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Abstract

The fabrication of integrated circuits (ICs) in @nsconductor manufacturing
environment is governed by two main categoriesnFEnd of the Line (FEOL) processing and
Back End of the Line (BEOL) processing. Transistare formed in active regions in FEOL
while BEOL processing focuses on creation of metsdrconnects and interlevel dielectrics
(ILDs). These dielectrics patterned in BEOL amguieed to have low permittivity dt values in
order to mitigate parasitic capacitance. This ctida in capacitance between metal layers
diminishes dynamic power dissipation, crosstalksepiand interconnect delay issues as IC
technology nodes continue to scale down in sizeelebtric constants between 2.0 to 2.7 are
required for sub 90nm CMOS technology. Organasiicglass (OSG) has been chosen as a
candidate in this thesis study due tokitgalue being within the required range. OSG filmswa
deposited on pilot wafers via Plasma Enhanced Gianviapor Deposition (PECVD) using a
reaction between organosilane and oxygen gaseschaflenge that has been identified in
patterning OSG as an interlevel dielectric film wscduring the photoresist removal or ash
process. Two types of plasma ash chemistries beee used to test OSG film integrity; é&nd
H.Ar. The quality of OSG film is compromised due tasma damage observed by carbon
depletion or hydrogen species. Pre- and posttremisoval of OSG film composition has been
characterized using materials analytic methods saghFourier Transform Infrared (FTIR)
spectrometry, X-ray Photoelectron Spectroscopy (XPBynamic Secondary lon Mass
Spectrometry (DSIMS), and Surface Photovoltage (SPWafer test chips were also fabricated
and probed at Metal 1 and Metal 2 levels for seiiperine resistances and comb capacitances to
characterize the performance of the OSG film atLBn The HAr plasma chemistry has been

proven to be a better candidate for maintaining @8@position.
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1. Introduction

1.1 Background

In the semiconductor industry, the developmente# nC technology using single and
dual-damascene (Fig. 1) [1] processes involveptheess integration of a difficult and critical
step of copper interconnects and low-k dielectrisew materials used in interconnect layers are
essential for achieving the higher speed operativaisare required for advanced computing and
communications applications. Copper serves asti@rbeonductor than aluminum and the
interline capacitance of low-k materials is lowdrart that of silicon dioxide [2]. The
combination of lower resistance from copper matad and the lower capacitance from low-k
dielectrics has greatly reduced the RC delay iarautnnect circuitry allowing further reduction
in geometry without a loss in performance. RC ylelaused by interconnects plays a major role

in device performance.

TW-TH-HE
PROCESS

V& PHOTOLITHOGRAPHY V1A EFCH FHOTORESIST TREHCH TREWCH ETCH,
STRIF, FHOTOLITROGRAFHY  PHOTORESIST STRIP
PHOTOR BSIST BARRIER-LAYER
- REMOYAL

e HARD — —

L

B e e e

Figure 1. Dual Damascene Process Flow [1]

For the 65 nm generation and on, various studie® shat dielectric constants of k < 3.0
are required to reduce this delay [1-15]. The deasaof decreasing chip size and fabricating
higher speed chips are answered by fabricating lsmahnsistors and placing them closer

together. Thus the insulating dielectric layersween metal interconnects of the same layer
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become thinner and thinner laterally. Low-k digéles such as OSG films are required for faster
clock speeds, reducing cross-talk and parasitiagtgnce, lower power consumption, and lower
heat dissipation to enable faster switching sp¢8ds Dielectric materials with lower k values

are porous making their insulating properties aldseaair. This attribute, however, makes them
more susceptible to modification by plasma etclang photoresist stripping. There is also very

little published data on the microstructure stutlgrganic low-k materials.

1.2 Thesis Research at Texas I nstruments

Two parts of the copper/low-k integration processhsas stripping photoresist and
cleaning wafers without damaging the low-k matsrighave been significant challenges.
Advanced 300mm semiconductor facilities have mist ¢hallenge in production, and work has
progressed on the development of next generatidra-kow-k dielectrics (particularly

nanoporous materials) to further reduce the dietecbnstant [4].

OSG film degradation after resist strip has bearadterized using various analytic film
techniques provided by Texas Instruments. A I@2btest chip wafers using several resist strip
and wafer clean methods was processed based atskevations noted from film composition
of OSG pilot wafers to define a process windowha tow-k integration process. Analysis of
electrical data in the Metal 1 and 2 layers aréuinhed as a direct comparison to the realization of

these process parameters.
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2. Theory

2.1 Current Low-K Photoresist Strip and Clean Optionsfor OSG Films

During photolithography, a layer of film is pattethafter photoresist deposition to define
topography. When resist is no longer needed ettdr, it is stripped inside a plasma chamber.
Studies have shown that the quality of resist reah@enerally depends on power, pressure,
temperature, gas flows, and time [1-8]. The gaxi®s inside the chamber react with the resist
that is exposed to downstream plasma. The reasipeeies, usually oxygen and fluorine,

recombine with resist forming ash bi-products whacé then removed through a vacuum pump.

Plasma damage that is incorporated into the lowrksfraises the overall dielectric
constant of the film. There are currently sevgrapular low-k PR strip options available in
industry and development research including exXsiwutemperature/low pressure @sh [2,3],
exsitu high temperature/high pressure H based 4stH[and N resist strip options [5], exsitu
high pressure/high temperature H based resist siitip a low amount of @[6], insitu low
temperature/low pressure @sh [7]. Qis known to deplete carbon and thus two approaatees
taken: a HAr based ash at higher temperatures without@ a low temperature/low pressure
O, based ash, where the lower pressure/temperatwses to reduce carbon depletion. The
H.Ar process was patented at Texas Instruments iica®mith and Phillip Matz of the SiTD
group [8]. Low ambient temperatures are typicalbed to prevent damage of porous low-k

materials.

Once resist stripping is complete, the wafer rezgiia clean step to remove residual
particles left from the ash process. The two oithat were tested are batch and single wafer

cleans. Both cleans have fluoride containing clkéms formulated for removal of inorganic
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and highly oxidized etch residues and controllegdhieg of contaminated oxide surfaces. Clean

processing may sometimes, though rarely, causeanaxi damage such as OSG cracking [9].

2.2 OSG Film

In the semiconductor industry, a low-k film is dgeed to have low density and porosity
is also introduced. Organosilicate glass (OSGa ipopular candidate for back-end low-k
dielectrics because of its terminal €groups that cannot network. OSG films can deliver
values lower than 2.7 [10-17]. They are generdigposited via PECVD. The molecular

structure is displayed in Figure 2.

OSG Film
Si Substrate

Figure2. Schematic of OSG deposited film on Si and itseoolar structure
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2.3 Film Characterization Methods

2.3.1 Dynamic Secondary Ion Mass Spectrometry (DSIMS)

SIMS is a valuable analytical technique that heagetbped into an established method for
characterizing semiconductors. Some advantagemdieg the applications of SIMS in the
semiconductor industry include surveying implantegpant profile, determination of doping
composition, location of trace contaminants acrdsvice features, and identification of

inorganic contaminants [18-20].

The technique can be used to analyze any elemedntsisotope in the periodic table. It
has a relatively high sensitivity (£0— 10® cm®) depending on the element being analyzed.
SIMS also has good lateral resolution of about 1 piHowever, some disadvantages include
complex instrumentation, its destructive naturetesiting, and the requirement of calibration
standards for quantitative estimation [19]. AnotHesadvantage present is the dependence of
the secondary ion yield on the matrix of the samflhis effect, known as the matrix effect, can
cause the secondary ion signal from the same elemedifferent matrices to be different.

