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Abstract

Demographic information collected on surveys is often of certain interest to those who

use these surveys to measure customer satisfaction or do market research. This thesis presents a

method for imposing a dichotomous incidence variable, possibly a demographic variable, on the

weighting of items in a set of successive-categories (rating) data using dual scaling. The idea is

to augment the matrix of rating data with the "criterion
variable"

containing the dichotomous

information so that this item determines one of the initial solutions of the dual scaling analysis.

In conjunction with the augmentation of the criterion item, the original data are
"centered"

between two numbers that represent the two criterion groups. The resulting modified data matrix

is then subjected to a dual scaling analysis. The procedure is discussed with practical guidelines

for its use and interpretation of results. Examples of application involve both fabricated and

actual data.
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I. Introduction

It is often of particular interest to those who develop surveys to solicit not only

respondents'

preferences and opinions, but also to study commonalities or differences in the

respondents that are being surveyed. Many of these differences or commonalities are captured in

the form of demographic information. For example, it might be of particular interest to those

who are conducting the survey to study the effect that gender has on how respondents answered a

specific item or set of items. Further, it might be of importance to identify the questions whose

responses are most consistent with gender, since products and services are often designed to

target segments of the population that have certain characteristics.

The items on which such demographic information is collected are often categorical in

nature and can usually be classified as incidence data, since membership in a specific

demographic category is generally absolute and does not indicate a degree of
"preference"

of one

category over another. If the data of the survey are also in the form of incidence data, then this

particular demographic characteristic can be included with the incidence preference data of the

survey and submitted to dual scaling for a forced classification analysis (See Nishisato, 1984.).

In this way the demographic variable can be made to determine the solution. The survey items or

questions whose responses are most influenced by the particular demographic will have the

highest absolute weights. (Nishisato (1994) and Day (1989) both carried out this type of

analysis.) Unfortunately, though, preference data are not always collected in the form of

incidence data. What happens when these data have been collected in the form of dominance

data (i.e., paired-comparison, rank-order, or successive-categories data) and the user still wants

to determine the effect of a demographic variable whose information has been collected as

incidence data?



Lawrence (2000) discussed this problem as it pertains to rank-order data. He described a

method for imposing a dichotomous (male vs. female, user vs. non-user, etc.) criterion variable

on the weighting of items in a dual scaling analysis of a set of rank-order data. Lawrence

(manuscript in preparation) has also formulated a procedure for handling paired-comparison data

that is similar to his method for analyzing rank-order data. In both cases, the criterion variable is

"transformed"

to dominance data and included as part of the data matrix, which is then subjected

to a dual scaling analysis. Presently, there is no such method for handling successive-categories

data.

This thesis proposes a method for the case of successive-categorical data that capitalizes

on both the definition of the format and the structure of the data. This procedure is applied to

contrived data with practical guidelines for use of the method and interpretation of the solutions.

Finally, a subset of
"real"

data obtained from a health survey given at the Rochester Institute of

Technology is analyzed, followed by a discussion of the results.



II. Literature Review

The study and application of surveys in market research and educational testing in recent

decades have necessitated the development of multivariate models and methods to handle a wide

range of categorical data. Several distinct categorical data types have been popularized and

studied in that regard. Among them are contingency tables, multiple-choice questions, sorting

formats, paired comparisons, ranking data, and successive-categories (or rating) data. Many of

the multivariate methods that have been developed to handle these particular nominal and ordinal

data types have origins that trace back to the 1930's, 1940's and 1950's (Richarson & Kuder,

1933; Hirshfield, 1935; Horst, 1935; Fisher 1940; Guttman, 1941; Burt, 1950; Hayashi, 1950)

and are similar in many respects. These methods have been introduced under a variety of names,

including American Optimal Scaling, Optimal Scoring, Appropriate Scoring, Canadian Dual

Scaling, Dutch Homogeneity Analysis, FrenchMultiple Correspondence Analysis, Israeli

Scalogram Analysis, and Japanese Quantification. In most instances, the main difference, it

would seem, is the name itself, which is primarily a function ofwhere a particular method was

developed (Tenenhaus & Young, 1985). All of these methods rely of the principle of
singular-

value decomposition and are usually formulated along the lines of theMethod ofReciprocal

Averages, the Analysis-of-Variance Approach, the Principal-Components-Analysis Approach, or

the Generalized-Canonical-Analysis Approach (Tenenhaus & Young, 1985). The objective, of

course, is to determine a set of optimal weights for stimuli/items (columns) and scores for

subjects/respondents (rows) given some initial constraints or conditions that is, some criterion

that needs to be maximized and constraints that must be satisfied based on the formulation

(normalization, sum-of-squares-equal-to-a-prescribed-total, sum-of-weighted-responses-equal-

to-zero, and so on).



Recently, correspondence analysis has become increasingly popular and Greenacre

(1984) and Lebart, Morineau andWarwick (1984) have published texts devoted to its exposition.

These texts have given rise to the development and implementation of statistical software to

handle categorical data via correspondence analysis (CA) or multiple correspondence analysis

(MCA). Introduced by Benzecri (1973), CA was originally developed to handle contingency

tables. Its extension, MCA, is applied to multiway multiple-choice data. Although related to dual

scaling, CA andMCA, as original formulated, could only be used on incidence data while their

Canadian counterpart dual scaling (DS), developed by Nishisato (1978, 1980b & 1994), can be

used on both incidence data (i.e., contingency/frequency, multiple-choice, and sorting data) and

dominance data (i.e., paired-comparison, rank-order, and successive-categories data) (Nishisato

& Gaul, 1988).

Greenacre and Torres (2002) have since proposed a method called
"doubling"

that

attempts, at least in part, to bridge the gaps between CA and DS. Their method uses each

subject's preference and dispreference counts, one data set atop the other, and was shown to

produce results that are identical to those ofDS. Greenacre and Torres also showed that while

DS analyzes
"centered"

data, CA analyzes
"uncentered"

data and that the only differences in the

methods lay in the so-called "scaling factors".

van de Velden (2000) also discussed this method and noted the equivalence of dual

scaling and correspondence analysis using this strategy. He further proposed that a dual scaling

analysis of Greenacre and
Torres' "doubled"

matrix would be equivalent to analyzing the

dominance matrix ofDS. To the user, the most obvious difference between the two methods

would be the content and appearance of the output. Obviously, because CA works with a



"doubled"

data matrix, it would have to be judged less computationally efficient than DS in the

analysis of dominance data.

Dual scaling, which is a discrete analogue of principal components analysis, also allows

for a unique option known as forced classification. This procedure is based the Principle of

Internal Consistency (Guttman, 1950) and the Principle ofEquivalent Partitioning (Nishisato,

1984). The Principle ofInternal Consistency states that if a given response pattern is repeated in

the data matrix, it will become the primary factor in determining a solution. The Principle of

Equivalent Partitioning states that if an item is repeated a certain number of times k, this is

equivalent to introducing the item once (in a (1,0) format) and multiplying it by k. (This

principle is very similar to the Principle ofDistributional Equivalence of correspondence

analysis (Benzecri, 1973)). Together, these two properties make forced classification possible.

Basically, forced classification augments an original matrix by repeating a given

response pattern a certain number of times k. This means that the original number of items n is

altered so that the new number of items is (n + k-1) and a Nx(n +k-l) matrix is formed,

where N is the number of respondents (Nishisato, 1984). As the value of k is increased,

theoretically to infinity, the particular item that has been weighted by k becomes the principal

factor in determining the first solution of the dual scaling analysis. In fact, the repeated item and

the new dimension have a correlation that approaches one, since the repeated item effectively

defines the dimension (Nishisato & Gaul, 1990). Nishisato (1986) generalized his forced

classification procedure to handle not only multiple-choice data but also sorting data and, in a

specific way, rank-order data and paired-comparison data (1986). He further demonstrated that

the value of k may be any real number and can be chosen not only to get a particular solution to

dominate the analysis but also to cause a particular solution to be suppressed. Forced



classification has also been adapted for use on contingency tables, and this is commonly referred

to as conditionalforced classification (Nishisato & Baba, 1999). The mathematical aspects of the

procedure for each of these particular data types, excluding conditional forced classification, are

discussed by Nishisato (1988 & 1994). Applications of forced classification have not reached

their full potential for several reasons, including software limitations; few software packages

include dual scaling which offers forced classification, but many do include correspondence

analysis, which does not (as of yet) offer it. (Actually, correspondence analysis does offer a

procedure known as partial multiple correspondence analysis, which can be used to eliminate the

effect of a particular item from the other items of the analysis, and while no proof of equivalence

has been established, this procedure is believed to be similar to conditional forced classification

(Yanai & Maeda, 2002).)

Several different applications of the method of forced classification have been considered

in recent literature. Nishisato and Gaul (1988 & 1990) and Day (1989) discussed applications of

the method utilizing a
"criterion"

variable in the case ofmultiple-choice data. (Nishisato and

Gaul (1990) also applied it (a bit differently) in the analysis of paired-comparison data.) Day

(1989) specifically looked at using an "ideal
subject"

as the criterion variable in a forced

classification. That a particular subject, classification or demographic item could be used as the

criterion item in a forced classification analysis is an interesting idea. Nishisato (1994) further

discussed this notion, stating that an
"unrelated"

item could possibly be added to a questionnaire

or data set and then be used as the criterion item for forced classification.

If demographic information on the respondents is captured, the criterion item might very

well be a demographic characteristic. Since the responses to the preference items would

themselves constitute incidence data, it is readily apparent that a demographic variable could be
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used as the criterion item in the subsequent forced classification analysis. The analyst can then

determine which other items are highly correlated with the dimension defined by the criterion

item. Along these lines, Lawrence (1997), in a study of some customer satisfaction data collected

on a hospital survey, used overall satisfaction as the criterion item in a forced classification

analysis. In this and all the other expositions noted, except for the case involving
paired-

comparison data, the data were either incidence data or treated as incidence data, having a (1,0)

format, and a value k was chosen to weight the criterion item for
"forcing"

the solution.

The study of dominance data (i.e., paired-comparison, rank-order, and
successive-

categories data) has been somewhat limited, especially as it relates to forced classification.

Nishisato (1984, 1986, & 1994) did study forced classification of dominance data, but he did it in

the framework of choosing a pair of items to be used as the criteria (Nishisato, 1994). He stated

that two items were needed to
"drive"

the solution and that each of these arbitrarily chosen

criterion items must be multiplied by k within the so-call "dominance
matrix"

in order to force

the solution. He described how this could be done in the cases of paired-comparison and rank-

order data but neglected the case of successive-categories data. Lawrence (2000) noted a two

fold limitation of this type of analysis, observing that these two items must be part of the original

data set and that they might not necessarily be complementary.

Lawrence (2000) proposed a method for imposing a dichotomous (incidence) variable,

the criterion item, on the weighting of items in a dual scaling analysis of rank-order (dominance)

data. Essentially, Lawrence's method combined the incidence item with dominance data by, in

effect, converting the incidence data to rankings and combining them with the original body of

rank data. The subsequent matrix of rankings was then subjected to a standard dual scaling

11



analysis and was shown to
"force"

the dimension of interest to be the first solution of the

analysis that is, the criterion item was made to determine the first solution.

