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Advanced Correlation-Based Character Recognition Applied to
the Archimedes Palimpsest

by

Derek J. Walvoord

Submitted to the
Chester F. Carlson Center for Imaging Science

in partial fulfillment of the requirements
for the Doctor of Philosophy Degree

at the Rochester Institute of Technology

Abstract

The Archimedes Palimpsest is a manuscript containing the partial text of seven treatises
by Archimedes that were copied onto parchment and bound in the tenth-century AD.
This work is aimed at providing tools that allow scholars of ancient Greek mathemat-
ics to retrieve as much information as possible from images of the remaining degraded
text. A correlation pattern recognition (CPR) system has been developed to recognize dis-
torted versions of Greek characters in problematic regions of the palimpsest imagery,
which have been obscured by damage from mold and fire, overtext, and natural ag-
ing. Feature vectors for each class of characters are constructed using a series of spatial
correlation algorithms and corresponding performance metrics. Principal components
analysis (PCA) is employed prior to classification to remove features corresponding to
filtering schemes that performed poorly for the spatial characteristics of the selected
region-of-interest. A probability is then assigned to each class, forming a character
probability distribution based on relative distances from the class feature vectors to
the ROI feature vector in principal component (PC) space. However, the current CPR
system does not produce a single classification decision, as is common in most tar-
get detection problems, but instead has been designed to provide intermediate results
that allow the user to apply his or her own decisions (or evidence) to arrive at a con-
clusion. To achieve this result, a probabilistic network has been incorporated into the
recognition system. A probabilistic network represents a method for modeling the un-
certainty in a system, and for this application, it allows information from the existing
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partial transcription and contextual knowledge from the user to be an integral part of
the decision-making process.

The CPR system was designed to provide a framework for future research in the
area of spatial pattern recognition by accommodating a broad range of applications
and the development of new filtering methods. For example, during preliminary test-
ing, the CPR system was used to confirm the publication date of a fifteenth-century
Hebrew colophon, and demonstrated success in the detection of registration markers
in three-dimensional MRI breast imaging.

In addition, a new correlation algorithm that exploits the benefits of linear discrim-
inant analysis (LDA) and the inherent shift invariance of spatial correlation has been
derived, implemented, and tested. Results show that this composite filtering method
provides a high level of class discrimination while maintaining tolerance to within-
class distortions. With the integration of this algorithm into the existing filter library,
this work completes each stage of a cyclic workflow using the developed CPR system,
and provides the necessary tools for continued experimentation.
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–Give me a place to stand, and I will move the Earth.

Archimedes

–If I have seen further than others, it is by standing on the shoulders of
giants.

Isaac Newton

1
Introduction

Patterns exist universally. They are pervasive in nearly every aspect of our daily lives.
We, as humans, are naturally inclined to seek out and recognize these existing pat-
terns using our precisely tuned abilities for discriminating ordered arrangements or
sequences. Over time, these abilities become subconscious routines used to recognize
visual or aural patterns such as characters and words as we read, or friends and fam-
ily members that we hear on the telephone. Even more impressive is the fact that
humans can recognize patterns that deviate from what we consider to be the norm.
For example, we can typically recognize the faces of individuals at a class reunion
despite changes in their appearance due to aging.

Despite its many obvious strengths, pattern recognition in humans is not without
limitation. The popular “Where’s Waldo?” books by Martin Handford [18] provide
children with the difficult task of finding the hidden Waldo character in a busy scene
with numerous impostors. Similarly, the recognition of fingerprints is typically an
intractable problem for the human pattern recognition system due to the complexity of
the images. Our recognition capabilities are inhibited by clutter, speed, and intensity

1



CHAPTER 1. INTRODUCTION

scaling.

To design a pattern recognition system that could compete with the inherent recog-
nition ability of the average human observer is incomprehensible. Fortunately, tech-
nology has opened the door for the development of new machine-driven pattern
recognition systems that can overcome many obstacles. The majority of this disser-
tation will focus on spatial pattern recognition algorithms, that is, methods by which
information from the relative spacing between intensity values is used to appropri-
ately classify an input signal (or image). In particular, correlation filter design is em-
phasized as a robust method for extracting spatial information to be used for image
classification.

With this in mind, we now turn to an unsuspecting application for pattern recogni-
tion development, the Archimedes Palimpsest. This ancient manuscript is of great histor-
ical significance, as it contains the earliest known copies of text from Archimedes, the
great mathematician. Ironically, many of the mathematical concepts derived therein
serve as the foundation for the algorithms used in the retrieval of its text [39].

1.1 The Archimedes Palimpsest Project

The Archimedes Palimpsest is a Byzantine manuscript containing partial texts of seven
treatises by Archimedes (287 BC–212 BC) that were copied onto parchment and bound
into a codex in the tenth-century, AD. Among these seven treatises is the only extant
copy of On the Method of Mechanical Theorems, which provides insight into the math-
ematical thought process of Archimedes [10]. The manuscript also includes the only
copy of On Floating Bodies, Archimedes’ most famous work, in the original Greek and
of Stomachion, which recently has been identified as a very early study in combina-
torics [40]. In addition, five folios of speeches by the Athenian orator Hyperides and
six and a half folios of a commentary on a work by Aristotle were recently discovered
in the palimpsest.

The most likely origin of the manuscript was the city of Constantinople, which
was sacked in 1204 at the time of the Fourth Crusade. Without need of mathematical
treatises, the book was disbound, the original text was erased, and the pages were cut
in half, rotated ninety degrees, and rebound along with pages from other manuscripts
to form a palimpsest. The erased pages were then overwritten with a prayer book, the

2



1.1. THE ARCHIMEDES PALIMPSEST PROJECT

Euchologion, which was used in services for approximately 700 years.

In 1906, the palimpsest resurfaced in Istanbul when Johan L. Heiberg, a Danish
philologist, had photographs made of several leaves to support his transcription of
what remained of the Archimedes text. In 1998, the Archimedes Palimpsest was auc-
tioned at Christies, Inc., in New York, and sold for two million dollars to an anony-
mous American collector. The manuscript has been lent to the Walters Art Museum in
Baltimore for conservation and study.

Little is known about where the palimpsest resided during the twentieth century,
but it was recently discovered that a page from the palimpsest was photographed in
the USA in 1932. Significant damage suffered by the manuscript in the past one hun-
dred years is evident from a comparison of the current appearance of the palimpsest
to photographs taken at the beginning of the twentieth-century. The damage includes
burn marks, mold growth, and even deliberate painting of forgeries over four of the
leaves, in an apparent attempt to increase its sale value.

1.1.1 Early Transcription Efforts

A series of imaging sessions began in the summer of 2000 to capture and preserve
the current state of the manuscript and to exploit image processing methods on the
digitized data. Figure 1.1 shows a small section in the gutter region of the disbound
Euchologion bifolio 98v-102r under strobe illumination. While the text of the Eucholo-
gion (running vertically) exhibits high contrast, the text of Archimedes (running hor-
izontally) and a diagram of his treatise, On Spiral Lines, are barely discernible in the
background.

The same section of the palimpsest under ultraviolet illumination is shown in Fig-
ure 1.2. Ultraviolet light causes the material in the parchment to fluoresce. Short wave-
length photons (λ = 365nm) are absorbed by the parchment and re-emitted at longer
wavelengths, while the inks absorb some amount of both the incident and fluorescing
light [10]. The result is that both texts appear dark, and the fluorescing parchment
appears as a brighter blue color, effectively enhancing the contrast between the text
and background regions.

Images of reflected light were collected at various wavelengths, using three differ-
ent illuminations and five different tunable filters, to create a multispectral data set
[10]. The initial approach used to provide scholars with readable Archimedes text was
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Figure 1.1: A section of leaves 98v-102r from the Archimedes Palimpsest under strobe
illumination. The Archimedes text (underwriting) is shown running vertically. (Pho-
tographs produced by The Rochester Institute of Technology and John Hopkins University. Copyright resides with the owner of
the Archimedes Palimpsest.)

to apply a supervised classification algorithm of least-squares spectral unmixing to the im-
agery. Images were then registered, and four classes were selected for segmentation:
parchment, overwriting, underwriting, and mold. Figure 1.3 shows images of leaf 28r
of the palimpsest under normal white-light illumination and of the underwriting text
class map, where the gray value is a measure of the membership in this class (under-
writing appears as white and nonunderwriting appears as black).

Despite the imaging team’s belief that the least-squares spectral unmixing results
were useful, the scholars deemed them to be insufficient for their transcription efforts.
Breaks in the characters led to a large amount of ambiguity as to whether an over-
written character had occupied a particular location prior to the processing. A much
simpler result was desired by the scholars that would preserve the visibility of both
writings, while distinguishing the texts in some manner. The imaging team devel-
oped a much simpler processing technique that produced pseudocolor images where
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Figure 1.2: A section of leaves 98v-102r from the Archimedes Palimpsest under ultra-
violet illumination. (Photographs produced by The Rochester Institute of Technology and John Hopkins University.
Copyright resides with the owner of the Archimedes Palimpsest.)

the underwriting, overwriting, and parchment classes appear as different colors. The
process is based on the observation that the underwriting is barely detectable in the
red channel of the tungsten images, but that both texts are visible with high contrast in
the blue channel of the UV images. False-color images are generated by combining the
tungsten-red image in the red channel and the UV-blue image in the green and blue
channels. Figure 1.4 shows the result for a section of the Euchologion bifolio 98v-102r
after processing.

1.1.2 Motivation for Additional Text Recovery

By early 2004, scholars had transcribed approximately eighty percent of the Archimedes
text from images of the palimpsest under strobe and UV illumination, from pseudocolor-
processed images, and from images of available Heiberg photographs. While mul-
tispectral imaging techniques were largely successful, some areas of text were still
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Figure 1.3: Leaf 28r from the Archimedes Palimpsest before (Left) and after (Right)
least-squares spectral unmixing. (Photographs produced by The Rochester Institute of Technology and John
Hopkins University. Copyright resides with the owner of the Archimedes Palimpsest.)

undecipherable due to significant damage from mold, fire, and forged paintings. Ex-
amples of the degradations that the manuscript has endured over the past century are
illustrated in the following set of figures. Figure 1.5 is a digitally stitched image of
the original Heiberg photographs of the leaves 57v-64r captured in the early 1900’s.
Comparing this photograph to the images of the leaves in Figures 1.6–1.8 shows the
extent of the recent damage which obscures the texts.

In April of 2004, a group of scientists gathered at a symposium to consider ad-
ditional methods for recovering as much of the remaining difficult text as possible.
The goal was not to replace multispectral imaging on the palimpsest, but to provide
the scholars with additional imagery or tools to help in the transcription. Multiple
avenues were considered, and two were eventually pursued.

X-ray fluorescence (XRF) imaging was the first imaging scheme to be employed
as a result of the this symposium. Leaves containing the most obscured regions of
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Figure 1.4: A section of leaves 98v-102r from the Archimedes Palimpsest after pseu-
docolor image processing. (Photographs produced by The Rochester Institute of Technology and John Hopkins
University. Copyright resides with the owner of the Archimedes Palimpsest.)

text (e.g., beneath forged paintings) were taken to the Stanford Linear Accelerator
Center (SLAC) in California to be imaged using narrow beams of X-rays. The energy
of the fluorescing X-rays characterize specific elements in the palimpsest, such as the
iron in the two inks and the calcium within the parchment [40]. Only specific leaves
have been imaged using the synchrotron radiation, as “beamtime” at SLAC is limited.
The image-capture process is painstakingly slow (but improving), and only the most
difficult leaves require this attention. Following the examples in Figures 1.5-1.8, “iron
channel” and “calcium channel” XRF images of 057v are shown in Figure 1.9. Note
that the overwriting, underwriting, and forged painting from 057r (the reverse side),
are also apparent in these images.

The second selected area of research was the design of a character recognition sys-
tem to assist scholars in transcribing the degraded Archimedes text. Several different
methods for the task were considered due to the wide array of relevant recognition al-
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Figure 1.5: Original Heiberg photograph of leaves 57v-64r from the Archimedes
Palimpsest. (Photographs produced by The Rochester Institute of Technology and John Hopkins University. Copyright
resides with the owner of the Archimedes Palimpsest.)

gorithms. The Archimedes Palimpsest Project held a competition among the scientists
who advocated the design and use of such a tool, and submissions were evaluated in
July of 2004. A correlation-based pattern recognition system designed by the author
was awarded funding for further development. The preliminary system included a
graphical-user-interface (GUI), developed in the IDLTM programming language that
provided classification results based solely upon the spatial characteristics of the im-
ages used in the correlation operations. Since its inception, the pattern recognition
system has been updated over several iterations to accommodate new imagery, con-
textual knowledge from partial transcriptions, and is now being used in additional
applications requiring improved flexibility. We follow the development of this sys-
tem and examine each of its component algorithms throughout the remainder of this
dissertation.
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Figure 1.6: Leaves 57v-64r (Top) and reverse-side 64v-57r (Bottom) from the
Archimedes Palimpsest images under strobe illumination. (Photographs produced by The Rochester
Institute of Technology and John Hopkins University. Copyright resides with the owner of the Archimedes Palimpsest.)
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Figure 1.7: Leaves 57v-64r (Top) and reverse-side 64v-57r (Bottom) from the
Archimedes Palimpsest images under ultraviolet illumination. (Photographs produced by The
Rochester Institute of Technology and John Hopkins University. Copyright resides with the owner of the Archimedes Palimpsest.)

10



1.1. THE ARCHIMEDES PALIMPSEST PROJECT

Figure 1.8: Leaves 57v-64r (Top) and reverse-side 64v-57r (Bottom) from the
Archimedes Palimpsest images after pseudocolor image processing. (Photographs produced
by The Rochester Institute of Technology and John Hopkins University. Copyright resides with the owner of the Archimedes
Palimpsest.)
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Figure 1.9: Leaf 57v from the Archimedes Palimpsest as the “iron channel” image
(Left) and as the “calcium channel” image (Right) using XRF imaging. (Photographs produced
by The Rochester Institute of Technology and John Hopkins University. Copyright resides with the owner of the Archimedes
Palimpsest.)
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1.2. DISSERTATION OVERVIEW

1.2 Dissertation Overview

This dissertation encompasses three segments of work (or is composed of three Acts),
all of which interconnect with the Archimedes Palimpsest Project. The first section
focuses on an extensive comparison of existing advanced correlation filter schemes in
this application. A large portion of this dissertation is dedicated to providing the
necessary background information used to develop these algorithms. The design
of a correlation-based character recognition system for the scholars transcribing the
Archimedes Palimpsest is the subject of the second section. One of the most appealing
reasons for using correlation filtering as the primary spatial recognition method is its
versatility over a wide range of applications; the ability of the system to accommodate
additional application areas is demonstrated. The last portion of this work is an in-
vestigation aimed at improving the magnitude or phase representation in correlation
filter designs using common geometric transforms. New filtering methods are incor-
porated into the working recognition system for analysis on real data. For purposes
of both readability and clarity, each chapter presents the relevant content pertaining
to each of these sections.

1.3 Organization

Chapter 2 provides a detailed list of objectives to be satisfied for successful comple-
tion of this dissertation. In Chapter 3, background theory is provided on the algo-
rithms relevant to the design of the character recognition system for the Archimedes
Palimpsest. Chapter 4 describes the approach used for the various studies performed
on advanced correlation filtering and the methodology for developing the associated
correlation pattern recognition system. Results pertaining to each of the objectives are
then presented in Chapter 5, and Chapter 6 offers both concluding statements and
suggestions for future work. An appendix is also included at the end of this disserta-
tion to provide a brief review of the more common mathematical procedures used to
derive several of the correlation algorithms.
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–The more you know, the less sure you are.

Voltaire

2
Objectives

The underlying goal of this research has always been to implement algorithms and to
develop tools to assist the scholars of ancient Greek mathematics in their transcrip-
tion of the Archimedes Palimpsest. Thus, the majority of the objectives presented here
were tailored to design a working pattern recognition system for handwritten char-
acter recognition on this specific manuscript. While certainly well-established, the
field of correlation pattern recognition continues to evolve, largely due to increased
attention from security and defense fields in recent years. One of the more attractive
features of correlation filters is that they can be used in a variety of recognition tasks
that offer adequate spatial structure for matching.

With the Archimedes Palimpsest Project providing the motivation, three categories
of objectives were devised to determine the success of the work encompassed by this
dissertation. The first is a study of both past and present correlation filtering meth-
ods. This includes investigation, implementation, and comparison of both classical
and advanced correlation designs. The historical development of these algorithms is
analyzed in Chapter 3 to reveal inherent limitations in correlation filter design and to
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facilitate improvement by unconventional methods (third objective category).
The second group of objectives is concerned with the design of the character recog-

nition tool for the Archimedes Palimpsest. Evaluations of the correlation filters are
used to create a pattern recognition system with a graphical-user-interface (GUI) for
the scholars transcribing the degraded text of Archimedes. The preliminary system
should be capable of implementing the desired filtering schemes to provide character
classification results. Accuracy of these results can then be improved by integrating a
probabilistic network into the system to take advantage of contextual information.

The final category focuses on the development of improved phase (or magnitude)
representations in correlation filter design. An investigation of the “Corefaces” ap-
proach, by Savvides, et al., [43] is performed to determine the advantages of using a
linear subspace for phase representation. The final goal of this dissertation is to use
this method as a template for building more useful spatial correlation algorithms and
then to incorporate any improvements into the pattern recognition system.
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A detailed list of the main objectives for the work that constitutes this dissertation
is presented below for reference:

1. Survey and evaluate the more common correlation filtering schemes

(a) Implement the filtering algorithms in a suitable programming language

(b) Survey and implement accepted correlation performance metrics

(c) Compare the results of filtering for both synthetic and real imagery

2. Archimedes character recognition tool design

(a) Develop a correlation-based character recognition system with a user-friendly
GUI for use by scholars who are transcribing the Archimedes Palimpsest

(b) Demonstrate that the system can be used in other applications

(c) Improve recognition performance on the Archimedes Palimpsest by inte-
grating a probabilistic network into the pattern recognition system to ex-
ploit the existing partial transcription

3. Improved phase (or magnitude) representation in correlation filtering

(a) Implement and analyze an eigenspace approach to phase representation

(b) Develop a method to improve the phase (or magnitude) representation in
correlation filters using common geometric transformations

(c) Incorporate improvements into the pattern recognition system designed for
the Archimedes Palimpsest

The approach used to satisfy the objectives in each of these three categories is pre-
sented in Chapter 4, and the results of this work are reported in Chapter 5.

Before proceeding with further discussion of this work, it may be helpful to review
some of the background theory provided in the following chapter. Advanced corre-
lation filter design, geometric transforms for image processing, simple probabilistic
networks, and other relevant topics are examined in detail.
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–One of the most interesting aspects of the world is that it can be con-
sidered to be made up of patterns.
A pattern is essentially an arrangement. It is characterized by the order
of elements of which it is made rather than by the intrinsic nature of
these elements.

Norbert Wiener

–The deep study of nature is the most fruitful source of mathematical
discoveries.

Jean-Baptist-Joseph Fourier

3
Theory

In its broadest context, pattern recognition refers to the task of assigning input data
to one of multiple predefined classes. The input for the recognition problem can be
N-dimensional. For example, the goal may be to appropriately classify a voice from
a 1-dimensional audio signal, identify a fingerprint from a 2-dimensional grayscale
image, or determine the constituents of a gaseous plume from a 100-band hyperspec-
tral signature. Due in large part to the nature of the handwritten character recognition
application described in Chapter 1, this dissertation focuses almost exclusively on ex-
tracting features from the spatial structure of target objects in 2-dimensional images.
Pattern recognition of this flavor is commonly referred to as spatial pattern recognition.

Spatial pattern recognition can be subdivided into a series of steps; a simplified
model of the process consists of just three fundamental steps: preprocessing, feature ex-
traction, and classification. Figure 3.1 shows a block diagram of the serially-connected
subprocesses that constitute a more complete recognition task. After the input has
been acquired by image sensing, which also is a major step in the recognition chain,
the image is preprocessed to maximize the efficiency of the feature extraction algo-

19



CHAPTER 3. THEORY

Figure 3.1: Block diagram of the major steps of the pattern recognition chain.

rithms for the desired application. A significant amount of research has been per-
formed to improve segmentation techniques for spatial recognition tasks; this step is
omitted from further discussion however, as we will assume segmentation is either in-
corporated into the feature extractor (via correlation filtering) or performed manually
by the user (region-of-interest selection). Common application-specific preprocessing
steps include (but are not limited to) reducing noise, spatial registration, edge detec-
tion or enhancement, and improving the dynamic range of the input [31]. Some of
these preprocessing techniques will be revisited later in Chapter 4.

A main area of interest for this work is to develop accurate and unique descrip-
tions for handwritten characters, the spatial patterns of interest, in digital image data.
Thus, feature extraction methods will be an underlying focus of this work, while clas-
sification and post-processing techniques will receive less attention. Ideally, features
(also called pattern descriptors) are needed that provide enough useful information to
correctly classify the input pattern, or patterns. A feature vector x is composed of d
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pattern descriptors xi, and can be represented as a column vector:

x =


x1

x2
...

xd

 (3.1)

The feature vector x lies in a d-dimensional Euclidean space Rd, referred to as the fea-
ture space. In this application, we will be concerned with using pixel gray values as the
features xi for correlation filtering (which will be discussed in detail throughout the re-
mainder of this chapter). Moreover, feature vectors can be generated by subsequently
extracting features from the correlation results. Once feature extraction is complete, it
is the job of the classifier, or classifiers, to determine which class the feature vector is
most associated.

Intuition suggests that increasing the number of descriptors in each feature vector
improves the accuracy of classifying the pattern. However, the pattern classification
task becomes increasingly complex and more computationally expensive as the num-
ber of features and number of classes are increased.

As is the case with many pattern recognition problems, class membership should
not change as the pattern is distorted. In these situations, it is ideal to apply a feature
extraction process, or to design an advanced classifier, that is invariant to the possible
pattern transformations. Each feature vector x is a point in feature space Rd, and to
be correctly classified, each of these points must map to its corresponding class. Thus,
an optimal system for recognizing handwritten characters would correctly classify the
feature vectors regardless of background noise in the input image data, scaling and/or
rotation of the pattern of interest, and any other “degradations” (Figure 3.2). This
concept of distortion-tolerant feature extraction is essential to consider as we proceed;
a quick glance at the images in Chapter 1 confirms this statement.

3.1 Correlation Pattern Recognition

A subcategory of the pattern recognition family exists in which the process of clas-
sifying an input pattern is based on a correlation-filtered output. The function of
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Figure 3.2: Example pattern recognition system that provides correct character classi-
fication in the presence of small handwriting distortions.

correlation filtering in pattern recognition is very intuitive; it should determine the
degree of similarity between the input pattern and the training patterns assigned to
known classes. While many fragments of this field have existed for decades, a useful
resource by Kumar, et al., has recently been published that presents a large ensemble
of various correlation filtering schemes, and designates the subject matter by the name
“correlation pattern recognition” (CPR) [31].

Correlation filtering algorithms have been used as a means for feature extraction
and classification in a variety of applications. Advanced correlation design is currently
used in biometric verification to classify images of faces, eyes, and fingerprints [32],
in defense and security problems to classify synthetic aperture radar (SAR) images of
vehicles [45], and in document processing systems to detect and locate low-contrast
character strings from coupons [33]. The flexibility of correlation as a robust pattern
recognition tool is demonstrated for multiple applications in this body of work.
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3.2 Correlation Filtering

Correlation filtering algorithms share a wide range of complexity in terms of develop-
ment and synthesis. However, the ease of implementation is one of the most attractive
features of spatial correlation; it is often as trivial as a multiplication of the input spec-
trum by the filter transfer function in the frequency domain. Perhaps the most useful
property of correlation filtering is shift invariance. A shift-invariant operation ϑ that
acts on an input function f (x) and produces an output function g(x), will produce a
shift in the position of output function equal to the shift in position of the input. That
is,

ϑ { f (x)} = g(x) (3.2a)

ϑ { f (x − x0)} = g(x − x0) (3.2b)

where x0 is a real constant. Gaskill summarized the property well, noting ”shift in-
variance implies that the behavior of the system is not a function of the independent
variable” [14]. In the context of pattern recognition, shift invariance implies that use
of correlation filters for feature extraction (or classification) alleviates the need for a
segmentation algorithm. This section provides a mathematical foundation for several
correlation filtering processes and introduces the notation to be used in a considerable
portion of this dissertation.

3.2.1 Classical Spatial Matched Filters

We begin by introducing the “classical” spatial matched filters, i.e., correlation fil-
ters derived from a single training signal (the reference). The simplest and perhaps
the oldest correlation filter, the “ideal” matched filter, is examined first, and we then
follow the historical progression toward the development of more robust correlation
schemes. While many classical matched filters may prove impractical in complex ap-
plications, the underlying concepts serve as a foundation for correlation filter devel-
opment. Continuous Cartesian coordinates are used throughout this section for sim-
plicity, though the extension to digital implementation is straightforward.
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3.2.1.1 The Ideal Matched Filter

To develop a formulation for the ideal matched filter, let us first examine an imaging
scenario under “ideal” conditions. Assume that we are given an input image g(x, y)
that contains only a spatially-translated version of a “known” reference image f (x, y),
which contains the object (or pattern) of interest (Eq. 3.3).

g(x, y) = f (x − x0, y− y0) (3.3)

A matched filter actuates an “alarm” of some sort wherever the known reference
f (x, y) is detected in the input image g(x, y). Applying a matched filter impulse re-
sponse h(x, y) to g(x, y) should provide a result that specifies an estimate of the refer-
ence location (x0, y0) in the input. This spatial domain output is typically referred to
as the correlation plane. The ideal correlation peak would be a Dirac delta function in
the continuous case, or an approximate Dirac delta function for digital systems, at the
location of the reference:

g(x, y) ∗ h(x, y) = δ(x − x0, y− y0) (3.4)

where the asterisk in Eq. 3.4 denotes the 2-dimensional convolution operation.

