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Abstract 

 

Ion cutting achieved by the implantation of hydrogen or the co-implantation of hydrogen 
and helium is among the most common methods for the formation of Silicon on Insulator (SOI) 
structures used in the semiconductor industry.  In this method, hydrogen is implanted into silicon 
at a high fluence and is heated in order to induce an exfoliation event.  During this exfoliation 
event, a silicon wafer is cleaved along the depth at which the maximum damage concentration 
occurs, and the cleaved material bonds chemically to any underlying material being used as a 
handle substrate.  The ion implantation process induces a variety of defect species which evolve 
as they are annealed at varying temperatures and times and the characteristics of these defects 
and the reactions which dominate their formation are critical for low temperature substrates such 
as LCD glass. 

 This study observes the annealing characteristics of a variety of structural and electronic 
defects induced by ion implantation, including hydrogen decorated monovacancies and hydrogen 
decorated interstitials.  The states arising from these decorated point defects were analyzed using 
Multiple Internal Transmission Infrared Spectroscopy (MIT-IR) and Deep Level Transient 
Spectroscopy (DLTS).  A method for observing implant-related defects on a MOS Capacitor 
using a DLTS measurement was developed.  A new method for extracting the activation energy 
and the capture cross section of states observed with DLTS through the use of the Full Width at 
“N th” Maximum was also developed.  MIT-IR spectra resulting from ion implantation were 
analyzed using a novel method to extract the activation energy, reaction velocity and order of a 
solid state reaction, termed Kinetic Differential Analysis. 

 Analysis using the methods described above allowed for the identification of five trap 
energy levels associated with hydrogen ion implantation which were tentatively assigned to VH2 
(.15eV) VH3 (~.54eV) and IHx (.16eV and .19eV) defects.  Kinetic Differential Analysis of MIT-
IR spectra has identified reaction pathways associated with the “decay” of decorated 
monovacancy defects  These chemical reactions have kinetic reaction orders of approximately 
1.5, indicating a secondary reaction which contributes to the decay as well as some general 
interaction between reactants during the decay process. 
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Chapter 1: Introduction 

 

1.1: Motivation 

The continuing drive for high performance Complementary Metal Oxide Silicon (CMOS) 

Transistors has driven material constraints for Silicon substrates to the requirement of Silicon on 

Insulator (SOI) structures.  These structures consist of a thin layer of Silicon on top of a much 

larger insulating substrate.  This substrate may be an insulating crystal, as is the case in Silicon 

on Sapphire materials, where Silicon is grown epitaxially on top of a Sapphire substrate.  

Alternatively, the substrate may be formed from a Silicon wafer that is oxidized to form a thin 

insulating layer [1].  A third option which is far less prevalent than the use of an oxidized 

substrate is the use of an amorphous insulating material such as glass.  This last option is 

particularly useful for electronics applications where a relatively transparent substrate is 

required, as is the case for display electronics. 

In the case of structure formation on an oxidized crystal or an amorphous substrate, the 

method for joining the semiconducting layer to the insulating substrate is a bonding technique.  

Typically, this is accomplished by joining a Silicon wafer to the insulating substrate at room 

temperature.  Van Der Waal’s forces generate a weak bond which holds the two substrates 

together prior to a thermal treatment.  This thermal treatment induces much stronger chemical 

bonding between the insulator (which is typically SiO2) and the silicon substrate.  This bonding 

technique results in a thick semiconductor substrate bonded to a thick insulating substrate which, 

alone, is not an improvement over conventional bulk semiconductors.   

The semiconductor layer must be thinned down.   A thin layer may be formed by lapping 

and chemical etching of the thick semiconductor layer until the desired thickness is achieved.  
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Another commonly favored technique is the use of an etch-back, where the semiconducting layer 

is exposed to an RF plasma and a deep reactive ion etch is performed until the desired thickness 

is achieved.  Both lapping and etch-back techniques are inefficient, at best, because they 

effectively waste an entire wafer to form an SOI substrate.  They are also inherently slow 

processes because of the time required to etch through or polish down samples which may be a 

half-millimeter thick or more, as is typically the case for silicon wafers. 

Another option which has gained popularity recently is an Ion-Cutting technique [1].   

Prior to bonding, the semiconductor substrate goes through an Ion Implantation step, where 

Hydrogen or a combination of Hydrogen and Helium is implanted into the semiconductor.   This 

gives rise to primary implant-related defects such as self-interstitials and vacancies as well as 

some hydrogen-defect complexes.  Following this ion implantation step, the normal bonding 

procedure is followed, but the temperature is raised after the bonding process is complete.  When 

exposed to higher temperatures, hydrogen-defect complexes will grow and agglomerate, forming 

a series of hydrogen-terminated dislocation loops and stacking faults, called blisters.  As 

annealing progresses, hydrogen and helium will coalesce at these blister sites and the rising gas 

pressure due to higher concentrations within the blisters as well as rising temperature will cause 

a fracture event which will cleave the wafer.  The depth at which fracture and cleaving occurs is 

the depth into the implanted semiconductor sample where the number of recoils and 

corresponding number of induced vacancies are maximized [1]. 



3 

 

 

Figure 1: The Hydrogen Ion Cutting Technique – Hydrogen or Hydrogen-Helium is injected into the semiconductor 
via ion implantation (1).  The semiconductor is placed on an insulating substrate, implanted side down (2).  The 
semiconductor substrate is annealed at elevated temperatures, inducing chemical bonding of the semiconductor to 
the insulator and exfoliating the implanted layer (3).  

 

In all SOI techniques that utilize bonding for sample formation, a critical factor which 

constrains the effective temperature ceiling for processing after sample formation is the thermal 

expansion coefficient mismatch between the various thin film layers of the sample.  In the case 

of SOI where silicon is bonded to an oxidized wafer, this is not a significant concern.  The thin 

oxide intermediary between the two silicon layers cannot generate enough stress to induce de-
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lamination of the semiconductor film.  Thus, lapped, RIE and Ion-Cut SOI created on an 

oxidized silicon substrate can typically be annealed up to temperatures typical for bulk 

semiconductor processing.  In the case of a sample formed where the substrate is an amorphous 

material, this mismatch of the thermal expansion coefficient can lead to de-lamination at elevated 

temperatures, so the ceiling for processing temperature is much lower [1]. 

Because of the reduced tolerance for high temperatures, samples formed by Ion-Cutting 

on an amorphous substrate may not be annealed so as to completely eliminate all defects within 

the sample.  Many of the point defects and hydrogen-defect complexes formed during the 

exfoliation event may remain present within the sample created even after a thermal treatment at 

the available (albeit low) maximum temperature [2].  These defects lead to degraded device 

performance primarily through recombination effects.  Specifically, the defects formed during 

implantation which react and form secondary defects after annealing, act as centers for Shockley 

Read Hall (SRH) Recombination events [3].  Depending upon the characteristics of the trap 

generated, these centers may act as pseudo-dopants, which can drastically affect the resistivity of 

the thin film silicon layer or may, alternatively, act as sources of leakage at metallurgical 

junctions.  This second situation results in an increase in the off-state current of devices 

fabricated on SOI structures, forcing circuit designers to work around higher power consumption 

on-substrate as well as possibly design far more complex circuits to account for the poor 

switching quality of their devices. 

If commercial products formed from Ion-Cut processes with amorphous insulators are to 

be inexpensive and ultimately successful, it is imperative that the defects caused by Ion-Cut 

processes be identified and controlled.  To this end, this thesis will seek to identify electrical 

defects caused by the Ion-Cut process, correlate these defects with associated abnormalities in 
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crystal structure and propose a means for understanding the reactions that contribute to the 

formation and dissolution of these defects during the annealing process.  This thesis will make 

use of Deep Level Transient Spectroscopy, a technique developed by D.V. Lang in 1974 [4] as 

well as Multiple Internal Transmission Infrared (MIT-IR) Spectroscopy [5]. 

If the effects of structural defects associated with ion cutting techniques are to be 

correlated with electronic trapping effects, several other technical issues must be worked out in 

advance.  Firstly, an effective method must be found which can relate the annealing dynamics of 

structural defects to the corresponding annealing dynamics of electronic defects in order to make 

positive correlations between the two.  To this end, finding a repeatable method of forming a 

sample which can generate a DLTS signal with minimal noise is of the utmost importance.  This 

method must allow for the sample to be implanted with hydrogen and annealed for only “low” 

temperatures in the range of 300°C to 600°C or, preferably, not annealed at all.  The method of 

formation explored in this text will be a Metal-Insulator-Semiconductor (MOS) Capacitor.  

Additionally, a method for analysis of DLTS signals past the typical methodology 

associated with DLTS is required in order to extract the most data from all measurements.  This 

new method of analysis will likely require the definition of a theoretical function representing a 

DLTS signal and many of the non-idealities encountered when modeling a DLTS peak with a 

simplistic model.  This new method may also require new empirical analysis methods in order to 

analyze DLTS spectra in a more efficient, accurate fashion.   
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1.2: Shockley Read Hall (SRH) Recombination 

Shockley Read Hall (SRH) Recombination is a four-pathway kinetic process for charge 

trapping due to recombination centers existing in a semiconductor [6].  These recombination 

centers are caused by imperfections within the semiconductor crystal, such as those caused by 

Ion Implantation.  Unlike direct methods of recombination, where electron-hole pairs are 

eliminated, producing a photon of energy equal to the combined energy lost by the two carriers, 

SRH Recombination is an indirect process.  Electrons and Holes recombine by means of 

momentum loss in an inelastic collision at a trap center.  The energy dissipated in this 

recombination event may be given off as a lattice vibration, or phonon, which propagates from 

the trap through the crystal. 

 In SRH Recombination, the four kinetic pathways which exist may be derived from the 

behavior of lattice imperfections in the presence of charged particles.  Most lattice imperfections 

may be modeled as single-charged defects.  That is, they may exist either as a neutral species or 

as an ionized species.  This behavior is similar to that of dopant atoms which are recombination 

centers with very shallow ionization energies.  Ionization or neutralization may be achieved in 

two ways.  A charge may be gained or may be lost.  A defect which ionizes to form a positive 

(negative) charge may either lose an electron (hole) or gain a hole (electron) to become ionized.  

To neutralize, this defect must lose a hole (electron) or gain an electron (hole).  The act of 

gaining a charge is referred to as a capture event.  The act of losing a charge is referred to as 

emission.  More complex ionization cascades do exist where a defect may have more than one 

charged state.  However, these cascades are rare and analysis is complex in comparison to the 

relatively simplistic SRH kinetics.  Typically, defects which exhibit these cascades are treated as 
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“close enough” to a single-ionization defect to be analyzed using typical SRH Recombination 

statistics, particularly at cryogenic temperatures. 

 

 

Figure 2: A diagram of Shockley Read Hall (SRH) Recombination for a hole trap center - Electrons may be captured 
(ce) from or emitted (ee) to the conduction band.  Holes may be captured (cp) from or emitted (ep) to the valence 
band.  

  

The kinetics of capture and emission are very similar.  All defects have some area 

associated with them which represents their sphere of influence, called a capture cross-section.  

If a carrier impinges within this area, it will interact with the defect.  This constitutes a 

“collision” between the carrier and the defect.  The number of collisions between a carrier and a 

defect may be defined as the number of instances per unit time where the area swept out by a 

defect comes into contact with a carrier as the carrier undergoes its “random walk” through the 

crystal lattice.  It stands to reason, therefore, that for a single defect state, the rate of collisions (fe 

or fh) is equal to the thermal velocity (ve or vh) and spatial density (n or p) of the carriers 

multiplied by the capture cross-section (σe or σh) of the defect state in question.  It is important to 
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note that the spatial density of carriers is, of yet, undefined because the band in question is not 

yet defined.  In the case of capture events, free carriers (holes in the valence band or electrons in 

the conduction band) are of interest.  In the case of emission events, bound carriers (electrons in 

the valence band or holes in the conduction band) are of interest.  The capture cross-section 

varies based on the carrier type.  A defect will have a differently sized area of influence for a 

hole as compared to an electron. 

 

 (1-1) 

  (1-2) 

  

Of the collisions that happen in any given period of time, only a certain number will 

result in a “reaction” between the carrier and the defect state.  The likelihood of this reaction is 

determined by the statistical quantum mechanics of the reaction which is to take place.  In the 

case of carrier capture, the probability of a reaction occurring during a collision is effectively 

unity because carriers fall into a potential well.  These carriers must be free to move about the 

crystal, so the density of carriers which is of interest for capture kinetics is the density of free 

carriers, commonly referred to as n for electrons and p for holes.  The carrier capture kinetics are 

as follows. 

 

 (2-1) 
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  (2-2) 

 

This is not the case for emission events.  During an emission event, carriers are able to 

overcome the confines of a potential well and are made free to move about the crystal lattice.  

This effect implies a thermalization event which must be regulated by some statistical 

mechanical distribution which is dependent upon the depth of the potential well as well as the 

temperature at which the semiconductor exists.  Because when one carrier is emitted, it leaves 

behind a carrier of the opposite type, the emission of a carrier from a trap state to a given band 

may be viewed as the capture of an opposite trap state from the same band.  So, the emission of 

an electron (hole) to the conduction (valence) band corresponds to the capture of a hole 

(electron) from the conduction (valence) band.  The density of opposite carriers within the band 

associated with emission determines the density which is used determine to the rate at which 

emission occurs.  It is assumed that both carrier types have the same density within a given band.  

Thus, the density of minority carriers within a given band, be it the conduction or valence band is 

the same as the density of majority carriers within that same band.  The resulting equation for 

emission is as follows, where P(e) or P(h) are the probability functions associated with the 

emission event, NC is the density of states in the conduction band and NV is the density of states 

in the valence band. 

 

   (3-1) 

 (3-2) 
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Typically, carrier and trap densities are low within a semiconductor and classical 

Boltzmann Statistics may be applied to the emission probability.  The trap level is assumed to be 

the ground potential in this case, with the energy of the barrier equal to the difference in energy 

between the band to which the emission is occurring and the trap energy.  The result is the final 

expression for hole and electron emission probability, where ET is the trap energy, EC is the 

conduction band edge energy, EV is the valence band edge energy, k is Boltzmann’s Constant 

and T is the temperature of the semiconductor in Kelvins.  The difference between ET and EC or 

EV may also be expressed as equal to an activation energy, ∆E. 

 

   (4-1) 

 (4-2) 

 

Given the constraints on SRH kinetics listed above, the differential equations defining the 

transient characteristics of hole-filled and electron-filled trapping states may be described as 

follows where the variable t is the time associated with the transient process.  It is important to 

note that these terms describe the kinetics of formation assuming a concentration of trap states 

equal to unity.   

 

)()( npTpnT
T cepcen

dt

dp
+−+=  (5-1) 
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)()( npTpnT
T cepcen

dt

dn
+++−=  (5-2) 

 

 

In order to determine the true rates and the true transient concentration of trap states, the rates 

above and their associated concentrations must be multiplied by the true concentration of trapping 

states.  For the sake of simplicity, we redefine the preceding differential equations as follows, 

assuming that any trap which is not filled with a hole must be filled with an electron. 