More recently, Lawrence (manuscript in preparation) has applied a similar strategy in the

forced classification analysis of paired-comparison data, here again subject to a dichotomous

incidence variable. The case involving successive-categories data is the focus of this thesis.

12



III. Successive-Categories Data

The study and implementation ofmethods for the analysis of successive-categories

(rating) data have been somewhat scarce with results that are sometimes debatable. Successive-

categories data, also know as ordered-choice or Likert data, are based on a set of strictly ordered

ratings (e.g., Poor, Fair, Good) that are assigned to a given set of stimuli by each respondent.

Many analysts, in their multivariate analyses, treat this type of data as if it were continuous, often

subjecting the data to principal components analysis or factor analysis. Neither of these

techniques is really appropriate for analyzing such data, especially when the response categories

are few in number. Nishisato 's dual scaling approach best analyzes this type of data for what it

is, namely categorical, and generally should be used for analyses of this sort.

Nishisato and Sheu (1984) discussed several different methods that might be an

improvement on a method initially proposed by Nishisato (1980a) that was based on a

Thurstonian formulation. Nishisato and Sheu outlined three methods, termedMethodD (design-

matrix),Method R (ranking), andMethod P (paired-comparison), with the intent of correcting

several problems (including imbalance of stimuli and category boundaries) that were discovered

in the earlier version. Method R is the simplest of the three and was used by Nishisato in his 1994

study of successive-categories data using dual scaling. It is for this purpose thatMethod R is used

in the formulation and procedure proposed in this project.

MethodR assigns ranks to both the stimuli and the (implicit) category boundaries that

exist in the data. For example, a set of successive-categories responses might be Poor, Fair,

Good and Excellent, where 1 is made to represent Poor, 2 is made to represent Fair, 3 is made

to represent Good, and 4 is made to represent Excellent. (Table / is an example of a typical

successive-categories response pattern with four subjects rating five items using any one of four

13



possible ratings (or categories).) There would be three category boundaries, one between each

pair of successive categories that is, between Poor and Fair, Fair and Good, and Good and

Excellent. Ranks are then assigned to both the items that have been rated by the respondents and

the category boundaries between these ratings.

Table 1:

Subject Item 1 Item 2 Item 3 Item 4 Item 5

1 3 4 2 3 1

2 4 4 2 1 3

3 1 2 4 3 2

4 2 2 3 4 * 2

Nishisato (1994) describes a systematic procedure for assigning these ranks: Starting with

the first category, the average rank (k0+l)/2, where kQ is the total number of stimuli classified

into Category 1, is given to all the stimuli in that category. The category boundary ti, between

Categories 1 and 2, is given rank k0+l. The next set of stimuli, kx , where k1 is the total

number of stimuli classified into Category 2
,
are assigned the rank (k1+l)/2 + (k0 + 1) . The

second category boundary t2, between Categories 2 and 3 ,
is given the rank (kQ + 1) + (kx + 1) .

This process continues until all the categories and category boundaries have received the proper

rankings. (The data in Table 1 would have the rankings shown in Table 2 on the following page.)

These rankings are then converted to dominance numbers etj by the formula

etj
=

2Kij -(n +m + 1), where Ki} is the rank assigned by subject i to item;', n is the number of

items, and m is the number of category boundaries (Nishisato, 1994). The resulting matrix of

dominance numbers is then subjected to a dual scaling analysis.

14



Table 2:

Subject Tl r2 T3 Item 1 Item 2 Item 3 Item 4 Item 5

1 2 4 7 5.5 8 3 5.5 1

2 2 4 6 7.5 7.5 3 1 5

3 3 5 7 1.5 4 8 6 1.5

4 1 5 7 3 3 6 8 3

A major source of debate and reason for limited analysis of successive-categories data (as

categorical data) revolves around the aspect ofmultidimensionality. It is often the case that

respondents answering surveys respond in a multidimensional sense and that they are often using

several different criteria in selecting their response to a survey question. It is with this in mind

that Nishisato (1994) raised questions with regard to the analysis of successive-categories data.

He pointed out that due to the empirical nature of the analysis, solutions beyond the first one

commonly do not have strictly ordered category boundaries. This often makes it rather difficult

to interpret any solution other than the first. Extensive work has been done by Odondi (1997) to

try to remedy this. Both Odondi (1997) and Nishisato (1994) proposed methods based on
multi-

step procedures using both clustering methods and dual scaling in which subjects were grouped

homogenously with each subsequent grouping then subjected to a separate dual scaling analysis.

These methods, notably that of Odondi, were shown to produce results with category boundaries

ordered properly. These methods are not very user-friendly, however, and often require more

than one pass through the data.

In the initial formulation of the dual scaling procedure for handling successive-categories

data, the constraint of ordered category boundaries is not in effect (Nishisato, 1994). The idea of

extracting only one solution or having to use a clustering procedure with more than one pass

through the data is usually not very attractive to those doing the data analysis, especially in view

of the fact that there are usually multiple dimensions to be extracted. Extracting only the first

15



solution, which has ordered category boundaries, appears to be the most popular analysis

strategy since this solution would seem to be the only one that can be reasonably easily

interpreted. However, this issue takes on greater importance and generates more debate when

respondents from different subpopulations are represented in the same data set. In fact, it would

often make sense, at least intuitively, that these people would answer questions in a different

manner. Males and females, for instance, might be subconsciously using a different continuum or

set of boundaries when answering questions. In this sense, the category boundaries of a

dimension so determined might not be ordered due to these differences. In fact, one would

expect that the differences that exist between different subpopulations would be reflected in the

category boundaries and that the category boundary most affected by group dissimilarities would

have the highest absolute weight and the category boundary least affected by dissimilarities

would have the lowest absolute weight. These boundaries would not necessarily be in order since

the category boundary that might do most to separate the two groups would not necessarily be at

the extremes of the data. It would seem that the problem would become compounded as the

number subgroups responding to the survey increases.

In fact, though, the analyst is at least as, if not more, concerned with the weights of items

of a survey than he is those of the category boundaries especially given that the category

boundaries have been arbitrarily introduced into the analysis anyway. With that in mind, the

procedure of this thesis is based on extracting more than one solution in the dual scaling analysis

and then identifying the items whose weights most reflect the different demographic

characteristics of the subgroups, ignoring the category boundaries and their order. The first

solution is still of certain importance, since it has the ordered category boundaries and explains

most of the variation in the data, but the focus is placed almost entirely on subsequent solutions

16



(primarily the second) and the weights assigned to the items in those solutions. (A study of the

category boundaries would be of interest only with regard to the ones for the original data and

then only from the standpoint of identifying differences in the continuum due to subgroups.)

Finally, there are two additional attributes or characteristics of successive-categories data

that are worth mentioning. Table I illustrates a very common but notable situation that occurs

when people are asked to respond using rating scales. Subject 4 of Table 1 has chosen not to

give any of the five items a Poor rating. It is quite possible that a subject would not use all of the

categories in assigning ratings to a set of items, or that a given item would receive the same

rating from all subjects or none of a particular rating from all subjects. This will be important in

dual scaling analyses of successive-categories data to follow.

A second important attribute of successive-categories data is that each response is

generally independent of any other. The rating that a respondent gives to each item is based on

how he defines the categories in relation to that particular item. In essence, his responses are

based on his definition of the continuum of choices he has to choose from based on that item.

There is not a strict inter-dependency of items as there is in the case of rank-order data, say,

where once one particular item is given the top ranking, no other item can receive the same rank

(assuming no ties). With these concepts in mind, the method of this thesis is formulated.

17



IV.Matrix Notation

Let FWxn be a Nxn matrix of successive-categories data, where N is the number of

subjects and n is the number of items. Also, let xNxl be a column vector representing some

grouping or demographic characteristic. In most cases, membership in a demographic (demo)

group is generally coded as "1", "2", "3", . .
.,
where

"1"

represents membership in the first

group,
"2"

represents membership in the second group, and so on.

The goal is to find a procedure for imposing the effects of the demographic variable on

the weighting of the items in the original data set F in such a way that this variable determines

the axis of the
"forced"

dimension. In essence, we want to force the analysis to have a solution

reflecting the effects of the demographic characteristic. The aim is to get this solution to be one

of the first solutions of the analysis.

Suppose a survey is given to two groups of respondents males and females, or some

other dichotomous demo grouping and we are interested in the effect of the male/female

dichotomy, say, in the way these people respond to the items on a survey. Membership in the two

groups represented in the demo variable is recorded on the survey. A column vector x^ for the

demographic variable, indicating the group membership of each respondent, is constructed with

attribute A (e.g., male) coded as a
"1"

and attribute B (e.g., female) coded as a "2". Somehow

we want to include the information of this incidence demo variable with the dominance

successive-categories data, collected as ratings on the survey, so that in a subsequent dual scaling

analysis the weighting of the items in the data set will reflect the effect of the demographic

variable in one of the initial solutions of the analysis.



We will begin by introducing the column vector x *Nxl ,
a sort of redefinition of \Nxl . Let

all of those that belong to the first group in xNxl be given a value of 1 in x *Nxl . Then, let all

those that belong to the second group in xM be assigned the value c + 2 + 2 q in x *Nxl ,
where

c is the number of categories in the original data set and q is the number of new categories to

be included between the original data and the two extreme values in x *Nxl . (Note that the

variables q and c + 2 + 2-q are set simultaneously.) More simply, x*^ is defined so that

Demo Group 1 = 1 and Demo Group 2 = c + 2 + 2 q .

By way of example, suppose that N = 5 respondents, or subjects, in two demographic

groups rate n = 3 items on a scale of 1 to c = 3 (i.e., into any one of three categories). The

demo vector x and the data matrix F might, respectively, look like

X5xl
~~

1 1 3 2

2 3 2 1

2 and F5X3 = 3 1 2

1 1 2 2

1 1 3 2

If q
= 5 new categories were to be included on either side of the categories of the original data

matrix F, then we would have c + 2 + 2 q
= 3 + 2 + 10 =15 and

* =
'

5x1

1

15

15

1

1

The original data (consisting of ratings) should also be modified so that 1 and

c + 2 + 2 q are the extreme choices of the successive categories, and the ratings in the original

19



data are
"centered"

in between 1 and c + 2 + 2 q . (The purpose of
"centering"

the data matrix

FNxn and altering the demo vector xNxl will be explained in the following chapter.) The

modification of F is done in the following manner: Let GNxn be a
"centering"

matrix to be

added. Define G such that G = (q +l)- lNxn ,
where q is again the number of new categories

included and lNxn is the unit matrix. We now modify the original data matrix F by adding G

and augmenting x
*
to that sum. Expressed symbolically,

F*
=[(F +G) lx*lL

Nx(n+1)
L\A TVJr/Wxn|A J-

The new TV x (n + 1) matrix F * is then submitted to dual scaling for analysis.

Again, by way of example, if F, q and x
*
are defined as above, the centering matrix

would be

G5X3=(5 + 1)-15X3 =

6 6 6

6 6 6

6 6 6

6 6 6

6 6 6

so that

"|Yl 3
2]

(S 6
6j

|"l~

~7 9 8

3 2 1 6 6 6 15 9 8 7 15

3 1 2 + 6 6 6 15 = 9 7 8 15

1 2 2 6 6 6 1 7 8 8 1

1 3
LLV 2, ^6 6 6J- [l 7 9 8 1

Note that the categories of the original data have been
"centered"

in F * between 1 and 15.

