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Abstract 

 

 It is the purpose of the work to develop methods for and present on the computational 

analyses of advanced III-V photovoltaic devices and their enhancement by the incorporation 

of semiconductor nanostructures. Such devices are currently being fabricated as part of the 

research efforts at the Nanopower Research Laboratories; therefore, this work aims to 

supplement and ground the experimental undertakings with a strong theoretical basis. This is 

accomplished by numerical calculations based on the detailed balance model and by physics-

based device simulation. The specific materials focus of this work is on the enhancement of 

the GaAs solar cell. The aforementioned methodologies are applied to this device and to 

distinct enhancement schemes. 

 The detailed balance formalism is applied to the single-junction solar cell as an 

introduction leading up to the triple-junction device. A thorough analysis shows how the 

InGaP-GaAs-Ge triple-junction solar cell may be enhanced by the incorporation of 

nanostructures. The intermediate band solar cell is introduced as it may be realized by the 

coupling of a nanostructured array. The detailed balance analysis of this device is performed 

using the usual blackbody spectrum as well as the more realistic scenarios of illumination by 

the AM0 and AM1.5 solar spectra. Current research endeavors into placing an InAs quantum 

dot array in a GaAs solar cell are put into the context of these calculations. It is determined 

that, although the InAs/GaAs system is not ideal, it does exhibit a significant enhancement in 

performance over the standard single-junction device. 

 The evaluation of a commercially available, physics-based, device simulation 

software package for use in advanced photovoltaics analysis is also performed. The 

application of this tool on the single-junction GaAs solar cell indicates that the current design 

used in experimental work is optimized. Recommendations are made, however, in the 

optimized design of the InGaP-GaAs dual-junction cell. The device simulator is shown to 

exhibit difficulties in evaluating the complete operation of advanced solar devices; however, 

the software is used to compute fundamental quantum mechanical variables in a 

nanostructured solar cell. 
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Chapter 1 

Introduction 

 

1.1   –   Motivation 

 Solar power has become a topic of great focus in the past several years as the 

necessity for alternative energy schemes have become increasingly important. Recent reports 

indicate the global energy consumption to grow from 13 TW-yr currently to as high as 

30 TW-yr by the year 2050 [1]. Indeed, nations around the world are quickly accepting the 

reality of dwindling fossil fuel reserves as well as the reality of global climate change [2, 3]. 

With approximately 125 PW of solar power striking the Earth at any one time, photovoltaic 

energy conversion easily lends itself as being a logical approach for the world’s energy 

needs. The aerospace industry also has a vested interest in solar power since it represents a 

free and readily available source of energy for space applications. Approximately 20-30 % of 

the total mass and cost of present Earth-orbiting satellites is due to their electric power 

systems. Improved photovoltaic technology can clearly decrease these figures. 

 Part of the current research efforts at the Nanopower Research Laboratories focuses 

on the enhancement of photovoltaic conversion efficiency by the use of low-dimensional 

nanostructures. Specific to this work, the incorporation of quantum dots in an otherwise 

conventional III-V photovoltaic device has been proposed as a viable method to increase 

conversion efficiency [4, 5]. Direct bandgap III-V materials are chosen because they 

represent the current state-of-the-art in high efficiency photovoltaics [6] and thus may lead 

the way for the jump from efficiencies barely breaking 20 % for the best commercial silicon 

cells today to efficiency percentages in the 40’s and 50’s as promised by the so-called third 
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generation photovoltaics [7, 8]. Additionally, for space applications, III-V materials and 

devices have shown an affinity towards increased radiation tolerance [9]. 

 Proper design and fabrication of novel nanostructured photovoltaic devices requires 

keen knowledge of the underlying physics governing solar cell performance. Fabrication runs 

are costly and time consuming, so it is beneficial to have a firm theoretical foundation on 

which to base future work. Therefore, it is the purpose of this work to develop and present 

methodologies by which novel devices may be computationally analyzed and simulated. 

Routines are developed to ascertain the limiting performance of novel devices based on 

detailed balance considerations. Additionally, the use of a commercial device simulator is 

evaluated for the ability to model devices that are currently being fabricated or are planned to 

be fabricated. Such analyses provides for an avenue to supplement experimental work in the 

analysis of nanostructured solar cells. 

 

1.2   –   Organization of this Work 

 The remainder of this chapter gives a brief introduction to the fundamental principles 

of solar cell device physics necessary to make this work self-contained. A brief discussion on 

nanostructures and the pertinent physics is also included. This serves as a logical segue into 

Chapter 2 where the detailed balance analysis of photovoltaic conversion efficiency is 

introduced. This theory is used to further elaborate on solar cell fundamentals. The theory is 

then applied to the analysis of multi-junction and intermediate band solar cells. The routines 

used for this analysis were written in the MATLAB language and are contained in the 

Appendix. 
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 Chapter 3 evaluates the ability to use the commercially-available Silvaco ATLAS 

software packing for the physics-based device simulation of novel solar cells. The GaAs 

single-junction cell and the InGaP-GaAs tandem cell are the focus of this analysis. 

Additionally, the use of InAs quantum confined regions is explored. An overview of the 

pertinent device models that were invoked for the device simulations is given. This should 

allow the reader rapid assimilation into the methodology followed in this work. Pertinent 

code, written with the ATLAS syntax, is provided in the Appendix. 

 Chapter 4 gives concluding remarks and summary as well as recommendations for 

future endeavors to extend this work. Conversational knowledge of device physics [10], solar 

cell operation [11], quantum mechanics [12], and the physics of the solid state is assumed 

[13]; knowledge of thermodynamics [14] is beneficial although not absolutely necessary. 

 

1.3   –   Solar Cell Fundamentals 

 The classic design of a solar cell, or photovoltaic device, is by the use of inorganic 

semiconductor materials. In this sense, the photovoltaic device is essentially a glorified p-n 

junction diode. The p-n junction is realized by bringing a p-type semiconductor into intimate 

contact with an n-type semiconductor. From an energy band perspective, the Fermi levels on 

either side of the junction must equilibrate assuming no external applied bias. This gives rise 

to the well-known contact, or built-in, potential that causes bending of the conduction and 

valence bands in the vicinity of the metallurgical junction. The spatial extent of over which 

this band bending occurs is the so-called space charge, or depletion, region. The energy band 

diagram of this situation under zero applied bias is displayed in Fig. 1.a. 
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Fig. 1.  a) Energy band diagram of the standard p-n junction at equilibrium. b) Current-voltage relation of the 

ideal diode as given by the Shockley equation. 

 

 The operation of an ideal diode is given by the celebrated Shockley equation [15]: 

  ( )1/
0 −= nkTqV

eII   (1) 

which gives the current I though the p-n junction as a function of the applied voltage V; this 

is the ideal diode law. In the foregoing, I0 is the reverse bias saturation current, q is the 

elementary charge, n is the diode ideality factor, k is the Boltzmann constant, and T is the 

temperature. A representative plot of (1) is drawn in Fig. 1.b; note that for a good device, I0 

tends to be on the order of femto- or picoampères.  

 When the diode is illuminated by light with photon energy hν such that hν is greater 

than the semiconductor bandgap, then photon absorption occurs and the diode is perturbed 

from equilibrium. The band diagram during this event is drawn in Fig. 2.a for zero applied 

bias. On the p-side of the junction, electrons are pumped from the valence band to the 

conduction band where they significantly increase the minority carrier population. Similarly, 

on the n-side of the junction, holes are pumped from the conduction band to the valence band 

where they significantly increase the minority carrier population. This perturbation from 
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equilibrium causes a split of the Fermi level into two quasi-Fermi levels, one each for the two 

carrier types. The splitting of the quasi-Fermi levels causes a small forward voltage to appear 

across the junction; this is the photovoltaic effect. 
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Fig. 2.  a) The band diagram of the illuminated p-n junction such that the light has sufficient energy to induce 

photogeneration of charge carriers. The diagram is drawn for the case of zero applied bias; however, the device 

is in a non-equilibrium state due to the solar illumination. Photogenerated minority carriers on either side of the 

junction are swept across by the contact potential leading to a reverse current. b) The current-voltage relation of 

the illuminated diode. The curve is shifted downward from that of the unilluminated diode by an amount IL; this 

is the reverse current at zero bias resulting from minority carrier photogeneration. 

 

 At zero applied bias, the increased minority carrier concentrations on either side of 

the junction causes a reverse current to flow due to the presence of the contact potential; this 

is implied by Fig. 2.a. The effect is to shift the current-voltage curve in Fig. 1.b downward by 

an amount IL. This is indicated in Fig. 2.b. Thus the Shockley equation is modified: 

  ( ) L
nkTqV

IeII −−= 1/
0 .  (2) 
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The distinct operational difference between the standard diode and the illuminated cell is that 

the former only allows operation in either the first or third quadrants (Fig. 1.b) while the 

latter also adds fourth quadrant operation (Fig. 2.b). Joule’s law for electric power is simply 

  VIP = .  (3) 

Therefore, fourth quadrant operation distinctly gives rise to negative power, i.e. power is 

being supplied by the device to the external circuit rather than the device absorbing power. 

This is the operating mode of the photovoltaic device. Equation (2) is therefore the ideal 

model of the p-n junction solar cell.  

 As a matter of convenience, the photovoltaic community prefers to flip the current-

voltage plot about the voltage axis so that the fourth quadrant is transferred to the position of 

the first quadrant as in Fig. 3. This is preferred because the vast majority of photovoltaic 

analyses occur in the quadrant of power generation. The standard figures of merit for a solar 

cell are the open-circuit voltage Voc, short-circuit current Isc, maximum power point Pm, 

efficiency η, and fill factor FF.  

 

V

I

Isc

Voc

Pm

FF

 

Fig. 3.  Standard way of displaying the solar cell current-voltage plot; the power generation section of the I-V 

curve is placed is the first quadrant for convenient analysis. The standard solar cell device metrics are also 

displayed. 

 



 7 

 The short-circuit current Isc is the current that flows at zero applied bias due to the 

conversion of incident photons. It indicates the amount of current that may be driven through 

the device. The open-circuit voltage is the applied bias that is necessary to return the device 

to a quasi-equilibrium, i.e. it is the point at which the current no longer flows even though the 

device is illuminated. 

 The maximum power point Pm is the point at which (3) is at a maximum. This is the 

maximum deliverable power from the solar cell. The ratio of this quantity to the incident 

power Pinc falling upon the cell from the illuminating source gives the solar cell device 

efficiency 

  
inc

m

P

P
=η .  (4) 

This is perhaps the most often cited of the solar cell parameters. Indeed, much of the sought 

after advancement in the field focuses on the increase of this quantity. Clearly, from Fig. 3, 

an increase in either Isc or Voc from some reference value would lead to an increase in 

efficiency. 

 Then the final device metric is the fill factor: 

  
ocsc

m

VI

P
FF = .  (5) 

This quantity is a measure of the “rectangularity” of the current-voltage relation. It is a useful 

indicator of the ideality of a solar cell as non-ideal effects, such as intrinsic series resistances 

or shunt conductances, will tend to skew the current-voltage curve thus diminishing the value 

of the fill factor. Good solar cells will tend to exhibit fill factor percentages in the mid-80’s. 

From (4) and (5), the efficiency may also be represented as 
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  FF
P

VI

inc

ovsc=η .  (6) 

 As will be shown in Chapter 2, the operational response of a solar cell is dependent 

on the spectrum of light that illuminates the device. In the literature, the sun is often modeled 

as a 6000 K blackbody. Therefore, it is appropriate to approximate the illuminating spectrum 

with the blackbody spectrum of a 6000 K body. Realistically though, the sun’s temperature 

varies across the solar disc. Additionally, light originating from the sun will be attenuated by 

the solar atmosphere. Therefore the blackbody approximation may be questioned.  

 In the year 2000, the American Society for Testing and Materials (ASTM) developed 

the AM0 solar spectrum [16]. This is the current standard used by the photovoltaics 

community to represent the solar spectrum just outside of the Earth’s atmosphere. The data 

was tabulated based on a combination of sources including Earth-based telescopes, high-

altitude aircraft, rocket soundings, space shuttle missions, satellites, and solar modeling. The 

reason for the naming of the spectrum will become apparent. 

 It is well known that incoming solar radiation is attenuated and scattered by the 

Earth’s atmosphere. These effects are increased for longer optical path lengths traversed 

through the atmosphere. It is therefore convenient to define a nomenclature, called the air 

mass number, to account for this. The air mass number is abbreviated as AMn where n is the 

relative air mass. The parameter n is defined as the secant of the angle subtended by the sun 

and the local zenith (n = sec θ). Therefore, AM1 corresponds to when the sun is directly 

overhead. This is the minimum possible optical path length introduced by the Earth’s 

atmosphere. By definition, AM0 corresponds to observation from outside the Earth’s 

atmosphere. 
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 The AM0 spectrum, while useful for space-based photovoltaics, overestimates the 

solar radiance received by terrestrial photovoltaics due to the attenuation and scattering of the 

Earth’s atmosphere. For terrestrial applications, the ASTM standards are the AM1.5-global 

(AM1.5G) and AM1.5-direct (AM1.5D) solar spectra [16]. The 48.19° angle subtended by 

the sun for these spectra is, by standard, taken to be the mean location of the sun. These 

spectra are used by the photovoltaics community for terrestrial based applications. The 

AM1.5D spectrum accounts for solar radiation as it is received directly from the sun after 

experiencing loss through the atmosphere. The AM1.5G spectrum adds extra solar radiance 

to the AM1.5D spectrum to account for additional light received from a 2π steradian field-of-

view due to Rayleigh scattering. 

 The blackbody, AM0, AM1.5G, and AM1.5D spectra are plotted in Fig. 4. These are 

the usual spectra used in the analysis of photovoltaic devices. The blackbody spectrum is 

most often used in theoretical analysis. The AM0 spectrum is useful for space-based 

photovoltaics. The AM1.5G spectrum is often used for non-concentration solar cells while 

the AM1.5D spectrum is used for concentration devices. 
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Fig. 5.  Comparison of the 6000 K blackbody radiancy with the ASTM solar spectra [16]. 

 

1.4   –   Nanostructures 

 A nanostructure can be thought of as some structure that has at least one spatial 

dimension small enough such that quantum confinement effects become significant. It should 

be noted that “small” is a relative term and that what may be small enough for one material 

may very well be too large for another material. Therefore, it is the significance of the 

quantum effects that determine whether one may call some device structure a nanostructure 

as it has been defined here. 

 Perhaps the classic example of a nanostructure is the quantum well. In this example, 

the material is confined in one spatial dimension while the other two spatial dimensions are 

of bulk size. One way of realizing such a structure is to grow a thin film of some 

semiconductor material in-between two other semiconductors of bulk size. This structure is 

diagramed in Fig. 5.a where the bulk regions are made of the same material which differs 



 11 

from the quantum well material. Additionally, the quantum well material should exhibit a 

smaller bandgap than the bulk material; the associated energy band diagram is drawn in 

Fig. 5.b. 
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Fig. 5.  a) Schematic of a quantum well of thickness t dividing a bulk semiconductor of larger bandgap. b) The 

corresponding energy band diagram. Due to the small value of t, quantized energy levels are realized thus 

making a quantum well. 

 

 Referring to Fig. 5, the requirement for a nanostructured quantum well is that the 

thickness t of the well be thin enough for quantization effects to become significant. Usually, 

this requirement may be observed in the energetics of the system. If t is small enough then, as 

in Fig. 5.b, quantized energy levels will be realized in the well. A consequence of this is that 

the conduction band minimum and the valence band maximum are no longer realizable states 

in the quantum well. Instead, the lowest possible energy level in the quantum well for free 

electrons corresponds with the first quantized eigenstate in the conduction band. Similarly, 

the highest possible energy level for holes becomes the first quantized eigenstate in the 

valence band. Following from this discussion, due to the modification of the conduction and 

valence band ground states, the bandgap of the quantum well is clearly increased to some 

effective value. 



 12 

 Another low-dimensional nanostructure relevant to this work is the quantum dot. 

Whereas the quantum well can be thought of as a two-dimensional structure, the quantum dot 

can be thought of as a zero-dimensional structure. For the quantum dot, all three spatial 

dimensions are taken to be confined. A single quantum dot placed within a bulk material 

would exhibit a similar band diagram as in Fig. 5.b. An atomic force micrograph of InAs 

quantum dots grown atop a GaAs substrate is given in Fig. 6 [71]. 

 

 

Fig. 6.  Atomic force micrograph of 6 nm tall InAs quantum dots epitaxially grown on a GaAs substrate. 

 

 The benefit of incorporating nanostructures into solar cells comes due to the 

superlattice. The superlattice structure is realized by making an array of closely spaced 

quantum wells [17] or quantum dots; Fig. 7.a shows the energy band diagram for this 

scheme. If a sufficient amount of wavefunction overlap occurs, i.e. the occurrence of 

coupling, between adjacent well regions then minibands may form as in Fig. 7.b. These 

minibands form because the quantum wells or quantum dots form a periodic potential for 

charge carriers not unlike the periodic potential formed by the crystal lattice. So just as the 



 13 

crystal lattice induces the formation of the usual energy bands, then the superlattice induces 

the formation of additional minibands. As implied by Fig. 7.b, the miniband formation may 

occur within the otherwise forbidden region of the bandgap of the host material. This allows 

for the standard carrier phenomena to now occur in regions previously inaccessible. Namely, 

as it is of the utmost importance in the field of photovoltaics, additional photon absorption 

processes become possible with the introduction of the minibands. This concept plays an 

important role the discussions to follow. 

 

Quantum
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Fig. 7.  a) Energy band diagram of an array of quantum wells or quantum dots. The eigenfunction are 

superimposed over the quantized energy levels. If sufficient coupling, i.e. overlap of wavefunctions, occurs 

between adjacent well regions then b) miniband formation will result. 
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Chapter 2 

Detailed Balance Models 

 

2.1   –   General Theory 

 The treatment of solar energy conversion by a p-n junction presented by Shockley 

and Queisser [18] represents the fundamental limits attainable by semiconductor solar cells. 

This formulation accounts for the blackbody properties of the solar cell and invokes the 

principle of detailed balance to derive an expression for the operation of a solar cell at the 

fundamental limit. The theory easily propagates through for use in the analysis of advanced 

photovoltaic designs and thus serves as the basis for continued research in the field. 

 Planck’s law for blackbody radiation [19], expressed as a photon flux per unit energy 

flowing out of a blackbody cavity, is 

  
1

12
/23

2

−
=

Φ
kTE

ech

E

dE

d π
     (1) 

where E is the energy, h is Planck’s constant, c is the speed of light, k is Boltzmann’s 

constant, and T is the temperature of the blackbody. In this work, (1) shall be known as the 

spectral photon flux. Integration of this equation through some energy interval gives the 

photon flux Φ. Treating the sun as an ideal blackbody, and since the solar absorption of a 

semiconductor is limited by the bandgap energy Eg, the solar flux that is actually absorbable 

is 

  ( ) ∫
∞

=

Φ
=∞Φ

g sE TT

gs
dE

d
dEE ,      (2) 
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where Ts is the temperature of the sun. Actually, since (1) represents the spectral flux flowing 

out of the cavity, then (2) represents the absorbed flux at the sun’s surface. For the common 

sun-solar cell system, the solar cell is located near Earth and impingent radiation on the 

device takes the form of plane waves incident on a planar absorber. Therefore the photon flux 

absorbed by the solar cell is actually decreased by a factor of  

  π/Ω=sf      (3) 

where Ω is the solid angle subtended by the sun and the factor of π
-1

 accounts for plane 

waves impingent on a planar surface [18]. A currently accepted standard value for fs is 

2.1646×10
-5

 [8].  

 Similarly, the solar cell may be treated as an ideal blackbody at some temperature Tc. 

Then at thermodynamic equilibrium, the direct recombination of electron-hole pairs gives 

rises to photon emission with a flux given by 

  ( ) ∫
∞

=

Φ
=∞Φ

g cE TT

gc
dE

d
dEE , .     (4) 

When perturbed from equilibrium by an applied bias V, the p-n junction will see an increase 

in radiative recombination proportional to the Boltzmann factor [15, 20]; the expression for 

radiative recombination is thus given as 

  ckTqV
ceAU

/Φ=      (5) 

where A is the surface area of the device and q is the elementary charge. Note that the 

quantity qV is equal to the amount of splitting in the quasi-Fermi levels [15, 18]. Similarly, 

the recombination rate due to non-radiative transitions is [15, 20]: 

  ckTqV
eRR

/
0=      (6) 
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where R0 is the thermal generation rate. Finally, it is convenient to introduce the inverse of 

the fraction of the amount of the recombination-generation current that is due to radiative 

transitions: 

  

1

0

−









+Φ

Φ
=

RA

A
f

c

c
c .     (7) 

 The principle of detailed balance states that, at equilibrium, a time-rate process must 

be balanced by its inverse; therefore the process and its inverse must proceed at equal 

rates [21]. Applied to a photovoltaic device, the principle of detailed balance implies that the 

sum of the time-variances of the electron-hole pair populations must vanish; thus [18]: 

  
( ) qIRRUAAAf

qIRRUAf

ccss

ss

/  

/0

0

0

−−+−Φ+Φ−Φ=

−−+−Φ=
     (8) 

where I is the current. The term in parentheses is the net generation rate of electron hole pairs 

when the device is at thermal equilibrium with its surroundings. Substituting the quantity 

(AΦc–R0) by (7) into (8) and solving for I yields the expression for the current density of the 

solar cell: 

  ( ) ( )1
/ −Φ−Φ−Φ= ckTqV

cccss eff
q

J
.     (9) 

It is instructive to compare this result with the photovoltaic form of the Shockley 

equation [10-11]: 

  ( )1/
0 −−= kTqV

sc eIII    (10) 

where Isc is the short-circuit current and I0 is the reverse bias saturation current. It is evident 

that the first term in parentheses in (9) is the short circuit current while the quantity fc
-1
Φc is 

the saturation current. Equation (9) is the fundamental result of the detailed balance 



 17 

formulation; it is an integral solution that directly gives the current-voltage characteristics of 

a solar cell. From it, the solar conversion efficiency can be directly extracted. 

 Although the foregoing theory is thermodynamic by the invocation of the Planck 

distribution and the principle of detailed balance, no thermodynamics has actually been 

applied directly to the quantum electronics at play; i.e. the thermodynamics of the electron-

photon interaction is not completely considered. By the definition of the chemical potential µ: 

  dNdE µ= ,   (11) 

the chemical potential of photons has been considered to be zero since the conservation of 

photon number N is not required. The notion of a vanishing chemical potential is actually 

correct for thermal radiation; hence the Planck law. The argument, however, is not 

compelling in general since photon-photon interaction is non-existent; therefore photons 

equilibrate by means of atomic interactions that give rise to the possibility of a non-zero 

chemical potential [22]. Luminescent photon emission, i.e. photon emission due to some 

other means than thermal, can be shown to exhibit a non-zero chemical potential. This is due 

to the fact that luminescent radiation is observed to have a threshold frequency, i.e. energy, 

below which no light emission occurs. Therefore, the presence of a non-zero chemical 

potential can be thought of as a consequence of this high-pass energy gap. A thorough 

thermodynamic formulation based on these principles leads to a generalization of (1) [22]: 

   
1

12
/)(23

2

−
=

Φ
− kTE

ech

E

dE

d
µ

π
.   (12) 

This formula gives the spectral photon flux exiting from a blackbody cavity; it contains the 

effects of both blackbody and luminescent radiation. In the limit of a vanishing chemical 

potential, (12) reduces to the conventional form of the Planck distribution. 
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 The derivation leading to the Shockley-Queisser result can be claimed to be semi-

empirical in that the assumptions invoked in (5)-(8) come from inserting blackbody 

properties in such a way that fits the rectifier model. With the result of (12) and invoking the 

principles of statistical mechanics, the Shockley-Queisser result is superseded [23-25]: 

  ( ) ∫
∞

=

Φ
−Φ−+Φ=

g cE TT

ccscss
dE

d
dEffff

q

J
,   (13) 

where the spectral flux in the last term is given by the generalized Planck distribution in (12) 

and where it turns out that the chemical potential of luminescent photons is equivalent to the 

applied bias: 

    qV=µ .   (14) 

It should be noted that, except for extreme cases and novel design schemes, both (9) and (13) 

give almost identical results. Equation (13) has the reassuring property that at the short-

circuit condition (V = 0), if the solar cell and the sun were at thermal equilibrium, then no 

current would flow; this is generally lacking from (9). 