 

)()( npTn
T KKpK

dt

dp
+−=  (6-1) 

)()( pnTp
T KKnK

dt

dn
+−=  (6-2) 

 

In the simplest case of SRH Recombination, only two charge states are permitted for a single 

defect structure, a neutral state and a positively or negatively charged state.  In some cases, most 

notably for vacancies in semiconductors, it is possible for multiple charge states to exist past the 

neutral state.  These cases represent dynamics which require far more complex analysis and will 

not be treated in this text.   

 

1.3: Deep Level Transient Spectroscopy (DLTS)  

Deep Level Transient Spectroscopy (DLTS) began as a differential capacitive technique 

developed by D.V. Lang in 1974 [4] and has since extended to a variety of other differential 

charge sensing methods, including Charge Transient Spectroscopy (QTS), Constant Capacitance 
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Deep Level Transient Spectroscopy (CCDLTS), Current Transient Spectroscopy (CTS) and 

Photo-Induced Transient Spectroscopy (PITS).   These various sensing methods may be applied 

to a large variety of devices including Schottky Diodes, PN Junction Diodes, MOS Capacitors, 

MOS Transistors, Bipolar Junction Transistors and so on.  The methodology common to these 

techniques is the observation of charge decay in a semiconductor at cryogenic temperatures.  

 

 

Figure 3: Generation of a Deep Level Transient Spectroscopy signal.  This is achieved by monitoring the variation in 
the change in the decaying normalized capacitance (∆C/CO) defined by the discrete differential with respect to time 
sampled at two separate times, t1tD and t2tD (where t1 and t2 are constants and tD is the “time delay”). 

  

This signal can be sinusoidal, as in the case of a lock-in technique, or a square wave of 

variable duty cycle, as is the case in a boxcar differentiation technique.  During boxcar 
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differentiation, the signal is designed to bias the structure in such a way that traps fill during a 

short “filling” pulse (labeled hereafter as tf) and then emit when the signal transitions to a much 

longer “emission” pulse (hereafter labeled te).  For the purposes of modeling, this emission pulse 

may be assumed to be infinite.   

 

 

Figure 4: The potential settings (yellow), majority carrier trap (red) and minority carrier (blue) trapping probabilities 
for a generic DLTS transient. 

 

Measurement of the charge transient occurs during the emission pulse, as it is typically 

dominated by thermalization of carriers from filled trap states.  Boxcar differentiation is achieved 

by measuring the charge levels present within the semiconductor at two separate points, t1 and t2, 

in order to derive an expression for the discrete differential charge.  In this situation, the filling 

pulse acts as a means of defining the initial concentration of trapped charge, the transient of 

which is observed during the emission pulse. 

With these constraints in mind, we may derive an expression for the observable decay in 

filled trap states over time. We observe in equations (7) and (8) that the differential 
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corresponding to this decay is a linear 1st Order Differential Equation and solve it in terms of 

boundary conditions defined by the filling pulse, pT0 and nT0. 
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The equilibrium condition attained as the measurement time is allowed to proceed to infinity 

is the first term in the sums listed above.  The secondary term represents the transient decay of 

the charge state from the conditions set up by the filling pulse to the equilibrium conditions 

inherent to the conditions described as part of the emission pulse.  Thus, the magnitudes of the 

transient constants, pT0 or nT0, are equal to the difference between the initial trapped charge 

concentration (defined by the filling pulse) and the final concentration which the emission 

transient approaches asymptotically as time increases to infinity.  These transient constants may 

be defined as is shown below. 

It is important to note that the kinetic rates (Kf and Ke) are defined by the carrier 

concentration existent during filling and emission pulses and, therefore, have different values 

during these different pulses.  
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The terms FTP and FTN are the trapped carrier concentrations achieved at the end of the filling 

pulse transient (when the transition is made from the filling pulse to the emission pulse).  The 

concentration at the end of the filling pulse may be defined as follows. 
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ATN and ATP represent the difference between the trapped charge concentration present at the 

start of the filling pulse (which is equal to the steady state condition of the emission pulse) and 

the steady-state trapped charge concentration that would result from an infinite filling pulse. 
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With the equations listed above, the transient observed during analysis with DLTS may be 

fully defined for any time during the emission pulse as well as for any filling pulse width 
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provided that the emission pulse conditions are existent for a long enough time that the state of 

the semiconductor may be considered to be in thermal equilibrium. 

This charge transient is differentiated, typically by sensing the differential charge at two 

times during the decay and subtracting the two measurements.  Typically, the assumption of 

complete filling prior to the emission pulse is made and the equation most typically used to 

define the resulting differential signal from this charge decay is as follows. 

 

 (11-1) 

 (11-2) 

 

 

Figure 5: Diagrams of the free carrier behavior of a single-sided junction during the thermal equilibrium induced by 
the Filling Pulse and during the transient state of non-equilibrium immediately following the application of the 
Emission Pulse.  These diagrams represent the behavior of a hole trap.  In an electron trap, trapped carriers would be 
emitted to the Conduction Band. 
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A spectrum is created by plotting this differential over a wide range of temperatures (as 

in Figure 3) with each peak in the spectrum representing a different trap species.  By iterating a 

scan with variable values of t1 and t2, a family of spectra may be created.  An important metric 

that defines these spectra is the rate window, τ, which is a function of t1 and t2.  This rate window 

corresponds to the inverse emission rate at the peak maximum.  It is defined as follows.  

 

 (12) 

 

The activation energies and capture cross-sections of these trap species can be determined 

via an Arrhenius Plot of the temperature corresponding to the peak maximum, τm.   In this 

Arrhenius Plot, the natural logarithm of Tm
2
τm is plotted against 1/kTm.  The result of this plot is 

an expression for the difference between the trap energy and the band energy, ∆E, which is 

represented by the slope of the Arrhenius Plot.  The plot also yields the Capture Cross-Section of 

the trap, which corresponds to the point at which the Arrhenius plot intercepts a value of 1/kTm 

equal to zero. 
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Figure 6: Arrhenius plotting of a signal arising from a single deep level trap observed using Deep Level Transient 
Spectroscopy.   The slope of the derived Arrhenius Plot yields the activation energy of the deep level trap while the 
point where the deep level trap intercepts the T2

τ axis yields the capture cross-section. (Courtesy J. Senawiratne of 
Corning, Incorporated) 

 

A value for the concentration of trap states present within the semiconductor may be 

derived from the expression for the depletion capacitance of a single-sided junction.  It is as 

follows, where Co is the capacitance at infinite time, ∆CM is the change in capacitance observed 

at the maximum of the DLTS signal, NT is the trap concentration and NA is the dopant 

concentration in the semiconductor. 

 

 (13) 
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1.4: Multiple Internal Transmission Infrared (MIT-I R) Spectroscopy 

Multiple Internal Transmission Infrared (MIT-IR) Spectroscopy is a Fourier Transform 

Infrared (FTIR) Spectroscopy technique which is exceptionally well-suited to the measurement 

and observation of bonding and structural defects both at material interfaces as well as within 

bulk materials [5].  MIT-IR couples light generated by an infrared source into a bulk material 

through the use of a prism with its edges beveled at a precise angle.  This prism has a matching 

refractive index in comparison to the index of the material being observed, often because it is 

formed from the same material.  Because of this, light may be easily coupled into the sample 

being evaluated after being transmitted into the prism.  As this light passes through the sample, it 

eventually will encounter the back interface between the sample and the ambient and reflect back 

in the direction of the prism.  The prism itself is etched in the center in order to confine the light 

to the sample until it reaches the other side of the region being probed, at which point the light 

couples back into the prism and then back out into the ambient.  At this point it is sampled by a 

detector.  The intensity of the light reflecting through the sample is dissipated by the reflective 

losses caused by imperfect reflection at sample interfaces, to transmission loss of incident light 

flowing into and out of the prism and, most importantly, to absorption of the infrared beam 

within the sample due to both the sample material itself as well as defects induced by ion 

implantation within the sample.  
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Figure 7: MIT-IR Sample Design – The guided infrared beam strikes the prism at an incident angle, θ.  The angle of 
the prism normal with respect to the sample, α, determines the angle at which the beam strikes the bottom surface of 
the sample, Φ.  Rp defines the extent of the implant damage profile.  Transmission into and out of the prism as well 
as reflections off of each top and bottom surface of the sample contribute to attenuation. 

  

The intensity loss due to each of these components is dependent upon the number of 

bounces the infrared beam undergoes during its transit through the sample.  The effective path-

length that the light travels over during its bouncing transit through the sample is determined by 

the incident angle of the light in comparison to the bevel, the bevel angle in comparison to the 

surfaces of the prism and the dimensions of the sample and the prism themselves.  In order to 

properly analyze the attenuation experienced by the infrared beam during its transit through the 

combination of the prism and sample, the effective path-length of the light must be estimated.  In 

order to perform this estimation, the incident angle of the infrared beam in relation to the normal 

of the beveled edge of the prism, θ, must be known.  The angle of the bevel in relation to the 

bottom surface of the prism, α, must also be known along with the length of the bottom surface 

of the prism, d, and the thickness of the sample, t.  The path that the incident beam takes after 

passing through the prism bevel may be calculated by making use of Snell’s Law with the 

implicit assumption that the extinction coefficient is much lower in magnitude than the refractive 
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index.  In this derivation, nV is the refractive index of the ambient enclosing the prism and 

sample and nP is the refractive index of the prism and, by association, the refractive index of the 

sample.  By noting that the intersection of the bevel with the incident beam and with the bottom 

surface of the prism forms a triangle, the following equation may be stated relating the angle of 

the transmitted beam with the bottom surface of the prism, ϕ [7].  

   

 (14) 

 

 

Figure 8: The geometry formed by an infrared beam as it passes through the combination of a prism and sample with 
similar refractive indices.  The path of the infrared beam through the prism and through the interface between the 
prism and sample defines a triangle and this geometry may be used to calculate Φ. 
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This angle defines the angle at which the infrared beam bounces off of each horizontal 

interface on the sample.  From the angle, ϕ, the path length may be calculated to a first order by 

calculating, first, the distance traveled by the infrared beam in the sample during a single bounce 

and, secondly, calculating the number of bounces that the infrared beam undergoes off of either 

surface of the sample.  The path length per bounce of the infrared beam is simply the thickness 

of the sample divided by the cosine of the angle.  From the assumption that the incident beam 

enters and leaves the sample at the edges of the prism, the number of bounces, n, may be related 

to this path length per bounce by considering the horizontal distance traveled per bounce, which 

is simply the path length of a single bounce multiplied by the sine of the incident angle, ϕ.  

Dividing the total length of the bottom surface of the prism by this distance traveled for a single 

bounce yields the following expression for n by virtue of the observation that a bounce off of the 

bottom surface is a mirror image of a bounce off of the top surface. 

 

 (15) 

 

A bounce is a discrete value and an even number of bounces are required for the beam to 

transit through the sample and be collected by the prism at the other end, so n may be rounded 

down to the nearest even integer.  The total path length may be related to the number of bounces 

by recognizing that the number of times that the beam transits from the bottom of the sample to 

the top or from the top to the bottom is roughly equal to n.  Thus, the total path length, x, may be 

expressed as follows. 
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 (16) 

 

 

 

Figure 9: The derivation of the pathlength of the infrared beam through the sample being evaluated using MIT-IR 
Spectroscopy.  The pathlength is equal to the pathlength associated with a single bounce, x, multiplied by the 
number of bounces, n.  the pathlength per bounce is defined by the horizontal travel per bounce, determined by Φ, as 
well as the sample thickness. 

 

The attenuation of the infrared intensity due to the path taken by the infrared beam 

through the sample may be expressed by considering several different factors.  The ratio of 

intensity between the incident infrared beam and the beam transmitted through the prism is a 

fundamental limit to the observed intensity.  At each bounce, only a given amount of infrared 

energy will be reflected back into the sample.  A reasonable first order assumption is that all 

energy not retained by total internal reflection within the sample is lost.  For a given material-

prism system, depending upon the polarization of the infrared beam as well as the surface 

roughness of the interfaces, this ratio of the reflected intensity to the transmitted intensity will 
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vary.  By using samples polished on both sides, the effects of surface roughness can be negated, 

leaving only a dependence upon the polarization of the infrared beam.  The resulting variation in 

reflected intensity for the interface between the prism or sample and the ambient is defined as 

follows, where Rs is the reflected intensity ratio for a perpendicularly polarized beam and Rp is 

the reflected intensity ratio for a parallel polarized beam.  As before, it is assumed that the 

extinction coefficient is much smaller in magnitude than the refractive index and, as such, 

doesn’t have an effect on the observed reflectivity. The term ϕ‘ represents the angle of the 

transmitted beam which may be expressed using Snell’s Law [8] while nV is the refractive index 

of the ambient and nP is the refractive index of the prism.    

 

  (17) 

  (18) 

  

The Transmission into and out of the prism may be expressed using these same 

reflectivity terms as the transmission is simply equal to 1-R.  In the case of transmission into the 

prism, the incident angle of the infrared beam replaces the reflected angle off the bottom and top 

surfaces of the prism and nV and nP are switched because the transmitted beam no longer travels 

from the prism into the ambient, but from the ambient into the prism.  In the case of transmission 

from the prism to the detector, nV and nP remain as in the equation and the angle of interest is 

equal to the difference between the bevel angle, α, and the reflected angle, ϕ.  This is equivalent 

to the angle (ϕ’) resulting from the refraction of the incident beam as it passes from the ambient 
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to the prism.  This expression may be derived using Snell’s Law for the angle of the incident 

beam with respect to the prism bevel, ϕ.   

The attenuation of the infrared beam due to the bulk of the sample may be determined by 

applying the Lambert-Beer Law for intensity loss in an absorbing medium.  In this derivation, 

two separate absorption events occur.  The sample itself, irrespective of any existing Ion Implant 

Damage will absorb radiation as this radiation passes through it.  The rate at which this 

absorption occurs over a unit path length is equal to the term γ, which is related to the absorption 

factor of the refractive index, k, as follows, where λ is the wavelength of the light generated in 

the ambient.  In addition, radiation will be absorbed by any damage resulting from Ion 

Implantation.   The rate at which radiation is absorbed by Ion Implantation Damage per unit 

pathlength may be expressed as equal to the damage concentration, NT, multiplied by a capture 

cross section, σ.  In addition, a scaling constant must be multiplied in to account for the ratio of 

the pathlength over which Ion Implant Damage contributes to absorption as compared to the total 

pathlength.  This term may be expressed as the ratio between the Projected Range of the implant, 

Rp, and the total sample thickness, t.  The sum of these two terms represents an expression for 

the total attenuation of radiation for a given unit pathlength [9]. 

 

 (19) 

 (20) 
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The quantity of light transmitted over the full pathlength of the infrared beam in the 

sample may be expressed as follows.  In this equation, I0 represents the beam intensity prior to 

traveling through the prism while I represents the beam intensity only due to Lambert-Beer 

attenuation after traveling through the sample.  

 

 (21) 

 

The total attenuation for a non-absorbing sample may be expressed by multiplying the 

loss due to transmission into and out of the prism by the attenuation due to the absorption of the 

sample as well as by the total number of reflections off the top and bottom sample surfaces.  In 

the case of a sample with Ion Implant Damage, the Beer-Lambert Law requires that both the 

term representing the absorption of the bulk sample, γ, and the term representing the absorption 

due to Ion Implant Damage be included.  This is not the case for a baseline sample, where no Ion 

Implantation occurs and only γ must be included.  The resulting terms for the attenuation of the 

beam intensity are as follows, where IBL is the intensity associated with a baseline sample while 

IS is the intensity generated by the ion implanted sample. 

