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ABSTRACT 
 

Wide-gamut display technology has provided an excellent opportunity to produce visually 

pleasing images, more so than in the past.  However, through several studies, including Laird and 

Heynderick, 2008, it was shown that linearly mapping the standard sRGB content to the gamut 

boundary of a given wide-gamut display may not result in optimal results.  Therefore, several 

algorithms were developed and evaluated for observer preference, including both linear and 

sigmoidal expansion algorithms, in an effort to define a single, versatile gamut expansion 

algorithm (GEA) that can be applied to current display technology and produce the most 

preferable images for observers.  The outcome provided preference results from two displays, 

both of which resulted in large scene dependencies.  However, the sigmoidal GEAs (SGEA) 

were competitive with the linear GEAs (LGEA), and in many cases, resulted in more pleasing 

reproductions.  The SGEAs provide an excellent baseline, in which, with minor improvements, 

could be key to producing more impressive images on a wide-gamut display. 
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1. Introduction 
  
  The success of digital image rendering is dependent on several variables, 

including the display the output is viewed on.  Current display technology has enabled 

the goal of expanding the colorfulness of images to become a reality.  However, the 

standard means by which this occurs has yet to be established.  Enlarged color gamuts 

provide greater opportunity for implementing various rendering intents, while allowing 

more room for creativity on the production side.   However, based on past research, it 

appears the mechanism in which current image and media content is mapped to an 

enlarged color gamut needs to be carefully considered in order to avoid unpleasing 

results. Therefore, multiple gamut expansion algorithms (GEAs) should be considered 

such that the legacy sRGB content (Rec. 709) is expanded in the most preferable manner. 

 Overall, the development of GEAs has the potential to dramatically enhance the 

consumers experience with wide-gamut displays, provided appropriate transformations of 

the data take place.  This research delves into suggestions for these transformations to 

assist in improving the consumer’s viewing experience. 



 

 2 

2. Motivation: Wide Gamut Displays 
 
 A collaborative, necessary effort between Sony’s Standard Systems Development 

Department, Sony Corporation, and the Munsell Color Science Laboratory (MCSL) at the 

Rochester Institute of Technology (RIT) focused on enhancement of digital image 

content under existing standards by exercising wide color gamuts.  This research will 

provide guidance on the enhancement of image content, so that both the production and 

consumption sides of the display industry will benefit.  Specifically, the aim of this 

research is to devise a gamut expansion strategy that is most visually pleasing to the 

average observer.   

 With the display technology present today, expanding the colorfulness of images 

is no longer a challenge.  However, current research [Heckaman et al.; 2007, Laird and 

Heynderickx; 2008] indicates that observer preference does not necessarily increase 

monotonically with color.  Heckaman et al. reported consistent results that observers 

enjoyed increased colorfulness and lightness contrast with wide gamut displays; however, 

this effect was scene-dependent.  Laird and Heynderickx attributed this scene-

dependency to the naturalness of an image, and through their research, established 

perceptually optimal boundaries for extended gamut displays.  In an effort to attain ideal 

preference results across all images, gamut expansion methods have been, and continue 

to be, developed and analyzed for their effectiveness in mapping image content under 

current existing standards (e.g. Rec. 709, YCC) to extended gamut color spaces such as 

xvYCC [IEC; 2006, Stokes et al.; 1996].  Therefore, through this research, the 

capabilities of enhancement algorithms will be better understood, such that suggestions 

will be made regarding the implementation of gamut extension mapping algorithms.   
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3. Background 
  
 The display technology facilitates the rendering capabilities under the given 

GEAs.  Therefore, it is necessary to fully understand the limitations due to the display 

itself in order to provide greater opportunity to incorporate a successful mapping strategy. 

3.1 Gamut Mapping 
 
 The phrase, “a picture is worth a thousand words,” stems back to an article written 

by Fred Barnard in 1921, although increases in value still today.  Imagery enables stories 

to be told, concepts to be made, and even, surgeries to be conducted.  Technology has 

certainly aided this proverb throughout the years, and continues to have a large influence 

over images.  With the introduction of digital photography, for example, cross-media 

processing can easily take place.  However, working with different media introduces new 

challenges.   

 With each type of device, and each company responsible for designing and 

producing the devices, different specifications are set.  Therefore, when converting data 

formulated for one device to a second device, it is necessary to bring the data in sync with 

the latter device’s specifications so that the image will look reasonable.  This happens to 

be a complicated process in the color field.   

 Each device maintains a unique set of primaries, and hence, the number of 

reproducible colors a particular device can display is also unique [Wen; 2005].  

Therefore, additional considerations need to be taken in order to adequately display an 

image on multiple devices.  This process is commonly referred to as gamut mapping.  A 

gamut describes the three-dimensional space, which encompasses a device’s reproducible 

colors.  An important distinction, however: a gamut is not a two-dimensional 
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representation on a chromaticity diagram, as this does not account for varying luminance.  

Therefore a “gamut” depicted on a chromaticity diagram will be noted as a chromaticity 

gamut.   

 Typically in the situation where an image is obtained on an input device, and 

converted to an output device, there are three unique gamuts involved: the input, output 

and image gamut [Stone et al.; 1988].  Therefore, when information is transferred 

between devices, the image gamut is correspondingly adjusted based on the rendering 

intent: generally the objective is to obtain either the most accurate, or most preferable 

reproduction.  Once the image has been rendered, this reproduction will correspond with 

the output device, as desired. 

  Despite the details behind the mapping, color appearance attributes guide the 

transformation between spaces.  Considering a display, without considering the 

appearance attributes of that display is meaningless.  Therefore, an optimal color space to 

perform color transformations would be a color appearance space, as this space would be 

“perceptually meaningful” [Fairchild; 2005].  Using a color appearance space allows 

lightness, chroma and hue to be manipulated independently, so the input gamut can be 

mapped in the best possible manner. There are several color appearance spaces, however, 

to choose from. 

3.1.1. Color Appearance Spaces 
 
 To date, research has been conducted in several unique color appearance spaces: 

the research incorporating CIELUV, CIELAB, CIECAM97s and CIECAM02 will be 

explained further.  It is common knowledge that CIELAB has significant hue 

nonlinearities in the blue region (Braun et al.; 1998, Hung and Berns; 1995, Montag and 
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Fairchild; 1998).  However, prior to these references and other research that incorporated 

results from both CIELAB and CIELUV, there were several gamut mapping algorithms 

designed using CIELUV color space.   

3.1.1.1. CIELUV 
 
 CIELUV as a color appearance space intuitively made sense; CIELUV space was 

theoretically perceptually uniform, and therefore, was expected to make a good color 

appearance space.  Wolski et al., 1994, chose CIELUV over CIE’s XYZ, xyY, and 

CIELAB based on the perceptual uniformity characteristics of the spaces [Wolski et al.; 

1994]. In addition, Gentile et al. noted CIELUV provided a better space to conduct gamut 

mapping methods under (“color gamut mismatch compensation”) compared to RGB 

[Gentile et al.; 1990].  Therefore, when choosing from limited color spaces to begin with, 

CIELUV seemed to be the best available space resembling a color appearance type space.   

There were a variety of best-performing algorithms, however, Wolski et al. concluded 

that different areas of the color space resulted in different preferred mapping directions 

[Wolski et al.; 1994].  Due to the lack of consistency amongst results, research began to 

focus on other color appearance spaces in search of a more reliable results. 

3.1.1.2. CIELAB 
 
 CIELAB was also a reasonable choice, as past research has shown simple models 

hold up considerably well as color appearance spaces.   Montag and Fairchild (1996) 

used CIELAB based on this prior knowledge along with its ability to be inverted and its 

correlation with perceived lightness, chroma and hue.  In addition to several other 

conclusions, the authors noted CIELAB resulted in better performance than CIELUV as a 

color appearance space.  Montag and Fairchild (1998) later added CIELAB was used for 

its prevalence within the market and its applicability to appearance gamuts.  However, 
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despite the ability of CIELAB to be used as a color appearance space, perceived hue is 

not linearly related to lines of constant metric hue angle [Braun, Fairchild and Ebner; 

1998].  As a result, although CIELAB performs well in areas excluding the blue region, 

this region proved reason enough to explore gamut mapping in other color appearance 

spaces. 

3.1.1.3. CIECAM97s 
 
 Prior to 2002, CIECAM97s was the latest and most robust color appearance space 

that existed; it was recommended by the CIE committee in 1997 as a means for 

describing color appearance while defining cross-media conditions.  Although 

CIECAM97s required some revisions and improvements (predominantly in regard to 

simplification), this color space far surpassed CIELAB and CIELUV in terms of 

describing the working conditions of conversions occurring cross-media.   

 Morovic and Luo performed an evaluation of specific gamut mapping algorithms 

in CIECAM97s, given the uniformity of the hue predictor was improved from that under 

CIELAB.  They reported that the blue region performed significantly better using 

CIECAM97s because of the hue nonlinearities prevalent in CIELAB for this region.  

However, CIECAM97s resulted in hue shifts in the red/yellow range, an effect absent 

from the results under CIELAB.  Overall, the results from CIECAM97s were comparable 

to the previously made CIELAB manipulations, with varying advantages and 

disadvantages. 

3.1.1.4. CIECAM02 
 
 After the revisions and simplifications were made to CIECAM97s, CIECAM02 

stepped in as the most recent color appearance space.  Unlike CIELAB, CIECAM02 can 

predict luminance-dependent effects prevalent in displays (CIELAB does not have any 
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dependence in absolute luminance).  In addition, CIECAM02 improves hue constancy 

significantly.  In Moroney and Zeng’s article, “Field trials of CIECAM02 color 

appearance model” published on Hewlett Packard’s website, both CIELAB and 

CIECAM02 coordinates of OSA Color Scales are represented in Figures 3.1 and 3.2. 

  
 

 

The improvement of hue linearity for CIECAM02, compared to CIELAB, is quite evident 

through Figures 3.1 and 3.2.  In these figures, color scales in the applicable color space 

are represented, where lightness increases into the page.  The color scales break down in 

Figure 3.1 under CIELAB in the blue region, whereas this is significantly improved 

under CIECAM02. 

 In all of the above research conditions, a common conclusion was drawn: the 

output reproductions resulting from gamut mapping were dependent on the appearance 

space used.  In addition, another factor is the intent of the gamut mapping.  As mentioned 

above, two clear distinctions were either obtaining an accurate reproduction, or a most 

pleasing rendering.  Each rendering intent is a unique motive for the gamut mapping 

algorithms.   

 

Figure 3.1.  CIELAB coordinates 
of OSA color scales sampling. 

 

Figure 3.2.  CIECAM02 coordinates 
of OSA color scales sampling. 
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3.1.1.5. Rendering for accuracy 
 
 Obtaining an accurate color appearance to the original proved to be challenging.  

Morovic and Luo attempted to find a universal, robust gamut mapping algorithm that 

provides the most accurate color reproduction.  More specifically, enhancement was not 

desired.  Both CIECAM97s and CIELAB were incorporated into a psychophysical 

analysis, so that a comparison between the two methods could be made.  The gamut 

mapping algorithms incorporated lightness and/or chroma compression, while preserving 

hue.  There were five specific algorithms evaluated, each that performed specific 

operations relative to the output gamut size.   

 A few observations were made; CIECAM97s resulted in wider lightness contrast 

ratios than CIELAB did.  Since the output gamut was smaller than the original gamut, a 

prevalent consequence of compression is loss of lightness contrast.  However, to retain 

the original look, it is important to retain as much of the lightness contrast as possible.  

Therefore, based solely on this reasoning, one may predict the CIECAM97s 

manipulations would better resemble the original. However, the authors reported similar 

results between the two color spaces, as noted above.  In addition, Morovic and Luo 

found it more critical to maintain chroma, even when that meant perceived lightness takes 

the hit.  In addition, the most accurate renderings resulted from the algorithms that 

affected the perceptual attributes the least.  And so, without many solid conclusions, 

gamut mapping remains the key focus. 

3.1.2. Compression Versus Expansion 
 
 It was reiterated throughout the studies that the outcome of the gamut mapping 

algorithm (GMA) is largely dependent on both the color space it is performed in, the 
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rendering intent, as well as the individual device gamuts involved.  The output gamut size 

relative to the input gamut takes a large toll on the design of the GMA.  Historically, 

compression explained every GMA.  However, with the new technology available today, 

compression in many cases is no longer applicable.  Gamut expansion has become of 

interest with the introduction of the new technology as color becomes a large focus for 

displays.  Imagery has in the past, and continues to strive to represent what the human 

visual system can perceive.  Therefore, color management has become a high priority in 

display devices.  Hence, with better display capabilities comes the ability to display a 

greater range of colors.  Although compression may no longer be the focus of GMAs, 

these algorithms serve as an excellent baseline to derive gamut mapping methodologies. 

3.1.2.1. Compression Algorithms 
 
 Many GMAs are designed for compression due to the limited output gamut size.  

It is clear that a reproduction resulting in reduced color and reduced lightness contrast is 

no longer a goal; however, with a limited output gamut volume, this may become the 

inherent result.   

 When mapping is conducted in color appearance spaces, and thus, perceptual 

attributes are manipulated, it proves valuable to perform psychophysical experiments on 

the rendered images to determine the strategies that resulted in the best reproductions.  

Gentile et al. studied color gamut mismatch compensation in 1990, where their focus was 

on creating brighter, more colorful colors in both display and printing applications: a 

focus that is still, eighteen years later, a high priority.   

 Using CIELUV space, ten algorithms were evaluated, such that both clipping and 

compression techniques were incorporated into variations of lightness, hue and saturation 

coordinates.  The major difference between clipping and compression was the retention 
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of the relationship between colors.  Compression works harder to retain the general 

relationships, and therefore, may compress the attributes more than necessary in doing so 

[Gentile et al.; 1990].  Thus, they found clipping was preferred unanimously.  In addition, 

the algorithms that preserved lightness, or lightness and hue attributes in combination, 

were consistently preferred as well.  Overall, the best performing algorithm clipped 

chroma, while maintaining lightness and hue.   

 Similarly, Wolski et al., 1994, investigated compression techniques and noted 

global compression resulted in a loss of lightness contrast.  A soft compression technique 

was implemented to bypass this negative consequence.  The conclusions, supported by 

the results from previous research, focused on the significant image and color space 

dependencies.  The technique introduced in this article focused on incorporating these 

dependencies into an automatic algorithm for gamut mapping.  This algorithm considered 

the color coordinates within the specified color space, and manipulated those coordinates 

correspondingly.  The goal was to design a computer-generated, universal algorithm that 

could incorporate specific attributes of an image into the process.  In the end, the authors 

were not convinced that the one universal algorithm sought out for is even attainable.  It 

seemed the image dependencies may be too large to create the versatile algorithm 

intended. 

 Montag and Fairchild, 1996, also reported scene dependencies.  They performed 

gamut mapping using both clipping and linear mapping in piece-wise segments on simple 

images, where the mapping depended on the color content: red, green, blue, cyan, 

magenta, yellow, and neutral skin tones.  For simplicity, mapping was performed under 
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artificial boundary conditions.  Again, the most preferred method maintained hue and 

lightness, and clipped the out-of-gamut chroma coordinates.   

 When Montag and Fairchild, 1998, evaluated chroma clipping for three unique 

output gamuts, hue and lightness dependencies were prevalent.  The best method varied 

depending on the lightness extremes (top or bottom of the gamut).  At the higher 

lightness values, a soft-clipping or knee compression function applied to lightness values 

was preferred such that chroma was reduced to maintain constant saturation.  In contrast, 

the darker regions were rendered well under clipping of the lightness values to maintain 

saturation.  Overall, for lightness mapping, it was critical that saturation was maintained.  

This was not the case for chroma mapping, however.  Straight clipping was preferred for 

this mapping, as other studies have shown as well. 

 In 2000, Braun and Fairchild developed algorithms for gamut mapping that again, 

incorporated soft-clipping or knee-functions.  These functions make a slower transition to 

the output gamut, compared to clipping or straight compression.  The reported results 

correlated well with previous studies: compression caused an undesired, dramatic change.   

The linear lightness compression resulted in lighter renderings that displayed lower 

contrast.  In addition, the linear chromatic compression reduced chromatic contrast, and 

as a result, flesh tones appeared washed out.  Using a soft-clipping or knee-function 

allowed the transformation to take place gradually, so that lightness and chromatic 

contrast was maintained from the original. 