 To compare (9) and (13), the current-voltage results for a 1.46 eV bandgap 

semiconductor are plotted in Fig. 1.a. The cell is illuminated by a 6000 K blackbody at one-

sun and 1000-sun concentrations; fc is taken to be unity and the cell is at a temperature of 

300 K. In Fig. 1.a, there are actually two sets of curves for each concentration level 

corresponding to either (9) or (13); however, these curves overlap and are not individually 

visible. The relative error of using (9) instead of (13) is plotted for the two concentration 

levels in Fig. 1.b. From this plot, it is clear that maximum error occurs at the open-circuit 

voltage and increases as the open-circuit voltage increases. Note that the data in Fig. 1.b is 

only plotted for voltages greater than ~0.9 V for the one-sun case and greater than ~1 V for 
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the 1000-sun case. This is because any error corresponding to smaller voltage values are 

smaller than the numerical machine precision. Note that the models discussed above require 

the integration of Bose-Einstein distributions. Care must be taken in handling these functions 

as singularities are not uncommon. The method used herein makes use of a Gauss-Kronrod 

quadrature method [26]. 
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Fig. 1.  a) Detailed balance model using the original (9) and statistical (13) formulations at two different 

concentration levels (Eg = 1.46 eV). The curves corresponding to the different formulations overlap at both 

concentrations. b) Relative errors at both concentration levels of using (9) instead of (13).  

 

 The plot in Fig. 2 shows the 1000-sun case but at an elevated device temperature of 

600 K. As with the foregoing case, the I-V curves corresponding to (9) and (13) overlap 

enough to not be individually resolvable. In comparison to Fig 1.b, the relative error of using 

(9) instead of (13) is significantly increased although not to the point to cause great deviation 

between the results of the two models. Even though the maximum error is somewhat large 

(~100 %), this occurs at a point where the current levels are very small and vary 

exponentially. It is clear from Figs. 1-2 that at normal operating conditions either use of (9) 

or (13) will suffice. Although this is the case, the remainder of this work will concentrate on 
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the expression in (13) to make sure the results follow from the soundest physical grounds 

possible. This is also important for the advanced designs to be considered. 
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Fig. 2.  Detailed balance model using the original (9) and statistical (13) formulations at 1000-sun concentration 

and at an elevated device temperature of 600 K (Eg = 1.46 eV). The curves corresponding to the different 

formulations overlap at both concentrations but the relative error is significantly increased from the 

corresponding plots in Fig. 1. 

 

2.2   –   Single-Junction Solar Cell 

 In simulating the detailed balance limits of a solar cell, it is common to take the 

temperature of the sun to be 6000 K and that of the device to be 300 K. The regime of 

interest is the radiative limit, i.e. fc = 1. At this limit, it is possible to analyze the maximum 

possible performance of a photovoltaic device without having to consider the confounding of 

non-idealities brought about by materials growth, device design, etc. Additionally, the 

geometric parameter fs has been previously defined to be equal to 2.1646×10
-5

 [8]. This 

implies that the maximum possible concentration factor is 46,198 suns. Thus the product of fs 
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and the maximum concentration factor is unity therefore corresponding to the equivalent case 

of a solar cell placed at the suns surface.  

 The detailed balance performance of several of the elemental and binary 

semiconductors is plotted in Fig. 3 as a set of I-V characteristics. By inputting each 

individual material’s bandgap into the detailed balance model, the fundamental limiting 

performance is determined. This figure helps to illustrate the tradeoffs inherent in materials 

selection. The smaller bandgap semiconductors allow for a larger short-circuit current 

because they are able to absorb a larger portion of the solar spectrum; however, their small 

bandgap places a fundamental limit on the open-circuit voltage. Therefore it makes sense that 

there will be an optimum bandgap such that the corresponding I-V characteristic gives the 

maximum attainable efficiency. As discussed in Section 1.3, the efficiency is defined as the 

ratio of the maximum power to the irradiance falling upon the solar cell form the sun. In this 

blackbody analysis, the irradiance Ps is determined by the Stefan-Boltzmann law: 

   4
TPs σ= ;   (15) 

which gives a solar constant of 1590.7 W/m
2
 when including a prefactor of fs. σ is the Stefan-

Boltzmann constant.  

 The issue of determining an optimum bandgap corresponding to maximum attainable 

efficiency is addressed in Fig. 4. Here, the detailed balance efficiency limits are plotted as a 

function of material bandgap at several different solar concentrations. For each curve, a 

maximum occurs indicating the optimum bandgap leading to maximized solar efficiency. 

This plot directly gives the detailed balance limit of 31.0 % efficiency corresponding to a 

bandgap of 1.31 eV at one sun illumination. For maximum concentration, the detailed 

balance limit rises to 40.8 % efficiency corresponding to a decreased bandgap of 1.11 eV. 
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For perspective, the bandgaps of several of the elemental and binary semiconductors are 

included in Fig. 4. 
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Fig. 3.  Electrical characteristics of several semiconductors operating at the detailed balance limit. Larger 

bandgap materials exhibit larger open circuit voltages but smaller short circuit currents. 
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Fig. 4.  Detailed balance efficiency limits plotted as a function of material bandgap at solar concentration 

factors of 1, 10, 100, 518, 1000, 5180, 10000, and 46198. 
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 Although the treatment of the sun as a perfect blackbody in the foregoing discussions 

provides for an excellent approximation in the analysis for solar efficiency, it is of interest to 

study the same scenarios but with a more accurate model of the solar flux. This is made 

possible by the existence of standard data detailing the actual solar spectrum outside the 

Earth’s atmosphere and on its surface [16]. The AM0 and AM1.5 solar spectra were 

discussed in Section 1.3 and are compared with the 6000 K blackbody spectrum in Fig. 5. 
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Fig. 5.  Comparison of the 6000 K blackbody radiancy with the ASTM solar spectra [16]. The Planck law used 

to generate the blackbody curve includes fs as a prefactor. 

 

 The blackbody curve in Fig. 5 is the Planck distribution (1) multiplied by fs and 

expressed as a spectral radiance. For more realistic modeling of detailed balance 

performance, the actual solar spectra may be invoked instead of the Planck distribution. 

Therefore the data plotted in Fig. 5, expressed as a spectral photon flux, may be used directly 

to determine the absorbed photon flux by quadrature of (2); the remainder of the process to 
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simulate detailed balance performance remains the same. This method allows for the 

generation of the plots in Fig. 6 showing the detailed balance efficiency limits vs. material 

bandgap under either AM0 or AM1.5 illumination. 

 

a)

0

5

10

15

20

25

30

35

40

45

0 0.5 1 1.5 2 2.5 3

Bandgap (eV)

M
a

x
. 

E
ff

ic
ie

n
cy

 (
%

)

GaAs
Si

Ge CdTe

GaP
CdS

Increasing

Solar Conc.

 b)

0

5

10

15

20

25

30

35

40

45

50

0 0.5 1 1.5 2 2.5 3

Bandgap (eV)

M
a

x
. 

E
ff

ic
ie

n
cy

 (
%

)

GaAs
Si

Ge CdTe

GaP

CdS

Increasing

Solar Conc.

Increasing

Solar Conc.

 

Fig. 6.  Detailed balance efficiency limits plotted as a function of material bandgap at solar concentration 

factors of 1, 10, 100, 518, 1000, 5180, 10000, and 46198. The illumination used is a) the AM0 solar spectrum 

and b) the AM1.5G spectrum for the one-sun case and the AM1.5D spectrum for the rest. 

 

 The AM0 case in Fig. 6.a is similar to the blackbody case in Fig. 4. This is due to the 

similarity between the blackbody and AM0 spectra. Although the AM0 spectrum is not a 

smooth function, the attenuation lines are rather narrow and do not have the same effect on 

the analysis as the irregularity of the AM1.5 spectra. The AM1.5 case in Fig. 6.b is 

noticeably different than the blackbody and AM0 cases by the presence of several local 

maxima. As alluded to, this structure in the AM1.5 case is attributable to the occurrence of 

relatively large attenuation bands in the AM1.5 spectra. For comparative purposes, the three 

cases are plotted together in Fig. 7 at one-sun and maximum concentrations. Note that the 

larger peak efficiencies for the AM1.5 cases are due to smaller value of the solar constants 

(AM1.5G: 1000.4 W/m
2
, AM1.5D: 900.14 W/m

2
) corresponding to these spectra. 
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Fig. 7.  Comparison of the maximum efficiencies attainable under the detailed balance limit for the three 

different spectra at one-sun and maximum concentrations. AM1.5G is used for the one-sun case while AM1.5D 

is used for the maximum concentration case. 

 

 From Fig. 7, the detailed balance efficiency limits are summarized in Table I with 

their respective optimum bandgaps at one-sun and maximum concentrations for the three 

standard spectra. AM1.5G is used at one-sun while AM1.5D is used at maximum 

concentration. Plots of this data taken over the entire concentration range are displayed in 

Fig. 8.  These sets of data clearly indicate very different design spaces based on the spectrum 

of interest. What is an optimum design point under one spectrum is not, in general, an 

optimum design point under another spectrum. The data in Fig. 8.b is particularly of interest 

as it indicates a major difference in the analysis using a blackbody spectrum compared to that 

using an actual spectrum. For the blackbody case, the optimum bandgap, i.e. the design 

space, follows a logarithmically dependent continuum. For either the AM0 or AM1.5 cases, 

the optimum bandgap remains relatively constant throughout large ranges of solar 

concentrations and exhibits step discontinuities at several points. This is attributable to the 
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irregular roughness of the actual spectra compared to the smoothness of the blackbody 

spectrum (Fig. 5). It should be noted that, as seen in Fig. 6.b, the maximum efficiency as a 

function of bandgap for the AM1.5 spectrum exhibits several local maxima. The data used to 

generate Fig. 8.b considers only the global maximum. Note that in Fig. 6.b, the global 

maximum eventually shifts from one local maximum to another with increased 

concentration. This contributes to the relative consistency of the optimum bandgap for the 

AM1.5 spectrum. 

 

Table I 

Detailed Balance Efficiency Limits 

 No Concentration Max. Concentration 

Illumination 

Spectrum 

Opt. 

Bandgap 

Max. 

Efficiency 

Opt. 

Bandgap 

Max. 

Efficiency 

Blackbody 1.31 eV 31.0 % 1.11 eV 40.8 % 

AM0 1.26 eV 30.2 % 1.03 eV 40.6 % 

AM1.5 1.12 eV 33.2 % 1.11 eV 45.0 % 
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Fig. 8.  Comparison between the three standard spectra of a) maximum efficiency and b) corresponding 

optimum bandgap throughout the range of solar concentrations. This indicates vastly different device design 

spaces depending on the spectrum of interest. 
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2.3   –   Triple-Junction Solar Cell 

 From the discussions in the forgoing section, it is clear that the material bandgap 

plays an essential role in determining the performance of a solar cell. In Fig. 3, this is 

manifested as different materials exhibiting different open-circuit voltages and different 

short-circuit currents. Clearly, any single device exhibited in Fig. 3 would be made more 

efficient simply by extending the I-V curve such that a larger open-circuit voltage is attained. 

This is the general idea behind the multi-junction solar cell.  

 As a specific case of the multi-junction solar cell, a triple-junction device is 

diagramed in Fig. 9.a; this is the InGaP-GaAs-Ge triple junction cell and represents the state-

of-the-art in basic multi-junction approaches. This device is grown monolithically by 

epitaxial means. The materials are chosen to conform to the constraint of lattice matching. In 

this device, there are actually three separate p-n junctions, each composed of a different 

material. This constitutes an equivalent circuit of three solar cells connected in series as seen 

in Fig. 9.b. The materials are placed such that the one with the largest bandgap is located at 

the top of the stack; the remaining materials follow the trend of decreasing bandgap towards 

the bottom of the stack. This design allows for the most efficient conversion of higher energy 

photons by the top cell. The top cell is transparent to sub-bandgap light; this light is then 

absorbed by one of the remaining cells underneath. This allows for the splitting of the 

absorption of the solar spectrum into more efficient means; this is diagramed in Fig. 10. 

Efficiency of this device is enhanced from the single-junction cell due to the photogeneration 

occurring over several junctions at once. In general, a separate photovoltage will be dropped 

across each junction at any given time; these voltages add giving the total voltage across the 

multi-junction device. This is the mechanism which leads to an increased open-circuit 
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voltage, i.e. the I-V curve is stretched along the voltage axis. The only caveat is that the 

current will be limited to the lowest output due to the constraint of current matching, i.e. the 

conservation of charge dictates that the currents running through each junction must be equal. 

Finally, it should be noted that an actual device will include a backwards connected tunnel 

junction in-between each sub-cell to properly drive current (this is discussed in further detail 

in Section 3.18). This reality is not necessary in the analysis that follows thus it suffices to 

assume that an ideal short exists between each sub-cell as drawn in Fig. 9.b. 
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Fig. 9.  InGaP-GaAs-Ge triple-junction solar cell a) diagramed to show the proper placement of each layer such 

that the smallest bandgap material is placed at the bottom with increasing bandgaps towards the top of the stack. 

The device is b) diagramed as an equivalent circuit with three individual solar cells connected in series 

representing each of the individual junctions. 

 

 A detailed balance analysis of the triple-junction cell in Fig. 9.a. has been previously 

reported [27]. The remainder of this section elucidates on the mathematical details necessary 

to perform such an analysis and verifies the published results. Additionally, the solutions 

obtained in this section give insight to the detailed analysis to follow in Section 2.4 on the 

intermediate band solar cell. 
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Fig. 10.  AM0 solar spectrum split into separate absorption regions corresponding each of the sub-cells in the 

triple-junction InGaP-GaAs-Ge stack. 

 

 The task at hand is to determine the efficiency of the InGaP-GaAs-Ge triple-junction 

solar cell and to determine which layers should be modified to increase this efficiency. In 

referencing to Fig. 9.b, the current through cell n, where n runs from 1 to 3, is given by (13). 

As in the single-junction example, fc may be taken to be unity. Additionally, the middle term 

in (13) is only significant as the temperature of the device approaches that of the illuminating 

body; therefore, it may be ignored. Explicitly, the current through cell n is then 
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where the first term can be considered to be the short-circuit current JL of the single-junction 

cell and the second term can be considered to be the dark current JD. By (14), µn is 

determined from the voltage that is dropped across cell n. The integrations in (16) are 

performed over the energy interval ranging from the bandgap of the specified sub-cell up to 

the bandgap of the next sub-cell such that there is no overlap in the integrated energy ranges 

of any two sub-cells. Referring to Fig. 9.b, the energy intervals are 
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recalling that the multi-junction design requires that Eg1 > Eg2 > Eg3. 

 The power of the stack is then  

  nVJP =    (18) 

where V is the voltage dropped across the entire stack. In principle, since the currents 

throughout each sub-cell are equal, any value of n may be chosen. Arbitrarily choosing n = 1 

and due to the direct relationship between voltage and the chemical potential given by (14), 

the power may be rewritten as 

  ∑=
n

n

q
JP

µ
1 .   (19) 

The condition for maximum power, thus giving cell efficiency, is met by maximizing this 

expression with respect to the chemical potentials but subject to the following constraints: 
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where the factor of q
-1

 has been placed for convenience. Then by the method of Lagrange 

multipliers, the maximization of (19) is determined by solving the following: 

  02211 =Φ∇+Φ∇+∇ µµµ λλP    (21) 

where λ are the Lagrange multipliers. 

 Expanding the pertinent gradients, 
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allows for (21) to be written as a set of simultaneous equations: 
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Therefore, the solution is 

  01 =













+∑

n d
dJn

n

n

J

µ

µ .   (24) 

This gives the operating condition of the multi-junction cell at which maximum power is 

achieved. All that remains is to evaluate the derivative occurring in (24): 
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It should be noted that even though the example of a triple-junction cell has been chosen for 

this derivation, the solution may be generalized for any number of N sub-cells. This would 

increase the number of constraints in (20) to a total number of N-1 with the general form 

  ( ) 0
1

1 =−=Φ +nnn JJ
q

   (26) 
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where n ranges from 1 to N-1. Then (21) through (23) would be modified accordingly leading 

to the same result in (24). Therefore, (24) is general for any given number of junctions in the 

multi-junction stack. 

 The operating condition for maximum power is given by (24); this is the fundamental 

equation. To numerically determine the efficiency of a multi-junction stack, the chemical 

potentials may be varied iteratively until (24) is satisfied. The bandgaps of InGaP, GaAs, and 

Ge are 1.89 eV, 1.42 eV, and 0.66 eV, respectively. Using these parameters in the model 

discussed yields a detailed balance efficiency limit of 33.5 % for the triple-junction cell. 

Holding the bottom cell bandgap constant at 0.66 eV, but allowing the remaining sub-cells to 

vary in bandgap yields the efficiency contours plotted in Fig. 11. This plot shows that 

dramatic improvement may be made to the triple-junction cell by lowering the bandgap of 

the GaAs sub-cell. 
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Fig. 11.  Efficiency contours of the triple-junction solar cell with variable top and middle cell bandgaps; the 

bottom cell bandgap fixed to 0.66 eV (germanium). 
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 From Fig. 11, with a top cell bandgap of 1.89 eV (InGaP) and a middle cell bandgap 

of 1.42 eV (GaAs), the detailed balance efficiency limit of the triple-junction cell is 33.5 %. 

By decreasing only the middle cell bandgap to 1.20 eV, the detailed balance limit is 

increased to the maximum point at 47.5 %. The problem that arises is that no material exists 

that both has this desired bandgap and is latticed matched to InGaP and Ge. As discussed in 

Section 1.4, the incorporation of a nanostructured array in a host material may induce 

miniband formation. This can therefore give rise to otherwise sub-bandgap photoconversion 

of light. A quantum well or quantum dot array placed in the GaAs middle cell may therefore 

induce an effective bandgap lowering such that the overall triple-junction efficiency limit 

increases from 33.5 % to 47.5 %. 

 

2.4   –   Intermediate Band Solar Cell 

 The present concept of the intermediate band solar cell was first reported by Luque 

and Martí [28] while an earlier, related concept was reported by Wolf [29]. The standard 

concept of the intermediate band solar cell is shown schematically in Fig. 12 as a 

semiconductor band diagram where the bandgap is represented by ECV = EC – EV. The 

standard solar cell would therefore only be able to absorb photons with energy equal to or 

greater than ECV. Suppose now that an accessible band is located at an intermediate level EI 

between EC and EV as indicated in Fig. 12. This intermediate band is simply the miniband 

discussed in Section 1.4. The electronic states in the intermediate band should be accessible 

via direct transitions. Then the absorption of photon energy EIV will pump an electron from 

the valence band to the intermediate band. A subsequent photon of energy ECI then pumps an 

electron from the intermediate band to the conduction band. The increased performance of 
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this design in comparison to the standard solar cell is obvious; so the final result is to allow 

for sub-bandgap excitations thereby allowing for the photoconversion of a larger amount of 

the illuminating solar spectrum. 

 

Ev

Ec

EI

Ev

Ec

EI

 

Fig. 12.  Energy band diagram showing the operation of the intermediate band solar cell. The standard bulk 

absorption process is the pumping of an electron from the valence band to the conduction band by a photon with 

energy greater than ECV. In addition to this, a photon of energy EIV may pump an electron from the valance band 

to the intermediate band for subsequent excitation to the conduction band by a photon of energy ECI. 

 

 In performing a detailed balance analysis of the intermediate band solar cell, three 

assumptions specific to this design are invoked. The first, there is no overlap of energy 

transitions for a given photon energy; i.e. if a photon may energetically induce a transition 

from one band to another, then all photons of the same energy will only cause that specific 

transition. So, referring to Fig. 12 where EI is placed arbitrarily closer to EC than to EV, there 

are only three energy ranges of interest: [ECI, EIV], [EIV, ECV], and [ECV, ∞). This assumption 

is actually similar to the analysis of the multi-junction cell in that each sub-cell was taken to 

have its own unique energy domain. The second assumption is that no current is able to be 

extracted from or injected into the intermediate band by means of an electrical contact; i.e. 

electrons enter the intermediate band only by pumping from the valence band and they leave 

only by subsequent pumping to the conduction band. Finally, each band must have associated 
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with it, its own quasi-Fermi level; so the difference in chemical potentials between any two 

bands is simply the difference between the quasi-Fermi levels of the two bands. 

 Following from (16), the spectral flux from the sun giving rise to the short-circuit 

current is 
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while the spectral flux leaving the solar cell, thus giving rise to the dark current, is 
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An equivalent circuit of the intermediate band solar cell may be constructed, as in Fig. 13, 

based on the stated assumptions. As in previous analyses, the chemical potentials correspond 

to voltage drops across the equivalent circuit elements. In Fig. 13, photodiode 1 corresponds 

to the standard effect of an electronic transition across the bandgap, photodiode 2A 

corresponds to the effect of the intermediate-to-conduction band transition, and photodiode 

2B corresponds to the valence-to-intermediate band transition. The currents through each of 

the circuit elements are therefore: 
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Fig. 13.  Equivalent circuit of the intermediate band solar cell. Current J1 is due to the standard valence-to-

conduction band photoabsorption process while current J2 accounts for the enhancement due to the presence of 

the intermediate band. These currents add to give the total current J of the intermediate band solar cell. The 

voltage applied to the device corresponds to the chemical potentials by V = µCV / q. 

 

 From Fig. 13, the currents J2A and J2B must be equal; these may be simply referred to 

as current J2. The current J2 adds with J1 to give the total current J. As in previous analyses, 

the applied voltage is dropped such that it corresponds to the chemical potential difference 

between the conduction and valence bands. This energy splitting then determines the values 

of the chemical potential differences with respect to the intermediate band. So the current-

voltage characteristics of the intermediate band solar cell can be determined by considering 

the total current 

  ( ) 21 JJVJ +=    (30) 

which is fundamentally a function of the chemical potential such that 

  qVCV =µ .   (31) 

The contribution of current J1 is straightforward to calculate. The current J2 must meet the 

condition 
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  ( ) ( )IVBCIA JJJ µµ 222 ==    (32) 

where the respective chemical potentials are determined at each operation point by 

  qVCVIVCI ==+ µµµ .   (33) 

The methodology outlined here is algorithmically solved by iteration throughout a range of 

voltages. This allows a maximum power point to be determined thus giving photovoltaic 

efficiency. 

 Following the methodology outlined above allows for the generation of efficiency 

contours as plotted in Fig. 14. These plots show the detailed balance efficiency limit, under 

6000 K blackbody illumination, of the intermediate band solar cell as a function of the 

intermediate band location. In other words, referring to Fig. 12, the values of ECI and EIV 

determine the limiting efficiency of the photovoltaic device. This is explicitly presented in 

Fig. 14 for the physically relevant illumination factors of 1, 10, 100, and 1000-sun 

concentrations. Note that specified values of ECI and EIV set the bulk bandgap ECV. 

 From Fig. 14.a, the detailed balance efficiency limit under blackbody illumination is 

46.8 %. This corresponds to intermediate bandgaps of EIV = 1.49 eV and ECI = 0.92 eV; the 

complete bandgap ECV is therefore 2.41 eV. As the solar concentration is increased to 1000 

suns, the optimum values of both EIV and ECI decrease monotonically to 1.31 eV and 

0.77 eV, respectively. The efficiency at this point is 57.3 %. The corresponding total bandgap 

is therefore also decreased at 1000 suns to 2.08 eV. This behavior of decreased optimum 

bandgap with increased solar concentration is comparable to Figs. 4 and 8.b, both of which 

demonstrate similar behavior for the single junction solar cell. Table II lists the limiting 

efficiencies and corresponding bandgaps for the plots in Fig. 14. 
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a)   b)

c)   d)  

Fig. 14.  Contour plots showing the detailed balance efficiency limit of the intermediate band solar cell as it 

varies with the spacings between the conduction and intermediate bands and between the intermediate and 

valence bands. The illuminating spectrum is that of a 6000 K blackbody with concentration factors of a) 1 sun, 

b) 10 suns, c) 100 suns, and d) 1000 suns. 

 

Table II 

Detailed Balance Efficiency Limits Under 6000 K Blackbody Illumination 

Solar Concentration 1 10 100 1000 

Efficiency Limit 46.8 % 50.1 % 53.6 % 57.3 % 

EIV (eV) 1.49 1.43 1.36 1.31 

ECI (eV) 0.92 0.87 0.81 0.77 

ECV (eV) 2.41 2.30 2.17 2.08 

 

 Similar to the generation of Fig. 6, the detailed balance analysis of the intermediate 

band solar cell can be made more realistic by invoking the actual AM0 and AM1.5 solar 

spectrums which are plotted in Fig. 5. In doing so, the analytic form of (27) is replaced with 

numerical data from Fig. 5. Efficiency contours for the intermediate band solar cell subject to 
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AM0 illumination are plotted in Fig. 15 for 1, 10, 100, and 1000-sun concentrations. These 

plots are similar to those in Fig. 14 due to the similarity between the blackbody and AM0 

spectra. Some roughness is seen in the AM0 contours due to the roughness of the AM0 

spectrum. The corresponding efficiency limits and optimum bandgaps are listed in Table III. 