 

 (22) 

 (23) 
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It is worth noting that division of the spectrum of a sample with the states of interest by a 

baseline standard without any states will result in a differential spectrum which may be used for 

analysis.  Rp, t, x (defined in Equation 10) and, ideally, σ, may be considered constant.  Thus, 

after taking the natural logarithm of the ratio between the infrared signal generated by absorption 

in the implanted sample and the baseline infrared signal, an expression may be derived that 

directly correlates the density of particular species of ion damage to the intensity ratio of an ion 

implanted sample to a baseline sample.  This expression is as follows. 

 

 (24) 

 

1.5: Hydrogen Implant Defects in Semiconductors 

 A variety of studies have been performed in order to observe the structural and electronic 

defects arising from Hydrogen Implantation or Hydrogen-Helium Co-Implantation, both for low-

fluence studies as well as for ion cutting related studies.   

Structural defect studies have included such analytical techniques as Transmission 

Electron Microscopy (TEM), Atomic Force Microscopy (AFM), Rutherford Backscattering 

Spectroscopy (RBS), and Multiple Internal Transmission Infrared (MIT-IR) Spectroscopy.  The 

effects of Hydrogen Implantation and Hydrogen-Helium Co-Implantation as studied by MIT-IR 

were of particular interest in relation to this study MIT-IR has picked up vibrational modes and 

bending modes of a variety of states.  These states include trapped molecular hydrogen and 

hydrogen-bonded interfaces corresponding to crystal facets of dislocation loops.  These states 
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correspond to 2084 wavenumbers for the <111> facet and 2110 for the <100> facet.  In addition, 

ATR-IR Spectroscopy has detected the presence of monovacancies decorated with anywhere 

from one to four hydrogen atoms as well as decorated multivacancies, particularly hydrogen-

decorated divacancies possessing anywhere from one to six bonded hydrogen atoms.  VH, VH2, 

VH3, and VH4 have been observed to possess stretching modes in the 2025, 2125, 2161/2188 

and the 2219 wavenumber ranges, respectively.   The presence of hydrogen-decorated silicon 

interstitial defects has also been postulated based on the presence of resonant states in the 2000 

to 1950 wavenumber range [10]. 

Electronic defect studies have included studies at room temperature of pseudo-doping 

effects using techniques such as Hall Effect Resistivity and Hall Effect Mobility as well as Four 

Point or Two Point Probe Resistivity.  These studies have observed several general trends in 

carrier density with respect to annealing temperature.  Hall Effect Resistivity studies have 

demonstrated that p-type samples implanted with Hydrogen or a Hydrogen-Helium combination 

at high fluences maintain their p-type behavior up until approximately 450°C, at which point a 

predominance of n-type traps, called thermal donors, compensate and invert the semiconductor 

material.  This effect is maintained until approximately 500°C, at which point the majority of 

thermal donors begin to dissociate, leaving in their wake the background p-type doping of the 

semiconductor as well as a host of thermal acceptors which remain stable at elevated annealing 

temperatures up to around 700°C.  The result of this effect is the presence of hole carrier 

concentrations in excess of the background doping.   

Cryogenic Studies have made use of Electron Paramagnetic Resonance as well as 

Laplace DLTS and traditional DLTS methods to detect specific energy levels and capture cross-

sections associated with deep level traps [3].  Analysis of Hydrogen Implantation defects has 
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largely been confined to study of electron trapping in n-type materials.  Hydrogen implanted n-

type materials manifest themselves in a variety of configurations.  VH1, a single vacancy 

decorated with a single hydrogen atom manifests itself as an electron trap with an activation 

energy for emission corresponding to .43eV to .44eV.  An electron trap with an emission 

activation energy of .49eV has been validated experimentally and theoretically as a V2H 

decorated divacancy defect.  The VO defect, corresponding to a vacancy-oxygen bond is 

transformed from a .15eV electron trap center to a .32eV electron trap after thermal annealing.  

VH, and V2H have been observed to decay after thermal annealing in the range of 500°C to 

550°C while VOH requires more thermal energy for the dissociation reaction to take place, not 

annealing out until around 600C°.  VH possesses very similar symmetry to a similar defect, VP, 

which is the defect arising from incomplete activation of a phosphorus atom in a vacancy site.  

This has led to some speculation that VH acts as a “Pseudo Group V Element” [11].   
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Figure 10: Annealing behavior of electron traps generated by H+ implantation [11]. 

 

Some investigation of hydrogen-induced acceptor states has occurred.  However, the 

acceptor states arising from hydrogen implantation have not been studied in nearly as much 

detail.  There is little understanding of the structural imperfections that lead to these defects.  A 

defect at .28eV above the valence band has been observed by multiple authors and the possibility 

of this defect being caused by hydrogen bonding has been discussed.  However the similarities in 

annealing characteristics between this defect and the Ci-Oi (or carbon-oxygen interstitial bond) 

defect has ruled this possibility out [12].  An additional defect at .51eV above the valence band 

has also been observed.  This defect is currently attributed to a boron-hydrogen interstitial 

complex [13].  Two additional traps existing at .33eV and .66eV have been extracted using 
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DLTS and the proposal has been made that these defects correspond to VH2 and VH3 defects, 

respectively [14]. 

 

 

Figure 11: DLTS Spectra of an as-formed P-Type sample implanted with H+ ions at 300 KeV [13]. 

 

The presence of interstitial Carbon-Oxygen as well as unbounded Vacancy defects may 

also be expected to contribute to signals arising from Hydrogen or Hydrogen-Helium 

Implantation experiments by virtue of the fact that any physical bombardment of a Cz-grown 

sample will induce point defects including vacancies, silicon interstitials, interstitial dopant 

atoms and interstitial carbon and oxygen.  Vacancy defects do not have a single charge state.  

Rather, they may exist in a positive state, which decays to neutrality (V+ corresponding to 

.05eV+EV) or negative charge state, which decays to neutrality (V - corresponding to .32eV-EC) 

as well as a double positive charge state which decays to a positive state (V++ corresponding to 
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.13eV+EV) [3].  As stated earlier, interstitial carbon has been found to exist in a state 

corresponding to .28eV above the valence band as well as in a state corresponding to .1eV below 

the conduction band [12].  Interstitial carbon may also bond with substitutional carbon to form a 

Ci-Cs bond with an energy corresponding to .33eV above the valence band [15].  An additional 

state, corresponding to a substitutional carbon bond with a divacancy exists at .09eV below the 

conduction band and has demonstrated bistability [16].  After annealing at a temperature of 

300°C or more, this state decays, yielding a new state at .17eV below the conduction band [17].  

Carbon may bond with Oxygen in an interstitial configuration to form a Ci-Oi bond 

corresponding to a state at .38eV above the valence band [18]. 

 

 

Figure 11: DLTS Spectra of hole traps in P-Type Silicon silicon implanted with Silicon at 1MeV [3].  
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Chapter 2: DLTS Fitting Functions 

2.1: Simplifications to the Charge Transient 

The dual-boxcar technique used in DLTS to produce a signal is a method of discrete 

differentiation with respect to time.  This is accomplished by subtracting the signal being 

measured at two separate times.  With this in mind, it stands to reason that a fitting function for 

the resulting discrete differential could be produced simply by differentiating the trap 

capture/emission function listed above with respect to the emission time and that this fitting 

function may be accurate as a first order approximation.  The result of such a differentiation is as 

follows, bearing in mind that the kinetic rates described below only apply to conditions inherent 

to the emission pulse, not the filling pulse. 
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These equations are adequate to describe the resulting transient of an I-DLTS measurement 

since the current is literally the differential of the trapped charge concentration with respect to 

time.   

In the case of a capacitive or voltage-based measurement, this differentiation must be 

converted to a change in trapped carrier concentration alone, which is accomplished by 

separating the change in time from the change in trapped carrier concentration as follows where 
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the change in time, ∆t, is equal to the difference between tDt1 and tDt2.  In this case, the function, 

t, is the average of tDt1 and tDt2. 
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The result of this differentiation is a peaked function.  It is readily observable that the 

function described here has a magnitude which is dependant not only on the conditions and 

duration of the filling pulse (indicated by pT0 and nT0), but also by the rate of capture and 

emission of carriers during the emission pulse.     

This function is a reasonable first-order approximation of the true DLTS signal resulting 

from a voltage-based or capacitive measurement, which is a discrete differential.  This equation 

is as follows. 
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In this discrete form, t1 and t2 represent the first and second times at which the emission 

transient is sampled through boxcar integration. 
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These equations remain complex, even when simplified to the first order approximation 

given by the differential form listed above.  If further reduction of the equation is required, it is 

reasonable in some circumstances to assume that the rates described above may be simplified by 

reducing the four-rate equations above down to two or possibly one rate.   

The law of mass action necessitates that in any semiconductor where the Fermi Energy is 

significantly displaced from the intrinsic energy only one carrier type will be present in large 

numbers within the material.  Thus, in the case of a trap existing at a point where the Fermi 

Energy is significantly displaced from the intrinsic energy, only one capture rate will dominate 

and the other may be neglected.  The criteria for this transition from a two-rate capture kinetic to 

a single-rate kinetic is a point where the capture rate for one carrier is less than one tenth of the 

capture rate for the other carrier.  By invoking the law of mass action and separating the capture 

kinetics into their constituent capture cross-sections and thermal velocities, the following 

equations may be defined for the hole concentration (electron concentration) required for the 

dominance of the electron capture kinetic (hole capture kinetic).  
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Figure 1: The maximum minority carrier concentrations permissible in a semiconductor in order for one capture rate 
to dominate in a DLTS measurement (4-1 and 4-2).  This dependence is related to the ratio between the hole capture 
cross section and the electron capture cross section and corresponds to the maximum carrier concentrations 
permissible for carriers to fill trap states during an emission pulse.  

 

It is possible for both capture terms to remain dominant in comparison to one another in 

cases where the Fermi Energy approaches the intrinsic energy.  However, in such a situation, the 

emission rates associated with thermal emission of carriers from the trap will dominate the rates 

associated with carrier capture, and both capture rates may be ignored.   

The criteria for a case where the capture rates for a given trap are sufficiently small in 

comparison to their corresponding emission rates is where the capture rate is less than one tenth 

of its corresponding emission rate.  This may be expressed in terms of carrier concentrations or 

in terms of the energy level of the trap in question.  Expressing this criteria in terms of the 

electron or hole concentration yields the following equations, where the term γ is the product of 

the thermal velocity, the density of states and the squared inverse temperature. 
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Figure 2:  The maximum hole concentration for trap emission to occur with varying temperature and varying trap 
energy barriers (5-1 and 5-2).  Given the behavior of Boltzmann Statistics, the observed trends (namely that the 
maximum hole concentration increases with temperature and decreases with energy barrier) are to be expected. 

 

 

Figure 3:  The maximum electron concentration for trap emission to occur with varying temperature and varying 
trap energy barrier (5-1 and 5-2).  Given the behavior of Boltzmann Statistics, the observed trends (namely that the 
maximum electron concentration increases with temperature and decreases with energy barrier) are to be expected. 
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It is important to note that the dominance of any emission term over its corresponding 

capture term is completely independent of the capture cross-section of the trap species in 

question.  The preceding criteria may be re-expressed for the trap energy as follows. 
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Figure 4: Variation of the maximum energy level resolvable with respect to the valence band for thermal acceptor 
emission with respect to temperature and hole concentration within semiconductor (6-1 and 6-2).  As temperature 
increases, the maximum resolvable energy level also increases, as expected.  It is also expected that the maximum 
resolvable energy level decreases with respect to hole concentration.  
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Figure 5: Variation of the minimum energy level resolvable with respect to the conduction band for thermal donor 
emission with respect to temperature and electron concentration within semiconductor (6-1 and 6-2).  As 
temperature increases, the minimum resolvable energy level also decreases, as expected.  It is also expected that the 
maximum resolvable energy level increases with respect to electron concentration.  

 

It is typically the case that one emission term will dominate over the other term for any trap 

with an energy level sufficiently larger or smaller than the energy associated with mid-gap.  For 

states existing near the mid-gap energy or for states with sufficiently large differences in hole 

and electron capture cross-sections, it may not be readily apparent as to whether one emission 

term dominates over the other or if both emission terms remain dominant.  It may be assumed 

that only one emission rate will remain dominant if one of the two emission rates is less than one 

tenth the magnitude of the other rate.  With this criterion in mind, the trap energy required for 

one emission rate to dominate is as follows. 
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Figure 6:  The maximum resolvable energy gap for a hole or electron trap with respect to the capture cross section 
difference associated with the hole and electron emission rates (7-1 and 7-2).  It is to be expected that as the ratio 
between hole and electron capture cross section increases, the maximum resolvable energy gap for holes increases 
while the maximum resolvable energy gap for electrons decreases. 

 

In the case of a metallurgical junction where ionized charge exists largely on one side or the 

other, two separate regions may be presumed to exist.  Where the depletion approximation is 

accurate, a region where emission dominates over capture exists.  In this region, the minority 

carrier capture rate may also dominate, especially near the metallurgical junction.  However, 

because the minority carrier capture cross-section is typically quite small, the minority carrier 

capture rate is typically dominated by the majority carrier emission rate.  As a consequence, only 

one rate is dominant in this region. For trap levels with energies away from mid-gap where the 

depletion approximation is valid, the following equations are applicable.   
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Similarly, the following equations result for the discrete form of the DLTS signal. 
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As the depletion approximation begins to fail near the edge of the depletion region, a second region exists 

where capture may no-longer be neglected.  In the case where the depletion approximation is not valid, the majority 

carrier capture rate may not be ignored and the following equations apply.  It is important to note that while this is, 

technically the form observed for regions near the depletion edge, the filling dynamic of the trap levels within this 

region leads to incomplete or no filling.  
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The following equations result for the discrete form of the DLTS signal. 
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It is important to note that in the case of a trap which exists close to mid-gap, no assumptions 

can be made regarding the dominance of emission or capture rates for either carrier, and the full 

form of the equation must be used.   

The terms pT0 and nT0 remain complex due in large part to the transient phenomena involved 

in the filling pulse.  Several simplifications may be made to these terms in order to reduce the 

overhead inherent in calculation.  The terms described may be simplified substantially if flat-

band conditions are assumed during the filling pulse.   

The filling pulse is typically not performed such that flat-band conditions are achieved 

throughout the semiconductor.  Often, some depletion effects remain at the metallurgical 

junction.  As a result, areas exist where traps are not filled during the filling pulse and, as a 

result, no emission occurs.  There are also regions where filling is not complete as a consequence 

of partial depletion and, as a result, attenuation of the DLTS signal occurs.  These two cases are 

structural considerations and may be partially approximated with an attenuation factor, as will be 

discussed in a later section.     

