc(a,b) = sum(abs(weights));
    end    
end

% Sobel operators, to create a gradient plot of the spectra
if plotmode == 1

B1 = [-1 -2 -1; 0 0 0; 1 2 1];
B2 = [-1 0 1; -2 0 2; -1 0 1];
u1 = filter2(B1,abs(xc),'same');
u2 = filter2(B2,abs(xc),'same');
gradPlot = abs(u1) + abs(u2);

disp('The Capon Matrix has solution(s) of:');
% Acccording to value in guess, this picks the maximum valued Capon peaks
% this was changed to locate all peaks when some may be many orders of 

magnitude higher
temp = log(abs(xc));

    argBkgd = median(median(temp));
sxc = size(xc);
aset = [];
p=0; niter = 0;
manA = [];

while p ~= guess
        niter = niter + 1;
        soln = max(max(temp)); 
        [a,b] = find(temp == soln);
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        if a ~= sxc(1)
            rp = gradPlot(a,b) < 0.5*gradPlot(a+1,b);
        else rp = 0; end
        if a > 1 
            lp = gradPlot(a,b) < 0.5*gradPlot(a-1,b);
       else lp = 0; end

        if b ~= sxc(2)
            up = gradPlot(a,b) < 0.5*gradPlot(a,b+1);
        else up = 0; end
        if b > 1
            dp = gradPlot(a,b) < 0.5*gradPlot(a,b-1);
        else dp = 0; end
        if (rp && lp) && (up && dp) 
            soln
            disp(['at theta = ' num2str(thetas(a)) ...
                ', and at a radius = ' num2str(rad(b))]);
            rateA = pi/(16*rad(b))*(cos(thetas(a))*index').^2;
            manA = [manA exp(i*(-pi/2*sin(thetas(a))*index' + rate))];
            p = p+1;
            % If the solution positions are to be recorded
            aset = [aset; thetas(a) rad(b) 0];
        end
        if niter > 3*guess
            disp('Valid Capon solutions are found');
            p=guess;
        end
        temp(a,b) = argBkgd; % Reduce the solution peak so others can be located

end
pic = input('Would you like to create a mesh plot? Enter title.');
if isempty(pic) == 1

        % do nothing
else

%         figure;  
%         logMVDR = log(abs(xc));
%         mesh(rad,thetas,logMVDR);
%         axis tight;
%         ylabel('DOA - radians');
%         xlabel('range (wavelengths)');
%         zlabel('Log Spectral Intensity');
%         graph = strcat(['MVDR Filter Response ' pic]);
%         title(graph);
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        % For Power Spectral Estimator (denominator of Capon solution)
        figure;
        mesh(rad,thetas,abs(minvar));
        ylabel('DOA - radians');
        xlabel('range (wavelengths)');
        zlabel('Spectral Intensity');
        axis tight;
        graph2 = strcat(['Power Spectral Density of ' pic]);
        title(graph2);
%         figure;
%         maxLog = fix(max(max(logMVDR)));
%         levels = (-10:0) + maxLog;
%         [cs, h]= contourf(rad,thetas,logMVDR,levels); clabel(cs,h);

%     in2 = input('To save jpeg, type 1');
%     if in2 == 1
%         print(gcf, '-djpeg', pic);
%         clear temp;
%         save(pic);
%     end
end

% Gaussian elimination division to find intensities of field points
if length(manA) ~= 0

        intens = max(abs(sens'))/manA'
        aset(:,3) = intens';

end
sArray = aset;

else
    figure;
    plot(thetas,log(abs(xc)));
    xlabel('DOA - radians');
    ylabel('Log Spectral Intensity');
    sArray = 0;
end 
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Appendix 3

MATLAB Source Code for Delay and Sum Method

function nearDelaySum

% delay & sum for spherical wavefront
C=3e8; % EM wave velocity
j=sqrt(-1);

N=11; % number of (odd) sensors, modify to desired size
dx= 0.25; % separation between sensors. Assumed wavelength=1.
R= 1; % distance of source from center sensor. qualifies for near field
Theta= pi/6; % angle of arrival of source at center sensor
cent_dist= -dx*(N-1)/2; % distance of leftmost sensor from center to begin with
source_dist= zeros(1,N); % distance of each sensor from source
for n=1:N, 
      source_dist(n)=sqrt(R^2+cent_dist^2-2*cent_dist*cos(Theta));
      cent_dist=cent_dist+dx;
end % source distance generated
% now generate phasors
phasors=exp(-j*2*pi*source_dist); % assuming lambda=1
% now test output delay and sum as a function of angle
target_dist= zeros(1,N); %distance of each sensor from assumed target
del_sum=zeros(size(-pi/4:pi/20:pi/4)); %assuming angles from -pi/4 wavelength to pi/4
i=0;
for theta=0:pi/100:pi,
      i=i+1;
      cent_dist= -dx*(N-1)/2; % distance of leftmost sensor from center to begin with
      for n=1:N, 
            target_dist(n)=sqrt(R^2+cent_dist^2-2*cent_dist*cos(theta));
            cent_dist=cent_dist+dx;
      end % distance to assumed target generated
      % generate corresponding phasors for delay and sum
      phasors_del=exp(j*2*pi*target_dist);
      % generate delay and sum magnitudes for given r
      del_sum(i)=abs(sum(phasors.*phasors_del));
end
figure;plot(0:pi/100:pi,del_sum); 
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