There are ten new categories in F *
,
five (2,3,4,5 and 6) between 1 (the category

representing Demo Group 1 in x
*
) and 7 (the

"adjusted"

lowest category of F) and five (10,

20



11, 12, 13 and 14) between 9 (the
"adjusted"

highest category of F) and 15 (the category

representing Demo Group 2 in x
* ).

21



V. Principles Behind the Procedure

The procedure described in this thesis is based on several principles that allow for its

formulation and the interpretation of its results. First of all, the values in the demo vector x
*

must be assigned in such a way that they are at the extreme categories of the
"new"

data matrix

F *
and away from the categories of the original data matrix F. The definition ofMethod R for

analyzing successive-categories data and the way that dual scaling handles the data makes the

reason for the definition of F *
apparent. If the dichotomous elements that comprise x

*
were

simply the extreme categories of original the data, then the groupings of the respondent scores

would be dependent on how many other items had been classified by respondents in those

extreme categories. This would make it difficult to identify the two demographic groups by way

of the respondent scores, since each score within a subgroup would not necessarily have the

same, or even approximately the same, magnitude. This necessitates the assignment of values in

x
* to be such that the two groups are represented by the extreme categories of F

*
, away from

the categories of the original data.

The definition of x *
also depends on the number of new categories q that are included

between the original data and the two extreme categories representing the two subgroups.

(Including additional categories can between the extreme categories of the data and the

categories represented in the demo vector x* doesn't violate the
"integrity"

of the original data;

the added categories could simply be thought of as categories that are unused when a respondent

rates the items.) In most cases, adding ten new categories to each side of the data matrix is

sufficient.

An examination of the proposed procedure points to differences between this method and

other methods for doing forced classification. One major difference is that in this procedure the
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effect of the demographic variable appears in the second solution of the dual scaling output

instead of the first solution, as it does in the forced classification procedures that have been

developed to handle of other types of data. In this case, the first solution will have the category

boundaries ordered and represent the original data as free of the effect of the demo variable as

possible, while the second solution will not necessarily have ordered category boundaries but

will reflect the effect of the demo variable. The reason for this is probably directly related to the

additional categories introduced into the matrix F*
. These new categories are directly related to

the values (categories/group number) in the vector x
*

,
and the corresponding category

boundaries are linear combinations of each other in the dominance matrix. The dominance

numbers for the category boundaries between the category corresponding to Demo Group 1 and

the categories for the original data are
"complementary"

to those between the categories for the

original data and the category corresponding to Demo Group 2 . The difference between the

dominance numbers for Demo Group 1 and Demo Group 2 in each of these newly-introduced

category boundaries is only two, which follows directly from the way the dominance matrix is

constructed.

The ratio of the dominance number for Demo Group 1 to that for Demo Group 2

approaches one as more new categories are introduced into the matrix F *
. In fact, if an infinite

number of new categories (and category boundaries) were introduced, the difference in the

dominance numbers would be so minimal that it would be impossible to distinguish between the

two demographic groups based on the dominance numbers for the category boundaries in the

dominance matrix. Under these circumstances, the first solution of the dual scaling analysis

would account for virtually 100% of the variation in the data with categories boundaries

appearing to determine that first solution.
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Since the ratio of the dominance numbers for the two demographic groups approaches

one as new categories are added, the respondent scores for the two groups approach one and the

weights for the items in F *
will approach those for the items in F. (An exception to this occurs

when item responses in the original data are similar in the same or opposite direction to the

groupings in the demo vector. In this case, the correlation between the weights for the items in F

and the weights for items in F *
will not be as high as it would be if none of the items of where

similar to the groupings in the demo vector.) It is important to note that F *
contains the demo

vector as an additional item; hence, there will never be a perfect correlation between weights for

the items in F and F *
unless the demographic variable had no effect on the original responses

comprising the data.

Since the first solution of the dual scaling analysis accounts for most of the variation in

the original data and category boundaries, the second solution will account for the demographic

variable. (The elements of the vector in the dominance matrix corresponding to the demographic

variable are the most positive and most negative in value, hence it is not surprising that this

would constitute the next most variation to be explained.) Accordingly, the assignment of

weights to the items will be influenced by the demographic variable. Item weights that are

directionally the same as the weight for the demo item will have the highest signed value.

Moreover, the respondent scores will fall into two groups (consistent with grouping in the demo

item) that are opposite in sign but similar in magnitude; within the demographic groups, the

respondent scores are very nearly the same. These are desired results of a forced classification

analysis.

Another major difference between this forced classification procedure and the procedures

for handling other types of dominance data is the need for only a one-column formulation of the
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demographic variable to force the solution. The apparent reason that only one column is needed

in this case is linked to the nature of successive-categories data; the items in successive-

categories are not inter-dependent. In fact, as was previously mentioned, the response to each

item is based on the respondent's definition of the rating categories in relation to each individual

item. Therefore, it would seem to make sense that a single-column formulation of the criterion

item could be used.
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VI. Expositional Application

Suppose ten respondents are asked six questions that involve ratings based on a rating

scale where 1 represents "poor", 2 represents "fair", 3 represents "good", and 4 represents

"excellent", leading to a 10x6 data matrix F. Also, suppose that information on a dichotomous

demographic variable for the ten respondents is recorded along with the rating data. The

demographic information comprises a one-column vector x, where among its elements a 1

represents membership in Group 1 and a 2 represents membership in Group 2 . The proposed

modification to F is shown below with ten new categories included between the centered data

and the two
"adjusted"

values of the demo variable, which become the two extreme categories of

F *
. The centering matrix G is added to F and the new demo vector x * is then augmented to

form the 10x7 matrix F *
. An analysis of both the original data matrix F and the new matrix

F*

is carried out using dual scaling. The results for the two analyses are shown, including the

dominance matrix, item weights, category boundary weights, respondent scores, and percent of

total variation explained by each solution. The two sets of results are then interpreted and

compared.

26



Let F =
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and x :
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1
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1

2

1
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Then, G
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11 11
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11 11

11 11

11 11

11 11
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11 11
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11 11

11 11
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and
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=
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,
so that

F+G =
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2
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+
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11 11

11 11

11 11

11 11

11 11

11 11

11 11

11 11

11 11

11 11

11 11

11 11

11 11

11 11

11 11

11

11 11

11 11

11 11

11 11

11 11

11 11

11 11

11 11

11 11

15 12 14 15
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14 14 14 15
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15 14 13 14

12 13 14 13
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13 14
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14 12
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13 15
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and
F*

=

15 12 14 15 13

14 14 13 12 13

14 13 14 13 15

15 12 15 14 13

14 14 14 15 14

15 15 14 15 13

13 13 13 15 14

15 14 13 14 13

12 13 14 13 15

13 12 12 12 14

14 2

14 1

13 1

15 26

12 26

13 26

12 1

15 26

14 1

14 26

The dominance matrix for F works out to be

E

6 -2 4 7 -8 1 7 -4 1

6 0 8 4 4 -3 -8 -3 4

8 0 6 3 -4 3 -4 8 -4

6 -2 2 6 -8 6 0 -4 6

6 -4 6 1 1 1 8 1 -8

8 -2 2 6 6 0 6 -5 -5

6 2 6 -2 -2 -2 8 4 -8

8 -2 4 7 1 -5 1 -5 7

6 0 6 -8 -3 3 -3 8 3

2 2 8 0 -6 -6 -6 5 5

(Note that the dominance numbers for the category boundaries comprise the first three columns

of dominance matrix E, while the dominance numbers for the items make up the last six

columns.)
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E*
=

Finally, the dominance matrix for F * is computed to be

-31 -29 -27 -25 -23 -21 -19 -17 -15 -13 -11 -7 -3 3

-29 -27 -25 -23 -21 -19 -17 -15 -13 -11 -9-5 19

-29 -27 -25 -23 -21 -19 -17 -15 -13 -11 -9-7 17

-31 -29 -27 -25 -23 -21 -19 -17 -15 -13 -11 -7 -3 1

-31 -29 -27 -25 -23 -21 -19 -17 -15 -13 -11 -7 -5 5

-31 -29 -27 -25 -23 -21 -19 -17 -15 -13 -11 -9 -3 1

-29 -27 -25 -23 -21 -19 -17 -15 -13 -11 -9-5 3 7

-31 -29 -27 -25 -23 -21 -19 -17 -15 -13 -11 -9 -3 3

-29 -27 -25 -23 -21 -19 -17 -15 -13 -11 -9-5 17

-31 -29 -27 -25 -23 -21 -19 -17 -15 -13 -11 -3 17

9 11 13 15 17 19 21 23 25 27 29 6-9 0 6-5 0

11 13 15 17 19 21 23 25 27 29 31 5 5 -2 -7 -2 5

11 13 15 17 19 21 23 25 27 29 31 4-3 4-3 9 -3

9 11 13 15 17 19 21 23 25 27 29 5-9 5 -1 -5 5

9 11 13 15 17 19 21 23 25 27 29 0 0 0 7 0 -9

9 11 13 15 17 19 21 23 25 27 29 5 5-1 5 -6 -6

11 13 15 17 19 21 23 25 27 29 31 -1 -1-1 9 5 -7

9 11 13 15 17 19 21 23 25 27 29 6 0-6 0-6 6

11 13 15 17 19 21 23 25 27 29 31 -7-2 4-2 9 4

9 11 13 15 17 19 21 23 25 27 29 -1 -7 -7-7 4 4

(Note that the dominance numbers for category boundaries comprise the first 25 columns of

dominance matrix E *
,
while the dominance numbers for the items make up the last seven

columns.)