 

a)   b)

c)   d)  

Fig. 15.  Contour plots showing the detailed balance efficiency limit of the intermediate band solar cell as it 

varies with the spacings between the conduction and intermediate bands and between the intermediate and 

valence bands. The AM0 solar spectrum is used with concentration factors of a) 1 sun, b) 10 suns, c) 100 suns, 

and d) 1000 suns. 

 

Table III 

Detailed Balance Efficiency Limits Under AM0 Illumination 

Solar Concentration 1 10 100 1000 

Efficiency Limit 45.8 % 49.5 % 53.3 % 57.4 % 

EIV (eV) 1.38 1.27 1.27 1.22 

ECI (eV) 0.85 0.77 0.77 0.73 

ECV (eV) 2.23 2.04 2.04 1.95 
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 The AM1.5 detailed balance efficiency contours are plotted in Fig. 16 for 1, 10, 100, 

and 1000-sun concentrations. The 1-sun case makes use of the AM1.5G spectrum while the 

remainder uses the AM1.5D spectrum. The contours in Fig. 16 exhibit a much more irregular 

structure when compared to the previous examples under blackbody and AM0 illumination. 

This is due to the large degree of roughness and attenuation lines in the AM1.5 spectra. Of 

particular interest is the presence of several local maxima in the AM1.5 efficiency contours. 

This is comparable to Fig. 6.b where the efficiency vs. bandgap plot of the single junction 

solar cell illuminated by the AM1.5 spectrum exhibited similar behavior. The AM1.5 

detailed balance efficiency limits and corresponding optimum bandgaps are listed in 

Table IV. 

 

Table IV 

Detailed Balance Efficiency Limits Under AM1.5 Illumination 

Solar Concentration 1 10 100 1000 

Efficiency Limit 49.4 % 52.2 % 56.3 % 60.8 % 

EIV (eV) 1.50 1.34 1.23 1.22 

ECI (eV) 0.93 0.74 0.70 0.69 

ECV (eV) 2.43 2.08 1.93 1.91 

 

 The vast majority of research work occurring today for the intermediate band solar 

cell makes use of an InAs quantum dot array placed in the space charge region of a bulk 

GaAs solar cell [4, 27, 71, 77]. The InAs dot array, being of smaller bulk bandgap than the 

GaAs host, induces the intermediate band by coupling of confined electronic states in the 

InAs conduction band; this design scheme is discussed in further detail in Chapter 3. The 

InAs/GaAs system has the advantage that it is relatively well-studied, it makes use of only 

binary semiconductors (as opposed to technologically-difficult ternary or higher alloys), and 

it uses a commercially utilized solar cell material (GaAs). 
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a)   b)

c)   d)  

Fig. 16.  Contour plots showing the detailed balance efficiency limit of the intermediate band solar cell as it 

varies with the spacings between the conduction and intermediate bands and between the intermediate and 

valence bands. In (a), the AM1.5G solar spectrum is used under 1-sun concentration. The remainder makes use 

of the AM1.5D solar spectrum with concentration factors of b) 10 suns, c) 100 suns, and d) 1000 suns. 

 

 This InAs/GaAs (dot/host) system, however, is disadvantaged in that the values of ECI 

and EIV are approximately 0.4 eV and 1 eV, respectively (see: Section 3.19 and [77]). These 

intermediate bandgap energies are clearly far from the ideal values determined from Figs. 14-

16. Using the models that generated these plots, the detailed balance efficiency limits for the 

aforementioned system are determined and listed in Table V. A proposed solution is to use a 

more ideal system based off of technologically difficult antimonide-based ternary systems 

[78]. This solution, however, only slightly tends towards the optimum intermediate bandgap 

combinations and does not correspond with the maximum point. 
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Table V 

Detailed Balance Efficiency Limits for the InAs/GaAs System at Several Solar Concentrations 

 1x 10x 100x 1000x 

Blackbody 36.4 % 41.4 % 46.4 % 51.0 % 

AM0 36.6 % 41.6 % 46.7 % 51.3 % 

AM1.5 38.6 % 44.1 % 49.6 % 55.0 % 

 

 

 Although the InAs/GaAs system represents a non-ideal combination with respect to 

the maximum theoretical limits, this system may still be useful when considering the 

performance enhancement with respect to the single-junction cell. From Figs. 4, 6, and 8, the 

detailed balance efficiency limits of the single-junction cell are listed in Table VI and are to 

be compared to the corresponding values from Table V. The single-junction values in 

Table VI indicate the maximum possible efficiencies, i.e. the efficiencies corresponding to 

the optimum bandgap, while the intermediate band values in Table V are evaluated at the 

specific intermediate bandgap combinations of the InAs/GaAs system. From the comparison 

of the two sets of data, it is evident that the non-ideal intermediate band device still 

outperforms the optimum single-junction cell at corresponding points. So even though the 

currently researched intermediate band device does not exhibit ideal parameters, it still 

represents a significant improvement over the single-junction solar cell. 

 

Table VI 

Detailed Balance Efficiency Limits for the Single-Junction Cell at Several Solar Concentrations 

 1x 10x 100x 1000x 

Blackbody 31.0 % 32.9 % 35.0 % 37.1 % 

AM0 30.2 % 32.3 % 34.4 % 36.6 % 

AM1.5 33.2 % 35.8 % 38.3 % 40.8 % 
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Chapter 3 

Device Simulations with Silvaco ATLAS 

 

3.1   –   Basic Equations 

 Silvaco ATLAS is a physics-based simulator which has been explicitly designed for 

the purpose of modeling semiconductor devices [30]. The simulation methodology is 

physics-based in that the models invoked by the software tend to be derived from first 

principles or at least empirically derived with careful attention placed to relating such models 

to the underlying physics. Fundamentally, device operation is governed by and described in a 

set of two coupled, partial differential equations: the Poisson equation and the equation of 

continuity. 

 One may consider two of the axioms to the theory of electrodynamics to be Gauss’ 

law 

  
ε

ρ
=⋅∇ E      (1) 

and the Ampère-Maxwell law 
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these are two of the four Maxwell equations for linear, isotropic media. In the foregoing, E is 

the electric field, ρ is the charge density, ε is the material permittivity, B is the magnetic field, 

µ is the material permeability, J is the current density, and v is the speed of light in the 

medium. Following (1), the relation of the electric field as the negative gradient of the 

electric potential V yields the Poisson equation: 
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Taking the divergence of (2) yields the equation of continuity: 
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In semiconductor applications, it is customary to modify (4) to include the cumulative effects 

of the generation G and recombination R of charge carriers [10]. Additionally, separate 

continuity equations are written for the electron concentration n and the hole concentration p, 

respectively: 
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where q is the elementary charge. Equations (3), (5), and (6) are the governing laws of 

semiconductor devices. These equations are solved iteratively by ATLAS to obtain a 

modeled solution of device operation. 

 

3.2   –   Carrier Statistics 

 Additional models that modify the variables in the equations above, or add additional 

phenomena not yet discussed, may be incorporated; these shall be discussed as necessary. 

One such model is that of carrier statistics. According to Fermi-Dirac statistics, the electron 

concentration in the conduction band is given as an integral over energy: 
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where the density of states is 
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In the above, EF is the Fermi level, EC is the bottom of the conduction band, k is Boltzmann’s 

constant, T is the temperature, MC is the number of equivalent minima in the conduction band 

dispersion, mn
*
 is the density of states effective mass for electrons, and ħ is the reduced 

Planck’s constant. By defining an effective density of states in the conduction band as 
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where h is the original Planck’s constant, (7) may be written as 
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Although the Fermi-Dirac integral cannot be solved analytically, the form of the integral 

given in (10) is known as the Fermi-Dirac integral of order one-half and is a well-studied 

function [31-32]. Solutions to this integral are readily available through look-up tables or by 

rational Chebyshev approximations [30]. Similarly for holes in the valence band of 

maximum value EV with a density of states effective mass mp
*
, the effective density of states 

in the valence band is defined as 
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and the hole concentration  is 
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Equilibrium electron and hole concentrations are therefore directly determined by (10) and 

(12), respectively, and subsequently give the charge density to be used in (3). 

 For completeness, it should be noted that (10) and (12) are often listed under the 

Boltzmann approximation: 
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These expressions tend to be valid as long as the Fermi level lies within the bandgap and is 

not within ~3kT of either band edge. Due to the relatively large dopings used in this work, 

the Boltzmann approximation is not invoked. By default, the Boltzmann approximation is 

assumed by ATLAS; the Fermi-Dirac expressions are invoked in the ATLAS syntax by 

calling FERMI in the MODELS statement. 

 

3.3   –   Finite Element Analysis 

 The simulation methodology used by ATLAS is a form of finite element analysis. A 

device structure is defined throughout a rectangular mesh consisting of gridlines that vary in 

their spatial separation. At each nodal point (i.e. at each intersection of two gridlines), (3), 

(5), and (6) are iteratively solved until a self-consistent solution is obtained. Any other 

pertinent models are also included at each nodal point and supplement the fundamental 

equations. 

 As an example of a device mesh, a simple p-i-n diode, as created in ATLAS, is shown 

in Fig. 1. The p-, i-, and n-regions are explicitly shown in Fig. 1.a and the device’s 

underlying mesh is shown in Fig. 1.b. The line spacings within the mesh must be fine enough 

to adequately resolve the device structure; however, a greater number of nodal points leads to 

a greater amount of computation time. Typically, the computation time is proportional to N
m

, 
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where N is the number of nodes and m ranges from 2 to 3 depending on the complexity of the 

problem [30]. The maximum number of nodes allowed by ATLAS is 20,000. In Fig. 1, the 

mesh spacing is made finer in regions of large electric fields (i.e. near junctions) and is made 

especially coarse in the quasi-neutral region of the base. This scheme allows for the 

maximum compromise between computational accuracy and speed. 

 

a) b)  

Fig. 1.  Device structure of a) a simple homojunction p-i-n diode as created in ATLAS and b) the same structure 

with an overlaid mesh used for finite element analysis. The top layer represents the emitter, the thin middle 

layer represents the intrinsic region, and the larger bottom layer represents the base. This shows an example of 

abrupt junctions as can be realized through epitaxy. The mesh spacings become finest in the high-field area of 

the space charge region and much coarser in the quasi-neutral region of the base. Fine mesh spacings near the 

top and bottom of the device are due to foresight in creating an optimized p-i-n structure as discussed in 

Section 3.17. Fine mesh spacing of vertical gridlines near the middle account for current transport to the top 

contact. 

 

3.4   –   Additional Models 

 Although the Poisson and continuity equations represent the fundamental laws 

governing the operation of a semiconductor device, additional models are often necessary to 

properly account for the dynamic nature of electrons and holes and to elaborate on the rich 

theory of device physics. These models supplement the Poisson and continuity equations by 

determining or modifying the variables contained in those laws. An example of this, 
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previously discussed, is the carrier statistics model based off of the Fermi-Dirac distribution. 

In this model, carrier concentrations are determined from the Fermi-Dirac theory and are 

directly used in the charge density portion of Poisson’s equation (3). Other models usually 

dictate specific values of carrier generation and recombination or place modifiers into the 

current densities of (5) and (6), the continuity equations. 

 

3.5   –   Shockley-Read-Hall Recombination 

 According to the Shockley-Read-Hall hall model [33-35], the recombination of 

charge carriers can be treated as the separate capture of electrons and holes by trap centers 

and their subsequent annihilation at the trap center. This recombination mechanism, 

diagramed in Fig. 2.a, is indirect in k-space and occurs due to the presence of a bulk trap 

density Nt energetically located at a value Et within the semiconductor bandgap. Statistically, 

the net recombination rate may be expressed as 
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where σn and σp are the capture cross-sections for electrons and holes, respectively, ni is the 

intrinsic carrier concentration, and vth is the thermal velocity. From an experimental and 

modeling perspective, it may be difficult to determine several of the parameters in (14); 

however, the difficulty is resolved by defining electron and hole lifetimes, respectively:  
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so that the net recombination rate may be expressed as  
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This form of the Shockley-Read-Hall model is utilized by ATLAS by calling SRH in the 

MODELS statement; it acts as an input into the carrier continuity equations (5) and (6). The 

carrier lifetimes may be regarded as empirical parameters and are set in the MATERIALS 

statement by the TAUN0 and TAUP0 parameters for electrons and holes, respectively. Unless 

otherwise noted, these two parameters are both universally set to 50 ns. This lifetime 

represents a mediocre value that allows for a realistic device simulation. The quantity Et-Ei is 

set in the MATERIALS statement by the parameter ETRAP; in this work, this parameter is set 

equal to zero because mid-gap traps represent the most effective, and hence most relevant, 

trapping centers [10, 30]. 
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Fig. 2.  Electron energy dispersions diagramming a) an indirect electron-hole recombination via a trap state 

and b) a direct electron-hole recombination culminating in a photon emission. 

 

3.6   –   Surface Recombination 

 In addition to the recombination process due to bulk trapping discussed in the 

previous section, there also exist the propensity for an additional trapping mechanism due to 

surface states; this additional process is termed surface recombination. The term “surface” is 

used to mean any aerial region where the semiconductor lattice terminates. This puts 
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different general situations on an equal theoretical basis, e.g. insulator-semiconductor 

interfaces and semiconductor-semiconductor hetero-interfaces. 

 Simplifications may be made to the carrier continuity equations and give rise to the 

well-known transport equations [30]; these are sometimes referred to in the literature as the 

minority carrier diffusion equations [37]. Solutions to these equations for surface 

recombination due to an aerial surface state density Nst
’
 yields the concept of surface 

recombination velocities for electrons and holes, respectively: 

  '
stthnn NvS σ=                 '

stthpp NvS σ= .   (17) 

The standard method for modeling the effects of surface recombination [30, 38] is then given 

by an expression very similar to (16): 
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The parameters in (18) are the same as in (16) except for the effective lifetimes which are 

modeled by ATLAS for electrons and holes, respectively, as 
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where τn and τp are the bulk Shockley-Read-Hall lifetimes and dm and Am are the length and 

area, respectively, of the surface corresponding to node m. 

 This model adds to the recombination terms of the continuity equations and is 

invoked by including the INTERFACE statement in the ATLAS deck. In this statement, Sn 

and Sp are set by the parameters S.N and S.P, respectively. At heterojunction interfaces, these 

parameters are found to be on the order of unity [56, 58, 61]. At the free surfaces of AlAs, 

GaAs, and InGaP, these parameters are set to 10
8
 cm/s. This number is somewhat large 
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compared to reported values [56, 57, 61]. This increased value, however, seems to give the 

best simulation results with ATLAS when comparing to experiment; a similar effect has been 

observed using another device simulator [59]. 

 

3.7   –   Radiative Recombination 

 The recombination models discussed in the foregoing section dealt with the indirect 

process by which electrons and holes recombine due to the presence of traps within the 

semiconductor bandgap (Fig. 2.a). The other recombination process that tends to be very 

prevalent in semiconductor work is that of radiative recombination. In this process, an 

electron in the conduction band directly recombines with a hole in the valence band with no 

aiding agent nor variance in wavevector as diagramed in Fig. 2.b. This process releases a 

photon with energy equal to the bandgap and is strongest in direct-gap semiconductors. 

Although a formal treatment of this process is best done by considering Einstein’s theory of 

spontaneous emission, in practice it is often preferred to use an empirically determined 

radiative recombination coefficient C [30, 36] such that the radiative recombination rate is 

then 

  )( 2
irad nnpCR −= .   (20) 

This process is invoked in ATLAS in the MODELS statement by calling OPTR and by 

defining COPT in the MATERIALS statement. The COPT parameter is defined in this work 

for GaAs as 7.2×10
-10

 cm
3
/s [60]. The only other direct-gap semiconductor considered in this 

work, InAs, makes use of a separate model discussed in Section 3.13. 
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3.8   –   Thermionic Emission 

 Local band bending will tend to occur at isotype heterojunctions due to the different 

material properties of the two semiconductors. This band bending will usually create a 

potential barrier which may partially impede current flow. It is important to note that current 

may still flow due to thermionic emission over the barrier or by thermionic field emission 

through the barrier as diagramed in Fig. 3. It has been found that the standard theory does not 

properly describe thermionic emission at isotype heterojunctions thus separate expressions 

must be utilized [39]. There are several alternate theories modeling the phenomena of 

thermionic emission [39-42]; the expressions used by ATLAS for the electron and hole 

currents, respectively, due to thermionic emission are [41-42]: 

  ( )( )kTE
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/
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where δ is a parameter that includes the effect of thermionic field emission and vn and vp are 

the electron and hole thermal velocities, respectively. ∆EC and ∆EV are the maximum energy 

differences in the conduction band and valence band, respectively, due to the heterojunction. 

The subscripts on the carrier concentrations denote the two sides of the heterojunction. 

 

(a)

(b)

 

Fig. 3.  Conduction band diagram at an abrupt heterojunction showing a) standard thermionic emission and 

b) thermionic field emission.  
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 Usually the thermal velocities follow from the equipartition theorem [10, 30]; 

however, in this thermionic emission model, the thermal velocities are determined by 
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are the electron and hole effective Richardson’s constants, respectively. The minimum 

valued Richardson’s constants between region 1 and region 2 are used in the determination of 

the thermal velocities [42]. 

 Finally, if the barrier width is thin enough, then field emission may supplement the 

thermionic emission, i.e. thermionic field emission is said to occur. This is included in the 

thermionic emission model by the δ-parameter: 
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which follows from the Wentzel-Kramers-Brillouin approximation. The parameters in (25) 

are schematically described in Fig. 4 and Em = max{EC(0
+
), EC(W)}. A similar expression 

exists for holes by making use of the valence band and hole effective mass instead of the 

conduction band and electron effective mass. 

 Use of this thermionic emission model determines the current densities at 

heterojunction interfaces for subsequent use in the continuity equations. This model is 

invoked in the ATLAS deck in the INTERFACE statement by specifying THERMIONIC S.S 

for standard thermionic emission or THERMIONIC TUNNEL S.S for thermionic field 

emission. 
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Fig. 4.  Conduction band diagram of an isotype heterojunction. The parameters schematically define those used 

in (25). ∆EC is the same as that used in (21). (After [30].) 

 

3.9   –   Luminous Module 

 The operation of a solar cell is heavily dependant on the light that impinges onto it as 

well as the subsequent propagation of electromagnetic radiation throughout the device. How 

much light is able to transmit through each layer of the device and the propensity for that 

light to be absorbed and induce carrier photogeneration all play important roles in a solar 

cell’s ultimate performance. Therefore it is paramount to device modeling that the 

electrodynamics of the incident light as well as its interaction with the semiconductor are 

properly accounted for. 

 The Luminous module supplements the ATLAS framework by including ray tracing 

and photoabsorption algorithms [30]. After inputting any variant of a monochromatic or 

spectral light source, Luminous determines the intensity of the optical field throughout the 

device and determines photogeneration rates for use in the carrier continuity equations. 

Luminous is invoked by specifying a light source in the BEAM statement. This light source is 

monochromatic; its wavelength is determined by setting a value to the LAMBDA parameter 

of the SOLVE statement. The light source can be made spectral in the BEAM statement by 

including a data file specified by the POWER.FILE parameter. In this chapter the AM0 solar 
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spectrum (Fig. 5), as discussed in Section 1.3, is utilized to obtain device I-V characteristics. 

A spectrally varying monochromatic source is used to obtain a short-circuit current spectral 

response. 
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Fig. 5.  The ASTM standard air mass zero (AM0) solar spectrum [16]; this is used as the spectral illumination 

source in the device simulations. 

 

3.10   –   Fresnel Coefficients 

 An electrodynamic treatment of the reflection and transmission of light at an interface 

gives rise to the Fresnel equations [43]: 
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where r and t are the amplitude coefficients of the reflected and transmitted light, 

respectively; i.e. these values multiplied by the amplitude of the incident optical field gives 

the amplitudes of the reflected and transmitted optical fields. The subscripts s and p indicate 

the polarization. θi is the angle of incidence and θt is the angle of transmission, both with 

respect to the surface normal (Fig. 6) and related by Snell’s law 

  ttii nn θθ sinsin = .   (30) 

In (30), ni is the index of refraction in the medium of the incident wave and nt is the index of 

refraction in the medium of the transmitted wave; both of which may either be real or 

complex quantities. 

 

θi

θt

θi

θt

 

Fig. 6.  Diagram of a light ray incident on a surface and refracting at the interface; this defines the angles used 

in (26)-(30). 

 

 The square of each of (26)-(29) gives the corresponding intensity coefficients; i.e. the 

square of these values multiplied by the intensity of the incident light wave gives the 

intensities of the reflected and transmitted light waves. For the special case of normal 

incidence θi = θt and the reflection and transmission intensity coefficients, respectively, are 
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 The Fresnel model is automatically solved by ATLAS at every material interface 

whenever light propagation is included [30]. It gives a physics-based modification to the light 

beam as it traverses through the device structure and impinges upon an interface. The model 

does not take into account the wave nature of electromagnetic radiation as the material 

dimensions approach the wavelength of light culminating in the phenomenon of interference. 

 

3.11   –   Photogeneration 

 When photons with sufficient energy impinge onto a semiconductor, those photons 

may excite valence electrons up to the conduction band thus photogenerating an electron-

hole pair. This is the basis on which a solar cell operates upon. The photogeneration rate is 

modeled in ATLAS as [30]: 

  y
ph e
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P
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where η0 is the internal quantum efficiency of an absorbed photon, λ is the optical 

wavelength, α is the absorption coefficient, y is the relative distance for the ray in question, 

and P is a coefficient that tracks the cumulative effects of transmission, reflection, and loss 

throughout the device. The absorption coefficient, sometimes called the attenuation 

coefficient, is given as [30, 43]: 
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In (34) k is the extinction coefficient; it is the imaginary part of the complex index of 

refraction. 

 The model for photogeneration is solved by ATLAS at every node located in a 

semiconductor material; it is automatically invoked whenever a light source is included. The 

value determined at each node for (33) then becomes an input for the carrier continuity 

equations. 

 As light propagates through a material, a loss in the optical intensity will usually be 

incurred. This is given by a simple exponential law [43]: 

  yeIyI α−= )0()(    (35) 

where I is the optical intensity. Application of this law is explicitly seen in (33). ATLAS also 

accounts for (35) by the P factor which modifies the optical ray as it traverses the device 

through any type of material. 

 

3.12   –   Quantum Effects 

 Additional models are necessary to account for the quantum effects that occur in 

nanostructures. InAs quantum wells will be considered as an approximation to InAs quantum 

dots. In this work, the epitaxial growth direction is taken to be along the y-axis; this is the 

axis along which quantum confinement is considered. 

 The defining feature of a quantum well is the realization of a two-dimensional 

electron gas (2DEG); this is in contrast to the three-dimensional electron gas of a bulk 

material. Due to quantum confinement of the 2DEG, the carrier statistics theory represented 

by (8)-(13) breaks down and must be superseded by a two-dimensional model. 
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 In two-dimensions the density of states is constant at each energy eigenvalue Ei and is 

given as [44]: 
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where Θ is the Heaviside step function. Substituting into (7) yields the two-dimensional 

electron concentration 
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To account for charge localization throughout the width of the quantum well, and assuming 

uniformity in the growth plane, (37) is modified to include the corresponding 

eigenfunctions Ψi [30]: 
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Similarly for the two-dimensional hole concentration: 
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 Evaluation of (38) and (39) requires knowledge of the conduction band and valence 

band eigenstates; this obtained by solving the effective mass Schrödinger equation for 

electrons 
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Justification for these equations is given in Appendix I. Note that there will actually be two 

sets of solutions for (41); one for heavy holes and one for light holes, with the appropriate 

use of effective mass. Although not considered in this work, it is mentioned for completeness 

that multiple sets of solutions will occur for (40) when considering indirect band 

semiconductors to account for the directionality of the effective mass. 

 

3.13   –   Spontaneous Emission 

 The radiative recombination model described by (20) only accounts for the reduction 

of electron-hole pairs for use in the continuity equations. In reality, the direct relaxation of an 

electron to the valence band culminates in the emission of light. Analysis of this feature can 

be very enlightening; this is even more so for quantum wells since quantization of energy 

levels will lead to an emission spectrum differing from the bulk scenario. 

 Following from Fermi’s golden rule, an A·p analysis leads to a spectrally-dependent 

spontaneous emission rate [45]: 
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where E refers to the emitted photon energy, m0 is the free electron mass, and the electron 

relaxation occurs between the i
th

 conduction band eigenlevel and the j
th

 valence band 

eigenlevel. The optical density of modes is [46]: 
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where n is the index of refraction and c is the speed of light. The reduced mass density of 

states is given as [30]: 
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where t is the quantum well thickness and the reduced mass is 
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The Fermi-Dirac distribution in the quantum well for electrons in the conduction band is 
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and similarly for holes, 
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where Eij = Ei - Ej is the transition energy from the i
th

 conduction band eigenlevel to the j
th

 

valence band eigenlevel. 