In the spatial frequency domain, the input image g(x, y) is expressed as

G(ξ, η) = F(ξ, η) · e−2πi[ξx0+ηy0] (3.5)

where i ≡
√
−1. In words, the input spectrum G(ξ, η) is the product of the refer-

ence spectrum F(ξ, η) and the linear phase introduced by the spatial translation. Mul-
tiplying G(ξ, η) by the matched filter transfer function H(ξ, η) then should yield a
constant-magnitude linear phase-term that, after application of the 2-dimensional in-
verse Fourier transform, produces a Dirac delta function at the coordinates (x0, y0).

G(ξ, η) · H(ξ, η) =
[

F(ξ, η) · e−2πi[ξx0+ηy0]
]
· H(ξ, η) (3.6a)

G(ξ, η) · H(ξ, η) = e−2πi[ξx0+ηy0] (3.6b)

Thus, from Eq. 3.6a and Eq. 3.6b, the frequency domain representation of the ideal
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matched filter is:

H(ξ, η) =
1

F(ξ, η)
=

1
|F(ξ, η)| · eiΦF

=
e−iΦF

|F(ξ, η)| (3.7)

where ΦF denotes the phase of F(ξ, η). The ideal match filter in Eq. 3.7 is completely
analogous to the simple inverse filter used in deconvolution tasks, which seeks com-
pensation for degradations induced by the imaging system, typically characterized by
the system point spread function (PSF). Unfortunately, both the ideal matched filter
and the inverse filter neglect to account for an additive noise component.

We now assume that the input g(x, y) contains a translated replica of the reference
in and an additive noise component n(x, y):

g(x, y) = f (x − x0, y− y0) + n(x, y) (3.8)

Its frequency domain representation now contains an additive noise spectrum N(ξ, η):

G(ξ, η) = F(ξ, η) · e−2πi[ξx0+ηy0] + N(ξ, η) (3.9)

To obtain the ideal correlation output, multiplying the Fourier transform of the input
image by the matched filter transfer function should again result in only a constant-
magnitude linear-phase term:

G(ξ, η) · H(ξ, η) =
[

F(ξ, η) · e−2πi[ξx0+ηy0] + N(ξ, η)
]
· H(ξ, η) (3.10a)

G(ξ, η) · M(ξ, η) = e−2πi[ξx0+ηy0] (3.10b)

Eq. 3.10a implies that two conditions must be satisfied at all spatial frequencies to
produce the output in Eq. 3.10b:

F(ξ, η) · H(ξ, η) = 1 (3.11a)

N(ξ, η) · H(ξ, η) = 0 (3.11b)

Eq. 3.11a clearly illustrates that the Fourier transform of the reference F(ξ, η) must
be nonzero (at all spatial frequencies). The second criterion is evident by comparing
Eq. 3.11a and Eq. 3.11b; a Dirac delta function correlation peak can only be achieved
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when the noise spectrum N(ξ, η) is zero at all spatial frequencies. In this more realis-
tic imaging scenario, the additive noise is often amplified by the ideal matched filter
and spread throughout the spatial domain via the inverse Fourier transform. This is
because F(ξ, η) is typically dominated by low frequencies in “real” images, which in
turn, cause its reciprocal to act as a high-frequency boosting filter. This amplification
of noise prohibits the use of the ideal matched filter in practical imaging problems and
instead limits it to a condition for constructing more useful matching techniques.

The following example illustrates the effects of small image distortions, such as
noise and in-plane rotation, on the correlation peaks produced using the ideal matched
filter. Figure 3.3 shows both the spatial and frequency domain representations of an
original reference and three different targets. The 8-bit, 128× 128 pixel images include
a background with a gray level of 95 and a character with a gray level of 160. Each
target contains a spatially translated replica of the reference: the first has no additional
“distortions”, the second contains additive white Gaussian noise (WGN), and the third
introduces a 5◦ clockwise in-plane rotation of the reference object. These images will
be used in future examples to illustrate the general behavior of other correlation filters,
and for qualitative comparison and discussion.

Figure 3.4 shows the normalized correlation planes produced for each test target
when using the reference to generate the ideal matched filter. As expected and in
agreement with Eq. 3.4, the ideal matched filter produces an approximate Dirac delta
function at the reference location of the first target. The addition of noise and/or small
rotation of the reference causes the filter to amplify high frequencies, thus “burying”
the correlation peak in noise.

3.2.1.2 Phase-Only Matched Filters

As indicated by its name, a phase-only matched filter (POMF) eliminates the magnitude
term of the ideal matched filter (Eq. 3.7) to avoid the noise amplification that typically
results at high spatial frequencies. The simplest form of the POMF was introduced by
Horner and Gianino [20] in the early 1980’s:

M(ξ, η) = e−iΦF (3.12)
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Original Reference

(a) Image (b) Magnitude (c) Phase

Translation

(d) Image (e) Magnitude (f) Phase

Additive WGN

(g) Image (h) Magnitude (i) Phase

5◦ Rotation

(j) Image (k) Magnitude (l) Phase

Figure 3.3: Example reference (a-c) and test targets (d-l) as images and as magnitude
and phase representations.

27



CHAPTER 3. THEORY

(a) Translation (b) Additive WGN (c) 5◦ Rotation

Figure 3.4: Ideal matched filter example – normalized correlation planes for the ideal
matched filter using the reference and test images in Figure 3.3.

This filter relies solely on “phase canceling” to form correlation peaks, i.e., the phase
components introduced by any reference patterns in the input should be removed
by the POMF, leaving only the linear phase term due to translation to specify target
locations. This concept is more clearly illustrated by using the imaging scenario from
the previous section. Assume that we are given an input image g(x, y) that contains
the known reference pattern f (x, y) at its origin (0, 0) and at the coordinates (x0, y0)
as shown in Eq. 3.13.

g(x, y) = f (x, y) + f (x − x0, y− y0) (3.13)

The Fourier transform of the input image G(ξ, η) is:

G(ξ, η) = F(ξ, η) + F(ξ, η) · e−2πi[ξx0+ηy0] (3.14)

Multiplying the POMF in Eq. 3.12 by G(ξ, η) yields the following frequency-domain
output:

G(ξ, η) · M(ξ, η) =
[

F(ξ, η) + F(ξ, η) · e−2πi[ξx0+ηy0]
]
· e−iΦF (3.15a)

= |F(ξ, η)|+ |F(ξ, η)| · e−2πi[ξx0+ηy0] (3.15b)
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Applying the inverse Fourier transform, denoted by F−1{·}, to the result in Eq. 3.15b
produces a correlation plane c(x, y) in the spatial domain.

c(x, y) = F−1{G(ξ, η) · M(ξ, η)} (3.16a)

= F−1{|F(ξ, η)| · 1(ξ, η)}+F−1{|F(ξ, η)| · e−2πi[ξx0+ηy0]} (3.16b)

= F−1{|F(ξ, η)|} ∗ [δ(x, y) + δ(x − x0, y− y0)] (3.16c)

Eq. 3.16c shows that the POMF indicates a match of the reference pattern f (x, y)
by replicating the inverse Fourier transform of the reference magnitude spectrum
F−1{|F(ξ, η)|} at the spatial coordinates (0, 0) and (x0, y0). It is important to recognize
that this example demonstrates the usefulness of one of the most attractive properties
of correlation filters: shift invariance. Translation of the reference pattern in the in-
put results in the formation of the POMF’s characteristic correlation peak, specified by
F−1{|F(ξ, η)|}, translated by the same amount (x0, y0). Also, the effect of eliminating
the magnitude term of the ideal filter is now obvious. The correlation peaks in c(x, y)
now have some finite support that is inversely proportional to the bandwidth of the
reference magnitude spectrum. For example, if |F(ξ, η)| has a wide support and is
dominated by low frequencies, which is often true, the correlation peaks will be ap-
proximately shaped like Gaussian functions with small support. Lastly, it should be
noted that any additive noise present in the input image g(x, y) will produce an un-
wanted additive term n(x, y) ∗F−1{e−iΦF} in the output that could potentially disrupt
the ability to discern between correlation peaks and background noise.

Figure 3.5 shows examples of correlation peaks produced for each of the targets
in Figure 3.3 using the reference to apply the POMF algorithm. Some important ob-
servations should be apparent upon comparison to the ideal matched filter outputs in
Figure 3.4. The finite support of the POMF correlation peaks can be seen in the absence
of distortion. More importantly, the noise floor (for the target with additive WGN) has
not been amplified, as the POMF does not boost or attenuate specific frequencies.

Additional variations of the POMF have been developed to retain the useful spa-
tial location information preserved in the phase, while reducing the effects of the
peak-widening magnitude termF−1{|F(ξ, η)|}. The symmetric phase-only matched filter
(SPOMF), which has seen certain success in image recognition and registration tasks
[5], correlates only the phase information that is present in the input ΦG and the refer-
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(a) Translation (b) Additive WGN (c) 5◦ Rotation

Figure 3.5: Phase-only matched filter example – normalized correlation planes for the
POMF using the reference and test images in Figure 3.3.

ence ΦF:

C(ξ, η) =
G(ξ, η)
|G(ξ, η)| ·

F∗(ξ, η)
|F∗(ξ, η)| = ei[ΦG−ΦF ] (3.17)

Thus, |C(ξ, η)| = 1 at all spatial frequencies after the phases are extracted. In the ab-
sence of noise, the SPOMF will produce Dirac delta functions at all spatial locations
containing copies of the reference pattern. Additive noise in the input will still pro-
duce an additive term F−1{eiΦN} ∗ F−1{e−iΦF}.

Upon inspection, the SPOMF correlation peaks in Figure 3.6 exhibit more attrac-
tive characteristics than those produced by the ideal matched filter (Figure 3.4) and
the POMF (Figure 3.5). An approximate Dirac delta function is produced at the loca-
tion of the translated reference when the target contains no noise or other distortions.
Amplification of additive noise is no longer an issue, as the SPOMF only affects the
phase. One caveat is that the flat correlation spectrum inherent in the SPOMF algo-
rithm allows noise at higher frequencies to pass into the spatial domain, potentially
degrading the corresponding peak. The following section considers an algorithm that
typically attenuates these high frequencies.
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(a) Translation (b) Additive WGN (c) 5◦ Rotation

Figure 3.6: Symmetric phase-only matched filter example – normalized correlation
planes for the SPOMF using the reference and test images in Figure 3.3.

3.2.1.3 The Matched Spatial Filter

Sharp correlation peaks with large amplitudes are desired and often necessary to dis-
criminate multiple reference patterns that are small spatial distances apart in the input.
We have shown that the POMF in Eq. 3.12 described in the previous section offers ad-
ditional tolerance to noise relative to the ideal matched filter in Eq. 3.7 at the cost of
reducing the sharpness of the correlation peak. In some imaging applications, it may
be imperative to push this tradeoff further to provide as much noise tolerance as pos-
sible while still providing adequate peaks. Perhaps it is known that only one instance
of the reference pattern is present in the input, or that useful correlation peaks will
only be obtained by providing some control over input noise.

To develop a filter that meets this criterion, we again refer to the “problematic”
reciprocal-magnitude term of the ideal matched filter. By observing the behavior of
this filter as a spatial domain impulse response, the contribution to noise sensitivity
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can be additionally reduced.

h(x, y) = F−1
{

e−iΦF

|F(ξ, η)|

}
= F−1

{
F∗(ξ, η)
|F(ξ, η)|2

}
(3.18a)

= F−1 {F∗(ξ, η)} ∗ F−1
{

1
|F(ξ, η)|2

}
(3.18b)

= f ∗(−x,−y) ∗ F−1
{

1
|F(ξ, η)|2

}
(3.18c)

Eliminating the second term in Eq. 3.18c reduces the amount of wideband noise am-
plification after applying the inverse Fourier transform. The resulting filter is:

h(x, y) = f ∗(−x,−y) (3.19)

which is the complex conjugate of a reversed (or rotated) replica of the reference. This
well-known filter is commonly referred to as the matched spatial filter (MSF), and its
application produces the crosscorrelation of g(x, y) and f (x, y). The corresponding
frequency-domain representation of the MSF is:

H(ξ, η) = F∗(ξ, η) = |F(ξ, η)| · e−iΦF (3.20)

If we again assume that the magnitude spectrum is dominated by components with
low frequencies, the magnitude term |F(ξ, η)| acts as a lowpass filter.

The major advantage of the MSF is its inherent maximization of the signal-to-noise
power ratio at the reference image location(s) (x0, y0) in the correlation plane [4]. How-
ever, as expected, the peak sharpness has been reduced dramatically. Recall that the
shape of the peak in the correlation output produced by the POMF was determined
by F−1{|F(ξ, η)|}. By comparison of Eq. 3.12 and Eq. 3.20, it is evident that the
correlation peak produced by the MSF is inversely proportional to the bandwidth of
F−1{|F(ξ, η)|2}.

In addition, the central ordinate theorem verifies that in the absence of noise, the
maximum amplitude of the MSF peak is the area of the power spectrum of the refer-
ence. Changes in the amplitude of f (x, y) and g(x, y) directly influence the height of
the floor in the correlation plane c(x, y). Thus, a correlation peak produced by the MSF
at a reference pattern location (x0, y0) may have a smaller amplitude than other loca-
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(a) Translation (b) Additive WGN (c) 5◦ Rotation

Figure 3.7: Matched spatial filter example – normalized correlation planes for the MSF
using the reference and test images in Figure 3.3.

tions in the correlation plane where g(x, y) contained large amplitudes (bright spots).

The peaks in Figure 3.7 exhibit the wide support that is characteristic of the result
after applying the MSF to the input. Both additive WGN and a small rotation of the
reference pattern were distortions capable of degrading the correlation planes pro-
duced by the ideal matched filter (Figure 3.4) and POMF (Figure 3.5). Qualitatively,
the three results obtained using the MSF share similar a structure. The reference pat-
tern in Figure 3.3 is low-frequency dominated, which in turn causes the MSF to act as a
lowpass filter during the matching process. Noise and edge effects at high frequencies
are attenuated, and the support of the input spectrum is decreased, which produces
broad correlation peaks.

A normalized version of the crosscorrelation exists, correlation coefficient, that ac-
commodates changes in image amplitude [16]. The crosscorrelation between an input
image g(x, y) and a reference image f (x, y) is:

g(x, y) ∗ f ∗(−x,−y) =
∫ ∫ +∞

−∞
g(α, β) f ∗(α− x, β− y)dαdβ (3.21)

Normalizing each image yields an expression for the spatial-domain implementation
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of the correlation coefficient:

c(x, y) =
∫ ∫ [

g(α, β)− ḡx,y
] [

f (α− x, β− y)− f̄
]

dα dβ√∫ ∫ [
g(α, β)− ḡx,y

]2 dα dβ
∫ ∫ [

f (α− x, β− y)− f̄
]2 dα dβ

(3.22)

It is apparent from Eq. 3.22 that the correlation coefficient is bounded between neg-
ative one and positive one, achieving a maximum at locations in the input that are
identical to the reference pattern. This method of correlation is very useful for appli-
cations containing exact replicas of the known reference pattern located far enough
apart in the input to be detected despite partially overlapping peaks.

3.2.1.4 The Complement Matched Filter

The simple correlation filters discussed thus far have been presented in the chosen
order to emphasize the following relationship: the ideal matched filter, POMF, and MSF
contain identical phase terms and differ only in the exponent of the magnitude term.

Hideal(ξ, η) = |F[ξ, η]|−1 · e−iΦF (3.23a)

Hpom f (ξ, η) = |F[ξ, η]|0 · e−iΦF (3.23b)

Hms f (ξ, η) = |F[ξ, η]|+1 · e−iΦF (3.23c)

This observation is essential for the development of future correlation filters, as it in-
dicates that the tradeoff between peak sharpness and noise tolerance is controlled en-
tirely by the magnitude component of the filter transfer function.

The so-called complement matched filter [26][50] is derived from a truncated Taylor-
series expansion to approximate the magnitude term of the ideal matched filter and
to provide a tunable response along this tradeoff continuum between the filters in Eq.
3.23a–3.23c.

The magnitude of the Fourier transform of the reference can be written as a sum
of terms:

|F(ξ, η)| = |F(ξ, η)| − |F|max + |F|max (3.24)

where |F|max is the maximum value of |F(ξ, η)|. It follows that F(ξ, η) can be written
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as

F(ξ, η) = |F(ξ, η)| · eiΦF (3.25a)

= [|F(ξ, η)| − |F|max + |F|max] · eiΦF (3.25b)

Eq. 3.25b can be easily manipulated into a more useful representation:

F(ξ, η) = |F|max ·
[

1−
[
|F|max − |F(ξ, η)|

|F|max

]]
· eiΦF (3.26)

By direct substitution of Eq. 3.26 into Eq. 3.23a, the ideal matched filter transfer func-
tion can be written as

Hideal(ξ, η) =
e−iΦF

|F|max
·
[

1−
[
|F|max − |F(ξ, η)|

|F|max

]]−1

(3.27)

The last term of Eq. 3.27 can now be expressed using the Taylor series expansion,

f (t) =
1

1− t
=

∞

∑
n=0

tn (3.28)

when |t| < 1. This result yields an expression for the transfer function of the comple-
ment matched filter.

HN(ξ, η) =
e−iΦF

|F|max
·

N

∑
n=0

[
|F|max − |F(ξ, η)|

|F|max

]N

(3.29)

Thus, we arrive at a solution that may be truncated at any order N to approximate the
ideal matched filter. For example, when |F(ξ, η)| is normalized, the 0th–order comple-
ment matched filter is just a POMF. In the limit N → ∞, it acts as the ideal matched
filter. Justification for naming the filter the “complement” matched filter can be seen
by adding the first-term such that

H1(ξ, η) = [2− |F(ξ, η)|] · e−iΦF (3.30a)

= [1 + [1− |F(ξ, η)|]] · e−iΦF (3.30b)

where 1− F(ξ, η) is the complement of the normalized magnitude.
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Instead of exhibiting characteristics of the ideal matched filter as N → ∞, the
complement matched filter can be extended:

HN(ξ, η) =
e−iΦF

|F|max
·
[

N

∑
n=0

[
|F|max − |F(ξ, η)|

|F|max

]N
]−1

(3.31)

where the transfer function now acts more like the MSF as the order of approximation
increases. This form of the complement matched filter [52] may be useful for applica-
tions with a large amount of noise and clutter.

Figure 3.8 shows correlation peaks produced using the images in Figure 3.3 and
the complement matched filter in Eq. 3.29 at three different orders of approximation
(N = 1, N = 10, and N = 10000). As expected, the results from the 1st-order comple-
ment matched filter are similar to those produced by the POMF in Figure 3.5. When
the order is increased to N = 10, the magnitude term sharpens the peak slightly,
and the noise floor is more noticeable for the case of the rotated reference pattern.
The 10, 000th-order complement matched filter behaves like the ideal matched filter
and produces output correlation planes almost identical to those shown in Figure 3.4.
Thus, the order of approximation in the magnitude term selects a point on the trade-
off continuum for noise tolerance and peak sharpness.

The locally nonlinear matched filter (LNMF), developed by Gualdron and Arsenault
[17], is very similar to the complement matched filter, but the properties of the ideal
matched filter, POMF, and MSF are essentially “blended” rather than “tuning” the
filter. The position on the continuum of peak sharpness and noise tolerance trade-
off moves as a function of spatial frequency. The expression for the LNFM transfer
function is:

H(ξ, η) =
F(ξ, η)

|F(ξ, η)|m (3.32)

where m is some function of the radial spatial frequency ρ. Gualdron and Arsenault
suggest using a Gaussian function to vary these filter attributes across the spectral
plane. Using Eq. 3.33 for m, the LNMF behaves more like the ideal matched filter at
low spatial frequencies and more like the MSF at high spatial frequencies, which are
generally more susceptible to noise amplification.

m = f (ρ) = 2 · e−kρ2
(3.33)
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(a) Translation (Order = 1) (b) Additive WGN (Order = 1) (c) 5◦ Rotation (Order = 1)

(d) Translation (Order = 10) (e) Additive WGN (Order = 10) (f) 5◦ Rotation (Order = 10)

(g) Translation (Order = 10000) (h) Additive WGN (Order = 10000) (i) 5◦ Rotation (Order = 10000)

Figure 3.8: Complement matched filter example – normalized correlation planes for
the 1st-order (a-c), 10th-order (d-f), 10, 000th-order (g-l) complement matched filter us-
ing the reference and test images in Figure 3.3.
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(a) Translation (b) Additive WGN (c) 5◦ Rotation

Figure 3.9: Locally nonlinear matched filter example – normalized correlation planes
for the LNMF using the reference and training images in Figure 3.3.

The LNMF yields higher peak sharpness, lower noise sensitivity, and better discrimi-
nation ability than the POMF in Eq. 3.12 [17].

Some interesting points should be addressed regarding the peaks produced by the
LNMF in Figure 3.9. These peaks are sharper than those resulting from the application
of the MSF (Figure 3.7), and the noise floor is suppressed more than that in the corre-
lation planes produced using the POMF (Figure 3.5). However, in the case when the
input contains no distortion, the POMF produces a sharper peak than the LNMF due
to the LNMF acting as a lowpass filter at high spatial frequencies, which effectively
reduces the support of the input spectrum.

3.2.1.5 Limitations in Practical Applications

We have been primarily concerned with controlling the tradeoff between noise sensi-
tivity and correlation peak sharpness to develop expressions for the correlation filters
introduced thus far. In doing so, we have neglected a major drawback that exists in
nearly all matching problems: the demand to recognize distorted versions of the reference
pattern. It is important to address not only noise tolerance and peak shape, but the
within-class distortion tolerance such that correlation filters can be designed for more
realistic recognition problems. The filters presented in the following section expand
on the inherent properties of the ideal matched filter, phase-only matched filter, and
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crosscorrelation to achieve similar control over the correlation peak shape in the pres-
ence of spatially-distorted targets.

3.2.2 Composite Correlation Filters

As with all pattern recognition schemes, we desire correlation filters that are capable
of accurately classifying distorted versions of the reference pattern, in the presence
of noise and clutter, while maintaining a low false alarm rate. Composite correlation
filters address many of the limitations inherent in classical correlation design by us-
ing a set of training images to provide several representative views of the reference
pattern containing the expected distortions. Obviously, one objective in the design of
composite correlation filters is to recognize distorted versions of the reference pattern
that are absent from the training set. This within-class distortion tolerance provided by
the correlation filter, as well as many other desirable characteristics such as high noise
tolerance and sharp peaks, are criteria commonly specified during algorithm devel-
opment. Integration of these criteria into the design of composite correlation filters is
examined in this section. In addition, this section introduces matrix-vector notation to
better represent the ensemble of images in the training set.

3.2.2.1 Synthetic Discriminant Functions

One of the first correlation filters to incorporate the spatial characteristics from a li-
brary of training images into its design was the synthetic discriminant function (SDF)
filter. It was originally conceived by Hester and Casasent in the early 1980’s to recog-
nize an input target belonging to the set of reference training images and otherwise
rejecting it [19]. A rather novel idea at the time, the filter was derived from an expres-
sion for the shape of a decision boundary in a multidimensional vector space.

In conventional pattern classification, the projection of an input feature vector
onto the discriminant feature vector (that is orthogonal to a linear decision boundary)
yields a scalar quantity used to make a decision (Figure 3.10). The design of SDF filters
uses a similar approach: training images are represented as a set of vectors in a de-
rived hyperspace, and a decision boundary can be constructed to differentiate between
distorted versions of the reference pattern and false class inputs. However, the basis
functions that define this hyperspace are 2-dimensional spatial functions (images) ob-
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Figure 3.10: A linear discriminant function in 2-dimensions – an input feature vector x1
is projected onto the discriminant function h that points normal to the linear decision
boundary. The distance from the origin to the decision boundary (in the direction
of h) is denoted by h0. By subtracting this bias from the projection hTx1, the sign of
the distance r is used to classify x1. As shown, r > 0 implies that the feature vector
belongs in the class to the right of the decision boundary.
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tained by an orthogonal basis function expansion of the training set. Consequently, the
discriminant function that describes the orientation of the hyperplane decision boundary
can also be interpreted as a 2-dimensional spatial function [2]. Thus, the projection of
an input image vector onto the discriminant vector can be viewed either as (1) the sum
of the orthogonal distances from both the input vector and the origin to the decision surface or
(2) the value at the origin of the correlation plane resulting from correlating the input image
with the 2-dimensional spatial representation of the discriminant function. The duality of
this problem is illustrated in Figure 3.11. An important fact to note is that the essential
property of shift invariance can be ensured by correlating the spatial image represen-
tations of both the input and discriminant vector rather than simply projecting one
onto the other.