Matrix effects can complicate quantitative estimatof the impurity species in the sample.

In SIMS, a primary ion beam is incident upon a gkem The ions used for the primary
beam may be argon, cesium, or oxygen, and the ieseae typically in the 1-30 keV range [20].
This causes material to be sputtered off the saréh¢he sample. Most of the sputtered material
is composed of neutral atoms, and these are lasgarundetected. However, a small fraction
(about 1%) of the ejected material is in the forneither positive or negative ions. These ions,
called secondary ions, of either polarity are thgtracted and analyzed by passing them through

a mass spectrometer. The analyzed ion signales tecorded and both the substrate and
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contaminant atoms of the sample at the primary beaation can be analyzed. Figure 3 [18] is

a schematic of a SIMS instrument and its components

Figure 3. Schematic of a SIMS Instrument: 1) Cesium ion eseu) Duoplasmatron. 3) Electrostatic lens.
4) Sample. 5) Electrostatic sector - ion energyyaea. 6) Electromagnet - mass analyzer. 7) Electro
multiplier / Faraday cup. 8) Channel-plate / Flsment screen - ion image detector. [18]

SIMS can be operated in three modes: static, di;mand imaging. In order to obtain a
depth profile, dynamic mode (DSIMS) was used [18he sputtering rate is approximately 10
pm/hr and causes erosion of the sample where aratavelops at the primary beam location

[20]. The depth of the crater correlates to thatteping time. The mass spectrometer is locked
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on to a single mass-to-charge ratio, and the aedlyan signal intensity is monitored as a
function of sputtering time. One of the main apalions of DSIMS is the analysis of trace
element depth distribution (i.e. dopants in semitmbors). Impact ion energy is adjusted
depending on the applications. Low energy (dowr2@0-300 eV) is used to reduce atomic
mixing due to the collision cascade and improvetldepsolution to the nanometer level whilst
high energy (up to 20-30 keV) is chosen to go de€¢p@-20 microns), faster (um/min), and
improve detection limits and image resolution [18]SIMS is the preferred method in analyzing

the composition of OSG post-ash and clean processes
2.3.2 Fourier Transform Infrared Spectroscopy (FTIR)

In FTIR, infrared radiation is passed through aalyred sample. Some of the infrared
radiation is absorbed by the sample and also trdit@sin The resulting spectrum represents the
molecular absorption and transmission, creatingotecular blueprint of the sample. Like a
fingerprint, no two unique molecular structures duoe the same infrared spectrum. This
attribute makes FTIR useful for several types odlgsis. FTIR can identify bond peaks of
unknown materials, determine the quality or coesisy of a sample, and determine the amount

of components in a mixture [21].

When converting spectra from time domain to freqyetsiomain in FTIR, the following

equation is used:

==

S = ff[ﬂ]e_i":”rdﬂ
—e= Equation 1
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Wheret represents timd, is the intensity, and is wavenumber. The sum is performed over all
contributing frequencies to a given sig&dt) in the time domain.

I{v)= Q.Ref S(t) e ™ dt
—= Equation 2

Gives non-zero value whe(t) contains a component that matches the oscill&tingtion.

An optical device called an interferometer thatamges infrared frequencies was
developed in order to overcome the limitations sfav scanning process. It produces a unique
type of signal which has all of the infrared fregaes “encoded” into it. The signal is then
measured very quickly, usually on the order of seeond. Thus the time element per sample is

reduced from several minutes to a few seconds [22].

Most interferometers employ a beamsplitter whighdegs the incoming infrared beam
into two optical beams [23]. One beam reflectsadffat mirror which is fixed in place. The
other beam reflects off a flat mirror on a mechamishich allows this mirror to move a very
short distance (typically a few mm) away from tleaimsplitter. Because the path that one beam
travels is a fixed length and the other is con$gasttanging as its mirror moves, the signal which
exits the interferometer is the result of these tvemams “interfering” with each other. The
resulting signal is called an interferogram whies the unique property that every data point (a
function of the moving mirror position) up the sijrhas information about every infrared

frequency that comes from the source. A standaedtsometer layout is show in Figure 4 [22].

A plot of the intensity at each individual frequgror frequency spectrum is required in

order to make identify a sample since the measimedferogram signal cannot be interpreted
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directly. Decoding the individual frequencies eccamplished via Fourier transformation, which

is performed by a computer that produces the despectral information for analysis.

L -
B

Beamsplitter

y Mirror

IR Source Mirror =

a.

( E

7 ™y -

: =

Mirror Sample 4
- Mirror
\ )
Sample Compartment

Figure4. Simple FTIR spectrometer layout [22]

Some advantages of FTIR include speed, sensitiviigchanical simplicity, and self-
calibration. Measurements made by FTIR are extiemeurate and reproducible due to these
advantages. Thus, it is a very reliable techniguedentification of virtually any sample. The
sensitivity benefits enable identification of evtre smallest contaminants. A lot of 24 OSG3

and OSG4 pilots are analyzed with FTIR to find aefive indices and dielectric constant post-

deposition.
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2.3.3 X-ray Photoelectron Spectroscopy (XPS)

XPS is a method used to determine various elensmisheir quantities present within
10 nm of the sample surface, the density of elacttates, binding energies, and the existence of
contamination that exists on a sample. The enefgyn X-ray wavelength can be used to excite

an electron to determine the electron binding enefgmitted electrons using the equation:

E

binding — L

photon

— Eyinaric — @ Equation 3

where Epindging iS the energy of the electron emitted from onetebm configuration within an
atom, Epnoton IS the energy of the X-ray photons being udgg@eic is the kinetic energy of the

emitted electron as measured by the instrument@aadhe work function of the spectrometer.

Raw XPS signals are converted to atomic valuesugiiralividing signal intensity by a relative

sensitivity factor (RSF) and normalized over evelgmented detected.

A typical XPS system consists of a moderate vacsample introduction chamber, a
sample stage, sample mounts, a set of stage maraml a source of X-rays, an ultra-high
vacuum (UHV) chamber with UHV pumps, an electroergy analyzer, an electron collection
lens, a moderate vacuum sample introduction chandvet a magnetic field shielding [24].

Figure 5 demonstrates the schematic of a typic& Xystem.
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Electron Energy Analyzer (0-1.5kV)

[measures kinstic energy of elactrons)

N

Photo-Emitted Electrons (< 1.8 kV)
escape aonly from the very top swrface
{70 - 110A) of the sample

Elactron Electron Detector
Colflection fcounis the elecirons)
iLens

Focused Beam of

X-rays (1.5 kV)

Electron
Take-Off-Angle

8i0;/8i°
Sample

Samples are usually solid because XPS Si2p) XPS signals
requires ultra-high vacuum (<10 torr) from a Silicon Wafer

Figure 5. Schematic of an XPS System [24]

XPS is limited in that it cannot detect hydrogerhelium elements. The detection limit
for most elements is within the parts per thousarlatigie. With ideal samples and operation
conditions, a quantitative accuracy of atom peroalties close to 95% may be achieved.
Parameters such as correction for electron tramssonisfunction, correction for energy
dependency of electron mean free path, surfacemsmlbhiomogeneity, signal to noise ratio,
accuracy of relative sensitivity factors, and degoé sample degradation may all affect the
guantitative accuracy. In terms of determining @ composition, elements such as nitrogen,
fluorine, oxygen, silicon, and carbon are expedtedbe found inside the film. However, its

inability to detect hydrogen content is somewhad bindrance in characterizing OSG films.
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2.3.4 Surface Photovoltage

Surface photovoltage is a method used in the serdigctor industry for detecting the
surface potential of a semiconductor through theaisa light source that acts as an illumination
[25-27]. Electron-hole pairs are produced from ok of the semiconductor diffuse through to

the surface depletion region. This diffusive pssces determined by the following expression:

L =.Dr,,, Equation 4

where L is the diffusion length, D is the diffusioaefficient, andy is the bulk carrier lifetime.