 In (42), the momentum matrix element M(E) is used instead of the electric dipole 

moment matrix element as a result of the A·p derivation [45]. This quantity is calculated 

as [30, 47]: 

  jiAMEM ΨΨ= 0)(    (48) 

where A is an anisotropy factor and M0 is the bulk momentum matrix element. Models exist 

to calculate M0 [30, 45]; however, empirically tabulated values exist for the common direct-

gap semiconductors [36]. The anisotropy factors are dependent on the type of holes being 

considered as well as the polarization of the electromagnetic field; for heavy holes subject to 

TE polarization: 



 62 

  







<

>
+

=

ij

ij

ij

EE

EE
EE

A

2/3
4

/33

,   (49) 

for light holes and TE polarization: 
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for heavy holes and TM polarization: 
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and for light holes and TM polarization: 
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 Note that (42) remains valid for bulk material; however, M(E) is substituted by M0, 

the energy eigenvalues are replaced by the conduction and valence band edges, Eij becomes 

the bandgap Eg, and (44) is replaced by 
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3.14   –   Band-to-Band Tunneling 

 In the presence of sufficiently large electric fields or sufficiently thin potential 

barriers, band to band tunneling may occur. This effect is modeled in ATLAS as an additive 

generation term to the carrier continuity equations as [30, 69, 70]: 

  EB
eAEG

/−= γ    (54) 
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where E is the magnitude of the local electric field and A, B, and γ are adjustable fitting 

parameters. For direct-gap semiconductors, A, B, and γ are usually given as 

9.6615×10
18

 V
-1

-s
-1

-cm
-2

, 30 MV/cm, and 2, respectively [66]. For indirect-gap 

semiconductors, these parameters are usually given as 4×10
14

 V
-1

-s
-1

-cm
-2

, 19 MV/cm, and 

2.5, respectively [69-70].  

 It should be noted that in ATLAS this model is outside the framework of and separate 

from the quantum effects module. It is invoked in the MODELS statement by specifying 

BBT.STD for direct-gap transitions and BBT.KL for indirect-gap transitions. 

 

3.15   –   Material Parameters 

 To accurately simulate a semiconductor device, the correct fundamental material 

parameters must be provided for use in the models previously discussed. ATLAS contains a 

vast library of the most recently accepted values of many of these parameters [30]; these 

have been compared to the literature for correctness [10, 36, 48, 49]. The majority of the 

fundamental parameters are listed in Table I for AlAs, GaAs, Ge, In0.48Ga0.52P, and InAs; 

these semiconductors will be the focus for the remainder of this chapter. 

 

Table I 

Material Parameters for Selected Semiconductors 

 εr 
Eg 

(eV) 

χ 

(eV) 

NC 

(cm
-3

) 

NV 

(cm
-3

) 

ni 

(cm
-3

) 
mn

*
/m0 mp

*
/m0 

An
*
 

(A/cm
2
-K

2
) 

Ap
*
 

(A/cm
2
-K

2
) 

AlAs 10.3 2.16 3.50 1.50×10
19

 1.81×10
19

 11.6 0.710 0.804 85.3 96.6 

GaAs 13.2 1.42 4.07 4.35×10
17

 1.29×10
19

 2.67×10
6
 0.0670 0.642 6.29 105 

Ge 16.0 0.663 4.00 1.05×10
19

 3.95×10
18

 1.73×10
13

 0.559 0.292 67.4 35.0 

InGaP 11.8 1.89 4.08 9.26×10
17

 8.87×10
18

 391 0.111 0.500 13.3 60.1 

InAs 14.6 0.350 4.67 9.33×10
16

 8.12×10
18

 1.00×10
15

 0.0240 0.471 2.88 56.6 
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 The effective masses listed in Table I are the density of states effective masses; these 

are the necessary values as discussed for the foregoing models. In addition to the above 

effective masses, it is will also be necessary to obtain the specific valence band effective 

masses of InAs for use in quantum effects modeling. These values are 0.57m0 for heavy 

holes and 0.025m0 for light holes [30, 36, 49]. 

 In addition to the parameters summarized above, the mobilities of electrons and holes 

must also properly be accounted for to accurately determine carrier transport. These values 

are dependent on dopant concentration and are therefore very important since dopant 

concentration tends to vary throughout a device. Mobility values are summarized in 

Fig. 7 [50-52]. The data for InGaP represents an In:Ga ratio of 1:1. 
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Fig. 7.  Concentration-dependent mobilities for a) electrons and b) holes in selected semiconductors. 

 

 To make proper use of the optics-based models, the material-specific dispersions of 

the refractive index and extinction coefficient must be provided; these are summarized in 

Fig. 8 [30, 53-55]. These parameters are very prevalent within the optical models especially 
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in dictating light transmission and reflection at an interface and in determining the photo-

generation of charge carriers. The data for InGaP represents an In:Ga ratio of 1:1. 
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Fig. 8.  Optical parameter dispersions for selected semiconductors: a) index of refraction and b) coefficient of 

extinction. 

 

3.16   –   General Simulation Methodology 

 As previously discussed, the ATLAS simulation methodology is a form of finite 

element analysis. A mesh defines the device structure and the physical models are solved at 

each nodal point throughout that mesh. The mesh must be spatially fine enough to adequately 

resolve the device structure and accurately determine the physics thereof; however, an 

extremely large number of nodes will greatly slow down computation time and there is also a 

maximum limit programmed into ATLAS. 

 The issue of mesh resolution poses a problem for solar cell modeling. ATLAS was 

originally designed for traditional microelectronics such as the transistors used in integrated 

circuits. In such devices, the dimensions under consideration tend to all be of the same order 

of magnitude; this is ideal for finite element meshing. In solar cells, however, the top wafer 
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area may be several square-centimeters, if not larger, while the actual device may only 

extend several microns deep into the wafer. Add to this the fact that the feature size of the 

contact grid may also be on the order of micron width but have centimeter lateral extent. 

Also, even though the actual device depth may only be several microns, these devices are 

usually fabricated on the top portion of a substrate with a thickness of hundreds of microns. 

Clearly, the varying dimensions in the common solar cell are not well-suited for finite 

element meshing. Due to this, careful thought must be put into the simulation methodology. 

 The device design considered in this work is a rectangular solar cell with regularly 

spaced contact grid fingers; these grid fingers run parallel to two edges of the solar cell. This 

device is modeled in ATLAS as a two-dimensional structure consisting of only a portion of 

the width of an actual device as shown in Fig. 9.a. Note that this model contains the cross-

section of one full finger of the contact grid. The substrate is also truncated so that its 

thickness is on the order of that of the other layers (this is allowed because photogeneration is 

negligible in this region; a lumped series resistance may be added to the model to account of 

transport through the substrate if necessary). 

 The structure as shown in Fig. 9.a is what is actually simulated in ATLAS. Results 

that are geometry dependent (e.g. current) are normalized to 1 µm of depth into the page. 

Such results may then be multiplied by appropriate scaling factors so that they are 

comparable to the results from actual devices. Multiplying by the actual length of the grid 

finger scales the results as if they were for a three-dimensional structure as in Fig. 9.b. 

Finally, multiplying by the number of similar regions that make up an actual device scales 

the results so that they are comparable to experiment; Fig. 9 summarizes this methodology. 
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Using this method allows for the simulation of a solar cell without running into the problems 

arising due to the varying dimensions within an actual device.  
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Fig. 9. The solar cell is modeled as a) a two-dimensional structure using only one grid finger. These 

approximations keep computation time to a minimum. Final results that are dependent on geometry, e.g. 

current, are modified by a scaling factor to account for b) the three-dimensional nature of an actual device. An 

additional factor is included to c) account for the desired number of grid fingers to make the model comparable 

to an actual device. The coordinate axes are those referenced by ATLAS. 

 

3.17   –   Unoptimized Single-Junction Solar Cell 

 Although the solar cell device structure diagramed in Fig. 9 represents the main focus 

of this work, it is instructional and worthwhile to introduce photovoltaic device simulation 

with a relatively unoptimized and simple device structure. The device discussed in this 

section is a simple GaAs p-i-n solar cell as shown in Fig. 10. The i-layer is actually not 

necessary for this specific device but is included because it will become a necessity in the 

discussion to follow. The emitter is doped at 10
18

 acceptors/cm
3
 and the base at 10

17
 

donors/cm
3
. The analyzed structure is 400 µm wide with an 8 µm contact centered atop. The 

nominal layer thicknesses are 500 nm, 100 nm, and 2,000 nm for the emitter, i-layer, and 

base, respectively. This structure is scaled, post-processing, to simulate a 25 grid finger, 

1x1 cm
2
 solar cell. 
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Fig. 10.  Simulated GaAs p-i-n solar cell. 

 

The main device characterization methods for a solar cell are to analyze its current-

voltage characteristics under illumination and also to determine the cell’s spectral response to 

pertinent wavelengths. These tests are therefore simulated for the defined dive structure; 

important device metrics are also extracted from the I-V curve. Simulated results for the 

open-circuit voltage Voc, short-circuit current Isc, maximum power Pm, fill factor FF, and 

device efficiency η are summarized in Table II. The significant digits of the reported values 

are taken so as to be comparable to experimental data [4, 71]. This data indicates a relatively 

low efficiency due primarily to the small amounts of current being driven through the device. 

The poor performance indicated here is due to the fact that the device structure is 

unoptimized. 

 

Table II 

Device Metrics for the Unoptimized p-i-n Device 

Voc Isc Pm FF η 

0.93 V 9.4mA 7.5 mW 86 % 5.5 % 

 

 Although the optimization of the device structure in Fig. 10 is not of great importance 

for this work, it is exemplary to perform further analysis for the sake of illustrating the power 

of device simulation. Current-voltage characteristics are shown in Figs. 11.a-c for cases of 

varying the individual layer thicknesses from the nominal values. In all three cases, there is 



 69 

negligible variance in the open-circuit voltage. Increasing the thicknesses of either the i-layer 

(Fig. 11.b) or base (Fig. 11.c) leads to very small enhancements in device performance. This 

indicates that the increased thicknesses allow for the increased photogeneration of charge 

carriers; however, the increase is minute. It can be inferred from this observation that the vast 

majority of light incident on to the cell is absorbed since the increased base or i-layer 

thicknesses do not lead to large increases in device performance. 

 In sharp contrast to the behavior of varying the thicknesses of the base and i-layer, it 

is rather a decrease in the emitter thickness that leads to increased device performance. Also 

in contrast to the previous discussion, the increased device performance due to the decreased 

emitter thickness is much more prominent as indicated by Fig. 11.a. From this data, it is clear 

that the smaller emitter thicknesses allow for a larger amount of current to be extracted from 

the device. The interpretation of these results is that the effect of the thinner emitter is to 

mask the effect of surface recombination. As the emitter becomes thinner, more photons are 

able to reach the base, where surface recombination is not an issue, thus leading to the 

increased currents. More explicitly, after the photogeneration of an electron-hole pair in the 

n-type base, the electron will preferentially stay in the base and propagate towards the 

cathode while the hole will be swept by the contact potential to the p-type emitter and 

towards the anode. For either the electron or the hole, surface recombination becomes a non-

issue since they are majority carriers in their current respective locations. The dramatic 

increase in device performance due to the emitter variation is compared to the small increase 

observed for base variation in Fig. 11.d. 
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Fig. 11.  Current-voltage characteristics for deviations from the nominal thicknesses: a) varying emitter 

thickness, b) varying i-layer thickness, and c) varying base thickness. d) Simulated efficiencies comparing the 

effect of varying the base and emitter thicknesses from nominal values. 

 

 Also analyzed was the spectral response under the conditions of varied layer 

thicknesses; this data is plotted as quantum efficiency as a function of wavelength in Fig. 12. 

The results back up the previously drawn conclusions as well as serve to elucidate on the 

wavelength-dependent performance of the device. This data shows that the slight increase in 

device performance due to the increased i-layer or base thicknesses is due to increased 

absorption at longer wavelengths (Figs. 12.b-c). In distinct contrast to this, the decreased 

emitter thickness leads to an increased quantum efficiency throughout the super-bandgap part 
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of the spectrum (Fig. 12.a). In addition, the peak photogeneration shifts from near the 

bandgap wavelength to shorter wavelengths. These observations indicate that, for decreased 

emitter thicknesses, a larger amount of photons throughout the entire spectrum are able to 

reach the base as previously hypothesized; this includes higher energy photons which are 

often readily absorbed by thicker emitters. 
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Fig. 12.  Spectral responses for varied a) emitter thicknesses, b) i-layer thicknesses, and c) base thicknesses. 

These results give spectral information lacking in the I-V characteristics and further elaborate on conclusions 

drawn from those characteristics. 

 

3.18   –   Optimized Single-Junction Solar Cell 

 The device structure shown in Fig. 13 represents a p-i-n solar cell optimized with 

respect to the device considered in the foregoing section. The device is optimized by the 

inclusion of two In0.48Ga0.52P layers; one acting as a back surface field (BSF) and the other as 

the top window (sometimes called a front surface field). These two layers, being of larger 

bandgap than GaAs and appropriately doped, provide for large electric fields at the two ends 

of the active portion of the device. These electric fields reflect and accelerate minority 

carriers towards the junction thus reducing surface recombination effects and increasing solar 

efficiency. Conversely, one may speak of the potential that arises due to the electric field. 

From this point of view, the window and BSF layers introduce large potential barriers for 
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minority carriers thus reflecting them towards the junction. This is clearly seen in the 

simulated band diagram in Fig. 14. Note that the larger bandgap of InGaP with respect to 

GaAs allows for the most pertinent portion of the incident light spectrum to reach the GaAs 

layers unattenuated. 
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Fig. 13.  Simulated GaAs p-i-n solar cell; the device is optimized with respect to that of Fig. 10. 

 

 The emitter, i-layer, and base retain the nominal thicknesses and dopings from the 

foregoing discussion of the unoptimized device. The InGaP layers are both 50 nm thick with 

a 2×10
18

 cm
-3

 acceptor concentration in the window and 1×10
18

 cm
-3

 donor concentration in 

the BSF layer. The contact layer is highly doped at an acceptor concentration of 1×10
19

 cm
-3

 

and with a thickness of 10 nm. This layer is etched away to exist only under the metal finger; 

this allows incident light to proceeded to the remainder of the device unattenuated. The 

purpose of the i-layer is to eventually host a nanostructure array as discussed in Section 3.19. 
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Fig. 14.  Simulated band diagram of the optimized p-i-n GaAs cell at thermodynamic equilibrium. The window 

and BSF layers introduce large potential barriers for minority carriers at either end of the device; this causes 

photogenerated minority carriers to preferentially traverse towards the junction. The energy axis is taken with 

reference to the Fermi level. 

 

 In simulating the optimized p-i-n solar cell, it was found that the results were very 

dependent on the optical parameters of the materials considered. This was especially noted in 

comparing the complex index of refraction of InGaP from a commercial database [55] and 

from another device simulator [59] as shown in Fig. 15. Although the data from these two 

sources follow similar trends, they are fundamentally different. Additionally, a slight 

modification to the commercial data was made at long wavelengths in order to create a more 

accurate model. The physical effect of this modification, as seen in Fig. 15, is to reduce the 

long wavelength reflection at the InGaP surface but to increase the reflection at the InGaP-

GaAs interface. The modification of such a fundamental material property is justified 

because InGaP is not a simple chemical compound but rather a more complex alloyed 

material. The variable ordering of Ga and In atoms will very well have an effect on the bulk 
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properties of the alloyed material. Long range ordering may even lead to InP-GaP 

superlattices [62-65]. 
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Fig. 15.  Index of refraction and coefficient of extinction of In0.5Ga0.5P from two sources: sold curve [55], dark 

dashed curve [59]. The lighter dashed curve shows a modification made to the data from [55] in order to more 

accurately model the device. 

 

 Simulated results comparing the use of the two sets of InGaP optical parameters are 

summarized in Table III and Fig. 16 along with experimental data. Following from Fig. 16.a, 

between all three examples, the open-circuit voltages Voc and the fill factors FF are 

approximately equal. The only discrepancy that arises is in the short circuit currents Isc (i.e. 

although some deviation also arises in the maximum powers Pm and in the efficiencies η, 

these quantities may be derived from the three foregoing metrics). Additional information, 

directly relating to Isc can be obtained from the spectral response in Fig. 16.b. This clearly 

indicates that the use of the database values [55] for InGaP leads to device simulations that 

accurately model the spectrally-dependent nature of the solar cell considered here. It has also 

been acknowledged that the three short-circuit currents listed in Table III are all within the 
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experimental error observed in testing solar cells at two different test sites. Additional error 

may be present in experimentally simulating the AM0 solar spectrum by a Xe arc lamp 

whereas modeling results make use of standard accepted data for the actual spectrum. Details 

of the fabrication of the experimental device are found in Ref. [71]. 

 

Table III 

Device Metrics of the Optimized p-i-n Cell 

Ref. for 

InGaP n, k 
Voc Isc Pm FF η 

[55] (Modified) 1.04 V 23.7 mA 20.3 mW 82.4 % 14.9 % 

[59] (As Is) 1.04 V 24.5 mA 21.4 mW 83.9 % 15.7 % 

N/A (Experiment) 1.04 V 24.7 mA 21.6 mW 83.7 % 15.8 % 
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Fig. 16.  Electrical results of the optimized p-i-n solar cell. In both plots, the solid curves use the InGaP optical 

data from [59] while the dashed curves use the modified data from [55]; the individual data points represent 

experimentally obtained data. 

 

 Part of the allure of using a device simulator is to look at physical properties not 

easily investigated under experimental conditions. As an example of this, Fig. 17.a shows a 

surface plot of the photogeneration rate throughout the device under AM0 illumination and at 

zero bias. The plot indicates that the majority of photogeneration does, in fact, occur within 
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the first micron of depth. To better see the photogeneration throughout the device, Fig. 17.b 

plots this data as a function of depth on a logarithmic scale. Discontinuities in this plot occur 

at GaAs-InGaP interfaces. Additionally, the substantial decrease in photogeneration at the 

BSF layer indicates that the vast majority of photons of 656 nm wavelength and shorter have 

already been absorbed by that point. In Fig. 17.a, it appears that no photogeneration occurs 

down the center of the device; this is because the metal finger screens most of the light that 

impinges onto that area (cf. Fig. 13). 
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Fig. 17.  Carrier photogeneration rate plotted a) as a surface plot throughout the device structure and b) 

logarithmically as a function of device depth. The device layer shown in the surface plot, from top to bottom, 

are the window, emitter, i-layer, base, and BSF layer. No photogeneration occurs down the center of the device 

because impingent light is blocked by the metal finger. Discontinuities occur in the semi-log plot at GaAs-

InGaP interfaces. 

 

 Device simulations also allow for the analysis of device performance under non-ideal 

or degraded conditions. This allows one to determine possible process tolerances and also 

enables the testing of hypotheses regarding possible degradation mechanisms. The effect on 

the I-V characteristics of a non-negligible contact resistance is shown in Fig. 18.a. In these 

simulations, a non-zero contact resistance was placed on each electrode to show the 

importance of good metallization. This data indicates that the negative effects of a non-zero 



 77 

contact resistance, namely an increased solar cell series resistance, become non-negligible 

when this value is on the order of 10
-2

 Ω–cm
2
. Increased contact resistances above that value 

lead to even more dramatic degradations in device performance. Device metrics extracted 

form the data in Fig. 18.a are listed in Table IV. 

 Device degradation due to increased carrier recombination is shown in Fig. 18.b. In 

these simulations, carrier recombination is increased by decreasing the lifetimes used in the 

Shockley-Read-Hall recombination model. In contrast to Fig. 18.a where the degradation 

originally occurs at the knee of the I-V curve, the increased carrier recombinations in 

Fig. 18.b immediately begin to degrade both Isc and Voc; this is indicative of a shunting 

mechanism. Pertinent device metrics are listed in Table V. The numerical values in 

Tables IV-V are taken out to several significant digits for fine comparison and are within the 

limits of computer precision. 
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Fig. 18.  Current-voltage characteristics showing device degradation due to a) non-negligible contact resistance 

and b) increased carrier recombination. Increases in contact resistance, placed on both electrodes, leads to an 

increase in the series resistance of the solar cell thus affecting the overall shape of the I-V characteristics. 

Increased carrier recombination, modeled as a decrease in Shockley-Read-Hall carrier lifetime, immediately hits 

both Isc and Voc indicating a shutting mechanism. 
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Table IV 

Device Metrics for Different Contact Resistances 

ρc Voc Isc Pm FF η 

0 1.043 V 23.65 mA 20.32 mW 82.38 % 14.87 % 

0.001 Ω-cm
2 

1.043 V 23.69 mA 19.98 mW 80.86 % 14.63 % 

0.01 Ω-cm
2
 1.043 V 23.69 mA 19.74 mW 79.89 % 14.45 % 

0.1 Ω-cm
2
 1.043 V 23.69 mA 17.27 mW 69.89 % 12.64 % 

0.5 Ω-cm
2
 1.043 V 23.67 mA 8.935 mW 36.19 % 6.541 % 

0.9 Ω-cm
2
 1.043 V 20.25 mA 5.390 mW 25.52 % 3.956 % 

 

 

Table V 

Device Metrics for Different Carrier Lifetimes 

τn, τp Voc Isc Pm FF η 

50 ns 1.043 V 23.65 mA 20.32 mW 82.38 % 14.87 % 

30 ns 1.037 V 23.64 mA 19.67 mW 80.24 % 14.40 % 

20 ns 1.030 V 23.58 mA 19.43 mW 80.00 % 14.22 % 

10 ns 1.015 V 23.42 mA 18.63 mW 78.37 % 13.64 % 

1 ns 0.9318 V 22.13 mA 15.45 mW 74.92 % 11.31 % 

 

 Finally, as was done in Section 3.16, it is important to check that the device structure 

is, in fact, optimized for device performance. By varying the emitter and base thicknesses, 

simulations showed very little change in device performance. To best show this, variations in 

device efficiency due to varied layer thicknesses is plotted in Fig. 19. In regards to emitter 

thickness, the nominal value is clearly the optimum value; however, it is noted that the 

degraded performance due to either an increased or decreased thickness occurs over a very 

small range. With regards to the base, the device efficiency is much less sensitive to 

thickness variation in this layer. A small increase in the base thickness will actually lead to 

an increase in efficiency; however, the performance gain is small and negligible. From 

Fig. 19, the nominal device design can be considered to be optimized. Comparing this to the 

device design in Section 3.16, it is evident that the InGaP window and BSF play a large role 

in improving the performance of a solar cell. 
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Fig. 19.  Simulated efficiencies comparing the effect of varying the base and emitter thicknesses from nominal 

values. This indicates that the nominal design is already an optimized device. 

 

3.19   –   Dual-Junction Solar Cell 

 Although the purpose of studying the p-i-n solar cell in the previous discussions was 

for the eventual incorporation of nanostructures in the i-layer, it is beneficial to first evaluate 

the ability to model a dual-junction solar cell. As discussed in Section 2.3, the dual-junction 

device, or more generally a multi-junction device, increases solar efficiency by enabling 

additional and more efficient absorption throughout the solar spectrum. In regards to 

nanostructured photovoltaics, the incorporation of nanostructures in the multi-junction device 

may also allow for an effective bandgap tuning as discussed in Section 2.3. Therefore the 

ability to model such devices would prove useful in the analysis of both present and future 

solar cell designs. 

 The device considered in this section is the dual-junction, InGaP-GaAs, tandem solar 

cell as diagramed in Fig. 20. This design places an InGaP solar cell atop the GaAs solar cell 

studied in Section 3.17. From top to bottom, the InGaP design is a 100 nm GaAs contact 

layer doped at 1×10
19

 acceptors/cm
3
, 30 nm AlAs window doped at 1×10

18
 acceptors/cm

3
, 
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100 nm InGaP emitter doped at 1×10
18

 acceptors/cm
3
, 1 µm InGaP base doped at 1×10

17
 

donors/cm
3
, and a 100 nm InGaP BSF doped at 1×10

18
 donors/cm

3
. In between the InGaP 

and GaAs solar cells is an n-on-p GaAs tunnel junction; 5×10
19

 cm
-3 

donor concentration and 

2×10
19

 cm
-3 

acceptor concentration. This layer allows for electrons in the top cell to 

recombine with holes in the bottom cell by means of internal field emission thus driving the 

current; this is easily seen in the device’s band diagram (Fig. 21). Similar to the design of the 

bottom cell, the AlAs window and InGaP BSF of the top cell serve to reflect and accelerate 

minority carriers towards the top cell junction. 
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Fig. 20.  Device structure of the InGaP-GaAs tandem solar cell considered in this work. The InGaP top cell 

more efficiently collects short-wavelength light while remaining transparent to the light more efficiently 

collected by the GaAs bottom cell. 
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Fig. 21.  Band diagram of the InGaP-GaAs solar cell drawn in Fig. 22. This clearly shows how the window and 

BSF layers act as potential barriers that reflect minority carriers towards their respective junctions. Also 

observable from this diagram, at ~1.35 µm, is the tunneling region that drives current between the two sub-cells. 