In the case of filling of majority carriers and emission of minority carriers, it may be assumed 

that all majority carrier traps will be filled and all minority carrier traps will be emptied during 

the capture pulse conditions given an infinite time for filling.  A related assumption is that all 

minority carrier traps will be filled and all majority carrier traps will be emptied during the 

emission pulse if the pulse is allowed to run to completion.  The assumptions are reversed for the 

filling of minority carriers and emission of majority carriers.   
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The resulting expressions may be derived for the constants expressed in the above 

differential forms, again assuming that holes are the majority carriers and electrons are the 

minority carriers.  It is also assumed that majority carriers are being filled during the filling pulse 

as opposed to the minority carriers.  
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As in the treatment above, the kinetic terms contained within the exponential may be 

simplified to aid calculation if a few assumptions are made.  In the case of capture, the key 

assumption is that enough charge is injected such that one capture rate dominates the signal.  In 

such a case, the capture rate alone may be input into the terms above and the following terms 

result, again assuming that holes represent the majority carrier and electrons represent the 

minority carrier.    As above, the terms may be reversed if minority carriers are being filled 

during the filling pulse. 
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In the case of shallow level traps or of higher temperatures approaching 300K, the emission 

term cannot be neglected and the assumption that the steady-state boundary condition of the 



44 

 

transient is that of a completely filled concentration should be called into question.  The resulting 

filling term may be expressed as follows. 
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The resulting equation for the differential charge observed during DLTS uses these final 

forms of the filling function combined with the differentials where the depletion approximation 

applies. 

 

te
p

tce
T

pfpp eeetp −+−−∆−=∆ )1( )(
 (15-1) 

te
n

tce

T
nfnn eeetn −+−−∆−=∆ )1( )(

 (15-2) 

 

The discrete form of this differential is as follows. 
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Chapter 3: DLTS Analysis of MIS Capacitor Structures 

 

3.1: The Structure of MIS Capacitors 

Two subsets of trap states are commonly observed in MIS Capacitors.  The first of these are 

interface states, which are spatially localized at the interface between the semiconducting crystal 

and the insulator, but energetically variable because of the variety of bonding configurations 

available to a defect at an interface between an amorphous material and a crystalline material.  

Bulk trap states are also commonly seen in MIS structures.  These states contain discrete energy 

levels determined by trap species but vary spatially throughout the semiconductor crystal.  In 

order to derive the activity of these trap states, the activity of the Fermi Energy and the activity 

of associated free carriers with applied bias must be considered [19].  

In MIS capacitors, the magnitude of the Fermi Level with respect to position in the 

semiconductor is derived from the solution to the Poisson Equation.  It is assumed that the 

structure exists on a semiconductor with spatially constant doping and with a trap concentration 

which is assumed to be at most one tenth that of the doping or less.  This level of ionized charge 

is considered small enough that it will not substantially modify the Poisson Equation and, in 

doing so, not affect the time-dependant behavior of the Fermi Energy in relation to the bent 

bands within the semiconductor. 

The potential distribution solution to the Poisson Equation is approximately parabolic for the 

case stated above.  The bending of the bands of the semiconductor in relation to the Fermi-Level 

may be defined as follows when the MIS Capacitor is biased into depletion [20].  
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Where x is the depth into the semiconductor, ϕs is the surface potential and W is the width of 

the depletion region, a region where free majority carriers have been swept out of the 

semiconductor by an internal electric field, leaving only minority carriers as well as ionized 

donors and acceptors.  The expression for the depletion width is as follows [20]. 
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NA is the net concentration of donors and acceptors in the semiconductor.  NT is the summed 

concentration of bulk traps in the semiconductor, QB, divided by the width of the depletion 

region, which is assumed to remain relatively constant despite the change in ionized charge 

concentration over time.  The term q is the fundamental charge of an electron and εs is the 

permittivity of the semiconductor.  Analysis of this depletion width is greatly simplified with 

little loss of accuracy if it is assumed that the steady state trapped charge concentration has little 

effect on the width of the depletion layer and that the transient trapped charge concentration has 

a negligible effect on band bending. 

The free carrier concentration varies exponentially with the band bending in relation to 

the Fermi Level.  This is due to the fact that the band bending linearly affects the offset of the 

Fermi Energy in relation to the conduction and valence bands of the semiconductor2.  This free 
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carrier concentration may be related either to the intrinsic energy level and carrier concentration 

or to the Dopant Concentration and associated Fermi Energy. 
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With the preceding information about the free carrier concentration, a function may be 

derived to express the transient activity of both interface states and bulk states.  Bearing in mind 

that the interface states are fixed spatially but variable energetically, the following integrals may 

be defined and solved for numerically [21]. 
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Qis is defined as the density (per square centimeter) of interface states, which is shown to 

vary with respect to the potential at the surface (x=0) during the filling and emission pulses as 

well as with the energy (E). 

Over time during the filling and emission pulses, Qis will change as trap states emit or 

capture.  In the case of electron-filled traps, all states existing below the Fermi Level will remain 
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thermodynamically stable, but all states existing above the Fermi Energy will become 

thermodynamically unstable and begin to emit carriers.  All hole traps existing above the Fermi 

Level will remain thermodynamically stable and all states below this level become 

thermodynamically unstable and emit over time.  Because of this effect, the positions of the 

Fermi Energy at the interface during the filling and emission pulses defines the energy range 

over which interface states will be filled and emitted. The resulting integral of this variable 

distribution is as follows, with ϕf representing the position of the Fermi Energy during the filling 

pulse and ϕe representing the position of the Fermi Energy during the emission pulse [21]. 
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Bearing in mind that bulk states are fixed energetically but variable spatially, the following 

integrals may be defined for a single trap species at ET within the bulk, QB. 
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It is trivial to recognize that because band bending cannot occur beyond the maximum 

depletion width for the MIS Capacitor, the bounds of the integral may be truncated, yielding the 

following result where Wi is the depletion width at the onset of strong inversion. 
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Figure 1: The charge structure of an MIS Capacitor – Contributions to the charges within the MIS structure include 
the bulk charge, formed by the ionized dopant and impurity atoms contained within the depletion region, the 
interface trapped charge and the sheet of charge contained within the inversion layer.  This charge is mirrored in the 
gate. 
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This inversion-defined depletion width is equal to the depletion width where the surface 

potential equates to twice the Fermi potential defined by the doping of the semiconductor portion 

of the MIS structure.  Thus, the inversion-defined depletion width is equal to the following [20]. 
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3.2: DLTS Small Signal Analysis 

 

Yet another consequence of Poisson’s Equation is the relation of the capture and emission of 

trap states on observed signals resulting from DLTS measurements.  Voltage as well as current 

measurements combine the signals from the interface and bulk states in a linear fashion, resulting 

in a superposition of the two emission events.  Capacitance-based measurements add the charge 

signals from the interface and bulk in parallel, resulting in a radically different signal from the 

voltage and current measurements in certain regimes. 

All DLTS measurements are performed using some sort of technique to achieve a 

differentiation of a signal with respect to time.  In the case of current DLTS, the sensing of the 

current transient at a given time represents an implicit differentiation of charge with respect to 

time.  In constant capacitance (voltage) DLTS and capacitance DLTS, the measurement is 

linearly dependent upon differentiated charge as well.  In this case, the differentiation is 

approximated with a boxcar integration technique.  All DLTS techniques have their basis in the 
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observance of charge emission over time.  Thus, it is important to arrive at the differential of 

charge with respect to time. 

A summation of all charges existing within the MIS Capacitor which are sensed by the gate 

electrode may be expressed as follows [23]. 

 

SISIFMSMIS QQQQQ +++=  (9) 

 

In this expression, QMS represents the charge accumulated at the gate electrode due to a 

workfunction mismatch between the electrode and the semiconductor.  QIF represents fixed 

charge within the insulator resulting from ionized contaminants and non-stoichiometries within 

the insulating film.  These defects may be considered thermodynamically stable at DLTS 

temperatures and at varying voltages.  QIS represents the aforementioned charge due to ionized 

interface trap states while QS represents the combined charge of the ionized bulk trap states, QB, 

and the ionized dopants, QD, within the depletion layer of the MIS structure.  QD may be related 

to the concentration NA by multiplying by the thickness of the depletion layer, W. 

Of the charges listed in the preceding equation for the accumulated charges within an MIS 

structure, both QMS and QIF remain at equilibrium regardless of biasing conditions and may, 

therefore, be considered invariant with respect to time.  The resulting equation contains 

expressions only for charges due to ionized interface states, ionized bulk states and ionized 

dopants. 

During DLTS measurements at temperatures above approximately 20K, dopant freeze-out 

has a negligible effect and the ionization of dopants to form the depletion layer is fast enough to 
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be considered undetectable.  The result is the following expression for an I-DLTS measurement 

in an MIS Capacitor where IIS and IB are the temporal differentials of interface trap states and 

bulk trap states, respectively. 

 

BISDLTS III +=  (10) 

 

The DLTS signal achieved through a boxcar differentiation technique is merely two charge 

levels taken at two separate times, represented below. 

 

BISDLTS QQQ ∆+∆=∆  (11) 

 

In the case of voltage-based measurements, the signal measured is the additive voltages 

within the MIS structure due to the charges expressed above.  By an application of Gauss’ Law, 

the following expression may be achieved for the observed voltage within an MIS structure [19]. 

It is important to note that while the charge transients expressed above in (11) are correct, they 

represent the change in neutral trap levels, which have no charge and cannot be sensed.  The 

observable changes in charge levels in an electrostatic DLTS measurement are those which are 

ionized by an emission event.  Thus, the true density of charge sensed in a Voltage or Capacitive 

DLTS measurement is equal to the difference between the total concentration of trap states and 

the filled trap states [23]. 
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In the above expression, ΦMS is an expression of the resultant potential due to workfunction 

mismatches between the electrode and semiconductor.  The term ΦS represents the surface 

potential placed upon the semiconductor, which is also the voltage dropped over the entirety of 

the semiconductor.  Lastly, ΦI represents the voltage taken across the insulating layer.  This 

voltage is the summation of the ionized dopants and bulk traps within the depletion layer divided 

by the insulator capacitance. 

During Constant Capacitance DLTS (CCDLTS), the surface voltage is maintained at a 

constant value through the use of a capacitance-based feedback loop. The workfunction 

difference between the semiconductor and electrode is invariant with voltage, so that the only 

signal observed during CCDLTS is due to the charge sensed through the insulator, ΦI.  The 

resulting equation is as follows, with QD defined as the trapped charge within the insulator [19].  
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For the sake of convenience, the total number of filled states existent between the surface 

potentials defined by the filling pulse and the emission pulse are stated as equal to NIS.  The 

DLTS signal achieved through a boxcar differentiation technique is merely two CCDLTS 

voltages taken at two separate times, represented below. 
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Analysis of Capacitive DLTS signals is complicated by the fact that the charges observed 

within the MIS structure exist in series, resulting in capacitances in series rather than in parallel.  

This effect can be used to great advantage in some measurements, however. Of the charges 

defined for the MIS structure, all but the charges at the interface and within the semiconductor 

can be ignored because these charges are defined by the material and not by the voltage applied 

across the MIS structure, implying that no capacitance results from these charges.   

The traditional model of the steady state capacitances existing in an MIS capacitor calls for 

two separate capacitors in series.  The capacitance closest to the gate electrode is that of the 

insulating layer and is the direct result of the charge that is “piled up” at the interface as well as 

in the depletion layer when a high-frequency Alternating Current signal is applied.  This 

capacitance may be expressed either as the permittivity of the insulator (Єi) divided by the 

thickness of the insulator (ti) or as the charge within the semiconducting film divided by the 

voltage present across the insulator Vi.  Bearing in mind that this insulator voltage may be re-

expressed as the difference between the voltage applied to the gate electrode (VG) and the sum of 

the surface potential and the workfunction mismatch between the electrode and the 

semiconductor, the following equation may be derived. 
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The second capacitance is due to the depletion layer.  Specifically, because the ionized 

dopant atoms of the depletion region form a charged layer with defined width as opposed to a 

“sheet of charge”, a series capacitance results.  This capacitance is simply defined as the 

permittivity of the semiconductor (Єs) divided by the length of the depletion layer (W), which is 

defined using (2). 
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Because the two following capacitances exist in series, the following effective capacitance 

may be derived [24].   
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In a transient scenario, the steady-state model is further complicated by the emission of 

carriers from filled traps.  From the steady-state analysis above, it is trivial to demonstrate that 

while the depletion capacitance is only affected by the emission of bulk trap states, the insulator 

capacitance is actually dominated by emission of both bulk and interface states.   

When bulk states exist at low levels in comparison to the total charge present within the MIS 

structure, the transient decay of bulk states can be ignored when considering the behavior of the 

oxide capacitance over time.  This is not the case for interface states, which typically make up 
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the majority of the observed trap states within an MIS structure.  When the voltage is pulsed, free 

carriers will shift rapidly to maintain the capacitance of the oxide.  Interface states and bulk 

states rely on thermal emission to generate free carriers and return to equilibrium.  Prior to the 

formation of steady-state conditions, excess interface state charge will still contribute to the 

insulator capacitance, resulting in an observed transient capacitance which is higher than that at 

steady state.  Thus, the insulator capacitance can be considered as made up of the steady state 

capacitance and a transient pseudo-capacitance which exists in parallel and represents the 

emission from interface states.  This pseudo capacitance is the difference between the transient 

concentration of interface states and the steady-state concentration of interface states divided by 

the voltage applied across the insulator.  The insulator capacitance may be defined as follows. 
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  This insulator capacitance may be converted into a differential capacitance by eliminating 

all steady state contributions and by differentiating the interface-state concentration.   
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In the case of the depletion capacitance, the capacitance itself may be simplified using a 

Taylor Expansion about the doping of the semiconductor, NA, where all but the first two terms of 

the series are neglected.  The resulting approximation is as follows [25]. 
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This depletion capacitance may be converted into a differential capacitance by neglecting the 

effect of NA due to it being a steady state component and by differentiating the bulk trap state 

contribution, which is time dependant [25].   
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Figure 2: The Small Signal Model for DLTS of a MOS Capacitor – The oxide capacitance is modified to include the 
transient capacitance due to interface states while the depletion capacitance is modified to include the effects of 
transient bulk states on the depletion capacitance.  The effects of bulk trapping may be separated from the effects of 
doping by perfoming a Taylor Expansion. 

 

An expression for the differential effective capacitance may be extracted using the quotient 

rule.  In this extraction, it is assumed that either no interface states exist, leading to a constant 

effective insulator capacitance, or that no bulk states exist, leading to a constant depletion 

capacitance.  In making this assumption, two separate expressions for the change in effective 

capacitance with time may be derived as follows. 
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The change in the insulator capacitance as well as in the depletion capacitance with respect to 

time may be related back to the DLTS charge transient when they are multiplied by the change in 

time.  By assuming only small variations in capacitance occur over time for CI and Cdep, a simple 

expression may be derived for the change in Ceff with respect to its constituent capacitances at 

steady state.  The product of this expression and the differential insulator and bulk capacitances 

may be expressed as follows. 
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This yields an approximate expression for the DLTS response of a capacitive signal.  It is 

useful to note that it is not difficult to extract the quasi-static depletion and insulator 

capacitances, represented by Cdep and CI.  These terms may be easily derived from the 

Capacitance-Voltage characteristics of any MISCAP prior to DLTS measurements.  This 

analysis is required for the measurements on a MISCAP to take place in order to determine the 

precise voltages required to generate the surface potentials desired for testing.   

In the case of the measurement of insulator states on a thick insulating layer, where CI is 

much smaller than Cdep, or where bulk states are being measured on a thin insulator or highly 

resistive substrate, where Cdep is much smaller than CI, the derivative of Ceff with respect to its 
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constituent capacitances may be ignored and the resulting change in Ceff with respect to time is 

equal to the change in Cdep or CI with respect to time.   