 MacDonald et al., 2000, recognized the image-dependencies, as well as the hue- 

and lightness-dependencies noted above, however, took a slightly different approach to 

account for them.  MacDonald et al. developed a GMA that entailed a core gamut 
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boundary (Figure 3.3) on the lightness/chroma plane such that, colors within the 

boundary were held constant.  Mapping was only applied to those colors outside the core 

gamut boundary as an effort to maintain low chromatic colors.  The core gamut boundary 

was defined so that the cusp was located at the lightness value that corresponded to the 

destination gamut cusp.  Then, using a chroma-scaling constant, generally between 0.7 

and 0.9, the core boundary was defined [MacDonald et al.; 2000]. 

 In addition to the defined core boundary, the algorithm incorporated a bilinear 

function.  This function extended colors outside of the core along the designated mapping 

directions to the destination gamut, according to the range of lightness values the 

coordinate fell into.  This method, in addition to three other GMAs comprised of varying 

techniques, was psychophysically evaluated.  Although the topographical method was 

ranked high, MacDonald et al. noted important improvements necessary in order to 

increase the GMA’s performance.   

 

Figure 3.3.  Core gamut boundary on L-C plane. 

 
The second version, featured in [MacDonald et al.; 2001] incorporated the lighter colors 

into the gamut mapping region.  This is conveyed through Figure 3.3, where the original 
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GMA had both the core gamut and destination gamuts “coterminous” at a lightness value 

of 100.  In addition, the mapping chords were comprised of a soft-clipping function to 

accommodate the colors outside the source gamut boundary.  These alterations 

dramatically improved the results, as this topographical method was now most preferred 

by observers when compared with the same three algorithms. 

 Obvious trends in the above studies have become apparent through this review.  

Much of the research conducted on gamut mapping strategies often manipulates similar 

attributes, while maintaining others.  Since a universal gamut mapping algorithm is an 

important goal, specific manipulations can be noted in which should be included in a 

final algorithm.   

 The most pronounced objective, common among many researchers, is the 

requirement for constant perceived hue.   Unfortunately, perceived hue often does not 

directly correlate to constant metric hue.  Some appearance spaces are better than others 

in this respect, and thus, this objective is limited to the capabilities of the color space 

chosen for manipulating the data.  In addition, the range of lightness and colorfulness, or 

achromatic/chromatic contrast, should be preserved if possible.  By maintaining both 

lightness and colorfulness contrast, the relationships between objects within the image 

can be retained, thus, preventing a decrease in preference.  In addition, maintaining a 

constant saturation was found to influence observer preference.  By preserving saturation, 

particularly in regions of low chroma, the appearance of a “washed out” image or 

desaturated features was avoided. 

 Although many of the published results correlate with one another, one specific 

algorithm has not been defined for a wide range of situations.  Since the success of gamut 
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mapping algorithms is largely dependent on both the color space and image content, 

improvements are still currently of interest to encompass more images and conditions. 

 The research described above presents a range of alternatives to mapping image 

content to a smaller gamut (often to the gamut of a printer), and thus, incorporated both 

clipping and compression techniques.  However, with the addition of wide-gamut display 

technology, the focus is aimed toward gamut mapping algorithms used to expand the 

input image content.  This objective is newer, however, progress has already been made. 

 As previously mentioned, Fedorovskaya et al., 1996, evaluated perceptual quality, 

colorfulness and naturalness for reproductions created through chroma variations on 

multiple scenes.  The results displayed a direct correlation between perceptual quality and 

naturalness, however, the more profound conclusion from this study entailed 

colorfulness.  Colorfulness was found to be the most significant factor effecting image 

quality, out of the two evaluated. 

3.1.2.2. Expansion Algorithms 
 
 Keeping consistent with the conclusion from Fedorovskaya et al., that 

colorfulness is the primary perceptual attribute effecting image quality, Sakurai et al., 

2007, reported that colorfulness is the most sensitive attribute to change in color gamut 

volume.  In addition they found that perceived lightness contrast increases at a decreasing 

rate, with larger color gamut volumes, whereas colorfulness increases monotonically with 

increasing gamut volume.  Despite these clear trends, the influence of the color space on 

determining the relationship between color appearance and color gamut volume is 

apparent.  Future work will most definitely include gamut mapping in terms of gamut 

expansion.  The compression algorithms serve as a strong baseline for objectives in 
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manipulating color appearance attributes, and can now be incorporated into the research 

conducted on expanding the input gamut. 

 Now that gamuts are getting wider, the issue has changed from gamut 

compression to gamut expansion.  However, applying the knowledge gained from the 

former objective can aid in the research towards establishing a robust gamut expansion 

algorithm. 

3.1.2.2.1 Naturalness: An Influential Attribute 
 
 The complex nature of color is a result of the uniqueness of human visual 

perceptions.  For imagery purposes, color variations have been studied for both quality 

and preference as an effort toward creating more visually satisfying images.  

Fedorovskaya, Ridder and Blommaert (1997) evaluated the effects of chroma variations, 

in CIELUV color space, within natural scenes on perceptual quality, colorfulness and 

naturalness.  As previously mentioned, gamut mapping algorithms are driven by one of 

two motives: accuracy or pleasantness.  In other words, if an algorithm is driven toward 

accuracy, the reproduction may not necessarily be the most preferred.  Similarly, if an 

algorithm is based on preference, the result may not be accurate according to the spectral 

properties of the objects within the image.  This is largely influenced by memory colors, 

and the fact that the average observer sees given memory colors as a specific color name, 

regardless of the illumination of the scene or spectral properties of the objects.   

 When mapping to a display with extended primaries, visual accuracy may not be 

achievable.  Therefore, many researchers [Federovskaya et al.; 1997, Ridder and 

Blommaert; 1995] agree a third attribute, the naturalness of an image, may be an 

important constraint on color reproduction.   
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 Fedorovskaya et al. claim an observer inherently compares the scene at hand with 

an “internal reference” or “memory representation”.  Therefore, an image worthy of high 

image quality ratings must be perceived as natural.  Ridder and Blommaert concur that 

the naturalness of an image, which largely affects image quality, also depends on the 

familiar memory colors.  Most research conducted on gamut mapping algorithms has 

focused on mapping complex images, and therefore, generally the scenes are of natural 

context (one notable exception will be discussed later [Laird and Heynderickx; 2008]).  

3.1.2.2.2. Gamut Expansion Mapping in Various Color Spaces 
 
 Color has two attributes: saturation and chroma.  In a natural scene, all objects are 

similarly illuminated, and therefore, saturation remains constant since the objects in the 

scene are present under the same reference white.  However, maintaining a constant hue 

and lightness over two uniquely colored regions results in color differences due to 

chroma variation (Eqn. 3.1.), in CIELUV space [Federoskaya et al. 1997].   

! 
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According to Fedorovskaya et al., CIELUV color space was appropriate for this 

experiment, given it was deemed an important color space for television applications by 

preceding color scientists (including both Hunt (1992) and De Corte (1986)).  However, 

as was discussed for compression mapping, there have been many color spaces 

incorporated into gamut mapping studies, and still, no definitive answer for which is best. 

 Through reproductions based on chroma variations, Fedorovskaya et al. 

emphasized the capability of colorfulness as a critical attribute effecting image quality.  

In addition to chroma variations, hue variations have been noted to be equally, if not 

more, influential over image quality.  Ridder and Blommaert found that hue variations 
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influenced image quality and naturalness more so than chroma variations [Ridder and 

Blommaert; 1995]. Therefore, both hue and chroma are critical color attributes that 

influence color reproduction. 

3.1.2.2.2.1. Establishing Colorfulness Boundaries 
 
 To this, technology has caught on, as it did not take long before the market was 

inundated with extended gamut displays.  Given the importance of color in the processing 

chain, it only made sense to obtain the most colorful reproduction possible, using the 

display primaries as the limiting factor.  However, the naturalness of an image became of 

utmost importance, after the images were not performing as expected.  To evaluate this 

further, Laird and Heynderickx evaluated perceptually optimal boundaries and reported 

an intriguing conclusion about gamut expansion algorithms. 

 While Laird and Heynderickx discussed the advantages of the current 

technological advancements in wide-gamut televisions, they also noted that regions of 

“very intense, bright colors” can be “displeasing” to observers.  Using scenes of limited 

content, predominantly monochromatic in color, and unrelated to memory colors, 

observers adjusted chroma for given hue and lightness values until the scene appeared 

unnatural.  The purpose was to describe a perceptually optimal boundary within CIELAB 

space in which, a gamut extension algorithm should not exceed.   

 Upon analyzing the psychophysical results, Laird and Heynderickx (2008) found 

an overall preference (despite scene dependencies and inherent hue dependencies) for a 

gamut extension boundary closer to Rec. 709, or the “EBU” standard [[ITU-R BT.709-5 

2002].   Kang et al., 2003, evaluated GEAs based on observer experimental data to 

validate the advantages of wide gamut display technology.   
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3.1.2.2.2.2. Determining Influential Attributes 
 
 In their evaluation, Kang et al. implemented a computer-controlled, interactive 

tool that enabled the observer to adjust color regions within a given area to represent a 

more preferred color reproduction.  The observers were first trained to understand 

lightness, chroma and hue attributes, and then were allowed to manipulate certain color 

regions within the image content.  This method enabled algorithm development designed 

specifically on the data supplied by the observers.   

 Based on the first round of experiments, the data supported the conclusions that 

the algorithm should not incorporate a hue shift.  Since the observers did not alter the 

color region to a significantly different hue, this attribute was not varied within the 

algorithm.  An encouraging result became clear through the second part of the 

experiment: after observers altered the images, a GEA was developed.  In addition, four 

unique GEAs were developed by varying the degree of chromatic extension, where all 

were then compared through an overall preference experiment.  The results indicated that 

the extensions applied by the observers in the first experiment were insufficient, in that 

more dramatic chromatic extensions were preferred when later evaluations were 

conducted.  Therefore, observers actually preferred more colorful images than they 

originally created.  Despite the conclusion Laird and Heynderikx reported, Kang et al. 

found support for wide gamut technology.   

 In addition, Kang et al. found their data emphasized a trend on image dependency.  

Through four unique images, the effect of image content became clear.  More 

specifically, one image was largely comprised of skin tones and the results were 

significantly different from those of the other three images, all of which maintained a 

larger average chroma [Kang et al.; 2003].  Kang et al. concluded memory colors largely 
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impact GEA preference, and thus, should be considered in the algorithm development 

stages.   

 An additional consideration to algorithm development should be dynamic range.  

With the introduction of wide gamut technology comes larger dynamic ranges.  In 

addition to incorporating increased colorfulness into GMAs, Reinhard et al., 2007, 

remark on the importance of creating GMAs that correspond to high-dynamic range 

displays.  The radical difference between real world illumination and the capabilities of 

current gamut mapping strategies emphasizes the journey researchers still have to bring 

these closer together.  Reinhard et al. explain that maintaining equal or greater dynamic 

ranges within a given image content will better ensure success of the reproduction.  

3.1.2.2.3. Control Consideration 
 
 When analyzing GEAs, it is important to validate the necessity of expanding the 

gamut from the current EBU standard. Therefore, Muijs et al. (2008) included a true-

color representation of the test images in their psychophysical study evaluating observer 

preference for gamut extension algorithms.  A true-color representation displays an EBU 

input image correspondingly on a wide-gamut display.  By accounting for the difference 

between the input and display primaries, the image is displayed on a wide-gamut monitor 

within the input gamut.  This version serves as a baseline image as it is not expanded 

beyond the EBU standard.   

 Also, as mentioned before, when wide gamut technology flooded the market, 

companies were using the display primaries as the limitation to the GEAs, figuring that 

the more colorful the images, the better.  By directly using the digital counts of standard 

image content as the output digital counts, an image is linearly stretched to fit the output 
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display gamut.  This theoretically represents a more colorful image.  However, this 

reproduction largely depends on the display technology, and has the potential to 

drastically alter the overall image appearance.  By incorporating true-color representation 

and the linearly stretched version as the two mapping extremes, proper comparison and 

analysis of any developed gamut expansion strategies is enabled. 

 Similar to gamut compression algorithms, GEAs can entail multiple color 

appearance spaces to perform mapping in.  However, the correlation between chroma and 

colorfulness guides the decision of what space to perform the mapping in.  CIELAB is 

the most common color space GEAs are performed in because it is a perceptually 

meaningful color space in which, chroma can easily be both calculated and manipulated 

[Muijs et al.; 2008, Kotera et al.; 2002, Kotera et al.; 2001, Kang et al.; 2005, Kang et al.; 

2003, etc.].   

 Kang et al., 2005, provide an overview to demonstrate the variety among mapping 

algorithms incorporating CIELAB space.  These methods are based on CIELAB 

attributes, such that both lightness and chroma are mapped using multiple functions.  

They discuss both linear and non-linear mapping functions as methods conducted in past 

research.  These functions enable a mapping to incorporate attribute dependencies so 

each CIELAB coordinate is mapped appropriately. This becomes particularly useful 

when considering memory colors (i.e. skin, blue sky and green grass [Kang et al.; 2005]), 

as these are fairly unique color regions that need to be carefully mapped in order to 

satisfy the observer.   

3.1.2.2.4. Gamut Expansion Linear Methods 
 
 Hoshino, 1994, patented a technique designed to map lightness/chroma  
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coordinates by incorporating the ratio of the input to output lightness ranges.  After 

calculating the range between the maximum and minimum lightness values for both the 

input and destination gamut, a ratio between the ranges was obtained.  Using this ratio, 

the expanded, output chroma, C2 was calculated from a line that was formed between (L1, 

C1) and (L2, C2) such that hue was maintained.  Therefore, by constraining hue, and using 

the ratio of dynamic ranges for each gamut, Hoshino successfully linearly expanded the 

input data to a larger gamut.  This concept of mapping lightness/chroma coordinates 

showed great potential and thus, is commonly incorporated into gamut expansion 

evaluations. 

3.1.2.2.5. Gamut Expansion Non-linear Methods 
 
 Muijis et al., 2008, developed three methods (one-linear, two-non-linear), all of 

which manipulated lightness and/or chroma values to extend along a given direction with 

a given driving function.  One of the methods, denoted wide gamut color mapping, 

WGCM, was derived as a linear combination of both the true-color mapping and the 

linearly stretched mapping, where the output was dependent on the input saturation.  The 

idea behind the dependency on saturation was to maintain neutral colors while drastically 

enhancing highly saturated colors.  Through this method, colors of low saturation could 

retain a reasonable color, while the more chromatic colors were enhanced, so that the full 

display gamut was utilized. 

 Muijs et al. also incorporated both a chroma-extension and a lightness-dependent 

extension in their evaluation.  These methods operated under an extension defined by an 

exponential transfer curve, or a non-linear/ sigmoidal curve.  The chroma-extension 

altered chroma while maintaining lightness and hue; the lightness-dependent extension 
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varied both chroma and lightness in a lightness-dependent manner, while maintaining 

hue.  Thus, the latter accounted for variations in lightness, particularly at the extremes.  

As a result, this method balanced contrast enhancement for the bright and dark, low 

saturated, near-neutral colors with the mid-lightness, highly saturated, chromatic colors 

[Muijs et al.; 2008].   

 Through their psychophysical analysis, the only method out of the three 

developed that was significantly preferred over the true-color mapping was the 

lightness/chroma mapping.  At the lightness extremes, a device’s color gamut varies 

drastically in comparison to mid-lightness values, as typically mid-lightness values 

enable more chromatic colors to be reproduced.  This mapping took this into account by 

varying the degree of extension based on the lightness values.  This was done through a 

sigmoidal transfer function so that different chroma/lightness combinations resulted in 

different extensions.  Therefore, this method enabled special consideration for memory 

colors. 

  Other techniques have been implemented in an effort to control near neutral 

colors.  Bang and Choh, 2007, recognized the need to maintain flesh tones, since “high 

chromatic skin reduces user preference.”  A nonlinear look-up table was implemented to 

slightly reduce the saturation of skin tones, while making them brighter.  In addition, 

greenish and bluish colors are independently controlled through a nonlinear hue 

correction to account for hue non-linearities in the blue region as a result of using 

CIELAB.  Given this experiment was designed to produce printed images ranging from 

soft-copy versions to the vivid hard-copy prints, the remaining colors were mapped based 

on an enhancement of saturation.  Ultimately, this innovative gamut mapping method 



 

 23 

resulted in a higher user satisfaction index (USI) than the standard mapping solution.  