-31

-31

31

31

31

-31

31

-31

31_
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The output of the dual analysis of F follows:

Variation by Solution for DSA of F (Original Data)

Variation 1 2 3 4 5

Pet Total

Cum Pet

34.414

34.414

24.224

58.638

21.105

79.653

10.901

90.554

5.022

95.576

Item Weights by Solution for DSA of F (Original Data)

Item 1 2 3 4 5

1 1.092 0.482 -1.443 -0.092 0.246

2 -0.626 0.825 -0.270 2.324 0.919

3 -0.015 0.224 0.297 -1.376 2.276

4 0.583 2.009 0.457 -0.825 -1.217

5 -0.100 -0.990 1.884 -0.047 0.091

6 -0.080 -1.492 -1.599 -0.509 -0.398

Category Boundaries by Solution for DSA of F (Original Data)

Cat Bound 1 2 3 4 5

1 -2.095 0.111 -0.170 -0.391 -0.810

2 -0.355 -0.359 0.254 0.158 -0.562

3 1.595 -0.810 0.589 0.758 -0.545

Respondent Scores by Solution for DSA of F (Original Data)

Resp 1 2 3 4 5

1 1.372 0.461 -0.512 -1.438 -0.864

2 0.843 -0.965 -0.847 1.739 0.608

3 1.093 -0.754 1.061 -0.071 1.398

4 1.042 -0.398 -0.964 -1.775 0.971

5 1.092 1.090 0.979 0.302 0.080

6 1.041 1.360 -0.331 1.033 0.758

7 0.951 0.657 1.525 0.185 -1.233

8 1.176 -0.170 -1.378 0.681 -0.760

9 0.465 -1.319 1.278 -0.192 0.673

10 0.586 -1.701 0.195 0.242 -1.690
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The output of the dual scaling analysis of F
* follows:

Variation by Solution for DSA of F * (Demo Included)

Variation 1 2 3 4 5

Pet Total

Cum Pet

89.889

89.889

8.926

98.815

0.498

99.313

0.311

99.624

0.192

99.816

Item Weights by Solution for DSA of F * (Demo Included)

Item 1 2 3 4 5

1 0.128 0.293 0.115 -2.671 -1.915

2 -0.122 -2.600 -1.170 -3.142 3.023

3 -0.025 -0.241 -0.618 0.902 -3 .377

4 0.042 0.220 -3.792 0.316 -1.108

5 0.012 -0.751 0.116 3.476 1.506

6 -0.006 0.023 3.892 -0.753 -1.043

7 0.393 5.480 0.133 0.562 0.503
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Category Boundaries by Solution for DSA of F * (Demo Included)

Cat Bound 1 2 3 4 5

1 -1.726 -0.056 -0.007 -0.014 -0.030

2 -1.612 -0.064 -0.007 -0.015 -0.029

3 -1.498 -0.072 -0.007 -0.015 -0.028

4 -1.384 -0.080 -0.006 -0.015 -0.027

5 -1.269 -0.088 -0.006 -0.015 -0.026

6 -1.155 -0.096 -0.006 -0.016 -0.025

7 -1.041 -0.104 -0.006 -0.016 -0.024

8 -0.927 -0.112 -0.006 -0.016 -0.023

9 -0.812 -0.120 -0.006 -0.016 -0.023

10 -0.698 -0.128 -0.005 -0.017 -0.022

11 -0.584 -0.136 -0.005 -0.017 -0.021

12 -0.367 -0.112 0.534 0.872 0.724

13 -0.060 -0.369 0.447 0.438 0.617

14 0.283 -0.395 0.438 0.399 1.426

15 0.559 -0.217 -0.003 -0.019 -0.012

16 0.673 -0.225 -0.003 -0.020 -0.011

17 0.787 -0.233 -0.003 -0.020 -0.010

18 0.901 -0.241 -0.003 -0.020 -0.009

19 1.016 -0.249 -0.003 -0.020 -0.008

20 1.130 -0.257 -0.002 -0.021 -0.007

21 1.244 -0.265 -0.002 -0.021 -0.006

22 1.358 -0.273 -0.002 -0.021 -0.005

23 1.473 -0.282 -0.002 -0.021 -0.005

24 1.587 -0.290 -0.002 -0.022 -0.004

25 1.701 -0.298 -0.002 -0.022 -0.003

Respondent Scores by Solution for DSA of F * (Demo Included)

Resp Group 1 2 3 4 5

1 2 1.020 0.820 -0.258 0.216 -1.357

2 1 0.972 -1.221 0.963 -1.920 0.388

3 1 0.975 -1.256 -0.032 0.395 -0.628

4 2 1.018 0.808 0.748 0.229 -1.946

5 2 1.018 0.775 -1.446 0.585 0.808

6 2 1.017 0.807 -1.158 -1.121 0.540

7 1 0.973 -1.234 -1.457 0.336 0.145

8 2 1.019 0.813 0.656 -1.160 0.375

9 1 0.971 -1.275 0.498 1.094 0.032

10 2 1.016 0.741 1.488 1.343 1.649
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A look at the first five solutions of the dual scaling analysis of F indicates that the

demographic characteristic does not define any of these dimensions. This does not mean that the

ratings of the respondents were not influenced by the demo in the analysis, only that the latent

effect of the demo does not show up in the first five solutions. With the demo included as the

criterion item, however, the dual scaling analysis (of F
*
) clearly shows that the demo item, not

unexpectedly, determines the second solution of the analysis. In effect, the demo variablefixes

the axis of the second solution. It appears that Items 1 and 4
"load"

most positively on this

demo-defined dimension, while Item 2
"loads"

very negatively. An examination of the original

data and the demo item reveals that the ratings for Items 1 and 4 seem to align with the l's and

the 2 's of the demo, and the ratings for Item 2 seem to align in the opposite direction. The

weights of the first six items in the first solution of the DSA of
F*

are similar to the weights of

the same items in the DSA of the original data matrix F. It is important to note that the item

weights would increasingly differ in the DSAs of F and F *
as the ratings for one or more items

"lined
up"

with the elements of the demo item.

The category boundaries of the first solution of both analyses are ordered, as one would

expect. The category boundaries of the second solution of the DSA of F *
are not ordered, but

the category boundaries for the items of the original data (Category Boundaries 12, 13, and 1 4 )

are ordered. This is not always the case using this procedure, but as was previously mentioned,

in a forced classification analysis the analyst would generally be more concerned with the item

weights than the category boundaries. Category Boundary 14, having the highest magnitude,

appears to be most affected by the demo item, albeit negatively. As for the respondent scores in

the second solution, they settle into two groups determined by the pattern in the demo vector,
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with Group 1 scores taking on values around -1.2 and Group 2 scores assuming values around

0.8.
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VII. Real-Data Application

A health survey was administered by the Student Health Center at Rochester Institute of

Technology (RIT) asking students about their stress level (Appendix C). The rating scaling on

the survey had 1 representing "never", 2 representing "seldom", 3 representing "occasionally",

4 representing "often", and 5 representing "most of the time". Students were also asked several

demographic questions on the survey (gender, employment status, health appointment vs. no

health appointment, etc.). A convenient subset of 2 0 respondents who answered the first section

of the survey (concerning frustrations) was selected for inclusion in the analyses to follow, which

in the case of the forced classification analyses, separately included the demo items
"gender"

(male vs. female), "employment
status"

(employed vs. unemployed), and "had a health

appointment vs. no health appointment". The output from the DSA of the original data is

compared to the output from the forced classification analyses, one for each individual demo

item. The original rating data, the demo vectors, and the modified matrices are shown below.

The percent of variation accounted for by solution, item weights and corresponding respondent

scores for each analysis follow.
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From the survey responses, we have
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Y

1 1 2 l

2 3 1 l
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3 3 2 l

2 4 2 l

2 2 1 2

1 2 2 1

2 3

3 3
. xi

=

1

1
, x2

2

2

1 2 1 2

2 2 2 2

3 2 2 2

1 2 2 1

5 2 1 2

3 3 1 2

5 4 1 2

1 3 2 1

5 2_ 1 2

,
and x3

=

where F is the matrix of original rating data for the 2 0 respondents, x1 the Gender

demographic with 1 representing
"male"

and 2 representing "female", x2 is the Employment

demo with 1 representing
"unemployed"

and 2 representing "employed", and x3 is the
Health-

Appointment demo with 1 representing "had a health
appointment"

and 2 representing "did not

have a health appointment".
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'Centered"

and augmented by the modified demo xx*, F becomes

14 14 13 14 13

16 14 13 13 13

14 14 13 13 13

14 14 15 14 13

15 14 14 14 14

15 14 15 16 13

14 14 15 14 13

14 14 15 14 13

15 14 13 13 12

F * =

14

13

14

13

14

14

15

13

14

13

14 14 13 13 14

15 15 14 13 13

14 14 16 13 14

14 14 15 14 12

14 14 15 14 15

15 14 14 14 15

16 15 16 14 15

14 15 16 15 13

15 15 14 13 13

15 13

12 12 27

13 14 1

14 14 1

12 12 27

14 14 27

13 15 27

13 13 1

12 13 27

13 14 1

14 14 1

12 13 1

13 13 27

14 13 27

12 13 27

16 13 1

15 14 1

16 15 1

12 14 27

16 13 1

where
Fx* includes ten new categories between the

"centered"

data and extreme values of the

demo item Gender. The augmentation of the modified demo item followed the addition of the

centering matrix to the original data matrix F.
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"Centered"

and augmented by the modified demo x2*, F becomes

14 14 13 14 13 15 13 27

16 14 13 13 13 12 12 1

14 14 13 13 13 13 14 1

14 14 15 14 13 14 14 1

15 14 14 14 14 12 12 1

15 14 15 16 13 14 14 1

14 14 15 14 13 13 15 1

14 14 15 14 13 13 13 27

15 14 13 13 12 12 13 1

F *
=

14

13

14

13

14

14

15

13

14

13

13

14

14

14

27

27

14 14 13 13 14 12 13 27

15 15 14 13 13 13 13 27

14 14 16 13 14 14 13 27

14 14 15 14 12 12 13 1

14 14 15 14 15 16 13 27

15 14 14 14 15 15 14 27

16 15 16 14 15 16 15 27

14 15 16 15 13 12 14 1

15 15 14 13 13 16 13 27

where
F2* is the modified data matrix, the modified demo vector for Employment having been

augmented after the centering matrix was added to F. Ten new categories were included

between the
"centered"

data and the extreme values of the demo item.
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'Centered"

and augmented by the modified demo x,*, F becomes

14 14 13 14 13 15

16 14 13 13 13 12

14 14 13 13 13 13

14 14 15 14 13 14

15 14 14 14 14 12

15 14 15 16 13 14

14 14 15 14 13 13

14 14 15 14 13 13

15 14 13 13 12 12

'
* =

14 14 14 15 14 13

13 13 14 13 13 14

14 14 13 13 14 12

15 15 14 13 13 13

14 14 16 13 14 14

14 14 15 14 12 12

14 14 15 14 15 16

15 14 14 14 15 15

16 15 16 14 15 16

14 15 16 15 13 12

15 15 14 13 13 16

13

12

14

14

12

14

15

13

13

14

14

13

13

13

13

13

14

15

14

13

1

27

27

27

27

27

27

27

1

1

1

27

27

27

27

27

27

1

27

where
F* is the

"centered"

data matrix augmented by the modified demo vector for Health-

Appointments Once again, ten new categories have been included between the centered data and

the extreme values of the demo item.
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The output of the dual scaling analysis of F follows:

Variation by Solution for DSA of F (Original Data)

Variation 1 2 3 4 5

Pet Total

Cum Pet

57.443

57.443

14.782

72.225

9.733

81.958

5.544

87.502

4.464

91.966

ItemWeights by Solution for DSA of F (Original Data)

Item 1 2 3 4 5

1 0.681 -0.132 -1.356 -0.634 0.793

2 0.350 -0.521 -0.678 0.109 1.111

3 0.595 0.274 2.091 -1.199 1.688

4 -0.132 -0.857 1.111 -1.024 -1.737

5 -0.768 0.650 -0.985 -1.568 -1.127

6 -0.609 2.799 0.029 0.666 0.029

7 -0.608 -0.344 1.204 1.872 -0.550

Respondent Scores by Solution for DSA of F (Original Data)