In the case of a near-perfect semiconductor crystal, the effects of bulk trap states can be 

neglected as they will be inconsequential in comparison to the states arising at the interface.  It is 

obvious that no structure can actually exist with zero interface states, but in the case where the 

insulator capacitance is sufficiently large in comparison to the depletion capacitance, interface 

states may be taken to be non-existent and the effect of trap states alone may be considered. 

In the case of a capacitive measurement where interface states are assumed negligible and 

only the depletion capacitance is assumed variable, dividing by (23-1) by (20) results in a greatly 

simplified expression for Ceff, where W is the depletion width during the emission pulse.   
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To a first order, the differential effective capacitance arising from a combination of interface 

states and bulk trap states may be approximated by a summation the equations corresponding to 

the DLTS signal caused by interface states in the absence of bulk states and bulk states in the 

absence of interface states.  From this summation, it is readily apparent that the signals arising 

from interface states or bulk trap states with set magnitudes may be attenuated or amplified with 

respect to one another by varying the corresponding insulator or depletion thicknesses.  This 

effect has been touched on previously.  Wang noted that the signals observed from bulk trap 

states could be amplified in capacitive DLTS measurements performed on the gate of a 
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MOSFET by biasing this MOSFET such that the channel region was in a state of deep depletion 

[26].   

In the case of a MIS Capacitor, this same effect may be produced for small depletion widths 

by increasing the insulator capacitance, or decreasing the insulator thickness.  In the case of large 

insulator thicknesses, reducing the depletion capacitance to a small value by increasing the 

resistivity of the semiconductor or by biasing into deep depletion accomplishes the same effect.  

This is not a counter-intuitive effect when the series nature of the insulator and depletion 

capacitances is considered.  The increase of the insulator capacitance relative to the depletion 

capacitance necessitates that more interface charge is required in order to maintain the same shift 

in effective capacitance observed in DLTS because the low capacitance always dominates in a 

series combination.  Because this charge is fixed by the presence of interface states, the signal 

due to interface states must necessarily attenuate, eventually becoming negligible in comparison 

to the bulk state signal. 

This effect is observed in simulations of DLTS transients with variable oxide thickness and 

substrate resistivity.  These simulations were performed by converting (5-1) and (7-1) into 

Riemann Sums for bulk traps with a set activation energy, capture cross section and trap density 

and for interface states with a set state density and capture cross-section.  The variation in 

surface potential was defined in order to determine the change in depletion width as well as the 

energy range of interface state emission.  The machine settings for a DLTS system, specifically 

t1, t2 and tD as well as the range of the temperature sweep were set for the simulation. Once the 

variation in charge density between t1tD and t2tD was calculated for the interface as well as the 

bulk, the insulator capacitances and depletion capacitances were calculated and set in parallel to 

simulate a capacitive DLTS signal.   
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Increasing insulator capacitances or decreasing depletion capacitances attenuate the DLTS 

signal corresponding to interface states, leaving only the signal associated with bulk trap states in 

the semiconductor.  The effects of increasing insulator capacitance can be observed in Figure 3, 

where a decreasing insulator thickness forces a transition in the DLTS signal from an extended 

energetic band for thick insulators (corresponding to the interface state signal) to a signal due to 

bulk trap states with discrete energies for thin insulators.  The effects for increasing substrate 

resistivity can be observed in Figure 4, where an increasing substrate resistivity forces a 

transition in the DLTS signal from an extended energetic band for highly conductive substrates 

(corresponding to the interface state signal) to a signal due to bulk trap states with discrete 

energies for highly resistive substrates.   

  It should be noted that the linear summation of DLTS signals arising from interface states 

and bulk states is a reasonable approximation, but is not valid as the signals from either source 

become large in comparison to their constituent steady-state capacitances because of non-linear 

effects generated by the series combination of capacitances.   
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Figure 3:  Variable DLTS signals due to interface and bulk states with respect to insulator thickness – This 
simulation was performed for a sample with a hole carrier concentration equal to 1x1015 cm-3, a tD value of 1x10-4s 
and a bulk trap energy of EV+.3eV with a voltage across the insulator equal to 1V and with an interface state density 
of 2x1010 /eV-cm3. 

 

 

Figure 4:  Variable DLTS signals due to interface and bulk states with respect to bulk resistivity  – This simulation 
was performed for a sample with an insulator thickness equal to 1000Å, a tD value of 1x10-4s and a bulk trap energy 
of EV+.3eV  with a voltage across the insulator equal to 1V  and with an interface state density of 2x1010 /eV-cm3. 
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The effect of interface state attenuation may also be experimentally verified. An Si 

sample with resistivity in the range of 8Ω-cm to 15Ω-cm was cleaned and scribed. This samples 

were oxidized in a Bruce 7670 thermal oxidation furnace. This was a dry oxidation consisting of 

an initial ramp-up in nitrogen from 800°C to 900°C at a ramp rate of 10°C per minute followed 

by a 40 minute soak in ambient oxygen. Following this soak step, the temperature was decreased 

from 900°C to 800°C at a cool down rate of 5°C per minute. This resulted in the growth of a dry 

oxide to an average thickness and standard deviation of 191.38Å and 3.636Å, respectively, over 

the surface of the sample.  

The sample was implanted with phosphorus to act as a baseline for DLTS measurements.  

The sample was implanted with the phosphorus isotope, P31, at an energy of 60KeV, a tilt of 7 

degrees, a rotation of 45 degrees and a fluence of 2x1011 P31/cm2.  Following ion implantation, 

photoresist was spun on the front-side of each wafer and hard-baked at a temperature of 150 °C. 

The backsides of both samples were etched in a 10:1 Buffered Oxide Etchant (BOE) and the 

photoresist covering the front of each sample was stripped in solvent and rinsed.  

The sample was cleaved in half.  Half of the sample was annealed at 450°C for 30 

minutes while the other half of each sample was not annealed in order to preserve the states 

present in the bulk following ion implantation.  Metallization was performed on the front and 

back sides of both samples in a CVC Evaporator Glass Jar.  Approximately 200nm of aluminum 

was blanket deposited on the backside of each sample. A similar deposition of the same 

approximate aluminum thickness was performed on the front side through a shadow mask with 

circular features ranging from 1mm to 5mm in diameter. 



65 

 

MIS devices with diameters of 1mm were cleaved from each sample and were analyzed 

using DLTS in a SULA DLTS system. The steady state capacitance of the sample was analyzed 

from 5V to -5V. The capacitance-voltage response was used to define a square wave pulse for 

DLTS analysis that biased each sample from a state of shallow depletion, with the surface 

potential approaching the flat band condition, to deep depletion, with the surface potential 

approaching inversion. The sample was cooled to 100K and heated to 400K with measurements 

of the capacitance transient taken every 0.25K as heating occurred. These transients were 

analyzed using a boxcar integration technique with windows defined at t2=7 and t1=2.3 times tD, 

where tD is equal to the machine-defined variable time delay ranging from 5 ms to 0.1 ms, thus 

varying the values of t1tD and t2tD and changing the temperature positions of trap signals 

observed in DLTS spectra and allowing an Arrhenius Plot to be generated.  The resulting spectra 

were analyzed assuming a single-exponential dependency, meaning that any convolved peaks 

were analyzed as though they were a single peak.  
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Figure 5: DLTS Spectra of a p-type silicon sample implanted with the P31 isotope of Phosphorus – Analysis 
indicates a small baseline signal superimposed with each bulk signal.  This underlying base signal acts as a near-
constant offset and likely corresponds to the interface signal.  The high quality of observed trap signals as well as the 
lack of signal variation with voltage (not shown) indicates bulk trapping.  The DLTS spectrum in Figure 5a 
corresponds to the unannealed sample while the DLTS spectrum in Figure 5b corresponds to the annealed sample.  
DLTS analysis biased each sample from a state of shallow depletion, with the surface potential approaching the flat 
band condition, to deep depletion, with the surface potential approaching inversion. (Plot Courtesy of J. 
Senawiratne, Corning Inc.) 

 

Analysis of the resulting Deep Level Transient Spectra demonstrated a similar 

attenuation effect as that predicted in the simulated results.  A baseline signal, equal to roughly 

.2pF and extending from 100K to 350K and attenuating to roughly zero at elevated temperatures 

is evident in the sample which was implanted and annealed (Figure 5b).  The baseline of the 

measurement was small with respect to bulk state signals, a situation indicative of a thin 
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insulating barrier between the metal electrode of the MIS Capacitor and the semiconductor.  The 

states observed during DLTS testing have maximum values of 4pF in the unannealed sample 

(Figure 5a).  These states as well as the baseline signal cannot be attributed to interface states as 

capacitive signal associated with these states corresponds to an interface state density of the same 

order of magnitude as 1x109 /cm2 at the insulator thickness generated by the oxidation procedure.  

This was derived using (23-2).   

Another readily apparent effect of the thin insulator thickness is the high quality 

Arrhenius fit of all bulk states observed by the MIS Capacitor.  This is indicative of minimal 

distortion due to underlying signals caused by the interface which would corrupt the 

measurement of activation energy and capture cross section.  Lastly, the lack of variation with 

changing emission and capture potentials is also indicative of the lack of interface states.  A 

changing potential setting associated with DLTS would shift the interface state signal to reflect 

the new maximum and minimum band position of the scan and, as a result, the observable 

spectrum would shift.  Moreover, the quality and calculated values of Arrhenius Plots would 

shift with this shifting voltage as distortion effects changed.  This was not the case. 

 

3.3: A Spectral Fitting Program 

 

It is a common occurrence for peaks of similar energies to superimpose on one another 

during the temperature scanning associated with DLTS.  Without the aid of some computer 

program to assist in spectral fitting, the separation of these peaks is difficult, at best.  In many 

cases, two peaks will superimpose such that they appear to form a single peak with an unusually 
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broad temperature signature.  Spectral fitting provides a means of eliminating the subjectivity of 

manual peak identification from the process of spectral analysis. 

By utilizing the equations derived for the spectral response of a single-sided junction as 

expressed in Chapter 3, a simplistic program may be generated in order to perform spectral 

fitting.  Initially, a DLTS spectrum may be input into the program and the noise associated with 

the measurement may be eliminated by use of a running average or another advanced technique 

such as a Fast Fourier Transform followed by filtering.  In the case of the program created, this 

smoothing effect is accomplished by means of a running average.  A granularity is specified by 

the user, who defines the number of data points to be averaged together.  By means of a Do-

While Loop, the program averages each group of points corresponding to the user’s selection and 

assigns them to the temperature of the first point in the group, creating a smoothed spectrum. 

This smoothed spectrum is input into a Peak-Finder subroutine, which identifies peak 

maxima and derives activation energies, capture cross-sections and trap densities based off of a 

mono-exponential model (i.e. a single trap model).  This is accomplished by a second Do-While 

Loop which searches for points which are greater than corresponding points to either side of their 

position.  The program may only find one peak maximum at a time.  The activity of this Do-

While Loop is modified by the user, who may specify a starting temperature for which the search 

for a peak maximum may begin, the minimum magnitude of the peak maximum and the spread 

of points to either side of the point being analyzed at each iteration of the Do-While loop to 

determine the maximum position.  This derivation may be performed through the use of an 

Arrhenius Plot as was developed by Lang, or with a fit based on the Half-Width at variable 

amplitude, which will be derived.  In the case of the Half-Width method, the user may also 

specify the number of points to either side of the maximum to be analyzed for Half-Width 
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calculations, the maximum and minimum magnitudes of the DLTS signal to be analyzed for Half 

Width as well as specifying whether the “right” or “left” side of the peak is to be analyzed.   

The resulting Arrhenius of Half Width Analyses yield expressions for the Activation Energy, 

Capture Cross Section and Trap Density associated with a given peak.  After the user specifies 

which fits appear reasonable, the program uses the equations for the spectral response of a single 

sided junction to eliminate those peaks which the user has indicated as properly identified, 

leaving any signals missed by the sub-routine.  This is achieved by inputting the computer-

calculated Activation Energy, Capture Cross Section and Trap Density into a subroutine which 

generates a theoretical peak from the computer-specified constants for a given temperature 

sweep and subtracts the theoretical peak from the experimental data.   

This procedure is repeated until all peaks have been identified in the input spectrum and 

subtracted out.  At this point, the program re-fits the spectrum by varying all activation energies, 

trap densities and capture cross-sections, and analyzing the total squared error between the 

spectral fit and the input DLTS spectrum as all identified trap characteristics are varied.  The 

resulting settings which result in the lowest total squared error are taken to be the true trap 

Activation Energies, Capture Cross-Sections and Trap Densities for the measurement and are 

output by the program. 
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Figure 6: Program Design for Semi-Automated Fitting – Input spectra undergo “fitting” where the signals are 
smoothed, maxima are identified and the activation energy, trap density and capture cross-section are calculated 
given the position and shape of the signal with respect to machine constants.  A theoretical peak with the same 
constants is subtracted and the process is continued until all peaks are subtracted from the signal.  At the user’s 
discretion, the extracted peak values may be input into a “re-fitter” to give the constants which yield the lowest error 
between the theoretical and experimental signals. 

 

3.4: The Half Width at “N th” Maximum 

The measurement of traps arising from analysis via Deep Level Transient Spectroscopy 

utilizing a Boxcar Correlator has traditionally been achieved through the use of an Arrhenius 

Plotting method.  This DLTS method makes use of multiple boxcar correlators to measure trap 

signals over multiple sampling windows in a single temperature sweep or, in some cases, over 

several temperature sweeps - each of which make use of different correlator settings by alteration 

of the delay time, tD.  An Arrhenius Plot may be generated by measuring the resulting positions 
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in temperature space of each peak maximum and tracking the change in this position with 

changing correlator settings.  The changing correlator settings associated with the changing 

sampling window define a characteristic emission rate, ePM.  The relationship between these 

variables and the characteristic emission rate defined by the window is derived by solving for the 

derivative of a DLTS signal with respect to emission rate and setting this derivative equal to zero 

in order to extract the emission rate at the DLTS peak maximum, as follows [4]. 

 

 (25) 

  

By plotting the natural logarithm of the quotient of the emission rate, eT, and the square of 

the maximum temperature with respect to the inverse product of the maximum temperature and 

Boltzmann’s Constant, an Arrhenius Plot may be generated which yields a linear function.  The 

slope of this function yields the activation energy of the trap analyzed while the intercept with 

the ln(eT/ TM
2) axis yields the a function from which the capture cross section may be extracted 

as shown in Figure 5 in Chapter 1.  

This is an accurate means of deriving the characteristics of a deep level trap when no other 

DLTS signals are close enough to superimpose on the maximum of the peak.  The method is, 

however, inefficient, only making use of a single data point per peak extracted by the 

temperature scan associated with DLTS.  Furthermore, this method is expensive, requiring a 

substantial investment of time and capital.  Generating an Arrhenius Plot from a DLTS spectrum 

using only one or a few correlators is time-consuming, requiring multiple temperature sweeps 
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which may require days to complete.  The alternative solution to a substantial time investment is 

the purchasing of a large number of correlators, an expensive proposition.  Lastly, Arrhenius 

plots are very susceptible to distortion effects from superpositioning of peaks due to the 

assumption of single-rate decay.  Arrhenius plots provide little means of avoiding this distortion 

effect because the peak maximum alone must be used. 