This is because in this case, there was additional consideration taken for the expansion 

methods of specific color regions.  The non-linearity of the method enabled a greater 

degree of specificity for individual color regions, which was highly received according to 

the observer data. 

 Simliar to Bang and Choh, Anderson et al., 2007, employed a nonlinear method to 

avoid the oversaturation of specific color regions (i.e. skin tones, pastels and neutrals) as 

a result of linearly mapping to an extended destination gamut.  Using extended color pair 

samples provided by color experts, for a given image frame, local linear regression was 

performed and applied to the scene using multi-dimensional look-up-tables stored in an 

ICC profile.  Based on past research that suggested any GMA developed is inherently 

image-dependent, Anderson et al. felt this was a reasonable mechanism to better 

automate the process.   Video and image sets were incorporated into the experiment, each 

with four versions: original, expanded, linearly expanded and mapped via a locally linear 

LUT.  Hue dependencies were evident through the results, however, the locally linear 

LUT clearly outperformed the other methods.  Still, this regression technique was costly 

since the ground truth from the artistically expanded color pairs was necessary for each 

individual image set.  Therefore, the regression technique has not been actively pursued 

as of yet. 

 Kotera et al. took a unique approach to nonlinear gamut extension by entailing 

histogram specification to drive the mapping.  Therefore, unlike the majority of methods 

that use CIELAB, Kotera et al. converted RGB digital counts to YCC space so that 

histogram equalization could be performed, thereby leading to natural, pleasing results.  
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Therefore, they performed a Gaussian histogram on the luminance channel, and followed 

with separating the chrominance components according to luminance and hue angle.  The 

chroma of each value was then extended by the Gaussian histogram, while maintaining 

hue.  This type of gamut algorithm is an automated approach to an image-dependent 

algorithm.  Therefore, this is a method to use in place of the development of a 

cumbersome image-dependent algorithm, and as a result, it has more potential to be 

accepted as a standard GMA than it otherwise would have had. 

3.1.2.2.6. Gamut Expansion via a Mapping Direction 
 
 Aside from the general basis behind the GEA (linear or sigmoidal), an additional 

consideration should be taken to address the direction of the mapping.  MacDonald et al., 

2001, commented on directional mapping for compression toward a specified cusp, given 

their mapping chords were required to be defined extending to and from specific 

directions.  Kang et al., 2005, distinguish between mapping function and direction in their 

description of chroma mapping.  Maintaining a constant lightness is common amid past 

research [Montag and Fairchild; 1996, Gentile et al.; 1990, Morovic and Luo; 2001, 

Wolski et al.; 1994]. In addition, however, mapping to/from a specified point can also 

prove very useful.   

 Lee et al. proposed a GMA that incorporated variable anchor points on the 

lightness axis.  Although maintaining, or increasing contrast was not a requirement, as 

they were mapping to limited gamut sizes, the concept remains applicable to gamut 

extension.  The first of several directions evaluated mapped towards the central point of 

the lightness axis, for a given hue value.  One disadvantage encountered with this method 

was the decrease in contrast, as the brighter coordinates were decreased and the darker 
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coordinates increased.  However, with gamut expansion, in which, mapping would 

extend away from the anchor point, this was not an issue.  This method, therefore, served 

as an excellent baseline, which was further expanded on to include a second variable 

point to be evaluated.  Overall, the SGEAs were evaluated extending from L* equal to 

zero, L* equal to fifty, in addition to maintaining lightness values.   

3.2 Extended Gamut Displays 
  
 Gamut mapping algorithms that extend the input color values become pertinent 

for extended gamut displays.  The limitation of enhanced color reproductions is 

dependent on the gamut of an extended-gamut display.  Current technology boasts 

expanded primaries, thanks to the advancement of light-emitting diodes (LEDs).  Since 

2006, LEDs have become increasingly prevalent in a number of technologies, gaining 

advocates for their increased color output and efficiency.  

 In regard to displays (both liquid-crystal displays, LCD, and digital-light 

processing, DLP displays), LEDs offer color stability and control, color rendering 

capability and luminous efficacy.  The narrow band spectrum of an LED is similar to that 

of a high power laser, enabling its high stability [Holleman et al.; 2001].  The color 

rendering capability depends on the material compound of each primary involved.  The 

most common display design incorporates three (red, green and blue) LEDs (Figure 3.4) 

and through deflection of their narrow-band spectra, results in additive color mixing with 

a high degree of color control.  
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Figure 3.4. Red, Green and Blue LEDs [P.Namek, Wikipedia, 2008] 

 

In addition, the luminous efficacy associated with LEDs is due to the extra light per watt 

produced, in comparison with an incandescent bulb.  Therefore, this capability earns the 

efficiency label. 

 Often the light source within a display is referred to as a “backlight”.  This 

component of the display technology entails two main layers: the LCD panel and a 

reflector.  Overall, the component works to distribute the diffused light in an optimal 

manner.  In order to achieve this, the backlight relies on various diffusers and reflectors 

to guide the light successfully towards the display viewer [3M; 2008].  The reflectors 

minimize the amount of wasted light, while the diffusers uniformly distribute the 

reflected light.  All of these components that makeup the framework for the display’s 

backlight were designed to optimally present a signal to the viewer.  With LEDs as the 

light source, viewers of both LCD and DLP displays will experience the benefits. 

3.2.1. LCD with LED Backlight 
 
 Large scale LCDs have recently adopted LED backlights for their efficiency and 

large color gamuts.  However, due to the cost of this technology, the trend has been 

somewhat slow coming.  While the commercial market gets up to speed, research has 

been actively pursuing these displays.   
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 LCDs were designed based on the physical, optical and electronic properties of 

liquid crystal molecules [3M; 2008].  There a multiple layers: liquid crystal material 

sandwiched between two transparent electrodes and two outer polarizing filters and a 

color filter, where each component plays an intricate role in the display.   

 
Figure 3.5 A subpixel in a LCD [M. Raaijmakers, Wikipedia, 2008]. 

 
One-third of a pixel, or a display subpixel, is represented in Figure 3.5.  This figure 

demonstrates the capability of the crystal molecules to orient in a given direction, where 

the direction is determined by both the electrical charge and the orientation of the filters.  

Since the filters are aligned orthogonally to one another, the liquid crystal twists through 

the thickness of the display to match the orientation of each filter [3M; 2008].   

 However, when an electronic voltage is applied, the molecules will alter their 

orientation to match that of the electronic field.  Therefore, through an applied charge, the 

molecules will adjust to either match the orientation of each filter by twisting (the 

orientation of that in Figure 3.5), denoted as “ON”, or matching only the orientation of 
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the first filter (orthogonal to the second polarizer), and thus, denoted as “OFF”.  This is 

the process in which modulates the light intensity of the subpixel.   

 In addition, color is added by placing either a red, green or blue colored filter 

outside of the second polarizer, where a pixel is represented by one of each red, green and 

blue subpixels (Figure 3.6). 

 
Figure 3.6. Simulated depiction of LCD pixels operating together to display an 

image [V. Ezekowitz, Wikipedia, 2008]. 
 

In Figure 3.6, the pattern of subpixels is displayed.  Altering the light intensity of the 

LED backlight for a given subpixel results in millions of producible colors.  

3.2.1.1 Sony Prototype, 40 inch, LED backlit, 1080p, LCD 
 
 Sony has produced a prototype LCD with LED backlit, for research purposes, that 

was incorporated into this study.  The display primaries are represented in Figure 3.7.   
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Figure 3.7 Red, Green and Blue primaries for the display gamut (Sony) and the 

input (sRGB) gamut. 
 
The chromaticity gamut area of the Sony is much larger than that of the standard, sRGB, 

space.  The screen size of the display is 40 inches. The maximum luminance of the 

display was measured at 418.8 cd/m2, with a contrast of 445:1, under a gray surround of 

the viewing condition in this experiment.   

3.2.2 DLP with LED primaries 
 
 LED technology has also influenced to digital light processing displays, or DLPs.  

As current technology continues to evolve, DLP displays have actively improved as well.  

This technology refers to projection technology as a means for displaying image content 

and relies on a digital micromirror device (DMD) invented by Larry Hornbeck of Texas 

Instruments in 1987 [TI; 2008].  

 
Figure 3.8. DMD representation. 
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This device, represented in Figure 3.8, contains an array of mirrors, each of which 

correspond to a given region of projected light on the display.  The process begins with a 

digital signal, applied to an electrode beneath each mirror. 

 
Figure 3.9. Microscopic mirrors within DLP device. 

 
The voltage signal causes the electrode to tilt toward or away from the light source.  If the 

mirror is tilted toward the light source, the light will be reflected onto the screen (denoted 

as “ON”).  When the mirror tilts away from the light source, that specific mirror’s pixel 

space will remain dark (denoted as “OFF”) [TI; 2008].  By varying the mirror’s degree of 

tilt at a high frequency, various light intensities are obtained and displayed on the screen.  

This process enables the projection of a grayscale image. 

 Color is added via the light source in DLPs with LED illumination.  Figure 3.10 

represents the process taken to add color to the equation.  

 
Figure 3.10. Process of projecting an image on a DLP HDTV with LED 

illumination [TI; 2008]. 
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Since DLP displays are now incorporating LED primaries, many of the negative 

characteristics of this technology are addressed.  For example, one major change that has 

taken place was that the color wheel was replaced with the adoption of LED technology.  

The result is an extended gamut display that will no longer experience color break-up 

artifacts when displaying moving targets. 

3.2.2.1 Samsung HLT5087s, 50 inch, slim LED Engine, 1080p, DLP 
 
 After researching several different displays, the extended color gamut display 

chosen was the Samsung HLT5087S 50" Slim LED Engine 1080p DLP HDTV.  A DLP 

display was elected as the perfect candidate, due to the gamut expansion capabilities. The 

display is comprised of LED primaries, (red, green and blue), which are brighter, and 

thus, enable a wider gamut.  Replacing the color wheel, a characteristic of the traditional 

DLP, LED technology provides increased color stability [Hollemann et al.; 2001, 

Samsung; 2008], wider color gamuts through xvYCC color space [Matsumoto et al.; 

2006], and several other promising improvements.  This Samsung display was an ideal 

display, as it incorporates the recent technology to boost colorfulness, displayed in Figure 

3.11 in terms of chromaticity gamut areas. 
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Figure 3.11 Chromaticity gamut areas of the two destination gamuts: Samsung 

and Sony displays, in comparison to sRGB. 
 

 As a consumer purchasing this Samsung display, internal processing procedures 

that operate to yield the best picture are inherent.  Therefore, for research purposes, any 

apparent controls responsible for this processing were suppressed through the display 

setup menu.  Every setting was set to “Standard”, or “Normal”, where applicable.  The 

only exception was the “Color Gamut” setting, which was kept at wide, as this research 

required a wide color gamut.  Different contrast and brightness settings were measured, 

to determine the combination that provided maximum contrast between black and white, 

where white represented a linear combination of the three- red, green and blue channels. 
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Figure 3.12.  The luminance values, of the red channel, from tristimulus 

measurements for multiple contrast/brightness combinations. 
 

 The combination providing the highest luminance value for white, while 

maintaining a zero luminance for black was the desired choice.  From Figure 3.12, the 

curve most fitting to this description is C75B50 (dotted blue line), which represents 

contrast at 75, brightness at 50.  Therefore, these settings were maintained throughout the 

research.  

 Preserving the contrast and brightness settings, the following modes were chosen, 

as the best attempt to stop any alternative processing of the images.   

Table 3.1. Controllable display options and the combinations chosen for analysis. 
Display Settings 

Mode Standard Movie 
Contrast 75 75 

Brightness 50 50 
ColorTone Normal Warm 2 

Color Gamut Wide Wide 
 
 There were five unique color tone settings on this display, ranging from “Cool 2”, 

to “Normal”, to “Warm2”.  The white point for each of the five color tone settings was 

measured, and compared to CIE’s D65 illuminant.   
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Figure 3.13.  Chromaticity diagram with labeled white points from the measured 

color tone settings, as compared with D65. 
 
As seen in Figure 3.13, the color tone setting, Warm 2, provided a white point closest to 

D65, or a correlated color temperature nearest to 6500K.  This was selected and 

maintained throughout the research incorporating this display. 

3.3 Display Color Spaces 
  
 Color management is required on any digital imaging device to convert color 

information from one device to another.  Through color management, the processing of 

the device and the viewing conditions can be controlled [Hunt; 2004].  Despite identical 

digital counts sent to a display, each display returns varying outputs, which then affects 

the color appearance of the content.  In addition, when transferring data between devices, 

viewing conditions might change as well.  This situation occurred during the recent time 

period of the upsurge in computers, and remains an issue.  Color management enables the 
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transfer of digital image content to various displays (performed through image coding 

[Poynton; 1997]) to go as smoothly as possible. 

 The differences within each device gamut can be accounted for, despite the 

number of discernible colors available [Hunt; 2004, Wen; 2005].  This entails the use of a 

standard color space, in which various content can be mapped to and from devices so that 

the output across different displays will correlate. 

3.3.1. sRGB Color Space 
 
 In collaboration, the International Color Consortium (ICC) and the International 

Electrotechnical Commission (IEC) have devised a “default RGB color space” that is 

applicable cross-media to serve numerous purposes [ICC; 1996, Stokes et al.; 1996].  The 

ICC’s contribution of the sRGB profile led to the creation of sRGB color space.  

Originally, the sRGB profile was implemented as a translation between devices; 

specifically, it was a monitor profile [Nielsen and Stokes; 1998].  Therefore, the need for 

a more widespread color management system remained until the IEC defined the sRGB 

color space. By defining a standard RGB color space incorporated into color 

management, color coordinates became device-independent, and thus, minimized the 

visually apparent discrepancies between devices [Stokes et al.; 1996].   

 When incorporating a standardized color space, there are reference display 

conditions that apply to the conversions between devices. The display white point for 

sRGB is D65, or the daylight illuminant with a 6500K correlated color temperature.  

Therefore, when performing a conversion from nonlinear RGB values to 1931 CIE 

tristimulus values, the D65 illuminant is necessary for correct conversion.  A non-linear 
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transformation matrix is used to convert sRGB digital counts to tristimulus values.  Eqns. 

2 through 5 describe the overall computations necessary [Stokes et al.; 1996]. 
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After applying Eqn. (3.2) to the linear input 8-bit digital counts, constraints are applied to 

the non-linear sR’,G’,B’ values for optimal performance.  If R’sRGB, G’sRGB, B’sRGB is less 
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Otherwise, Eqn. 3.4 is applied. 
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The final conversion to tristimulus values incorporates the sRGB transformation matrix 

to linearly relate sRGB values to tristimulus values (XYZ). 
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Using CIE colorimetry, the chromaticity coordinates of sRGB, with consideration for the 

reference viewing conditions, are linear combinations of the CIE XYZ tristimulus values.  

Therefore, rearranging these mathematical equations provides the equation necessary to 

compute XYZ tristimulus values from the encoded colors under sRGB (Eqn 3.5).  Once 



 

 37 

XYZ space is reached, the data can be manipulated and converted to various devices 

when necessary. 

 The sRGB color space has provided an integrated, versatile color space for many 

applications within color management.  Since its proposal, this color space has become 

widely accepted, for a wide range of devices.  However, there are additional systems 

capable of encoding digital image content. 

3.3.2. YCC Color Space 
 
 The efficiency of a color space becomes an important factor in obtaining the 

optimal image specification language.  Digital image content typically comes with a hefty 

file size, and thus, maintaining full R, G, B channel information is excessive.  In addition 

to linear RGB digital counts and nonlinear standard RGB values, YCC encoding 

represents an effective image specification system.  The premise of YCC, short for 

Y’CBCR or Y’PBPR for either HDTV (high-definition television) or SDTV (standard 

definition television) respectively, entails encoding an image in terms of luminance, “Y”, 

and chrominance, “C” and/or “P” [Poynton; 2003].   