With the aforementioned motivation, we can now develop an expression for the
SDF filter [3]. Assume that we are given a set of N training images that have been
lexicographically ordered into d-element column vectors x1, . . . , xN (where d is the
number of pixels). Also, note that these vectors are assumed to be linearly independent
of one another. We first represent each training image vector xi as a linear combination
of orthonormal basis functions φj:

xi = ∑
j

aijφj (3.34)

It follows that the d × 1 filter vector h (the discriminant function vector) can be ex-
pressed in terms of the same orthonormal basis:

h = ∑
j

bjφj (3.35)

The original SDF filter was designed such that the projection of the filter vector onto
the ith training image xi would produce some specified value ui.

hTxi = xT
i h = ui (3.36)

Thus, the goal is to find the filter vector h pointing normal to a hyperplane of
training image vectors that is offset from the origin by the bias constraint ui. As pre-
viously mentioned, this imples that ui is a hard constraint placed on the origin of the
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Figure 3.11: Conceptual duality for using a linear discriminant function for image clas-
sification – (Left) three training image vectors xi lie on a hyperplane surface defined
by an orthonormal vector, the discriminant function h. The projection of all vectors
that lie on this surface onto the discriminant vector h will yield the scalar value ui,
which denotes the orthonormal distance (or bias) from the origin to the hyperplane.
(Right) Equivalently, the spatial correlation of the training vectors with the discrimi-
nant vector (as 2-dimensional spatial image representations) is constrained to ui at the
origin of the correlation plane.
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correlation plane gi(m, n) between the training image xi(m, n) and the filter h(m, n):

gi(0, 0) = ∑
m

∑
n

xi(m, n)h(m, n) = ui (3.37)

The projection in Eq. 3.36 can be rewritten by substituting the orthonormal basis set
expressions for the training and filter vectors:

xT
i h = ∑

j
aijbj = ui (3.38)

We now recognize that since both xi and h are specified in the same basis, the par-
ticular solution for the filter h can be expressed as a linear combination of the training
xi. Rearranging Eq. 3.34, the set of basis functions can be written as

φj = ∑
i

dijxi (3.39)

Substituting Eq. 3.39 into the expression for the filter vector in Eq. 3.35 yields:

h = b1 ∑
i

di1xi + b2 ∑
i

di2xi + . . . (3.40a)

= e1x1 + e2x2 + . . . (3.40b)

= ∑
i

eixi (3.40c)

where ei denotes the weight of vector xi in the linear combination of h. We can now
substitute the expression for the filter into the projection equation (3.36) to obtain

xT
i h = xT

i

[
∑

i
eixi

]
= ∑

i
ei(xT

i xi) = ui (3.41)

which can be rewritten in matrix form as

(XTX)e = u (3.42)

where X = [x1, x2, . . . , xN ] is a d×N matrix of training images, and e = [e1, e2, . . . , eN ]T

and u = [u1, u2, . . . , uN ]T are N × 1 column vectors of corresponding weights and
desired peak values, respectively. Thus, we arrive at an expression for the coefficients
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ej of the linear combination of training images:

e = (XTX)−1u (3.43)

Casasent notes that for SDF filters designed to produce equal correlation outputs for
all targets in the true class, the vector space described by the correlation matrix XTX is
ideal to compute the coefficients for the linear combination of training vectors [2]. The
resulting projection SDF filter is:

h = X(XTX)−1u (3.44)

It is now worth pausing to examine the reason why this filter design is of limited
use as a pattern recognition tool. First, the SDF filter is derived such that its discrim-
inant function representation defines a hyperplane on which each training vector lies
(Figure 3.11). Input vectors that are in-class but nontraining may not lie directly on this
surface, and will thus produce values ui other than those specified. Moreover, hard
constraints in the SDF filter design control only the origin of the correlation plane.
Characteristic large sidelobes can exceed the constraint placed on the origin, essen-
tially burying the correlation peak [31]. The composite correlation filters discussed
hereafter address these issues by attempting to control the entire correlation plane in
similar fashion to the classical correlation filters reviewed in Section 3.2.1.

3.2.2.2 Minimum Average Correlation Energy Filters

The minimum average correlation energy (MACE) filter was developed shortly after the
SDF filter to address the issue of suppressing large sidelobes in the correlation plane.
Mahalanobis, et al., [34] note that to provide adequate detection, the correlation filter
should reduce the intensity of the correlation plane at all nonpeak locations (corre-
sponding to locations in which the target is absent). Thus, to develop a formulation
for the MACE filter, we begin by defining the criterion that it minimize the average
correlation energy (ACE) of the correlation outputs for each of the N training images

ACE =
1
N

N

∑
i=1

∑
m

∑
n
|gi(m, n)|2 (3.45)
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where gi(m, n) is the correlation plane produced for the ith training image. Using
the discrete form of Parseval’s theorem, the ACE can be expressed in the frequency
domain as

ACE =
1

N · d

N

∑
i=1

∑
k

∑
l
|Gi(k, l)|2 (3.46)

where Gi(k, l) is the Fourier transform of gi(m, n). This expression can now be ex-
panded in terms of the filter transfer function H(k, l) and training spectra Xi(k, l):

ACE =
1

N · d

N

∑
i=1

∑
k

∑
l
|H(k, l)|2|Xi(k, l)|2 (3.47)

In matrix-vector notation, the filter H(k, l) can be represented as a d × 1 vector h and
the training spectra Xi(k, l) as d× d diagonal matrices Xi, where the diagonal elements
contain the ith training spectrum. The ACE can now be written:

ACE =
1

N · d

N

∑
i=1

(h+Xi)(X∗
i h) (3.48a)

= h+

[
1

N · d

N

∑
i=1

XiX∗
i

]
h (3.48b)

= h+Dh (3.48c)

where D is a d× d diagonal matrix containing the average training power spectra.

Analogous to the SDF filter, the MACE filter is designed to ensure that the inner
product of the filter vector and the training spectrum produces a specified output peak
amplitude ui at the origin of the correlation plane; this is multiplied by the scale factor
d in the frequency domain. This condition can be expressed for all training images
and their corresponding constant values as

X+h = d · u (3.49)

where X now represents a d× N matrix with columns consisting of lexicographically-
ordered training spectra.

We now have a quadratic function, specified by the ACE, and a linear condition,
specified by the hard constraints. Minimizing Eq. 3.48c subject to Eq. 3.49 is a con-
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strained minimization problem, which can be solved by the method of Lagrange multipli-
ers (Appendix A.2). The Lagrangian function [34] can be expressed as:

L(h; λ) = h+Dh− 2λ1(x+
1 h− u1)− . . .− 2λN(x+

Nh− uN) (3.50)

where the λi’s are the Lagrange multipliers. We can now solve for the filter h by setting
the derivative of Eq. 3.50 to zero:

Dh = λ1x1 + . . . + λNxN (3.51a)

h = D−1

[
N

∑
i=1

λiXi

]
=

N

∑
i=1

λiD−1Xi = D−1Xl (3.51b)

where l = [λ1, λ2, . . . , λN ]+. Substitution of Eq. 3.51b into Eq. 3.49 yields

X+D−1Xl = d× u (3.52)

The vector of Lagrange multipliers l can be evaluated via:

l = (X+D−1X)−1u (3.53)

and substituted into Eq. 3.51b to produce the solution for the MACE filter:

h = D−1X(X+D−1X)−1u (3.54)

Numerous variations of matched filtering algorithms have been derived using the
simple ideal matched filter in Eq. 3.7 as the benchmark for perfect noise-free corre-
lation. The MACE filter is no exception. In the case of a single training image, the
MACE filter is in fact the ideal matched filter. Because the MACE filter is similar to
an inverse filter design, they share many of the same advantages and disadvantages.
Sharp correlation peaks are typically attained for regions of the input corresponding
to exact replicas of images in the training set, while the remainder of the correlation
plane is controlled by minimizing the ACE. However, as expected, the MACE filter
suffers from high noise sensitivity and low within-class distortion tolerance.

Kumar, et al., [30] motivated the removal of hard constraints in the SDF (Eq. 3.44)
and MACE (Eq. 3.54) filter algorithms. They note that nontraining inputs will typ-

46



3.2. CORRELATION FILTERING

ically produce different peak values than those specified for training inputs, and no
relationship between the hard constraints and tolerance to within-class distortions has
been established. In addition, it is believed that removing the hard constraints may
increase the filter solution domain.

We begin to develop a formulation for an unconstrained version of the MACE filter
by referring back to the ACE in Eq. 3.48c. Without the linear condition specified in Eq.
3.49, the optimization problem must be slightly reworked. Using the central ordinate
theorem, the origin of the correlation plane produced for the ith training image gi(0, 0)
(the peak location during filter design) can be expressed in the frequency domain as
the inner product of the ith training spectrum xi and the filter vector h:

gi(0, 0) = h+xi (3.55)

While the constraints on the origin are now unspecified, it makes sense to max-
imize the value of the correlation peak in the new objective function [43]. By maxi-
mizing the square of the average magnitude of the peak |h+m|, while minimizing the
ACE h+Dh, the criterion function J(h) is obtained:

J(h) =
h+mm+h

h+Dh
(3.56)

which is in the form of a Rayleigh quotient (Appendix A.1.2). By maximizing J(h) with
respect to h, we arrive at an expression in the form of a generalized eigenvalue problem
(Appendix A.1):

mm+h = J(h)Dh (3.57)

Assuming the diagonal matrix D is invertible, Eq. 3.57 can be rearranged:

D−1mm+h = J(h)h (3.58)

The dominant eigenvector of D−1mm+ is the optimum filter:

h = D−1m (3.59)

Eq. 3.59 is the expression for the unconstrained minimum average correlation energy
(UMACE) filter. By removing the constraints placed on the peak value, a simple “aver-
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age” ideal matched filter is obtained. The result is a filter with improved within-class
distortion tolerance that retains the sharp peaks and suppressed correlation floor char-
acteristic of the MACE filter [35].

3.2.2.3 Maximum Average Correlation Height Filters

The maximum average correlation height (MACH) filter [35] is an unconstrained compos-
ite correlation filter, similar to the UMACE filter in the previous section, that satisfies
three different conditions. Most notably, the MACH filter introduced a condition to
address the issue of maximizing within-class distortion tolerance. The crosscorrela-
tion between each image in the training set and the input function produces a series of
output correlation planes. Depending on the similarity between the individual exem-
plars and the input, some correlation planes may signal better detection characteristics
than others. The average similarity measure (ASM) [35] is used to quantify the deviation
between each of these N individual correlation outputs gi(m, n) to the mean ḡ(m, n).
In the spatial domain, the ASM can be expressed:

ASM =
1
N

N

∑
i=1

∑
m

∑
n
|gi(m, n)− ḡ(m, n)|2 (3.60)

The corresponding frequency domain representation is

ASM =
1

N · d

N

∑
i=1

∑
k

∑
l
|Gi(k, l)− Ḡ(k, l)|2 (3.61)

where d is the number of pixels in the correlation plane, and Gi(k, l) and Ḡ(k, l) again
denote the Fourier transform of gi(m, n) and ḡ(m, n), respectively.

In matrix-vector notation, we can again define the correlation filter as the d × 1
column vector h, the Fourier transform of the ith training image as the d × 1 column
vector xi or as the d × d diagonal matrix Xi, and the mean Fourier transform of the
training set as the d × 1 column vector mi or as the d × d diagonal matrix Mi. These
representations allow gi(m, n) and ḡ(m, n) to be expressed as d × 1 column vectors,
gi = X∗

i h and ḡ = M∗h. The ASM can now be expressed:

ASM =
1

N · d

N

∑
i=1

|gi − ḡ|2 (3.62)
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and simplified:

ASM =
1

N · d

N

∑
i=1

|X∗
i h−M∗h|2 (3.63a)

=
1

N · d

N

∑
i=1

h+ (Xi −M) (Xi −M)∗ h (3.63b)

= h+

[
1

N · d

N

∑
i=1

(Xi −M) (Xi −M)∗
]

h (3.63c)

Defining the d × d diagonal matrix S = 1
N·d ∑N

i=1 (Xi −M) (Xi −M)∗ we arrive at the
final expression for the ASM:

ASM = h+Sh (3.64)

The second condition is the average correlation height measure. Any correlation peak
that signals detection of the specified target should exhibit a large amplitude relative
to the rest of the correlation plane. Assuming the peak is located at the origin (as is
custom during filter design), the spatial domain representation of the ACH is defined:

ACH =
1
N

N

∑
i=1

gi(0, 0) (3.65)

Using the central limit theorem, we obtain the frequency domain representation:

ACH =
1

N · d

N

∑
i=1

∑
k

∑
l

Gi(k, l) (3.66a)

ACH =
1

N · d

N

∑
i=1

∑
k

∑
l

X∗
i (k, l)H(k, l) (3.66b)

Thus, in matrix-vector notation, the ACH is:

ACH =
1
N

N

∑
i=1

x+h = m+h (3.67)

The final condition is the output noise variance (ONV), and it is used to control
noise amplification by the filter. This measure was also used in the development of
earlier composite correlation filters, such as the minimum variance synthetic discriminant
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function (MVSDF) [27], and is expressed:

ONV = h+Ch (3.68)

where C is the d × d noise covariance matrix, in which the estimated noise of the
input is assumed to be additive with zero mean. For the case of white noise, the noise
covariance C is just the identity matrix I.

Using the expressions for the ASM, ACH, and ONV, we can now formulate the
criterion function J(h) to derive an expression for the MACH filter. The filter should
maximize the ACH while simultaneously minimizing the ASM and ONV. To achieve
this goal, the criterion function to maximize is:

J(h) =
|ACH|2

ASM + ONV
(3.69a)

=
|m+h|2

h+Sh + h+Ch
=

h+mm+h
h+(S + C)h

(3.69b)

We again arrive at an expression in the form of a Rayleigh quotient (see Appendix
A.1.2). Maximizing J(h) with respect to h yields:

mm+h = J(h)(S + C)h (3.70)

The d× d matrix (S + C) is diagonal, and it inversion is therefore trivial, allowing Eq.
3.70 to be written:

(S + C)−1mm+h = J(h)h (3.71)

This expression is now in the form of a standard eigenvalue problem (Appendix A.1).
Thus, the filter vector h is the dominant eigenvector of (S + C)−1mm+. The MACH
filter is:

h = γ(S + C)−1m (3.72)

where γ is just a normalizing constant.

The MACH filter is a composite correlation filter that is very similar to the sim-
ple crosscorrelation using the mean training image. If C = I, Eq. 3.72 becomes the
crosscorrelation for the case of the training set consisting of a single image. The nu-
merator of the expression is responsible for phase canceling and for filtering high fre-
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quencies containing noise and sharp edges (assuming the training is low-frequency
dominated). For frequencies exhibiting a large deviation between the individual ex-
emplars and the mean, the magnitude of the filter is reduced. The same is true for
frequencies with a high noise contribution. Conversely, if the sum of the noise and
the deviation within the training is less than one at a particular frequency, the MACH
filter will amplify the corresponding frequency in the input. Thus, the MACH filter
can be interpreted as the mean-training crosscorrelation with weights applied to each
frequency to control attenuation and amplification based on the ASM and ONV. The
MACH filter has been used for numerous applications since its inception due to its
high tolerance to noise and clutter.

3.2.3 Performance Analysis

Features for image classification can be extracted by post-processing the output corre-
lation plane of the filtered input pattern. Common algorithms detect peaks by assign-
ing a metric (or metrics) that quantify the response of the filtering. The need to detect
output correlation peaks from filters designed to provide detection may seem counter-
intuitive. In the ideal scenario, the filtered output would contain correlation peaks
approximating Dirac delta functions, and a simple threshold would yield the exact
location of the reference pattern or patterns. However, variations in the intensity of
the input signal directly influence the intensity of the correlation plane. Normalizing
the peak amplitude with respect to the energy of the input can overcome this obstacle
when potential targets are not obscured by background clutter [31]. When clutter is
present, using the intensity as a correlation performance metric is insufficient for setting
a detection threshold, and may subsequently result in poor classification. By charac-
terizing the correlation output, correlation performance measures not only provide a
method for evaluating filters, but often provide useful features for classification.

3.2.3.1 Correlation Performance Measures

Perhaps the most common performance measure for current correlation filtering ap-
plications is the well known peak-to-sidelobe ratio (PSR) [29], defined as

PSR =
peak − µ

σ
(3.73)
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where µ and σ are the respective mean and standard deviation of a specified neighbor-
hood surrounding the peak location (but excluding the peak itself). The neighborhood
over which µ and σ are calculated should be selected based on the application and
held consistent throughout testing and/or feature extraction. Rather than provide a
measure of relative intensity, the PSR measures the sharpness of the correlation peak.
This attribute of the peak is obviously of great importance, as broad correlation peaks
corresponding to targets that are spatially close together will be difficult to resolve.
PSR effectively discriminates true peaks from high noise fluctuations, which may oth-
erwise resemble detection of multiple reference patterns, by accounting for variations
in areas surrounding high amplitudes. Kumar, et al., [31] note that PSR is a useful tool
for correlation-based classification as it characterizes the degree of similarity between
regions in the input and the reference signal(s).

Another useful metric for characterizing sharpness is the peak-to-correlation energy
ratio (PCE), which calculates the ratio between the squared-magnitude of the peak to
the energy of the correlation plane g(n, m):

PCE =
|peak2|

∑n ∑m |g(n, m)|2 (3.74)

Obviously, the energy term in the denominator of Eq. 3.74 can be computed over a
specified neighborhood surrounding the peak (similar to PSR). In addition, the ampli-
tude of the peak itself is often excluded from the set of pixels used to calculate the
denominator [31]. It should be apparent that a lower energy term allows sharp peaks
to achieve much higher PCE values than those of broad peaks.

Additional performance measures, which are used less frequently in current appli-
cations, are the familiar signal-to-noise ratio (SNR) and full area at half maximum (FAHM)
[29]. SNR is used to quantify the filter’s sensitivity to noise in the input, and thus
received greater attention during classical correlation filter development when noise
tolerance was the primary performance criterion under investigation. While FAHM
metric characterizes the shape of the correlation peak, PSR and PCE are more widely
accepted in the field of correlation pattern recognition as measures of peak sharpness.
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3.2.3.2 ROC Curves and Confusion Matrices

The previous section discussed metrics used to characterize attributes of the correla-
tion plane; we now shift focus to briefly examine two well-known techniques used to
interpret the performance of the classification process. The first is the receiver operating
characteristic, or ROC, curve. A useful survey paper detailing ROC analysis in current
signal detection applications was recently published by Fawcett [11]. Assume that we
are given a classifier designed to make a decision for whether a target is present or ab-
sent within some unknown input pattern. The classification for this binary detection
problem (number of classes c = 2) can have four possible outcomes:

• Correct Detection – target is present in the input and detected by the classifier.

• Miss – target is present in the input and undetected by the classifier.

• Correct Rejection – target is absent in the input and undetected by the classifier.

• False Alarm – target is absent in the input and detected by the classifier.

A ROC curve is used to examine the relationship between the probability of correct de-
tection PD and the probability of false alarm PFA as the threshold for detection varies. For
many applications, the desired threshold (the operating point on the ROC curve) is not
the threshold that yields the minimum probability of error. For example, it may only
be possible to achieve the required probability of detection by accepting an increased
level of false alarms. Figure 3.12 shows an example ROC curve used to analyze this
tradeoff.

A few statements about ROC curves can now be made in reference to Figure 3.12.
First, the line with unit slope corresponds to the worst possible performance for bi-
nary detection [31]. This case can be interpreted as a random guess by the classifier
such that the correct decision is made fifty percent of the time regardless of the oper-
ating point. The performance of the classifier improves if the probability of detection
is increased while simultaneously decreasing the probability of false alarm, effectively
causing the ROC curve to approach a step function (corresponding to the best detec-
tion possible). The area under the ROC curve, which is commonly referred to as the
power of the detector (POD), is a method for reducing the performance depicted by the
ROC curve to a single scalar value. From the discussion above, it should be apparent
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Figure 3.12: Example ROC curve for binary detection – the worst possible performance
is depicted by the blue curve with unit slope. Increasing the probability of detection
while simultaneously decreasing the probability of false alarm indicates improved
classification (green curve). The red curve is a STEP function, which is obtained in
the case of perfect classification.

that the POD ranges from 0.5 (guess) to 1.0 (certainty), depending on the performance
of the classifier. It should be noted that a classifier may have a higher POD than an-
other while having worse performance over a specific region of the ROC curve.

While ROC curves can be very useful tools for evaluating the performance of mul-
tiple classifiers, a couple of important points should be stressed before using them
to make a decisive argument over which classifier to use. First and foremost, ROC
curves are generally derived subject to a particular application or set of conditions.
A specific classifier that exhibits poor performance characteristics for one application
may provide more than adequate detection rates for another. Second, some measure
of variance is essential when comparing the classifiers. Multiple ROC curves gener-
ated from multiple input patterns can be vertically-averaged or threshold-averaged to
provide this measure variance [11].

For multi-class problems (c > 2), a ROC convex-hull must be generated to rep-
resent the entire PD − PFA space, which is often difficult to interpret. Rather than
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Figure 3.13: Example confusion matrix for c = 4 classes – probabilities along the main
diagonal correspond to correct detection; probabilities in diagonal elements are those
due to false alarm. For example, 82.4% of the data from class 2 was correctly classified,
but 11.2% was incorrectly classified as class 4.

produce different ROC curves for each class (in which all other classes correspond to
errors), a confusion matrix is often analyzed to evaluate the performance of the classi-
fication. The confusion matrix, or contigency table, for a particular classifier is a c × c
matrix with rows representing the label of the true class and columns representing the
class label specified by the classifier (Figure 3.13.). Probabilities of correct decisions
are contained along the c-element main diagonal; probabilities of error, which result
from misclassification of the input patterns, are contained within the other c2 − c off-
diagonal elements. To condense the results depicted in a large confusion matrix, it
is common to show composite estimates of the accuracy of the classifier. This can be
accomplished by simply computing the average, or weighted average, of the proba-
bilities along the main diagonal [44].

While the overall recognition rate may seem useful for comparing different classi-
fication schemes, Congalton, et al., [8] notes that this measure of the accuracy is mis-
leading; it overestimates the accuracy of the classifier by neglecting to account for the
random probability of correct detection. By incorporating probabilistic information
from the off-diagonal components of the confusion matrix, a more accurate measure
of the classifier’s true performance is obtained. The kappa coefficient κ̂ is expressed:

κ̂ =
po − pc

1− pc
(3.75)

55



CHAPTER 3. THEORY

where po is the overall recognition rate (or simple accuracy) defined:

po =
1
N

k

∑
i=1

cii (3.76)

k is the number of classes, N is the number of exemplars used to construct the con-
fusion matrix, and cii is the ith diagonal element of the matrix. The proportion of the
accuracy due to random chance pc is:

po =
1
N

k

∑
i=1

cii (3.77)

where

cit =
k

∑
i=1

cij (3.78)

and

cti =
k

∑
i=1

cji (3.79)

Furthermore, Congalton, et al., [7] formulate a measure for the variance in the kappa
coefficient σ2

k , and an example of its use in constructing confidence limits using Gaus-
sian statistics is provided in [44]. The use of the kappa coefficient is revisited in Chap-
ter 5 to compare classification schemes for handwritten character recognition.

While confusion matrices are a valuable tool for analyzing multi-class classifiers,
it is important to consider how the matrix is generated before making any decisions
about which classifier should be used for an application. The performance estimates
often vary significantly between data sets that have been sent to the classifier. This
intuitively makes sense; we would expect the classification accuracy for the dependent
data set, consisting of exemplars used to train the classifier, to exceed that which was
produced for the independent data set, consisting of similar, nontraining input patterns.
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3.3 Statistical Methods

The focus of this chapter is now shifted slightly to examine some of the statistical
tools that are more relevant to modern pattern recognition systems. These methods
characterize the data by statistical parameters (e.g., mean and variance) and can be
applied after feature extraction by correlation filtering. It will be shown in Chapter 4
that some of these techniques can even be performed as part of the filtering process to
directly improve correlation results.

3.3.1 Principal Components Analysis

Principal components analysis (PCA) is a multivariate statistical technique used to re-
express the original data set to better represent its variance-covariance structure. In
1933, Hotelling showed that correlated variables, which define the coordinate axes for
the original set of observations, can be represented as uncorrelated variables in a new
vector space [21, 22]. PCA projects the data onto this new coordinate system to achieve
two specific objectives: data reduction and data interpretation.

The relevance to and importance of PCA in pattern recognition problems should be
clear. An analogous concept has already been used extensively in this chapter: the con-
version between spatial domain and frequency domain representations via the Fourier
transform. Obviously, numerous advantages are known to arise from this transfor-
mation, including simplifying filtering processes to improving data interpretability.
The discrete Fourier transform (DFT) projects the original vector (or vectors) onto an
orthogonal matrix consisting of complex sinusoids with specific spatial frequencies.
In other words, applying the DFT is just a change of basis; spatial domain vectors are
transformed to frequency domain vectors by a rotation of the coordinate system and
a change of scale as shown in Figure 3.14 [41].