 

 A challenge simulating the device as shown in Fig. 20 arises due to the presence of 

the tunnel junction. As previously reported [67-68], the ATLAS framework is not well suited 

to handle tunneling problems. Even though such a model exists, as described in Section 3.13, 

the model is semi-empirical at best and fails to extend upon that quantum effects simulator 

described in Section 3.11. In practice, this model has been found to be unstable and tends to 

cause the device solutions to diverge.  

 Due to the issue of a poorly implemented tunneling model, a convergent simulation 

was unable to be obtained using the pertinent material parameters described in Section 3.14. 

However, a simulation did converge by modifying the material parameters of the tunnel 

junction layer as summarized in Table VI. Optical properties were kept the same; however, 

the donor and acceptor concentrations were both modified to 1×10
19

 cm
-3

. These 

modifications do not imply actual physical conditions but rather are imposed simply to obtain 

a convergent solution. The purpose of the tunnel junction is simply to drive current between 
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the two sub-cells. In an equivalent circuit, this can be replaced by a perfect conductor. 

Therefore the modifications made in order to converge onto a solution are justified. 

 

Table VI 

Modified Material Parameters in the Tunnel Junction 

 εr 
Eg 

(eV) 

χ 

(eV) 

NC 

(cm
-3

) 

NV 

(cm
-3

) 

ni 

(cm
-3

) 
mn

*
/m0 mp

*
/m0 

GaAs 13.2 1.42 4.07 4.35×10
17

 1.29×10
19

 2.67×10
6
 0.0670 0.642 

Modified 14.6 0.350 4.67 9.33×10
16

 8.12×10
18

 1.00×10
15

 0.0240 0.471 

 

 Another possible method to get around the problems with the tunneling model is to 

replace the tunnel junction with a perfect conductor. From an equivalent circuit perspective, 

this would allow current to flow freely between the two sub-cells. This is, however, 

unfeasible in ATLAS. The ATLAS framework requires that all conductor regions be defined 

as electrodes; therefore placing a conductor instead of the tunnel junction would not lead to 

valid results. 

 The results of simulating the tandem cell with the discussed modifications are shown 

in Fig. 22 along with experimentally obtained results. Extracted device metrics are listed in 

Table VII. The data indicates that the modifications made in the tunnel junction yield results 

that serve as an excellent approximation for actual devices. 

 

Table VII 

Device Metrics of the Simulated InGaP-GaAs Solar Cell 

Voc Isc Pm FF η 

2.474 V 10.65 mA 22.87 mW 86.80 % 16.74 % 
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Fig. 22.  Simulated I-V characteristic of the InGaP-GaAs tandem cell. The inset shows two separate 

experimental results of the same type of device thus verifying the simulation method. 

 

 Due to the instability of the tunneling model, it proved to be difficult to run 

optimization tests on the device structure as in the previous discussions. However, a different 

method, in which the tunneling model may be disregarded, does prove useful. Based upon 

the analyses in Sections 3.16 and 3.17, it is clear that variations in the thicknesses of the 

device layers, as long as they are not overly dramatic, have a much larger effect on Isc than on 

Voc. Therefore, to a very good approximation, it is sufficient to gauge relative variations in 

device efficiency by relative variations in Isc. One such way to do this, while not having to 

worry about the troublesome tunneling model, is to look at the spectral response of each sub-

cell in the tandem device. The general scheme for doing this is diagramed in Fig. 23. The 

GaAs tunnel junction is replaced by a void in the form of a “pseudomaterial” of the same 

thickness but with the refractive index and extinction coefficient of GaAs. The optical 

parameters are kept to properly account for attenuation of the light ray as it traverses through 

the space and for reflections at the interfaces. The device in Fig. 23 is then spectrally 

illuminated with different currents individually extracted from each sub-cell; this leads to the 
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spectral response in Fig. 24 for the nominal design. Note that interference effects are not 

observed since they are not accounted for in the physical models. 
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Fig. 23.  Simulation scheme for analyzing the spectral response due to either sub-cell. A void replaces the GaAs 

tunnel junction; however, light traverses through the void as if GaAs were present. Currents are then 

individually extracted from each sub-cell while illuminated. 

 

 In comparing Fig. 24 to Fig.16.b, it is clear that the tandem cell is better suited to 

perform photoconversion throughout a wider range of wavelengths. This is by virtue of each 

sub-cell being situated such that they are able to more effectively convert a certain section of 

the solar spectrum. The photogeneration throughout the device is displayed in Fig. 25.a for a 

550 nm light source. This indicates that, at this wavelength, the vast majority of 

photogeneration occurs due to the InGaP cell; this corresponds with Fig. 24. Similarly, at 
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800 nm, as shown in Fig. 25.b, InGaP is transparent to the incident light thus allowing the 

GaAs cell to be the primary current source. 

 

0

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8 1

Wavelength (µm)

Q
u

a
n

tu
m

 E
ff

ic
ie

n
cy

InGaP Cell GaAs Cell

 

Fig. 24.  Spectral response of the InGaP-GaAs tandem cell showing the contributions of each sub-cell. 
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Fig. 25.  Photogeneration rate throughout the device for a) a 550 nm and b) 800 nm light source. For the 550 nm 

illumination, the photogeneration occurs primarily in the InGaP sub-cell; no photogeneration occurs in that cell 

at 800 nm. 
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 As stated, the spectral response in Fig. 24, being free from the troubles presented by 

the tunneling model, becomes the primary analysis tool in this section. In fact, the short-

circuit current density Jsc can be determined from the spectral response as the overlap integral 

between the wavelength-dependent quantum efficiency QE(λ) and the spectral photon flux 

from the sun dΦ/dλ [10-11]: 

  ∫
Φ

= λ
λ

λ d
d

d
QEqJ sc )(    (55) 

where dΦ/dλ can be determined from the ASTM solar spectrum (Fig. 5). For the 1 cm × 1 cm 

cell characterized by Fig. 24, this gives a short-circuit current of 14.67 mA due to the InGaP 

cell and 9.615 mA due to the GaAs cell. Therefore, due to the physical constraint of current-

matching, the GaAs sub-cell is the current limiting cell under this design. 

 The effects on the spectral response due to variations in the InGaP base and emitter 

thicknesses are plotted in Fig. 26. This data indicates that an increase in either layer thickness 

will lead to a slight improvement in the InGaP spectral response. This improvement, 

however, is not helpful for the tandem cell because the overall current will be limited by the 

current generated by the GaAs cell. It is important to note though, as best seen in Fig. 26.b, 

that a decrease in either the InGaP emitter or base thicknesses, although decreasing the near-

bandgap response of the InGaP cell, will lead to a slight increase in the spectral response of 

the GaAs cell in the same spectral region. This alludes to the possibility of degrading the 

InGaP current response in favor for boosting that for the current-limited GaAs cell. 

 Although the isolated GaAs device was determined to already be optimized in 

Section 3.17, it is worth it to take a look at the GaAs cell as a component of the tandem cell 

since the absorption primarily occurs in a somewhat narrower portion of the spectrum when 

compared to Section 3.17. The effect on the spectral response due to variations in the GaAs 
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sub-cell base and emitter are plotted in Fig. 27. From Fig. 27.a, it can be seen that an increase 

in the emitter thickness to 750 nm would give an increase in device performance, albeit very 

small. The base already seems to be at an optimum thickness (Fig. 27.b). 
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Fig. 26.  Effects on the spectral response due to varying the a) emitter thickness and b) base thickness of the 

InGaP sub-cell. The insets show the full spectral response. 
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Fig. 27.  Effects on the spectral response due to varying the a) emitter thickness and b) base thickness of the 

GaAs sub-cell. The insets show the full spectral response of the GaAs sub-cell; the InGaP sub-cell is not 

included because it is not dependent on the properties of the layers below it. 
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 Based on the foregoing analysis from this section, it is apparent that a boost in the 

spectral response of the GaAs cell may be advantageous to the overall device performance 

albeit at the expense of a portion of the InGaP spectral response. Modifying the thickness of 

the InGaP emitter to 50 nm and the GaAs emitter to 750 nm, the InGaP base thickness was 

varied to find an optimum design. As seen in Fig. 28, the thinner InGaP layers allow for more 

light to reach the GaAs cell; this culminates in less photogeneration in the InGaP cell but 

more in the GaAs cell. Table VIII lists the short circuit currents extracted from Fig. 28 by use 

of (55). The first entry in Table VIII refers to the nominal device. From this data, it would 

seem that the optimal InGaP base thickness is between 100-250 nm. Such a design would 

allow for the largest possible current drive with the constraint of a current-limiting sub-cell. 
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Fig. 28.  Effects on the spectral response due to varying the InGaP base thickness compared to the nominal 

device design. The modified designs use a 50 nm InGaP emitter and 750 nm GaAs emitter. 
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Table VIII 

Short-Circuit Currents Extracted from Fig. 28 

Sub-Cell Isc InGaP 

Emitter 

Thickness 

InGaP 

Base 

Thickness 
InGaP Cell GaAs Cell 

100 nm 1 µm 14.57 mA 9.615 mA 

50 nm 500 nm 13.91 mA 10.17 mA 

50 nm 250 nm 12.63 mA 10.94 mA 

50 nm 100 nm 10.71 mA 11.98 mA 

 
  

3.20   –   Nanostructured Device 

 Returning to the p-i-n cell of Section 3.17, the proposed scheme for increasing device 

efficiency is by the incorporation of a nanostructured array in the i-layer. Such nanostructures 

may come in the form of planar quantum wells or three-dimensional quantum dots. A 

nanostructured array of a material with smaller bandgap than the host material (in this case 

GaAs) would allow for additional absorption of and photogeneration by light of sub-host-

bandgap energy. This has two possible outcomes: 1) this would lead to an effective bandgap 

tuning as is necessary to increase the efficiency of the multi-junction solar cell (Section 2.3) 

and 2) the nanostructured array may lead to the realization of the intermediate band solar cell 

as discussed in Section 2.4. For these reasons, it is beneficial to evaluate the abilities and 

limitations of simulating such a device in ATLAS. 

 The current research effort at the Nanopower Research Laboratories is in the 

fabrication of InAs quantum dot GaAs solar cells [4, 27, 71]. In this device, an InAs quantum 

dot array is placed in the i-layer of a GaAs p-i-n cell. Unfortunately the ability to simulate 

quantum dots is not present in ATLAS; however, quantum wells may be simulated. 

Therefore InAs quantum wells were placed in the i-layer of the device presented in Section 

3.17 as an approximation for the quantum dots in the experimental device. As an 

approximation, this is justifiable since the main dimension of interest is the growth axis 
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which is also the direction of current flow. Since the quantum well model solves for 

quantization in this direction, use of the model gives an excellent approximation to the 

experimental situation. 

 An array of 6 nm InAs quantum wells with 7 nm barrier spacing was placed 

symmetrically in the center of the i-layer of the p-i-n device. The band diagram of this region 

in plotted in Fig. 29.a with a close-up of two of the wells plotted in Fig. 29.b. Also displayed 

in Fig. 29 are the energy eigenvalues that arise due to quantization in the wells; accordingly, 

one electron eigenstate is realized in the conduction band while in the valence band there are 

five heavy hole eigenstates and one light hole eigenstate. The corresponding eigenfunctions 

are plotted in Fig. 30. 
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Fig. 29.  Band diagrams of InAs quantum wells in the i-layer of the GaAs p-i-n device. The following 

eigenstates are realized: one for conduction electrons, one for light holes, and five for heavy holes. The energy 

axis is referenced to the Fermi level. 
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Fig. 30.  Eigenfunctions superimposed over the band diagram corresponding to a) the single conduction 

electron state, b) the single light hole state, and c-g) each of the five heavy hole states. 
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 It is interesting to compare the eigenvalue results of Fig. 29, which were obtained by 

solving the Schrödinger equation in each quantum well separately, with energy dispersions 

obtained by solving a Kronig-Penny like model (discussed in further detail in Appendix II). 

By solving for an energy dispersion, it is assumed that a mini-band forms due to the presence 

of the quantum wells. The electron energy dispersions for the 6 nm/7 nm well/barrier scheme 

(as in Fig. 29) is plotted in Fig. 31; the energy axis is with respect to the bottom of the bulk 

InAs conduction band. This indicates that there are, in fact, two bound states in the 

conduction band compared to the single bound state realized in Fig. 29. It is noted, however, 

that the second band in Fig. 31 is energetically located very close to the bottom of the GaAs 

conduction band at ~0.59 eV. Therefore, it is expected that this second band is effectively a 

quasi-continuum with the GaAs scattering states; this brings the results diagramed by 

Figs. 29 and 31 in very close agreement. 
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Fig. 31.  Electron energy dispersion of the InAs superlattice formed by 6 nm InAs wells and 7 nm GaAs 

barriers. The solid bands indicate orbitals that fall within the GaAs bandgap; dashed bands indicate orbitals that 

overlap with the GaAs continuum. The energy axis is with respect to the bottom of the bulk InAs conduction 

band. 
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 Regarding the realization of the intermediate band solar cell, it is important that there 

is a sufficient amount of coupling between the eigenstates of adjacent quantum structures. 

This coupling gives rise to a superlattice with its own energy dispersion [10, 17]. Therefore, 

the proper formation of a superlattice gives rise to an intermediate band within the bandgap 

of the host semiconductor as described in Section 2.4. A metric to determine possible 

formation of an intermediate band is by analyzing the overlap of wavefunctions between 

adjacent wells. Substantial overlap of carrier wavefunctions implies that a superlattice mini-

band may form [10] thus acting as the desired intermediate band. 

 The electron wavefunction for 6 nm InAs wells is plotted in Fig. 32 while varying the 

barrier thickness from 10 nm to 2 nm. For the 10 nm and 9 nm trials, no wavefunction 

overlap is numerically visible; i.e. no overlap is seen down to ~10
-6

 cm
-1/2

. At 8 nm and 

below, however, a substantial increase (at least eight orders of magnitude) in the amount of 

wavefunction overlap is observed. This indicates that for 6 nm InAs quantum confined 

structures in a GaAs host, a barrier of 8 nm or thinner is necessary for the formation of an 

intermediate band. 

 One of the standard methods for characterizing quantum dots is by analyzing their 

luminescent emissions. Based on the spontaneous emission model, Fig. 33 shows the 

electroluminescence of the p-i-n device due to varying thicknesses of the InAs wells. It is 

interesting to note that the literature indicates an electroluminescence of ~1050 nm for 6 nm 

quantum dots [4, 71]. The discrepancy arises, in part, due to the high strain inherent in 

quantum dots; however, this can be partially accounted for by the effective mass. 
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Fig. 32.  Electron wavefunctions for 6 nm InAs quantum wells with a GaAs barrier thickness of a) 10 nm, 

b) 9 nm, c) 8 nm, d) 6 nm, e) 4 nm, and f) 2 nm. These plots imply that a barrier thickness of 8 nm or less is 

necessary for the formation of a superlattice mini-band. 
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Fig. 33.  Simulated electroluminescent spectra for several different InAs well thicknesses. 
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Chapter 4 

Conclusion 

 

 In this work, modeling solutions necessary for the analysis of next generation 

photovoltaic devices have been presented. Specifically, the type of devices that are most 

relatable to this work will be made of inorganic semiconductors and will incorporate the use 

of nanostructures such as quantum wells and quantum dots. The detailed balance approach to 

solar photovoltaic efficiency, originated by Shockley and Queisser, has been invoked in this 

work to analyze and present the physical limits inherent to these novel devices. For a 

practical approach, the use of a commercially available device simulator was evaluated for 

the possible analyses of novel solar cell schemes. 

 The discussion of the detailed balance approach began with an overview of the 

original theory as formulated by Shockley and Queisser. The theory is thermodynamic in 

nature and has been amended throughout the years to conform to proper accounts of the non-

equilibrium thermodynamics of the electron-photon interaction. This led to a generalization 

of the Planck law for blackbody radiation to also include the phenomena of luminescent 

radiation. This generalization along with the fundamental ideas put forth by Shockley and 

Queisser were invoked in this work to simulate the limiting performance of photovoltaic 

devices. 

 Using the detailed balance model, several examples were created to show the 

performance limits of the most basic solar cells and how such cells may be improved by 

innovative designs. A pedagogical analysis of the singe-junction solar cell was first presented 

to demonstrate the fundamental performance limits attributable to this simple design. This 
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culminated in showing the vast importance of materials selection as the detailed balance 

efficiency limit was shown to be strongly dependent on the semiconductor bandgap. The 

dependence of the detailed balance limit on solar concentration was also explored showing a 

logarithmic relation. A feature of this work, not seen in most treatments of the detailed 

balance analysis, is the use of the AM0, AM1.5G, and AM1.5D solar spectra, in addition to 

the standard use of the blackbody spectrum. Thus, the detailed balance limit was analyzed as 

it differs under different illuminating spectra. 

 The detailed balance model was then used in the analysis of a multi-junction solar 

cell. A method was derived in this work to numerically find the detailed balance limit of any 

given multi-junction cell. As a specific example, the triple-junction solar cell composed of 

InGaP, GaAs, and Ge sub-cells was introduced. The analysis showed that the efficiency limit 

could be significantly increased by simply reducing the bandgap of the GaAs sub-cell. It is, 

of course, not feasible to just switch the GaAs for a lower bandgap material due to the 

constraint of lattice matching; however, an effective reduction of bandgap may be possible 

by the introduction of a nanostructured array into the GaAs sub-cell. Therefore, this analysis 

serves as motivation for the implementation of such a design scheme. 

 The detailed balance model was finally used in the analysis of the intermediate band 

solar cell. Such a device can only be feasibly realized by means of nanostructures; 

specifically, quantum dots. As with the single-junction case, the analysis for the intermediate 

band solar cell was performed using the blackbody, AM0, AM1.5G, and AM1.5D solar 

spectra. This analysis showed how the detailed balance limit varies with the placement and 

location of the intermediate band within the bulk semiconductor bandgap. This information 
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serves as an indicator of the beneficial design space available in the implementation of an 

intermediate band device. 

 The detailed balance model has been successfully implemented in the analyses of the 

single-junction, triple-junction, and intermediate band solar cells. In regards to the triple-

junction and intermediate band devices, the algorithm developed for this work is accurate 

albeit slow. Future work extending that which is presented here may focus on making the 

algorithms more efficient in their calculations. Such work would allow for rapid analysis of 

novel devices with the detailed balance method. Note that extra care must be paid attention to 

when dealing with Bose-Einstein integrals; it is not uncommon to witness shifts of several 

orders of magnitude in these integrals for milli-electron volt steps of the chemical potential. 

It may also be of interest to apply the detailed balance methodology to other novel solar cell 

design schemes such as hot carrier cells, multiple-carrier-generation devices, thermo-

photovoltaics, etc. The effects of solar cell temperature dependence should also be 

investigated since it is sure to significantly increase under increased solar concentration. 

 The commercial device modeling package, Silvaco ATLAS, was utilized in the 

simulation of photovoltaic devices. This work evaluated the ability to use this software 

package for such simulations and relevant examples have been presented. The examples in 

this work aimed to simulate devices that are currently being fabricated at the Nanopower 

Research Laboratories. Optimum design of these devices has therefore been confirmed or 

recommended. Discussion of the device simulations began with an introduction and overview 

of the specific models that were invoked and the physics that they aim to describe. A 

discussion of the parameters of pertinent semiconductors was also presented. 
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 The simulation of a GaAs single-junction solar cell was performed since it represents 

the baseline device that is being fabricated at the Nanopower Research Laboratories. For 

exemplary and pedagogical purposes, the device was presented before and after the inclusion 

of performance enhancing layers; namely, InGaP font and back surface fields. These layers 

have been shown to provide a significant enhancement to the device. The current solar cell 

design has also been shown to be currently optimized. 

 Building upon the single-junction device, the simulation of a dual-junction device 

was also performed. The design of this device added an InGaP sub-cell atop of the GaAs cell 

and was based off of devices fabricated at the Nanopower Research Laboratories. 

Unfortunately, the tunneling model provided does not seem able to properly handle the 

tunneling current necessary for the operation of the dual-junction device. This is in 

confirmation of previously reported work. In lieu of the weak tunneling model, a scheme has 

been presented to use the spectral response of the solar cell as the main simulation method. 

This has proved to be successful in this work and recommendations have been presented on 

the optimization of the InGaP-GaAs dual-junction cell. 

 Finally, a nanostructured solar cell was simulated by building upon the single-

junction model. As an approximation to the InAs quantum dot devices currently being 

investigated, a quantum well model was invoked; i.e. InAs quantum wells were placed in the 

space charge region of the GaAs device model. This approach was justified and useful results 

were obtained and presented. Specifically, the properties of the eigenstates that arise due to 

quantum confinement were obtained giving rise to recommendations on the design of the 

nanostructured array. Unfortunately, a quantum mechanical model of photoabsorption does 

not exist in the software package. Such a model, rigorously derived from Fermi’s golden 
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rule, would be necessary for the proper simulation of a nanostructured solar cell. Fortunately, 

a quantum mechanical model of spontaneous emission is present in the software package; 

thus electroluminescence arising from the quantum confined layers was presented as another 

possible analysis tool. 

 The Silvaco ATLAS device simulator has been shown to be able to simulate basic 

solar cell performance. From this, confirmation of and recommendations for device 

optimization have been presented. Challenges arise in the simulation of more advanced 

design schemes; this includes the ability to properly simulate tunneling effects, quantum 

mechanical photoabsorption, three-dimensional quantum effects (i.e. the zero-dimensional 

electron gas), etc. The ability to model such phenomena are necessary for the analyses of 

novel devices. In this regard, the software package utilized in this work is limited. Future 

work in device modeling and simulation may look into the tools being developed by the 

Computational Fluid Dynamics Research Corporation since their software is developed for 

the purpose of nano-device modeling. With that said, it may still be beneficial and 

worthwhile to reinvestigate certain aspects of the ATLAS simulations to see how far the 

software can be pushed. Such possible avenues to investigate include device simulation 

under increased solar concentration and the associated increased in device temperature. 

 This work has presented the use of computer-assisted numerical modeling for the 

simulation and analysis of novel solar cell design concepts. Such an approach is beneficial 

for two primary reasons. First, it is important to know the theoretical limits towards which 

one is working towards. This helps to support motivation for the experimental work to be 

undertaken and gives an accurate gauge of how the work is progressing. Second, realistic, 

physical device simulations enable for the analysis and possible optimization of experimental 
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devices without the need for physically making said devices. This allows for the crucial 

saving of resources by performing only the experiments and fabrications that are truly 

necessary. It is hopeful that this work may serve as a guide to the next series of modeling and 

simulation efforts that will aid in the development of novel photovoltaic devices and that the 

analyses performed herein will aid in their experimental realization. 
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Appendix I 

Justification of the Effective Mass Schrödinger Equation 

 

 In Section 3.11, the effective mass Schrödinger equation was introduced: 

  Ψ=Ψ+Ψ∇⋅∇− EV
m

1

2

2
h

.  (1) 

where ħ is the reduced Planck’s constant, m is the effective mass, V is the potential energy, 

and E is the total energy. This differs from the usual form of the time-independent 

Schrödinger equation 

  Ψ=Ψ+Ψ∇− EV
m

2
2

2

h
  (2) 

by breaking apart the Laplacian into two separate differential operators and by the 

differentiation of the effective mass. The justification for doing so is that the kinetic energy 

term in (2) is no longer Hermitian when the problem at hand presents a spatially-varying 

effective mass; the kinetic energy term in (2) is therefore not physically plausible. The form 

of the kinetic energy in (1), however, is Hermitian and is widely employed in the analysis of 

semiconductor heterostructures where a spatially-variant effective mass is common [72-74]. 