3.3.2.1. Sensitivity of the Human Visual System to Luminance and Chrominance 
 
 The human visual system has varying sensitivities with respect to spatial 

resolution in the lightness and color channels.  The eye has a considerably lower spatial 

acuity for color information as it does for lightness [Poynton; 2007].  Therefore, systems 

that operate on luminance/chrominance information have the luxury of compressing the 

color information without degrading the perceived image quality.  With this 

understanding, the percentage of information carried by each component is evident: the 

luminance channel stores highly detailed, very useful information, and thus, is required at 
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full resolution.  However, the chrominance component carries information greater than 

the human eye can perceive, and thus, is compressed so that the color information only 

accounts for a small percentage of the overall image size, while still retaining the image 

appearance.  Therefore, a generic YCC color space allows for appropriate compression to 

save on file size.   

3.3.2.2. Chromaticity Gamut Area of YCC Color Space  
 
 One benefit of YCC color space is that it, in theory, reduces clipping [Samadani 

and Li; 2005].  RGB spaces operate in 8-bit integers, ranging from either 0 to 1 as 

normalized integers, or 0-255.   Therefore, in the event an out-of-gamut color exists, any 

RGB space clips this color to the gamut boundary [Zeng; 2005].  YCC, on the other hand, 

handles colors outside the RGB gamut differently.  There are some allowed values in the 

YCC encoding that would be “out-of-gamut” colors under standard RGB specification.  

Therefore, when represented on the same figure, YCC corresponds to a larger gamut area 

than sRGB. 
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Figure 3.14. Gamut areas of sRGB, YCC and their newly developed, wide-gamut 
color space, xvYCC [Matsumoto et al., 2006]. 

 
In Figure 3.14, a two-dimensional projection of the three-dimensional sRGB gamut is 

represented, where sRGB values ranging from zero to one are represented on the luma, 

chroma axes as 0 through 1, -0.5 through 0.5 respectively.  These values are also 

represented as counts 1 through 254, to encompass a digital encoding axis.  The color 

gamut areas corresponding to each color space, shown in Figure 3.14, illustrate the point 

made about “out-of-gamut” colors.  Since the luma component ranges from zero to one, 

and the chrominance component ranges from -0.5 to 0.5, some unrealizable RGB colors 

can be represented in terms of YCC coordinates.   

 There is a version of YCC, denoted as sYCC, which best relates sRGB to YCC.  

The sYCC color space is defined as a color space in which, YCC is used in the sRGB 

color space [Kerr; 2005, IEC 61966-2-1 Annex G].  This color space entails the realizable 

colors of YCC, despite whether those colors are definable within sRGB color space.  

Therefore, this space can represent negative R,G,B values and values greater than one, 
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and in the conversion back to sRGB, these out-of-gamut colors can theoretically be 

processed such that clipping is avoided [Sugiura et al.; 2007].  When transforming 8-bit 

linearized RGB values to YCC space, the range of data values changes.   

 As shown in Figure 3.14, when converting to YCC, the chroma axis extends from 

-0.5 to +0.5.  As a result, the RGB cube of data points represents only a portion of the 

YCC space.  However, in YCC space, these values are also termed “invalid” since any 

region outside of the cube cannot be represented in RGB space.  This region of YCC 

encoded colors provides a great opportunity, should an extended display color space 

become prevalent.  Through processing, every RGB color can be converted to 

achromatic and chromatic signals, where the input YCC values are color managed to the 

appropriate hue depending on the existence of a negative sign for that particular value.  

Therefore, colors can be correctly separated and matrixed to corresponding RGB display 

digital counts when displayed. 

 Both YCC and sYCC have larger gamuts than sRGB, however, both are also 

dependent on the output display gamut.  Therefore, if the output display gamut is sRGB, 

the extended gamut areas are limited to the gamut area of sRGB [Kerr; 2005], and thus, 

will not affect the output colors.  Hence, the need for an extended-gamut color space 

applicable to monitors becomes imperative to successfully display colors outside the 

sRGB gamut.     

3.3.2.3. The premise of YCC  
 
 For simplicity, YCC encompasses both Y’CrCb and Y’PrPb, depending on 

whether the signal is digital or analog, respectively.  However, it is important to refer to 

Y’, as the luma component, rather than as the luminance or Y [Poynton; 1997].   Even 

though Y’ is a video signal representative of luminance, the term luminance corresponds 
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to the CIE definition of L* under CIELAB, and thus, the term luma is used to directly 

correspond to the digital video signal [Poynton; 2003].   

 Although not a complete color space, YCC translates digital count information, 

where the available colorants determine the color displayed.  The luma component is 

computed in Eqn. 3.6, 
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where constants Kr and Kb are determined based on the applicable color space.  Both 

constants change depending on the definition of the television (HDTV versus SDTV).  
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where the result of Eqns. 3.7 and 3.8 (either Cb/Cr or PbPr) depend on constants Kr and 

Kb.  R’,G’,B’ are obtained through the opto-electronic transfer function (OETFs) 

converting from RGB values.  The following equations represent the transfer function 

incorporated into the conversion.  For R,G,B less than or equal to -0.018, Eqn. 3.9 is 

used. 
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If R,G,B is less than 0.018, but greater than -0.018, a scaling factor of 4.50 is applied 

(Eqn. 3.10). 
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The last case, when R,G,B is greater than or equal to 0.018, Eqn. 3.11 is used. 
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Eqns. (3.8) through (3.10) were explained by both Matsumoto et al., 2006, and Poynton, 

2003, in more depth, although differed slightly for cases where R,G,B is less than or 

equal to -0.018.  In Figure 3.15, Matsumoto et al., 2006, considers the negative R,G,B 

values, whereas Poynton addresses only R,G,B, values between zero and one (Figure 

3.16). 

 

 

 

 In both figures, an OETF applied to color information results in the YCC encoded 

information.  Through additional conversions, digital counts can be recovered, as they are 

for sRGB space, through YCC decoding followed by a transformation corresponding to 

the Extended ITU-R BT.709-5 and the appropriate color space conversion [Matsumoto; 

2006].  

 
 
 

Figure 3.15.  OETF, from 
Matsumoto et al., applied to 

color information. 

Figure 3.16.  OETF from 
Poynton applied to color 

information. 
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3.3.2.4. ITU Existing Standards 
 
 The International Telecommunications Union (ITU) is responsible for 

standardizing specific broadcast signals.  ITU-R BT.709.5 is the current standard for 

YCC encoding on HDTVs, and ITU-R BT.601.5 represents the standard set for SDTV 

YCC encoding.  For short, further reference to the above standards will be denoted as 

Rec. 709 and Rec. 601.  Under both standards, YCC encoding concludes with a matrix 

transformation converting R’,G’,B’  to Y’CrCb.  The matrix, however, varies between 

Rec. 601 and Rec. 709 as follows: 
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When YCC decoding, the inverse OETFs are used in combination with a color space 

conversion to obtain digital counts corresponding to the appropriate display. 

 The above image coding systems, sYCC, YCC and sRGB, incorporate a little 

‘breathing’ room, so to speak, in terms of digital counts, to avoid clipping in either 

direction.  Due to processing by digital and analog filters, and any resulting overshoot or 

undershoot, it is necessary to incorporate both “headroom” and “footroom” in the digital 

video standard.  Therefore, 8-bit studio standards have 219 steps between reference black 

and white, where reference black is defined at code value 16, reference white at 235 

(Figure 3.14) [Poynton; 2007]. Matsumoto et al., however, investigated the result of 

incorporating every code value in the digital signal, ranging from 1 through 256, in the 

display gamut.   
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3.3.3. Expanded Gamut Color Space (xvYCC) 
 
 The sRGB color space is convenient for displaying images accurately on a display 

(provided the display has sRGB primaries), without additional consideration of the 

individual display characteristics [Zeng; 2005].  However, with the addition of more 

recent technology in expanded gamut displays, sRGB color space may be accurate, but 

not ideal.  Both YCC and sYCC are limited by the output display gamut, and therefore, 

limit the output values as significantly as sRGB does.  Zeng addresses the effect of 

limiting the number of encoded color amounts.  Displaying digital media on a larger 

gamut, a characteristic of many current displays, and encoding the color information with 

a smaller color space can result in noticeable quantization errors [Zeng; 2005].  

Therefore, research has continued with the rising trend in more colorful displays and a 

corresponding, expanded gamut color space was sought out.   

 Displaying colors under conventional sRGB gamut standards on wide-gamut 

display technology cancels out the attractive characteristics the display holds.  Therefore, 

a new standard wide-gamut color space was proposed as a means to present images on 

these emerging displays.  The color space, xvYCC, was defined by the IEC in 2005, 

published in January 2006, and investigated by Matsumoto et al. in June 2006.  

3.3.3.1. Gamut Area of xvYCC 
 
 The premise of xvYCC is based on achieving an enhanced color gamut space, one 

that incorporates both displays and color video imaging.  This color space, represented in 

Figure 3.18, extends the sRGB color space defined in IEC 61966-2-1 and Rec. 709.  By 

extending the digital count range to one through 254 for both the luma and chroma 

components, the previously “unrealizable” colors can be applied to display technology 
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with reasonable reproduction.  Therefore, when converting from sRGB to xvYCC, the 

gamut area is inherently expanded, and more saturated colors can be represented [Kim; 

2007].   

 This color space was defined for flat panel displays (IEC 2006), as their existence 

had become quite prevalent, however, their capabilities were not yet used in their 

entirety.  The YCC color space had only begun to approach the desire for extended output 

gamuts.  The cube of encoded YCC colors, from Suriura et al., is displayed in Figure 

3.17.   

 

 

 

Both “legal” and “illegal” colors are represented in Figure 3.17, according to the 

definition of the YCC color space [Kim; 2007].  The projections of red, green, blue and 

white onto the chrominance scale of YCC are represented by the dotted lines.  Because 

Rec. 709 ranges in digital values between zero and one, only the inside cross-section of 

Figure 3.17.  The cube of encoded colors 
that comprise the color space defined by 

YCC (Rec. 709) 
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the cube is displayed on Figure 3.17, and on a second reproduction of the figure, Figure 

3.18.  However, YCC theoretically encompasses both negative R,G,B values and values 

greater than one (denoted as “invalid” colors earlier). 

 

 

 

 

The footroom and headroom spaces, created by the unused digital counts in the extreme 

regions, are labeled in Figure 3.18.  When converting to xvYCC and extending the digital 

count ranges to span between one and 254, in both the luma and chroma axes, encoding 

of a greater number of colors is enabled.  This extension is a result of the OETF 

corresponding to xvYCC, such that the transfer function extends the rhombus in Figure 

3.18 to incorporate negative values and values greater than one [Kim; 2007].  These 

values are denoted as invalid in the YCC color space, whereas in xvYCC these values 

represent the best assets to this extended gamut.  

Figure 3.18.  The two-dimensional 
representation of both the space defined by 

Rec. 709 and the xvYCC color space. 
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3.3.3.2. Producible Colors in xvYCC 
 
 More specifically, when converting to xvYCC, negative R,G,B values are 

converted to their corresponding complementary hues.  Therefore, deeper hues are 

obtained in xvYCC color space [IEC; 2006].  In addition, RGB signals greater than one 

are visible colors within xvYCC color space.  

 The xvYCC color space still has its color limits, however.  In the analysis 

performed by Kim, 2007, the color gamut boundaries of xvYCC were tested.  As a result, 

xvYCC was insufficient in encoding two specific, highly saturated color regions: green-

cyan and red-magenta, under lightness values greater than fifty.  However, it is more 

meaningful to address the number of encoded xvYCC colors the output displays can 

handle.  In chapter six of Kim’s analysis, this was addressed for various displays.  Since 

xvYCC is an extended space, a wide-gamut display is necessary to obtain optimal results.  

Both a wide-gamut LCD display, with LED-backlight, and a RGB-laser primary display 

were incorporated into the analysis, where it was determined that 57.1% and 75.5% of the 

xvYCC gamut volume could be represented on the respective displays [Kim; 2007].  

Given the extension of xvYCC compared to sRGB color space, these percentages of the 

represented gamut volume are significant. 
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4. Experiments 
 
 The following experiments were conducted with the intent to develop a gamut 

mapping algorithm in which standard image content is expanded to an extended gamut 

display in the most preferable manner.   

4.1 Display Characterization 
 
 Two displays were incorporated into the main algorithm testing experiment to aid 

in developing a robust expansion algorithm.  Including an LCD, backlit with LEDs, and a 

DLP (with LED primaries) display into the same evaluation, enabled any existing device 

dependencies to become apparent.  In addition, when developing a versatile GEA, 

robustness is a requirement.  Therefore, evaluating multiple display technologies will 

provide further support for mapping strategies, provided the displays correspond with one 

another. 

 In order to properly display images on the different technologies, careful 

characterization procedures considered each device independently.   

4.1.1. One-Dimensional LUT 
 
 Day et al., 2004, published a model incorporating three, one dimensional look-up 

tables (LUTs) as the characterization method corresponding to LCD monitors. The 

detailed procedure was performed follows: after sufficient warm-up time, a LMT C1210 

Colorimeter was calibrated via a Matlab script.  The display was presented red, green and 

blue ramps of equally incremented steps (of fifteen digital counts) ranging from zero to 

255, where each channel was incremented individually while the other two were 

constrained to zero.  The script determined the screen size of the display, and displayed 
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the data on a uniformly gray background in a large circle centered on the display.  

Neutral patches were also displayed and measured with the colorimeter.   

 All measurements were taken in dark surround, and for each patch, four 

measurements were taken and averaged to minimize the measurement error.  Once the 

tristimulus values were measured, each value was normalized by the tristimulus values of 

the black patch.  Each normalized channel was then incorporated into a one-dimensional 

LUT relating digital counts displayed to red, green and blue scalars.   

The relationship between the voltage signals that drive the display and the radiant 

output of the display needs to be characterized in order to work backwards and determine 

the signals necessary to produce a given color [Day; 2004].  Because an LCD cannot 

accurately be characterized via a simple gain-offset-gain model, a LUT is implemented 

instead to define the nonlinear relationship.  In an LCD, the RGB digital counts are 

converted into the voltages applied to the liquid crystals through a LUT, which can 

further be converted into tristimulus values through a transformation matrix.  

Relating the digital counts displayed to the device to the measured tristimulus 

values from the color patches sent to the display resulted in transformation matrix.  The 

calculated transformation matrix was then applied to random color patches in order to 

obtain their corresponding display digital counts.  Therefore, using the white point of the 

monitor, measured by the colorimeter for a white patch, the tristimulus values of the ramp 

images were converted to RGB values via the inverse of the 3x4 transformation matrix 

(Eqn. 4.1).   
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Once RGB values were obtained, the radiometric scalars were determined by 

linearly interpolating the LUT for each channel (inverse of Eqn. 4.2). 

! 

R = LUT(dr)

G = LUT(dg )

B = LUT(db )

 (4.2) 

After these scalars were calculated, the signals required to display the corresponding 

tristimulus values were obtained.  This process was implemented to ensure the values 

were properly displayed and corresponded to the original color patch.  (For more 

information on LCD characterization refer to [Day et al.; 2004]). 

4.1.1.1 Sony Display  
 
 Using this model, Heckaman et al., 2007, characterized the Sony display and 

reported the results.  The display was characterized with a high degree of success.  The 

display was characterized with an average CIEDE94 value of 1.0 unit, with a standard 

deviation of 0.67 units [Heckaman et al., 2007].  Therefore, colors mapped to the device 

are accurately displayed according to their original color values. 

4.1.1.2 Samsung Display 
 
 The display was characterized by measuring the tristimulus values of the RGB 

digital count ramps data, under both Standard/Normal (NS) and Movie/Warm 2(MW) 

modes in order to determine which mode the evaluations would be performed under.  The 

primaries under each mode are represented in Figure 4.1, and demonstrate the 

correspondence between the chromaticity gamut sizes. 
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Figure 4.1.  Chromaticity diagram with primaries from both SN and MW modes. 

 
 This comparison proved both modes provided similar results; however, the closeness 

between the illuminant under Warm 2 and D65 (Figure 3.13) guided the decision for 

selecting the mode carried throughout the evaluations.  

 The ramp measurements were taken according to the procedure described above, 

and in Day et al., 2004.  The red, green and blue ramp chromaticities are displayed in 

Figure 4.2.  
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Figure 4.2.  Measured tristimulus values converted to chromaticity coordinates, 

corresponding to the red, green and blue ramp data. 
 