The principal component (PC) transform, also commonly referred to as the discrete
Karhunen-Loève transform (KLT) [13], is similar to the Fourier transform in that it de-
fines a change of basis, but one fundamental difference exists; the PC basis is derived
such that the rotation of the coordinate system diagonalizes the covariance matrix of the
original set of vectors. This diagonalization effectively eliminates any covariance be-
tween separate variables in the new basis. Furthermore, the total variance of each
variable is redistributed along the main diagonal of this diagonalized covariance ma-
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Figure 3.14: 2-point DFT as a change of basis – (Left) the original vector is shown with
its original coordinates ( f1, f2) in the spatial domain basis [n1, n2] and with its pro-
jected coordinates (F1, F2) in the rotated basis (with respect to the original coordinate
system) of the frequency domain [k1, k2]. (Right) Corresponding 2-point signal and
2-point DFT representations of the original vector.
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Figure 3.15: PCA as a change of basis in 2-dimensions – x1 and x2 are variables defin-
ing the original basis. e1 and e2 are linear combinations of x1 and x2 that define the
basis of the PC transform. The origin has been translated to the mean observation
vector m and rotated such that its axes point in directions of maximum variability.

trix such that the basis vectors point in the directions of maximum variability (Figure
3.15). Thus, while the basis vectors of the Fourier transform are deterministic, those of
the PC transform can be considered random, as they are derived from the initial set of
random variables in the data. This new basis is a linear transformation of the original
basis, and it is computed to “best” represent the data in a least-squares sense.

3.3.1.1 The PC Transform Basis

To develop a formulation for the basis functions of the PC transform, we can begin
by observing a simple optimization problem [9]. Assume that we are given a set of N
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d-dimensional vectors (x1, . . . , xN). The task is to find a vector x0 that best represents
this set of vectors. In the context of spatial pattern recognition, each of the original
vectors xi is typically considered to be a particular observation of extracted features
(a feature vector). Additionally, assume that the best representation for this particular
application is the vector x0 such that the sum of squared distances to each vector xi in
the ensemble is minimized. To determine x0, we minimize the sum-squared error:

J0(x0) =
N

∑
i=1

||x0 − xi||2 (3.80)

The intuitive solution to this problem is the sample mean vector m,

m =
1
n

N

∑
i=1

xi (3.81)

This solution can be verified by subtracting m from both x0 and xi and expanding the
criterion function:

J0(x0) =
N

∑
i=1

||(x0 −m)− (xi −m)||2 (3.82a)

=
N

∑
i=1

||x0 −m||2 − 2
N

∑
i=1

(x0 −m)T(xi −m) +
N

∑
i=1

||xi −m||2 (3.82b)

=
N

∑
i=1

||x0 −m||2 − 2(x0 −m)T
N

∑
i=1

(xi −m) +
N

∑
k=1

||xi −m||2 (3.82c)

=
N

∑
i=1

||x0 −m||2 +
N

∑
i=1

||xi −m||2 (3.82d)

Substitution of x0 = m into Eq. 3.82d forces the first term to zero, essentially min-
imizing the function by leaving only the second term (the residual error), which is
independent of x0.

Unfortunately, the sample mean describes none of the variability in the original
set of vectors about the mean. As stated previously, the goal of PCA is to better repre-
sent the variance-covariance structure in the data. Therefore, it is necessary to instead
project the data onto some line x that runs through the sample mean. This effectively
provides a 1-dimensional representation of the original set of vectors, rather than the
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0-dimensional representation provided by m. The equation for this line is simply,

x = m + ae (3.83)

where e is a unit vector specifying the direction of x, and a is a real-valued scalar
representing the distance between m and any point on the line.

Similar to the previous scenario, we now seek to find the line x whose sum of
squared distances to each xi is smallest. Thus, we can find the set of coefficients ai and
the unit vector e by again minimizing a sum-squared error criterion J1.

J1(a1, . . . , an, e) =
N

∑
i=1

||(m + aie)− xi||2 (3.84a)

=
N

∑
i=1

||aie− (xi −m)||2 (3.84b)

=
N

∑
i=1

a2
i ||e||2 − 2

N

∑
i=1

aieT(xi −m) +
N

∑
i=1

||xi −m||2 (3.84c)

Eq. 3.84c is differentiated with respect to ai, and the result is equated to zero to obtain

ai = eT(xi −m) (3.85)

In words, Eq. 3.85 shows that ai is the projection of the ith mean-subtracted vector (xi −
m) onto the unit vector e. The ensemble of projections onto this new basis vector are
linear combinations of the variables that constitute the original observation vectors.
This concept is illustrated in Figure 3.16.

The goal now is to find the “best” direction for e by substituting the solution for ai

into Eq. 3.84c. J1 can now be rearranged:

J1(e) =
N

∑
i=1

a2
i − 2

N

∑
i=1

a2
i +

N

∑
i=1

||(xi −m)||2 (3.86a)

= −
N

∑
i=1

[eT(xi −m)]2 +
N

∑
i=1

||xi −m||2

= −
N

∑
i=1

eT(xi −m)(xi −m)Te +
N

∑
i=1

||(xi −m)||2 (3.86b)
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Figure 3.16: Projection of a 2-dimensional data set onto a line – the vectors in the
mean-subtracted data set (xi − m) are projected onto the line x in the direction of the
unit vector e that passes through the sample mean. The new set of coefficients ai
correspond to the distance between the projections and m. The criterion function J0 is
used to minimize the sum-squared error between the set of vectors xi and the line x,
providing the least-squares solution for the PC transform.
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Eq. 3.86b provides an important realization and is the key to solving PCA. We can
define the scatter matrix S:

S =
N

∑
i=1

(xi −m)(xi −m)T (3.87)

which is just the sample covariance matrix C of the mean-subtracted data multiplied
by the scale factor (N − 1). This allows J1 to be rewritten:

J1(e) = −eTSe +
N

∑
i=1

||xi −m||2 (3.88)

Thus, J1 is minimized by maximizing the quadratic form eTSe subject to the constraint
||e|| = 1. Referring to the derivation of the MACE filter in Section 3.2.2.2, this con-
strained minimization problem can be solved using the method of Lagrange multipli-
ers [48] (see Appendix A.2). The Lagrangian function L(e; λ) is:

L(e; λ) = eTSe− λ(eTe− 1) (3.89)

where λ is the Lagrange multiplier. The derivative of Eq. 3.89 with respect to e is

du
de

= 2Se− 2λe (3.90)

which is set equal to zero to yield the eigenvector equation:

Se = λe (3.91)

This result shows that the dominant eigenvector of the scatter matrix, corresponding
to the largest eigenvalue, is the best line onto which the original mean-subtracted vec-
tors should be projected in a least-squares sense. This eigenvector e1 is referred to as
the first principal component vector. Correspondingly, the projections ai of the mean-
subtracted vectors (xi − m) onto e1 comprise the first principal components of the data
set.

This result can be extended by projecting the original data onto the full set of d unit
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vectors (e1, . . . , ed)

x = m +
d

∑
j=1

ajej (3.92)

The new criterion function J2 can be written as:

J2 =
N

∑
i=1

||(m +
d

∑
j=1

aijej)− xi||2 (3.93)

In similar fashion, it can be shown that J2 is minimized by projecting each mean-
subtracted vector (xi − m) on the d eigenvectors ej of the scatter matrix S. This pro-
jection is the principal component transform; it is illustrated for d = 2 dimensions in
Figure 3.17. Restated for clarity, the set of eigenvectors (e1, . . . , ed) are the principal
component vectors that define the basis for PCA, and the projections aij are the jth

principal components of the ith original vector xi.

3.3.1.2 Revisiting the Objectives of PCA

Thus far, it has been shown that the PC transform effectively represents each original
vector xi by its principal components ai in a new coordinate system with axes ej that
have been rotated to pass through the translated origin m in the directions of max-
imum variance (with respect to the original coordinate system). Now the objectives
of PCA can be more readily discussed and understood. PCA diagonalizes the covari-
ance matrix, so that the covariance between separate variables is zero. An observation
vector that has been projected onto this basis contains realizations of variables that
are now mutually uncorrelated. This point is crucial for using PCA to reduce the di-
mensionality of the data. Axes in the new basis (eigenvectors) that point in directions with
correspondingly large variances (eigenvalues) are assumed to signify the most important and
interesting dynamics of the data. Under this assumption, the eigenvalues can be used
to retain a specified percentage of variability by using only a subset of the dominant
eigenvectors.

It is common for many variables in a data set to be strongly correlated, and there-
fore, much of the variance should be captured in the first few PCs. While it is valid
for many applications to assume that important characteristics of the data set can be
represented by variance, it is necessary to consider the possibility of removing poten-
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Figure 3.17: PC transform illustration in d = 2 dimensions – the original set of mean-
subtracted vectors (xi −m) are projected onto the eigenvectors e1 and e2 of the scatter
matrix S, which pass thought the sample mean. aij are the jth principal components
of xi. Note that the variance of the first PCs a1i is significantly larger than that of the
second PCs a2i.
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tially useful, but typically hidden, details. For example, Schott [44] notes that unique
information can be found in the thermal spectral bands of Landsat TM multispectral
data, which is often characterized by low variance. This information may be buried
in the noise from other spectral bands that dominates the lower PC vectors (principal
component vectors with correspondingly small eigenvalues).

Also worth noting is the distinction between using a linear transform with a de-
terministic basis, such as the DFT, and one with a random basis, such as PCA, for im-
proving data interpretation. The projection of a set of vectors onto the basis functions
of the DFT can easily be analyzed using plots of the real and imaginary or magnitude
and phase components. A transformed vector is represented by plotting its projection
against the corresponding spatial frequencies of the complex sinusoids. If a vector is
instead projected onto the derived PC basis (also referred to as eigenfunctions), a plot
constructed in similar fashion would show the vector’s principal components corre-
sponding to each of the principal component vectors.

Both representations illustrate the linear combination of the new basis necessary
to reconstruct (or to partially reconstruct if the dimensionality has been reduced)
the original vector. However, the DFT representation is arguably more intuitive, as
the eigenfunctions in PCA are characterized by the variances expressed by the cor-
responding eigenvalues, which are properties of the data rather than by predefined
spatial frequencies. A more common approach to interpreting PCA is to plot the PCs
for some combination of PC vectors to reveal suspect observations in the data [25].

3.3.1.3 Calculating PCA

Performing PCA is, in fact, quite simple with the support of eigenvector decomposi-
tion routines found in most numerical packages. There are two cases to consider. The
first scenario, which is arguably the more common of the two, is encountered when the
number of variables d is less than the number of observations N. For example, many
remote sensing applications require the use of PCA to decorrelate spectral bands in
multispectral and hyperspectral image data. The algorithm to compute the PCs for
this first case can be condensed into just five steps.
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PCA Case 1: Variables d < Observations N

1. Organize the data set into a d × N matrix X such that its columns consist of d-
element column vectors xi. The d rows and N columns correspond to the number
of variables (or features) and the number of observations (or feature vectors),
respectively.

X =
[

x1 x2 · · · xN

]
=


x1,1 x1,2 · · · x1,N

x2,1 x2,2 · · · x2,N
...

...
. . .

...
xd,1 xd,2 · · · xd,N



2. Construct a new d × N matrix X̃ by subtracting the mean-observation vector m
from each column xi in X.

X̃ = X−m =
[

x1 −m x2 −m · · · xN −m
]

3. Calculate the d× d scatter matrix S from the mean-subtracted data matrix X̃.

S =
N

∑
i=1

[xi −m] [xi −m]T = X̃X̃T

4. Compute the eigenvectors ej of S, and construct a d× d′ matrix E (where d′ ≤ d)
by using each ej as a column in order of decreasing eigenvalue δj. The num-
ber of eigenvectors to retain d′ for a particular application can be determined
by examining the variance along each new direction, which is specified by the
corresponding eigenvalue.

E =
[

e1 e2 · · · ed′

]

5. Project the mean-subtracted data matrix X̃ onto the PC directions ej to obtain the
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d′ × N matrix A of principal components.

A =


a1,1 a1,2 · · · a1,N

a2,1 a2,2 · · · a2,N
...

...
. . .

...
ad′,1 ad′,2 · · · ad′,N

 = ETX̃

The inverse transform is trivial, because the matrix of eigenvectors E is an orth-
normal matrix. Thus, (ET)−1 = (ET)T = E and X = EA. In words, the principal
components provide the weights for the linear combination of principal directions
(the eigenvectors) that reconstructs, or partially reconstructs (after data reduction),
the original mean-subtracted data set.

Intuitively, the second case to consider arises when the number of variables d ex-
ceeds the number of observations N. This is commonly referred to as the small sample
size (SSS) problem [13]. In 1991, Turk and Pentland [49] published work on Eigenfaces
for face recognition using a PCA subspace of face-shaped eigenfunctions to classify
unknown input face images. In their approach, the eigenfaces (PC basis functions)
were derived from training face images with the objective to decorrelate pixels. To do
so requires computation of the eigenvectors of a d × d scatter matrix S, which often
presents an intractable task (e.g., 64× 64 pixel training images produce a 4096× 4096
scatter matrix). The following algorithm, which utilizes the procedure in [13], was
implemented to overcome this obstacle.

PCA Case 2: Variables d > Observations N

1. Organize the data set into a d × N matrix X such that its columns consist of d-
element column vectors xi. The d rows and N columns correspond to the number
of variables (or features) and the number of observations (or feature vectors), re-
spectively.

X =
[

x1 x2 · · · xN

]
=


x1,1 x1,2 · · · x1,N

x2,1 x2,2 · · · x2,N
...

...
. . .

...
xd,1 xd,2 · · · xd,N


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2. Construct a new d × N matrix X̃ by subtracting the mean-observation vector m
from each column xi in X.

X̃ = X−m =
[

x1 −m x2 −m · · · xN −m
]

3. Calculate the N × N Gram matrix G using the mean-subtracted data matrix X̃.

G = X̃TX̃

4. Compute the eigenvectors kj of G, and construct an N × N matrix K by using
each kj as a column in order of decreasing eigenvalue δj.

K =
[

k1 k2 · · · kN

]
5. Calculate the d × N′ matrix E′ of eigenvectors ej (where N′ ≤ N) by projecting

the columns of K onto the rows of X̃, i.e., by using each vector kj to determine lin-
ear combinations of the mean-subtracted data. The vectors ej are the dominant
eigenvectors of the scatter matrix S, and their corresponding eigenvalues δj are
those of both G and S. The number of eigenvectors to retain N′ for a particular
application can be derived by examining the variance along each new direction,
which is specified by the corresponding eigenvalues. It should be noted that
some degree of data reduction is unavoidable for case 2 (d > N).

E′ = X̃K =
[

e1 e2 · · · eN′

]
6. Project X̃ onto the PC directions ej to obtain the N′ × N matrix A of principal

components.

A =


a1,1 a1,2 · · · a1,N

a2,1 a2,2 · · · a2,N
...

...
. . .

...
aN′,1 aN′,2 · · · aN′,N

 = E′TX̃
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3.3.2 Linear Discriminant Analysis

To begin this section on linear discriminant analysis (LDA), it makes sense to refer back
to the objectives of PCA. The PC transform diagonalizes the scatter matrix of the ”full”
data set, redistributing the variance such that the derived basis vectors point in di-
rections of maximum variability. Recall that the projection of the original data onto
the PC basis (or vector subspace after removing eigenvectors with correspondingly
small eigenvalues) is used for purposes of both data interpretation and data reduction.
While certainly a powerful tool for many applications, the PC basis is not necessarily
useful for discriminating classes.

In 1936, Fisher [12] published his famous work on discriminating populations in
classification problems, in which he showed that the criterion function J(w) in Eq.
3.94 can be maximized to best separate two classes of data that have been projected
onto the linear discriminant vector w:

J(w) =
(m1 −m2)2

σ2
1 + σ2

2
(3.94)

This is the well-known Fisher criterion, which is the cornerstone for the development of
LDA. In words, the Fisher criterion is the ratio of the between-class scatter (m1 −m2)2,
which indicates separation of the projected-class means wT(m1 − m2), to the within-
class scatter σ2

1 + σ2
2 , which accounts for the variance of the projected classes σ1 and

σ2. LDA is the process of determining the vector (or vector subspace) that maximizes
this criterion and the subsequent projection of the original data onto this space.

A conceptual explanation of LDA is often facilitated by considering its relation to
PCA for a couple of reasons. Like PCA, LDA vectors are derived from the random
variables of the original data set, and can therefore be considered random. Also, the
original observation vectors are transformed to LDA vectors by first translating the
origin of the coordinate system. Perhaps the most significant correspondence is that
both transforms are derived to satisfy criterion functions defined in terms of scatter
matrices. However, PCA and LDA typically produce very different sets of eigenfunc-
tions. While the PC basis vectors point in directions of maximum scatter for the overall
data set, the LDA directions point in the directions of maximum class discrimination
assuming that the classes are mutually exclusive. It should be stressed that the c-1 vec-
tors produced using LDA almost never span the original vector space (c is the number
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Figure 3.18: LDA vs. PCA in 2-dimensions – x1 and x2 are variables defining the
original basis, e1 and e2 are linear combinations of x1 and x2 that define the basis of
the PC transform, and w1 is a linear combination of x1 and x2 that defines the vector
subspace of LDA. The coordinate system has been translated to the mean observation
vector m. For LDA, the number of variables has been reduced to c − 1 such that the
lone axis e1 points in the direction of maximum class discrimination.

of classes). There are also cases in which the LDA directions are not orthogonal (with
respect to the original vector space). Thus, LDA should be considered a projection
onto a vector subspace, rather than a change of basis like the DFT or PCA (prior to
data reduction). A comparison of LDA to PCA is illustrated for a 2-dimensional, 2-
class case in Figure 3.18.
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3.3.2.1 The LDA Vector Subspace

Assume that we are given a set of N, d-dimensional vectors (x1, . . . , xN), with Nk vec-
tors belonging to subset Dk, where k denotes the class label and 0 ≤ k ≤ c. The general
multiple discriminant case of the LDA algorithm for the c-class problem [9] can be for-
mulated by revisiting the Fisher criterion in Eq. 3.94. Choosing w to maximize J(·)
yields a vector that maximizes the ratio of the between-class scatter (m1 − m2)2 and
the within-class scatter σ2

1 + σ2
2 of the projected data. This idea can be extended by

defining the criterion function in terms of the between-class matrix SB and within-
class scatter matrix SW for an arbitrary number of classes.

For multiple classes, the within-class scatter matrix SW is just the sum of the scatter
matrices of the individual classes:

SW =
c

∑
k=1

Sk (3.95)

where Sk is:

Sk =
Nk

∑
i=1

(xi −mk)(xi −mk)T (3.96)

and mk is just the mean of the kth-class

mk =
1

Nk

Nk

∑
i=1

xi (3.97)

Likewise, the between-class scatter matrix SB is a weighted sum of the separation of
class means mk to the total mean mt:

SB =
c

∑
k=1

Nk(mk −mt)(mk −mt)T (3.98)

It is worth noting that the total scatter matrix (of the entire data set) ST is just the sum
of SW and SB.

The numerator of the Fisher criterion can be expressed in terms of the projected
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class means:

(m1 −m2)2 = wT(m1 −m2)(m1 −m2)Tw (3.99a)

= wTSBw (3.99b)

For multiple discriminants, the numerator is just WTSBW where W is a matrix spec-
ifying the vector subspace of discriminating directions. Similarly, we can express the
denominator of the Fisher criterion in terms of the projected class variances:

σ2
1 + σ2

2 = wTC1w + wTC1w (3.100a)

= wT(C1 + C2)w (3.100b)

Scale factors have no effect on the direction of w, so we can replace (C1 + C2) by SW

[37]. The denominator then becomes WTSWW. Eq. 3.101 is the Fisher criterion, in
terms of SB and SW , as an explicit function of W

J(W) =
|WTSBW|
|WTSWW| (3.101)

where the determinants of the numerator and denominator are used as scalar mea-
sures of scatter [9].

Eq. 3.101 is a Rayleigh quotient (see Appendix A.1.2), and maximizing J(W) with
respect to W yields a generalized eigenvalue problem:

SBW = SWWJ(W) (3.102)

In the words, the columns of W, which define the LDA vector subspace, are the gen-
eralized eigenvectors that simultaneously diagonalize SB and SW . J(W) is just a di-
agonal matrix Λ containing the corresponding eigenvalues. The concept of LDA as a
simultaneous diagonalization problem (Appendix A.1.1) will be discussed in the follow-
ing section.

For the case when SW is nonsingular, Eq. 3.102 can be rewritten as a conventional
eigenproblem:

S−1
W SBW = WΛ (3.103)

Unfortunately, SW is often singular for many applications, which is a direct result of
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using data sets in which the number of variables exceeds the number of observations.
In the following section, we examine a method to overcome this obstacle for LDA
computation.

3.3.2.2 Calculating LDA

In practice, the two cases considered in PCA computation are also relevant for LDA.
While the Case 2 scenario (more variables d than observations N) is becoming increas-
ingly popular in imaging applications, case 1 (more observations N than variables d) is
reviewed here for completeness and comparison. The algorithm to compute the LDA
subspace for the case in which d < N can be condensed into seven steps.

LDA Case 1: Variables d < Observations N

1. Organize the data into c, d × Nk matrices Xk, where c is the number of classes,
d is the number of pixels, and Nk is the number of observations in the kth class.
Each column of a matrix Xk is an observation vector from class k.

Xk =
[

xk1 xk2 · · · xkNk

]
=


xk1,1 xk1,2 · · · xk1,Nk

xk2,1 xk2,2 · · · xk2,Nk
...

...
. . .

...
xkd,1 xkd,2 · · · xkd,Nk



2. Calculate the total mean vector mt and the class-mean vector mk. N is the total
number of observations.

mt =
1
N

N

∑
i=1

xi =
[

1
N ∑N

i=1 x1,i
1
N ∑N

i=1 x2,i · · · 1
N ∑N

i=1 xd,i

]T

mk =
1

Nk

Nk

∑
i=1

xki =
[

1
Nk

∑Nk
i=1 xk1,i

1
Nk

∑Nk
i=1 xk2,i · · · 1

Nk
∑Nk

i=1 xkd,i

]T
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3. Generate c, d× Ni matrices X̃k of class-mean-subtracted observation vectors.

X̃k =


xk1,1 −mk1 xk1,2 −mk1 · · · xk1,Nk

−mk1

xk2,1 −mk2 xk2,2 −mk2 · · · xk2,Nk
−mk2

...
...

. . .
...

xkd,1 −mkd xkd,2 −mkd · · · xkd,Nk
−mkd


4. Calculate the d× d between-class scatter matrix SB by weighting the outer prod-

uct of the mean-subtracted class-mean vectors (the columns of d × c matrix M̃)
by the number of observations in the kth class Nk.

SB = M̃nM̃T

=
[

m1 −mt · · · mc −mt

]


N1

N2
...

Nc


[

m1 −mt · · · mc −mt

]T

5. Calculate the d × d within-class scatter matrix Sw by summing the individual
class scatter matrices Sk. Each Sk is just the outer product of the class-mean-
subtracted observation vectors, the columns of X̃k.

SW =
c

∑
k=1

Sk =
c

∑
k=1

X̃kX̃T
k

6. Compute the eigenvectors wj of the d × d matrix S−1
W SB, and construct the d ×

(c− 1) matrix W by using each wj as a column in order of decreasing eigenvalue
δj. The dominant eigenvectors define the LDA subspace.

W =
[

w1 w2 · · · wc−1

]

7. Project the matrices X̃k onto the LDA vectors wj to obtain the (c− 1)× Nk matri-
ces Ak, which contain the observation vectors from the kth class represented in a
space designed to minimize the within-class scatter and maximize its separation
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from all other classes.
Ak = WTX̃k

The inverse LDA transform is not as trivial as the inverse PC transform. W is no
longer an orthogonal matrix, and is in fact only square if d = (c− 1). The (c− 1) col-
umn vectors of W, while composed of d elements, do not span the full d-dimensional
space. We can calculate the pseudoinverse of W as W† = (WTW)−1WT. The least-
squares approximation to the inverse transformation is ˆ̃Xk = (WT)†Ak.

The second case for computing LDA arises when the number of variables exceeds
the number of observations. In this case, both the within-class scatter matrix SW and
the between-class scatter matrix SB are singular. For many years, this obstacle de-
layed the development of a direct LDA solution for high-dimensional data sets (e.g.,
in imaging applications).

Perhaps the most prevalent usage of this case of LDA is in face recognition applica-
tions. In 1997, Belhumeu, et al., presented their work on Fisherfaces, a face recognition
algorithm that uses LDA to generate a vector subspace for class discrimination [1].
Their proposed method addressed the small sample size problem by using PCA as a
preprocessing step to reduce the dimensionality of the data set. Thus, the full data set
is first projected onto a PCA vector subspace such that the approximate within-class
scatter matrix ŜW is now nondegenerate. While this method exhibits improved recog-
nition rates over the eigenface technique [49] presented in 3.3.1.3, it has been noted
that that reducing dimensionality prior to computing LDA can remove information
vital to class discrimination [23].

In 2001, Yu and Yang [54] published an algorithm to directly compute LDA for
high-dimensional data sets, which they referred to as Direct-LDA. This method was
derived by recognizing that the null space of the within-class scatter matrix contains the
most discriminative information, and that LDA can be manipulated as a simultaneous
diagonalization problem (Appendix A.1.1). Yu and Yang’s Direct LDA approach has
been widely accepted in the face recognition field, and it is the foundation for the
following Case 2 algorithm.

LDA Case 2: Variables d > Observations N

1. Organize the data into c, d × Nk matrices Xk, where c is the number of classes,
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d is the number of total pixels, and Nk is the number of observations in the kth

class. Each column of a matrix Xk is an observation vector from class k.

Xk =
[

xk1 xk2 · · · xkNk

]
=


xk1,1 xk1,2 · · · xk1,Nk

xk2,1 xk2,2 · · · xk2,Nk
...

...
. . .