Resp 1 2 3 4 5

1 0.914 0.966 -0.759 0.999 -1.155

2 0.999 -0.883 -1.677 -0.657 0.585

3 1.021 -0.430 -0.815 2.049 -0.409

4 1.140 0.365 1.258 0.460 0.174

5 1.079 -0.613 -0.961 -1.638 0.402

6 1.025 -0.120 1.199 -0.703 -0.904

7 1.051 -0.492 1.469 0.999 -0.107

8 1.241 -0.384 0.600 -0.630 0.459

9 1.070 -1.127 -0.845 0.967 0.658

10 1.003 -0.638 0.508 -0.567 -2.374

11 0.838 0.851 0.945 2.044 -0.526

12 0.976 -0.724 -1.559 -0.145 -0.759

13 1.188 -0.254 -0.855 0.198 1.345

14 1.039 0.940 0.132 -0.849 1.149

15 1.151 -0.936 0.813 -0.295 0.738

16 0.699 1.993 0.092 -1.133 -0.605

17 0.780 1.525 -0.945 -0.556 -1.536

18 0.647 1.746 0.359 -0.621 1.398

19 1.021 -0.957 1.459 -0.793 0.450

20 0.886 1.477 -0.787 0.825 1.205

40



The output of the dual scaling analysis of F,
* follows:

Variation by Solution for DSA of
Fx* (Male vs. Female)

Variation 1 2 3 4 5

Pet Total

Cum Pet

90.009

90.009

8.727

98.736

0.391

99.127

0.315

99.442

0.174

99.616

ItemWeights by Solution for DSA of
F_* (Male vs. Female)

Item 1 2 3 4 5

1 0.172 0.002 -0.059 2.353 0.610

2 0.078 -0.004 -0.833 1.169 -0.587

3 0.145 -0.070 0.679 -3.705 1.571

4 -0.046 0.050 -1.173 -1.918 2.058

5 -0.175 -0.481 0.971 1.781 3.477

6 -0.114 -0.714 5.006 -0.018 -1.718

7 -0.153 -0.334 -1.071 -2.092 -2.627

8 0.002 5.696 0.594 0.022 -0.112

Respondent Scores by Solution for DSA of
F_* (Male vs. Female)

Resp Group 1 2 3 4 5

1 2 0.999 0.960 1.409 0.762 -1.263

2 2 1.000 1.015 -0.463 1.684 0.448

3 1 1.000 -0.983 -1.304 0.762 -1.663

4 1 1.003 -0.988 -0.286 -1.313 -0.401

5 2 1.002 1.006 -0.236 0.961 1.610

6 2 1.001 0.997 0.362 -1.189 0.513

7 2 1.001 0.991 -0.317 -1.476 -0.907

8 1 1.005 -0.961 -1.012 -0.658 0.665

9 2 1.001 1.018 -0.834 0.840 -1.159

10 1 1.000 -0.974 -1.415 -0.546 1.232

11 1 0.997 -1.019 0.115 -0.983 -1.718

12 1 0.999 -0.974 -1.527 1.517 0.684

13 2 1.004 0.999 0.080 0.837 -0.565

14 2 1.002 0.964 1.377 -0.138 0.537

15 2 1.003 1.020 -0.577 -0.820 0.071

16 1 0.995 -1.038 1.637 -0.104 1.196

17 1 0.997 -1.033 0.981 0.923 0.873

18 1 0.994 -1.026 1.500 -0.357 0.371

19 2 1.000 1.016 -0.566 -1.450 0.690

20 1 0.999 -1.014 1.104 0.756 -1.209
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The output of the dual scaling analysis of
F2* follows:

Variation by Solution for DSA of
F,* (Employed vs. Unemployed)

Variation 1 2 3 4 5

Pet Total

Cum Pet

90.102

90.102

8.718

98.820

0.350

99.170

0.259

99.429

0.179

99.608

Item Weights by Solution for DSA of
F2* (Employed vs. Unemployed)

Item 1 2 3 4 5

1 0.166 -0.301 -1.575 2.264 1.394

2 0.072 -0.266 -1.549 0.216 -0.155

3 0.139 -0.276 2.715 -2.609 2.024

4 -0.052 -0.467 0.373 -2.234 1.696

5 -0.180 0.252 -0.595 1.193 2.649

6 -0.117 0.570 3.718 3.547 -0.839

7 -0.160 -0.336 1.325 -1.349 -3.364

8 0.194 5.664 -0.450 -0.686 -0.073

Respondent Scores by Solution for DSA of
F2* (Employed vs. Unemployed)

Resp Group 1 2 3 4 5

1 2 1.008 0.906 -0.900 0.830 -0.955

2 1 0.988 -1.110 -1.458 1.248 0.769

3 1 0.989 -1.100 -0.529 0.979 -1.984

4 1 0.992 -1.090 1.441 -0.046 -0.396

5 1 0.990 -1.105 -0.835 0.728 1.693

6 1 0.989 -1.109 1.112 -0.175 0.804

7 1 0.989 -1.120 0.912 -0.894 -1.026

8 2 1.014 0.846 -0.447 -1.707 0.469

9 1 0.989 -1.130 -1.064 0.568 -0.876

10 2 1.009 0.846 -0.685 -1.885 0.326

11 2 1.007 0.896 0.876 -0.803 -2.177

12 2 1.009 0.860 -2.138 -0.415 -0.037

13 2 1.013 0.859 -1.230 -0.272 -0.243

14 2 1.011 0.903 0.320 -0.310 0.772

15 1 0.991 -1.133 0.088 -0.812 0.290

16 2 1.005 0.948 1.236 0.723 1.141

17 2 1.006 0.932 0.232 1.318 0.598

18 2 1.003 0.925 1.422 0.897 0.766

19 1 0.988 -1.133 0.500 -1.373 0.746

20 2 1.008 0.921 0.357 1.430 -0.678
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The output of the dual scaling analysis of
F3* follows:

Variation by Solution for DSA of
F3* (Health Appointment vs. No Health Appointment)

Variation 1 2 3 4 5

Pet Total

Cum Pet

92.319

92.319

6.361

98.680

0.447

99.127

0.314

99.441

0.179

99.620

ItemWeights by Solution for DSA of
F3* (Health Appointment vs. No Health Appointment)

Item 1 2 3 4 5

1 0.143 0.015 -0.748 2.426 1.152

2 0.048 0.207 -1.131 1.245 -0.166

3 0.116 0.063 -0.096 -3.707 2.121

4 -0.075 0.317 -1.399 -1.870 1.799

5 -0.203 0.303 2.005 1.626 2.707

6 -0.135 -0.406 4.829 -0.253 -1.174

7 -0.181 0.246 -0.247 -2.064 -3.298

8 0.941 -5.626 -0.482 0.057 0.009

Respondent Scores for DSA of
F3* (Health Appointment vs. No Health Appointment)

Resp Group 1 2 3 4 5

1 2 1.023 -0.551 0.698 0.720 -0.999

2 1 0.924 1.774 -0.411 1.649 0.653

3 2 1.024 -0.505 -0.672 0.848 -2.048

4 2 1.027 -0.535 -0.085 -1.271 -0.458

5 2 1.025 -0.501 -0.888 1.003 1.641

6 2 1.025 -0.530 -0.530 -1.163 0.715

7 2 1.025 -0.507 -0.840 -1.428 -0.996

8 2 1.029 -0.512 -0.848 -0.575 0.637

9 2 1.025 -0.501 -1.487 0.940 -0.942

10 1 0.924 1.786 -0.089 -0.579 0.529

11 1 0.922 1.740 1.398 -1.094 -2.083

12 1 0.923 1.791 -0.094 1.491 0.113

13 2 1.028 -0.521 -0.684 0.884 -0.180

14 2 1.025 -0.542 0.616 -0.188 0.844

15 2 1.026 -0.503 -1.382 -0.740 0.312

16 2 1.019 -0.567 1.881 -0.200 1.114

17 2 1.021 -0.554 1.429 0.863 0.537

18 2 1.018 -0.587 1.502 -0.409 0.636

19 1 0.924 1.776 -0.583 -1.484 0.785

20 2 1.023 -0.577 1.127 0.736 -0.809
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A look at the weights assigned to the items in the dual scaling analysis of the original

data matrix F suggests that students tend to have experienced more frustration in the areas

addressed by the first three questions than in the areas addressed by the last four questions. It

appears that students seem to be experiencing higher frustrations in professionally and

economically related areas than they are in socially related areas. In this
"standard"

analysis,

there is no clear evidence of the effect of any of the demographic characteristics.

The dual scaling analysis of F,
* forces the second solution to reflect the effect of

"gender"

in the analysis (with the first solution paralleling the first solution in the analysis of F).

The respondents in Group 1 are males, while those in Group 2 are females. All respondents in

each group are assigned the same score in the second solution, approximately 1 for males and

approximately -1 for females. Among the items, there are none that strongly
"load"

on this

"gender"

dimension in a positive way. Item 4 loads most positively, indicating that females

might be slightly more inclined than males to experience frustration at not meeting their goals.

Item 6 loads in a highly negative way, indicating that at least among the 2 0 students selected

males experience a very high degree of frustration in dating. Of course, this makes sense since

the student population at RIT disproportionately favors males.

Similarly, as expected, the dual scaling analysis of
F* forces the effect of "employment

status"

to appear in the second solution. (The first solution again parallels the first solution of the

DSA of F.) As with the analysis involving "gender", the two groups of respondents in this

analysis were assigned two distinct scores, -1 . 1 for employed and 0 . 9 for unemployed. Items

5 and 6 load most positively on this
"employment"

dimension, while Items 4 and 7 load most

negatively. This seems to indicate that among the selected subset of 2 0 respondents employed

students experience more frustration pertaining to social issues, while unemployed students

44



experience more frustration pertaining to finding a job and accomplishing their goals. This also

makes sense since unemployed students have more time to be with their friends, but at the same

time, these same students might not feel they have reached their goals not being gainfully

employed.

Finally, the demo variable "health appointment vs. no health
appointment"

was made to

be the criterion item in the formulation of F,*, which was then submitted to a DSA. The two

groups of respondents, as determined by the make-up of the demo item, once again take on two

different sets of scores; those in Group 1 (i.e., those who had a health appointment) were

assigned scores ranging from 1 . 7 to 1 . 8, while respondents in Group 2 (i.e., those who did not

have a health appointment) were assigned scores in the neighborhood of -0.5. Item 6 loads

most positively on the dimension defined by this demographic variable, indicating that among

the 2 0 students in the selected subset those who feel frustration in accomplishing their goals are

the more likely to have had a health appointment than those who do not feel such frustration. (As

in the DSA of
Fx*

and F2*, the first solution of the DSA of
F,*

parallels the first solution of

the DSA of F.)
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VIII. Other Possible Formulations

There are several formulations that might also work in forcing the effect of a

dichotomous criterion item on the assignment of weights and scores in a DSA of successive-

categories data. This section of the thesis presents three other possible formulations that were

considered in the investigations of this thesis.

One alternative method that was considered used a single-column criterion item x* (with

Group 1 = 1 and Group 2 = c + 2 as its elements), repeated a sufficient number of times to force

x*

to define the initial dimension (per Guttman's (1950) Principle ofInternal Consistency). It is

important to note that the unit matrix lNxn must be added to the original data matrix before the

criterion item (i.e., the demo vector) is augmented; if the data matrix F is not
"centered"

(by

adding the unit matrix to F), the respondent scores of the first demo group will be affected by

the number of items in the original data that received the lowest rating. (Under these

circumstances, the value (1) representing Demo Group 1 and the lowest rating (1) would be the

same, confounding the analysis.) Several problems arose using this strategy, the first ofwhich

was that the first solution, which was supposed to reflect effect of the criterion (or demo) item,

was sometimes shown to have all negative item weights. This happened in spite of the fact that

there was at least one item that
"moved"

ordinally in the same direction as the demo. Obviously,

this made it difficult to identify items whose responses were influenced by the demo variable.