Each channel was offset by the corresponding maximum tristimulus values by 

subtracting out the tristimulus values for the black patch (the constant background was 

removed for these values), to result in the RGB values.  These RGB values were then 

converted to obtain linearized display RGB values (scalars) and were interpolated to 

obtain a full set of scalars: one scalar corresponding to every digital count from zero to 

255.  This represents the three, one-dimensional LUTs used to convert the tristimulus 

values to RGB scalars.  
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Figure 4.3.  Three one-dimensional look-up tables derived from the measured 

tristimulus values of the RGB ramps and neutral data. 
 

 The most efficient method to characterize an LCD with an unknown gamma 

function, without measuring the gamma curve, is through a LUT.   By relating the digital 

counts presented to the tristimulus values measured, RGB scalars are derived through a 

LUT to characterize the display.  Therefore, using the LUT (Figure 4.3), RGB scalar 

values corresponding to each of the color patches can be obtained and the color accuracy 

of the display evaluated.  This was first analyzed through a randomly generated set of 100 

color samples. 

 A set of 100 normally distributed, digital counts, randomized for each channel 

independently, was presented to the display, where the corresponding tristimulus values 

were measured.   
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Figure 4.4. 100 randomly generated colors on a chromaticity diagram.  

 
The samples’ digital counts were converted to estimated tristimulus values through the 

transformation matrix derived from the RGB ramp data (Eqn. 4.3).  
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The transformation matrix in Eqn. 4.3, represents the calculated values for both the Sony 

and Samsung displays in Eqn. 4.4 and 4.5.   
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MSamsung =
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Both sets of tristimulus values, estimated and measured, were converted to CIELAB 

values using the measured tristimulus values of the white patch at the white point.  A 

mean color difference of 7.70 units, based on CIEDE2000, was calculated. 

 Based on previous experience with characterizing displays, this result was high.  

Therefore, using linear regression, the display matrix was optimized using the following 

equation: 
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After calculating the display matrix, the procedure was repeated to derive the estimated 

tristimulus values.  A CIEDE2000 color difference of 4.65 was calculated.  The 

improvement of the color differences was expected based on the increased specificity of 

the calculations.  This matrix was used throughout the rest of the calculations as the 

display matrix.  
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Figure 4.5. CIEDE2000 color difference histogram for the randomly generated 

set of 100 samples. 
 

The distribution of color differences is displayed in Figure 4.5.  The mean CIEDE2000 

for the dataset was higher than expected.  However, since this characterization procedure 

was not designed for DLP display technology, in addition to the fact that color 

reproduction accuracy is not necessary, this result was deemed acceptable.  

 A color difference vector plot was evaluated, however, to better understand where 

the differences were occurring.  
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Figure 4.6.  Comparison of estimated CIELAB values with the measured CIELAB 

values, where the arrows run from the measured to estimated values. 
 

In Figure 3.11, it is evident that the Samsung gamut is extended slightly in the blue 

region, in addition to the green region.  Therefore, the large color differences in these 

regions, apparent in Figure 4.6, are explained by the chromaticity gamut of the Samsung 

display.   

 Eqn. 4.2 incorporates the RGB scalar values of the sample set into the matrix 

calculation.  Therefore, in order to ensure this estimation process can hold for other 

sample sets, a second set of 100 randomly generated digital count coordinates were 

displayed and measured, and a corresponding CIEDE2000 color difference calculated.  A 

color difference, for the second set, of 4.83 units was measured.  Therefore, this supports 

that the display will maintain a color difference approximately ranging between four and 

five CIEDE2000 units. 
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Figure 4.7.  CIELAB vector plot for a second randomly generated sample set, 

where the arrows run from the measured CIELAB values to the estimated values. 
 
Comparing Figures 4.6 and 4.7, the distribution of error in color reproduction occurs in 

similar regions of (a*,b*) coordinates, and again, in values of high chroma. 

 Based on the clipping in the blue channel (Figure 4.5) and the higher than 

expected color differences, further analysis was conducted to examine the hypothesis that 

the internal processing of the display had not been eliminated.  The neutral ramp data of 

equal digital counts (R=G=B) incremented by fifteen, from 0-255, were measured and the 

luminance was compared to the resulting luminance values of the ramp data for each of 

the three channels added together.  Theoretically, these ramps should be equal, as the 

gray ramp is comprised of equal concentrations of red, green and blue.   
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Figure 4.8. Luminance values of the RGB ramps added together compared with 

the equal digital count ramp (R=G=B). 
 

The disparity between the two curves supports the hypothesis that non-linear processing 

was occurring, despite the attempt to control all display settings.  Since the estimations of 

the tristimulus values through matrix multiplication resulted in unexpected results, a few 

other characterization methods were exhausted before settling on the simple 

characterization model described above.   

 One alteration was the display mode, as the above procedure was conducted under 

HDMI mode.  The measurements were also conducted under “PC” mode, meaning the 

display was directly connected to the computer, where the content transmitted was under 

appropriate standards, or was compressed.  This is compared to the HDMI connection, in 

which uncompressed high-definition material can be digitally sent to the display.   

 The corresponding LUT under PC mode is displayed in Figure 4.9. 
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Figure 4.9.  Three one-dimensional look-up tables derived from the measured 

tristimulus values of the RGB ramps and neutral data (in PC mode). 
 

The ramps in Figure 4.9 are distinct, in that each ramp has additional clipping.  The blue 

ramp, in particular, is clipped to a scalar of one at a digital count of approximately 190 

through 255.  Therefore, much of the information from the blue channel will be effected, 

based on this LUT.  The same set of 100 samples, evaluated in HDMI mode, were used 

again to compute estimated tristimulus values, and resulting CIELAB values from the 

original digital counts.  A mean CIEDE2000 of 4.96 was calculated for the first sample 

set.   

 Since the mean color difference did not improve, but rather worsened, further 

methods were evaluated.  Due to the non-linear processing of the display, evident through 

Figure 4.8, a profile was fit to the display, in an effort to complete a successful 

characterization. 

4.1.2. Three-dimensional LUT 
 
 The measurements were, once again, taken under Movie/Warm2 as this setting 

provided a wide gamut, with a white point closest to D65.  An 11x11x11 grid of RGB 
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values (Figure 4.10) were displayed and measured using the LMT-colorimeter, in order to 

establish the three-dimensional LUT (3DLUT). 

 
Figure 4.10.  Three-dimensional scatter plot representing each measured digital 

count on the 11x11x11 set used to create the 3DLUT. 
 
Upon measuring the tristimulus values that correspond to each data point within the 3D 

grid, a nearest neighbor interpolation was performed to relate RGB digital counts to 

tristimulus values.  Therefore, evaluation of this method was enabled by comparing 

estimated tristimulus values for a given sample, to the measured tristimulus values for the 

same set of data.  When this was conducted for 100 samples, the calculated color 

differences were as follows: 
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Figure 4.11.  Color difference histogram representing 100 samples. 

 
 Evaluation of the 3DLUT required a color difference analysis performed on a 

randomly generated set of 100 RGB samples.  The mean color difference of 2.15, in this 

case, is improved from the 1DLUT results of 4.65.  However, the maximum color 

differences falls outside the realm of acceptable, at an outstanding 91.68.  This color 

difference was an indication that the 3DLUT may be unable to characterize this display, 

in its entirety.  The color difference vector plot, Figure 4.12, demonstrates the color 

regions and extent to which the 3DLUT fails. 

 

 
Figure 4.12.  CIELAB vector plot representing each of the 100 samples, with 

color difference arrows representing the magnitude of CIEDE2000 and direction 
towards the estimated values. 
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The questionably large color differences were consistently extending from similar hues 

and chroma values.  To better understand where the error was coming from, a histogram 

and vector plot of red, green, blue ramps and cyan, magenta and yellow color patches 

were analyzed for significant trends in error.  

 

 
Figure 4.13.  Color difference histogram of white, black, red, green, blue, yellow, 

cyan, and magenta color patches. 
 

 
Figure 4.14.  CIEDE2000 color differences for the gray, red, green blue 

generated ramps in addition to the white, black, red, green, blue, yellow, cyan 
and magenta colors. 

 
Although the error was not a direct result of the measured ramps, further analysis proved 

this characterization method was insufficient in characterizing blue regions for this 
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Samsung display.  A sample image demonstrates the result of using the 3DLUT as the 

characterization procedure.   

   

 

 

The gradations within Figure 4.15b were typical of the 3DLUT, and are independent of 

the mapping algorithm.   

 Considering the above analysis, the characterization procedure incorporated into 

the study, for the Samsung display, was the simple 1DLUT model.  Therefore, both 

displays underwent this characterization procedure during the preparation of the images.  

Despite a higher mean color difference maintained by the Samsung display under this 

method, no artifacts in the images due to the characterization procedure were visually 

apparent, and thus, this did not affect the results. 

4.2 Experimental Conditions: Dim Versus Dark Surround 
 
 The research directly preceding this gamut mapping algorithm study, evaluated 

the effects of ambient light, while addressing the effect of display gamut volume on 

image preference [Heckaman et al.; 2007].   The research conducted by Heckaman et al. 

entailed three different experiments, all designed to decipher the various effects of the 

Figure 4.15a.  Original 
sRGB flower image 

Figure 4.15b.  Reproduction 
of flower image under 

3DLUT characterization. 
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display color gamut volume.  The first evaluated the effect of gamut volume on various 

perceptual attributes.  The psychophysical results deemed colorfulness the attribute most 

dependent on the color gamut volume.  Observer preference was evaluated in the second 

experiment, as a function of display color gamut volume.  The results were encouraging 

in that many scenes benefited, in terms of observer preference, with a larger color gamut 

volume.  However, there seemed to be a threshold at a color gamut ratio of 0.8 times the 

full, extended color gamut.  The third experiment evaluated the effect of color gamut 

volume and display dynamic range on observer preference and perceived lightness 

contrast and colorfulness.  The results proved changes in lightness contrast impact 

observer preference as much as change in color gamut volume. 

 These experiments all contributed to a better understanding of the effects of 

varying the display color gamut volume.  However, in addition to the direct research 

questions examined in the above experiments, the effect of the experimental conditions 

also resulted from this research.  Heckaman et al., 2007 performed the above experiments 

under dim surround, where the illumination off the wall was measured at 94 cd/m2.  In 

addition, the third experiment (denoted as Experiment III [Heckaman et al.;2007]) was 

repeated under dark surround (denoted as Experiment IIIb), measured by the Spectrascan 

PR650 Spectrophotometer at an illumination less than the device’s sensitivity of 

0.03cd/m2.  Therefore, by including the research conducted prior to this gamut mapping 

evaluation, the experimental conditions for the mapping algorithm evaluation are 

substantiated. 
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4.2.1. The Effects of Dark Surround 
 
 Performing Experiment III for varying ambient lighting conditions enabled the 

effect of the surround to be established.  Comparing the results provides sufficient 

argument for implementing the experimental conditions used in the gamut mapping 

algorithms evaluation. 

4.2.1.1. Stimuli 
 
 The Munsell Color Science Laboratory (MCSL) at Rochester Institute of 

Technology (RIT) performed an experiment evaluating the effect of viewing conditions 

using the following three images: 

 

 

 

Figure 4.16. a-c. (a) Coast Image, (b) Musicians Scene, (c) Flowers image. 
 
The musician scene was chosen for its flesh tones, the flowers scene for its high degree of 

colorfulness over a full range of hue, and the coast for its high dynamic range.  These 

scenes each represent one of the three key groups determined from the results of 

Experiment II [Heckaman et al.; 2007]: the flower scene is an image from the “highly 

colorful” group one, the coast from the scenic group (group two), and the musicians from 

the scenes containing flesh tones (group three). 

4.2.1.2. Experimental Methods 
 
 The images were displayed on the Sony prototype described above in Section 

3.2.1.1. All observers that participated in the evaluation ranged in age, ethnicity and 

experience (from young adults to the elderly and non-experts to Color Science/Imaging 
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Science experts, all representing multiple ethnicities).  Seventeen observers judged 

preference, while eight evaluated perceived colorfulness and lightness contrast. 

 Again, the viewing conditions were identical to the conditions reported in 

Experiment III with one large exception: there was no ambient light.  This experiment 

was performed in dark surround to highlight the effects of these viewing conditions on 

similar evaluations. For this experiment, the background behind the images was set to 

black (RGB digital counts equaled zero) rather than a mid-level gray, which enabled 

control of the adaptation level of the observers.   

 In accordance with the previous methodology for Experiment III, the same 

versions of the musicians, coast and flower scene were used for the dark room 

experiments.  Thus, each version had a corresponding color gamut volume factor k, 

ranging from 1.00 to 0.40 times the display’s actual color primaries in CIELAB a* and 

b*.  In addition, lightness was similarly scaled in that, a dynamic range factor, kLC, 

ranging from 1.00 to .0625 was also multiplied by the display’s actual dynamic range to 

obtain the lightness contrast variations.  By increasing the display’s relative black point, 

or YMIN, of each of the display primaries, the range in lightness contrast for each 

successive version was obtained, and was scaled appropriate according to kLC.  The 

details on this process are explicitly described by Heckaman et al., 2007. 

 Observer preference was evaluated through a paired comparison experiment and 

colorfulness and lightness contrast through the method of Mean-Category-Value 

[Bartleson; 1984].  The preference experiment required the observers to:  

“Choose the image you like the best (prefer the most), and click directly on that image to 
select it.” 
 
The instructions were the same for the perceived colorfulness (and lightness contrast) as 
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described in the preceding technical report, and entailed rating perceived colorfulness and 

lightness contrast on a scale ranging from one to nine.  The analysis for the category 

scores from these evaluations is described there as well.   

 

The simulated set of sixteen primaries with their corresponding gamut volumes derived 

from variations in both colorfulness (k) and lightness contrast (kLC) are displayed in 

Figure 4.17.  These primaries were derived from the display’s actual primaries and 

constrained in order to maintain hue and the display’s white point. 

Figure 4.17. Simulated primaries in xy chromaticities for a color gamut volume factor of k=1.0(a), 
0.8(b), 0.6(c), 0.4(d) and within each a lightness contrast factor kLC  of 1.00, 0.875, 0.75, 0.625 

times the full, extended gamut of the display. 
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4.2.1.3. Results and Discussion 
 
 For each of the three scenes evaluated, the scenes were analyzed independently.  

In Figure 4.18, the mean category scores for colorfulness as a function of the percentage 

of NTSC color gamut area in xy chromaticities, for each of the four levels of lightness 

contrast factor kLC, or log contrast ratios, averaged across eight observers and the three 

scenes is plotted.  Both Experiment III and the Experiment IIIb results are displayed for 

the flower scene.  

 

 
Figure 4.18: Perceived colorfulness as a function of the percentage of NTSC 
color gamut area in xy chromaticities for each log contrast ratio, for the flower 
scene averaged over eight observers for Experiment IIIb and six observers for 

Experiment III. 
 
 The 0.95 confidence intervals are displayed in Figure 4.18.  Based on Figure 4.18, 

perceived colorfulness increases monotonically at each log contrast ratio.  In addition, the 

dark room results are consistent with the previous report in that colorfulness is increasing 

at a decreasing rate with a larger color gamut.  Therefore, as observed in Figure 4.18,  
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observers perceived colorfulness increases with larger chromaticity gamut areas, although 

the trend is non-linear.  Also, there is no significant difference between the log contrast 

ratios, nor is there a significant difference between the two viewing conditions.  The error 

is larger here, than reported in Experiment III, as this analysis is based on one scene, as 

compared with ten.  The musician and coast scenes display similar results to that of the 

flower image. 

 Figure 4.19 represents the fitted contours of equal perceived colorfulness as a 

function of the percentage of the NTSC color gamut area in xy chromaticities and the log 

contrast ratio.  The contours were once again based on multiple linear regression of the 

mean category scales for colorfulness.  A correlation coefficient of above 0.97 was 

obtained for each scene.  The flower scene contour plot, averaged over the eight 

observers, demonstrates similar results to that of the musician and coast scenes. 

 
Figure 4.19: Contours of equal colorfulness, determined by multiple linear 
regression, as a function of percentage of NTSC color gamut area in xy 

chromaticities and log contrast ratio, for Experiment III (solid) and Experiment 
IIIb(dotted), averaged over observers, for the flower scene. 
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The numeric values on the plot in Figure 4.19 indicate a topographic-like comparison of 

equal, perceived colorfulness values.  The contours reiterate the monotonically increasing 

characteristic of perceived colorfulness, at a diminishing rate, with an increased 

percentage of NTSC color gamut.  In other words, perceived colorfulness increases 

steeply around ten through forty percent of NTSC color gamut, while increases more 

steadily for color gamut percentages greater than forty.  In addition, lightness contrast 

remains insignificant to the response of perceived colorfulness. Figure 4.19 also 

demonstrates the similarities between the two experiments, in that once again, the results 

prove there is no significant difference between the two viewing conditions. 