This expression is adjusted in a real semiconduttire next two expressions:

Lineas = A/ DToss Equation 5
112
Terf  Toune @ Equation 6

wheretess IS the effective carrier lifetime, s is the sudaecombination velocity, and d is the

film or wafer thickness. The electric field insiddilm or semiconductor layer is expressed by

N elN

£ Equation 7

where e is the charge of an electron, N is theldigensity, and is the dielectric constant. The

surface voltage of a film is determined by

140, | = Ed(cos(8)) Equation 8

whered is the film thickness. Equations 5 and 6 maydmalwned to form:
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AQ, = Ned(ces(6)) Equation 9

Through this methodology, the dielectric constamt be extrapolated with SPV measurements.

Figure 6 represents a schematic of a SPV tooligh® ource is illuminated and scanned
upon a monochromator. A chopper is used to filierlight source onto the wafer surface whilst
it sits on a grounded stage with a kelvin probgasitioned above it. The kelvin probe observes
the work function of the surface and captures #talgtic activity that occurs on the atomic level.
The lock-in amplifier measures the contact potérdig the kelvin probe inputs data that is

referenced out through the chopper.

Space—charge region
\
Al

-+
+ "z
+ ﬁ.‘.‘xii_
— Monochromator Chopper :t <
e h+
[ A
WSS 17N\ I <
= %___\_ _ _\/__\/_\/\ ‘(7!'
S 1
C:__/_—L—d—”‘f 1‘ a— Bulk semiconductor
White light source U +4
+

Kelvin

probe —

Reference  Input
out

Lock—in amplifier

Figure 6. Schematic of a SPV tool [25]

2.4 Electrical Data

Serpentine line and comb test structures can bgyrmkd for analyzing the low-k film
quality. Serpentine lines are used to measure r@@urésistance and trench dimensions. Combs

are used to measure the capacitance of the lowtaliic between Cu lines. Similar tests have
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been performed by Xu et. Al. [28]. Via stress ratgn tests were also performed to test the

voltage migration during an oven bake over a loagagal of time.

A Kelvin probe method used for device testing ¢sissof a reference electrode tip
suspended above and parallel to a stationary specetectrode. Their positioning creates a
simple capacitor and once an electrical contantasle between the two electrodes, their Fermi
levels equalize. The resulting flow of electromeni metal with the lower work function

produces a potential differendé;pp given by:

eVepp = @mac:‘mﬂn - EIL‘EP Equation 10

Wheree is the electron chargi is the work function of the stationary electroded

Tpecimen

9., is the work function of the tip electrode.

3. Pilot Wafer Tests

3.1 Investigation of a Post Etch Treatment Step

The birth of this thesis began with a preliminaryastigation to remove surface polymer
during the etch process. Bevel polymer buildup Ibesn an issue in movable magnet etchers
that still exists after an ash process. Bevel pels can damage the surface edge integrity of a
wafer, reducing the edge exclusion for fabricatieyices. One possible solution is to have the

problem contained before a wafer is processedeatéit step.

Bare silicon pilots were used to run a DOE to sew h PET step, pins up, and ash time
can affect the amount of polymer removal aroundeitige. The first pass experiment involved

taking a qualitative approach using an edge ingpedbol to capturing images around the edge

Page 24 of 80



of the wafer. Theoretically, it was predicted tadbnger PET step, longer pins up step, and ash
time would decrease the amount of polymer. Howefreding a treatment combination that
takes the least amount of time for the polymerléarcwas also important to investigate. The
wafers were etched from 1 through 21 in that ordEne pilot wafers were etched with longer
PET steps last to reduce run order effects. Thiuhash was performed in a movable magnet
etcher. A standard £ash recipe was processed with two varying factash:time and pins up

or pins down. During the pins up step, the wafas supported by three pins and elevated closer
to the plasma for a more aggressive ash and Ipettgmer edge removal. Table 1 describes how

each wafer was processed with a varying PET stamakith varied ash steps.

(a) Wafer PET (sec) Ash Recipe #
1 none no ash
2 none 2
3 none 1
4 none 4
5 none no ash
6 none 5
7 none 2
8 none no ash
9 none no ash
10 5 2
11 5 4
12 5 3
13 10 5
14 10 no ash
15 15 1
16 15 5
17 15 3
18 20 3
19 20 no ash
20 insitu Ash 20 1
21 insitu Ash 20 no ash

(b) Ash Ash Time Pins Up
Recipe # (sec) (sec)
1 2 10
2 2 30
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3 180 0
180 10
5 180 30

N

Table 1. (a) Shows how each wafer was processed and (bjilles the detailed ash steps.

An edge inspection tool was used to analyze tkaltse of polymer edge buildup and
removal of each wafer depending on the processitiomsl Edge images were taken at 0° (at
notch), 90°, 180°, and 270° to obtain comparabépections on the same wafer bevel positions.
The inspection tool is capable of finding a positrelative to the notch as close as +0.667°. The
findings for each wafer are shown below. Polymeitdup is represented by the beige streak

typically visible along the lower half of the bevel
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Wafer 1

Wafer 2

Wafer 3

Wafer 4

Figure7. Resulting edge images of PET/Ash experiment faféis 1 through 4

Wafers 1 through 4 did not process with a podt-éteatment and results revealed the
presence of polymer buildup after etch and ashigargé 7. Wafer 1 being the etched control
wafer exhibited the worst polymer buildup. Not rhueariation is seen between wafers 2

through 4 despite their varying ash recipes.
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Wafer 5

Wafer 6

Wafer 7

Wafer 8

Figure 8. Resulting edge images of PET/Ash experiment faféfis 5 through 8

Similarly, wafers 5 through 8 shown in Figure 8aakxhibited polymer edge buildup.
All wafers that did not receive a PET step wereefawith this problem. Figures 9 and 10 also
do not represent much improvement. It was obsetivaidthe least amount of buildup was found
at a position 270° away from the notch. This iatks a slight non-uniformity of edge buildup

most likely due to the design of the etch procéssibers.
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Wafer 9

Wafer 10

Wafer 11

Wafer 12

Figure 9. Resulting edge images of PET/Ash experiment fafais 9 through 12

In Figure 9, wafers 9 through 12 did not exhibitah improvement in terms of polymer
removal. This was probably due to the PET steporotg aggressive enough even on wafer 12.
Each wafer exhibits the beige polymer ring arourallievel. Wafers 13 through 16 in Figure 10
look similar to Figure 9. This evidence shows thatonger, more aggressive PET step is
necessary in removing the polymer buildup inside ¢tch chamber. Wafer 16, which did

receive a 20 second PET step, has slightly leddupucompared to the previous 15 wafers.
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270

Wafer 13

270

Wafer 14

270

Wafer 15

270

Wafer 16

Figure 10. Resulting edge images of PET/Ash experiment fafafé 13 through 16
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Wafer 17

180

Wafer 18

Wafer 19

Wafer 20

Wafer 21

) () [} 5] L]
~ ] - = -~
= = = = =

Figure1l. Resulting edge images of PET/Ash experiment fafafié 17 through 21

Overall, the most notable improvement was foundiafers 17, 18, 20, and 21 which all
underwent a long PET/Ash time or an insitu-ash stejhe etch chamber in Figure 11. These
preliminary studies sparked the interest in und@ding the interactions between back end etch
and ash processes. However, the bulk of the thesearch is concentrated on resist strip effects

on dielectric film.
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3.2 Pilot Tests Performed With OSG Film Deposition

Understanding the effects of changes in materialsposition is vital for process
integration. A lot of 24 bare Si pilot wafers wereposited with 2,700 A OSG3 and OSG4 film.
OSG4 has slightly lower dielectric constant comgaie OSG3. The thickness and index of
refraction of all wafers were measured using a filmims metrology tool. Two control wafers that
were not processed through ash were measured dfirtRetool to capture SICOH bond peaks.
Wafers were then be ashed without photoresist usingypes of chemistries @Ar and Q) as

shown above for 120 seconds.