 Consider the form of the kinetic energy given in (2): 

  2
2

2
∇−=

m
T

h
.  (3) 

This is the usual form of the kinetic energy and will now be shown to be non-Hermitian in 

the presence of a spatially-dependant effective mass.  In general, the reciprocal effective 

mass is tensorial; so (3) in tensor notation is 
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where m
-1

ij is the reciprocal effective mass tensor and Einstein summation is invoked. Then 

for arbitrary states  | f >  and  | g >  the following inner product may be calculated: 
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Integrating by parts and over all space: 
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where the boundary term has been excluded since it vanishes. A second integration yields 

  

( )

gTf

g
m

f
mT

gdxfm
x

Tgf iij

i

≠

=

∂

∂
−= ∫

− *1

2

22

2

h

  (7) 

QED. 

 Now consider the form of the kinetic energy given by (1): 

  ∇⋅∇−=
m
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,  (8) 

or in tensor notation: 
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This form of the kinetic energy operator will now be shown to be Hermitian. For arbitrary 

states  | f >  and  | g >  the following inner product may be calculated: 
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Integrating the second term, by parts, over all space and excluding the vanishing boundary 

term yields 
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Integrating once more by parts: 
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QED. 
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Appendix II 

Bandstructure Calculations with a Kronig-Penny–Like Model 

 

 In Section 3.19 the energy eigenvalues that were obtained by the ATLAS device 

simulator were compared to the energy dispersion obtained by solving the Schrödinger 

equation for a simple periodic potential. The following elaborates on the method specific to 

this work for performing such calculations of the energy dispersion. 

 The celebrated Kronig-Penney model [75] presents a solution to the Schrödinger 

equation  

  Ψ=Ψ+Ψ∇− EV
m

2
2

2

h
  (1) 

for a simple periodic potential as diagramed in Fig. 1. The textbook solutions [13, 44] to this 

model take the form of two transcendental equations: 
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where K, Q, and β are local wavevectors such that 
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and k is the wavevector of the Bloch function such that the energy dispersion is 
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Fig. 1.  Kronig-Penney square well potential that gives rise to energy bands in the solution of the Schrödinger 

equation. The potential is periodic to ±∞. 

 

 Therefore, an energy bandstructure E(k) may be constructed from (4) where k is 

determined by (2) and the dimensions of the potential given in Fig. 1. This potential is clearly 

an oversimplification for the situation of a real crystal and therefore would not be useful in 

such an analysis. The case of a nanostructured superlattice, however, can be approximated by 

this relatively simple potential. This has previously been presented in Section 1.4. Therefore, 

the Kronig-Penney model becomes useful to approximate a superlattice and lends itself to 

such analysis as is necessary for the consideration of minibands or intermediate bands. 

 The problem with the textbook solutions of the Kronig-Penny model is that the mass 

in (1) is inherently assumed to be constant. In the analysis of a real nanostructured system, 

the effective masses of charge carriers will generally differ whether one is concerned with the 

nanostructured well region or the quasi-bulk barrier region. As discussed in Appendix I, (1) 

becomes invalid in the presence of a spatially-varying effective mass and is thus superseded 

by the effective mass wave equation 

  Ψ=Ψ+Ψ∇⋅∇− EV
m

*

2 1

2

h
  (5) 

where the effective mass has the value m
*
 = mw when then wavefunction is analyzed in a 

well region (V = 0) and the value m
*
 = mb when then wavefunction is analyzed in a barrier 
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region (V = V0). Therefore, with the modified form of the wave equation in place, it is not 

unreasonable to suspect that the textbook solutions of (2) do not properly address the case of 

a real nanostructured superlattice and that a different solution must be derived. 

 First consider the case that E < V0. For the potential specified in Fig. 1, the solution 

of (5) takes the form 
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where the wavevectors are modified from (3) as 
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At x = 0, the standard quantum mechanical boundary condition, continuity of Ψ, is invoked 

yielding 

  DCBA +=+ .  (8) 

The other usual boundary condition, continuity of dΨ/dx, is, however, invalid. In using the 

effective mass equation, the boundary condition requires the continuity of (m
*
)
-1

dΨ/dx [72-

73]. This yields 
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The wavefunction in the region a < x < a+b is given by (6) and the Bloch theorem: 

  )()0()( baikexbbaxa +<<−Ψ=+<<Ψ    (10) 

Then by invoking the proper quantum mechanical boundary conditions at x = a: 
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Equations (8), (9), (11), and (12) represent four equations containing four unknowns (A, B, C, 

and D). These equations may be written homogeneously; then a theorem from linear algebra 

states that for a non-trivial solution to occur, the determinant of the coefficients of A, B, C, 

and D must vanish; very tedious algebra yields 
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 For the case E > V0, the wavefunction in (6) for 0 < x < a is used in conjunction with 

the new wavefunction for –b < x < 0, 

  0<<−+=Ψ − xbDeCe xixi ββ    (14) 

where the wavevector β is modified from (3) as 

  
2

02 )(2

h

VEmb −
=β .   (15) 

The wavefunction from (14) then satisfies the Bloch theorem and may be substituted into 

(10). Similar to the foregoing example, application of the appropriate quantum mechanical 

boundary conditions yield 

  DCBA +=+    (16) 
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Then by the same argument as the foregoing example, the transcendental solution is 
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 Therefore, the energy bandstructure E(k) of a nanostructured superlattice that is 

approximated by the potential in Fig. 1 may be calculated from (4). The wavevector k is 

determined by the transcendental equations (13) and (20); these are eigenvalue solutions of 

the effective mass Schrödinger equation (5) for the Kronig-Penny periodic potential. The 

appropriate local wavevectors are given by (7) and (15). It is important to note that the 

solutions of the effective mass equation, (13) and (20), reduce to the solutions of the standard 

wave equation, (2), in the limit that mw = mb. 

 In Section 13.9, an InAs nanostructured system within a GaAs host was discussed. In 

that system, the InAs confined regions were considered to be 6 nm thick while the maximum 

desired GaAs barrier thickness was determined to be 7 nm. The analysis in that section also 

resulted in an energy difference of ~0.59 eV between the conduction bands of GaAs and 

InAs. In reference to Fig. 1, the constants are thus a = 6 nm, b = 7 nm, and V0 = 0.59 eV. The 

electron effective masses presented in Section 3.14 for InAs and GaAs are mw = 0.67m0 and 

mb = 0.024m0, respectively, where m0 is the rest mass of the electron. These parameters yield 

the conduction band energy dispersion in Fig. 2.a. Solid bands represent states that have 

E < V0 and are solutions from (13); dashed bands are quasi-continuum states as these orbitals 

overlap with the GaAs continuum. 

 The analysis in Section 13.9 based on ATLAS device simulations showed that, for the 

nanostructured system discussed above, there was exactly one conduction band eigenstate. 

The location of the energy eigenlevel for that state is at approximately the same level as the 

first band in the energy dispersion of Fig. 2.a. It is also noted that the top of the second band 

of the energy dispersion is energetically located extremely close to the GaAs continuum. 
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Therefore it is foreseeable that the existence of a second eigenstate is just cut-off and would 

exist for a slightly larger conduction band difference between GaAs and InAs. 
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Fig. 2.  Conduction band energy dispersion of an InAs/GaAs (confined/barrier) superlattice with InAs thickness 

of 6 nm and GaAs thickness of a) 7 nm and b) 1 nm. Solid bands represent states that are within the GaAs 

bandgap while dashed bands represent states that overlap with the GaAs continuum. The energy ordinate is 

taken with respect to the bottom of the bulk InAs conduction band. 

 

 It is instructive to decrease the barrier thickness of the discussed system to b = 1 nm. 

The modified energy dispersion is thus plotted in Fig. 2.b. As is expected, the energy bands 

widen due to the increased coupling of wavefunctions. Additionally, the second band now 

overlaps with the GaAs continuum essentially making it a quasi-continuum band. Since the 

first energy band has already been identified as the band of interest, it is worthwhile to 

analyze it further.  

 Ideally, the bottommost band in the superlattice energy dispersions will play the role 

of the miniband that is formed as a result of the creation of a nanostructure superlattice. In 

the case of the device described in Section 2.4, this can be the intermediate band of the 
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intermediate band solar cell. In that analysis, the placement of the intermediate band was 

shown to be of the utmost importance. Not considered, however, is the fact than a real 

intermediate band will posses some finite width. This may prove important in future analyses 

since an operational requirement of the intermediate band solar cell is the states in the 

intermediate band are only half-filled with electron [76]. Therefore, knowledge of the width 

of the intermediate band becomes important. Following from Fig. 2, several iterations of 

energy dispersion solutions yields a trend showing the variation of miniband width with 

barrier width as seen in Fig. 3. This information exemplifies the increased coupling that 

accompanies decreased barriers and may be useful in direct tuning of the miniband. 
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Fig. 3.  The decrease in barrier width gives rise to an asymptotic increase in the width of the miniband. This is 

due to the larger degree of wavefunction overlap that occurs for decreasing barrier widths. 
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Appendix III 

Bandstructure Calculations (MATLAB Code) 

 

 The following code consists of two m-files (kp0.m and kp1.m) that allow for the 

generation of superlattice bandstructures based of off a Kronig-Penney like model as 

described in Appendix II. The first file (kp0.m) generates a plot of the right hand sides of 

(II.13) and (II.20) vs. energy. This is a visual tool as the allowed energy bands will exist only 

when the right hand side of the Kronig-Penney solution is between -1 and 1. From this visual 

aid, a range of energies may be determined and serve as the input to kp1.m. 

 The second file (kp1.m) plots the energy dispersion. This file takes several energy 

ranges as an input and plots the allowed bands in those energy ranges. These energies are 

determined from the visual aid plotted by kp0.m. 
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%%% kp0.m 

%%% Run this code to find the allowed energy ranges and transfer them to 
%%% kp1.m. 

  
hb = 6.626068e-34 / (2*pi);   % Reduced Planck's Const 
kB = 1.3806503e-23;   % Boltzmann's Const 
q = 1.60217646e-19;   % Elementary charge 

  
mw = 0.024 * 9.10938e-31;   % Well effective mass 
mb = 0.067 * 9.10938e-31;   % Barrier effective mass 
U = 0.59*q;   % Band offset 
a = 6e-9;   % Well width 
b = 7e-9;   % Barrier width 

  
z = 1000;   %No. of data points to consider 
E = linspace(0.001*U,3*U,z);   % Energy range to consider 

  
K = sqrt(2*mw*E)/hb;   % Well wavevector 
Q = sqrt(2*mb*(U-E))/hb;   % Barrier wavevector (E < U) 
B = sqrt(2*mb*(E-U))/hb;   % Barrier wavevector (E > U) 

  
for I = 1:length(E); 
    if E(I) <= U;            % Kronig-Penny RHS (E < U) 
        rhsA(I) = ((Q(I)^2 * mw^2 - K(I)^2 * mb^2) / (2*Q(I)*K(I)*mw*mb)) 

.* sinh(Q(I)*b) .* sin(K(I)*a) + cosh(Q(I)*b) .* cos(K(I)*a); 
        rhsB(I) = NaN; 
    else 
        rhsA(I) = NaN;       % Kronig-Penny RHS (E > U) 
        rhsB(I) = -((B(I)^2 * mw^2 + K(I)^2 * mb^2) / (2*B(I)*K(I)*mw*mb)) 

.* sin(B(I)*b) .* sin(K(I)*a) + cos(B(I)*b) .* cos(K(I)*a); 
    end 
end 

  
E = E / q; 

  
plot(E,rhsA,'.-', E,rhsB,'.-') 
xlabel('Energy (eV)'); ylabel('Kronig-Penny RHS') 
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%%% kp1.m 
%%% Run this code following kp0.m in order to accurately plot the bands. 

  
hb = 6.626068e-34 / (2*pi);   % Reduced Planck's Const 
kB = 1.3806503e-23;   % Boltzmann's Const 
q = 1.60217646e-19;   % Elementary charge 

  
mw = 0.024 * 9.10938e-31;   % Well effective mass 
mb = 0.067 * 9.10938e-31;   % Barrier effective mass 
U = 0.59*q;   % Band offset 
a = 6e-9;   % Well width 
b = 7e-9;   % Barrier width 

  
%%%% Energy range to consider; refine as per kp0.m results. %%%% 
%%%% Any number of distinct energy ranges may be entered. 
E1 = linspace(0.126*q,0.129*q,1000); 
E2 = linspace(0.5*q,0.6*q,1000); 
E3 = linspace(0.68*q,.8*q,1000); 
E4 = linspace(0.9*q,1.2*q,1000); 

  
E = [E1 E2 E3 E4]; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
K = sqrt(2*mw*E)/hb;   % Well wavevector 
Q = sqrt(2*mb*(U-E))/hb;   % Barrier wavevector (E < U) 
B = sqrt(2*mb*(E-U))/hb;   % Barrier wavevector (E > U) 

  
for I = 1:length(E); 
    if E(I) <= U;            % Kronig-Penny RHS (E < U) 
        rhsA(I) = ((Q(I)^2 * mw^2 - K(I)^2 * mb^2) / (2*Q(I)*K(I)*mw*mb)) 

.* sinh(Q(I)*b) .* sin(K(I)*a) + cosh(Q(I)*b) .* cos(K(I)*a); 
        rhsB(I) = NaN; 
        if abs(rhsA(I)) > 1; 
            rhsA(I) = NaN; 
        end 
    else 
        rhsA(I) = NaN;       % Kronig-Penny RHS (E > U) 
        rhsB(I) = -((B(I)^2 * mw^2 + K(I)^2 * mb^2) / (2*B(I)*K(I)*mw*mb)) 

.* sin(B(I)*b) .* sin(K(I)*a) + cos(B(I)*b) .* cos(K(I)*a); 
        if abs(rhsB(I)) > 1; 
            rhsB(I) = NaN; 
        end 
    end 
end 

  
% Wavevector 
kA = (a+b)^(-1) * acos(rhsA) * 1e-9;   %E < U 
kB = (a+b)^(-1) * acos(rhsB) * 1e-9;   %E > U 

  
E = E / q; 

  
plot(kA,E,'.-', kB,E,'.-') 
xlabel('Wavevector (nm^-^1)'); ylabel('Energy (eV)') 
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Appendix IV 

Detailed Balance Model for a Single-Junction Solar Cell (MATLAB Code) 

 

 The following code consists of one m-file (db-single.m) that invokes the detailed 

balance model for the analysis of a single-junction solar cell as discussed in Section 2.2. The 

standard inputs are solar and device temperatures, material bandgap, and solar concentration 

factor. The routine is setup to allow for the analysis to use the blackbody, AM0, AM1.5G, or 

AM1.5D solar spectra. Upon running the routine, a current-voltage plot is generated and the 

detailed balance efficiency limit is printed to the command window. 
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% db-single.m 
% Single cell detailed balance calculation using either blackbody or ASTM 
% solar spectrums. 

  
q=1.6021765e-19; h=6.626069e-34; c=299792458; k=1.38065e-23; 

sigma=5.6704e-8; f=2.1646e-5; 
Ts=6000; Tc=300; Eg=1.89; C=1;   % Tunable paramters; Eg in eV, C is solar 

conc. 
spec=1;   % Enter 0 for blackbody, 1 for AM0, 2 for AM1.5G, or 3 for 

AM1.5D 
V=linspace(0,Eg,400); 

  
% This section chooses the correct solar spectrum and calculates Isc 
if spec==0; 
    specFluxS = @(E) 2*pi/(h^3*c^2) * E.^2 ./ (exp(E/(k*Ts)) - 1); 
    Ps=C*f*sigma*Ts^4*1e-1;   % Solar irradiance (mW/cm2) 
    Isc = q * C*f * quadgk(specFluxS, Eg*q, 22*q);   % Short-circuit 

current 
else 
    load spectrumFlux   % ASTM spectral fluxs (photons/m2/s/nm), 

wavelength (nm) 
    if spec==1; 
        specFluxS=AM0; lam=lam0; Ps=C*136.61;   % Solar irradiance 

(mW/cm2) 
    elseif spec==2; 
        specFluxS=AM1p5G; lam=lam1p5; Ps=C*100.04; 
    elseif spec==3; 
        specFluxS=AM1p5D; lam=lam1p5; Ps=C*90.014; 
    else 
        disp('Incorrect option for solar spectrum!') 
        clear AM0 AM1p5G AM1p5D lam0 lam1p5; 
        return 
    end 
    clear AM0 AM1p5G AM1p5D lam0 lam1p5; 
    lamG = h*c / (Eg*q) * 1e9;   % Wavelength (nm) corresponding to Eg 
    maxPt = find(lam<=lamG, 1, 'last');   % Location of lamG in lam vector 
    Isc = q*C * trapz(lam(1:maxPt), specFluxS(1:maxPt));   % Short-circuit 

current 
end 

  
% This section calculates the dark and total currents 
z=1; Id=zeros(1,length(V)); I=Id;   % Preallocations 
while z<length(V); 
    specFluxC = @(E) 2*pi/(h^3*c^2) * E.^2 ./ (exp( (E - (q*V(z)))/(k*Tc) 

) - 1); 
    Id(z) = -q * quadgk(specFluxC, Eg*q, 10*q);   % Dark current 
    I(z) = (Isc+Id(z)) * 1e-1;   % Total current in mA/cm2 
    if I(z)<0; 
        I(z+1:length(I)) = NaN; 
        z=length(V);   % Terminate calculations after reacing Voc 
    else 
        z=z+1; 
    end 
end 

  
eff = 100*max(V.*I)/(Ps);   % Solar efficiency 
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disp('Maximum Efficiency (%):'); disp(eff); 

  
plot(V,I); axis([0 Eg 0 2^nextpow2(I(1))]); 
xlabel('Voltage (V)'); ylabel('Current (mA/cm^2)') 
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Appendix V 

Detailed Balance Model for a Triple-Junction Solar Cell (MATLAB Code) 

 

 The following code consists of two m-files (db-triple.m and currentMatchTriple.m) 

that together invoke the detailed balance model for the analysis of a triple-junction solar cell 

as discussed in Section 2.3. The standard inputs are solar and device temperatures, solar 

concentration factor, and different semiconductor bandgaps corresponding to the different 

junctions in the multi-junction device. In the case of the bandgaps, a range of bandgaps may 

be entered for each junction. This allows for the generation of efficiency contours as 

presented in Section 2.3. The routine is setup to allow for the analysis to use the blackbody, 

AM0, AM1.5G, or AM1.5D solar spectra. Upon running the routine, the detailed balance 

efficiency limit, as well as the values of the current and voltage and that operating point, are 

saved in separate matrices for pertinent post-processing analysis. 

 The file db-triple.m is the master routine and calls upon currentMatchTriple.m as part 

of the routine. User-entered inputs and machine storage of pertinent data occurs in db-

triple.m. This routine also loops through each permutation of bandgaps, each time passing the 

current permutation to currentMatchTriple.m. The currentMatchTriple.m routine numerically 

solves the detailed balance model for the given bandgap permutation. 
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% db-triple.m 
% This routine takes a ranges of each of three bandgaps and determines the 
% maximum efficiency at each location 

  
q=1.6021765e-19; h=6.626069e-34; c=299792458; k=1.38065e-23; 

sigma=5.6704e-8; f=2.1646e-5; 
Ts=6000; Tc=300; C=1;   % Tunable paramters 
spec=0;   % Enter 0 for blackbody, 1 for AM0, 2 for AM1.5G, or 3 for 

AM1.5D 
% Solar spectral flux 
specFluxS = @(E) 2*pi/(h^3*c^2) * E.^2 ./ (exp(E/(k*Ts)) - 1); 

  
% Define ranges for Eg1-top, Eg2-middle, Eg3-bottom 
rangeEg1 = 1.5 : 0.02 : 2; 
rangeEg2 = 0.7 : 0.02 : 1.5; 
rangeEg3 = 0.2 : 0.02 : 0.7; 

  
if spec ~= 0 
    load spectrumFlux 
end 

  
% Fraction of the bandgap to pass to the lower limit of the chemical 
% potential sweeps 
A=0.5; B=0.8;   % Values corresponding to the cases of C=1 and C=1/f 
fr = (A - B) * (log(C) / log(f)) + A; 

  
% Pre-allocatons 
Isc = zeros(length(rangeEg1), length(rangeEg2), length(rangeEg3)); 
Ival1=Isc; Ival2=Isc; Vval1=Isc; Vval2=Isc; effVal1=Isc; effVal2=Isc; 

  
% Loop through bandgap values and determine efficiencies 
for w = 1:length(rangeEg1) 
    Eg1 = rangeEg1(w); 
    for e = 1:length(rangeEg2) 
        Eg2 = rangeEg2(e); 
        for r = 1:length(rangeEg3) 

             
            Eg3 = rangeEg3(r); 

             
            % Find the efficiency values 
            currentMatchTriple 

             
            % Store values corresponding to the minimum delta 
            Ival1(w,e,r) = Imax(1); 
            Vval1(w,e,r) = Vmax(1); 
            effVal1(w,e,r) = eff(1); 

             
            % Store values corresponding to the maximum power at 1% error 
            Ival2(w,e,r) = Imax(2); 
            Vval2(w,e,r) = Vmax(2); 
            effVal2(w,e,r) = eff(2); 

             
            % Store short circuit current 
            Isc(w,e,r) = ILmin; 
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        end 

         
        % Interim save of pertinant values 
        save finalBB Ival1 Ival2 Vval1 Vval2 effVal1 effVal2 Isc rangeEg1 

rangeEg2 rangeEg3 

         
    end 
end 

  
disp('Simulation complete!  =]') 

  
if spec ~= 0 
    clear AM0 AM1p5D AP1p5G lam0 lam1p5 
end 
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% currentMatchTriple.m 

% At a given set of triple junction bandgaps, this routine determines the 
% maximum efficiency of the stack with respect to the constraint of 

current 
% matching 

  
% ... called by db-triple.m 

  
% Find the wavelengths (nm) corresponding to the tandem bandgaps for use 
% with the ASTM spectra 
if spec ~= 0 
    lam1 = h*c / (Eg1*q) * 1e9; 
    lam2 = h*c / (Eg2*q) * 1e9; 
    lam3 = h*c / (Eg3*q) * 1e9; 
end 

  
% Short-circuit currents - 1: Top Cell,  2: Middle Cell,  3: Bottom Cell 
switch spec 
    case 0   % Blackbody 
        IL1 = q*C*f * quadgk(specFluxS,q*Eg1, q*22); 
        IL2 = q*C*f * quadgk(specFluxS,q*Eg2, q*Eg1); 
        IL3 = q*C*f * quadgk(specFluxS,q*Eg3, q*Eg2); 
        Ps = C*f*sigma*Ts^4; 
    case 1   % AM0 
        maxPt1 = find(lam0<=lam1, 1, 'last'); 
        maxPt2 = find(lam0<=lam2, 1, 'last'); 
        maxPt3 = find(lam0<=lam3, 1, 'last'); 
        IL1 = q*C * trapz(lam0(1:maxPt1), AM0(1:maxPt1)); 
        IL2 = q*C * trapz(lam0(maxPt1:maxPt2), AM0(maxPt1:maxPt2)); 
        IL3 = q*C * trapz(lam0(maxPt2:maxPt3), AM0(maxPt2:maxPt3)); 
        Ps = C*1366.1; 
    case 2   % AM1.5G 
        maxPt1 = find(lam1p5<=lam1, 1, 'last'); 
        maxPt2 = find(lam1p5<=lam2, 1, 'last'); 
        maxPt3 = find(lam1p5<=lam3, 1, 'last'); 
        IL1 = q*C * trapz(lam1p5(1:maxPt1), AM1p5G(1:maxPt1)); 
        IL2 = q*C * trapz(lam1p5(maxPt1:maxPt2), AM1p5G(maxPt1:maxPt2)); 
        IL3 = q*C * trapz(lam1p5(maxPt2:maxPt3), AM1p5G(maxPt2:maxPt3)); 
        Ps = C*1000.4; 
    case 3   % AM1.5D 
        maxPt1 = find(lam1p5<=lam1, 1, 'last'); 
        maxPt2 = find(lam1p5<=lam2, 1, 'last'); 
        maxPt3 = find(lam1p5<=lam3, 1, 'last'); 
        IL1 = q*C * trapz(lam1p5(1:maxPt1), AM1p5D(1:maxPt1)); 
        IL2 = q*C * trapz(lam1p5(maxPt1:maxPt2), AM1p5D(maxPt1:maxPt2)); 
        IL3 = q*C * trapz(lam1p5(maxPt2:maxPt3), AM1p5D(maxPt2:maxPt3)); 
        Ps = C*900.14; 
    otherwise 
        disp('Invalid entry for the solar spectrum!!!') 
        return 
end 

  
% Short-circuit current of full stack 
ILmin = min( [IL1 IL2 IL3] ); 

  
% Values of chemical potentials to sweep through 
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rangeMu1 = q * (fr*Eg1 : 0.001 : Eg1-0.001); 
rangeMu2 = q * (fr*Eg2 : 0.001 : Eg2-0.001); 
rangeMu3 = q * (fr*Eg3 : 0.001 : Eg3-0.001); 