 
Figure 4.20: Lightness contrast interval scores as a function of the percentage of 
NTSC color gamut area in xy chromaticities for each log contrast ratio evaluated, 
for the musician scene from both Experiment III and the dark room experiment. 

 
 Since the flower and musician images resulted in similar lightness contrast 

responses, the musician image is displayed in Figure 4.20 for analysis.  Due to the large 

error resulting from analyzing only one scene rather than the group, the conclusions are 
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limited.  Lightness contrast appeared to a have linear relationship with the log contrast 

ratio evaluated: higher log contrast ratios resulted in an increased perceived lightness 

contrast.   

 The effect of the percent of color gamut is unclear based on Figure 4.20.  In 

Experiment III a linear response of lightness contrast to the color gamut percentage was 

observed.  Considering the error bars, this statement is difficult to make for the dark room 

experiment. However, the contribution of the percentage of color gamut on perceived 

lightness contrast is consistent with the Helmholtz-Kohlrausch effect, as was predicted 

[Fairchild; 2005].   

 Considering both Experiment III and IIIb, the Bartleson-Brennan Equations 

suggest that as the surround lighting conditions decrease, the perceived lightness contrast 

predictably would decrease as well [Fairchild; 2005].  Their research determined that 

viewing an image in a dark room causes dark areas of an image to appear lighter, with 

little effect on the light areas.  However, it is not possible to discriminate between the two 

experiments, as seen in Figure 4.20, due to the limitations in the data.   

 Figure 4.21 represents the lightness contrast as a function of percentage of NTSC 

color gamut for the log contrast ratios for the coast scene.  This scene exhibited a notably 

larger dynamic range than the flower and musician scenes. 
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Figure 4.21: Lightness contrast in terms of category scores as a function of color 

gamut volume for each of the four log contrast ratios, for the coast scene. 
 
The responses of lightness contrast in Figure 4.20 are more dispersed with respect to 

perceived lightness contrast.  Therefore, the log contrast ratios had a greater effect on 

perceived lightness contrast in the coast scene than with the musician and flower scenes.  

The preceding effects all hold true for Figure 4.21 as well. 

 The fitted contours of equal lightness contrast for the coast scene, derived by 

multiple linear regression, are displayed in Figure 4.22.  Once again, a correlation 

coefficient of 0.97 or higher was obtained for each scene evaluated.  
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Figure 4.22:  Fitted contours of equal lightness contrast as a function of 

percentage of NTSC color gamut area in xy chromaticites and log contrast ratio, 
for the coast scene. 

 
 Figure 4.22 demonstrated similar effects to those noted previously.  The two 

experiments were not significantly different in any of the scenes with regards to lightness 

contrast.  In addition, the variations among each scene were insignificant. 

 The preference results in terms of interval scores as a function of the percentage 

of NTSC color gamut in xy chromaticities and log contrast ratios for the musician scene 

is represented in Figure 4.23.  The results from both experiments are displayed in Figure 

4.23.   
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Figure 4.23: Both Experiment III and Experiment IIIb represented in an interval 
score plot for preference as a function of percentage of NTSC color gamut area 

in xy chromaticities and log contrast ratio, for the musician scene. 
 
An increase in color gamut and log contrast ratios results in an increase in preference, as 

observed in Figure 4.23.  Particularly for the dark room experiments, the increase in 

preference appears to be more pronounced, as well as have more obvious peaks in 

preference.  The results from the coast scene illustrate similar effects to that of the 

musicians. 

 Figure 4.24 displays the preference in terms of interval scores, for the flower 

scene, as a function of the percentage of NTSC color gamut area and the four log contrast 

ratios. 
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Figure 4.24.  Preference interval scores, as a function of percentage NTSC color 

gamut area in xy chromaticities and log contrast ratios for the flower scene in 
both Experiments III and IIIb. 

 
In Figure 4.24, the differentiation between log contrast ratios is not as clear as in Figure 

4.22 for the musician scene. In addition, there appears to be a drop-off in preference for a 

higher percentage of NTSC color gamut area.  This effect is more profound in 

Experiment IIIb.   



 

 77 

 
Figure 4.25: Fitted contours of equal preference interval scores as a function of 

percentage NTSC color gamut area in xy chromaticities and log contrast ratio, for 
the flower scene from Experiments III and IIIb. 

 
The plots representing fitted contours, based on the multiple linear regression analysis, 

for each of the three scenes displayed similar results.  In addition, similar effects to those 

mentioned above are observed in Figure 4.25 from the flower scene.  There is a large 

range of interval scores correlating with the percentage of color gamut area.  In addition, 

a few peaks are observed, as were discussed in Figure 4.24. 

 From Figures 4.23, 4.24 and 4.25, it is apparent that once again an optimal color 

gamut volume is obtained around 80 percent of the NTSC color gamut area, for the 

highest log contrast ratio.  This suggests that similarly for Experiment IIIb, increases in 

lightness contrast are equally as significant as increases in color gamut volume.  In 

addition, Experiment IIIb maintained notable preference peaks suggesting the dark room 

environment enables the observers to more easily choose which image they prefer.  

Because observers experience an increased sensitivity to differences in color and 
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lightness contrast in dark surround, this can translate to how feasibly the observers can 

decipher which image is more preferable. 

 Using the methodologies presented in the first technical report [Heckaman et al.; 

2007] for Experiment III, the effects of color gamut volume and lightness contrast were 

evaluated over dark viewing conditions, on observer preference and perceived 

colorfulness and lightness contrast.  

 The results of Experiment IIIb correlated with those from Experiment III.  In 

regards to colorfulness and lightness contrast, the results from each experiment were not 

significantly different. The effect of the dark surround on colorfulness was unknown, 

however, predictions had existed regarding lightness contrast.  Although it was expected 

that lightness contrast would decrease in dark surround due to the Bartleson-Brennan 

Equations, this was not observed in the data for Experiment IIIb.  

 Colorfulness, however, was observed increasing monotonically with a larger color 

gamut volume, while lightness contrast linearly increased with gamut volume. Also, the 

Helmholtz-Kohlrausch effect was maintained for Experiment IIIb, given the contribution 

of color gamut volume is inherently related to the log contrast ratio.   

 In addition, while lightness contrast is an important contributor, colorfulness had 

an equally significant impact on preference.  Both attributes were found to significantly 

influence observer preference, in regards to the three images evaluated.  The results, 

while remaining consistent with Experiment III, suggest an optimal color gamut volume 

of approximately 80 percent of the NTSC color gamut area in xy chromaticities.  This 

result is scene dependent, yet, again, consistent among all three scenes evaluated in 

Experiment IIIb. 
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 Observer preference evaluated under dark surround suggest that observers more 

easily chose which version they preferred, as compared to completing the psychophysical 

experiment under ambient lighting conditions in Experiment III.  The linear plots 

demonstrated that Experiment IIIb resulted in responses that “peaked” rather than 

smoothly transitioned.   This indicates that the decision possibly was easier to make 

under dark room conditions because the observer was more sensitive to the color and 

lightness contrast differences in dark surround.  However, since there were not 

dramatically different results between surround conditions, the experiments on gamut 

mapping algorithms were performed under dim surround.  This enabled consistent 

procedures across experiments. 

4.3 Methodology 
 
 The gamut mapping algorithm experiments were conducted at the Munsell Color 

Science Laboratory at Rochester Institute of Technology.  There were two experiments, 

both performed under identical conditions in order to allow for a fair comparison between 

the two.  

4.3.1. Viewing Conditions and Observations 
 

There were twenty unique observers for each experiment, where the evaluation on 

each display represented an experiment.  Although some observers participated in both 

experiments, this was not the case for everyone.  The observers were both male and 

female, and ranged in age from 21 to 64.  The observers ranged from non-experts to 

Imaging Scientists/Color Scientists, covering a diverse population, demographically and 

ethnically.  The observers sat two meters from the display, which was placed in front of a 
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uniformly gray background, illuminated by two Buhlite 150 watt, diffuse studio lamps.  

Viewing flare was minimized as the only light source was placed behind the display. 

Using a Spectrascan PR650 Spectrophotometer, the illumination off the wall was 

measured to be 94cd/m2 and at correlated color temperature of 3150˚K [Heckaman et al.; 

2007]. The images were displayed on a uniform mid-gray background, separated by 

approximately 2˚ of visual angle.  The experimental window is represented in Figure 

4.26. 

 

 

 
Figure 4.26.  Experimental set-up for both displays. 

 
The Sony display maintained 25˚ by 14˚ of visual angles, the Samsung maintained 32˚ by 

22˚ visual angles; both were viewed perpendicularly.   
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4.3.2. Stimuli 
 
 There were ten standard scenes incorporated into the experiments, all of which 

were used in the experiments performed by Heckaman et al., 2007, and three of which 

were described previously for the viewing conditions experiment, Experiment IIIb.  A 

range of scene content and complexity was achieved throughout the scenes.   

 There were two images selected for their flesh tone characteristics (Figures 4.27 

and 4.28) 

  

 

Figure 4.27 was incorporated into Experiment IIIb since it is largely comprised of flesh 

tones.  Figure 4.28 also contains skin tones, however, in much smaller proportion 

compared to the remaining image attributes. 

 There were several images chosen for their natural content.  Based on 

Fedorovskaya et al., naturalness appears to be a significant attribute responsible for 

guiding image preference.  Therefore, incorporating scenes of natural context, and 

performing a cluster analysis on the results, will give a true indication of the significance 

of natural images in this evaluation. 

Figure 4.27. Lady image Figure 4.28. Musician Scene 
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 In addition to natural context, however, the other attributes of Figure 4.30 and 

4.31 were dually noted.  The coast scene, Figure 4.30, was incorporated into the study 

both for its natural scene content, as well as its wide dynamic range.  Given the mapping 

algorithms developed operated over a three-dimensional space, a variety of ranges of 

each attribute should be included in the scenes evaluated. 

 Similar to images with a wide range of lightness values, images were chosen for 

their high degree of colorfulness, or for their overall low saturation characteristics.  

Figure 4.31 was noted as a colorful image, however, not to the degree of the flower 

image. 

Figure 4.29. Water image Figure 4.30. Coast scene 

Figure 4.31. Fluorent Tetons image 
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The flower image, Figure 4.32, was the most colorful image incorporated into the study.  

In addition, the barn image (Figure 4.33) and the pastel image (Figure 4.34) were also 

chosen for their color content.   

  

 

The fog image (Figure 4.35) represents the scene with the lowest overall saturation 

content.  This scene served to aid in determining the algorithms’ performance for low 

chroma values compared to the higher chromatic values prominent in the majority of the 

scenes.   

Figure 4.32. Flower image 

Figure 4.33. Barn image Figure 4.34. Pastel image 
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The last image was chosen based on its colorfulness in addition to it existing as the only 

target-type scene.  The PW837_rgb image (Figure 4.36) represents varied red, green and 

blue values presented simultaneously as the target. 

 

 

   

 All of the scenes encompass a range of color and lightness attributes, across the 

full spectrum of hues, with varying scene content and complexity.  The ten images 

Figure 4.36. PW837_rgb 

Figure 4.35. Fog image 
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displayed above, were manipulated through a variety of GMAs and incorporated into 

both experiments using the characterization procedure above. 

 Overall, this research demonstrates the opportunity to display such highly 

colorful, largely dynamic images and the impact on observer preference.  By improving 

the end-to-end color reproduction process (capturing, rendering and displaying the 

images) according to perceptual metrics, digital photography and television will both 

garner benefits. 

4.4 Algorithms 
 
 In accordance with the purpose previously stated, multiple gamut expansion 

algorithms were evaluated in an effort to attain a single strategy that was statistically 

preferred over the other algorithms.  

  However, two baseline algorithms were incorporated into the evaluations, as 

suggested by Muijs et al., 2008, to ensure a specified mapping strategy was necessary.  

One baseline directly mapped the sRGB values to the display, bypassing the inherent 

expansion that occurs in the second baseline.  In this manner, the original sRGB content 

is displayed correspondingly on the output device by accounting for the differences 

between display primaries.  To obtain the digital counts necessary to properly display the 

sRGB image on the output device, the sRGB tristimulus values were calculated using the 

transformation matrix that converts digital counts to tristimulus values under sRGB 

conditions (Eqn. 4.7) 
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Once the corresponding tristimulus values were calculated, the result was multiplied by 

the inverted output display (Eqns. 4.8 and 4.9) to obtain the digital counts that were sent 

to the display. 
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The process is illustrated in Figure 4.37. 

 
Figure 4.37 Flowchart converting digital counts under sRGB color space, to RGB 

digital counts corresponding to the display, representing the first baseline 
version. 

 
 Muijs et al., 2008, refer to this as a “true-color representation”.  To place 

emphasis on the baseline strategy, this method is referred to as “sRGB Original” 

throughout the remaining discussion.     

 The second baseline version, again described by Muijs et al., 2008, entailed 

directly mapping the digital counts under sRGB color space as though there were the 

digital counts corresponding to the display.  Therefore, by sending the input digital 

counts directly to the output device (Figure 4.38), the counts are linearly stretched to fit 
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the destination display gamut, and thus, an inherent expansion of the data occurs.  This 

baseline will be denoted, “sRGB Expanded” throughout this document.   

 
Figure 4.38.  Flowchart representing the second baseline image, where the input 

digital counts were directly sent to the output device and displayed. 
 
Although not as apparent on a standard gamut display, or as the output corresponding to 

the printer gamut, as it was on an extended gamut display, these two versions represent 

the extremes in terms of GEAs.  Therefore, by setting the limits of gamut expansion 

algorithms, the preference ratings for the developed algorithms will be substantiated.  

4.4.1. Background 
 
 Based on past research incorporating both linear and nonlinear algorithms into 

gamut expansion techniques, this evaluation implemented both linear and sigmoidal 

algorithms.  The algorithms were performed in CIELAB, due to its ability to perform as a 

color appearance space, easy implementation, and widespread applicability [Montag and 

Fairchild 1996, Montag and Fairchild 1998, Kang et al. 2005, Hoshino 1994].  The 

mapping was applied to the lightness, chroma and hue dimensions of CIELAB’s three-

dimensional color space. 
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4.4.2. Linear Algorithms (LGEAs) 
 
 The general LGEA applied to the images was based on Eqn. 4.10, in terms of 

CIELAB values: 

 
Labout = [1 ka* kb*]*Labin (4.10), 

 
where ka* and kb* are equal.  By multiplying a* and b* by the same scaling factor, hue 

was preserved.  Therefore, this expansion did not result in undesireable hue shifts. 

Through Eqns. 4.11 and 4.12 the constant corresponding to the ratio between b* and a* 

was obtained and carried through the calculation of expanded a* and b* values to prevent 

hue shifts from occurring.  Both equations, 
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are standard CIELAB equations.   
 
 When applying Eqn. 4.10 to multiple images, the scaling factor, k, was 

determined based on a ratio of the input gamut to the destination gamut, or based on the 

ratio of the output maximum chroma (Eqn. 4.12) to the input maximum chroma (Eqn. 

4.12).  Since it was not possible to measure the gamut of colors for the input or output 

devices, a 21x21x21 cube of red, green, and blue incremented digital counts was 

converted to CIELAB values, and from there, chroma and hue were calculated.   

 To avoid the effects of lightness and hue dependent maximum chromatic values, 

the ratio between the gamut boundary was calculated dependent upon the lightness and 

hue angle combination.  For a series of ten lightness blocks, and seventy-two hue slices, 

each comprised of five degrees of hue angle, the corresponding maximum chroma was 
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obtained and used to form a LUT relating hue angle, lightness and maximum chroma. 

This type of algorithm was defined by Lee et al. as a parametric gamut-mapping 

algorithm [Lee et al. 2000], or an algorithm based on a user-defined parameter.  For each 

hue slice, the maximum chroma was calculated for given ranges of lightness values.  