...
xkd,1 xkd,2 · · · xkd,Nk


2. Calculate the total mean vector mt and the class-mean vector mk. N is the total

number of observations.

mt =
1
N

N

∑
i=1

xi =
[

1
N ∑N

i=1 x1,i
1
N ∑N

i=1 x2,i · · · 1
N ∑N

i=1 xd,i

]T

mk =
1

Nk

Nk

∑
i=1

xki =
[

1
Nk

∑Nk
i=1 xk1,i

1
Nk

∑Nk
i=1 xk2,i · · · 1

Nk
∑Nk

i=1 xkd,i

]T

3. Generate c, d× Ni matrices X̃k of class-mean-subtracted observation vectors.

X̃k =


xk1,1 −mk1 xk1,2 −mk1 · · · xk1,Nk

−mk1

xk2,1 −mk2 xk2,2 −mk2 · · · xk2,Nk
−mk2

...
...

. . .
...

xkd,1 −mkd xkd,2 −mkd · · · xkd,Nk
−mkd


4. Calculate the N × N between-class Gram matrix GB by weighting the inner

product of the mean-subtracted class-mean vectors (the columns of d×N matrix
M̃) by the number of observations in the kth class Nk.

GB = M̃TM̃n

=
[

m1 −mt · · · mc −mt

]T [
m1 −mt · · · mc −mt

]


N1

N2
...

Nc


5. Compute the eigenvectors vj of GB, and construct a c× c matrix V by using each
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vj as a column in order of decreasing eigenvalue.

V =
[

v1 v2 · · · vc

]
6. Calculate the d × c′ matrix Y of eigenvectors yj (where c′ ≤ c) by projecting the

columns of V onto the rows of M̃, i.e., by using each vector vj to determine linear
combinations of the mean-subtracted class-mean vectors. The vectors yj are the
dominant eigenvectors of the between-class scatter matrix SB, and their corre-
sponding eigenvalues δBj are those of both GB and SB. Only the c′ eigenvectors
yj with nonzero eigenvalues should be retained:

Y = M̃V =
[

y1 y2 · · · yc′
]

7. Calculate the d× c′ matrix Z of scaled eigenvectors zj by normalizing each yj by
the square root of its corresponding eigenvalue δBj . The vector subspace speci-
fied by the columns of Z unitizes SB, i.e., diagonalizes SB to the identity matrix
I.

Z =
[

z1 z2 · · · zc′
]

= Y∆−0.5
B =

[
y1 y2 · · · yc′

]


δB1 0 · · · 0
0 δB2 · · · 0
...

...
. . .

...
0 0 · · · δBc′


8. Calculate the c′× c′ matrix ZTSWZ, which corresponds to the within-class scatter

matrix SW represented in the column space of Z. ZTSWZ can be expanded to
ZTX̃X̃TZ, where X̃ is a d × N matrix with columns of all class-mean-subtracted
observation vectors.

ZTSWZ = (ZTX̃)(X̃TT)

=
(

ZT
[

x1 −mk1 x2 −mk2 · · · xN −mkN

])
([

x1 −mk1 x2 −mk2 · · · xN −mkN

]T
Z

)
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9. Compute the eigenvectors ui of ZTSWZ, and construct a c′ × c′ matrix U by us-
ing each ui as a column in order of decreasing eigenvalue. The vectors ui specify
linear combinations of the column vectors of Z; this operation effectively defines
a new subspace that diagonalizes the within-class scatter matrix SW in the col-
umn space of Z, which in turn diagonalizes the between-class scatter matrix SB

in its inherent design.
U =

[
u1 u2 · · · uc′

]
10. Calculate the d× c′ matrix W of column vectors wj, which specify the LDA vec-

tor subspace. The matrix W simultaneously diagonalizes both SB and SW . If
c′ 6= (c− 1), then columns > (c− 1) should be discarded.

W = ZU

11. Project the matrices X̃k onto the LDA vectors wj to obtain the (c − 1)× Nk ma-
trices Ak. Ak contains the observation vectors from the kth class represented in a
space designed to minimize the within-class scatter and maximize its separation
from all other classes.

Ak = WTX̃k
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3.4 Probabilistic Networks

We now shift focus to discuss probabilistic networks, a topic whose importance to
character recognition on the Archimedes Palimpsest will become clear in Chapter 4.

3.4.1 Modeling Uncertainty

In many pattern recognition applications, it is necessary to examine the inherent un-
certainty at each stage in the decision-making process. Several components in the
system will affect the classification decision, and thus the uncertainty in these compo-
nents will affect the uncertainty in the classification decision. Evidence concerning the
state of a system component can be used to estimate the state of other components,
including the classification results.

Bayesian networks (also called probabilistic networks) represent a powerful tool for
modeling the propagation of uncertainty in components (or variables) that share a
causal relationship. These networks consist of sets of nodes that represent the vari-
ables in the system, each with its associated finite set of mutually exclusive states.
Nodes are connected via directed edges, which describe the causality between vari-
ables.

Over the past decade, Bayesian networks have been used in a variety of applica-
tions such as medical diagnosis [38] and diagnosis-and-repair modules [42]. Proba-
bilistic networks have even been used in character and word segmentation tasks. For
example, Maragoudakis, et al., [36] demonstrated the advantages of learning SVM pa-
rameters via Bayesian networks in a handwritten character segmentation task. The
following sections outline the underlying theory, which will serve as an introduction
to the preliminary network model discussed in chapter 4.

3.4.2 Overview of Simple Network Design

Bayesian networks are directed acyclic graphs (DAGs), that is, a system of connected
nodes in which no path exists from one node back to itself. DAGs can be singly-
connected (also called polytrees), in which only one undirected path exists between any
two nodes in the network, or multiply-connected, in which multiple paths can exist
(Figure 3.19).
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Figure 3.19: Example of a singly-connected (Left) and multiply-connected (Right) net-
work.

Each node in the system contains an associated probability table which follows the
network structure. For the remainder of this chapter, note that a variable in the net-
work will be represented by an uppercase character and a given state of a variable by
the corresponding lowercase character. In the multiply-connected network in Figure
3.19, no directed edge exists that leads to variable A. The probability table for variable
A would consist only of P(A), which (of course) contains each P(ai), where ai repre-
sents the ith mutually exclusive state of A. Variables B and C each have one directed
edge denoting causal dependence on variable A. B and C are referred to as the chil-
dren to parent node A, and therefore have associated conditional probability tables
(CPTs) containing P(B|A) and P(C|A), respectively. Likewise, variable D is causally
dependent on variables B and C, and its CPT contains the values from P(D|B, C). It
is apparent, even from this small-scale example, that the size of the CPTs in Bayesian
networks become increasingly difficult to work with in realistic problem domains.

Before discussing the methods for relaying probabilistic information through a
Bayesian network, it is important to review some of the relevant underlying math-
ematics in classical probability. The product rule for two events (variable states) a and
b is:

P(a ∩ b) = P(a|b)P(b) (3.110a)

P(a ∩ b) = P(b|a)P(a) (3.110b)

where P(a ∩ b) is the joint probability of the occurrence of both events. Using these
expressions, simple algebraic manipulation yields Bayes’ theorem which relates the two
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conditional probabilities:

P(a|b) =
P(b|a)P(a)

P(b)
(3.111)

When considering an additional event, the product rule can be expressed:

P(a ∩ b ∩ c) = P(a|b ∩ c)P(b ∩ c) (3.112a)

= P(b|a ∩ c)P(a ∩ c) (3.112b)

= P(c|a ∩ b)P(a ∩ b) (3.112c)

It follows that Bayes’ theorem can also be extended to cases in which an event is con-
ditionally dependent on more than one event.

P(a|b ∩ c) =
P(b|a ∩ c)P(a|c)

P(b|c) (3.113a)

=
P(c|b ∩ a)P(a|b)

P(c|b) (3.113b)

Continuing in this progression to the case of n events, the product rule can be ex-
panded to yield the general expression:

P(x1 ∩ . . . ∩ xn) = P(xn|xn−1 ∩ . . . ∩ x1)P(xn−1 ∩ . . . ∩ x1)

= P(xn|xn−1, . . . , x1)P(xn−1|xn−2, . . . , x1) · · · P(x2|x1)P(x1)

=
n

∏
i=1

P(xi|xi−1, . . . , x1) (3.114)

which is the chain rule; it shows that a joint probability of n events can be expressed as
the product of conditional probability terms.

Of great importance in Bayesian networks is the property of conditional indepen-
dence. If two events a and c are independent given event b then it follow that

P(a|b ∩ c) = P(a|b) (3.115)

In other words, c has no influence on the probability of a if b is known. Conditional
independence plays its role in Bayesian networks in the concept of d-separation. Two
variables A and B in a network are d-separated if an intermediate variable X exists
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and one of the following two constraints is satisfied.

1. The connection between A and B is serial or diverging and hard evidence has
been applied to X

2. The connection between A and B is converging and evidence has not been ap-
plied to X or any descendants of X

For example, referring back to polytree in Figure 3.19, if evidence is applied to variable
C (i.e., the state of C is known), then the variables A and D are d-separated because
the first constraint is satisfied. Evidence from A to D is blocked by C, which indicates
that A and D are conditionally independent given C:

P(D|C, A) = P(D|C) (3.116)

The first constraint also shows that D and E are d-separated through a diverging con-
nection. Contrarily, variables A and B are not d-separated in their converging con-
nection, as the evidence has indeed been applied to the intermediate variable C. If
evidence had been applied to B instead of C, then the second constraint would be
satisfied (d-separation) between variables A and D and A and E.

Using the concept of d-seperation, the chain rule in Eq. 3.114 can now be modified
for the full joint probability distribution represented in a Bayesian network. The node
structure, defined by the directed edges, denotes the causal dependencies among the
variables within the system. Recall that each node has a corresponding CPT whose
elements consist of the conditional probabilities specified for given states in the asso-
ciated parent variables. That is, a variable A would have a CPT containing the values
from P(A|Parents(A)). Bayesian networks are constructed such that each node is con-
ditionally independent (d-separated) of any preceding nodes in the hierarchical struc-
ture given evidence in its parents. Using this property and the chain rule in Eq. 3.114,
an entry in the joint distribution represented in a Bayesian network can be computed
using Eq. 3.117,

P(x1, . . . , xn) =
n

∏
i=1

P(xi|parents(Xi)) (3.117)

where xi denotes a state (event) of variable Xi, and parents(Xi) denotes the states
which correspond to the parents of variable Xi. This expression shows that queries
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Figure 3.20: Singly-connected network (polytree) referenced in the discussion.

about the system, in the form of conditional probabilities, can be answered using the
information described by the network. Therefore, the product rule in Eqs. 3.110a and
3.110b can be rewritten:

P(x|e) =
P(x ∩ e)

P(e)
= αP(x ∩ e) (3.118)

where e denotes any evidence states, and α = (P(e))−1 is the normalization constant
calculated by computing the posterior probability distribution P(x|e) for all states xi

in the query variable X. Any query P(x|e) about the domain modeled by the Bayesian
network can now be answered by computing an entry from the full joint distribution
P(x ∩ e). Eq. 3.117 shows this to be equivalent to multiplying relevant entries in the
CPTs of the network. In the following section, methods are discussed for computing
these types of queries in Bayesian networks.

3.4.3 Probabilistic Inference

Once the nodes in a Bayesian network have been initialized, probabilistic information
can be transmitted through the network. Three types of variables exist in Bayesian
networks.Query variables X are those under investigation given a set of evidence vari-
ables E with corresponding observed (known) states e. The remaining variables are
typically referred to as hidden variables Y.

Figure 3.20 shows the polytree from the previous section. Assume that it is neces-
sary to calculate the posterior probability distribution for A given an observed event at
C and D. In this scenario, A is the query variable, C and D are evidence variables, and
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B and E are hidden variables. This query can be calculated from the joint distribution
in Eq. 3.119.

P(A|c ∩ d) = αP(A, c, d) (3.119)

The marginalization operation frequently used in inferencing algorithms is:

P(A) = ∑
B

P(A ∩ B) (3.120)

In words, marginalization effectively removes a particular variable from a joint dis-
tribution by summing the entries corresponding to each of the states associated with
the variable. Thus, Eq. 3.119 can be rewritten in terms of the full joint distribution by
marginalizing over the hidden variables B and E in the query:

P(A|c ∩ d) = α ∑
b

∑
e

P(A, B, c, d, E) (3.121)

As shown in the previous section, the joint distribution can be expressed as a product
of conditional probabilities (Eq. 3.122a). Eq. 3.122b illustrates an equivalent, less
computationally intensive solution to the query.

P(A|c ∩ d) = α ∑
b

∑
e

P(A)P(b)P(c|a, b)P(d|c)P(e|c) (3.122a)

= αP(A) ∑
b

P(b)P(c|A, b)P(d|c) ∑
e

P(e|c) (3.122b)

Inference calculation in Bayesian networks can be computed exactly or approx-
imately. As mentioned earlier, as the number of variables (and variable states) in-
creases, the full joint distribution represented by the network becomes intractably
large (and so the CPTs associated with each node). Variable elimination [42][55] is
a common exact inferencing algorithm for Bayesian networks, and it is given special
attention here due to its relevance in the Archimedes Palimpsest network discussed in
the following chapter.

In variable elimination, queries are evaluated by first eliminating irrelevant nodes
from the computation. In the scenario of Eq. 3.122b, the last term sums to unity, indi-
cating that removing the node for variable E does not affect the result. In other words,
variables that are not ancestors of query or evidence variables are eliminated from the
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calculation to reduce complexity. Factors, that is, vectors of probabilities associated
with the remaining nodes, are generated, and then the pointwise product is computed
while back-tracking through the network. Quite simply, the pointwise product com-
putes the union of the set of variables represented in the factors. Hidden variables
encountered during this process are immediately summed-out (marginalized). The
resulting factor should contain the likelihood for each state in the query variable. A
possible algorithm for variable elimination is:

Algorithm 3.4.1: VARIABLE ELIMINATION(X, e, BN)

comment: X is the query variable

–remove variables irrelevant to query
–generate factors for remaining variables
for each factor in reverse order of causal dependence

pointwise product current factor an any previous factor
if new factor contains hidden variable

then marginalize over hidden variable
normalize
return (X)
comment: return value is a new distribution over X

Polytrees exhibit the useful property that the time and space complexity of exact
inference (using variable elimination) is linear in the size of the network. Approximate
inference techniques, such as random sampling algorithms [24][42], are typically re-
quired in multiply-connected networks, as exact inference results in exponential time
and space complexity.
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–Basic research is what I am doing when I don’t know what I am doing.

Werner Von Braun

–No human investigation can be called real science if it cannot be
demonstrated mathematically.

Leonardo da Vinci

4
Approach

We now discuss the role(s) of the pattern recognition topics of Chapter 3 in the com-
pletion of this body of work. It may be useful to revisit the objectives outlined in
Chapter 2 before examining the approach employed here. While the overarching goal
of this research has been to develop and maintain a character recognition tool for the
Archimedes Palimpsest Project, three other specific objective categories also exist. This
chapter describes the approach for each, loosely following the chronological progres-
sion of the work encompassed by this dissertation.

4.1 Spatial Correlation Filter Analysis

Each of the correlation filters detailed in Section 3.2, whether of classical or composite
design, exhibits specific attributes that determine its performance when applied to an
arbitrary application. For example, the simple matched spatial filter (MSF) was de-
rived to be optimal (in a least-squares sense) [4] for detecting a known signal in the
presence of additive white Gaussian noise (WGN). When using correlation pattern
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recognition to determine the true class of a character contained in a noisy image, one
would expect the MSF to provide a more useable result than that produced by the
ideal matched filter. However, if both correlation filters were applied to an identical
input image that contains a negligible amount of low-frequency noise, the result is
just the opposite: the ideal MSF produces an approximate Dirac delta function when
matched to the true-class reference and an amplified noise floor when matched to any
false-class references. Therefore, performance metrics corresponding to these peaks
will show larger separation between true and false-class characters, providing better
discrimination than metrics corresponding to the characteristic broad peaks produced
by the MSF. We are presented with an analogous scenario when using composite corre-
lation filters, which provide additional tolerance to within-class distortion. For images
of the Archimedes Palimpsest, it may be advantageous to apply a specific correlation
filter for some regions, but other filters to regions with different spatial properties
(clean, noisy, cluttered, etc.). This notion is revisited in the following section on the
design of a recognition system, but for now, this implies that it is necessary to analyze
multiple correlation filters.

For correlation to be a useful means of character recognition on images of the
palimpsest, it requires tolerance to both noise and clutter and the ability to accom-
modate small within-class distortions while maintaining a high level of class discrim-
ination. From Section 3.2, it should be clear that designing a filter to simultaneously
satisfy each of these criteria would be exceptionally difficult and impractical. The re-
mainder of this section will examine the performance of individual correlation filters
which, when used in conjunction, provide each of these attributes.

During the first stages of this research, before recognizing the Archimedes Palimpsest
as a possible application, the performance of several classical correlation filters (in-
cluding the then-newly derived complement filter [26]) was evaluated using reference
patterns dominated by low frequencies, additive WGN, and the performance metrics
detailed in Section 3.2.3.1 [50][52]. As expected, several papers describe this “gen-
eral” performance analysis for composite correlation filters [3][28][30]. Characterizing
the performance of a filter for a wide array of conditions is certainly useful, because
that design may be considered as an initial filtering candidate for target applications.
However, the filter must be directly applied to data from the desired application to
observe recognition rates, which should determine whether the design is integrated
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into the classification process.

A series of confusion matrices was generated and analyzed to evaluate the perfor-
mance of the individual correlation filters (Section 3.2) on images of the Archimedes
Palimpsest. Recall that receiver operating characteristic (ROC) curves are typically
used to compare filters for binary detection problems (e.g., target “present” vs. target
“absent”). The Greek alphabet alone has 24 characters, both as upper and lowercase,
and ligatures often exist, which increases the number of distinct characters.

The first step in completing this process was to extract a training library of ”clean”
images of the Greek characters from unobstructed regions of the palimpsest, such as
the gutter or side margins of the book. As mentioned in the previous chapter, at least
one additional set of nontraining characters, i.e., an independent data set, should be
used to evaluate the classification performance. Thus, a test set of clean and a set of
obscured characters were assembled in addition to the original training library. Each
set, training, clean, and obscured, included ten 64× 64 pixel images per character class.

When generating a composite correlation filter, it is necessary to center the pattern
of interest in each image from a set of training exemplars to obtain the desired peak.
Failing to position the pattern consistently across the full set will either blur the peak
or create multiple peaks from mismatched linear phase terms. Each of the 64× 64 pixel
images from the training sets was initially a 148× 148 region that was extracted with
the appropriate character approximately centered. The first visually centered training
image from each character class was used as a reference for all other images in the set.
From this reference, the locally nonlinear matched filter (LNMF) was generated and
applied to the other images within the class set to produce correlation planes from
which peak locations were used to determine the spatial translation correction. After
applying this shift, the images where then cropped to 128 × 128 and subsequently
downsampled to 64× 64 (Figure 4.1). Note that the translation correction is not needed
for the independent sets due to the property of shift invariance inherent in correlation
filter design.

The confusion matrices calculated using this data set are provided in Chapter 5.
With the development and implementation of a scheme for quantifying recognition
rates on the Archimedes Palimpsest, we can now examine the design of the prelimi-
nary character recognition system.
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Figure 4.1: Example training image generation for the character ’π’ – 148× 148 pixel
images of the approximately-centered ’π’ character are extracted from clean regions
of the palimpsest. Each image in the set is preprocessed by applying an apodizing
window to minimize edge-effects and emphasize the spatial structure of ’π’. A corre-
lation filter is then constructed using the first image in the set as the reference pattern,
and correlated to every other image to produce a set of correlation planes, which are
shown here as images. Any translation relative to the reference is corrected, and the
images are then cropped to 128× 128 and resampled to 64× 64.
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4.2 Archimedes Character Recognition Tool Design

At the symposium held in April of 2004 at the Walters Art Museum in Baltimore, MD,
the scope of this research became quite clear during a discussion with Dr. Reviel Netz,
of Stanford University. Unfortunately, this sudden sense of clarity was accompanied
by a realization that many obstacles would ensue in the forthcoming imaging task. At
this stage of the Archimedes Palimpsest Project, Netz stated that a tool designed to
assist the user in the identification of characters in obscured regions would be of great
assistance to those transcribing the digital images. After a preliminary evaluation of
correlation filter performance for arbitrary applications [50][52], it seemed intuitive to
apply this work to the design of a character recognition system. Feature extraction
by correlation offered several benefits, including fast computation time, tolerance to
noise and within-class distortions, and most importantly, shift invariance. The abil-
ity of the feature extractor to essentially bypass an application-specific segmentation
process guaranteed that the tool could be easily modified to accommodate additional
spatial pattern recognition tasks from other application areas (Section 5.2.3). Work on
a correlation-based character recognition system for the use of those transcribing the
palimpsest commenced immediately following the symposium.

4.2.1 Correlation Pattern Recognition System

Common to the development of almost all software design, it was imperative to con-
sider how the end-user would use the recognition tool to achieve the his or her goals.
We will assume that the end-user is a scholar of Classics, and he or she intends to
use the tool in the transcription process. A graphical-user-interface (GUI) was devel-
oped in the IDLTM programming language to allow a fully functional system to be
distributed to the scholars for local usage in the IDLTM virtual machine. The goal
of the preliminary design was to provide the user with a list of probabilities for each
character class from whichever region-of-interest was selected, based solely on spatial
correlation results. As mentioned in the previous section, the spatial characteristics of
regions selected from the palimpsest images will vary based on the amount of noise,
overtext, mold, fire damage, etc. As such, the performance of a correlation filter will
also vary with the ROI selected by the user. Thus, rather than use a single correlation filter
and an associated performance metric as the full classification scheme, it was determined that
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a series of decidedly useful correlation filters should be employed to construct a feature vector
for a ROI. This collection of correlation filters can be predetermined for a particular
application by using the analysis discussed in Section 4.1.

The system was designed to require selection only of a file containing default set-
tings for the desired application (e.g., the training, correlation filter, and performance
metric sets), load an input image scene, select a region-of-interest, and press the “run”
button. However, several computations are performed in the background before the
results are presented to the user. A high-level diagram of the preliminary recognition
system is shown in Figure 4.2. First, the training and ROI images are preprocessed
by applying an apodizing window to minimize leakage during computation Fourier
transforms, and to reduce the amplitudes of spatial features within the image that do
not correspond to the segmented character. To ensure equal contribution of each train-
ing image in construction of the composite correlation filters, the integrated energy of
the training images is normalized such that the sum of the squared pixel values (in
each image) is unity [46]. Selected correlation filters are then applied to the ROI using
each character class to generate the filter transfer functions. For a selected composite
correlation filter, this method produces one correlation surface per character class; a
classical spatial matched filter produces Nk correlation surfaces per class, where Nk is
the number of training exemplars belonging to class k. After each surface is generated,
the selected performance metrics are extracted to characterize the quality of the spatial
matching and then stored in the feature vector of the appropriate class.

The result of this process is a feature vector for each class whose length L is the
product of the number of correlation outputs produced for the class and the number
of performance metrics used [53]. A feature vector for the ROI is created in the same
fashion by matching the ROI to itself (i.e., the autocorrelation) using each filtering
scheme and the successive performance metrics. The data used for classification are
the ROI feature vector and a matrix of class feature vectors for each character with the
number of rows equal to the length of each feature vector L and the number of columns
equal to the number of character classes c. An example of the output using this data-
formatting convention if the PSR and PCE metrics are used is shown in Figure 4.3.

Principal components analysis is typically employed at this stage in the system
to reduce the volume of data and, more importantly, to remove any unnecessary fea-
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Figure 4.2: High-level diagram of the CPR system – (Top) the inputs to the recognition
system include the training library of characters from the underwriting and ROI(s)
selected from the input scene, both of which are preprocessed by applying an apodiz-
ing window. (Middle) Class and ROI feature vectors are generated using performance
metrics from the respective correlation and autocorrelation planes. PCA can be per-
formed to reduce the dimensionality of feature space and partially remove the effects
of poor correlation. (Bottom) The relative differences between Euclidean distances
to the ROI feature vector d1, d2, . . . , dc are used to assign probabilities to each class
p1, p2, . . . , pc.
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Figure 4.3: Example data used for classification (prior to PCA) – an L× c matrix of fea-
ture vectors belonging to each of the c classes and the L-element ROI (autocorrelation)
feature vector.

tures. Performance metrics corresponding to correlation schemes that behave poorly
for given spatial characteristics of a particular ROI will exhibit small magnitudes that
are relatively constant over each of the character classes. Conversely, metrics from
correlation filters that have performed well should show a much higher variance due
to classes that correlate well with the ROI.

Note that performance metrics often have different scales, and thus, the correlation
matrix (as opposed to the covariance matrix) of the data set should be used to calculate
the principal components. However, the PCA implementation varies between Case 1
and Case 2 (Section 3.3.1.3) based on the length of the feature vectors. For example, if
the MACH filter and PSR performance metric are chosen, then the feature vector for
each class is of length L = 1. If additional filters or metrics are added to the methods of
feature extraction, L can certainly exceed the number of training classes c. Rather than
manage the small sample size problem for PCA using the correlation matrix, which
would require a normalization matrix, each feature is instead normalized by the max-
imum of the features from its corresponding feature-extraction method. This allows
the relative variation between feature-extraction methods to appear on the same scale
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for the PCA computation.