The item that was the most ordinally similar to the demo generally had the smallest negative

weight, but this did little to make it and others like it easy to identify in the output. As might be

expected, the second solution of this analysis paralleled the first solution of the analysis of the

original data matrix F, except when several items were ordinally similar to the demo.
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Another formulation involved augmenting the demo item in the form of a two-column

matrix x *Nx2 to the original data matrix F. This two-column matrix was constructed in a manner

similar to the one in Lawrence's (2000) method for handling rank-order data that is,
x*

was

created so that Demo Group 1 rows were made to be [1, c + 2 ] and Demo Group 2 rows were

made to be [ c + 2
, 1], where again c is the number of categories in the rating scale. Before

x* is

augmented, the unit matrix lNxn is added to F in order to
"center"

the ratings between 1 and

c + 2
,
the two values that made up x*. This formulation was usually able to force the first

solution of the analysis to be a dimension defined by the demo variable and produce a second

solution reflecting the original (unaltered) data, but a problem came up when the number of

items got to be more than five. Under these circumstances, the demographic item represented in

x*

will not always dominate the analysis. Capitalizing on Guttman's (1950) Principle of

Internal Consistency,
x*

would have to be repeated several times in F* in order to get it to be

the determining
"force"

in the analysis. Obviously, this strategy is not very computationally

efficient, which was a deterrent to its being selected as the formulation of choice. It did perform

fairly well for small data sets, but more work is needed to determine if it is able to handle any

small data set, regardless of the composition. It was also apparent using this formulation that the

first solution, whether
x* is augmented only once or multiple times depending on the number of

items in F, did somewhat parallel the second solution of the DSA using the formulation

proposed in this thesis. In other words, using the two-column expression for
x* (as defined

above), led to weights for the items and scores for the respondents that were fairly similar to in

sign but slightly different than in magnitude those based on the proposed single-column

expression for x* that involved adding new categories.
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The last formulation that was considered involved a two-column expression for the demo

item that was similar in definition to the one-column expression x *Nxl used in the thesis

formulation. This two-column matrix x *Nx2 was defined so that the rows for Demo Group 1

were made to be [1 ,
c + 2 + 2 q ] and the rows for Demo Group 2 were made to be [ c + 2 + 2 q ,

1]. (In effect, x *Nxl was the first column of x *Wx2 ,
and its additive complement was the second

column.) Recall that c is the number of original categories and q is the number of new

categories introduced into the data set in the formulation. The matrixG = (q + 1) lNxn is used to

"center"

the original data matrix F before x*Nx2 is augmented to get F*. The results of the

DSA of this formulation of F* showed no improvement over the results using the formulation

that involved the single-column expression x *Nxl . In fact, the results of the two analyses were

quite similar except that the percent of variation explained by the first solution was actually

lower when the two-column expression x *Nx2 was used in the formulation of F*. As for the

item weights, they were similar in sign and magnitude. As in the case of the first alternative

formulation, the second solution here paralleled the first solution of the DSA of the original data.
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IX. Conclusions and Topics for Future Research

The proposed procedure of including new categories between the
"adjusted"

(centered)

original data and the extreme values of the modified criterion item allows the user to determine

the second solution of a dual scaling analysis so that the effect of the particular demographic

characteristic of the criterion item defines that solution. (That the
"forced"

dimension shows up

in the second solution sets this procedure apart from other forced classification methods that

have the forced dimension showing up in thefirst solution.) Robust results were obtained when

at least ten new categories were included. These results are easily interpretable and allow the

analyst to identify in the scores the two groups into which the respondents were demographically

classified and, more importantly the specific items that strongly load on the dimension defined

by the demo variable. In this forced dimension, item weights that have the same sign as the

weight assigned to the demo item are positively influenced by the demo, while item weights that

have the opposite sign are negatively influenced. Except in situations where there are several

items whose ratings strongly reflect the influence of the demographic characteristic, the first

solution using the proposed forced classification procedure
"parallels"

(i.e., is quite similar) the

first solution of a standard DSA of the original data.

There are several areas of work that merit further study. One such area involves the use

of the
"centering"

matrix G. Although G was specifically defined in this study, it is entirely

possible that a matrix other than G, as defined, could be used that is, a matrix which is some

multiple of the unit matrix, not just the one that
"centers"

the ratings the data matrix F between

the two numbers that make up the modified demo vector x*. (As was discussed earlier in this

thesis,
"centering"

the data produces robust results that are not dependent on the homogeneity of

the items.) For example, one possibility might be simply to add the unit matrix itself to the F
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matrix. It seems obvious that adding different multiples of the unit matrix to the original data

would variously affect the item weighting, but more work is needed to see just what that effect

would be.

Another area for future research could focus on extending the proposed procedure for

handling a two-group demographic variable to the point where it can handle variables comprised

of three or more demo groups. Like the procedure for handling the dichotomous demo, this

extension might require only a single-column criterion item to force the solution (which is quite

possible given the structure of successive-categories data), but this, too, must be investigated.

Finally, it might also be worthwhile to compare the items with high weights using the

proposed method with the high-weight items based on Odondi 's (1997) clustering method to see

if the two sets of items that are identified would be the same. There are most certainly many

possibilities for future research related to the procedure presented in this thesis.
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Appendix A

Each Computer Program in Appendix A was written in the R programming language and should

be used with R Version 2.0.1 or higher.

Successive-Categories Format Program

SuccFormat<-function(data 1
,NumStim,NumCat)

#Written by Adam E. Wyse, 2005

#takes in datal (original data), NumStim (Number of Stimulus), and Number ofCategories from the User

#uses notation and methods that are consistent with Nishisato (1994)

{
#Note this algorithm needs to be altered if you want to handle data with missing responses

CatBound<-NumCat- 1

nrl<-nrow(datal) #extracts the number of rows from datal

ncl<-ncol(datal) #extracts the number of columns from datal

TotalDim<-NumStim+CatBound #Adds Number of Stimilus and Category Boundary #Together which is my Total

Dimension

Rating<-matrix(0,nrl,(NumCat)) #finds number of stimulus that each subject put at each specific rating

SuccData<-matrix(0,nrl,TotalDim) #This will store and output my Successive-Categories Data in Rank Order

#Format

Rank<-0 #Variable that keeps track of ranks

Holder<-0 #Used to Hold the Rank when we have more than one ranking for a particular respondent

F<-0 #Used to Hold the Final Rank, this variable is necessary due to the multiple responses in a given category

DMatrix<-matrix(0,nrl,TotalDim) #This will store and output the Dominance Matrix

for (i in l:nrl) #runs through the matrix to figure out how many are selected at each rating

1
for (j in l:ncl)

{

Rating[i,(datal[ij])]<-1+Rating[i,(datal[ij])]

for (i in l:nrl)

#Loops through the Original matrix assigning the ranks to the stimuli and category boundaries

#It runs through the matrix up to the Number ofCategories (CatBound +1)

#If statements tell the matrix how to assign the ranks to the dominance matrix

1
for (kin l:(CatBound+l))

{

54



for (j in l:ncl)

#Case when we have 0 in the rating category and we arent in the last rating category

if (Rating[i,k]==0 &(k!=(CatBound+l)))

{
Rank<-F

Rank<-Rank+ 1/nc 1

SuccData[i,k]<-Rank

F<-Rank

1
#Case when we have only assigned one stimulus to a particular rating category

if(Rating[i,k]=l)

{

#One Stimulus and not the Last Rating Category

if ((datal [i,j]==k) & (k!=(CatBound+l)))

{
Rank<-F

Rank<-((Rating[i,k]+ 1 )/2)+Rank

SuccData[i,(j+CatBound)]<-Rank

Rank<-Rank+1

SuccData[i,k]<-Rank

F<-Rank

#One Stimulus and the Last Rating Category
if ((datal [ij]==k) & (k==(CatBound+l)))

{
Rank<-F

Rank<-((Rating[i,k]+ 1 )/2)+Rank

SuccData[i,(j+CatBound)]<-Rank

#Case when we assigned more than One Stimulus to a Rating Category
if (Rating[i,k]>l)

{
#More than One Stimulus First Category

if((datal[ij]==k)&(k==l))

{
Holder<-Rank

Rank<-((Rating[i,k]+l)/2)+Rank

SuccData[i,(j+CatBound)]<-Rank

Rank<-Rank-((Rating[i,k]+l)/2)

SuccData[i,k]<-(Holder+(Rating[i,k]+l))

F<-SuccData[i,k]

}
#More than One Stimulus and it isnt the First or Last Category

if((datal[ij]=k) & ((k>l)&(k<(CatBound+l))))

{
Rank<-SuccData[i,(k- 1 )]

Holder<-Rank

Rank<-((Rating[i,k]+l)/2)+Rank

SuccData[i,(j+CatBound)]<-Rank
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Rank-Rank-((Rating[i,k]+l )/2)

SuccData[i,k]<-(Holder+(Rating[i,k]+l))

F<-SuccData[i,k]

}
#More than One Stimulus and it is the Last Category
if ((datal [i,j]==k) & (k==(CatBound+l)))

Rank<-SuccData[i,(k-l)]

Rank<-((Rating [i,k]+ 1 )/2)+Rank

SuccData[i,(j+CatBound)]<-Rank

Rank<-Rank-((Rating[i,k]+ 1 )/2)

#Resets the Rank and FQ?inal Rank)

Rank<-0

F<-0

#Gets the Dominance Matrix for this set of data

DMatrix<-2*SuccData-(NumStim+CatBound+l)

DMatrix
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Dual Scaling Computations Program

DS_Command<-function(F,n=0,c=0,N=0,type=c("MC","S","R","PC","SC","CT"1""),nsolutions)
#written by Adam E. Wyse

#F is the converted matrix (dominance or incidence format) that needs to be inputted

#n is the number of items

#c is the number of categories

#N is the number of subjects

#type specifies what data type we are putting in

#nsolutions is the number of solutions that the user wants to display
#This procedure was developed in accordance withMethods found in Nishisato 's "Elements ofDual

Scaling"

(1994)

{

m<-c-l #fmds the number of category boundaries

fc<-matrix(colSums(F),ncolQ?),l) #fc dual scaling matrix

fr<-matrix(rowSums(F),nrow(F),l) #fr dual scaling matrix

Dr<-matrix(0,nrow(F),nrow(F)) #Dr dual scaling matrix set to zeros

Dc<-matrix(0,ncolCF),ncolOF)) #Dc dual scaling matrix set to zeros

trf<-function(x) #computes the trace

(sum(diag(x))}

if ((type=="MC")|(type"S")) #Multiple Choice or Sorting Format

1

diag(Dr)<-n

diag(Dc)<-(fc)

ft<-trf(Dr)