An alternative to the Arrhenius Plot does exist.  D.V. Lang has proposed a means of 

measuring the Activation Energy of a trap from the Full Width at Half Maximum of a DLTS 

spectrum derived from DLTS measurements made with a Lock-In Amplifier [27].  A similar 

derivation is performed in this text for the Half Width at “Nth” Maximum, where N is equal to 

the ratio between the magnitude of a DLTS signal at any point along the curve of a DLTS peak 

and the magnitude of the peak at its maximum.  This novel derivation provides the means of 

using the entire curve of a DLTS peak to extract the activation energy and the capture cross 

section of a deep level trap, enabling faster accurate signal identification.  Additionally, the 

method described below may offer more versatility because a half-width measurement can be 

used to avoid superimposed signals on the opposite side of a DLTS peak from the side on which 

the measurement is taking place. 

As demonstrated previously, the emission rate for a given trap is dependent upon a variety of 

constants, including the activation energy, the capture cross section, the density of states and the 

thermal velocity.  The only variable which the emission rate is dependent upon for a given trap 

state is the temperature at which the measurement is being made.  Thus, a DLTS peak may be 

transformed from temperature space to emission rate space and back again at will and two points 

on a DLTS curve may be defined by an emission rate just as easily as they might be defined by 
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the temperature.  The emission rate at any point along a DLTS curve, ePN, may be related to the 

emission rate at the point at which the maximum occurs, ePM, by some constant, kO.   

 

 (26) 

 

The emission rates along the curve and at the peak maximum may be related to their 

constituent temperatures, TN and TM.  This is accomplished by using the definition of the 

emission rate as expressed in Chapter 1, where σ represents the capture cross-section of the trap, 

γT2 represents the product of the density of states in the majority carrier band multiplied by the 

thermal velocity of the majority carrier, ∆E is the energy jump between the trap energy and the 

majority carrier band and k is Boltzmann’s Constant.   

 

 (27) 

 

Because for a single trap species which traps the same majority carrier, the capture cross 

section, thermal velocity and density of states are equal along the entirety of the curve, σ and γ 

may be eliminated from the equation.  The squared temperature terms may be separated from 

their corresponding exponential terms and the natural logarithm taken of both sides of the 

equation.  After some algebraic manipulation, the following equation results for the activation 

energy.  The form of this equation is critical as it demonstrates a means of measuring the 
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activation energy of a DLTS peak which has no dependence on capture cross-section.  This 

facilitates the calculation of trapping characteristics because no iterative solution is required to 

extract important parameters. 

 

 (28) 

 

Assuming kO may be calculated, an expression exists for the activation energy.  The 

resulting value of the activation energy may be input into the expression for the emission rate at 

the maximum of the peaked DLTS function.  Because the value of this emission rate is also 

defined for the maximum of the DLTS peak through the machine constants t1 and t2 as well as 

the delay time, tD, a value for the capture cross-section may be derived by equating the machine-

defined emission rate at the maximum to the definition of the emission rate at the maximum 

defined by the maximum temperature, and solving for the capture cross section, σ. 

 

 (29) 
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Figure 7: Variation of ∆C/Co with respect to the Emission Rate (s-1) for a generic DLTS signal – The machine 
settings for this particular measurement were a value of 2.8 for t1, 7 for t2, and 5x10-4 s for tD. 

 

No expression yet exists for the constant, ko, which relates the two emission rates.  In 

order to solve for this constant, the equation for the curve shape of a DLTS peak must be 

transformed from temperature space to emission space, as described earlier.  As also was stated 

earlier, the expression for the DLTS peak as a function of the emission rate may be differentiated 

to yield the expression in (3) for the emission rate at the peak maximum, which is, again, a 

function of the two machine constants, t1 and t2 as well as the delay time, tD.  The emission rate 

along the curve may be related to the emission rate at the maximum through ko, as before.  By 

substituting this known pair of emission rates into the definition of a DLTS peak, a complete 

expression may be derived for the peak magnitude at both points.  By deriving the magnitude of 

the point along the curve of the DLTS peak by the magnitude of the maximum, an expression for 

N in terms of t1, t2, tD and kO may be derived.  Because all of these variables are known with the 
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exception of kO, this serves as an ad-hoc derivation for kO, which is obviously dependent upon 

the rate window as well as the point on the curve being sampled. 

 

 

Figure 8: The variation the scaling constant, kO, for variable “N” and variable t2 settings. 

 

 (30) 

  

The resulting function is peaked at the point where both N and kO are equal to one, this 

point being the maximum of the DLTS peak.  The left hand side of the function shown in Figure 

7 and Figure 8 corresponds to the left hand curve of the DLTS peak, and it attenuates rapidly, 

reaching the point where both N and kO are equal to zero.  On the right hand side, the function 

attenuates slowly, only approaching a value of N equal to zero as kO approaches an infinite 
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value.   As is readily observable, the left hand side of the function does not vary strongly with 

varying values of the machine constants t1 and t2, tending toward the expression derived from the 

derivative of the exponential decay function (that being the point where t1 and t2 are equal).  This 

is not the case on the right hand side of the equation.  As the values of t1 and t2 separate, the 

magnitude of the function rises quickly, diverging much more rapidly from the expression 

derived from the case of a perfect derivative. 

The function provides a useful means for extracting the correct kO value necessary for 

analysis of the activation energy in a situation where the peak is being fitted manually.  In a 

computer program, however, the inherent delay associated with a programmed look up table 

necessitates the generation of two polynomial fitting functions relating an observed value of N to 

its corresponding value of kO. This is accomplished by separating the function relating N to kO at 

the point of the peak where N and kO are equal to one, switching the dependant and independent 

variables of the resulting functions and fitting the resulting curves via a polynomial expansion.  

The result of this procedure is two separate polynomial functions, one representing the right hand 

side of the equation and the related DLTS peak and the other representing the left hand side of 

the equation and the related DLTS peak.   

The polynomial function is an adequate first-order approximation, but the inherently 

sensitive nature of the measurement of activation energy means that any deviation from the 

theoretical function results in substantial noise inherent in the measurement.  For a fit utilizing a 

sixth order polynomial expansion, the error associated with the measurement remains reasonably 

steady with the standard deviation of the activation energy, with the error at around 3% of the 

true value of the peak energy and rapidly increasing to 15% for low-energy, high capture cross 

section peaks.  This error is magnified significantly for capture cross-section measurements 
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because of the fact that the activation energy and any error in the derivation for this energy are 

contained within an exponential term in the equation used for deriving the capture cross section.  

In the worst cases, associated with high energy and low capture cross section species, this 

variation can result in standard deviations exceeding an order of magnitude or more in capture 

cross-section.  This effect is greatly reduced in cases where the standard deviation associated 

with the activation energy error steady at around 3% or less.  In these cases, the standard 

deviation associated with the capture cross-section is less than an order of magnitude.   

In order to verify the utility of the fitting function described above, an experiment was 

planned in which a MOS Capacitor was fabricated in the fashion described in Section 3.2.  This 

MOS Capacitor was fabricated on a P-type Si sample with a resistivity in the range of 8 Ω-cm to 

15 Ω-cm with an average insulator thickness and standard deviation of 197.19Å and 3.363Å, 

respectively, over the surface of the sample.  The sample was implanted with the boron isotope, 

B11, at an energy of 45 keV, a tilt of 7 degrees, a rotation of 45 degrees and a fluence of 2x1011 

B11/cm2 and was put through the same post-implant processing and biasing, analysis and heating 

conditions for DLTS as was described in Section 3.2.  
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Figure 9:  The DLTS Spectra of as-formed and annealed samples after B11 ion implantation.  Figure 9a represents 
the DLTS signal resulting from analysis of the as-formed sample implanted with B11.  Figure 9b results from the 
DLTS analysis of the annealed sample.  Two peaks, one at low temperature and one at high temperature were 
observed.  The low temperature peak contains a shoulder, indicating that it results from two separate deep level trap 
signals.   

  

Analysis with HWNM fitting demonstrated the presence of two separate peaks in the 

peak-shoulder combination, which resulted in complete elimination of the combination observed.  

Analysis of the low-temperature peak in Figure 9a demonstrates the presence of a single 

dominant peak as well as a shoulder on this peak which belongs to a secondary convolved signal.  

One peak with an energy equal to approximately EV+.27eV and a capture cross section equal to 
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approximately 5.8x10-18 cm-2 was observed in this peak-shoulder combination.   This was not of 

the same approximate value as was extracted from the Arrhenius Plot identification, changing the 

identified peak from a carbon-oxygen interstitial bond to a divalency.  This result is not 

surprising given that the presence of a secondary peak in this low-temperature signal would 

likely change the position of the observed peak maximum, also changing the results of the 

Arrhenius Plot.  A secondary peak was observed with an energy equal to EV+.38eV and a capture 

cross section of 7.06x10-16 cm-2, which corresponds well with the carbon-oxygen interstitial 

bond.  Lastly, a peak was observed at higher temperatures with an energy of EV+.55eV and 

capture cross section of 2.78x10-15 cm-2.  This fit well with experimental measurements 

performed by Arrhenius Plotting, which is not surprising given that no significant shoulder is 

present in this high temperature peak.  The successful analysis of the DLTS spectrum of the as-

formed sample indicated that fitting via a HWNM method is a viable option.  Furthermore, this 

analysis demonstrated several positive attributes of HWNM fitting beyond efficiency.  Note that 

because of the high numbers of data points available for fitting, HWNM fitting procedures are 

highly sensitive to distortion.  The range over which the measurement is made may be altered to 

avoid distortion effects. 
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Figure 10: A sample spectrum from the as-formed B11 implanted sample.  This spectrum was analyzed with the 
HWNM measurement and the energies of the two dominant peaks were extracted over the full range of their 
magnitudes, demonstrating distortion effects (non-constant extracted energies) which were avoided during the final 
fit.  The DLTS signal is indicated by the single unbroken trend in the figure.  The extracted energies of the dominant 
peaks in the low-temperature and high-temperature signals are given by the two broken lines. 
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Chapter 4: Molecular Hydrogen Ion Implantation Experiments 

 

4.1: Kinetic Differential Analysis 

 In order to properly correlate structural defects to their corresponding electrical effects, 

an analysis of the dynamic annealing characteristics of all structural and electronic defect species 

is required.  The simplest method for making this correlation is the analysis of the annealing 

kinetics of both structural and electronic defects with respect to temperature and time.  It would 

seem reasonable to make the assumption that the electronic counterpart of a structural defect 

should possess the same kinetic characteristics associated with this genesis and destruction.  That 

is, the reactions giving rise to and eliminating electronic defects should be the same as the 

reactions giving rise to and eliminating structural defects.  Thus, there should be some 

correlation between the order of reaction for electronic and structural defects, their activation 

energies, and their associated rate constants. 

 The general method of analysis for an unknown system of reactions is a detailed analysis 

of the concentrations of reactants and products over a temperature and time range corresponding 

to the typical range of activity for the reaction system.  Variations in temperature allow analysis 

of the thermodynamic characteristics of the reaction, including the activation energy and rate 

constants associated with the reaction.  Variations in time allow for analysis of reaction order and 

the corresponding form of the reaction itself.  These measurements require a substantial 

investment of capital as two separate dimensions of a design space must be fully characterized.  

 There is, however, a means of reducing the design space which must be investigated from 

two dimensions to one.  The fundamentals of this technique will be discussed and a simple 
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experiment will be performed to act as a general proof of concept for the execution of this 

technique.  In general, the kinetic characteristics of a chemical reaction may be specified in the 

expression for the reaction rate.  This rate is the product of thermodynamic components (present 

in the reaction rate) and mechanistic components (present in the exponents appearing above the 

concentration terms).   

The rate constant is ordered much like the rate associated with a DLTS spectrum.  The 

rate constant may be expressed as a function of the thermodynamic order of the reaction (Tn) a 

“rate constant” vO, which takes into account the steric hindrance factors and capture cross section 

associated with the reaction, and a Boltzmann statistic associated with the activation energy (∆E) 

of the reaction.  The mechanistic order of the reaction multiplies into the thermodynamic rate 

constant of the reaction.  Regardless of whether the component being studied is a reactant or a 

product, the mechanistic order of the reaction is an expression of the products that feed into the 

reaction.  The concentration of each reactant multiplies into the mechanistic factor of the 

reaction.  For the following reaction mechanism, the reaction rate is as follows, where k is 

Boltzmann’s Constant [30]. 

 

                                  (1) 

 (2) 

  

Because the reaction rate and its associated kinetics are reliant on a collision model, it is 

unusual to see any reaction with a mechanistic order where the exponents add up to anything past 



84 

 

two, and no experimental evidence exists for a mechanistic order greater than three present in 

nature.  In many cases, one reactant will exist in much larger concentrations in a system than the 

other reactant.  In this case, the reaction kinetics are dominated by the most dilute reactant.  This 

is the case in situations such as Ion Implantation, where the number of implanted reactants is 

typically much larger than individual defect species generated by high-energy ballistic injection.  

In general, when a reaction of unknown mechanism is being considered in a solid system, the 

reaction rate above may be simplified to the following expression, where the NT is the 

concentration of the reactant or product being analyzed and m is the mechanistic order of the 

reaction. It should be noted that the thermodynamic order, n, is no longer present in the equation.  

The effects of this thermodynamic order are largely negligible in a solid system.    It is from this 

expression that the method is derived. 

 

                          (3-1) 

 (3-2) 

  

In the above derivation, the (3-1) represents the differential associated with a decay 

reaction.  In the case of the generation reaction (expressed in (3-2)), some reactant with initial 

concentration NO decays to form NT.  Thus, the rate may be expressed as a function of the 

remaining reactant concentration, which is simply the difference between the initial reactant 

concentration and the difference between the product concentration at any point during the 

reaction, NT and at the onset of the anneal, NTO.  The overall method functions by comparing the 
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concentrations of constituent reactants and products in an as-formed sample (representing the 

initial conditions of the reaction) and comparing them to samples annealed for a short period of 

time.  The change in reactant and product concentrations between the as-formed sample and 

samples annealed at variable temperatures constitutes a discrete differential of the reaction 

kinetics as a function of time, which may be approximated by the reaction rate because it is, 

itself, a perfect differential of these kinetics with respect to time.   The first step to deriving this 

discrete differential is defining the resulting integral of an arbitrary reaction of nth order, reaction 

velocity vo, anneal temperature T, anneal time t, and activation energy ∆E.  This is accomplished 

by performing the indefinite integral of (3-1) and (3-2) [31]. 

 

                             (4-1) 

 (4-2) 
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Figure 1:  Variations in NT/NTO with respect to temperature for a generation reaction and decay reaction.  This 
particular plot was generated for a reaction with a reaction order equal to 1.5, an activation energy equal to 1eV and 
a normalized reaction velocity equal to 4.5x106 (cm-3s-1). 

 

As before, the first term represents a decay reaction while the second equation represents 

a generation reaction.  The natural logarithm of the rate expressed in (4-1) and (4-2) may be 

approximated by the second term and its associated sign alone multiplied by the inverse of (1-n) 

if this second term is much smaller than one.  This is accomplished by making use of a Taylor 

expansion of the natural logarithm.  In the case of a generation reaction (3-2), the resulting 

natural logarithm is positive.  For a decay reaction (3-1), the natural logarithm is multiplied by    

-1.   