Several wafers were cleaned in a hood using e#thmatch process or single wafer clean
(SWC). In the batch process, wafers are dippaders bath whereas each wafer is cleaned with
sprayed chemistry in single wafer clean. After trefers have been ashed/cleaned, they were
analyzed with FTIR, DSIMS, and XPS to detect the3Ofamage. An SPV tool will be used to
measure the k value. Table 2 shows the waferssibidat were used. Baseline processes were
used in this experiment. Only pressure and tenerdnave been tweaked for the @ocess.
The HAr process did not receive any treatment combinatiol he interactions between plasma
ash and clean processes have been studied viad¢sgklelta before and after processing, SPV,

FTIR, XPS, and DSIMS in that order.
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Ash Recipe

e
© (mT) .
) 0563 | NA NA NA NA Th|c|ID<Sd|eMIt§: I)((,PFSTIR,
> Tosea lnm | o n o Thic[l)< SdleMltg: I)((,PFSTIR,
3 Toseal " " o Thic[l)< SdleMltg: I)((,PFSTIR,
+ Tosea| o " ” o Thic[l)< SdleMltg: I)((,PFSTIR,
< Toseal o " ” o Thic[l)< SdleMltg: I)((,PFSTIR,
 Toseal o ” " oL | Tk Sdli/lltg: k FTIR,
Toses] o, ” ” oL | Tk Sdlsltg: k FTIR,
s Tosesl o, ” ” oL | Tk Sdlsltg: k FTIR,
9 |0SG3| HAr| BL BL | Batch Thict')‘sdlﬁ,lltg’ I;('PFSTIR'
o Tosesl o, - 20 | atch | Tk Sdlsltg: k FTIR,
11 | 0SG3 | HoAr | BL BL | swc Thict')‘sdlf,'ltg: IR,
2 osesl o, - 20 | swe | Tk sdli/lfg,’ k FTIR,
13 | 0SG4| NA | NA NA NA Th'C[')‘SO:eM"g’ ;’PFSTlR’
14 | 0SG4 | H.Ar | BL BL BL ThiC[')‘SO:eM"g’ ;’PFSTlR’
5 Tosos| o " " o Thic[l)< SdleMltg: I)((,PFSTIR,
o Tosos| o " ” o Thic[l)< SdleMltg: I)((,PFSTIR,
7 Tosos| o " ” oL | Tk Sdli/lltg: k FTIR,
5 Tosaal o, ” " oL | Tk Sdlsltg: k FTIR,
s Tosarl o, ” ” oL | Tk Sdlsltg: k FTIR,
2 Toser| o ” ” oL | Tk Sdlsltg: k FTIR,
21 | 0SG4 | HoAr | BL BL | Batch Thict')‘sdlf,'ltg: IR,
22 | 0sGa| O, 25 20mT | Batch Thict')‘sdlf,'ltgj IR,
23 | 0SG4 | HoAr | BL BL | swc Thict')‘sdleM'tg: KR,
2 Toses| o " o | swe Thic[l)< SdleMltg: I)((,PFSTIR,

Table 2. OSG Pilot Wafer Processing
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4. Materials Analysis of OSG Wafer Pilots Using Spectroscopy M ethods

Each OSG pilot wafer was processed in a randorarahdring plasma ash and wet clean
to reduce run order effects. Thickness delta lees lzalculated and compared to the dielectric
damage. The dielectric damage was measured usiB®¥ tool. FTIR analysis was performed
to detect the band spectra to capture the differdmetween non-treated OSG films and plasma
ashed OSG films. XPS data was collected to colieet surface concentration of fluorine,
nitrogen, carbon, silicon, and oxygen. Finally,IMS was performed on each OSG wafer to
detect the depth concentration of element, asthi@amost invasive method of determining film

composition.
4.1 SPV Analysis

Since the wafers have been processed in backesist processes, the risk of metal
contamination was eliminated through a backsidarcf@ior to measuring them on the SPV tool.
The refractive indices delta, thickness deltas, dmdectric constant results are displayed in
Table 3. The sigma value represents k value naioramty. The wafers processed usingAt
gas flow had the least amount of film degradatiompared to @gas flow. This degradation
was characterized by the increase in k value amédmtmount of thickness loss of the film. The k
value is relative to control wafers 1 (OSG3 filmmdal3 (OSG4 film) that did not process

through ash or clean.
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Wafer _?ﬁ:z: k relative sigma
1 0 1 0.034491
2 13.89769 | 1.0189829 | 0.034869
3 264.3814 | 1.4509347 | 0.086844
4 216.6487 | 1.3979877 | 0.052517
5 166.2793 | 1.3551414 | 0.054736
6 272.0142 | 1.4419736 | 0.084734
7 214.5962 | 1.409782 | 0.063403
8 168.2567 | 1.3577779 | 0.049426
9 11.71454 | 1.1081506 | 0.036211
10 259.6763 | 1.4759493 | 0.094494
11 16.51221 | 1.0670099 | 0.036994
12 224.136 | 1.4332251 | 0.059956
13 0 1 0.035535
14 18.96033 | 1.0140444 | 0.038028
15 242.6855 | 1.3570392 | 0.082034
16 186.0708 | 1.330399 | 0.058677
17 145.1783 | 1.3063374 | 0.055077
18 239.1917 | 1.3718311 | 0.084212
19 192.4855 | 1.3220922 | 0.058015
20 147.6838 | 1.3054531 | 0.045743
21 16.60646 | 1.065455 | 0.036873
22 233.018 | 1.3868229 | 0.086106
23 16.59845 | 1.0441131 | 0.039019
24 200.7515 | 1.3630495 | 0.051544

Table 3. Thickness loss Dielectric Constant Results

This test was the first step in realizing the adaga of using BAr over G, gas flows in
plasma resist strip. A significant increase inaliic constant is observed in, @sh processed
at the lowest pressure. Batch clean comparednigiesiwafer clean also exhibited a higher
increase in k and greater thickness degradatioBG®and OSG4 films behaved similarly to
both @ ash and batch clean in that a higher thicknessadagon correlate to a higher k damage.
Figure 12 displays the statistical measure of hall @ regression trend line appromixates the

correlation between thickness loss and k damagecorfelation of 0.955 represents a strong

correlation between the two results.
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4.2 FTIR Analysis

Figure 12. Thickness loss vs relative k value

The wafers processed according to Table 2 weresuned in an FTIR system three times

to remove variations within the measurement todbteeand after photoresist strip. The peaks

present in the FTIR system shown in Figures 13udfinol6 confirm the findings of bond peaks

present in OSG film. Very little discrepancy wdsserved between bond peaks before and after

ash and clean.