1

else if ((type=="R")|(type=="PC")) #Ranking or Paired Comparison

{

diag(Dr)<-n*(n-l)

diag(Dc)<-N*(n-l)

ft<-N*n*(n-l)

1

else if (type"SC") #Successive Categories

{

diag(Dr)<-(n+m)
*(n+m- 1 )

diag(Dc)<-N*(n+m-l)

ft<-N*(n+m)*(n+m-l)

1

else #Anything else, includes contingency tables

{

diag(Dr)<-(fr)

diag(Dc)<-(fc)

ft<-trf(Dr)

1

Power<-function(datal,power) #finds the power of a matrix

{

Y<-datalA(power)

Y[is.infinite(Y)]<-0 #assigns zero when it is infinite

Y
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Dchalf<-Power(Dc,.5) #Power is used to raise Dc to the 1/2

Drneghalf<-Power(Dr,-.5) #Power is used to raise Dr to the -1/2

Dcneghalf<-Power(Dc,-.5) #Power is used to raise Dc to the -1/2

B<-Drneghalf%*%F%*%Dcneghalf#Computes the B matrix

tranB<-t(B) #Computes the transpose of the B matrix

BprimeB<-tranB%*%B #multiples the transpose of B and B

colvect<-matrix(l,ncol(F),l) #makes a column vector of l's

rowvect<-matrix(l,l,ncol(F)) #makes a row vector of l's

topCl<-Dchalf%*%colvect%*%rowvect%*%Dchalf #Computes denominator of the subtracted part

A<-topC 1/ft #finds the subtracted part

Drnegone<-Power(Dr,-l) #Power is used to raise Dr to the -1

Dcnegone<-Power(Dc,-l) #Power is used to raise Dc to the -1

CMatrix<-BprimeB-A #Computes the CI matrix eliminating trivial solution

if((type=="R")|(type=="PC")|(type=="SC"))
#these types of data don't have the trivial solution II so we don't need to subtract off the correct

{
CMatrix<-BprimeB

s<-svd(CMatrix) #Singular-Value Decomposition ofMatrix cl

newsquare<-s$d #equals the diagonal component from svd

xvector<-s$u #x vector from Singular-Value Decomposition ofMatrix cl

xweights<-xvector*(sqrt(ft)) #assign initial x weights

# (Note: R normalizes vectors, so this is not needed in this program)

dualx<-Dcneghalf%*%xweights #obtain dual x weights for dual scaling

P<-(l/sqrt(newsquare))#new value

optimalY<-Drnegone%*%F%*%dualx #place y value in matrix off by a constant

percentexplain<-matrix(0, 1 ,ncol(optimalY)) #holds the percent of information explained in a matrix

holdpercent<-0 #a place holder for the percent matrix that is set equal to 0

for (i in l:ncol(optimalY)) #obtain correct optimal y weights for dual scaling

{
for (j in l:nrow(optimalY))

{

optimalY[),i]<-P[i]*optimalY[j,i]

percentexplain[l,i]<-ho!dpercent+(100*newsquare[i])/trf(CMatrix) Calculates percent explained

holdpercent<-percentexplain[l,i] #reset the holdpercent

}
optimalX<-dualx #we know that x should equal the dual x per the dual relations

#these commands create user specified output according to the number of solutions

if (nsolutions>ncol(F)) #user specified too many solutions

{
xdisplay<-optimalX

ydisplay<-optimalY
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percentdisplay<-percentexplain

newdisplay<-matrix(newsquare, 1 ,ncol(F))

}

else #user wants to extract a number solutions less than original dimension

{

xdisplay<-matrix(0,nrow(optimalX),nsolutions)

ydisplay<-matrix(0,nrow(optimalY),nsolutions)

percentdisplay<-matrix(0, 1 ,nsolutions)

newdisplay<-matrix(0, 1 .nsolutions)

for (i in l:nrow(optimalY)) #creates the correct display

for(j in 1:nsolutions)

ydisplay[i,j]<-optimalY[i,j]

percentdisplayf 1 ,j]<-percentexplain[ 1 ,j]

newdisplayf 1 ,j]<-newsquare[j]

for (i in 1 :nrow(optimalX)) #creates the correct display

{

for(j in l:nsolutions)

{

xdisplay[i,j]<-dualx[i,j]

# it is important to note that optimal x and optimal y usually have different dimensions

list(round(F,digits=10),round(xdisplay,digits=3),round(ydisplay,digits=3),round(percentdisplay,digits=3),signif(new

display, digits=3))

#outputs the original data, weights, eta, and percentexplained in proper format

#uses the round function to display the data in proper format

#round is used on F to erase the use of exponential notation on the conversion programs that R sometimes employs
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Program to Create F* Matrix

SetClass<-function(data 1
,data2,n,NumCat)

#Written by Adam E. Wyse, 2005

#This function takes in as input the original data,

#the demographic variable, the number of stimulus,

#the number of categories

#**** This function is used to include ten new categories between a set of original data

# and a demo variable. A centering matrix is also added to the original matrix.

{
NewCat<-10 #ten new categories added

m<-NumCat-l #number of category boundaries in the original data

CatBound<-m+2+2*NewCat #catculates the new number of category boundaries between demo variables

demol<-l #setsDemo 1 to 1

demo2<-l+CatBound #sets Demo 2

Add<-demo 1+NewCat

#This calculates the number that needs to be added to each element of

# the original data matrix. It is also the number of new category boundaries

# either above or below the centered data.

AddMatrix<-matrix(Add,nrow(datal),ncol(datal)) #Matrix that will be added to original data matrix

TransData<-datal+AddMatrix #Transforms Original DataMatrix

for (j in 1 :nrow(data2)) #replaces all those classified as 2 with group2

1

if(data2[j,l]!=l)

1
data2[j,l]<-demo2

OutData<-cbind(TransData,data2) #Augments Transformed Data with demographic column

OutData
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Appendix B

Explanation of How to Use Computer Programs

The user must first create a file that contains the successive-categories data that is to be

analyzed and a second file that contains the demographic data. (These should be text files with a

"txt"

extension.) The user then reads the data into R using theMatrix and Scan functions

selecting specific options of these functions to ensure that data are read in properly. (See below

for an example.) The successive-categories data and the demographic data will be read in

separately, and after the data are entered, the SetClass function constructs the
F* Matrix. The

SuccFormat function is then run to create the dominance matrix E* for the analysis to follow.

Finally, theDSjCommand function, with
E*

as its input, does the actual dual scaling analysis.

DSjCommand displays the dominance matrix ([[1]]), the item weights and category boundaries

(with category boundaries listed first) ([[2]]), the respondent scores ([[3]]), the cumulative

percent of variation explained ([[4]]), and the squared correlation ratio ([[5]]). If the user is

interested only in a standard analysis of the
original data, then the SetClass function can be

ignored. It is important to note that each function must be added to the workspace before it can

be used in the analysis. This can be done by copying the program from a script and hitting the

"F5"

key. A sample session of how to use the programs follows.
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Sample Session

> Al<-matrix(scan("thesis_example.txt"),ncol=6,byrow=TRUE) #Reads in the successive-

categories data

Read 60 items

> A2<-matrix(scan("demol.txt"),ncol=l,byrow=TRUE) #Reads in the demo variable

Read 10 items

> Al #Displays the successive-categories data

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 4 1 3 4 2 3

[2,] 3 3 2 1 2 3

[3,] 3 2 3 2 4 2

[4,] 4 1 4 3 2 4

[5,] 3 3 3 4 3 1

[6,: 4 4 3 4 2 2

[7,] 2 2 2 4 3 1

[8, j 4 3 2 3 2 4

[9,; 1 2 3 2 4 3

[10,] 2 1 1 1 3 3

> A2 #Displays the demo variable

[,1]

[1, 2

[2, 1

[3, 1

[4, 2

[5, 2

[6, 2

[7, 1

[8, 2

[9, 1

[10, 2

> A3<-SuccFormat(Al,6,4) #Changes original data to the dominance matrix

> A4<-DS_Command(A3,6,4,10,"SC",5) #Finds the first 5 solutions for the dual scaling analysis

of the dominance matrix A3
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>A4

[ [ 1 ] ] #Dominance matrix for original data

Ll] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9;

[1, ] -6 -2 4 7 -8 1 7 -4 1

[2, ] -6 0 8 4 4 -3 -8 -3 4

[3, ] -8 0 6 3 -4 3 -4 8 -4

[4,] -6 -2 2 6 -8 6 0 -4 6

[5,] -6 -4 6 1 1 1 8 1 -8

[6,] -8 -2 2 6 6 0 6 -5 -5

[7,] -6 2 6 -2 -2 -2 8 4 -8

[8,] -8 -2 4 7 1 -5 1 -5 7

[9,] -6 0 6 -8 -3 3 -3 8 3

[10,] -2 2 8 0 -6 -6 -6 5 5

[ [ 2 ] ] # Displays item weights and category boundaries, where the first three rows are category

boundaries and the last six rows are the items

1Ll] 1[,2] [,3] L4] L5]

[1, ] -2,.095 0..111 -0.170 -0,.391 -0.810

[2, ] -0,.355 -0..359 0.254 0,.158 -0.562

[3, ] 1,.595 -0..810 0.589 0..758 -0.545

[4, ] 1,.092 0..482 -1.443 -0,.092 0.246

[5, ] -0,.626 0..825 -0.270 2,.324 0.919

[6, ] -0..015 0,.224 0.297 -1..376 2.276

[7, ] 0..583 2,.009 0.457 -0..825 -1.217

[8, ] -0..100 -0..990 1.884 -0 .047 0.091

[9, ] -0..080 -1..492 -1.599 -0..509 -0.398

[ [ 3 ] ] #Respondent scores

[,1] L2] [,3] [,4] [,5]

[1,] 1.372 0.461 -0.512 -1.438 -0.864

[2,] 0.843 -0.965 -0.847 1.739 0.608

[3,] 1.093 -0.754 1.061 -0.071 1.398

[4J 1.042 -0.398 -0.964 -1.775 0.971

[5,] 1.092 1.090 0.979 0.302 0.080

[6,] 1.041 1.360 -0.331 1.033 0.758

[7,] 0.951 0.657 1.525 0.185-1.233

[8,] 1.176 -0.170 -1.378 0.681 -0.760

[9^] 0.465 -1.319 1.278 -0.192 0.673

[10,] 0.586 -1.701 0.195 0.242 -1.690
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[ [ 4 ] ] #Cumulative Percent Explained

LU L2] [,3] [,4] [,5]

[1,] 34.414 58.638 79.653 90.554 95.576

[ [ 5 ] ] #Squared Correlation Ratio

Ll] L2] [,3] [,4] [,5]

[1,] 0.138 0.0971 0.0843 0.0437 0.0201

> A5<-SetClass(Al,A2,6,4)

>A5#Displays
F*

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1, ] 15 12 14 15 13 14 26

[2, ] 14 14 13 12 13 14 1

[3, ] 14 13 14 13 15 13 1

[4, ] 15 12 15 14 13 15 26

[5,] 14 14 14 15 14 12 26

[6,] 15 15 14 15 13 13 26

[7,] 13 13 13 15 14 12 1

[8,] 15 14 13 14 13 15 26

[9, ] 12 13 14 13 15 14 1

[10,] 13 12 12 12 14 14 26

> A6<-SuccFormat(A5,7,26) #Creates dominance matrix for A5

> A7<-DS_Command(A6,7,26,10,"SC",5) ) #Finds the first 5 solutions for the dual scaling

analysis of the dominance matrix A3
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> A7 [ [ 2 ] ] #Displays item weights and category boundaries, where the first 25 rows are

category boundaries and the last seven rows are items

LU L2] [,3] [,4] [,5]