 

           (5-1) 

 (5-2) 
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By evaluating the ratio of natural logarithms of the concentrations observed if two 

separate samples are annealed for the same time but different temperatures, an expression may 

be derived which yields the Activation Enthalpy [32].  This may be achieved because the anneal 

time, reaction velocity and initial reactant concentrations are constant irrespective of the anneal 

temperature.  The natural logarithm of the ratio of the natural logarithmic concentration at two 

separate temperatures, T1 and T2, multiplied by the Boltzmann Constant and the inverse of the 

difference between the second and the first inverse temperatures is taken and the result is as 

follows. 

  

                            (6-1) 

 (6-2) 

  

If the equations for the concentration variation with respect to temperature and time are 

further explored, a second equation may be expressed to derive the reaction velocity.  This is 

accomplished by taking the natural logarithm of the ratio of the reactant concentrations observed 

at the two separate temperatures.  The resulting derivation is as follows.   

 

               (7-1) 
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 (7-2) 

 

The term representing the initial reactant concentration, Co
1-n, must be assumed for a 

given value of n, which means that the derivation for vo is not completely independent of the 

reaction order, n, and some iterative process is required to derive the order and the reaction 

velocity.  At low implant doses, it is assumed that the relative change of entropy in a crystalline 

substrate is small as implant damage is removed because no phase change from crystalline to 

amorphous material occurs as a result of implant damage.  Thus, the activation enthalpy may be 

assumed to be equal to the activation energy, ∆E. 

 The model described above remains powerful despite the requirement of an iterative 

process to separate the effects of the reaction velocity and the reaction order.  By making use of 

this method, a user may derive the temperature and time dependence of a set of solid state 

reactions by observing the change in reactant and product concentrations over a series samples 

annealed at a constant time at a variety of temperatures ranging from “room temperature” to a 

user-specified limit.  This has the potential for reducing a design space by a full order of 

magnitude in size.  Naturally, the accuracy of this model is very dependent upon the degree to 

which the second term in the expression for the variation of the reactant concentration, as shown 

in (4-1) and (4-2), is less than one.  To this end, it is advantageous to reduce the annealing time 

as well as the annealing temperature associated with the experiment to the smallest possible 

magnitudes.  A general rule of thumb regarding the Taylor Expansions performed is that if the 

second term in the equation computes to a value of one tenth or less, the Taylor Expansion 
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should be accurate to approximately ten percent, making the approximation using this Taylor 

Expansion accurate enough for use in the derivation 

 

4.2: Experimental Procedure 

In order to verify the utility of the expressions developed below, isochronal annealing 

curves were developed for analysis.  MOS Capacitors were fabricated in the fashion described in 

Section 3.2.  They were fabricated on a P-type Si sample with a resistivity in the range of 8 Ω-cm 

to 15 Ω-cm with an average insulator thickness and standard deviation of 194.58 Å and 5.748 Å, 

respectively, over the surface of the sample.  The sample was implanted with molecular 

hydrogen, H2
+, at an energy of 20 keV, a tilt of 7 degrees, a rotation of 45 degrees and a variable 

fluence ranging from 1x1012 H2/cm2 to 1x1014 H2/cm2and were put through the same post-

implant as was described in Section 3.2 with the exception of varying the annealing temperature.  

The annealing temperature for the samples being investigated varied from 300°C to 600°C.  

 These samples were labeled according to their implant species, dose and intended post-

implant anneal status (that anneal status either being as-formed or annealed at 600°C for 30 

minutes).  Following analysis of those samples implanted with the varying H2
+ dose, a second 

batch of both p-type samples were implanted with a fluence of 1x1013 H2
+/cm2 which was found 

to be the optimal dose to generate proper characteristics from DLTS in both.  This dose 

demonstrated optimal operation in an as-formed state as well as when annealed at 600°C for 30 

minutes.  In the case of a selected dose of 1x1012 H2
+/cm2, poor DLTS characteristics of the 

annealed sample, likely caused by an insufficient Molecular Hydrogen dose to induce self-

sintering of the Silicon-Oxide interface, precluded the use of a low-dose treatment for the 
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formation of DLTS samples.  Conversely, in the case of a selected dose of 1x1014 H2
+/cm2, the 

poor DLTS characteristics of the as-formed sample, likely caused by excess insulator damage 

caused by the high implant fluence, precluded a high dose from use in DLTS treatments.  New p-

type samples implanted with H2
+ at a fluence of 1x1013 H2

+/cm2 were annealed at temperatures 

varying from 300°C to 600°C at 100°C increments with one sample left over for analysis as an 

as-formed sample after implant.   It was this last set of samples which would form the core of the 

proof of concept experiment for evaluation of Deep Level Trap annealing characteristics through 

the use of Kinetic Differential Analysis. 

Control of the depth probed into the bulk was accomplished by assuming a constant 

doping between wafers and maintaining a constant surface potential during the filling and 

emission pulses from sample to sample.  This was accomplished by defining the depletion 

capacitances necessary from sample to sample in terms of the constituent accumulation 

capacitance, which is simply the Oxide Capacitance, and the inversion capacitance, which is 

simply the depletion capacitance with the Surface Potential equal to twice the Fermi Potential, as 

well as the ratio (r) of the Surface Potential to twice the Fermi Potential.  By noting that the 

depletion width depends on the inverse squared root of the ratio between the surface potential 

and the Fermi Potential and thus the depletion capacitance varies with the squared root of the 

ratio, the following expression may be derived for the effective capacitance observed for an MIS 

Capacitor with the depletion capacitance in series with the Oxide Capacitance. 

 

 (8) 
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 (9) 

 

 

Figure 2: Capacitance Voltage data for DLTS MIS Capacitors – The observed shift in flatband voltages between the 
room temperature sample and annealed samples is assumed to be caused by ionized charges in the oxide caused by 
the ion implantation of hydrogen into the sample. 

 

Samples were cooled to 100K and heated to 400K with measurements of the capacitance 

transient taken every 0.25K as heating occurred. These transients were analyzed using a boxcar 

integration technique with windows defined at 7tD and 2.3tD where tD is equal to the machine-

defined variable time delay ranging from 5ms to 0.1ms.  The resulting spectra were analyzed 

assuming a single-exponential dependency via a combination of Arrhenius plotting and HWNM 

measurements.  Kinetic Differential Analysis was performed on the resulting DLTS 

measurements by determining discrete differential rate of reaction between the as-formed sample 
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and samples annealed at variable temperatures.  This differential was evaluated by comparing the 

magnitude of peak maxima from one sample to the next. 

 

Sample Anneal (°C) Oxide Thk (A) 
Oxide StDev 
(A) Emission Pulse (V) Filling Pulse (V) 

15-2 Room 189 2 -1.65 -1.85 

15-1 300 189 2 -0.75 -0.95 

14-2 450 191 3 -0.5 -0.8 

14-1 350 191 3 -0.85 -1.05 

16-2 400 191 3 -0.6 -1.1 

16-1 500 191 3 -0.9 -1.1 

17-2 550 190 3 -0.7 -1 

17-1 600 190 3 -0.85 -1.1 
 

Table 1: Sample Preparation data for DLTS Samples – DLTS samples were annealed at varying temperatures after 
subjected to an oxidation.  The average thickness and standard deviation of this thickness are tabulated above along 
with the applied emission pulse voltage and filling pulse voltage, which are tabulated with the sample ID. 

 

Following the generation of DLTS MIS Capacitor samples as detailed above, four double 

polished bare 4-inch wafers with a p-type resistivity in the same range as the MIS samples were 

implanted by Core Systems Inc. on a rotary ion implanter at 20 KeV with a tilt of 7 degrees and a 

dose of 1x1016 H2
+/cm2.  One sample was maintained as an as-formed sample while seven other 

samples were annealed for 30 minutes in a temperature of range of 300°C to 600°C with steps of 

50°C.  These double-polished samples were analyzed for structural defects using MIT-IR.  MIT-

IR measurements were performed on the implanted samples, both as-formed and annealed, 

between 2300 and 1800 cm-1 at quarter cm-1 increments.  This measurement was also performed 

on a virgin double-polished baseline sample where no ion implantation step was performed.  The 

infrared beam used for attenuation analysis was guided through a single crystal silicon prism 

with a 30µm groove etched in the center and with a bevel angle of 30°.  The infrared beam was 
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directed perpendicular to the beveled edge so that the effective angle of transmission into the 

samples being analyzed was approximately 30°.  The transmission signals from the implanted 

samples were divided by that of the baseline sample and the negation of the natural logarithm of 

the resulting ratio was taken to yield a series of MIT-IR spectra corresponding to observed defect 

density signals.  Signals which demonstrated longevity over a broad temperature range were 

analyzed using Kinetic Differential Analysis by determining discrete differential rate of reaction 

between the as-formed sample and samples annealed at variable temperatures.  This differential 

was evaluated by comparing the magnitude of peak maxima from one sample to the next. 

 

4.3: Results and Discussion 

 Analysis of MIT-IR Spectroscopy data in the annealing temperature range of 300°C to 

600°C and comparison of this data to an as-formed sample provided information regarding the 

annealing kinetics of defects formed by the Ion Implantation of hydrogen into silicon.   

Species Wavenumber (cm-1) 

IHX 1950,1960 

VH1 2025 

VH2 2127 

VH3 2180,2161 

VH4 2209 

 

Table 2: A compilation of IHx and VHx vibrating mode absorption wavenumbers. 
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Six separate resonant states were observed during analysis.  These signals included four 

resonant states corresponding to three separate decorated vacancy species and two resonant states 

corresponding to the decorated interstitial species, IH2.  The resonant states corresponding to IH2 

which demonstrated substantial activity through the annealing temperature range were those 

belonging to 1950 cm-1 and 1960 cm-1.  A single resonant state belonging to VH2 was observed 

at 2127 cm-1.  Resonant states belonging to VH3 at 2180 cm-1 and at 2161 cm-1 as well as a single 

resonant state belonging to VH4 at 2209 cm-1 were also observed.   
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Figure 3: MIT-IR Spectroscopy Data (Courtesy: Greg Buchar Corning Incorporated) – This data was taken from 
Double Polished Si wafers annealed in a temperature range from room temperature to 600C.  VHx defects as well as 
IHx defects were observed through the entire temperature range.   Hydrogen bonded to internal <111> interfaces as 
well as trapped H2 molecules were observed in the as-formed sample.  
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The magnitude of the MIT-IR signal, which itself is linearly related to the defect 

concentration within the ion implanted region, demonstrated that the decorated silicon interstitial 

defect, IH2 decayed rapidly after its genesis during ion implantation.  No evidence of a 

generation reaction at low temperatures was observed.  As the decay of IH2 proceeded out to 

450°C, a generation reaction was observed at high temperatures which substantially slowed and 

even halted the rate of IH2 decay in the 450°C to 550°C temperature range.  The concentration 

for IH2 in this regime was approximately 30% of the initial concentration observed in the as-

formed sample.  The decay of IH2 resumed, approaching completion at 600°C, where a 

secondary decay reaction must have become dominant.  This is a significant observation.  IH2 

has been theorized to contribute catalytically to the reaction of oxygen in silicon during the 

formation thermal donors.  If the decay of IH2 may be slowed by a generation reaction at 

moderate temperatures between 450°C and 550°C, it may contribute substantially to the 

formation of additional thermal donors in this same temperature range, resulting in enhanced n-

type behavior in annealed samples which might compensate or even invert the dominant carrier 

type of a sample, even at high temperatures.  

Unlike the MIT-IR signals corresponding to IH2, the MIT-IR signals corresponding to the 

decorated vacancy defects indicated the dominance of some generation reaction at low 

temperatures below 300°C, as the observed signal magnitudes associated with VH2, VH3 and 

VH4 were higher for the sample annealed at 350°C than for the sample kept in an as-formed 

state, as shown in Figure 5 and Figure 6.  This suggests that the efficiency of any heat sink which 

samples are affixed to during implantation as well as the associated temperature at which 

samples are implanted may contribute substantially to the enhancement or reduction of decorated 

monovacancies in samples implanted with hydrogen.  A decay reaction dominated the annealing 
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kinetics in the temperature range of 350°C to 500°C, as shown in Figure 4.  In the 500°C to 

600°C range, this decay reaction was stalled temporarily by a secondary generation reaction.  

This reduction of the decay kinetic at elevated temperatures may be responsible for the enhanced 

p-type carrier concentrations observed in samples after annealing at elevated temperatures in the 

500°C to 600°C range.  Monovacancies decorated with over one hydrogen atom are generally 

considered to be acceptors.  It should be noted that the relative reduction of the decay rate due to 

the generation reaction occurring at temperatures in excess of 500°C result in the maintenance of 

a constant concentration equal to approximately 15% of the as-formed concentration and, as 

such, are smaller than the secondary generation rate associated with IH2, which is readily 

observable in Figure 7.  In the case of the observed decay of the 2161 cm-1 peak associated with 

VH3, this secondary generation reaction doesn’t manifest itself at all. 

 

 

Figure 4: MIT-IR spectral intensities with respect to temperature – Evidence of some generation reaction at low 
temperatures is evident as well as a secondary generation reaction which slows decay at elevated temperatures.  This 
is the case for all spectra, but is more readily apparent for decorated interstitials than for decorated vacancies. 
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The as-formed sample generated by ion implantation demonstrated a substantial number 

of additional peaks past the group listed above which manifested themselves as a band extending 

from 2066 cm-1 to 1931 cm-1 as well as a single peak at 1832 cm-1.  The band is comprised of a 

series of peaks representing hydrogen bonded to internal surfaces as well as denuded internal 

surfaces while the peak at 1832 cm-1 represented molecular hydrogen trapped by internal 

surfaces.  The observable peaks within the band at 2052cm-1 as well as 2066cm-1 represented 

hydrogen bonded to the internal surfaces of a (111) dislocation loop while the peak at 2025cm-1 

represented the VH monovacancy defect.  This defect anneals out at a surprisingly low 

temperature; all but disappearing after a 30 minute anneal at 300°C is performed.  It is likely that 

this defect along with the dissociation of the (111) dislocation loops, which also decay fully by 

400C, contribute to the substantial generation of monovacancy defects decorated with more than 

one hydrogen atom.  
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Figure 5: Fitted and Normalized Data for 2209 cm-1 and 2180 cm-1 – This data indicates that a weak secondary 
generation reaction is occurring, and that a reaction order of approximately 1.5 yields a reasonable fit to the decay 
reaction data. 

 

 

Figure 6: Fitted and Normalized Data for 2161 cm-1 and 2127 cm-1 – The presence of a secondary generation 
reaction is not suggested out by this data.  A reaction order of approximately 1.5 yields a reasonable fit to the decay 
reaction data. 
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Figure 7: Fitted and Normalized Data for 1950 cm-1 and 1960 cm-1 – The presence is readily evident in this data.  A 
reaction order of approximately 1.5 yields a reasonable fit to the decay reaction data. 