FTIR data acts as a strong indicdtthe bond peaks inside the OSG film

content. However, it is not sensitive enough totae OSG degradation.
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OSG3 FTIR Data Set for H,Ar Ash

= (0SG3 Control  =——=H2Ar Ash H2Ar + Batch Clean —H2 A+ SWC
Si-0 [1039 cm™]

0
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= Si-CH, G

Ko N I-
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4 CH,
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Figure13. FTIR data for OSG3 film processed withAt ash vs. Control Wafer

Figure 13 shows the tabulated OSG3 FTIR datameHfAr ash and clean processes.
The peaks that have been characterized include Si-O, Si-CH, and CH. When compared
to the control wafer, the three processed wafelsbéxa band spectra with a highly uniform

overlay of bond peaks.
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OSG3 FTIR Data Set for O, Ash

= (5G3 Control = (02 low temp, low pressure Ash
=02 low temp, BL pressure Ash =02 low temp, high pressure Ash
=02 high temp, low pressure Ash == 02 high temp, BL pressure Ash
02 high temp, high pressure Ash 02 + Batch Clean
02+ SWC

Si-O [1039cm™]

m

=

c \ I

35

o
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Figure 14. FTIR data for OSG3 film processed with &h vs. Control Wafer

Figure 14 shows a band spectra of eight OSG3 walercessed with £ash and clean.
The spectra on these wafers exhibit slight alteratisuch as a new G®ond peak at 2340 ¢h
that was not originally present in the control waf@he presence of a broad Si-OH peak visible
at approximately 3500 cingives evidence of OSG degradation. These twogpeb&erved post

O; resist strip indicate that plenty of functionabgps have been destroyed, causing an increase
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in dangling bonds in the OSG. More moisture isodtsd easily by the porous OSG leading to

an increase in dielectric constant and leakagesntfi5].

OSG4 FTIR Data Set for H,Ar Ash

= (0S5G4 Control  =—=H2Ar Ash H2Ar + Batch Clean —H2 A+ SWC

Si-O [1039cm™]

&
=
s Si-CH, Si-C
o [1275cm™] [800cm™] |
5,
= CH,
o [2976 cm™] i
- F .
E. R
8 | T
Ko
<
4000 3500 3000 2500 2000 1500 1000 500

Wavenumber [cm™]

Figure15. FTIR data for OSG4 film processed withAd ash vs. Control Wafer

Figures 15 and 16 display the FTIR spectra for @8l&hs ashed with HAr and Q. The
band spectras are similar to Figures 13 and 1Han@SG wafers processed withAd ash have
much less degradation than &h process. Broad Si-OH bond peaks and @Dd peaks are

not present in wafers processed wittAHand dielectric properties are maintained.
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OSG4 FTIR Data Set for O, Ash

= (5G4 Control = (02 low temp, low pressure Ash
=02 low temp, BL pressure Ash =02 low temp, high pressure Ash
=02 high temp, low pressure Ash == 02 high temp, BL pressure Ash
02 high temp, high pressure Ash 02 + Batch Clean
02+ SWC
Si-O [1039cm™]
A
o / | '
=
c {
: Si-CH or
£ " 800cm]
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S
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Figure 16. FTIR data for OSG4 film processed with &h vs. Control Wafer

4.3 XPS Analysis

Surface XPS measurements have been performed eor24hOSG wafers that were
processed through plasma and clean. The relatinteit of five elements compared to control
wafers 1 and 13 are comprised of carbon, nitrogeypgen, fluorine, and silicon. These atomic

percentages have been tabulated in Table 4.
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Atomic Concentration Table C-1s N-1s O-1s F-1s Si-2p
(from multiplex) relative | relative | relative | relative | relative
S-1,0SG control 1 1 1 1 1

S'z’osr(é’s':i’?é:bla;oes'fﬂg ﬁé’fje””e 0.682927 | 1 1.135117 | 4.875 | 1.038534
) rifsfrseigozs’ ,2n5ocl\’“1501 A 0.378469 | 1 1.348471 3 |0.971889
prse_s4s'8rse,61§ozs’ '2n500,\’|2E01 A 0351976 | 1 1.365333 | 0.375 | 0.975047
) rSe-SSS'SrSe(,Blgozs’ '2n5OC,\'|3|’501 . 0258621 | 1 | 1.396808 | 2.75 | 0.994946
prse'fs’(jiig’ozs’ ?nOOCI\ﬁEOl , 0258621 | 1 | 1403777 | 1 |0.989893
prse'gs’grs‘flgozs’ ?noocl\,leol . 0145921 | 1 1.442896 | 1.25 | 1.018636
prse'sss’giigozs’ ?noocl\,leéol . 0.108074 | 1 1.453462 | 0.125 | 1.034744

5'9’OSsrg'szsﬁrr’galszg';‘gafc’aaes'i”e 0.692178 | 1.01 | 1.134667 | 12.25 | 1.013582
S';?égjﬁe?fééggftgﬂﬂ 0.174516 | 1 1.443345 | 0.5 |0.998421

c,biéﬁi’r?ess Eszsﬁrr’é’jzggf‘gwc 0.686291 | 1.28 | 1.154227 | 14.125 | 0.976627
S'Ezréciffrf,f’z%i g’\fvoéﬂ 0142977 | 1 | 1446268 | 1.5 |1.015161
S-13,0SG control 1 1 1 1 1

Cba SSeI:lLr? éopsrigzuArre’i;%il,erSNEl , | 0590573 | 121 | 1.219644 | 114 | 1.024945
prsr'jféﬁlrsei%é,zfoﬁég . 0338138 | 1 141233 | 1.1 |0.977897
prsr'elfs’(jrsei%s',zfoﬁég . 0370471 | 1 | 1.400609 | 1.04 |0.969372
prSr-(;-ls7 éﬁiﬁ%fﬁoﬁég A 0341254 | 1 1.411392 | 1.07 |0.977266
prsr';fégrseigozfr?ocl\l’ég . 0374757 | 1 1.391936 | 1.16 | 0.973476
prsr';fégrseigozfr?ocl\l’ég . 0.402026 | 1 1.382794 | 1.17 |0.963688
prsr'jsoégrseigozfr?ocl\l’gg . 0.77912 1 1.144632 2 |o0.952321

Chb aijllngiﬁ ;iﬁrré’ﬁgls'”g | 0236463 | 1 1.452414 | 1.12 | 1.005684
Sﬁgfﬁ 212’22055 ,%’S&?T 0.356447 | 1 1.421238 | 1.18 | 0.948532

b zfs-éﬁh?asp(?rsszﬁur}gfilszecl)lsrjSWC 0629918 | 1 | 1196906 | 2 | 1.003158
5-24,0SG 02,25 C,20mT 0200194 | 1 | 1480778 | 1.1 |0.990212

prressure,120s,SWC

14-24 are compared to control wafer 13.
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Atomic surface concentratiaata of each element shown in Table 4 are betpgesented
in Figure 17. These data confirm that exposur®@96 films to plasma ash and clean conditions
results in a modified surface layer deficient ofbcan relative to the original material. The
broken bonds of methyl groups from OSG films hasnbmdicated by the XPS data due to the

lack of carbon necessary in the formation of meguglps.

XPS Data

B C-1srelative M N-1lsrelative mO-1srelative MF-1lsrelative  mSi-2prelative

20

Element Surface Concentration [rel. units]

1 2 3 4 5 6 7 8 9 10 11 12 153 14 15 16 17 18 19 20 21 22 23 24

Wafer

Figure 17. Interpretation of XPS Data for OSG3 and OSG4 Pilot

A high amount of carbon was depleted in OSG3 an@GOfims that were exposed ta O

plasma. However, over 60% of the carbon contamtineed after exposure to,Ar plasma on
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the film surface. A significant increase in fluogi content was observed for both OSG3 and
OSG4 films processed in a batch clean. This mayluee to a possible amount of fluorine
present in batch clean versus baseline and singflerwlean chemistry. No significant increase

or decrease in nitrogen, oxygen, or silicon is olesgin the XPS analysis.