-0.014 -0.030

-0.015 -0.029

-0.015 -0.028

-0.015 -0.027

-0.015 -0.026

-0.016 -0.025

-0.016 -0.024

-0.016 -0.023

-0.016 -0.023

-0.017 -0.022

-0.017 -0.021

0.872 0.724

0.438 0.617

0.399 1.426

-0.019 -0.012

-0.020 -0.011

-0.020 -0.010

-0.020 -0.009

-0.020 -0.008

-0.021 -0.007

-0.021 -0.006

-0.021 -0.005

-0.021 -0.005

-0.022 -0.004

-0.022 -0.003

-2.671 -1.915

-3.142 3.023

0.902 -3.377

0.316 -1.108

3.476 1.506

-0.753 -1.043

0.562 0.503

[i,: -1. 726 -0. 056 -0. 007

[2,; -1 612 -0 064 -0. 007

[3,; -1 498 -0 072 -0. 007

[4, -1 384 -0 080 -0. 006

[5, -1 269 -0 088 -0 006

[6, -1 155 -0 096 -0 006

[7, -1 041 -0 104 -0 006

[8, -0 927 -0 112 -0 006

[9, -0 812 -0 120 -0 006

[10, 1 -o 698 -0 128 -0 005

[11, l -o 584 -0 136 -0 005

[12, 1 -o 367 -0 112 0 534

[13, 1 -o 060 -0 369 0 447

[14, 1 o 283 -0 395 0 438

[15, ] o 559 -0 217 -0 003

[16, ] o 673 -0 225 -0 003

[17, ] o 787 -0 233 -0 003

[18, ] o 901 -0 241 -0 003

[19, ] 1 016 -0 249 -0 003

[20, ] 1 130 -0 257 -0 002

[21, 1 1 244 -0 265 -0 002

[22, ] 1 358 -0 .273 -0 002

[23, ] 1 .473 -0 .282 -0 002

[24, ] 1 .587 -0 .290 -0 002

[25, ] 1 .701 -0 .298 -0 002

[26, ] o .128 0 .293 0 115

[27, ] -o .122 -0 .260 -1 170

[28, ] -o .025 -0 .241 -0 618

[29, ] o .042 0 .220 -3 .792

[30, ] o .012 -0 .751 0 .116

[31, ] -o .006 0 .023 3 .892

[32, ] o .393 5 .480 0 .133
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> A7 [ [ 3 ] ] #Respondent scores

Ll] [,2] [,3] [,4] [,5]

[1,] 1.020 0.820 -0.258 0.216 -1.357

[2,] 0.972 -1.221 0.963 -1.920 0.388

[3,] 0.975 -1.256 -0.032 0.395 -0.628

[4,] 1.018 0.808 0.748 0.229 -1.946

[5,] 1.018 0.775 -1.446 0.585 0.808

[6,] 1.017 0.807 -1.158 -1.121 0.540

[7,] 0.973 -1.234 -1.457 0.336 0.145

[8,] 1.019 0.813 0.656 -1.160 0.375

[9,] 0.971 -1.275 0.498 1.094 0.032

[10,] 1.016 0.741 1.488 1.343 1.649

> A7 [ [ 4 ] ] #Cumulative Percent Explained

LU [,2] [,3] [,4] [,5]

[1,] 89.889 98.815 99.313 99.624 99.816
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QUESTIONNAIRE

Appendix C

Student-Life Stress Inventory

Please circle your current stress level:

Mild

1

Moderate

2

Severe

3

For all the questions below please respond by circling the correct response using the following scale:

1 = never 2 = seldom 3 = occasionally 4 = often 5 = most of the time

STRESSORS

A. As a student (frustrations):

1. I have experienced frustrations due to delays in reaching my goals.

1 never 2 seldom 3 occasionally 4 often

2. I have experienced daily hassles which affected me in reaching my goals.

1 never 2 seldom 3 occasionally 4 often

3. I have experienced lack of sources (money for auto, books, etc.).

1 never 2 seldom 3 occasionally 4 often

4. I have experienced failures in accomplishing the goals that I set.

1 never 2 seldom 3 occasionally 4 often

5. I have not been accepted socially (became a social outcast).

1 never 2 seldom 3 occasionally 4 often

6. I have experienced dating frustrations.

1 never 2 seldom 3 occasionally 4 often

7. I feel I was denied opportunities in spite ofmy qualifications.

1 never 2 seldom 3 occasionally 4 often

B. I have experienced conflicts which were:

8. Produced by two or more desirable alternatives.

1 never 2 seldom 3 occasionally 4 often

5 most of the time

5 most of the time

5 most of the time

5 most of the time

5 most of the time

5 most of the time

5 most of the time

5 most of the time
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9. Produced by two or more undesirable alternatives.

1 never 2 seldom 3 occasionally 4 often 5 most of the time

10. Produced when a goal had both positive and negative alternatives.

1 never 2 seldom 3 occasionally 4 often 5 most of the time

C. I experienced pressures:

11. As a result of competition (on grades, work, relationships with spouse and/or friends).

1 never 2 seldom 3 occasionally 4 often 5 most of the time

12. Due to deadlines (papers due, payments to be made, etc.).

1 never 2 seldom 3 occasionally 4 often 5 most of the time

13. Due to an overload (attempting too many things at one time).

1 never 2 seldom 3 occasionally 4 often 5 most of the time

14. Due to interpersonal relationships (family and/or friends, expectations, work responsibilities).

1 never 2 seldom 3 occasionally

D. I have experienced (changes):

15. Rapid unpleasant changes.

1 never 2 seldom 3 occasionally

16. Too many changes occurring at the same time.

1 never 2 seldom 3 occasionally

17. Change which disrupted my life and/or goals.

1 never 2 seldom 3 occasionally

E. As a person (self-imposed):

18. I like to compete and win.

1 never 2 seldom 3 occasionally

19. I like to be noticed and be loved by all.

1 never 2 seldom 3 occasionally

20. I worry a lot about everything
and everybody.

1 never 2 seldom 3 occasionally

4 often

4 often

4 often

4 often

4 often

4 often

4 often

5 most of the time

5 most of the time

5 most of the time

5 most of the time

5 most of the time

5 most of the time

5 most of the time
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21. I have a tendency to procrastinate (put off things that have to be done).

1 never 2 seldom 3 occasionally 4 often

22. I feel I must find a perfect solution to the problems I undertake.

1 never 2 seldom 3 occasionally 4 often

23. I worry and get anxious about taking tests.

1 never 2 seldom 3 occasionally 4 often

II. REACTIONS TO STRESSORS:

F. During stressful situations, I have experienced the following (physiological):

24. Sweating (sweaty palms, etc.).

1 never 2 seldom 3 occasionally 4 often

25. Stuttering (not being able to speak clearly).

1 never 2 seldom 3 occasionally 4 often

26. Trembling (being nervous, biting fingernails, etc.).

1 never 2 seldom 3 occasionally 4 often

27. Rapid movements (moving quickly, from place to place).

1 never 2 seldom 3 occasionally 4 often

28. Exhaustion (worn out, burned out).

1 never 2 seldom 3 occasionally

29. Irritable bowels, peptic ulcers, etc.

1 never 2 seldom 3 occasionally

30. Asthma, bronchial spasm, hyperventilation.

1 never 2 seldom 3 occasionally

31. Backaches, muscle tightness (cramps), teeth-grinding.

1 never 2 seldom 3 occasionally

32. Hives, skin itching, allergies.

1 never 2 seldom 3 occasionally

33. Migraine headaches, hypertension, rapid heartbeat.

1 never 2 seldom 3 occasionally

4 often

4 often

4 often

4 often

4 often

4 often

5 most of the time

5 most of the time

5 most of the time

5 most of the time

5 most of the time

5 most of the time

5 most of the time

5 most of the time

5 most of the time

5 most of the time

5 most of the time

5 most of the time

5 most of the time
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34. Arthritis, over-all pains.

1 never 2 seldom 3 occasionally

35. Viruses, cold, flu.

1 never 2 seldom 3 occasionally

36. Weight loss (cant eat).

1 never 2 seldom 3 occasionally

37. Weight gain (eat a lot).

1 never 2 seldom 3 occasionally

G. When under stressful situations, I have experienced (emotional)

38. Fear, anxiety, worry.

1 never 2 seldom 3 occasionally

39. Anger.

1 never 2 seldom 3 occasionally

40. Guilt.

1 never 2 seldom 3 occasionally

41. Grief, depression.

1 never 2 seldom 3 occasionally

H. When under stressful situations. I have (behavioral):

42. Cried.

1 never 2 seldom 3 occasionally

43. Abused others (verbally and/or physically).

1 never 2 seldom 3 occasionally

44. Abused self (used drugs, etc.).

1 never 2 seldom 3 occasionally

45. Smoked excessively.

1 never 2 seldom 3 occasionally

46. Was irritable towards others.

1 never 2 seldom 3 occasionally

4 often 5 most of the time

4 often 5 most of the time

4 often 5 most of the time

4 often 5 most of the time

4 often 5 most of the time

4 often 5 most of the time

4 often 5 most of the time

4 often 5 most of the time

4 often 5 most of the time

4 often 5 most of the time

4 often 5 most of the time

4 often 5 most of the time

4 often 5 most of the time
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47. Attempted suicide.

1 never 2 seldom 3 occasionally 4 often

48. Used defense mechanisms.

1 never 2 seldom 3 occasionally 4 often

49. Separated myself from others.

1 never 2 seldom 3 occasionally 4 often

I. With reference to stressful situations, I have (cognitive appraisal):

50. Thought about and analyzed how stressful the situations were.

1 never 2 seldom 3 occasionally 4 often

51. Thought and analyzed whether the strategies I used were most effective.

1 never 2 seldom 3 occasionally 4 often

5 most of the time

5 most of the time

5 most of the time

5 most of the time

5 most of the time
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Appendix D

Student Demographics Page

Please answer the following questions about yourself so that we can better interpret the
information that we are collecting for this study. Every answer given is confidential.

Please circle or fill in the blank with the correct response:

1. Gender: Male Female
1 2

2. Academic Standing: Freshman Sophomore Junior Senior Grad

3. GPA: 1.5 1.9 2.0 2.4 2.5 2.9 3.0-3.4 3.5-4.0
12 3 4 5

4. Age: 17 18 19 20 21 22 23 24 25 Other:

5. College: CAST CCIS CIAS COB COE COLA COS NTID
12 3 4 5 6 7 8

6. Major(s):_

7. Ethnicity: African American Asian Caucasian Latino Native American Other

1 2 3 4 5 6

8. Employment status: employed unemployed

9. Marital status: single married divorced
1 2 3

10. Have you had an appointment at the Student Health Center in the last 6 months?

Yes No Don't Know
1 2 3
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