These data points were then linearly regressed to linearly relate chroma and lightness, and 

to exclude existing outliers that would later affect the results.  This process was 

performed for both output displays (Figure 4.39). In this figure, the green data points 

represent the calculated maximum chroma values, and the red represent the theoretical 

maximum chroma at each lightness based on a linear regression between the achromatic 

axis and the overall maximum chromatic value.  
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Figure 4.39.  At multiple hue angles, the maximum chromatic values are 
computed for given lightness values for both the input (sRGB) gamut and 

destination (SONY and Samsung) gamuts.   
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Both destination gamuts are displayed in Figure 4.39; from left to right, sRGB, Sony and 

Samsung gamuts are represented, where the maximum chroma values for a given hue and 

lightness combination were calculated independently.  Each plot within Figure 4.39 

demonstrates the variability between devices, hue angles, and lightness values. 

Throughout the hue circle, however, both destination gamuts maintain higher maximum 

chroma points than sRGB does. 

 Using the linearly regressed data, a LUT was used to relate the three attributes of 

both gamuts, and hence, was used to establish the ratio between the two at every pixel of 

the image.  This ratio defined the scaling factor used for each of the three LGEAs.   

 Three different scaling factors for each ratio, were incorporated into the chromatic 

extension.  The distance between the ratio, at each hue, and the original image itself (or a 

value of one) was split into three equidistant sections, resulting in three extension 

constants for every pixel.   
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The scaling factors (SF), at pixel i, were therefore, one-third, two-thirds and one times the 

calculated distance between the ratio of maximum chromatic values to the original input 

value (one).  Equation 4.14 mathematically represents these constants.   

An example is provided for clarity purposes. 
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In the event that the maximum chroma of the output display was less than the 

corresponding maximum input chroma, all three scaling factors were constrained to one 

in order to prevent chromatic reduction from occurring at the applicable pixel. 

 Maintaining constant lightness, the chromatic values for each pixel of an image 

were expanded by each of the three scaling factors, totaling three unique LGEAs.  The 

LGEAs are denoted LGEA1, LGEA2, LGEA3, where the numbers correspond to the 

degree of extension.  LGEA1 represents the first scaling factor, or the most conservative 

extension.  LGEA2 represents the second scaling factor, or two-thirds multiplied by the 

distance between the original and extended gamuts.  LGEA3 corresponds to the most 

significant extension. 

 To demonstrate the various LGEAs, the same 21x21x21 cube of RGB digital 

counts was mapped according to these three LGEAs, and their corresponding 

transformations were plotted.  Therefore, the number of data points for a given hue varies 

as the values were uniformly distributed in RGB digital counts.  The transformations 

using the Sony display as the destination device are represented in Figure 4.40; the 

Samsung display transformations are in Figure 4.41.  
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Figure 4.40.  The transformations of all three LGEAs for the Sony display at 
various hue angles.  The lines extend from sRGB chroma values to expanded 
chroma.  Note: the color of the data corresponds to the appropriate hue angle. 
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Figure 4.41. The transformations of all three LGEAs for the Samsung display at 
various hue angles.  The lines extend from sRGB chroma values to expanded 
chroma.  Note: the color of the data corresponds to the appropriate hue angle. 
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The effects of the three scaling factors, where LGEA1, 2 and 3, are each comprised of the 

corresponding scaling factor, are apparent in both Figures 4.40 and 4.41.  The most left 

plot, LGEA1, represents the lowest expansion and the most right plot, LGEA3, represents 

the greatest expansion.  Again, the transformation heavily depends on both the device, 

hue angle and lightness value.   

 The differences between the sRGB gamut and destination gamut govern the 

degree of extension possible.  For both destination displays, hue angles corresponding to 

approximately 60˚ through 120˚ display very little extension.  This is a result of the 

gamut shapes for both input and output devices, in that, the output devices are not 

significantly larger than the input, for this range in hue.  Therefore, very little extension 

occurs in these areas.  This will become particularly important for the nonlinear mapping 

algorithms.   

 After the transformations, the expanded chroma value is converted back to a*,b* 

via Eqns. 4.15 through 4.18.  Rearranging Eqns. 4.15 and 4.16, output chroma was 

calculated in terms of a*. 

! 

C *
out

2

= a*
out

2

+k
2
a*

out

2  (4.15). 
 
By rearranging Eqn. 5.10, output a* values were obtained. 
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The same process can be repeated, solving for chroma in terms of b*. 
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and again, rearranging results in b* output values. 
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Maintaining lightness, L* is combined with the calculated a*, b* from Eqns. 4.16 and 

4.18 respectively, where these expanded CIELAB values were then converted to display 

digital counts using the inverse transformation matrix, and incorporated into the 

psychophysical experiments.  

4.4.3. Sigmoidal (Nonlinear) Algorithms (SGEAs) 
 
 In addition to linearly expanding the chrominance of multiple scenes, a sigmoidal 

transfer function was incorporated into the mapping strategies, as an attempt to minimize 

any negative results of the linear expansion (expanding near neutrals more than observers 

deem pleasing).  It has been found that colors of low chroma should not necessarily be 

manipulated as those of high chroma [MacDonald et al.; 2001].  As mentioned 

previously, MacDonald et al. depict the values of low chroma as a core gamut, in that 

within the core gamut a one-to-one mapping exists but outside of that core, expansion 

will occur in accordance to the sigmoidal transfer function at hand. 

 The sigmoidal transfer functions incorporated into this study were based on the 

cumulative normal distribution [Braun and Fairchild, 1999]  
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Eqn. 4.19 represents the general equation form, where only the positive values of the 

function were incorporated into the study.   

 The chromatic expansion for the SGEA required once again, linearly interpolating the 

maximum chromatic input and output data at each hue slice, for given lightness values, at 

each pixel in the image.  After obtaining the maximum chroma values for every pixel, 
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three cumulative normal distributions (Figure 4.42) of varying standard deviations (Table 

4.2) were applied to the data to form the sigmoidal transfer functions.   

 

 
Figure 4.42.  The three sigmoidal curves applied to this study are based on Eqn. 
4.11.  The red curve represents SGEA1, the blue curve represents SGEA2 and 

the cyan curve represents the third SGEA. 
 

Table 4.1.  Curve characteristics of the sigmoidal functions represented in Figure 4.42. 

Algorithm 

Corresponding 
to Curve 
(Fig4.15) 

 
Mean 

 
Std 
Dev 

Over 
Interval 

SGEA1 Red 0 1.5 [0:3] 
SGEA2 Blue 0 1.6 [0:3] 

0 1.5 [0:2] 
SGEA3 Cyan 0 1.2 [2:3] 

 
As stated in Table 4.1, the red and blue curves are unique functions, whereas the cyan 

curve is a combination of two sigmoidal functions.  This combination results in a steeper 

expansion at lower input chromas.  After applying these three curves to the input sRGB 

digital counts, the resulting chromatic expansions corresponding to both the Sony and 
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Samsung displays, at multiple hue angles, are represented in Figures 4.43 and 4.44, 

respectively. 

 The plots within Figures 4.43 and 4.44 demonstrate the closeness between the 

three sigmoidal algorithms.  In addition, the resulting transformations depended on the 

hue and lightness.  Any variation among plots was a factor of the dependent attributes, 

the devices, as well as the specific SGEA applied. 
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Figure 4.43.  The chroma transformations of the three sigmoidal transfer 
functions (SGEA1-left, SGEA2-center, SGEA3-right.  The lines extend from the 
original sRGB chroma values to the Sony expanded. Note: the color of the data 

corresponds to the appropriate hue angle.  
 
 



 

 108 

 

 

 

 

 



 

 109 

 

 

 

 



 

 110 

 

 

 

 
 
 
Figure 4.44. The chroma transformations of the three sigmoidal transfer functions 

(SGEA1-left, SGEA2-center, SGEA3-right.  The lines extend from the original 
sRGB chroma values to the Samsung expanded values. Note: the color of the 

data corresponds to the appropriate hue angle.  
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 The degree of extension for both output devices, as a result of the various SGEAs 

(Figure 4.43 and 4.44) depends, once again, on the hue angle and lightness combination.  

The transformations for each hue angle represented in these figures are not visually 

distinguishable across each of the three SGEAs.  However, each SGEA was evaluated by 

the observers to determine whether the SGEAs are distinguishable when image content is 

mapped under the algorithms. 

4.4.3.1. Reference Point Extension 
 
 In addition, to the mapping function described through the SGEAs above, each 

SGEA curve was varied based on the direction of extension by incorporating multiple 

reference points.  Lee et al. utilized various anchor points in their gamut compression 

algorithms, and concluded mapping errors could be reduced when anchor points are 

incorporated [Lee et al., 2000].  Therefore, in accordance with their anchor points, where 

the center of gravity was on the lightness axis, lightness values of both 50 and 0 units 

were proposed for this evaluation, in addition to maintaining a constant lightness. 
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Figure 4.45.  
Constant 

Lightness with 
sigmoidal gamut 

expansion. 

Figure 4.46.  
Sigmoidal gamut 
expansion away 
from L*=50, or 

mid-gray. 

Figure 4.47.  
Sigmoidal gamut 
expansion away 

from L*=0, or black. 
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 There were three different SGEA reference points evaluated (Figures 4.45, 4.46, 

4.47).  Figure 4.45 represents SGEA, while maintaining constant lightness.  Thus, once 

the expanded chromatic values were obtained, the CIELAB image was converted to 

tristimulus values, and then to display digital counts.  Figures 4.46 and 4.47 involve a 

lightness conversion, extending from a lightness value of 50, or mid-gray, and 0, or 

black.  Using geometric relationships, the angle between lightness and chroma was 

calculated and held constant throughout the expansion. 

 
 
 
 
 
 
 
 
 
 
 
 
  
  
 
 
 
The expansion from mid-gray is represented in Figure 4.48.  A similar image can be 

created in which the reference point is at L*=0.  However, the common denominator is a 

constant angle theta.  By maintaining a constant theta, the SGEA can ensure the entire 

gamut expansion extends from the same reference point, and therefore, results in 

mapping transformations much like the theoretical depiction in Figures 4.46 and 4.47.  

(Actual transformations are displayed in Figures 4.50 and 4.51). 

L* 

a* 

L* = 50 
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"  a*in  

a*out  

Figure 4.48. The expansion of one 
specific pixel, where the expansion is 
extending from L*=50 
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 Equations 4.20, 4.21, and 4.22 represent the calculations performed to obtain the 

angle, theta, and the corresponding lightness value for every pixel in the image, derived 

through geometry relationships. 
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where L*r represents the reference lightness value, either fifty or zero for these research  
 
purposes.   
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or for a reference point of L* equal to zero, 
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Once L*out was calculated, linear regression was performed to form the line illustrated in 

Figure 4.21, extending from C* equals zero, L* equals 50 towards the original (C*, L*) 

coordinates, through to the point (C*out, L*out), where L* out equals that from Eqn. 4.22.  

Therefore, through linear regression, the output maximum chroma value was obtained.  A 

LUT was then formed between the input maximum chroma, and output maximum 

chroma, according to the cumulative normal distributions described in Table 4.2 and 

Figure 4.15.  This process was repeated for the reference point of L* equal to zero.   

 Theoretically, the transformations were depicted in Figures 4.45 through 4.47.  

However, the actual transformations indicated that mapping direction extending from L* 

equal to zero introduced a few artifacts too significant to ignore. 
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Figure 4.49.  The transformations of sRGB values, corresponding to the Sony 
display output values, for hue angles between 270 and 275. The most left plot is 
constant lightness, the center extends from L*=50 and the right plot extends from 

L*=0. 
   
The reference points are denoted as LC, L50 and L0, which refer to the anchor point in 

which the expansion is extending from.  LC represents expansion while maintaining 

constant chroma, and L50 or L0 represent expansion extending from either a lightness 

value of fifty or zero units.  

 Figure 4.49 serves to demonstrate the possible sigmoidal expansions under a 

specified mapping direction. The potential effect the SGEAs with expansion from a 

lightness of zero is evident in this figure, as a few low lightness, low chromatic values 

were extended to dramatically higher lightness values with only relatively higher 

chromatic values.  Therefore, the resulting appearance at these points is substantially 

desaturated.  After examining the scenes visually and observing the significant artifacts 

as a result of this algorithm, the reference point of L* equal to zero was removed from the 

psychophysical analysis.  Figures 4.50 and 4.51 represent the transformations for a range 

of hue angles, when mapping to the Sony and Samsung gamuts, respectively, according 

to SGEA1LC and SGEA1L50. 
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Figure 4.50.  The transformations as a result of SGEA1LC andSGEA1L50, 
corresponding to the Sony display, for a range of hue angle (the color of the data 

corresponds to the applicable hue angle). 
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Figure 4.51.  The transformations as a result of SGEA1LC and SGEA1L50, 
corresponding to the Samsung display, for a range of hue angles (the color of the 

data corresponds to the applicable hue angle).  
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In Figures 4.50 and 4.51, the influence of the mapping direction is well illustrated.  

Therefore, any differences in preference between mapping directions will be easily 

explained via both of these figures.  

 Overall there were six different sigmoidal algorithms psychophysically analyzed, 

SGEA1, 2, and 3, all evaluated at both constant lightness, and extending from a lightness 

value of 50.   
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5. Data Analysis 
  
 The evaluation entailed a forced-choice, paired comparison based on Thurstone’s 

Law of Comparitive Judgement (Case V), where observers were instructed to choose the 

image they preferred overall.  There are several factors that influenced the observers’ 

preference, some of which include: color rendering, tone reproduction, sharpness and 

contrast of image.  Given an ideal mapping strategy preferred by the average observer 

was evaluated, the observer was not given any further instructions than to choose the , 

“overall” preferred image.  The order of image presentation was randomized for each 

observer, in addition to the position relative to image placement on the screen.  There 

were 550 total observations for each observer (ten scenes and 11 versions per scene).  

 An interval scale of preference ratings was generated from the paired-comparison 

evaluations via Gulliksen’s regression for unanimous decisions [Johnson; 2004].  The 

psychophysical experiments were performed for twenty observers on each display, where 

the mean standard deviation for each image, across all observers, was 0.09 interval 

scores.  This confidence interval was calculated based on Ethan Montag’s definitions 

[Johnson; 2004].  The results portrayed clear trends among observers, however, scene 

dependency was still evident as in past research. 

 With great variation in the image content, image dependencies became clear.  A 

cluster analysis was performed on the images to define any relationships among image 

sets, however, no explainable clusters resulted (unlike the results from Experiment III by 

Heckman et al.).  Therefore, by evaluating the overall results, for each individual image, 

the importance of each attribute became clear.  These results are displayed in Figure 5.1 

for the Sony display, Figure 5.2 for the Samsung display.  
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 The most profound result, quite evident in Figure 5.1, was degree to which the 

sRGB expanded (or the method that linearly stretched the data to the display) was 

disliked.  This effect is clearest for the Sony display, although this method did not 

perform well for the Samsung either.  When evaluating the baseline images, both mapped 

to the display’s gamut versus the original content unexpanded, the tone reproduction 

curve is inconsistent between the two reproductions.  Both images undergo slightly 

different processing.  By converting sRGB values to tristimulus values using the 

display’s matrix versus the sRGB matrix respectively, the inherent tone reproduction 

curves for each corresponding gamut are applied to the images.  Therefore, the expanded 

sRGB image is reproduced under the Sony’s tone reproduction curve, whereas the 

unexpanded sRGB version is reproduced under sRGB’s tone reproduction curve.  This 

could in part, explain why observer preference for these two versions varied significantly 

in some cases.  However, across the majority of scene content, neither version was 

preferred over the developed algorithms.  Therefore, these results confirm that the 

development of a GEA is pertinent to the success of extended gamut displays.  

 The significant image dependencies become very apparent through Figure 5.1.  

This was expected, as the images are comprised of different primary attributes, since it 

was important to incorporate a variety of images during the image selection phase.  Still, 

some trends are stable across images.  One of the baselines, or the expanded sRGB 

version, represented by the cyan-colored bar at the most left position for each image, was 

least preferred across the images.  In addition, the original sRGB version never 

performed significantly better than any other version.   
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Figure 5.1.  Sony display results for all of the images.  The interval scores are 
represented for each algorithm as a separate bar, where the legend describes 

the color each algorithm corresponds to. 
 