The reduced matrix of feature vectors in the PC space contains the useful trans-
formed features for classification, and features resembling noise are essentially re-
moved. Obviously, if PCA is implemented, the ROI autocorrelation feature vector
is subsequently projected into the PC space. As the final step in the pattern recog-
nition process, the Euclidean distance between the feature vector of each character
class and the ROI autocorrelation feature vector is calculated (Figure 4.4). The relative
magnitudes of these distances are used to assign a probability to each class, forming a
character probability distribution. Probabilities are calculated as the ratios of the dis-
tance for the given class to the distances for all classes. Results from this preliminary
system are presented in Chapter 5.

4.2.2 Probabilistic Network Integration

To further improve the performance, it was necessary to address some of the obvious
limitations of the character recognition tool. The original system provided classifica-
tion results based solely on the spatial properties of the training exemplars and ROI
image(s). It is clear that the texts of Archimedes are obscured, typically by mold and
fire damage, as well as the text of the Euchologion prayerbook. Thus, images of the
character from Archimedes’ work occasionally provide little or no new useful infor-
mation for recognition by correlation filtering. Moreover, extreme cases exist where
entire characters or words are missing from the leaves of the palimpsest. At this stage
in development, the CPR system was limited to discriminating character classes at sin-
gle locations. Simultaneously discrimination classes at multiple ROIs allows analysis
of partial information at each location during the classification task. While a certain
level of success had been obtained from early efforts in recognition via correlation
methods [53][6], it was determined that a method for incorporating contextual infor-
mation into the system would undeniably increase the overall success rate.

To accomplish this task, it has been useful to examine the manner in which the
end-user will use the character recognition system to transcribe as much text from the
manuscript as possible. Ideally, the scholar would select the ROI(s), generate initial
results using data both from the images and context, and apply that information to
the tool to update the classification based on knowledge of the language. Thus, it is
advantageous to model the inherent uncertainty at each stage in the decision-making
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Figure 4.4: Illustration of Euclidean distance calculations in PC space – (Top-Left) fea-
ture vectors c1, c2, c3 from 3 different classes in the original feature basis x1, x2, x3.
(Top-Right) Reduction in dimensionality from three, the hyperspace defined by
x1, x2, x3, to two, the hyperplane defined by e1, e2, via PCA. (Bottom-Left) Feature vec-
tors c′1, c′2, c′3 from the 3 different classes after projection onto the orthonormal-vector
subspace e1, e2. (Bottom-Right) Euclidean distances d1, d2, d3 calculated in the PC space
from each of the transformed class feature vectors to the transformed ROI (autocorre-
lation) feature vector r.
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process.

The Archimedes Palimpsest is a mathematical text and therefore limited in vocab-
ulary; additional texts in other contexts are discussed in Chapter 5. As mentioned in
Section 1, earlier efforts in multispectral imaging have contributed to the transcription
of nearly eighty percent of the Archimedes text. Using the partial transcription results
produced by Reviel Netz of Stanford University [39], a word dictionary look-up table
(LUT) was constructed. This information is crucial to the development of a network
for character recognition.

Perhaps the best method to examine the network model for the Archimedes Palimpsest
Project is to illustrate a simple character recognition experiment. Assume that the task
is to determine the most likely character orientation for a word consisting of four char-
acters: l = 4. Let us also assume that the alphabet of language S consists of only three
character classes c = 3 such that S = [s1, s2, s3] = [‘A′, ‘B′, ‘C′] and that the observer is
certain of one character in the 4-letter word.

This example is clearly intended to parallel the task of designing a probabilistic
network design for the Archimedes Palimpsest Project, though on a much smaller
scale. The scholars of ancient Greek mathematics often encounter similar situations.
However, there are twenty-four character classes to discriminate between (forty-eight
when including upper-case versions of the Greek alphabet). Despite this obstacle in
computational complexity, the mathematical nature of the text limits the number of
possible words to approximately fifteen hundred. This dramatic reduction in the num-
ber of valid character orientations qualifies the use of the generated word dictionary
as a practical LUT for the problem.

Organizing a Bayesian model for a task typically begins by defining the variables,
their states, and the causal dependencies. We start by identifying the hypothesis
events, variables that are not observable. Figure 4.5 shows the nodes of variables that
correspond to each character in the word or region-of-interest (ROI). More specifically,
these variables are ROIs selected by the observer for each character location in a word
image of text from the manuscript (Figure 4.6). The likelihood (or certainty) of each
state in these nodes is estimated initially by using the only information provided: the
word LUT. Note that the ROI2 node is offset from the remaining ROI nodes to show
that it refers to explicit (hard) evidence, that is, the character in this location is known
by the observer.
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Figure 4.5: ROI nodes for a word consisting of four characters.

Figure 4.6: Example from an Archimedes Palimpsest pseudocolor image of a four-
character word that shows segmentation into ROIs by an observer (a scholar of ancient
Greek mathematics). (Photographs produced by The Rochester Institute of Technology and John Hopkins University.
Copyright resides with the owner of the Archimedes Palimpsest)
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Figure 4.7: CPR results in the system over their corresponding ROI nodes.

The CPR system, which was developed to exploit the spatial properties of images,
assigned probabilities to character classes at individual ROIs. Even the simple exam-
ple here could benefit from this correlation information by incorporating these results
into the network. Figure 4.7 shows an updated system for this task with the out-
come of correlation pattern recognition. Note that the symbols used to denote CPR
are smaller than those of the ROIs to emphasize that the CPR results are not nodes
in the network. Also note that ROIs containing hard evidence from the user do not
require the associated CPR information. Intuitively, if the ROI state is known, then
P(ROIi) = 1.

The task now is to determine the direction of the directed edges, or causal rela-
tionships, between variables. If we assume that information is transmitted from left to
right in the ROIs, then the network graph should resemble that in Figure 4.8 (this as-
sumption is revisited later in this section). This implies that each character in the word
is directly influenced by the character which precedes it. The network structure here
has the benefit of being a polytree, which permits practical use of the variable elim-
ination algorithm (discussed in Section 3.4.3). As shown, the ROI3 node is causally
dependent on the ROI2 node, and it is also influenced by the corresponding CPR3

results. CPR3 provides evidence using spatial characteristics of the images, and the
ROI2 node provides evidence using contextual information. Recall that for this exam-
ple, the state of ROI2 is known.

Initial probabilities can be specified after defining the network structure. We as-
sume that each node has the same states: the three character classes, ‘A’, ‘B’, and ‘C’.
ROI1 is the only node in the network without a parent node. Hence, ROI1 has an as-
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Figure 4.8: Network diagram showing causal relationships.

sociated probability distribution table rather than a full conditional probability table.
The CPTs must be computed for each child node given the causal information from
its parent(s). Figure 4.9 shows the ROI3 node with its associated CPT, where the ta-
ble represents P(ROI3|ROI2). More specifically, the elements of the CPT are given by
P(ROI3i |ROI2j) where i = j = 1, . . . , 3 and ROI31 would represent ROI3 = ‘A′.

The dependency relationships between the ROI variables and the CPR results is
unknown. We employ the naive Bayes’ rule to assume statistical independence between
the conditional probabilities P(ROI3|ROI2) and P(ROI3|CPR3). This can be expressed
mathematically as:

P(ROI3|ROI2, CPR3) = P(ROI3|ROI2)× P(ROI3|CPR3) (4.1)

If we have access to the LUT mentioned earlier, then we can determine the P(ROI3|ROI2)
term. P(ROI3|CPR3) reduces to P(CPR3), because without any knowledge of the
context, the probabilities associated with each state in CPR3 are used as probabilities
for the corresponding states in ROI3. The product of the P(ROIi|ROIj) and P(CPRi)
terms allows the CPR information to contribute to initialization and query results in-
dependently of the probabilities produced using contextual information.

Returning to the example query, notice that of the 32 = 9 elements in CPTROI3 ,
seven have a zero likelihood of occurrence. ROI2 was stated to be known, and we
are assuming ROI2 = A for this scenario. The bottom 2 rows (6 elements) represent
impossible events. The word dictionary LUT can now be used to determine if any
states in ROI3 are invalid. As apparent from the diagram in Figure 4.9, ROI3 6= A
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Figure 4.9: Network diagram showing an example CPT associated with ROI 3 when
ROI 2 is known to be the character ‘A’.
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Figure 4.10: Network diagram illustrating the update of adjacent CPR results.

given ROI2 = ‘A′. Consequently, the ‘A’ state of CPR3 can be removed from results
using the correlation-based metrics of the CPR system. Only two elements in Figure
4.9 require calculation during inference.

Figure 4.10 illustrates the concept of relaying LUT contextual information from the
ROI nodes with hard evidence to adjacent CPR results. Eliminating states in the CPR
nodes reduces the class discrimination task of the correlation routines and increases
the accuracy of the results. After removing states with zero likelihood, the probability
distribution specified by a CPR node is renormalized over the remaining states.

This small-scale example is intended to outline the major steps in adding contex-
tual information to classification results which were previously derived using only the
spatial structure of the images. This network allows the user to observe the probabil-
ities associated with each state of each variable, that is, each character class at each
ROI. Using this information, the surrounding context, and the visual aid provided in
the multispectral images, the user can apply hard evidence and perform queries to
observe changes in character likelihoods. In addition, the user is able to observe the
probability associated with each word in the LUT by treating the probabilities from
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each ROI as independent events.

To summarize, the general algorithm for the updated system consists of the fol-
lowing processes:

1. Input: Training library, input scene, ROI selection, and word LUT
2. Correlation Pattern Recognition: Generate CPR results at each ROI
3. Network initialization: Generate ROI node probabilities from word LUT and in-

dependent CPR results
4. Input Evidence: Apply contextual knowledge to select “known” characters
5. Perform Query: Generate new probabilities for each character class at the “un-

known” ROIs
6. Examine Probable Words: Word LUT is viewed in order of probability
7. Perform Steps 5-6 as Needed
8. User Decision: Based on the CPR, transcription results, and contextual knowledge

The character recognition system was updated to allow use in three different modes:
as a CPR system for individual ROIs (characters), as a probabilistic network system for
multiple ROIs (word), or as a joint CPR-probabilistic network system (characters and
word). Figure 4.11 shows a high-level diagram of the character recognition system
after updating its design to integrate the probabilistic network.

In this preliminary network, the model for each word is assigned a polytree struc-
ture. It is worth mentioning that though each character is causally dependent on the
character that precedes it, the output of a query may not be as intuitive if it were the re-
sult from a multiply-connected network in which each character is causally dependent
on all characters that precede it. Using the polytree, the output could show a likeli-
hood greater than zero for impossible character states for certain character locations
given the applied evidence. For example, in a word consisting of eight characters, the
state of the sixth character region ROI6 may be known to be the character ‘A’. Refer-
ring to the LUT, if the sixth character in an eight-character word is ‘α’, then it may be
true that ROI8 cannot be a ‘γ’. However, a ‘γ’ in ROI8 could have a positive likelihood
depending on how the ‘α’ in ROI6 influences ROI7. Thus, a multiply-connected net-
work (and a corresponding approximate inferencing scheme) may be desired to apply
evidence to force invalid characters to have zero probability.

Results and examples using the joint CPR-probabilistic network system are pre-
sented in Chapter 5.
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Figure 4.11: High-level diagram of the updated recognition system – CPR class prob-
abilities (for each ROI) and the word LUT are used to initialize the network. The user
can then base a decision on probable characters and words from query results.

104



4.3. LINEAR SUBSPACE CORRELATION FILTERING

4.3 Linear Subspace Correlation Filtering

After the completion of a series of correlation filter performance evaluations and the
introduction of an updated character recognition system to the scholars transcribing
the palimpsest, only one objective remained: the design of an improved correlation filter-
ing method. As shown in Figure 4.12, the flexibility of the CPR system to accept addi-
tional filtering schemes provides a cyclic workflow in which new correlation methods
can be evaluated by the system and integrated into its existing filter library. The CPR
system was designed to accommodate new development and provide a framework for
future work in the area of spatial pattern recognition for a broad range of applications.

This section attempts to address the topics of how spatial correlation filters are de-
signed and how they might be improved. It is this discussion that, in large part, requires
the lengthy presentation of material on correlation filtering in Chapter 3. All of the cor-
relation filters discussed in Section 3.2 were derived either in the space or frequency
domain. However, the first composite correlation filter, the SDF filter [19], noted that
derivation of the correlation design in another space may provide better results. With
this in mind, we revisit the concept of phase representation in correlation filter design
to facilitate a discussion on the projection of phase information onto vectors in spaces
other than the Fourier or spatial basis.

4.3.1 Improving Phase Representations in Correlation Filtering

The complement matched filter (Section 3.2.1.4) is a useful conceptual tool to demon-
strate the importance of both the magnitude and phase components of a correlation
filter. For any order N, the complement matched filter contain the same phase spec-
trum and thus performs the same phase canceling when applied to the input. Recall
that this phase canceling contributes to peak formation at the location of the reference
pattern. Ideally, the phase of the reference pattern contained within the input is com-
pletely removed from the output, leaving only the linear phase term(s) to specify the
detection location(s). The order N controls the shape of the magnitude spectrum, al-
lowing the complement matched filter to exhibit characteristics of the ideal matched
filter, the POMF, or even the MSF. Again, the magnitude of a correlation filter con-
trols the shape of the correlation peak and the tradeoff between peak sharpness and
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Figure 4.12: The cyclic workflow provided by the CPR system – After the initial corre-
lation filter performance evaluations and the development of the recognition system,
the inherent flexibility of the design allows newly derived correlation algorithms to
be evaluated using common performance metrics and integrated into the recognition
process for the desired application.
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noise tolerance. Obviously, correlation is not possible without phase information (for
realistic imaging scenarios); we will focus on improving phase representation in filter
design as a starting point.

It has already been noted that the complement matched filter, the ideal matched
filter, the POMF, and the MSF all contain identical phase terms. A brief look through
Section 3.2 should confirm that the same is true for all of the classical correlation fil-
tering methods discussed. Even more interesting is the fact that the SDF filter, the
MACE and UMACE filters, and the MACH filter all share the same “average” phase
term for phase canceling. As shown in Section 3.2.2, composite correlation filters typ-
ically aim to minimize or maximize certain criterion functions under a given set of
constraints. After solving the optimization problem, the resulting transfer function
for each of these filters manipulates the magnitude component while retaining the av-
erage phase term. Thus, a question to consider is: can the phase information of a composite
correlation filter be represented better than the mean phase of the training set?

To begin forming an answer to this question, refer back to the derivation of the
principal component basis functions in Section 3.3.1.1. The problem was first formu-
lated by finding a new vector x0 to best represent (in a least-squares sense) a given
set of N vectors x1, . . . , xN . It was shown that x0 must be the mean vector for the set
of N training vectors. Equivalently, if the immediate task now is to find the “best”
phase representation for a set of training phase vectors, the mean phase minimizes the
sum-squared error criterion (Eq. 3.80). PCA allows reduction of dimensionality while
maintaining a least-squares representation of the data. Perhaps the previous question
should be modified: Does the least-squares solution for the phase representation satisfy the
inherent objectives of correlation filtering?

In 2004, Savvides, et al., [43] published a new approach to correlation filtering that
relied on PCA to produce a representation of the phase information from a training
set. With the advent of eigenface techniques for face verification [49] and advances
in modern computing technology, it was now possible to implement PCA on high-
dimensional data sets consisting of more variables than observations (e.g., Case 2 PCA
in Section 3.3.1.3). More specifically, PCA could now be computed on image data con-
sisting of fewer training exemplars than total pixels. A concept that had seen little or
no attention since its brief inception during SDF filter development in the early 1980’s
could now be revisited: the development of a correlation filter in PC space [19]. Sav-
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vides, et al., noted that the UMACE filter was just an average phase filter combined
with prewhitening of the spectrum, i.e., multiplication by the inverse magnitude spec-
trum of the reference to obtain a flat correlation spectrum. To achieve illumination
tolerance for face recognition applications, all magnitude information was removed
from the input functions by assigning unit magnitude to the output spectrum; this is
analogous to the SPOMF in Section 3.2.1.2. Instead, they focused on how to better
represent phase in the filtering process.

The key to their algorithm is the linear subspace generated for the phase of the
filter using the PC transform, with the term “corefaces” used to denote the eigenfunc-
tions. It is important to note that Case 2 PCA is employed so that variables are pixels
and the observations are training images; this calculation forces a reduction in dimen-
sionality to the number of observations. Unlike the other filtering methods discussed
thus far, the input phase ΦI is correlated to the reconstructed input phase ΦR, which
is generated by projecting ΦI onto the corefaces and then back to the Fourier basis.
Phase canceling is performed in the frequency domain to produce a sharp, spatial do-
main correlation peak for true-class inputs with well-reconstructed phase. Thus, the
Corefaces algorithm has these features: (a) ignores magnitude information, (b) removes
features with low variance from the phase spectrum of the training set by reducing dimension-
ality, and (c) relies on a PC subspace projection and subsequent reconstruction to the Fourier
basis to provide class discrimination. The results presented by Savvides, et al., [43] show
that Corefaces outperformed other techniques such as the MACE filter, Fisherfaces [1],
and variations of principal components analysis in the detection of faces with varying
illumination.

The Corefaces algorithm for multi-class discrimination can be summarized into
five steps:

1. Generate the PC subspace for each of the c classes
2. Project the input phase ΦI onto each subspace
3. Reconstruct the input phase by projecting back to the frequency domain
4. Correlate the reconstructed phase ΦR to the input phase ΦI

5. Analyze the resulting peaks (using performance metrics) for classification

A block diagram of this approach is shown in Figure 4.13.

The purpose for including this extended discussion on Corefaces is in many ways
analogous to the purpose for reviewing the ideal matched filter; both algorithms serve
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Figure 4.13: Block diagram of the Corefaces algorithm – the phase spectrum of the
input ΦI is projected onto a PC subspace (for the test class) and then projected back to
the Fourier domain, producing a reconstructed phase spectrum ΦR. After phase can-
celing, the inverse Fourier transform produces correlation plane in the spatial domain.
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as a foundation upon which new correlation filtering methods can be derived. The
recent discovery of the Corefaces approach is certainly more effective than the ideal
matched filter for most realistic pattern recognition applications. However, the match-
ing schemes are similar in that Corefaces sets the stage for filter development in a PC
subspace, just as the ideal matched filter did in the Fourier basis. Corefaces is just one
example of how linear subspace projection can be used to design the filter transfer
function. This methodology will be referenced multiple times during the next section,
which details the design of a new correlation filtering scheme.

There are a few caveats in Corefaces that require attention. By examining Figure
4.13, it is apparent that this approach would be exceedingly difficult to implement op-
tically. Each filter is constructed by a projection onto (and out of) a subspace, which
would require multiple “filtering” stages just to produce an approximation. Fortu-
nately, most correlation filtering techniques are now performed using digital systems.
In addition, the flat magnitude spectrum that Corefaces assigns the output correla-
tion plane may be ineffective for applications containing significant high-frequency
variability. The lowpass nature of the magnitude spectra inherent in many correlation
filters serves to filter noise and small distortion.

For the following discussion, the restriction that will be of foremost concern is the
preservation of shift invariance in the filtering process. Recall that spatial translation
produces a linear-phase term, which is the only remaining phase information after
applying the inherent phase canceling in correlation filtering (assuming ideal condi-
tions). If dimensionality had not been reduced while calculating the PC space, we
would expect perfect reconstruction of the phase information in the frequency do-
main. Obviously, this scenario would serve no purpose for filter design. Thus, there
is a new question to be mindful of: How does projection onto a linear subspace affect the
linear phase component?

Corefaces represents a special case of applying a linear transformation to the spec-
tral phase. We desire reconstruction of the phase of the reference pattern ΦF and elim-
ination of the linear-phase component ΦL. More specifically, the subspace should ad-
equately represent the reference pattern ΦF only, such that phase canceling the input
phase ΦI with the reconstructed-input phase ΦR yields the linear-phase term ΦL to
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specify the peak location:

eiΦI · e−iΦR = ei(ΦF+ΦL) · e−iΦF = eiΦL (4.2)

Again, the Corefaces approach assumes that (a) ΦF will reconstruct well from the PC
subspace, and (b) ΦL will be almost entirely removed by dimensionality reduction. This
process typically produces a useable result, because PCA is the optimal transform
(in a least-squares sense) for reconstruction. Savvides, et al., [43] note that Corefaces
has empirically demonstrated shift-tolerance; the linear-phase term ΦL is predominant
after phase canceling, producing a correlation peak at the correct spatial location of
the reference pattern.

4.3.2 Improving Class Discrimination in Correlation Filtering

We can now discuss the possibility of using a linear subspace approach in spatial cor-
relation to achieve the desired filtering characteristics. Many possibilities exist, but
we will focus specifically on class discrimination for the correlation filter developed
in this work. While Corefaces relied on the PC subspace to provide class discrimina-
tion, we seek a different linear subspace that is “optimized” to maximize class sep-
arability. To meet this goal, the transformation that will be exploited is specified by
linear discriminant analysis, which was discussed in Section 3.3.2. By maximizing the
Fisher criterion (Eq. 3.94), LDA produces eigenfunctions that point in the directions
we desire, that is, directions that maximize between-class scatter under the constraint
that the within-class scatter is minimized. Though it may already be clear, it should be
noted that LDA produces a single linear subspace to represent variability in all classes.

Similar to the PCA implementation in the Corefaces algorithm, we are again con-
cerned with the small sample size problem; the number of variables d exceeds the
number of observations N. For this task, the variables, which define the dimensional-
ity, are the pixels, and the observations are the training exemplars. The work of Turk
and Pentland on eigenfaces in the early 1990’s revealed a method to overcome the
SSS problem for PCA [49]. Methods to solve this problem for LDA did not emerge
until almost a decade later. The Direct-LDA algorithm proposed by Yu and Yang
[54] recognizes LDA as a simultaneous diagonalization problem that diagonalizes the
between-class and within-class scatter matrices in similar fashion to Case 2 PCA. This
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approach, which is outlined in Section 3.3.2.2, will be used throughout the remainder
of this work.

We must again address the question: How does projection onto the LDA subspace af-
fect the linear phase component? When the input phase ΦI is projected from the Fourier
basis onto the LDA vector subspace, the discriminating features of that phase will be
retained, and other features will be attenuated or removed completely. If the input
contains a translated version of the reference, it is uncertain how the linear phase term
ΦL will be reconstructed. Unlike Corefaces, which assumes that the reconstructed in-
put phase ΦR contains a close approximation of the reference pattern phase spectrum
ΦF, we now have a reconstruction that will often exhibit different structure than the
input. Using PCA to generate the linear subspace guarantees that the reconstruction
is the least-squares representation of a true-class input, thereby facilitating correlation
between ΦI and ΦR. Without (a) the PC subspace or (b) knowledge of how the linear phase
term will be reconstructed, we must adopt a new approach. Fortunately, reconstruction
of the input information can be correlated to a reconstruction of the training informa-
tion (rather than to it’s own representation prior to projection). However, preservation
of the linear phase term ΦL presents a considerable obstacle. The assumption that re-
construction removes the linear phase term ΦL is now irrelevant. We are forced to shift
focus, projecting only the magnitude information onto an LDA subspace in correlation
filter design.

The next question that requires attention is: How does dimensionality reduction affect
the correlation process? Case 2 PCA requires dimensionality reduction to the number
of observations N, while Case 2 LDA reduces dimensionality to c − 1 directions. For
example, if there are c = 3 classes, each represented by one hundred 64 × 64 pixel
training images, LDA reduces dimensionality from d = 4096 to d = 2. If each input
is represented by a 2-element vector, it makes little sense to design or implement a
correlation filter within the LDA subspace. Instead, the LDA representation can be
projected back onto the original basis, essentially using the linear subspace projection
as a means to filter unwanted information.

We proceed by examining the following three propositions, all of which take ad-
vantage of LDA in correlation filter design:

1. Project the input image onto an LDA image subspace, and correlate the input with
the reconstruction
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2. Project the input magnitude onto an LDA magnitude subspace, and use the differ-
ence between the input and reconstructed magnitude spectrums to design Fourier
domain preprocessing filters for each class

3. Project the input magnitude onto an LDA magnitude subspace, and multiply the re-
ciprocal of the reconstructed magnitude by the mean reconstructed magnitude of
the training to produce the output magnitude spectrum

The first idea produces exceptional correlation peaks for input images that con-
tain an untranslated reference pattern. However, the peak degrades rapidly once the
reference pattern is translated due to poor reconstruction of the linear phase term.
Without shift invariance, the first proposition useless for spatial correlation. The sec-
ond idea may have some value; class-specific preprocessing filters could be applied
before using each of the correlation filters such that frequencies that provide little dis-
criminatory information are attenuated. However, preprocessing filters of this nature
can also cause false-class inputs to resemble true-class inputs, which is precisely what
this correlation scheme is designed to avoid.

The third and final proposition was pursued in this work. Figure 4.14 illustrates
the series of projections in this process using vector diagrams. To begin, the LDA
vector subspace is constructed using magnitude spectra of the training data. Input
images (lexicographically-ordered into vectors) are transformed to the frequency do-
main, and the magnitude spectra are extracted and projected onto the derived sub-
space. For illustration purposes, the origins of the LDA subspace and the magnitude
basis are shown aligned. In practice, the mean training magnitude vector must be sub-
tracted from any input magnitude vectors prior to projection. The dimensionality is
reduced to (c− 1) directions, and the input vectors are then projected back onto the d-
dimensional magnitude space. Reconstructed magnitude spectra have components of
the within-class variability removed and maintain high separation from other classes.