  
% Pre-allocations 
I1 = zeros(1,length(rangeMu1)); 
I2 = zeros(1,length(rangeMu2)); 
I3 = zeros(1,length(rangeMu3)); 
delta = zeros(1, length(rangeMu1)); 
delta(:) = NaN; Im = delta; Vm = delta; 
zz = 0;   % Counter for delta 
tol = 0.99;   % Tollerence for allowed current mismatch 

  
% Main body of the current matching routine 
while tol ~= 0.89 
% Begin by checking bottom cell current 
for z=1:length(rangeMu3) 

     
    mu3 = rangeMu3(z); 
    % Bottom cell photocurrent and derivative 
    specFluxC = @(E) 2*pi/(h^3*c^2) * E.^2 ./ (exp( ((E-mu3) / (k*Tc) ) - 

1)); 
    I3(z) = IL3 - q*quadgk(specFluxC, q*Eg3, q*Eg2); 
    specGrad = @(E) -2*pi/(h^3*c^2) * q/(4*k*Tc) * E.^2 .* (csch( (E-mu3) 

/ (2*k*Tc) )).^2; 
    gradI3 = quadgk(specGrad, q*Eg3, q*Eg2); 

             
    % Only calculate the remaining stack while the bottom cell current is 
    % positive; otherwise, end the loop 
    if I3(z) > 0 
        % For positive bottom cell current, check middle cell current 
        for y=1:length(rangeMu2) 

         
            mu2 = rangeMu2(y); 
            disp('    Eg1       Eg2       Eg3'); disp([Eg1 Eg2 Eg3]) 
            disp('Matching middle and bottom cell photocurrents....') 
            disp('    mu2       mu3'); disp([mu2 mu3]/q) 
            disp('--------------------------------------------------------

-----------') 
            disp(' ') 

         
            % Middle cell photocurrent and derivative 
            specFluxC = @(E) 2*pi/(h^3*c^2) * E.^2 ./ (exp( ((E-mu2) / 

(k*Tc) ) - 1)); 
            I2(y) = IL2 - q*quadgk(specFluxC, q*Eg2, q*Eg1); 
            specGrad = @(E) -2*pi/(h^3*c^2) * q/(4*k*Tc) * E.^2 .* (csch( 

(E-mu2) / (2*k*Tc) )).^2; 
            gradI2 = quadgk(specGrad, q*Eg2, q*Eg1); 

         
            if I2(y) > 0 
                % Calculate top cell photocurrent only if the bottom and 
                % middle cell photocurrents are matched 
                if min( [I2(y) I3(z)] ) / max( [I2(y) I3(z)] ) >= tol 
                    for x=1:length(rangeMu1) 
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                        mu1 = rangeMu1(x); 
                        V = (mu1 + mu2 + mu3)/q; 
                        disp('    Eg1       Eg2       Eg3'); disp([Eg1 Eg2 

Eg3]) 
                        disp('Matching top cell photocurrent to the 

stack....') 
                        disp('    mu1       mu2       mu3'); disp([mu1 mu2 

mu3]/q) 
                        disp('--------------------------------------------

-----------------------') 
                        disp(' ') 

         
                        % Top cell photocurrent and derivative 
                        specFluxC = @(E) 2*pi/(h^3*c^2) * E.^2 ./ (exp( 

((E-mu1) / (k*Tc) ) - 1)); 
                        I1(x) = IL1 - q*quadgk(specFluxC, q*Eg1, q*10); 
                        specGrad = @(E) -2*pi/(h^3*c^2) * q/(4*k*Tc) * 

E.^2 .* (csch( (E-mu1) / (2*k*Tc) )).^2; 
                        gradI1 = quadgk(specGrad, q*Eg1, q*10); 

                 
                        if I1(x) > 0 
                            % Calculate delta only if all photocurrents 

are matched 
                            if min( [I1(x) I2(y)] ) / max( [I1(x) I2(y)] ) 

>= tol 
                                zz = zz + 1; 
                                % Store variables 
                                Im(zz) = max( [I1(x) I2(y) I3(z)] ); 

Vm(zz) = V; 
                                % Lagrange-maximized function 
                                delta(zz) = q*V + Im(zz) * ( 1/gradI1 + 

1/gradI2 + 1/gradI3 ); 
                            end 
                        else 
                            % Return to middle cell calculation once top 
                            % cell current becomes negative 
                            x = length(rangeMu1); 
                        end 
                    end 
                end 
            else 
                % Return to bottom cell calculation once middle cell 
                % current becomes negative 
                y = length(rangeMu2); 
            end         
        end 
    else 
        % End the loop once bottom cell current becomes negative 
        z = length(rangeMu3); 
    end 
end 

  
% Truncate values and check 
delta = delta( ~isnan(delta) ); 
if isempty(delta) 
    tol = tol - 0.01;   % Increase tolerance 
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    if tol == 0.89 
        % Give up calculation at this data point 
        delta = NaN; Im = NaN; Vm = NaN; Pm = NaN; 
    else 
        % Reset values and try again 
        delta = zeros(1, length(rangeMu1)); 
        delta(:) = NaN; Im = delta; Vm = delta; 
        zz = 0;   % Counter for delta 
    end 
else 
    tol = 0.89; 
    Im = Im( ~isnan(Im) ); 
    Vm = Vm( ~isnan(Vm) ); 
    Pm = Vm .* Im; 
end 
end 

  
% Store values  -  [values @ minimum delta , values @ maximum efficiency] 
Vmax = [Vm( abs(delta) == min(abs(delta)) ) Vm(Pm == max(Pm))]; 
if isempty(Vmax) 
    Vmax = [NaN NaN]; Imax = [NaN NaN]; eff = [NaN NaN]; 
else 
    Imax = [Im( abs(delta) == min(abs(delta)) ) Im(Pm == max(Pm))]; 
    eff = Vmax .* Imax / Ps; 
end 
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Appendix VI 

Detailed Balance Model for an Intermediate Band Solar Cell 

(MATLAB Code) 

 

 The following code consists of three m-files (db-ibsc.m, effFindIBSC.m, and 

currentMatchIBSC.m) that together invoke the detailed balance model for the analysis of an 

intermediate band solar cell as discussed in Section 2.4. The standard inputs are solar and 

device temperatures, solar concentration factors, and the bandgaps separating the conduction 

band from the intermediate band and separating the intermediate band from the valence band. 

A range of solar concentrations and of both bandgaps may be entered. The routine loops 

through each value in these ranges allowing for the generation of efficiency contours as 

presented in Section 2.4. The routine is setup to allow for the analysis to use the blackbody, 

AM0, AM1.5G, or AM1.5D solar spectra. Upon running the routine, the detailed balance 

efficiency limits are saved in the effVal matrix for pertinent post-processing analysis. 

 The file db-ibsc.m is the master routine and calls upon effFindIBSC.m as part of the 

routine. User-entered inputs and machine storage of pertinent data occurs in db-ibsc.m. This 

routine also loops through each permutation of bandgaps and solar concentrations, each time 

passing the current permutation to effFindIBSC.m. The solar spectra are automatically chosen 

by db-ibsc.m  

 The effFindIBSC.m routine numerically solves the detailed balance model to 

determine the current due to the bulk response. This file then calls upon the 

currentMatchIBSC.m routine to find the current arising from the intermediate transitions. 

These currents are determined over an iterative voltage sweep until a maximum power is 
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found thus giving the detailed balance efficiency. The currentMatchIBSC.m algorithm 

iteratively determines the current arising from the intermediate transition subject to the 

constraint of current matching discussed in Section 2.4. 
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% db-ibsc.m 

% Thus routine loops effFindIBSC.m through several solar concentrations 

and 
% finds maximum efficiency as a function of the two intermediate bandgaps 

  
load spectrumFlux 
q=1.6021765e-19; h=6.626069e-34; c=299792458; k=1.38065e-23; 

sigma=5.6704e-8; f=2.1646e-5; 

  
% Tunable paramters 
Ts=6000; Tc=300; 
rangeC = [1 10 100 1000 10000 1/f]; 
rangeEci = 1:0.01:2; rangeEiv = 0.50:0.01:0.95; 

  
% Solar spectral flux 
specFluxS = @(E) 2*pi/(h^3*c^2) * E.^2 ./ (exp(E/(k*Ts)) - 1); 

  
% Preallocation for effiencies: Row-Eci, Col-Eiv, Dpt-Conc, 4th-Spectrum 
effVal = zeros(length(rangeEci), length(rangeEiv), length(rangeC), 3); 

  
amCount=0; 
for w = 1:3; 
    switch w 
        case 1   % Blackbody 
            spec=0; 
        case 2   % AM0 
            spec=1; 
        case 3   % AM1.5G for one sun, AM1.5D for the rest 
            if amCount == 0 
                spec=2; amCount=1; 
            else 
                spec=3; 
            end 
    end 

     
    for x = 1:length(rangeC) 
        C = rangeC(x); 
        for y = 1:length(rangeEci) 
            Eci = rangeEci(y); 
            for z = 1:length(rangeEiv) 
                Eiv = rangeEiv(z); 
                Eg = Eci + Eiv; 

         
                effFindIBSC 
                effVal(y,z,x,w) = eff;   % Row-Eci, Col-Eiv, Dpt-C, 4th-

Spec            
            end 
        end 

     
        % Interim save 
        save effFile effVal 
    end 
end 
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% effFindIBSC.m 
% This routine steps currentMatchIBSC.m through several voltages until the 

code 
% converges onto a maximum efficiency for the specified bandgaps. 

  
% Fraction of the bulk bandgap ranging from 0.65 to 0.90 used to determine 
% the initial voltage and chemical potentials 
fr = .25 * ( 13/5 - log(C)/log(f) ); 
% Initial voltage and chemical potentials 
V=fr*Eg; muIV=mean([V-Eci Eiv]); muCI=V-muIV; 

  
% Bulk short-circuit current 
switch spec 
    case 0 
        IcvL = q*C*f * quadgk(specFluxS,q*Eg, q*22); 
    case 1 
        lamCV = h*c / (Eg*q) * 1e9;   % Wavelength (nm) corresponding to 
        maxPtCV = find(lam0<=lamCV, 1, 'last');           % the enrgy gap 
        IcvL = q*C * trapz(lam0(1:maxPtCV), AM0(1:maxPtCV)); 
    case 2 
        lamCV = h*c / (Eg*q) * 1e9;   % Wavelength (nm) corresponding to 
        maxPtCV = find(lam1p5<=lamCV, 1, 'last');         % the enrgy gap 
        IcvL = q*C * trapz(lam1p5(1:maxPtCV), AM1p5G(1:maxPtCV)); 
    case 3 
        lamCV = h*c / (Eg*q) * 1e9;   % Wavelength (nm) corresponding to 
        maxPtCV = find(lam1p5<=lamCV, 1, 'last');         % the enrgy gap 
        IcvL = q*C * trapz(lam1p5(1:maxPtCV), AM1p5D(1:maxPtCV)); 
end 

  
stopSweep=0; eff=0; effOld=0; effCount=0; revDir=0; 
while stopSweep == 0; 
    effCount = effCount + 1; 
    currentMatchIBSC 
    if isnan(eff) 
        return 
    end 

     
    % Determine total current and efficiency for voltage V 
    specFluxC = @(E) 2*pi/(h^3*c^2) * E.^2 ./ (exp( (E - (q*V))/(k*Tc) ) - 

1); 
    Icv = IcvL - q * quadgk(specFluxC,q*Eg, q*10); 
    Itotal = Icv + Ici; 
    switch spec 
        case 0 
            eff = V * Itotal / (C*f*sigma*Ts^4); 
        case 1 
            eff = V * Itotal / (C*1366.1); 
        case 2 
            eff = V * Itotal / (C*1000.4); 
        case 3 
            eff = V * Itotal / (C*900.14); 
    end 

     
    if eff > effOld; 
        if revDir == 0;   % Check to see which direction to sweep voltage 
            Vold = V; 
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            V = V + 0.01; 
        else 
            Vold = V; 
            V = V - 0.01; 
        end 
    elseif eff < effOld; 
        if effCount ~= 2; 
            eff = effOld; 
            V = Vold; 
            stopSweep = 1; 
        else   % This runs only if a maximum is detected in the first run 
            Vold = V; 
            V = Vold - 0.01; 
            revDir = 1;   % Reverse direction of the bias sweep 
        end 
    else 
        stopSweep = 1; 
    end 

  
    disp('Solar Concentration:'); disp(C) 
    disp('Voltage Step:'); disp(effCount) 
    disp('    V         Eff.      Eci       Eiv       mu_ci     mu_iv') 
    disp([V eff Eci Eiv muCI muIV]) 
    disp('    Ici'); disp(Ici) 
    disp('    Iiv'); disp(Iiv) 
    disp('    Icv'); disp(Icv) 
    disp('    Itotal'); disp(Itotal) 

     
    if stopSweep == 0; 
        effOld = eff; 
        disp('Finding maximum efficiency....') 
    else 
        disp('Converged to maximum efficiency!') 
    end 
    disp('---------------------------------------------------------------

') 
    disp(' ') 
end 
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% currentMatchIBSC.m 
% At a given bias and band spacing, this routine determines the 
% intermediate band chemical potentials and cell photocurrent. 

  
% Intermediate band short-circuit currents 
switch spec 
    case 0 
        IciL = q*C*f * quadgk(specFluxS,q*Eci, q*Eg); 
        IivL = q*C*f * quadgk(specFluxS,q*Eiv, q*Eci); 
    case 1 
        lamCI = h*c / (Eci*q) * 1e9;   % Wavelengths (nm) corresponding to 
        lamIV = h*c / (Eiv*q) * 1e9;   % the energy gaps. 
        maxPtCI = find(lam0<=lamCI, 1, 'last'); 
        maxPtIV = find(lam0<=lamIV, 1, 'last'); 
        IciL = q*C * trapz(lam0(maxPtCV:maxPtCI), AM0(maxPtCV:maxPtCI)); 
        IivL = q*C * trapz(lam0(maxPtCI:maxPtIV), AM0(maxPtCI:maxPtIV)); 
    case 2 
        lamCI = h*c / (Eci*q) * 1e9;   % Wavelengths (nm) corresponding to 
        lamIV = h*c / (Eiv*q) * 1e9;   % the energy gaps. 
        maxPtCI = find(lam1p5<=lamCI, 1, 'last'); 
        maxPtIV = find(lam1p5<=lamIV, 1, 'last'); 
        IciL = q*C * trapz(lam1p5(maxPtCV:maxPtCI), 

AM1p5G(maxPtCV:maxPtCI)); 
        IivL = q*C * trapz(lam1p5(maxPtCI:maxPtIV), 

AM1p5G(maxPtCI:maxPtIV)); 
    case 3 
        lamCI = h*c / (Eci*q) * 1e9;   % Wavelengths (nm) corresponding to 
        lamIV = h*c / (Eiv*q) * 1e9;   % the energy gaps. 
        maxPtCI = find(lam1p5<=lamCI, 1, 'last'); 
        maxPtIV = find(lam1p5<=lamIV, 1, 'last'); 
        IciL = q*C * trapz(lam1p5(maxPtCV:maxPtCI), 

AM1p5D(maxPtCV:maxPtCI)); 
        IivL = q*C * trapz(lam1p5(maxPtCI:maxPtIV), 

AM1p5D(maxPtCI:maxPtIV)); 
end 

  
% Initial solution for intermediate band photocurrents 
specFluxC = @(E) 2*pi/(h^3*c^2) * E.^2 ./ (exp( (E - (q*muCI))/(k*Tc) ) - 

1); 
Ici = IciL - q*quadgk(specFluxC, q*Eci, q*Eg); 
specFluxC = @(E) 2*pi/(h^3*c^2) * E.^2 ./ (exp( (E - (q*muIV))/(k*Tc) ) - 

1); 
Iiv = IivL - q*quadgk(specFluxC, q*Eiv, q*Eci); 

  
% Current matching algorithm for the intermediate band photocurrents 
stp = 0.1;   % Amount by which to increase the chemical potential 
if min([Eci-muCI Eiv-muIV]) <= 0.01 
    stp = stp/100; 
elseif min([Eci-muCI Eiv-muIV]) <= 0.1 
    stp = stp/10; 
end 
match=0; count=0; muCIolder=100; 
while match==0; 
    count=count+1; 
    disp('Solar Concentration:'); disp(C) 
    disp('Voltage Step:'); disp(effCount) 
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    disp('Iteration:'); disp(count) 

  
    delta = Ici - Iiv; 
    % WARNING!!! 
    % The delta parameter assumes both currents to be positive values. 
    % An interlock is implemented at the end of the loop; however, it is 
    % not 100% failsafe (especially if a negative current is realized 
    % during the first itteration). 

  
    % This is an interlock to make sure the chemical potentials do not 
    % exceed their respective energy gaps 
    if max([(Eci <= muCI) (Eiv <= muIV)]) == 1 
        muCI = muCIold; muIV = muIVold; 
        stp = stp/10; 
    elseif min([Eci-muCI Eiv-muIV]) <= 0.01 
        stp = 0.001; 
        muCIold = muCI; muIVold = muIV; 
        Iciold= Ici; Iivold = Iiv; 
    elseif min([Eci-muCI Eiv-muIV]) <= 0.1 
        if stp ~= 0.001 
            stp = 0.01; 
        end 
        muCIold = muCI; muIVold = muIV; 
        Iciold= Ici; Iivold = Iiv; 
    else 
        % Store current values for when they must be reverted to 
        muCIold = muCI; muIVold = muIV; 
        Iciold= Ici; Iivold = Iiv; 
    end 

         
    % Determine whether to step the chemical potentials up or down 
    if delta > 0; 
        if muCI + stp >= Eci; 
            stp = stp/10; 
        end 
        disp('Increasing conduction-to-intermediate band dark 

current....') 
        muCI =  muCI + stp; 
        muIV = V - muCI; 
    elseif delta < 0; 
        if muIV + stp >= Eiv; 
            stp = stp/10; 
        end 
        disp('Increasing intermediate-to-valence band dark current....') 
        muIV =  muIV + stp; 
        muCI = V - muIV; 
    else 
        disp('Converged to a solution!') 
        match = 1; 
    end 

         
    if match == 0; 
        % Check to see if there is a possible match or if a decrease in 
        % step is necessary 
        if muCI == muCIolder; 
            if stp == 0.001; 
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                disp('Converged to a solution!') 
                match = 1; 
                % Reset to previous chemical potentials; note there is no 
                % new recalculation of the photocurrents 
                muCI = muCIold; muIV = muIVold;  
                % Determine and use whichever data has less error 
                if abs(Iciold - Iivold) > abs(Iciolder - Iivolder); 
                    Ici = Iciolder; Iiv = Iivolder; 
                    muCI = muCIolder; muIV = muIVolder;  
                end 
            else 
                stp = stp/10; 
            end 
        end 
    end 

     
    % Recalculate the intermediate band photocurrents 
    if match == 0; 
        specFluxC = @(E) 2*pi/(h^3*c^2) * E.^2 ./ (exp( (E - 

(q*muCI))/(k*Tc) ) - 1); 
        Ici = IciL - q*quadgk(specFluxC, q*Eci, q*Eg); 
        specFluxC = @(E) 2*pi/(h^3*c^2) * E.^2 ./ (exp( (E - 

(q*muIV))/(k*Tc) ) - 1); 
        Iiv = IivL - q*quadgk(specFluxC, q*Eiv, q*Eci); 

                 
        if min(sign([Ici Iiv])) < 1; 
            % Revert to previous values if either photocurrent becomes 
            % negative 
            muCI = muCIold; muIV = muIVold; 
            Ici = Iciold; Iiv = Iivold; 
            stp = stp/10; 
        else 
            % Store old values as older values for comparison above 
            muCIolder = muCIold; muIVolder = muIVold; 
            Iciolder = Iciold; Iivolder = Iivold; 
        end 
    end 

     
    disp(' ') 
    disp('    V         Eff.      Eci       Eiv       mu_ci     mu_iv') 
    disp([V eff Eci Eiv muCI muIV]) 
    disp('    Ici'); disp(Ici) 
    disp('    Iiv'); disp(Iiv) 
    disp('--------------------------------------------------------------') 
    disp(' ') 

     
    if stp < 0.001 
        stp = 0.001; 
    end 

     
    if count == 1000 
        disp('Unable to converge!') 
        eff = NaN; 
        return 
    end 
end 
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Appendix VII 

Single-Junction Solar Cell Device Model (ATLAS Code) 

 

 The following code consists of three ATLAS decks (pv00.in, pv01.in, and sr00.in) 

that individually simulate the single-junction solar cell as described in Sections 3.16 and 

3.17. The pv00.in and pv01.in decks both simulate the illuminated current-voltage response 

of the solar cell. In the first file, the device structure is defined using an auto-meshing 

technique that is simpler to define and more accurate in the numerical analysis. The latter 

defines the device structure by manual meshing. This is a more complicated technique but, if 

properly applied, leads to a more efficiently obtained solution. The sr00.in deck uses the 

same auto-meshing technique as in pv00.in and solves for the spectral response of the device. 
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# pv00.in 

 

go atlas 

 

mesh auto 

 

x.mesh loc=-200 spac=10 

x.mesh loc=-50  spac=10 

x.mesh loc=-45  spac=5 

x.mesh loc=-10  spac=5 

x.mesh loc=-9   spac=1 

x.mesh loc=0    spac=1 

x.mesh loc=9    spac=1 

x.mesh loc=10   spac=5 

x.mesh loc=45   spac=5 

x.mesh loc=50   spac=10 

x.mesh loc=200  spac=10 

 

# Regions 

region                top    thick=0.010 ny=1  material=Vacuum 

region name=Contact   bottom thick=0.100 ny=5  material=GaAs   

 acceptor=1e19 

region name=Window    bottom thick=0.050 ny=6  material=InGaP  

 acceptor=2e18 x.comp=0.52 

region name=Emitter   bottom thick=0.500 ny=6  material=GaAs   

 acceptor=1e18 

region name=Intrinsic bottom thick=0.100 ny=5  material=GaAs  acceptor=0     

 donor=0 

region name=Base      bottom thick=2.000 ny=20 material=GaAs  donor=1e17 

region name=BSF       bottom thick=0.050 ny=6  material=InGaP donor=1e18     

 x.comp=0.52 

region name=Sub       bottom thick=0.100 ny=4  material=GaAs  donor=1e18 

# Contact Etch 

region x.min=-200 x.max=-4   y.min=0 y.max=0.1 material=Vacuum 

region x.min=4    x.max=200  y.min=0 y.max=0.1 material=Vacuum  

 

# Electrodes 

electrode name=Anode   x.min=-4 x.max=4 y.min=-0.010 y.max=0 

electrode name=Cathode bottom 

 

# Interfaces 

# Vacuum-Window 

interface x.min=-200 x.max=-4  y.min=0.080 y.max=0.120 s.n=1e8 

interface x.min=4    x.max=200 y.min=0.080 y.max=0.120 s.n=1e8 

# Back Window 

interface x.min=-200 x.max=200 y.min=0.120 y.max=0.180 s.s thermionic  

 tunnel 

# Back BSF 

interface x.min=-200 x.max=200 y.min=2.780 y.max=2.820 s.s thermionic  

 tunnel 

 

# Material Properties 

material taup=50e-9 taun=50e-9 

# GaAs 

material material=GaAs copt=7.2e-10 

# InGaP 

material material=InGaP affinity=4.07 index.file=../InGaP.opt 
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material name=Window    mun=600 mup=40 

material name=BSF       mun=800 mup=40 

# Contact 

material material=Conductor imag.index=1000 

 

# Models & Outputs 

model fermi SRH 

model material=GaAs conmob optr print 

output val.band con.band opt.int u.aug u.srh u.rad 

 

# Define AM0 spectrum 

beam num=1 x.origin=0 y.origin=-0.1 angle=90 power.file=../AM0.spec  

 wavel.start=0.200 wavel.end=0.930 wavel.num=146 

 

# Initial solution 

solve init 

solve prev 

log outf=pv00.log 

 

save outf=pv00_0.str 

 

# Zero bias w/ photogeneration 

solve b1=1 

 

save outf=pv01_1.str 

 

# Light IV sweep 

solve b1=1 vanode=0.050 vstep=0.050 vfinal=0.800 name=anode 

solve b1=1 vanode=0.805 vstep=0.005 vfinal=1.000 name=anode 

solve b1=1 vanode=1.010 vstep=0.010 vfinal=1.100 name=anode 

 

# Plot IV curve 

tonyplot pv00.log -set ../iv.set 

 

# Extracts 

extract name="Voc" x.val from curve(v."anode", i."cathode") where y.val=0 

extract name="Isc" y.val from curve(v."anode", i."cathode"*25*1e4*1000)  

 where x.val=0 

extract name="Pm" max(v."anode"*i."cathode"*25*1e4*1000) 
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# pv01.in 