 

Differential analysis of the variations in defect concentration with respect to annealing 

temperature were made possible by redefining the equations corresponding to analysis of a decay 

reaction by normalizing to the maximum concentration and treating it as though it were the 

initial concentration.  This maximum occurred at 350°C for all trap species.  This alteration 

roughly corresponds to an assumption that any generation reaction possesses an activation 

energy barrier that is sufficiently small that the reaction occurs much more rapidly than the decay 

reaction at the temperatures at which the decay reaction begins to dominate the kinetics.  The 

generation reaction will have already run to completion by the time the decay reaction begins to 

eliminate defects.  It should be noted that this assumption is not an accurate one for situations 

where the decay reaction results in species which are reactants in the generation reaction.  After 

normalization to the curve maximum, the reaction order was determined iteratively by varying n, 

calculating the resulting activation energy and thermal velocity from the experimental curve and 
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observing the squared error between a generated curve and the experimental curve.  The case for 

determining the reaction order was the point at which the squared error between the generated 

theoretical curve and the experimental curve was minimized.  This error was only considered 

along the points analyzed to determine the activation energy and reaction velocity so as to avoid 

any convolution with high temperature generation reactions which would skew the reaction 

curve to lower activation energies and reaction velocities.  The “second term” used to evaluate 

the validity of the Taylor Expansion used in deriving both the activation energy and the reaction 

velocity was maintained at a value below two tenths.  This could generally be accomplished by 

avoiding any points along the annealing curve there the value of C/Co strayed below four tenths. 

Analysis of the temperature response of the reaction differential was complicated by the 

coarse granularity of the measurement with respect to temperature.  In some cases, only two 

separate points on the decay curve could be used to calculate the activation energy, yielding a 

single measurement of the activation energy from which the behavior of the annealing curve had 

to be derived.  This error likely contributed to errors in the reaction velocity, as well.  Despite the 

threat of significant errors, theoretical reaction curves were generated which fit closely with 

experimental data.  It may be assumed that this fit would be improved and the errors associated 

with reaction velocity, activation energy and reaction order extraction could be greatly reduced 

by moving to a finer temperature granularity in the measurement.   
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  2209 2180 2161 2127 1950 1960 

n (-) 1.50 1.45 1.44 1.41 1.55 1.48 

∆H (eV) 1.21 1.02 0.94 0.80 0.69 1.14 

vo (s-1) 4.86x108 2.09x107 1.53x106 1.98x105 8.21x104 2.81x108 
 

Table 3: Extracted Reaction Coefficients for IR Spectra – This data indicates a common reaction order of roughly 
1.5.  The activation enthalpy of the decay reaction appears to increase with increasing defect decoration for 
monovacancy defects. 

 

Analysis of the primary decay reaction observed in the MIT-IR studies indicated a 

reaction which is likely self-catalyzing, with a reaction order around 1.5.  This indicates that the 

reaction is not simply brought about by the dissociation of defect species.  Nor is it brought about 

by the collision of hydrogen with observed defect species.  There exists some interaction 

between defect species associated with the reaction.  Another interesting energetic characteristic 

associated with the reactions observed with MIT-IR is the increase in activation energy 

associated with decay as “decoration” increases.  As monovacanies gain additional hydrogen 

atoms, they transition from activation energy of approximately .8eV for VH2 to an approximate 

activation energy of 1eV for VH3 to an activation energy of 1.2eV for VH4.  If this effect proves 

to be statistically significant, it indicates that the likely pathway for reaction is not dissociation of 

decorated molecules followed by the recombination of undecorated Frenkel Pairs.  Rather, the 

reaction pathway is the increased decoration of monovacancies.  VH becomes VH2 which 

becomes VH3 which yields VH4 which combines with other VH4 molecules to create decorated 

multivacancies.  As the “decoration” of the monovacancy species increases, the interaction 

between bonded hydrogen atoms increases and the energy required to force an additional atom 

into the defect site and promote the monovacancy up to the next most defective site increases, 

which accounts for the trend of increasing activation energy with increasing “decoration”.   
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An additional noteworthy characteristic is the similarity in reaction order for the dual 

peaks associated with VH3 (around 1.45) but differing dissociation energies.  If this deviation in 

dissociation energy is statistically significant, this may be an indicator that the two peaks 

generated for VH3 correspond to different molecular coordinations where one molecular 

coordination is more permissive of further decoration to form VH4 than the other molecular 

coordination. 

 

Trap Species ∆E (eV) 
∆E 

Max 
∆E 
Min  σ  (cm3) σ Max σ Min 

H1 VH2? 0.149 0.153 0.146 7.37x10-17 1.07x10-16 5.07x10-17 

V1 V++ 0.118 0.134 0.101 5.56x10-17 4.21x10-16 7.02x10-18 

H2 VH3? 0.161 0.168 0.154 2.55x10-18 4.40x10-18 1.48x10-18 

H3 IHx? 0.186 0.194 0.178 8.41x10-18 1.52x10-17 4.67x10-18 

V2 VV 0.228 0.233 0.223 4.49x10-19 5.72x10-19 3.52x10-19 

F1 Bi-Hi 0.552 0.563 0.541 4.40x10-15 6.78x10-15 2.86x10-15 

F2 Bi-Hi 0.539 0.549 0.529 4.55x10-16 6.49x10-16 3.19x10-16 

C1 Ci-Oi 0.378 0.388 0.368 8.54x10-16 1.44x10-15 5.05x10-16 

B1 Ci-Oi 0.303 0.342 0.263 4.28x10-15 6.06x10-14 3.02x10-16 

B2 ?? 0.664 0.714 0.614 1.18x10-10 1.24x10-09 1.12x10-11 
 

Table 4: Observed trap species – Variable trap species were observed from 300C to 600C.  These trap species 
included monovacancies and bonded double-vacancies, interstitial carbon-oxygen bonds, interstitial boron hydrogen 
bonds and defects attributed to decorated monovacancies and interstitials. 
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Figure 8: Normalized DLTS Intensity Data – Data ranging from the as-formed state to a state corresponding to an 
anneal performed at 600°C is included.  Additionally, the de-superposition of each DLTS peak and the resulting 
contributing spectra are included. 

 

The large band of defects observed during MIT-IR measurements of the as-formed 

sample is also observed during DLTS measurements.  In total, ten separate defects contributed to 

this observed band.  Of these ten defects, two manifested themselves at traps at energies of .38eV 

and .33eV above the valence band and capture cross sections of 4.3x10-15 cm2 and 8.5x10-16 cm2, 

which put them in the cryogenic temperature range associated with interstitial carbon-carbon 

bonds.  Assuming that this defect is the same as the defect described in literature as 

corresponding to the VH2 defect, it may be reasonably stated that the fit which yielded this result 

in literature was to a carbon-carbon bond, not to the VH2 defect. Of these two defects, the defect 

at .33eV demonstrated a very poor fit with a standard deviation of nearly 30meV.  In 
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comparison, the defect at .38eV demonstrated a much better fit with a standard deviation of 

approximately 10meV.  The likely cause of this discrepancy is due to the noisy quality of the 

DLTS spectrum at which the .33eV peak signal was observed as a distinct peak.  An additional 

peak was observed at .23eV above the valence band with a capture cross section of 4.5x10-19 

cm2, putting it in the same cryogenic temperature range as the divacancy.  At the shallow end of 

the DLTS spectra, an additional peak was observed in the DLTS spectrum at an energy of .13eV 

relation to the valence in band and with a capture cross-section of  5.6x10-19 cm2, correlating it 

with the double-positive vacancy defect.  These two defects were fitted well with standard 

deviations of approximately 10meV, further illustrating the power available when the Half Width 

at “Nth” Maximum is used for data extraction. 

Two separate families of peaks were observed which could not be correlated with 

bombardment-induced defects observed by DLTS or EPR.  The first family of these defects was 

present at high cryogenic temperatures and high energies above the valence band, manifesting 

themselves as a peak and corresponding shoulder at 300C.  They had energies of .55eV and 

.54eV and capture cross sections of 4.5x10-15 cm2 and 4.5x10-16 cm2, demonstrating a strong fit 

with a standard deviation of approximately 10meV.  These defects would, typically, be 

correlated with an interstitial Boron-Hydrogen bond, as was discussed previously in section 1.5.  
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Figure 9: Temperature Dependance of Hydrogenated Defects – Defects attributed to decorated vacancies and 
interstitials appear to peak in concentration in the 300°C to 400°C range, an observation consistent with MIT-IR 
spectra.  A substantial secondary generation reaction appears evident for IHx, consistent with MIT-IR data. 

 

It is assumed that the two shallowest energy levels at .15eV and .16eV and the deep level 

at approximately .186eV represented two separate families of peaks.  In the case of hydrogen 

decorated monovacancies, the general assumption is made that defects with the largest energy 

difference between the valence band at the defect energy correspond to the defect with the most 

hydrogen atoms bonded to them.  Furthermore, the defect with full hydrogen bonding, VH4, may 

be considered electronically inert.  Utilizing this assumption, the .15eV peak corresponds to the 

VH2 defect while the .16eV peak corresponds to the VH3 defect.  The defect at .186eV is 

assigned to IHx defects because of its relatively high concentration even at 600°C, which closely 

fits the infrared behavior of the observed IHx defects.  

It should be noted that one additional energy signature was observed at approximately 

.66eV above the valence band.  However, the observed peak had a very poor fit, with a standard 
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deviation of nearly 100meV and also possessed a very large capture cross-section of   1x10-10 

cm2.  This energy is similar to the energy observed and correlated with the VH3 defect in 

literature.  It should be noted that the annealing behavior of this defect does not match well with 

MIT-IR Spectra for VH3 and, because of this, the correlation between this energy level and VH3 

should be called into question. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



107 

 

Chapter 5: Conclusion 

 

1.1: Analytical Methods 

 

Theoretical analysis of the transient characteristics and the associated DLTS response of 

an MIS capacitor have demonstrated that raising the insulator capacitance increases the ratio of 

bulk DLTS signals to interface state signals.  Furthermore, an expression for the DLTS signal of 

an MIS capacitor in terms of the oxide capacitance and depletion capacitance has been derived.  

The effects of large interface state densities and the distortion of the DLTS signal associated with 

their emission have been demonstrated.  As a result of this analysis, a sample fabrication 

technique was established whereupon an oxide with a thickness of around 20 nm was grown and 

ions were ballistically injected at low fluencies through the oxide into the semiconductor to 

populate it with ion damage which could then be analyzed using DLTS. 

A new method of analyzing DLTS signals has been developed.  This is the Half Width at 

“N th” Maximum, where N is the ratio between the magnitude of the DLTS signal along the side 

of the peak and the magnitude of the peak maximum.  This method relates the width of a DLTS 

peak to the energy difference between the trap energy and the band associated with majority 

carrier emission through the use of a scaling constant, ko, which is related to the machine settings 

of the DLTS electronics and the ratio, N.  The position of the DLTS maximum with respect to 

temperature defines the capture cross section.  This represents a much more efficient and 

accurate method for determining capture cross section and trap energy in comparison to 

Arrhenius fitting which requires substantial investments in terms of time and capital and which is 

also very prone to distortion effects. 
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A novel method for the analysis of solid state chemical reactions has been derived.  This 

methodology is termed “Kinetic Differential Analysis” and may be utilized to substantially 

reduce the design space required for analysis of solid state reaction kinetics.  By comparing the 

concentration of products and reactants in a sample annealed at a variable temperature and 

constant time to an as-formed sample, the activation energy, reaction velocity and reaction order 

may be determined.   

Lastly, a formula has been developed detailing the attenuation effects associated with 

MIT-IR measurements both generated by means of guiding through a silicon prism into a 

double-polished silicon wafer.  Analysis led to the development of a function relating the 

attenuation generated purely by ion implant damage to the ratio of the difference between signals 

generated from a non-implanted baseline sample and from an ion implanted sample populated 

with significant implant damage.  A method for deriving the optical capture cross-section by 

correlating the magnitude of an MIT-IR peak to the observed trap density of a corresponding 

DLTS peak has also been outlined. 

 

1.2: Ion Implant Related Defects 

 

 Analysis of H2
+ ion implanted defects via MIT-IR has identified the reaction kinetics of 

decorated monovacancies as well as decorated interstitials.  In general, monovacancy reactions 

are characterized by a low-temperature generation reaction which gives way to a mid-

temperature decay reaction which brings about the decay of the majority of the monovacancy 

concentration.  This mid-temperature reaction is characterized by a reaction order of 

approximately 1.5, which indicates that some reactant interaction must be taking place during 
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decay.  This indicates that decorated monovacancies cannot simply shed hydrogen atoms or pick 

up additional hydrogen atoms in a reaction.  Furthermore, analysis of activation energies 

indicates that the activation energy of the mid-temperature decay reaction appears to increase 

with increasing decoration.  The statistical significance of this trend has not yet been ascertained; 

however data suggests a correlation between decoration and effective binding energy.  The mid-

temperature decay is impeded at high temperatures by a secondary generation reaction which 

preserves substantial concentrations of decorated monovacancy defects.   

Decorated interstitials do not follow the same reaction trend.  They are not subject to the 

same low-temperature generation reaction as the decorated monovacancies and the high-

temperature generation reaction which they do undergo is much more effective in impeding the 

mid-temperature decay reaction. 

Analysis of DLTS spectra identified peaks corresponding to carbon-oxygen interstitials, 

bonded divacancy defects monovacancies and boron-hydrogen interstitial complexes.  Amongst 

the defects identified, three defects, corresponding to trap energies of .15eV, .16eV and .19eV 

above the valence band were assigned to VH2, VH3 and IHx  defects, respectively. 

 

  VH4 VH3 VH2 IHx(1) IHx(2) 

∆E (eV) - 0.16 0.15 0.19 0.19 

σ (cm3) - 2.55x10-18 7.37x10-17 8.41x10-18 8.41x10-18 

n (-) 1.50 1.45 1.41 1.55 1.48 

∆H (eV) 1.21 0.98 0.80 0.69 1.14 

vo (/s) 4.86x108 1.12x107 1.98x105 8.21x104 2.81x108 
 

Table 1: Trap Energies, Capture Cross Sections, Reaction Orders, Reaction Energies and Reaction Velocities of 
identified H2

+ ion implant defects. 
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1.3: Future Work  

  

The development of the analytical techniques introduced in this text has paved the way for a 

detailed study of the reaction kinetics of electronic defects and their corresponding physical defects via 

DLTS and MIT-IR studies.  Future analysis of reaction kinetics at low temperatures will be of likely 

interest because of their contribution to formation kinetics in ion implantation techniques where the 

substrate is thermally insulated during ion implantation.  A re-analysis of mid-temperature and high-

temperature annealing kinetics must be performed with much tighter constraints on measurement 

granularity with respect to temperature, both in MIT-IR and DLTS measurements.  This would allow for 

identification of activation energies and reaction velocities with a much higher level of confidence. 

 Work has already begun on analysis of TFTs fabricated at RIT with Deep Level Transient 

Spectroscopy.  In this case, analysis would be performed via current DLTS measurements.  This new 

method of analysis will make use of HWNM fitting methods.  Studies of MIS Capacitors formed on SOI 

structures are also of profound interest.  It is likely that the annealing characteristics of decorated 

vacancies and interstitials are dramatically influenced by the dissociation of denuded vacancies and 

interstitials.  This dissociation is limited by diffusion in a bulk material.  In a thin film material, such as 

SOI, this dissociation may be limited by both defect transport and surface recombination, resulting in an 

inherently lower rate in comparison to bulk diffusion. 
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