Figure 4.15 shows a high-level block diagram of the new filtering approach, which
will be referred to as linear subspace correlation filtering (LSCF) from this point forward.
As shown, the algorithm exploits the Corefaces approach to develop a representation
for the phase of the filter and an LDA approach to assign the filter a magnitude spec-
trum. While the term “linear subspace correlation filtering” will be used to denote this
combined PCA-LDA subspace filtering approach, the LDA subspace projection of the
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Figure 4.14: LDA subspace projection in d = 2 dimensions – (a) The LDA eigenfunc-
tion w derived from the training data. Arbitrary input vectors a and b are shown in
the (b) spatial basis [x1, x2] and (c) frequency basis [ξ1, ξ2]. (e) The input vectors are
projected onto the LDA subspace [w] yielding wa and wb, and subsequently (f) pro-
jected back onto the frequency basis. As shown, a and b belong to class 1 and class 2,
respectively.
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magnitude component could also be combined with additional phase manipulation
schemes (e.g., an “average” symmetric phase-only matched filter).

The LSCF algorithm may be thought of as a correlation filter with magnitude and
phase components that verify the accuracy of each other. After reconstruction from
the LDA subspace, the product of the input and true-class mean magnitude spectra
produces a result similar to a simple Euclidean distance calculation in the subspace.
Magnitude information is nonunique, and therefore, this technique may produce a
similar output for inputs that belong to different classes. In Corefaces, reconstructed
phase spectra from different classes may exhibit strong similarity as a result of the
information loss from reducing dimensionality. For many applications, the percentage
of false alarms produced using the Corefaces algorithm should decrease by combining
the resulting phase spectrum with the discriminatory information provided by the
LDA-magnitude approach.

Before proceeding with an example of the LSCF algorithm, we can develop its
mathematical formulation by first constructing the d × (c − 1) LDA subspace matrix
W, which contains the LDA discriminant functions wi as its columns (Case 2 LDA
in Section 3.3.2.2). The magnitude spectra of the training exemplars from a specific
class k can be lexicographically ordered into the column vectors of a d × Nk matrix
Xk. To remain consistent throughout this work, d is the number of pixels, and Nk is
the number of training exemplars in the kth class. Projecting these vectors onto the
LDA subspace produces a (c − 1) × Nk matrix Yk, which contains low-dimensional
representations of the kth-class training spectra:

Yk = WTXk (4.3)

Unlike PCA, the discriminant functions defining the LDA vector subspace typically
are not orthonormal. Instead of simply projecting the columns of Yk onto the columns
of W as we would for the inverse PC transform, we compute the pseudoinverse W† =
(WTW)−1WT. Projecting the columns of Yk onto the columns of W† yields a d × Nk

matrix containing the reconstructed-magnitude spectra X′
k:

X′
k = (WWT)−1WYk (4.4)

Original magnitude spectra of Xk are now represented by X′
k, which contains the
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Figure 4.15: Block diagram of LSCF – the phase spectrum of the input is projected onto
the PC subspace and follows the Corefaces algorithm. The input magnitude spectrum
is projected onto the LDA subspace and back onto the frequency domain, and the
reconstruction is subject to inverse filtering with the average training magnitude re-
construction of the test class. After both completion of both processes, the magnitude
and phase spectra are combined to produce the output correlation spectrum.
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partially-reconstructed magnitudes. The within-class variability is reduced, class sep-
aration is maximized, and dimensionality is remains equal to the number of pixels.

We are concerned with matching the reconstructions of the input magnitude spec-
tra to the mean reconstruction of the magnitude spectra for class k, which is denoted
by the d-element column vector x′k:

x′k = X′
ku (4.5a)

= (WWT)−1(WWT)Xku (4.5b)

The vector u contains equal elements to compute the mean reconstruction x′k:

u =
[

1
Nk

1
Nk

· · · 1
Nk

]
(4.6)

A d× d diagonal matrix Dk can then be constructed with the elements of x′k along the
main diagonal. The filter vector hk can be expressed as

hk = D−1
k pk (4.7)

where pk is a d-element column vector containing the desired phase spectrum. Using
the Corefaces approach, the elements of pk consist of the conjugate of the reconstructed
reference phase spectrum using the kth-class PC subspace. To obtain the output corre-
lation spectrum, the transfer function hk would be applied to an input containing the
original phase spectrum and a reconstructed magnitude spectrum after LDA subspace
projection. The correlation plane produced can then be evaluated to determine if the
input belongs to class k.

In summary, the primary contribution to this filter design is the (WWT)−1(WWT)
term in Eq. 4.5b. This term is responsible for the removal of uwanted information in
the input magnitude spectrum upon projection onto the subspace. Characteristics from
each class of magnitude spectra that do not contribute to class separation are removed, yielding
spectra that are easier to discriminate. The process developed here may be interpreted as
a method for obtaining a shift-invariant partial-LDA classifier. It would be necessary
to retain the linear phase term to achieve true shift-invariant LDA.

An example of the LSCF approach applied to synthetically-generated characters is
shown in Figures 4.16-4.19. An image of a character from the text of Archimedes was
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Figure 4.16: Archimedes character example – training images for the c = 4 classes.
For all classes of characters, each of the 5 images is rotated by a multiple of 10 degrees
([0,-1,-2,+1,+2] as shown).

Figure 4.17: Archimedes character example – test images for the c = 4 classes. For
all classes of characters, each of the 4 images is rotated by a multiple of 5 degrees
([-3,-1,+3,+1] as shown).

extracted and rotated for four different classes (‘α’, ‘ε’, ‘γ’, and ‘o’). Training and test
character sets were created by varying the rotation of the character and applying an
apodizing window. Both the Corefaces and LSCF algorithms produce sharp, visible
correlation peaks for the true-class character. However, the high-noise floor produced
by the LSCF algorithm for false-class inputs decreases the PSR, making the discrimina-
tion task easier for the classifier (Figure 4.20). While this example is intended to show
the concept underlying the LSCF design, Chapter 5 presents results that demonstrate
the usefulness of this algorithm in lowering the false alarm rate.

118



4.3. LINEAR SUBSPACE CORRELATION FILTERING

Figure 4.18: Archimedes character example – resulting correlation planes (shown as
images) for test images from the first class the Corefaces algorithm, i.e., the phase was
reconstructed with the each of the 4 PC subspaces.

Figure 4.19: Archimedes character example – resulting correlation planes (shown as
images) for test images from the first class using LSCF algorithm.
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Figure 4.20: Archimedes character example – comparison of the true-class PSR and
mean false-class PSR values for all 16 images using both the Corefaces and LSCF algo-
rithm.

120



–Sixty percent of the time, it works every time.

Anchorman: The Legend of Ron Burgandy (2004)

5
Results

This chapter presents the results for the three objective categories defined in Chapter
2 and further examined in Chapter 4. Though results from the first two sections per-
tain to work completed for the Archimedes Palimpsest Project, additional outcomes
from other applications are discussed to demonstrate the flexibility of the CPR design.
The effectiveness of the LSCF algorithm is explored in the last section of this chapter,
completing the objectives of this body of work and providing a framework for future
research.

5.1 Correlation Applied to the Archimedes Palimpsest Imagery

The ability of a correlation filter to provide consistent, easily discernable peaks for
accurate classification depends on the spatial characteristics of the input. For many
applications, including the Archimedes Palimpsest, it is necessary to accommodate a
variety of backgrounds that may surround or obscure the pattern-of-interest. Many
applications require that the output correlation plane not only specify where the target
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is, but maintain high discrimination between classes to determine what the target is,
which is also relevant for the palimpsest. While several correlation filters discussed
in Chapter 3 have been characterized for specific attributes (e.g., noise tolerance [50]),
a collection of confusion matrices is now discussed to illustrate how CPR is used to
identify characters on various areas of parchment containing the text of Archimedes’
work.

Figures 5.1-5.5 show confusion matrices calculated using the clean test set of char-
acters, which were manually extracted from unobstructed regions of the palimpsest
in similar fashion to the collection of the training exemplars. To produce these results,
four classes have been omitted from both the training and test sets due to difficulty
in finding and extracting these characters (‘β’, ‘ψ’, ‘ξ’, and ‘ζ’) from “clean” regions in
the available images. The results for this independent data set show the performance
of individual and multiple correlation filters used to achieve character classification in
areas of the manuscript that are relatively easy to decipher. It should be noted that the
uninteresting case of matching the training set to itself produced overall recognition
rates of 100% for the correlation schemes that are typically applied to the palimpsest
imagery.

The confusion matrix in Figure 5.1 shows classification results for the clean test
set of characters, consisting of 200 images, using the locally nonlinear matched filter.
The LNMF is of classical design, thereby requiring the use of Nk correlation filters
for each class, where Nk is the number of training exemplars in class k. Using the
peak-to-sidelobe ratio to characterize these peaks yields feature vectors consisting of
L = 10 descriptors. PCA was then employed to reduce and possibly remove the
effects of filters that performed poorly by retaining only 95% of the variability between
feature vectors. Though characters such as ‘δ’ and ‘ω’ show a high percentage of
misclassification, the overall recognition rate for this data set was 78%.

Figure 5.2 shows a confusion matrix for an identical set of parameters, though the
MACH filter has been selected to produce the correlation results. The MACH filter
is a composite filter, which produces only a single filter and correlation plane for the
training exemplars from a particular class. If only one performance metric is used to
characterize the peak, as is the case here, then the feature vector consists of only one
element, and PCA is useless. Comparing Figure 5.2 to Figure 5.1, the simplicity of the
MACH filter composite design (one filter as opposed to ten) and its inherent tolerance
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to within-class distortion did not produce a higher overall recognition rate than that
of the LNMF. Classification of the characters ‘δ’ and ‘o’ have marginally improved,
while every test image containing ‘η’ or ‘ι’ was misclassified. The respective kappa co-
efficients using the individual LNMF and MACH filter were 76.3% and 66.3%, which
produces a z-score of z = 2.17 after calculating the variance σ2

κ . This z-score indicates
that the LNMF should produce more accurate classification of clean characters than
the MACH filter at a confidence level of 98.5%.

Figure 5.3 shows improved classification when combining the LNMF and MACH
filter to produce correlation planes for feature vector generation. Using PCA to essen-
tially “filter out” any poor filter performance, the overall recognition rate improved
81%. Using z-scores from the variance in kappa, we find that for this data set, the per-
formance of this combined filter approach only improves upon the performance of the
individual LNMF at a confidence level of 77.0%. Figure 5.4 shows results for an iden-
tical set of parameters, but the input test character is assumed to be classified correctly
if the true class is among the three most probable classes. Allowing a “misclassifica-
tion tolerance” of two classes shows valuable results; as mentioned earlier, the goal is
not to produce a single classification result as in typical target detection problems, but
to provide intermediate results to allow the user to apply his or her own decisions to
arrive at a conclusion. For example, the scholar may use the five most probable char-
acter classes at each of the selected ROIs to transcribe the full word under inspection.
Figure 5.4 shows that a recognition rate of 93% was achieved when the three most
probable classes were observed, indicating that most of the misclassified characters
exhibited a higher likelihood than 85% (17 out of 20) of the classes.

The confusion matrix in Figure 5.5 is included to emphasize the importance of PCA
in the recognition chain. The only parameter to change between Figure 5.4 and Figure
5.5 was the use of PCA to reduce (and possibly remove) the effects of “noisy” features,
which do not contribute to classification. If one of the LNMFs performed poorly due
to specific attributes of the pattern or background (e.g., high within-class distortion,
clutter, etc.), the corresponding features that the filter produced may be relatively sim-
ilar for each class (low variance). The dimensionality of the feature vectors will have
increased, and very little “information” will have been added to discriminate classes,
essentially increasing the similarity between class feature vectors. This effect is appar-
ent in the reduced recognition rate after removing PCA, from 93% to 82%. A standard
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z-score of 3.51 is obtained using kappa statistics; this indicates that when using the
LNMF-MACH approach, PCA improves the classification of clean characters at a con-
fidence level greater than 99.9%.

Comparing Figure 5.6 to Figure 5.1, the overall recognition rate dropped from 78%
to 56% after introducing a more difficult set of test images. Characters such as ‘γ’ and
‘κ’ that were classified correctly for each image in the clean test set now show poor
classification. The performance of the MACH filter applied to obscured and clean
characters (Figure 5.7 and Figure 5.2) shows a similar result; the overall recognition
rate decreases from 68% to 49%, and several character classes were classified incor-
rectly (‘δ’, ‘ι’, ‘o’, etc.). While the ability of the MACH filter to provide within-class
distortion tolerance may not appear obvious, it is important to consider the fact the
only one filter mask is used to detect the occurrence of all possible variations of a par-
ticular class. Moreover, for highly obscured characters, the characteristically broad
correlation peak produced by the MACH filter provides better discrimination capabil-
ities than the other filters discussed in this work.

Again combining the LNMF and MACH filtering schemes to provide correlation
results for feature generation (Figure 5.8), we find the overall recognition rate im-
proves only slightly over the use of the individual MACH filter, from 49% to 55%;
the rate produced by the LNMF was almost unchanged. This result suggests that the
character classified as most probable depended more on obtaining an accurate repre-
sentation of the character than on the use of a composite mask designed to generalize
well. Moreover, this result is almost negligible when considering the corresponding
kappa coefficients. Allowing a misclassification tolerance of two classes produced the
confusion matrix in Figure 5.9, which shows a dramatic improvement in the overall
recognition rate, from 55% to 80%.

The kappa coefficient produced for the case with PCA (Figure 5.9) and without
PCA (Figure 5.10) are almost identical. Thus, using PCA to reduce and/or remove
poor features is more beneficial when classifying clean characters. This result makes
sense, as clean data will produce features with high variance due to better class dis-
crimination.

Assuming these results can be extrapolated for the entire manuscript, the CPR
system should be capable of producing classification results that contain the true-class
character among the three most probable classes for approximately four out of ev-
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ery five ROIs. This statement also assumes that the ROIs selected share similar spa-
tial characteristics to those described by this obscured set of characters. Obviously,
some method of improvement is desired (Section 5.2.1), but achieving these results is
promising when considering the number of classes and the variations in the charac-
ters.
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5.2 Application of the Pattern Recognition Tool

This section examines the use of the pattern recognition tool on the Archimedes Palimpsest.
Two additional applications are included to demonstrate the flexibility of the CPR
design: a fifteenth-century. Hebrew colophon and fiducial-marker detection in 3-
dimensional MRI breast imaging.

5.2.1 Archimedes Palimpsest Character Recognition

Using the results from Section 5.1 as a foundation for the approach to recognize hand-
written characters, we now demonstrate how the current pattern recognition tool can
be applied to images of the Archimedes Palimpsest. To improve upon the results
obtained from spatial correlation methods, the probabilistic network discussed in Sec-
tion 4.2.2 was integrated into the system, providing three sources of information: the
images of the palimpsest, the word dictionary look-up table (LUT) generated from
Reviel Netz’s partial transcription, and most importantly, the user’s knowledge of the
context and language. While Section 5.1 provides quantitative results for the correla-
tion pattern recognition system, we are now restricted to qualitative discussion using
examples.

Figure 5.11 shows the CPR interface used to select training data, ROIs, and appli-
cable correlation filters for computing classification results. In the following example
[51], ROIs have been selected from a word consisting of ten characters, some of which
lack visual contrast with the background parchment. Once these character probabili-
ties (classification results) have been computed at each ROI using a series of correla-
tion algorithms, a GUI for the probabilistic network is created. Figure 5.12 shows the
interface generated for this word after initializing the network using statistics from
Reviel Netz’s transcription and the CPR results.

On the right-hand side of Figure 5.12, the change in the probabilities for each query
variable is shown after hard evidence was applied to the second, eighth, and tenth
character in word. The most probable character for each of these ROIs is initially
displayed. At any time, even before computing a query, the user can view the words
in the LUT in order of likelihood. Figure 5.13 shows the five most probable word
results for this example after performing the query above. The first result here is the
correct word for this palimpsest region.
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5.2. APPLICATION OF THE PATTERN RECOGNITION TOOL

Figure 5.11: The character recognition interface used to generate CPR results. (Photographs
produced by The Rochester Institute of Technology and John Hopkins University. Copyright resides with the owner of the
Archimedes Palimpsest.)

The user can now base transcription decisions on the information from the palimpsest
images, the word dictionary LUT created from the partial transcription, and most im-
portantly, his or her knowledge of the context and language.

Figure 5.14 attempts to summarize this entire decision-making process to tran-
scribe a degraded word region. As shown, eight ROIs have been selected, which
correspond to the “approximate” locations of the eight characters that constitute the
word. The first table shows the resulting CPR probabilities of the five most probable
character classes for each of the eight ROIs. Note that c = 36 character classes were
present in the training set. Thus, for ROI5, CPR results show ‘α’ as the most prob-
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Figure 5.12: The probabilistic network tool before (Left) and after (Right) adding evi-
dence and inferencing a query. (Photographs produced by The Rochester Institute of Technology and John Hopkins
University. Copyright resides with the owner of the Archimedes Palimpsest.)

Figure 5.13: The resulting probable words (in order) from the word dictionary LUT.
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Figure 5.14: Example of the entire decision-making process showing intermediate re-
sults at each stage. Probabilities are shown for the most likely character classes at each
selected ROI. Character classes shown in bold are correct . (Photographs produced by The Rochester
Institute of Technology and John Hopkins University. Copyright resides with the owner of the Archimedes Palimpsest.)
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able character with a 10.03% likelihood over the remaining 35 classes. The second
table shows updated probabilities after initializing the probabilistic network. In this
example, hard evidence is now applied to ROI 1 (τ) and ROI 4 (ρ) based on charac-
ter likelihood and visual information from the image itself. The query results show a
large increase in probability for the “correct” character classes for all but ROI 6. At this
point, the user can either make an informed decision from the probable words from
the LUT or perform another query.

Quite certainly, the most important result is in how the overall pattern recognition
system assists the end-user in the classification task. Reviel Netz, the principal scholar
in transcribing the Archimedes text, has commented on the tool, saying,

“I was much surprised when the machine actually did paleographic work. . . we gradually
moved to more and more difficult areas [of the palimpsest] until we looked at fragmentary
words for which I had guesses, no more. The machine reached my guesses independently. This
means either that I think like the machine and that we both can be outperformed by better
paleographers, or that the machine is in fact making informed paleographic judgements.”

At a conference of scholars in London, the tool was also deemed useful for the pur-
pose of transcribing the text of Hypereides contained within the Archimedes Palimpsest.
Natalie Tchernetska of Cambridge University has commented, saying,

“I think the work has great potential, not only for Hypereides pages, but also for similar
projects in the future.”

5.2.2 Recovering Information from a Hebrew Colophon

While the probabilistic network integrated into the recognition tool was designed for
use on the text of Archimedes, the ability to match spatial patterns makes the CPR
system useful for many applications. In 2005, Walvoord, et al., [53] demonstrated
the use of the system in the recovery of information from a fifteenth-century Hebrew
prayer book containing an erased colophon. The content of the colophon of a codex is
of vital interest to historians; it contains facts about the publication of the book, such
as the names of the patron and scribe, the date of publication, the city where the book
was copied, etc.

The Hebrew colophon of a Florentine Siddur had been partially transcribed by
Evelyn Cohen of the Jewish Theological Seminary of America (JTSA) prior to any
imaging. After multiple imaging sessions, digital contrast enhancement provided suf-
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Figure 5.15: (Left) An image of the colophon under longwave ultraviolet light (λ =
365nm) through an ultraviolet bandpass filter (λ = 345nm, ∆λ = 40nm) and (Right)
the transcription of the colophon obtained from the images. Three sections of text are
uncertain, including the name of the home town, the patron, and the date.

ficiently clear text for Cohen to read nearly all of the colophon, as shown in the tran-
scription in Figure 5.15. Her transcription indicates that the book was copied by the
scribe Efraim ben Joab of Modena in Florence and completed on Friday, the thirteenth
day of the month of Nisan, probably in the year 1487 CE. However, the transcription of
three sections of text was less certain, as indicated by the gray bars in Figure 5.15. The
unclear information includes a reference to the home town of the patron and the year
in which the book was copied. This information is sufficiently important to the study
of the provenance of the book that the CPR tool was trained to recognize handwritten
Hebrew characters using several different features. The library of Hebrew reference
characters was generated from images of two unerased pages of the Siddur that are
assumed to have been copied by the same scribe (as was customary). The pages of
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Figure 5.16: (Left) and (Right) Images of unerased pages from the manuscript used to
construct a library of Hebrew reference characters for correlation pattern recognition.

text from which the reference characters were collected are shown in Figure 5.16.

The CPR GUI is shown in Figure 5.17 with the center character of the colophon
(the middle of the “hourglass”) selected as the ROI from the background image. In this
scenario, the most probable character determined by the system matched that selected
by Evelyn Cohen in her original transcription. This process of obtaining classification
probabilities for individual ROIs was performed at all locations that were difficult to
transcribe.

The results recorded for each uncertain character region in the line of text included
the five most probable characters determined by the CPR system. This was then sent
to Cohen, allowing her to verify the original transcription and to provide insight to
difficult character regions that would be transcribed based on contextual information.
Figure 5.18 shows an example of these resulting character probabilities for a line of
text from the colophon that was of particular interest.
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Figure 5.17: The character recognition interface used to compute probable character
matches between the selected ROI and an input training library of hebrew character
images.

Unfortunately, the results were not completely successful, as some characters matched
and others did not. Selecting a full character in the ROI window (by manual seg-
mentation) became increasingly difficult in areas of the colophon that were severely
degraded. Most importantly however, is the fact that some of the results from this
recognition process were used to confirm the area of text which contained the date
that the Florentine manuscript was originally written [6].
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Figure 5.18: The resulting five most probable characters at each location from the text
of the fourth line in the Florentine colophon. Bold characters in the estimated tran-
scription indicate probable characters in agreement with Cohen’s original transcrip-
tion. The percentage values are the probabilities of a match for the corresponding
character over all other character classes.
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5.2.3 Automated Detection of Fiducial Skin Markers in MRI Data

The flexibility of the CPR system has also been demonstrated through preliminary
work on automating the detection of fiducial skin markers for registration of 3-dimensional
MRI breast imaging. For many medical imaging procedures, it is common practice to
acquire data from multiple imaging modalities (e.g., MRI, PET). It is often desirable to
produce a “fused” output that simultaneously exhibits characteristics of the data from
each individual modality to reduce the difficulty of the decision-making process for
radiologists. Preprocessing for most data fusion algorithms typically provides the nec-
essary registration of the input data (from each modality). Fiducial markers may be
used to show common locations between the imaging modalities when the methods
of image capture produce outputs with very different spatial structure, as is the case
with MRI and PET imagery. The process of automating the detection of these mark-
ers has seen limited research in the medical field, and often requires manual selection
throughout the 3-dimensional image stack by a human observer. To further demon-
strate the flexibility of the CPR system, the design was improved to accommodate full
MRI image stacks such that the centroid locations of markers could be determined us-
ing the correlation techniques in the filter library. This task takes full advantage of the
inherent shift invariance of spatial correlation, which permits detection over the entire
scene.

The fiducial skin markers are ellipsoidal (almost spherical) in shape and appear
with relatively high contrast in the MRI data. Progressing through the image stack,
the shape of an individual marker increases in size until it reaches a maximum, and
then its size decreases until the full 3-dimensional marker has been imaged. Thus, the
volume of a marker is represented by image slices containing the approximate area,
which also increases to a maximum and then decreases.

The objective is to detect each marker (and locate its centroid location) in a noisy
background containing additional objects with a large range of intensity values. Thus,
simple thresholds or adaptive thresholds fail this task. Any correlation methods em-
ployed must exhibit some “normalizing” characteristic, similar to that provided by
the correlation coefficient (Section 3.2.1.3). The correlation coefficient accommodates
changes in the input image such that regions of high intensity that do not share sim-
ilar spatial structure with the reference pattern are assigned low values in the output
correlation plane, effectively reducing the false alarm rate. We are also concerned with
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Figure 5.19: Training exemplars extracted from a single fiducial skin marker.

the abilitiy of the filter to accommodate within-class distortion, as the size and shape
of the fiducial marker will vary through the image stack. Thus, we seek a composite
correlation design that has been “corrected” for normalization.

For this work, a mean-subtracted MACH filter was constructed and applied to
input stacks that were mean-subtracted locally over 32 × 32 pixel regions, which is
the size of the training. Figure 5.19 shows the training exemplars used to produce
the desired transfer function. The output image stack of correlation planes was then
analyzed to determine the location of marker centroids. This was accomplished by
first selecting and applying a global threshold (i.e., over the full image stack). Once
the binary stack is produced, 4-neighbor connected components is employed to define
each region with nonzero value. The mean x, y, and z coordinate of each region is
then calculated, which denotes the possible centroid locations of fiducial markers. To
reduce the number of false alarms, a region-growing algorithm is implemented at
each potential centroid. If the volume of the grown region lies between predefined
thresholds, the algorithm assumes that the centroid location corresponds to one of the
fiducial skin markers. Figure 5.20 shows a slice from a 3-dimensional MRI image stack
at three stages of this algorithm.

Preliminary results were obtained using the training set in Figure 5.19 and MRI
image stacks from five individuals, which each contained between nine and eighteen
fiducial markers. Adjusting the level of the global threshold applied to the correlation
output either increases or decreases the number of regions computed via connected
components. Obviously, if the threshold is set too high, peaks in the correlation output
that correspond to locations of markers may be lost. Conversely, if the threshold is set
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too low, many regions in the correlation output must be analyzed as potential locations
for markers, effectively increasing the discrimination task and false alarm rate.