4.4 DSIMS Analysis

DSIMS analysis of all 24 wafers with OSG3 and OSith#és for hydrogen, carbon,
nitrogen, oxygen, fluorine, and silicon was perfedn The analysis was conducted by the
Silicon Technology Development’'s (SiTD) Processwrlanalysis (PFA) laboratory using the

following analytic conditions:

Primary lons Cs’
Primary Impact Energy 3 keV
Impact Angle < 50°
Cs coverage >40%
Sputter Rate <2 nm/s

Table 5. DSIMS Experimental Conditions

The conversion of measured secondary ion courtsrioentration was performed using relative
sensitivity factors (RSFs). In this case, Ruthetoackscattering spectroscopy (RBS) measured
values for carbon and fluorine concentrations refarence sample were used. The precision or
sample to sample variation is based on analysiditons, element monitored, and the sample
matrix. The routine analysis precision for thel isdypically 15%. The depth scales were based
on a sputter rate calculated from the depths oattaytical crater and the total sputter time. The
accuracy of the depth calibration is within £3-5% ane sigma. However, the depth scale
applied to the SIMS profiles presented does nosiden the sputter rate differences for the

changing matrix materials of ultra low-k and silicoDifferences in the sputter rate among the
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various layers are minimal since each layer of OBB® has a reported measured thickness.
Figures 18 through 41 depict the atomic concemtnatiepth profiles obtained from DSIMS
analysis. Figures 18 and 30 represent OSG3 and4@8@rol wafers. The other depth profiles
exhibit carbon and hydrogen depletion of variousoamts along with oxidization of film

surfaces and introduction of fluorine species.

Wafer 1 - Control
1E+23

p. —O — .
16422 {
1E+21 A
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'.rr_\/l |
1E+18 A 'ﬂlll.*'
1E+17 T T T T T T T T T
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Depth (angstroms)

Figure 18. OSG3 Control Wafer Depth Profile

A DSIMS depth profile of an OSG3 control wafer ttihas not been processed through
ash or clean is represented in Figure 18. Atormaimcentrations of oxygen, hydrogen, carbon,
nitrogen, and fluorine are consistent throughoatdbapth profile and represent a maintained film

integrity. OSG3/Si interface is recorded at a Hegftapproximately 2250 A.
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Figure 19. OSG3 Depth Profile ashed withAt

The depth profile of an OSG3 wafer ashed wAHplasma exhibits a surface atomic
concentration increase in nitrogen and fluorinénimi?50 A from the film surface is displayed in
Figure 19. A slight decrease in carbon and hydragmcentration along with a slight increase
in oxygen is also visible. Most of the OSG3 filmtagrity has been maintained in this wafer.
Figure 20 represents the DSIMS depth profile ofG8G3 film ashed with ©at 10 mT and
25°C. An increase oxygen, fluorine, and nitrogemmtent represent the introduction of
impurities inside the film. The film surface haseln oxidized during exposure t@ Plasma.

Carbon and hydrogen depletion is also visible duké bond breakage of methyl groups.
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Figure 20. OSG3 Depth Profile processed with &h at 10 mT and 25°C
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Figure 21. OSG3 Depth Profile processed with &h at 20 mT and 25°C

Page 46 of 80



Figures 20 through 22 have comparable atomic deptfiiles due to the similar
processing techniques performed on each. Thetmarien pressure during the,@lasma ash at
this temperature did not have a notable effect @G® composition within the depth profile.
The depth profile of wafer 5 processed withglasma at 30 mT and 25°C is captured in Figure
22. A higher process pressure yields slightly lemdon and hydrogen depletion near the film
surface compared to OSG3 film concentration in Feg20. Figures 23 through 25 represent the
DSIMS depth profile of @ plasma ash processed at 50°C with varying pressufégures 26

through 29 depict depth profiles of films that hdeen processed with plasma ash and clean.
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Figure 22. OSG3 Depth Profile ashed with @ 30 mTorr and 25°C
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Figure 23. OSG3 Depth Profile ashed withh @ 10 mTorr, 120 sec, at 50°C
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Figure 24. OSG3 Depth Profile ashed with @& 20 mTorr, 120 sec, at 50°C
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Figure 25. OSG3 Depth Profile ashed with @& 30 mTorr, 120 sec, at 50°C
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Figure 26. OSG3 Depth Profile ashed withAtr and batch cleaned

Page 49 of 80

5000



Concentration

Concentration

1E+23

1E+22

1E+21

1E+20

1E+19

1E+18

1E+17

1E+23

1E+22

1E+21

1E+20

1E+19

1E+18

1E+17

Figure 28. OSG3 Depth Profile ashed with/At and single wafer cleaned
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Figure 27. OSG3 Depth Profile ashed with @nd batch cleaned
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Figure 29. OSG3 Depth Profile ashed with @nd single wafer cleaned

Depth concentration profiles of OSG4 films are destrated in Figures 30 through 41.
Carbon bond breakage and oxidation efglasma similar to OSG3 films are also observed in
wafers deposited with OSG4 films. An increaseluorine and nitrogen content is noticed as
well on wafers processed with both plasma ash éehc This is mostly due to the fluorine-
containing clean chemistry used during processiHggh fluorine content was observed in the

batch clean than single wafer clean.

Batch clean chemistry exhibits a stronger prolitgbr fluorine contamination since the
entire wafer is immersed in a bath, whereas singhder clean tool uses spray nozzles to
dispense the clean chemistry onto the wafer. 8inghfer cleans are generally more cost

efficient in conserving chemistry compared to batigan baths.
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Figure 30. OSG4 Control Wafer Depth Profile
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Figure 31. OSG4 Depth Profile ashed withAt
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Figure 32. OSG4 Depth Profile ashed withh @ 10 mTorr, 120 sec, at 25°C
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Figure 33. OSG4 Depth Profile ashed with @ 20 mTorr, 120 sec, at 25°C
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Figure 34. OSG4 Depth Profile ashed with @& 30 mTorr, 120 sec, at 25°C
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Figure 35. OSG4 Depth Profile ashed withh @ 10 mTorr, 120 sec, at 50°C
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Figure 36. OSG4 Depth Profile ashed with @ 20 mTorr, 120 sec, at 50°C
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Figure 37. OSG4 Depth Profile ashed with @ 30 mTorr, 120 sec, at 50°C
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Figure 39. OSG4 Depth Profile ashed with @nd batch cleaned
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Visual depth inspection of each wafer providesoadgindication of what has occurred
after plasma ash and clean processing within wedgation. However, it is also necessary to
organize the data in a manner that compares wafeater variation. Table 6 lists the average
atomic content across the entire depth of both Oiffts. The content of each element
(hydrogen, carbon, nitrogen, oxygen, fluorine, ailcton) are compared to both OSG3 and

OSG4 control wafers.