In Figure 5.1, image dependencies become very evident.  Although some algorithms are 

preferred for multiple images, there is not a definitive answer for which algorithm 

performed best, based on this bar plot.  The evaluation performed on the Samsung display 

resulted in similar conclusions. 

 

 
Figure 5.2.  The result from the Samsung evaluation, for all of the images.  The 
interval scores are represented for each algorithm as a separate bar, where the 

legend describes the color each algorithm corresponds to. 
 
Both Figures 5.1, 5.2 are based on the interval scale calculations, which are displayed in 

Tables 5.1 and 5.2. 
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Table 5.1 Interval Score calculations for Sony evaluation 
Music. Flower Lady F.Tetons Pastel Barn Water Coast Fog RGB AVG

sRGBexp -0.644 -1.064 -1.195 -0.203 -0.525 -0.725 -0.781 -1.078 -0.487 -0.559 -0.73

sRGBorig 0.147 -0.058 0.039 -0.061 -0.038 -0.196 -0.022 -0.035 -0.004 -0.371 -0.06

LGEA1 0.174 0.071 0.280 0.051 0.224 -0.011 0.185 -0.159 -0.091 -0.045 0.07

LGEA2 0.124 0.202 0.324 0.152 0.302 0.136 0.196 0.167 -0.043 0.047 0.16

LGEA3 0.182 0.207 0.069 0.164 -0.059 0.048 0.173 0.140 0.246 0.218 0.14

SGEA1LC 0.230 0.027 -0.011 0.141 -0.059 0.171 0.196 0.363 0.199 0.038 0.13

SGEA1L50 -0.190 0.297 0.296 -0.129 0.175 0.146 0.078 0.077 -0.029 0.010 0.07

SGEA2LC 0.119 -0.046 0.036 0.191 0.047 0.028 0.107 0.207 0.160 0.292 0.11

SGEA2L50 -0.164 0.118 0.037 -0.201 0.003 0.200 -0.083 0.057 -0.130 0.026 -0.01

SGEA3LC 0.260 0.032 0.047 -0.026 -0.092 0.069 -0.053 0.251 0.357 0.133 0.10

SGEA3L50 -0.240 0.292 0.185 -0.079 0.023 0.199 0.004 0.093 -0.179 0.211 0.05

 
 
Table 5.2 Interval Score calculations for Samsung evaluation 

Music. Flower Lady F.Tetons Pastel Barn Water Coast Fog RGB AVG

sRGBexp -0.381 -0.605 -0.564 -0.198 -0.119 -0.198 0.215 -0.448 0.250 -0.211 -0.23

sRGBorig -0.284 -0.181 -0.362 -0.044 -0.159 -0.354 -0.223 -0.361 -0.224 -0.506 -0.27

LGEA1 -0.113 0.038 -0.087 0.072 0.368 -0.130 0.046 0.037 -0.141 -0.083 0.00

LGEA2 0.197 0.013 0.266 0.045 0.180 -0.024 -0.127 -0.102 0.080 -0.024 0.05

LGEA3 0.226 -0.020 0.157 0.071 0.149 0.008 0.120 0.235 0.033 -0.035 0.09

SGEA1LC 0.255 0.082 0.071 0.057 -0.248 0.140 -0.078 0.036 -0.058 -0.082 0.02

SGEA1L50 -0.179 0.239 0.017 0.023 0.073 0.082 0.171 0.020 -0.094 0.249 0.06

SGEA2LC 0.287 -0.012 0.140 0.119 -0.133 0.181 -0.026 0.120 0.145 0.241 0.11

SGEA2L50 -0.143 0.326 0.059 -0.188 0.035 0.153 -0.155 0.050 -0.157 0.152 0.01

SGEA3LC 0.242 -0.094 0.144 -0.013 -0.111 0.000 -0.047 0.205 0.188 0.093 0.06

SGEA3L50 -0.107 0.215 0.159 0.056 -0.034 0.142 0.103 0.208 -0.023 0.204 0.09

 
 
Using these interval scores, the respective rank orderings were calculated and displayed 

in Tables 5.3 and 5.4 as a better means for comparison amongst algorithms than Table 5.1 

and 5.2 provide. 
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Table 5.3 Rank order for Sony evaluation 
Rank Music. Flower Lady F.Tetons Pastel Barn Water Coast Fog RGB MeanRank

sRGBexp 11 11 11 11 11 11 11 11 11 11 11

sRGBorig 5 10 7 7 7 10 8 9 5 10 10

LGEA1 4 6 3 5 2 9 3 9 7 9 7

LGEA2 4 4 1 3 1 5 1 4 6 5 1

LGEA3 3 3 3 2 5 6 2 4 2 2 1

SGEA1LC 2 5 6 2 5 3 1 1 2 4 1

SGEA1L50 4 1 1 4 1 3 2 4 3 5 3

SGEA2LC 2 4 4 1 1 4 1 2 2 1 1

SGEA2L50 2 2 3 3 2 1 3 3 2 3 3

SGEA3LC 1 2 2 1 2 2 2 1 1 2 1

SGEA3L50 1 1 1 1 1 1 1 1 1 1 1

 
 
Table 5.4 Rank order for Samsung evaluation 
Rank Music. Flower Lady F.Tetons Pastel Barn Water Coast Fog RGB MeanRank

sRGBexp 11 11 11 11 8 10 1 11 1 10 10

sRGBorig 10 10 10 9 9 10 10 10 10 10 10

LGEA1 7 5 9 2 1 9 4 6 8 9 9

LGEA2 5 5 1 5 1 8 7 8 3 6 6

LGEA3 4 6 2 2 1 6 2 1 3 6 2

SGEA1LC 2 4 4 2 7 4 6 5 5 6 5

SGEA1L50 7 2 7 4 2 4 2 5 6 1 5

SGEA2LC 1 5 5 2 7 1 5 4 2 1 2

SGEA2L50 7 1 6 7 3 1 7 5 7 3 6

SGEA3LC 1 7 4 6 7 5 7 3 3 3 6

SGEA3L50 6 2 4 4 4 3 5 2 4 2 4

 

In order to evaluate the algorithms performance, the rank orderings were used in addition 

to the individual plots below as a gauge for the overall observer preference scores. 

 Through Tables 5.3 and 5.4, the performance of both of the baselines is reiterated.  

Overall, across all ten images, the baselines performed the worst under both destination 

gamuts.  However, the best-performing algorithm is not as definitive.  Particularly for the 

Sony display, there were several algorithms that returned a number one rank in the rank 

ordering table, Table 5.3.  The Samsung narrowed it down slightly from the Sony results, 

as LGEA3 and SGEA2LC appeared to perform the best, across all images and observers. 
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 The general categories denoted by Heckaman et al., 2007, were specifically 

analyzed to detect any apparent trends within those groups. Therefore, scenes of high 

colorfulness (mainly the flower scene), flesh tones (including both the musician and lady 

images) and natural scenes with a large range in lightness contrast (the coast scene) will 

be individually evaluated for trends within these categories.  In regard to the specific 

images and preferred algorithms, Figures 5.3 through 5.10 display the results for 

individual images evaluated.  The error bars represent the 0.09 standard deviation as a 

confidence interval.  

 

Figure 5.3.  The Lady bar plot in interval scores, which directly correlate to overall 
observer preference.  These data are representative of the average observer’s 

response. 
 

For the lady scene, which was comprised predominantly of flesh tones, LGEA1 and 

LGEA2 performed well on the Sony display, while observers preferred LGEA2 

significantly more on the Samsung display.  In addition, the SGEA1L50 method 

performed well on the Sony, which did not occur on the Samsung.  Therefore, this image 
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brings out the preference differences for each display.  This image, for both displays, 

resulted in clearer trends than the Musicians scene, as is apparent in Figure 5.4.   

 

Figure 5.4.  The musician image results represented as interval scores for the 
average observer. 

 
Across both flesh tone scenes, and both displays, the LGEAs performed better than the 

SGEAs.  The scales on Figure 5.3 and 5.4 are different, however, when evaluating the 

interval score values it becomes apparent the differences between these two scenes.  

Despite Experiment II linking them in the same “flesh tone” category, they performed 

uniquely in response to the evaluated algorithms.  Observers preferred a more 

conservative approach to linear gamut mapping for the lady scene, whereas LGEA3 

performed the best out of the LGEAs for the musician scene.  Also, observers opposed 

the gamut mapping strategies extending from L* equal to 50, whereas there was not this 

clear distinction for the lady image.  

 The observed trends in the SGEAs could be a result of the expansion calculation, 

as hue and lightness dependencies were accounted for.  In other words, as demonstrated 
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in Figures 4.43-4.51, it was possible for values of low chromatic content to be drastically 

expanded, or not expanded at all, provided the corresponding hue and lightness 

combination allowed for either situation.  In the former case, although the sigmoidal 

functions were designed to maintain chroma values for flesh tones, in actuality it did not 

appear they were expanded at all (Figure 4.42).  Since the ratio between output maximum 

chroma and input maximum chroma for the hue ranges encompassing flesh tones, the 

resulting transformations were limited.   

 Therefore, possibly the reasoning the SGEAs were not significantly preferred 

over the LGEAs was because they were almost performing the same transformations 

(Figures 4.43, 4.44, 4.50, 4.51).  Therefore, in scenes where flesh tones are prevalent, the 

resulting output chromatic values were lower than the observer’s threshold for 

colorfulness of flesh tones, which explains the near zero, or negative interval scores.  

Although flesh tones needed to remain true to the observer’s memory, if there was truly 

no expansion, these regions potentially perform similarly to the sRGB unexpanded 

version. 

 The SGEA function, SGEA2LC performed much better for a more colorful 

image. 
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Figure 5.5. The flower scene preference results for each of the eleven 
algorithms, and both Sony and Samsung displays, are displayed for the average 

observer.   
 

Interestingly enough, the flower scene displayed almost exact opposite results from that 

of both the musician and lady scenes.  Here, where the original data were already very 

chromatic, all three sigmoidal expansion methods, extending from a lightness value of 

fifty, expanded the image data in the most preferable manner.  LGEA2 and LGEA3, on 

the Sony display, were acceptable, however, the sigmoidal expansions were much 

preferred.  This result was more significant for the Samsung display, as none of the linear 

expansions were preferable.  

 SGEA1L50 and SGEA2L50, the optimal algorithms for the flower scene, are 

represented by the red and blue curves, respectively, in Figure 4.42.  These curves, as 

compared to SGEA3, resulted in the least amount of clipping in the sRGB values.  

SGEA3 clips the sRGB content at a lower chroma value, so that the expansion is more 
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drastic.  Given the already colorful content of the flower scene, it appeared this other 

curve resulted in undesirable results due to these characteristics of the function itself.  

 

Figure 5.6. Fluorent Tetons results, averaged across observers, for each 
algorithm, displayed for both devices. 

 
In the fluorent tetons scene, another scene noted for its colorfulness, the linear algorithms 

performed significantly better than the majority of SGEAs, with the exception of 

SGEA2LC.  It is interesting that a significant difference between SGEAs existed, given 

the similarity between the sample transformations observed in Figures 4.43 and 4.44.  

And, furthermore, the fact that these results were consistent across displays provides 

additional evidence that the sigmoidal functions may perform uniquely. 

 However, the SGEAs in the barn image performed similarly to that of the flower 

image, where the barn scene is a third image recognized for its high degree of 

colorfulness. 
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Figure 5.7.  The preference results for the barn image for each algorithm and 

both display evaluations, average across observers. 
 
The SGEAs performed well in this image, as they were significantly preferred over each 

LGEA except LGEA3.  However, there is no statistically significant difference between 

either mapping direction.  Since this image was colorful under sRGB, these colors would 

be mapped close to the boundary in the output display gamut.  However, observers 

appeared to prefer the additional color, as the sRGBOrig was still disliked.  Despite that 

the additional colorfulness was received well, the sRGB Exp was the least preferred 

across algorithms.  However, this may be a contrast issue, as the linearly stretched 

version seemed to desaturate the image at the same time.  Therefore, it was important to 

consider both lightness and chroma within the GMAs. 



 

 131 

 
Figure 5.8.  The coast scene is represented in terms of interval scores of 

preference. 
 
In the coast scene, the results were much more dispersed.  The significant observations 

were that the two controls were least preferable, and the SGEAs extending from a 

reference point of a lightness equal to 50 resulted in undesirable reproductions on the 

Sony display.  This reference point, as compared to maintaining constant lightness, 

resulted in a few artifacts due to the large change in lightness compared to change in 

chroma (indicated for a few values in Figures 4.17 and 4.18).  A possible explanation for 

this is explained through the analysis of Figure 5.9. 
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Figure 5.9 Sample transformations under SGEA1L50 for hue angles between 
170-175. 

 
 The maximum output chroma is much larger for mid-level lightness values than at 

low or high lighnesses for the mapping direction from L* equal to 50.  For example, in 

the given range of hue angles between 170 and 175˚, the maximum output chroma is 

approximately 125.  Therefore, depending on the lightness and chroma coordinates, any 

point with a mid-level lightness has the potential to be drastically expanded in 

colorfulness, due to the sigmoidal function dependent on the chroma.  When this occurs, 

and the chroma is significantly increased, the corresponding lightness does not increase at 

the same rate, due to the constraint of the reference point of lightness equal to 50.  As a 

result, the overall lightness of the images does appear to decrease slightly, as the color 

increase is more extreme than the overall increase in lightness contrast.  This effect for 

this mapping direction may have influenced the preference results, particularly for images 

comprised mostly of mid-lightness values.  This effect possibly influenced the fog image, 

which is recognized for its overall low saturation. 
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Figure 5.10.  Preference interval scores for the fog image, for each of eleven 
algorithms and two displays and across twenty observers. 

 
This image resulted in clear trends against the mapping direction extending from L* = 50, 

yet favoring SGEAs maintaining lightness.  Similar reasoning could be to blame for this 

image, as in the Coast image, since it did not appear to be a result of the mapping 

function in general.  Another interesting result, for this image only, was that the 

evaluation on Samsung display resulted in the sRGBExp version holding its own with the 

other algorithms.  This only occurred for this image, and was most likely a result of the 

original overall low saturation the image maintained. 

 Finally, the average results, averaged across observers and images, are displayed 

in Figure 5.10. 
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Figure 5.11. Average results for both Sony and Samsung displays. 
 
This image illustrates the difficulty in selecting one algorithm for implementation in a 

wide-gamut display.  However, through analyzing the individual images certain patterns 

were established, such that further development of a couple of these algorithms should 

provide an ideal algorithm that could be incorporated into the display. 
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6. Conclusions 
 
 Upon analyzing the preference results based on ten scenes, eleven algorithms and 

two displays, averaged over twenty observers for each evaluation, one of the most 

pronounced conclusions regarded the high degree of scene dependency the algorithms 

maintained.  Although the SGEAs are a step in the right direction, there is still 

improvement necessary so that a more widespread, easily applicable, algorithm is 

developed that produces preferable reproductions for a wide variety of image content.   

 Still, all three SGEAs performed well across all images. For images of a high 

degree of colorfulness, SGEAs extending from L* equal to 50 produced pleasing 

reproductions.  In addition, maintaining constant lightness for high contrast images 

performed well too.  The scenes chosen for flesh tones, however, were consistent in that a 

slight increase in color, resulting from the LGEAs, was ideal across observers.   

 If a recommendation for one algorithm is desired, SGEA1L50 would be 

suggested.  This algorithm was highly preferred when the results were averaged across all 

images and observers.  In addition, this algorithm was preferred over its counterparts for 

many of the representative images emphasized earlier.  In addition, the observer 

preference for this version was not display dependent.  The SGEAs in general, but 

particularly SGEA1L50 is a good basis for improving linear expansion, and with a few 

minor alterations, could be the optimal reproduction method for mapping images under 

current sRGB standards to wide-gamut displays.   

 By comparing two unique display technologies, the applicability of the results 

becomes evident.  Although there are some differences between the displays, most often 

they correlate with one another.  Therefore, by continuing research in the development of 
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a gamut extension algorithm, and possibly adjusting a few of the methods incorporated in 

this study, a GEA applicable to multiple display technologies will be attainable. 

 Many recent studies have provided solid evidence that viewers enjoy more color 

within their display.  With the technology flourishing, the need for an optimal algorithm 

is becoming more apparent.  This study has provided an excellent basis for this desired 

algorithm, and with relatively minor tweaking, will be capable of providing viewers 

world-wide with more satisfying images. 
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