Figure 5.21 shows the ROC curve produced for this data set after applying the
algorithm discussed in this section. The plot in Figure 5.22 is included to show the
global thresholds that were used as the operating points of the ROC curve. An operat-
ing threshold of 0.5 corresponds to a threshold of 50% of the global maximum applied
to the full correlated output image stack. It is apparent that a relatively high proba-
bility of detection is obtained for a wide range of thresholds for an acceptable false
alarm rate. A noticeable problem is that the algorithm does not attain a 100% proba-
bility of detection even after drastically lowering the global threshold. This obstacle
is due to the poor contrast characteristic of slices from the beginning and end of the
image stacks. Methods of preprocessing the MRI data prior to implementation of the
correlation algorithm are being considered for future work.
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Figure 5.20: Slice 110 from the 3-dimensional MRI image stack (Top) before prepro-
cessing to subtract the local mean, (Middle) after correlation with a mean-subtracted
MACH filter, and (Bottom) post-processed to show the centroid locations of registra-
tion markers. Note that the leftmost marker was detected, but its centroid lies further
through the image stack.
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Figure 5.21: The ROC curve produced after applying CPR to classify fiducial skin
markers from 3-dimensional MRI image stacks of five individuals.

Figure 5.22: The global thresholds applied to the correlation output to control the
operating point on the ROC curve.
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5.3 LSCF Demonstration

This section contains two examples of LSCF application, each illustrating an important
concept in the use of linear subspaces for correlation filtering. Using synthetically-
generated characters, the first example shows how spatial translation and in-plane ro-
tation affect the correlation plane produced using the Corefaces and LSCF algorithms.
Figure 5.23 shows the training exemplars used to derive the c = 6 PC subspaces, which
reconstruct input-phase spectra, and the single LDA subspace, which reconstructs dis-
tinct versions of magnitude spectra. Each of the six classes contains five exemplars that
differ only in rotation angle. The corresponding mean-subtracted training images are
shown in Figure 5.24. An interesting result is provided in Figure 5.25, which is not
part of the LSCF algorithm, but is included for discussion. The exemplars have been
projected onto an LDA subspace derived from the full set of training images, and sub-
sequently reconstructed in the spatial domain. Note that each character is partially
reconstructed (shown in white), but appears to contain a negative combination of the
other classes (shown in black).

Figures 5.26-5.28 show similar sets of images for the test set containing spatially-
translated characters that have been rotated by different amounts than the training
set. Perhaps the most important result of this example is shown in Figure 5.28, which
shows how spatial translation affects LDA-subspace projection; partial reconstruction
of the characters is no longer visible. A translation of even one pixel may produce
drastic differences in the direction of the corresponding lexicographically-ordered vec-
tors.

We now proceed as discussed in Section 4.3: the phase and magnitude spectra are
projected onto the PC subspace and LDA subspace, respectively. Figure 5.29 shows
the magnitude spectra of each test image, which exhibit identical rotations. Using
case 2 LDA to minimize within-class variability while maximizing class separability,
five discriminant functions are produced and displayed as images of magnitude spec-
tra in Figure 5.30. Figure 5.31 shows the next logical step in this progression: the
magnitude spectra of the test images after projection onto the LDA subspace and sub-
sequent reconstruction in the frequency domain. Notice the visual difference between
the reconstructed-magnitude spectra of class ‘a’ and ‘o’. The use of this particular lin-
ear subspace has removed magnitude components from class ‘a’ and ’o’ that serve little
purpose in discrimination tasks. Also note the reduction of within-class distortion in
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Figure 5.23: Synthetic characters example – training images for the c = 6 classes. For
each class of characters, each of the 5 exemplars is rotated by a multiple of 10 degrees
([0,−1,−2, +1, +2] as shown).

Figure 5.24: Synthetic characters example – corresponding training images for each
class after subtracting the mean training image of the full set of 30 exemplars

Figure 5.25: Synthetic characters example – corresponding training images after pro-
jection onto a spatially-derived LDA subspace and subsequent reconstruction to an
image representation in the spatial domain. Note that this figure is for illustration
purposes only; it is not part of the LSCF algorithm.
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Figure 5.26: Synthetic characters example – test images for the c = 6 classes. For
all classes of characters, each of the 4 images is rotated by a multiple of 5 degrees
([−3,−1, +3, +1] as shown) and spatially translated.

Figure 5.27: Synthetic characters example – corresponding test images for each class
after subtracting the mean training image of the full set of 30 exemplars.

Figure 5.28: Synthetic characters example – corresponding test images after projection
onto a spatially-derived LDA subspace and subsequent reconstruction to an image
representation in the spatial domain. Note that this figure is for illustration purposes
only; it is not part of the LSCF algorithm.
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class ‘a’ and ‘o’. Each magnitude spectrum now appears almost identical to the other
magnitude spectra belonging to the same class. It should be emphasized that these vi-
sual observations may not always be apparent despite adequate LDA performance; if
only two classes exist, one discriminant vector is used to separate the classes. Project-
ing the two classes onto this vector yields reconstructed spectra that differ by a (very
useful) scale factor. It is this scale factor that is used for classification.

The phase spectra of the test images, which contain spatial-translation informa-
tion, are shown as spatial-domain images in Figure 5.32. Unlike LDA, which produces
one vector subspace to discriminate all classes, PCA is employed to construct a vector
subspace that “best” represents each of the classes. The five principal directions de-
scribing the variance in the phase spectra of class ‘a’ are shown in Figure 5.33. Figure
5.34 shows the phase of the test characters after projection onto the subspace in Fig-
ure 5.33 and reconstruction in the frequency domain. Because each phase is a linear
combination of the PCA vectors, the phase images in Figure 5.34 share similar shape
in the form of the character ’a’. When phase canceling is performed via correlation,
the phase of test characters from class ‘a’ will cancel well, which results in peak forma-
tion. Also, while the test images contain translated versions of the reference pattern,
the images produced from the reconstructed phase spectra show centered characters.
The assumption is that the phase of the reference pattern will be approximately re-
constructed, and the linear-phase term specifying translation will be removed by the
subspace projection. Thus, phase canceling between the original and reconstructed-
test images from the true class should leave only the linear-phase term to specify the
location of the reference pattern.
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Figure 5.29: Synthetic characters example – corresponding magnitude spectra of the
test images. The angle of rotation is identical between the spatial domain image and
frequency domain magnitude representations. Translation information is absent in the
magnitude spectra.

Figure 5.30: Synthetic characters example – LDA subspace derived from the mag-
nitude spectra of the full set of training exemplars. The 5 lexicographically-ordered
vectors (shown here as images) are the discriminant functions, specified by LDA, that
maximize between-class separation while minimizing within-class variability.

Figure 5.31: Synthetic characters example – corresponding magnitude spectra of the
test images after projection onto the LDA subspace and subsequent reconstruction to
a magnitude representation in the Frequency domian.
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Figure 5.32: Synthetic characters example – corresponding phase information of the
test images (shown as spatial domain images).

Figure 5.33: Synthetic characters example – PC subspace derived from the phase spec-
tra of the first class of training exemplars. The 5 lexicographically-ordered vectors,
shown here as phase spectra (TOP) and spatial domain images, are the directions that
maximize the variability and provide optimal reconstruction of class 1.

Figure 5.34: Synthetic characters example – corresponding phase information of the
test images (shown as spatial domain images) after projection onto the PC subspace
for the first class and subsequent reconstruction to a phase representation in the Fre-
quency domain.
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Figure 5.35 shows images of the correlation planes produced for each test image
when the phase of each class was reconstructed from the true-class PC subspace. This
is a direct implementation of the Corefaces algorithm [43]. While three of the six
classes show peak formation at the location of the character, distortion of the test im-
ages in the other three classes prevented adequate phase canceling. In addition, false
alarms occur even when all test targets from a particular class produce peaks. Figure
5.36 shows that when the phase of the test images from class ‘a’ is reconstructed from
each PC subspace, some of the peaks are misclassified as characters ‘b’ and ‘o’.

The LSCF algorithm was also applied to the data set of synthetic characters. While
the “inverse filtering” method detailed in Section 4.3.2 may provide sufficient corre-
lation peaks for classification, the LDA-magnitude term was used differently in this
chapter. The magnitude from each test image was projected onto the LDA subspace
(Figure 5.30) and reconstructed in the frequency domain. This process was also per-
formed for the training, and an mean magnitude reconstruction was obtained for each
class of training. Rather than use the mean magnitude reconstructions as inverse fil-
ters, they were projected onto the reconstructed magnitude of the test image, yielding
some value p. The scalar quantity q = 1− |1− p| provides a measure of similarity for
the reconstructed-magnitude spectra. For magnitude spectra projected onto the mean
reconstructed-magnitude spectra of the true class, the values p and q will be close to
unity. Conversely, projection onto the false class yields a low value for p, causing q to
decrease. This value q provides added class discrimination to reduce false alarms. For
this example, the peak-to-sidelobe ratio of the LSCF algorithm is just the product of q
and the PSR of the Corefaces algorithm.

Figure 5.37 shows the confusion matrices produced by the Corefaces and LSCF
algorithms for the test images of synthetic characters. The overall recognition rate has
improved from 42% to 88% (14 false alarms to 3 false alarms). PSR values used to
classify the test characters are provided in Figure 5.38 and Figure 5.39 for Corefaces
and LSCF, respectively. Both plots show PSR values using the true-class and false-class
subspace(s); false-class PSRs are characterized by the mean and standard error. The
strong overlap between the true-class and false-class PSRs produced using Corefaces
results in a low overall recognition rate. A noticeable increase in separation between
true-class and false-class PSRs is achieved using the LSCF algorithm, which indicates
better class discrimination and more accurate classification.
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Figure 5.35: Synthetic characters example – resulting correlation planes (shown as
images) for each of the 6 classes of test images when the phase was reconstructed with
the true-class PC subspace. Peaks circled in yellow correspond to detection.

Figure 5.36: Synthetic characters example – resulting correlation planes (shown as
images) for test images from the first class when the phase was reconstructed with
each of the 6 PC subspaces. Peaks circled in yellow correspond to the true-class peak,
and peaks circled in pink correspond to false alarms.
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Figure 5.37: Synthetic characters example – confusion matrices comparing the
Corefaces and LSCF algorithms for the test set of characters. The calculated recog-
nition rate over the set of c = 6 classes was 42% and 88% for the respective correlation
techniques.

Figure 5.38: Synthetic characters example – comparison of the true-class PSR and
mean false-class PSR values for all 24 test images using the Corefaces algorithm.
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Figure 5.39: Synthetic characters example – comparison of the true-class PSR and
mean false-class PSR values for all 24 test images using the LSCF algorithm.

159



CHAPTER 5. RESULTS

A second example of LSCF application is included to demonstrate the effective-
ness of the algorithm on images of faces. The images are taken from the Yale-B face
database [15], and contain variation in pose under constant illumination. Figure 5.40
shows faces of four individuals (c = 4 classes) at four different poses used as training.
Images of the same four individuals at different poses are included in this example to
test the ability of each correlation algorithm to tolerate out-of-plane rotation (Figure
5.42). The mean-subtracted images of the training and test sets are shown in Figure
5.41 and Figure 5.43, respectively.

Figure 5.44 shows images of correlation planes generated in similar fashion to
those presented in the previous example. Results from the application of the Corefaces
algorithm show that none of the classes of faces produced a peak for each test image.
Observing the correlation peaks from the top-left individual, we find that false alarms
occur for test images reconstructed from two false-class PC subspaces (Figure 5.45).
Moreover, the face that did not produce a peak for the true-class reconstruction was
classified with a high PSR value for the wrong individual.

The classification results for the Corefaces and LSCF algorithm are illustrated by
the confusion matrices in Figure 5.46. Again, the overall recognition rate improves us-
ing the added class discrimination provided by the LDA-magnitude component of the
LSCF. Most noticeable is the improved classification accuracy for test face images of
the bottom-left individual. Figure 5.47 and Figure 5.48 show the PSR values produced
using the Corefaces and LSCF algorithms, respectively. The increased separation be-
tween true-class and mean false-class PSRs using the LSCF algorithm is responsible
for raising overall recognition rate.
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Figure 5.40: Yale-B face example – training images for the c = 4 classes. For each class
of faces, the pose varies between each of the 4 faces.

Figure 5.41: Yale-B face example – corresponding training images for each class after
subtracting the mean training image of the full set of 16 exemplars.

Figure 5.42: Yale-B face example – test images for the c = 4 classes. For each class of
faces, the pose varies between each of the 4 faces, and is different than the training.

Figure 5.43: Yale-B face example – corresponding test images for each class after sub-
tracting the mean training image of the full set of 16 exemplars.
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Figure 5.44: Yale-B face example – resulting correlation planes (shown as images) for
each of the 4 classes of test images when the phase was reconstructed with the true-
class PC subspace. Peaks circled in yellow correspond to detection.

Figure 5.45: Yale-B face example – resulting correlation planes (shown as images) for
test images from the first class when the phase was reconstructed with each of the 6
PC subspaces. Peaks circled in yellow correspond to the true-class peak, and peaks
circled in pink correspond to false alarms.

Figure 5.46: Yale-B face example – confusion matrices comparing the Corefaces and
LSCF algorithms for the test set of faces. The calculated recognition rate over the set
of c = 4 classes was 50% and 81% for the respective correlation techniques.
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Figure 5.47: Yale-B face example – comparison of the true-class PSR and mean false-
class PSR values for all 16 test images using the Corefaces algorithm.

Figure 5.48: Yale B face example – comparison of the true-class PSR and mean false-
class PSR values for all 16 test images using the LSCF algorithm.
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–Not everything that can be counted counts, and not everything that
counts can be counted.

Albert Einstein (1879-1955)

6
Conclusions

We conclude this body of work by briefly summarizing the completion of the stated
objectives, reviewing the relevant contributions, and discussing possibilities for future
work related to this topic.

The correlation pattern recognition system created during the course of this work
has been analyzed and quantitatively evaluated using manually extracted test sets of
character from the Archimedes Palimpsest imagery. Though relatively high recogni-
tion rates were achieved for both clean and obscured characters, there are regions of
the manuscript in which the damage is too severe to make a decision based solely
on the spatial properties of the images. The existing partial transcription served as the
foundation for constructing conditional probability tables for the integration of a prob-
abilistic network into the recognition system. This advancement permitted scholars to
incorporate their knowledge of the language and context into the decision-making
process by applying evidence to the model. Thus, the output probabilities generated
by the system are produced using three sources of information: the palimpsest im-
agery, the partial transcription, and the contextual knowledge of the user. The overall
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Figure 6.1: Cyclic workflow for future work using the current CPR system.

character recognition system has been qualitatively evaluated by scholars using diffi-
cult regions of text, and their feedback has been both positive and encouraging.

The flexibility of spatial correlation-based character recognition has enabled use of
the CPR system on additional applications. Using a training set consisting of a limited
number of exemplars, the CPR system was used to confirm the publication date of
a fifteenth-century Hebrew colophon. The system has also demonstrated success in
the task of automating the detection of fiducial markers in 3-dimensional MRI breast
imaging. The results from these applications are included to provide example usage
of the CPR system in future projects.

To complete one revolution in the cyclic workflow proposed in this work (Figure
6.1), a new method of correlation filtering was developed to exploit the benefits of
linear discriminant analysis while maintaining shift invariance. The LSCF method
proposed in this work was applied to synthetic characters that varied in rotation angle
and face images from the Yale-B face database [15] that varied in pose. Results from
these experiments verify that this filter design benefits from from high within-class
distortion tolerance and discrimination ability.

Possibilities for future work exists in each major area discussed in this text: ap-
plication of the CPR system, the probabilistic network, and the LSCF algorithm. The
flexibility of the CPR system is apparent, and the GUI is available for use on addi-
tional applications. Its design permits simple updates to the filter library, encouraging
development of new filters to be integrated into the system. The current probabilistic
network can be greatly improved by accepting partial words as inputs, which would
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permit inference over character strings in the Archimedes word dictionary. Use of a
multiply-connected network, which could require an approximate inferencing algo-
rithm, will also increase the efficiency of the design. The LSCF shows promises for
applications with multiple classes sharing similar spatial characteristics, but changes
in illumination between the input and training may corrupt the correlation plane. Use
of linear subspaces in correlation filter design opens the field of correlation pattern
recognition to a new class of filtering techniques.

This is just one story from the Archimedes project in which a series of techno-
logical advancements, built upon the mathematical foundations of Archimedes’ exist-
ing work, was used to assist in transcribing additional information from the famous
10th-century manuscript. The irony here is twofold; these mathematical foundations
not only made possible the recovery of historically significant findings from the mind
of Archimedes himself, but also provided a framework for the development of com-
pletely new algorithms, such as the LSCF detailed in this work. Thus, the work encap-
sulated by this dissertation has demonstrated how algorithms derived using concepts
from Geometry, Calculus, and Combinatorics were used to look backwards to the past
and move forward to the future.
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–To teach is to learn twice.

Joseph Joubert

A
Mathematical Foundations

A.1 Generalized Eigenvalue Problems

Consider the linear equation Ax = b. The matrix operator A will change the direction
of almost any input vector x. Eigenvectors e are those vectors that point in the same
direction as Ae. Multiplying an eigenvector by the matrix A yields an output vector
b that is just a scaled version of the original eigenvector λe. The scale factor λ is the
eigenvalue associated with the particular eigenvector e. Thus, we arrive at the standard
equation for eigenvalue problems:

Ae = λe (A.1)

Eq. A.1 can be written as AE = EΛ for a set of e’s and λ’s; the columns of the matrix E
are the eigenvectors, and the elements along the main diagonal of the diagonal matrix
Λ are the corresponding eigenvalues.

A generalized eigenvalue problem exists when two matrices, A and B, are present in
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the eigenproblem:
Ae = λBe (A.2)

If B is nonsingular, the generalized eigenvalue problem can be expressed as a standard
eigenvalue problem (B−1A)e = λe. In the event that B is the identity matrix I, Eq.
A.2 returns to the standard form in Eq. A.1.

A.1.1 Simultaneous Diagonalization

Simultaneous diagonalization is the process of diagonalizing two symmetric matrices, A
and B, of a generalized eigenvalue problem by finding a nonsingular transformation
matrix T. This matrix is determined by first diagonalizing the matrix B such that:

VTBV = ΛB (A.3)

where V is a matrix containing the eigenvectors of B, and ΛB is a diagonal matrix of

corresponding eigenvalues. It follows that the matrix Y = VΛ
− 1

2
B diagonalizes B to

unity, i.e., the identity matrix I:
YTBY = I (A.4)

These scaled eigenvectors of B (the columns of Y), provide a change of basis such that
in the new coordinate system, the concentration ellipse specified by the matrix B is
a sphere. This fact allows the basis to be rotated to diagonalize the matrix A while
retaining the diagonalized matrix B. Thus, the goal now is to find the matrix U which
diagonalizes YTAY, that is:

UTYTAYU = ΛA (A.5)

where U is the matrix of eigenvectors of YTAY and ΛA is a diagonal matrix of cor-
responding eigenvalues. In other words, we wish to diagonalize A in the coordinate
system specified by the eigenvectors of B. This concept is illustrated in Figure A.1.

The overall transformation matrix then, which simultaneously diagonalizes A and
B is:

T = YU (A.6)
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Figure A.1: Simultaneous diagonalization in 2-dimensions – Ax and Bx are the con-
centration ellipses for the symmetric matrices A and B in the original basis, which is
specified by the variables x1 and x2. Variables v1 and v2, which point in the directions
of the eigenvectors of B, specify a change of basis that diagonalizes B. Normalizing
each direction by its corresponding eigenvalue yields variables y1 and y2, and effec-
tively changes the concentration ellipse of B to a sphere. The variables u1 and u2
diagonalize both matrices A and B in the scaled coordinate system.
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We can verify this by simple substitution:

TTBT = UTYTBYU = UTIU = I (A.7a)

TTAT = UTYTAYU = UTΛU = ΛA (A.7b)

It should be noted that the full transformation matrix T is a linear combination of the
column vectors of Y with weights specified by the elements of U. T is rarely an or-
thogonal matrix. It follows that the full transformation should not be considered a
pure rotation [47]. This is a direct result of the scaling applied along the eigenvector
directions in the matrix Y. Simultaneous diagonalization can however, be interpreted
as a linear transformation that provides a new coordinate system such that the ellip-
soids specified by matrices A and B are aligned (Figure A.1).

From Eqs. A.7a and A.7b, we find that TTAT = TTBTΛA. Multiplying both sides
on the left by (TT)−1, we find that T and ΛA contain the eigenvectors and eigenvalues
for the generalized eigenvalue problem AT = BTΛA. The process of simultaneously
diagonalizing two symmetric matrices is particularly useful when the matrix B is sin-
gular. In this case, only eigenvectors with nonzero eigenvectors of B are retained
(which is referred to as reduced rank simultaneous diagonalization) [37]. This method is
used to solve the Direct LDA algorithm commonly used in current face recognition
applications [54].

A.1.2 Rayleigh’s Quotient

The ratio between two quadratic criteria, specified by real symmetric matrices A and
B, can be written:

J(w) =
wTAw
wTBw

(A.8)

where w is typically chosen to be the vector that maximizes the function. This expres-
sion is known as the Rayleigh quotient, and maximizing the function J(w) with respect
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to w yields a generalized eigenvalue problem. The gradient 5w J(w) of Eq. A.8 is:

5w J(w) = 5w

(
wTAw
wTBw

)
(A.9a)

=
2(wTBw)Aw− 2(wTAw)Bw

(wTBw)2 (A.9b)

=
2Aw− 2J(w)Bw

(wTBw)
(A.9c)

Setting Eq. A.9c to zero yields:
Aw = J(w)Bw (A.10)

which is in the form of a generalized eigenvalue problem. Thus, the vector w (or ma-
trix of vectors W) that maximizes the Rayleigh quotient is the eigenvector (or matrix
of eigenvectors) of the generalized eigenvalue problem.

A.2 Lagrange Optimization

Lagrange optimization is the process of determining the extrema of a quadratic function
subject to a set of linear constraints [48]. Assume that we are given an expression in the
quadratic form xTAx, and we seek the real vector x that maximizes this function while
simultaneously satisfying the linear constraint ||x|| = 1. The Lagrangian function is
in the form:

L(x; λ) = f (x)− λg(x) (A.11)

where g(x) = 0. By substitution, we obtain:

L(x; λ) = xTAx− λ(xTx− 1) (A.12)

where λ is the Lagrange multiplier. Setting the derivative of L(x; λ) to zero converts
the constrained optimization problem to an unconstrained problem [9].

dL(x; λ)
dx

=
d f (x)

dx
− λ

dg(x)
dx

= 0 (A.13)
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Using the given quadratic form and linear constraint, we arrive at:

0 = 2Ax− 2λx (A.14)

which yields the standard eigenvalue problem:

Ax = λx (A.15)

Thus, the dominant eigenvector of A is the solution for x.
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average correlation energy, 44, 47
average correlation height, 49
average similarity measure, 48

Bayes’ theorem, 81
Bayesian networks, 80

chain rule, 82
complement matched filter, 34
composite correlation filters, 39
confusion matrix, 55, 89, 122
constrained minimization problem, 45
contingency table, 55
Corefaces, 108, 111, 150
correlation coefficient, 33, 145
correlation performance metrics, 51, 94
correlation plane, 24
crosscorrelation, 32

dependent data set, 56
directed acyclic graphs, 80
discrete Fourier transform, 57, 66

Eigenfaces, 68
eigenfunctions, 66
eigenvalue, 169
eigenvector, 169
evidence variables, 84

Fisher criterion, 70, 111
Fisherfaces, 76, 108
full area at half maximum, 52

generalized eigenvalue problem, 47, 73, 169

hidden variables, 84

ideal matched filter, 24, 88, 105
independent data set, 56, 89, 122
inverse filter, 25

kappa coefficient, 55, 123
Karhunen-Loève transform , see principal

components analysis

Lagrange multipliers, 46, 63, 173
least-squares spectral unmixing, 4
linear discriminant analysis, 70, 111, 150
linear subspace correlation filtering, 113,

150
locally nonlinear matched filter, 36, 122

MACE filter, 44, 107
MACH filter, 48, 107, 122, 146
marginalization, 85
matched spatial filter, 32, 87, 105
multiply-connected, 80
MVSDF filter, 49
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naive Bayes’ rule, 100
null space, 76

operating point, 53
output noise variance, 49

peak-to-correlation energy ratio, 52
peak-to-sidelobe ratio, 51, 118, 122, 156
phase canceling, 28
phase-only matched filter, 26, 105
pointwise product, 86
polytrees, 80
power of the detector, 53
principal component vector, 63
principal components, 63
principal components analysis, 57, 70, 92,

107, 111, 122, 150
probabilistic network, 80, 97, 136
pseudoinverse, 76, 115

query variables, 84

Rayleigh quotient, 47, 50, 73, 172
receiver operating characteristic curve, 53,

89, 147

shift invariance, 23, 29, 89, 110, 113, 145
signal-to-noise ratio, 52
simultaneous diagonalization, 73, 76, 170
singly-connected, 80
small sample size, 68, 111
spatial pattern recognition, 19
standard eigenvalue problem, 50, 63, 169
symmetric matrix, 172
symmetric phase-only matched filter, 29,

108, 115

synthetic discriminant function, 39, 107

Taylor-series expansion, 34

UMACE filter, 47, 107

XRF imaging, 6
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