Wafer Relative | Relative | Relative | Relative | Relative | Relative
H C N o) F Si
1 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00%
2 102.76% | 98.35% 74.47% | 107.35% | 109.30% | 98.90%
3 85.52% 76.78% | 186.58% | 162.75% | 135.81% | 81.32%
4 92.41% 78.02% | 123.73% | 158.82% | 119.07% | 69.23%
5 97.93% 85.12% | 153.52% | 155.39% | 149.77% | 73.63%
6 93.10% 82.64% 93.94% | 151.47% | 96.28% 78.02%
7 86.90% 76.36% | 118.66% | 144.12% | 104.65% | 93.96%
8 99.31% 85.12% | 112.77% | 151.47% | 113.49% | 82.42%
9 111.72% | 96.69% 95.42% | 111.27% | 646.51% | 93.96%
10 94.48% 84.30% | 128.81% | 146.08% | 145.58% | 84.07%
11 115.17% | 96.69% 171.85% | 112.75% | 424.65% 89.01%
12 94.48% 85.95% | 116.04% | 145.10% | 96.28% 82.42%
13 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00%
14 98.85% 99.24% 74.59% | 105.24% | 107.82% | 100.00%
15 74.71% 77.86% | 103.50% | 136.19% | 93.30% | 100.58%
16 80.46% 83.21% | 108.21% | 139.52% | 102.23% | 101.73%
17 82.18% 85.50% | 108.43% | 140.00% | 111.73% | 94.80%
18 63.79% 66.87% | 113.91% | 123.33% | 83.24% 96.53%
19 73.56% 75.04% 81.93% | 132.86% | 85.47% 82.66%
20 77.59% 86.26% 67.47% | 133.81% | 74.30% 95.38%
21 94.83% 96.18% | 106.57% | 100.95% | 636.87% | 108.09%
22 76.44% 80.92% 75.36% | 126.19% | 143.58% | 108.67%
23 94.83% 97.71% 90.91% | 101.43% | 397.21% | 104.62%
24 76.44% 83.21% 72.18% | 129.52% | 110.61% | 93.64%

Table 6. Average atomic content of depth profile calculatgldtive to control wafers 1 and 13.
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Average H Content Throughout Depth

140.00%

120.00%

100.00%

80.00%

60.00%

40.00%

Percentage relative to control

20.00%

0.00%

1 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Wafer

Figure 42. Comparison of H Content across all 24 wafers.

Figure 42 tabulates the comparison of hydrogenerdrfor all 24 wafers. The highest
increase in hydrogen content was observed in watersessed with #Ar ash. All wafer ashed
with O, plasma exhibited a depletion in hydrogen contefhe decomposition of functional
methyl groups are observed since thepasma has recombined with hydrogen to form water
vapor and Si-OH groups. This consistency matchesXPS and FTIR data that was measured

previously.
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Figure 43. Comparison of C Content across all 24 wafers.

Figure 43 compares the relative carbon depletivoss all 24 wafers. Both OSG3 and
OSG4 films yield consistent results where the leasbunt of depletion was observed with a
H.Ar ash. Wafers processed in flasma at higher pressures compared to lowerynesss
maintained more functional methyl groups. Howetlee, 0SG4 wafer processed with a single

wafer clean also retained most of its carbon cdnten
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Average N Content Throughout Depth
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Figure 44. Comparison of N Content across all 24 wafers.

The variation in nitrogen content is depicted igufe 44. OSG3 wafers showed a higher
increase in nitrogen compared to OSG4 wafers. W&e6, 9, 13, 14, 19, 20, 22, and 23 all
exhibited a decrease in nitrogen relative to cdmtrafers. No strong correlation has been found

between the tested process parameters.
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Figure 45. Comparison of O Content across all 24 wafers.

The average calculated oxygen content throughbuD@G films found in Figure 45
confirmed an increase compared to their correspgnciontrol films. OSG3 wafers experienced
heavier surface oxidation compared to OSG4 wafés.expected, wafers processed ipAH

plasma show less oxygen buildup near the surfacgpaned to @plasma process.
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Figure 46. Comparison of F Content across all 24 wafers.

Wafers processed through batch clean exhibitedhijieest increase in fluorine content.
The DSIMS data in Figure 46 is congruent with XRfalgsis since the batch clean immerse
wafers into a fluorine-containing bath chemistiyafers 9, 11, 21, and 23 were processed with

batch clean. The rest of the wafers have a corbfmamount of fluorine content.
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Figure 47. Comparison of Si Content across all 24 wafers.

Silicon bonds exhibited various bond breakagesFigure 47 with no consistent
correlation between processes. The amount obaili€ most likely dependent on the location of

ion beam sputtered onto the wafer.
5. Developing a Process Window

The development of a process window prior to #i®itation of test chips is necessary in
producing the most desired results in formatiocagper interconnects and intermetal dielectric
layers. JMP software was used to create a predigirofile of all the process parameters

analyzed.

Page 64 of 80



Prediction Profiler |

High

TN

\}

Loww <

%

High -

Loww

High -

Low

High

Lowy o

High -

4 | L NIM L N

Lo -
High - !
@ -P.. .. | .... 1
Loww ' E
=T 4 51 rrrrr T T
§ § o8B £ECORBEES § =
T = ° = g =z B =z
Gas Temp&ature Pressd®e Clean

Figure 48. Prediction Profiler of process parameters vanat@ontent

The most notable process parameter interactionswemenarized in Figure 48. A higher
decrease in carbon species is found withpfasma ash compared teAt ash. Both hydrogen
and carbon species exhibit less depletion as pesstreases. The wafer surface oxidizes4in O
ash and more oxygen species become present witei©®8G film. Single wafer cleans also
added less fluorine species compared to the bad¢em process. Based on these results, three
new plasma ash recipes were designed for chipction: Q baseline ash, Omargin ash, and

H.Ar ash processes.
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6. Test Chip Fabrication

A short flow wafer lot of test chips was obtained fwo types of OSG films, two types
of clean recipes post-etch (single wafer and batni] three ash recipes. &, O, Baseline, @
Margin). Each split [OSG3/4 film deposition, At/O, baseline/@ margin ash, fluorine
Batch/single wafer clean] occurs in the back endhefline (BEOL) at three levels Trench 1,

Vial, and Trench 2.

Two clean regimes will be compared in this shastwil During batch clean, the lot of
wafers is immersed into a clean hood. The cleamdsiry is set to flow from bottom to top for
roughly an hour. The chemistry is generally repthevery 36 hours. In single wafer clean, less
chemistry is consumed since it is dispensed framazzle onto each individual wafer resulting in
a lower cost of ownership. The timed dispense llyslasts one to two minutes and to make up
for capacity, single wafer clean hoods contain sdvehambers to clean multiple wafers
simultaneously. Industry is trending toward ussmgle wafer cleans to conserve chemistry and

increase capacity. Both clean methodologies wengpared.

Three ash regimes were also tested used to prthusdst of test wafers. The differences
between HAr and Q gas flows are mainly ash times and the effecty theve on low-k
dielectric films. HAr requires a longer ash time but has been fourmgtdeent carbon depletion
compared to @ This carbon depletion is detected through meéagan increase in the effective
dielectric k-values. Ash time is doubled in the i@argin recipe compared to the Gaseline
recipe. The purpose of such an aggressive ashpsote the yield margin of the ash process
window. Table 7 depicts the three possible scemathat can occur, each of which can

potentially provide a wealth of information.
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Wafer Film Ash Clean Split
1 0OSG3 H2Ar Batch NE14 1
2 0OSG3 H2Ar Batch NE14 1
3 0OSG3 H2Ar Batch NE14 1
4 OSG3 H2Ar Batch NE14 1
5 0OSG3 02 Baseline Batch NE14 2
6 0OSG3 02 Baseline Batch NE14 2
7 OSG3 02 Baseline Batch NE14 2
8 0OSG3 02 Baseline Batch NE14 2
9 OSG3 02 Margin Batch NE14 3
10 OSG3 02 Margin Batch NE14 3
11 0OSG3 02 Baseline SWC NE14 4
12 OSG3 02 Baseline SWC NE14 4
13 0OSG4 H2Ar Batch NE14 5
14 0OSG4 H2Ar Batch NE14 5
15 0OSG4 H2Ar Batch NE14 5
16 0SG4 H2Ar Batch NE14 5
17 0OSG4 02 Baseline Batch NE14 6
18 0SG4 02 Baseline Batch NE14 6
19 0SG4 02 Baseline Batch NE14 6
20 0SG4 02 Baseline Batch NE14 6
21 0SG4 02 Margin Batch NE14 7
22 0OSG4 02 Margin Batch NE14 7
23 0SG4 02 Baseline SWC NE14 8
24 0SG4 02 Baseline SWC NE14 8

Table 7. Treatment combinations for DD chip

The test chip is designed with very large via chaand serpentine/comb structures to
facilitate defect detection. It also contains gl@migration structures, Kelvin vias and other
miscellaneous structures. The wafers were falaictd compare processes that impact via and
trench yields that are generally representativerofiuction. A great advantage in fabricating
test chips is the short amount of time it takefatwricate compared to product wafers. The lot
was probed at Metal 2 after its completion of tihecpss flow. Parametric and sameness data

was studied according to each treatment combinatiofiffter parametric test, electrical

breakdown and via stress migration data was alsected.
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7. Metal | and Il Electrical Data on Test Chip

Fabricated test chips were probed at both Metahd Metal 2. At Metal 1, split 6
exhibited the lowest yields, whereas the othertspliere comparable. Two highest yielding
splits at Metal 1 include OSG3 film processed vatbaseline @ash process and single wafer
clean and an OSG4 film processed with a basely#a Bish process and batch baseline process.
At Metal 2 parametric, both margin splits exhibited zero via yields due to mp/hilst splits
1, 4, 5, and 8 have comparable yield. Sample pnodgasurements were taken and displayed in
Figures 49 through 65. The top graph represemtptbbe time versus value measured and the

bottom graph displays the wafer number versus valeasured.

Figures 49 through 53 depict a sample of Metal rab@ data for several comb
capacitances and line resistances. Each probée lthsuspecific targets, lower spec limits, and
upper spec limits defined for the process wind@él.Metal 1 probe data show to be within spec
range except for Figure 52 which represents thell nm Iso Line Resistance. Splits 3, 4, 7,

and 8 came close to lower spec limit.

Figure 49. Metal 1 Comb CSRP Shorts

Page 68 of 80



miilcs serp ANl 140/130 M1 CSREFP Opaens

i T | - =
T 1
: : i
3 — n
4 !
b4 . .
- . |
- - . :
[ i : N
¥ 4 : : i
F : : |
. : : i
£ - :
[ i : |
" . .
L. - o i :
- - L i :
Time
=it + ++ Cass el Oz Bl 0O O CoEs e H2AR o R O SEEHEIAATE MR
# #F F csssrawonos Bl =S ENS, HEAF O =SS TIENS SE Bl
C 0O osmgE1anSE AR O S EArSAATATE Bl

milcs _serp Al 140/120 M1 CSRP Opaenis

o a

I

W

:

H

:

1 [=]

:

¢

H

os 08 07 05 01 O 05 04 05 1 M 1 15 14 15 16 - 18 15 o 21 2= 28 24
Figure50. M1 Serpentine CSRP Open
miirs 595 M1 5.95um Iso Line Rs

E - T T DS T DR T T = T o =raet S T i T

A ; : ;

.

£

L

3

£

I

EI

Time
=it -+ - SESES eSS Bl D D D OSEsyElSS AR B DRSS T ETSATDE A
# # # oomsrmvvoroz BL O EEAIE, HEAR S EEAE DR Bl
C 0O oomaTIEasSE Mam SEsarsveioE B
miirs 595 M1 5.95um Iso Line Rs
. -
T
F
- 4 usl
PO
i -
i
{
i
H
.
®
tl 7
.
‘

o5 OS OF OS5 O1 O2 O 04 OfF 10 41 12 13 14 15 18 17 1S 18 20 21 22 25 24

Figure51. Metal 1 5.95 um Iso Line Resistance

Page 69 of 80




Iso> Limne Rs

2 a0
B - R .
g
T
T
-
M
H
Time
E + + + OSEmTIEE,DE B T O D OsEmElas HEAR =R O SEHTIEILDRE  MAR
# # # o mmmewoos Bl O TR E 1S, R O EETIES, D2 Bl
S5 5 OSESHMEIANSE MAR O EEAENTE Bl
mirs_iso M1 110nm Iso Lime Rs
[ [ [ [ [ [
s | usl
i g S
-
i
3
T
T
-
3
F-
P
£

T T T T T T T T T T T T T T T T T T T T T T T T
oS OS OF OS5 01 OZ O35 04 O 10 11 12 15 14 15 18 17 1S 18 20 21 22 25 24

Figure52. M1 140 nm Iso Line Resistance

mirs wvdpe M1 VDRP Rs

= =] (=)
] . :
[in B
-
£ 3
Time
=it + + ossorEid, o2 Bl e i A Ll B O SEEH T EIADE MGE
## # oosmmeworoz BL O S TE S, HEAR O EEATIES D2 Bl
€5 C oeEArEIaTE MAR o EEarSC o= Bl

mirs _wvdp M1 VDIFE Rs
[ [ [ [

mis wdiz M1 VDF Re

T T T T T T T T T T T T T T T T T T T T T T T T
05 OS5 OF O5 01 OF OF Q4 O 10 11 12 15 14 15 15 17 15 15 =20 =21 22 =5 =24

Figure 53. M1 Vg, Resistance

Page 70 of 80




Figures 54 through 56 represent line resistanoasep at Metal 2. Figure 55 similar to
Figure 52 has line resistances below the spedibeér spec limit for the same 140 nm structure.
This is most likely due to other processes notteel@o the plasma ash and wet clean splits since

every wafer experiences approximately the sameréisistance.
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Figures 57 through 65 represent various via chhaorts, via chain resistances, and Kelvin square
shorts measured through via stress migration tetgse migration tests were performed by pladieg t
wafers inside an oven for a long time to test tenajpee stresses. Splits 3 and 7 processed witldthe
margin processes all exhibit zero via yields asetqrl from the process parameters. In terms afbve

yield, splits 1 and 5 processed withAd plasma processes using OSG3 and OSG4 exhibiiedbest
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8. Conclusonsand Future I nvestigations

An effective process window for resist stripping Back End of Line (BEOL) low-k
OSG films using BHAr and Q plasma ash combined with batch clean and singlerweéean has
been developed. The quality of OSG film generatiynpromised during the removal of resist
has been observed. Pre- and post-plasma ash @8&dmposition has been characterized

using FTIR spectrometry, XPS, DSIMS, and SPV oatpilafers.

A direct correlation between thickness delta betwpee- and post-processing versus
measured dielectric content has been realized thighuse of SPV. FTIR data exhibited less
plasma damage usingAr plasma ash compared tg @sh for both OSG3 and OSG4 films.
XPS data shows that theAt process was able to maintain over 60% of itbaarcontent due
to less breakage of methyl groups. DSIMS data eisgn of atomic depth profiles consisting
of carbon, fluorine, silicon, hydrogen, oxygen, amiétogen has been analyzed. The least
amount of carbon depletion was found when procgssiafers through pAr ash. The most
amount of fluorine content was found after the wafevere batch cleaned. Native oxide

thickness also exhibited an increase on OSG wafexessed through@sh.

A lot of test chips was also fabricated and probethe Metal 1 and Metal 2 levels for
serpentine line resistances and comb capacitanasurenents to characterize the performance
of the OSG film as an ILD. The two highest yielgligplits were processed withyAt plasma
ash and batch clean. This direct correlation isébacross all analytic techniques and test chip

yields.

Several new processing possibilities may also sedein the future by combining single

wafer clean with BHAr process. This may require fine tuning processddions to prevent
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mechanical breakage. As dielectric values < 2e0imroduced in the semiconductor industry,

novel ways of resist stripping and clean must aguoodate this rapid change.
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