 

go atlas 

 

mesh space.mult=1 

 

x.mesh loc=-200 spac=20 

x.mesh loc=-50  spac=10 

x.mesh loc=-45  spac=5 

x.mesh loc=-10  spac=5 

x.mesh loc=-9   spac=1 

x.mesh loc=0    spac=1 

x.mesh loc=9    spac=1 

x.mesh loc=10   spac=5 

x.mesh loc=45   spac=5 

x.mesh loc=50   spac=10 

x.mesh loc=200  spac=20 

 

# Anode 

y.mesh loc=-0.01 spac=0.005 

# Contact 

y.mesh loc=0.000 spac=0.005 

y.mesh loc=0.005 spac=0.005 

y.mesh loc=0.010 spac=0.010 

# Window 

y.mesh loc=0.050 spac=0.010 

y.mesh loc=0.060 spac=0.020 

# Emitter 

y.mesh loc=0.560 spac=0.020 

# Intrinsic Top 

y.mesh loc=0.565 spac=0.005 

y.mesh loc=0.575 spac=0.002 

 

# Well Region 

y.mesh loc=0.645 spac=0.002 

 

# Intrinsic Bottom 

y.mesh loc=0.660 spac=0.005 

# Base 

y.mesh loc=0.680 spac=0.010 

y.mesh loc=0.720 spac=0.020 

y.mesh loc=1.000 spac=0.200 

y.mesh loc=2.600 spac=0.020 

y.mesh loc=2.640 spac=0.020 

y.mesh loc=2.660 spac=0.010 

# BSF 

y.mesh loc=2.710 spac=0.010 

# Substrate 

y.mesh loc=2.810 spac=0.020 

 

# Bulk Regions 

region                x.min=-200 x.max=-4  y.min=-0.01 y.max=0.010  

 material=Vacuum 

region                x.min=4    x.max=200 y.min=-0.01 y.max=0.010  

 material=Vacuum 

region name=Contact   x.min=-4   x.max=4   y.min=0.000 y.max=0.010  

 material=GaAs  acceptor=1e19 
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region name=Window    x.min=-200 x.max=200 y.min=0.010 y.max=0.060  

 material=InGaP acceptor=2e18 x.comp=0.52 

region name=Emitter   x.min=-200 x.max=200 y.min=0.060 y.max=0.560  

 material=GaAs  acceptor=1e18 

region name=Intrinsic x.min=-200 x.max=200 y.min=0.560 y.max=0.660  

 material=GaAs  acceptor=0    donor=0 

region name=Base      x.min=-200 x.max=200 y.min=0.660 y.max=2.660  

 material=GaAs  donor=1e17 

region name=BSF       x.min=-200 x.max=200 y.min=2.660 y.max=2.710  

 material=InGaP donor=1e18    x.comp=0.52 

region name=Sub       x.min=-200 x.max=200 y.min=2.710 y.max=2.810  

 material=GaAs  donor=1e18 

 

# Electrodes 

electrode name=Anode   x.min=-4 x.max=4 y.min=-0.010 y.max=0.000 

electrode name=Cathode bottom 

 

# Interfaces 

# Vacuum-Window 

interface x.min=-200 x.max=-4  y.min=0.008 y.max=0.012 s.n=1e8 

interface x.min=4    x.max=200 y.min=0.008 y.max=0.012 s.n=1e8 

# Back Window 

interface x.min=-200 x.max=200 y.min=0.058 y.max=0.062 s.s thermionic  

 tunnel 

# Back BSF 

interface x.min=-200 x.max=200 y.min=2.708 y.max=2.712 s.s thermionic  

 tunnel 

 

# Material Properties 

material taup=50e-9 taun=50e-9 

# GaAs 

material material=GaAs copt=7.2e-10 

# InGaP 

material material=InGaP affinity=4.07 index.file=../InGaP.opt 

material name=Window    mun=600 mup=40 

material name=BSF       mun=800 mup=40 

# Contact 

material material=Conductor imag.index=1000 

 

# Models & Outputs 

model fermi SRH 

model material=GaAs conmob optr print 

output val.band con.band opt.int u.aug u.srh u.rad 

 

# Define AM0 spectrum 

beam num=1 x.origin=0 y.origin=-0.1 angle=90 power.file=../AM0.spec  

 wavel.start=0.200 wavel.end=4.000 wavel.num=760 

 

# Initial solution 

solve init 

solve prev 

log outf=pvXX.log 

 

#save outf=pv01_0.str 

 

# Zero bias w/ photogeneration 

solve b1=1 
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#save outf=pv01_1.str 

 

# Light IV sweep 

solve b1=1 vanode=0.050 vstep=0.050 vfinal=0.800 name=anode 

solve b1=1 vanode=0.805 vstep=0.005 vfinal=1.000 name=anode 

solve b1=1 vanode=1.010 vstep=0.010 vfinal=1.100 name=anode 

 

# Plot IV curve 

tonyplot pvXX.log -set ../iv.set 

 

# Extracts 

extract name="Voc" x.val from curve(v."anode", i."cathode") where y.val=0 

extract name="Isc" y.val from curve(v."anode", i."cathode"*25*1e4*1000)  

 where x.val=0 

extract name="Pm" max(v."anode"*i."cathode"*25*1e4*1000) 

 



 138 

# sr00.in 

 

go atlas 

 

mesh auto 

 

x.mesh loc=-200 spac=10 

x.mesh loc=-50  spac=10 

x.mesh loc=-45  spac=5 

x.mesh loc=-10  spac=5 

x.mesh loc=-9   spac=1 

x.mesh loc=0    spac=1 

x.mesh loc=9    spac=1 

x.mesh loc=10   spac=5 

x.mesh loc=45   spac=5 

x.mesh loc=50   spac=10 

x.mesh loc=200  spac=10 

 

# Regions 

region                top    thick=0.010 ny=1  material=Vacuum 

region name=Contact   bottom thick=0.100 ny=5  material=GaAs   

 acceptor=1e19 

region name=Window    bottom thick=0.050 ny=6  material=InGaP  

 acceptor=2e18 x.comp=0.52 

region name=Emitter   bottom thick=0.500 ny=6  material=GaAs   

 acceptor=1e18 

region name=Intrinsic bottom thick=0.100 ny=5  material=GaAs  acceptor=0     

 donor=0 

region name=Base      bottom thick=2.000 ny=20 material=GaAs  donor=1e17 

region name=BSF       bottom thick=0.050 ny=6  material=InGaP donor=1e18     

 x.comp=0.52 

region name=Sub       bottom thick=0.100 ny=4  material=GaAs  donor=1e18 

# Contact Etch 

region x.min=-200 x.max=-4   y.min=0 y.max=0.1 material=Vacuum 

region x.min=4    x.max=200  y.min=0 y.max=0.1 material=Vacuum  

 

# Electrodes 

electrode name=Anode   x.min=-4 x.max=4 y.min=-0.010 y.max=0 

electrode name=Cathode bottom 

 

# Interfaces 

# Vacuum-Window 

interface x.min=-200 x.max=-4  y.min=0.080 y.max=0.120 s.n=1e8 

interface x.min=4    x.max=200 y.min=0.080 y.max=0.120 s.n=1e8 

# Back Window 

interface x.min=-200 x.max=200 y.min=0.120 y.max=0.180 s.s thermionic 

# Back BSF 

interface x.min=-200 x.max=200 y.min=2.780 y.max=2.820 s.s thermionic 

 

# Material Properties 

material taup=50e-9 taun=50e-9 

# GaAs 

material material=GaAs copt=7.2e-10 

# InGaP 

material material=InGaP affinity=4.07 index.file=../InGaP.opt 

material name=Window    mun=600 mup=40 

material name=BSF       mun=800 mup=40 
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# Contact 

material material=Conductor imag.index=1000 

 

# Models & Outputs 

model fermi SRH 

model material=GaAs conmob optr 

output val.band con.band opt.int u.aug u.srh u.rad 

 

# Initial solution 

solve init 

solve prev 

log outf=sr00.log 

 

# Monochromatic Beam 

beam num=2 x.origin=0 y.origin=-1 angle=90 

 

# Solve spectral response  

solve b2=.1 lambda=1.000 

solve b2=.1 lambda=0.975 

solve b2=.1 lambda=0.950 

solve b2=.1 lambda=0.925 

solve b2=.1 lambda=0.900 

solve b2=.1 lambda=0.875 

solve b2=.1 lambda=0.850 

solve b2=.1 lambda=0.825 

solve b2=.1 lambda=0.800 

solve b2=.1 lambda=0.775 

solve b2=.1 lambda=0.750 

solve b2=.1 lambda=0.725 

solve b2=.1 lambda=0.700 

solve b2=.1 lambda=0.675 

solve b2=.1 lambda=0.650 

solve b2=.1 lambda=0.625 

solve b2=.1 lambda=0.600 

solve b2=.1 lambda=0.575 

solve b2=.1 lambda=0.550 

solve b2=.1 lambda=0.525 

solve b2=.1 lambda=0.500 

solve b2=.1 lambda=0.475 

solve b2=.1 lambda=0.450 

solve b2=.1 lambda=0.425 

solve b2=.1 lambda=0.400 

solve b2=.1 lambda=0.375 

solve b2=.1 lambda=0.350 

solve b2=.1 lambda=0.325 

solve b2=.1 lambda=0.300 

solve b2=.1 lambda=0.275 

solve b2=.1 lambda=0.250 

solve b2=.1 lambda=0.225 

solve b2=.1 lambda=0.200 

 

tonyplot sr00.log -set ../qe.set 
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Appendix VIII 

Dual-Junction Solar Cell Device Model (ATLAS Code) 

 

 The following code consists of two ATLAS decks (djIV.in and djSR.in) that 

individually simulate the dual-junction solar cell as described in Section 3.18. The djIV.in 

deck simulates the illuminated current-voltage response of the solar cell while the djSR.in 

deck solves for the spectral response of the device.  
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# djIV.in 

 

go atlas 

 

mesh auto 

 

x.mesh loc=-200 spac=20 

x.mesh loc=-40  spac=20 

x.mesh loc=-30  spac=10 

x.mesh loc=-10  spac=5 

x.mesh loc=-9   spac=1 

x.mesh loc=0    spac=1 

x.mesh loc=9    spac=1 

x.mesh loc=10   spac=5 

x.mesh loc=30   spac=10 

x.mesh loc=40   spac=20 

x.mesh loc=200  spac=20 

 

# Regions 

region                 top    thick=0.010 ny=1  material=Vacuum 

# Top Cell 

region name=tContact   bottom thick=0.100 ny=3  material=GaAs   

 acceptor=1e19 

region name=tWindow    bottom thick=0.030 ny=3  material=AlAs   

 acceptor=1e18 

region name=tEmitter   bottom thick=0.100 ny=3  material=InGaP  

 acceptor=1e18 x.comp=0.52 

region name=tBase      bottom thick=2.000 ny=3  material=InGaP donor=1e17     

 x.comp=0.52 

region name=tBSF       bottom thick=0.100 ny=3  material=InGaP donor=1e18     

 x.comp=0.52 

 

# Tunnel 

region name=td1        bottom thick=0.050 ny=4  material=InAs  donor=1e19 

region name=td2        bottom thick=0.050 ny=4  material=InAs   

 acceptor=1e19 

 

# Middle Cell 

region name=mWindow    bottom thick=0.050 ny=3  material=InGaP  

 acceptor=2e18 x.comp=0.52 

region name=mEmitter   bottom thick=0.500 ny=3  material=GaAs   

 acceptor=1e18 

region name=mIntrinsic bottom thick=0.100 ny=3  material=GaAs  acceptor=0     

 donor=0 

region name=mBase      bottom thick=2.000 ny=3  material=GaAs  donor=1e17 

region name=mBSF       bottom thick=0.050 ny=3  material=InGaP donor=1e18     

 x.comp=0.52 

region name=mSub       bottom thick=0.100 ny=3  material=GaAs  donor=1e18 

 

# Contact Etch 

region x.min=-200 x.max=-4  y.min=0 y.max=0.1 material=Vacuum 

region x.min=4    x.max=200 y.min=0 y.max=0.1 material=Vacuum  

 

# Electrodes 

electrode name=Anode   x.min=-4 x.max=4 y.min=-0.010 y.max=0 

electrode name=Cathode bottom 
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# Interfaces 

# Vacuum-Window 

interface x.min=-200 x.max=-4  y.min=0.090 y.max=0.110 s.n=1e8 

interface x.min=4    x.max=200 y.min=0.090 y.max=0.110 s.n=1e8 

 

# Material Properties 

material taup=50e-9 taun=50e-9 

# GaAs 

material material=GaAs copt=7.2e-10 

# InGaP 

material material=InGaP affinity=4.07 index.file=../InGaP.opt mun=800  

 mup=40 

# Contact 

material material=Conductor imag.index=1000 

# AlAs 

material material=AlAs mun=150 mup=65 

# Tunnel 

material material=InAs index.file=../GaAs0ab.opt 

 

# Models & Outputs 

model fermi SRH 

model material=GaAs conmob optr print 

model material=InAs bbt.std 

output val.band con.band opt.int u.aug u.srh u.rad 

 

# Define AM0 spectrum 

beam num=1 x.origin=0 y.origin=-0.1 angle=90 power.file=../AM0.spec  

 wavel.start=0.200 wavel.end=2.000 wavel.num=360 

 

# Initial solution 

solve init 

save outf=pv00a_0.str 

log outf=pv00a.log 

 

# Zero bias w/ photogeneration 

solve b1=1 

 

save outf=pv00_1.str 

 

# Light IV sweep 

solve b1=1 vanode=0.10 vstep=0.10 vfinal=2.6 name=anode 

#solve b1=1 vanode=1.71 vstep=0.01 vfinal=1.9 name=anode 

#solve b1=1 vanode=2.00 vstep=0.10 vfinal=2.6 name=anode 

 

# Plot IV curve 

tonyplot pv00a.log -set ../iv.set 

 

# Extracts 

extract name="Voc" x.val from curve(v."anode", i."cathode") where y.val=0 

extract name="Isc" y.val from curve(v."anode", i."cathode"*25*1e4*1000)  

 where x.val=0 

extract name="Pm" max(v."anode"*i."cathode"*25*1e4*1000) 
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# djSR.in 

 

go atlas 

 

mesh auto 

 

x.mesh loc=-200 spac=20 

x.mesh loc=-40  spac=20 

x.mesh loc=-30  spac=10 

x.mesh loc=-10  spac=10 

x.mesh loc=-9   spac=1 

x.mesh loc=0    spac=1 

x.mesh loc=9    spac=1 

x.mesh loc=10   spac=10 

x.mesh loc=30   spac=10 

x.mesh loc=40   spac=20 

x.mesh loc=200  spac=20 

 

# Regions 

region                 top     thick=0.010 ny=1 material=Vacuum 

 

# InGaP Cell 

region name=tContact   bottom thick=0.100 ny=3 material=GaAs   

 acceptor=1e19 

region name=tWindow    bottom thick=0.030 ny=3 material=AlAs   

 acceptor=2e18 

region name=tEmmitter  bottom thick=0.100 ny=3 material=InGaP  

 acceptor=1e18 x.comp=0.52 

region name=tBase      bottom thick=1.000 ny=3 material=InGaP donor=1e17     

 x.comp=0.52 

region name=tBSF       bottom thick=0.100 ny=3 material=InGaP donor=2e18     

 x.comp=0.52 

# 

region name=tSpace     bottom thick=0.050 ny=1 material=Air 

# GaAs Cell 

region name=mWindow    bottom thick=0.050 ny=3 material=InGaP  

 acceptor=2e18 x.comp=0.52 

region name=mEmitter   bottom thick=0.500 ny=3 material=GaAs   

 acceptor=1e18 

region name=mIntrinsic bottom thick=0.100 ny=3 material=GaAs  acceptor=0     

 donor=0 

region name=mBase      bottom thick=2.000 ny=3 material=GaAs  donor=1e17 

region name=mBSF       bottom thick=0.050 ny=3 material=InGaP donor=1e18     

 x.comp=0.52 

region name=mSub       bottom thick=0.150 ny=3 material=GaAs  donor=1e18 

# Contact Etch 

region x.min=-200 x.max=-4   y.min=0 y.max=0.1 material=Vacuum 

region x.min=4    x.max=200  y.min=0 y.max=0.1 material=Vacuum  

 

# Electrodes 

electrode name=tAnode   x.min=-4   x.max=4   y.min=-0.010 y.max=0 

electrode name=tCathode x.min=-200 x.max=200 y.min=1.330  y.max=1.330 

electrode name=mAnode   x.min=-200 x.max=200 y.min=1.380  y.max=1.380 

electrode name=mCathode bottom 

 

contact name=tCathode common=mCathode 
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# Interfaces 

# Vacuum-Window 

interface x.min=-200 x.max=-4  y.min=0.090 y.max=0.110 s.n=1e8 

interface x.min=4    x.max=200 y.min=0.090 y.max=0.110 s.n=1e8 

 

# Material Properties 

material taup=50e-9 taun=50e-9 

# GaAs 

material material=GaAs copt=7.2e-10 

# InGaP 

material material=InGaP  affinity=4.07 index.file=../InGaP.opt mup=40 

material name=tEmitter   mun=800 

material name=tBase      mun=1000 

material name=tBSF       mun=600 

material name=mWindow    mun=600 

material name=mBSF       mun=800 

# AlAs 

material material=AlAs   mun=500  mup=100 

# Top Contact 

material material=Conductor imag.index=1000 

# Spacing 

material material=Air index.file=../GaAs.opt 

 

# Models & Outputs 

model fermi SRH 

model material=GaAs conmob optr print 

output val.band con.band opt.int u.aug u.srh u.rad 

 

# Initial solution 

solve init 

solve prev 

 

log  outf=srmB1.log 

 

# Monochromatic Beam 

beam num=2 x.origin=0 y.origin=-1 angle=90 

 

# Solve spectral response  

solve b2=.1 lambda=1.000 

solve b2=.1 lambda=0.975 

solve b2=.1 lambda=0.950 

solve b2=.1 lambda=0.925 

solve b2=.1 lambda=0.900 

solve b2=.1 lambda=0.875 

solve b2=.1 lambda=0.850 

solve b2=.1 lambda=0.825 

solve b2=.1 lambda=0.800 

#save outf=sr00_800.str 

 

solve b2=.1 lambda=0.775 

solve b2=.1 lambda=0.750 

solve b2=.1 lambda=0.725 

solve b2=.1 lambda=0.700 

solve b2=.1 lambda=0.675 

solve b2=.1 lambda=0.650 

solve b2=.1 lambda=0.625 

solve b2=.1 lambda=0.600 
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solve b2=.1 lambda=0.575 

solve b2=.1 lambda=0.550 

#save outf=sr00_550.str 

 

solve b2=.1 lambda=0.525 

solve b2=.1 lambda=0.500 

solve b2=.1 lambda=0.475 

solve b2=.1 lambda=0.450 

solve b2=.1 lambda=0.425 

solve b2=.1 lambda=0.400 

solve b2=.1 lambda=0.375 

solve b2=.1 lambda=0.350 

solve b2=.1 lambda=0.325 

solve b2=.1 lambda=0.300 

solve b2=.1 lambda=0.275 

solve b2=.1 lambda=0.250 

solve b2=.1 lambda=0.225 

solve b2=.1 lambda=0.200 
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Appendix IX 

Nanostructured Solar Cell Device Model (ATLAS Code) 

 

 The following code consists of two ATLAS decks (pvQW.in and pvEL.in) that 

individually simulate the quantum mechanical effects that arise due to the inclusion of 

nanostructures in a single-junction solar cell as described in Section 3.19. The pvQW.in deck 

is used to explicitly analyze the quantum confined regions and to specifically determine the 

properties of the eigenstates located therein. The pvEL.in deck simulates the 

electroluminescence that occurs due to the nanostructured regions. 
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# pvQW.in 

 

go atlas 

 

mesh space.mult=1.0 auto 

 

x.mesh loc=-2.00 spac=0.50 

x.mesh loc=2.00 spac=0.50 

 

region num=1  material=GaAs thick=1.500 sy=0.150 bottom acceptor=1e18 

region num=2  material=GaAs thick=0.015 sy=0.005 bottom 

region num=3  material=InAs thick=0.006 sy=0.001 bottom 

region num=4  material=GaAs thick=0.010 sy=0.005 bottom 

region num=5  material=InAs thick=0.006 sy=0.001 bottom 

region num=6  material=GaAs thick=0.010 sy=0.005 bottom 

region num=7  material=InAs thick=0.006 sy=0.001 bottom 

region num=8  material=GaAs thick=0.010 sy=0.005 bottom 

region num=9  material=InAs thick=0.006 sy=0.001 bottom 

region num=10 material=GaAs thick=0.010 sy=0.005 bottom 

region num=11 material=InAs thick=0.006 sy=0.001 bottom 

region num=12 material=GaAs thick=0.015 sy=0.005 bottom 

region num=13 material=GaAs thick=1.500 sy=0.150 bottom donor=1e17 

 

# Electrodes 

electrode name=anode   top 

electrode name=cathode bottom 

 

# Material Properties 

material taun=1e-6 taup=1e-6 

# GaAs 

material material=GaAs copt=7.2e-10 

# InAs 

material material=InAs index.file=../InAs.opt copt=1.1e-10 

 

# Models & Outputs 

models fermi srh optr 

models material=GaAs conmob 

models material=InAs li qwell well.nx=9 well.ny=100 well.cnbs=1  

 well.vnbs=5 

output val.band con.band opt.int u.aug u.srh u.rad 

 

# Define AM0 spectrum 

beam num=1 x.origin=0 y.origin=-1 angle=90 power.file=../AM0.spec  

 wavel.start=0.200 wavel.end=4.000 wavel.num=76 

 

# Initial solution, save equilibrium structure  

solve init 

solve prev 

save outf=pvQW_0.str 

tonyplot 

 

# Zero bias structure w/ photogeneration 

log outf=pvQW.log 

solve b1=1 

save outf=pvQW_1.str 
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# pvEL.in 

 

go atlas 

 

mesh space.mult=1 

 

x.mesh loc=-200 spac=20 

x.mesh loc=-50  spac=10 

x.mesh loc=-45  spac=5 

x.mesh loc=-10  spac=5 

x.mesh loc=-9   spac=1 

x.mesh loc=0    spac=1 

x.mesh loc=9    spac=1 

x.mesh loc=10   spac=5 

x.mesh loc=45   spac=5 

x.mesh loc=50   spac=10 

x.mesh loc=200  spac=20 

 

# Anode 

y.mesh loc=-0.01 spac=0.005 

# Contact 

y.mesh loc=0.000 spac=0.005 

y.mesh loc=0.005 spac=0.005 

y.mesh loc=0.010 spac=0.010 

# Window 

y.mesh loc=0.050 spac=0.010 

y.mesh loc=0.060 spac=0.020 

# Emitter 

y.mesh loc=0.560 spac=0.020 

# Intrinsic Top 

y.mesh loc=0.565 spac=0.005 

y.mesh loc=0.575 spac=0.002 

 

# Well Region 

y.mesh loc=0.645 spac=0.002 

 

# Intrinsic Bottom 

y.mesh loc=0.660 spac=0.005 

# Base 

y.mesh loc=0.680 spac=0.010 

y.mesh loc=0.720 spac=0.020 

y.mesh loc=1.000 spac=0.200 

y.mesh loc=2.600 spac=0.020 

y.mesh loc=2.640 spac=0.020 

y.mesh loc=2.660 spac=0.010 

# BSF 

y.mesh loc=2.710 spac=0.010 

# Substrate 

y.mesh loc=2.810 spac=0.020 

 

# Bulk Regions 

region                x.min=-200 x.max=-4  y.min=-0.01 y.max=0.010  

 material=Vacuum 

region                x.min=4    x.max=200 y.min=-0.01 y.max=0.010  

 material=Vacuum 

region name=Contact   x.min=-4   x.max=4   y.min=0.000 y.max=0.010  

 material=GaAs  acceptor=1e19 
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region name=Window    x.min=-200 x.max=200 y.min=0.010 y.max=0.060  

 material=InGaP acceptor=2e18 x.comp=0.52 

region name=Emitter   x.min=-200 x.max=200 y.min=0.060 y.max=0.560  

 material=GaAs  acceptor=1e18         LED 

 

region name=Intrinsic1 x.min=-200 x.max=200 y.min=0.560 y.max=0.575  

 material=GaAs  acceptor=0    donor=0 LED 

region name=Intrinsic2 x.min=-200 x.max=200 y.min=0.645 y.max=0.660  

 material=GaAs  acceptor=0    donor=0 LED 

 

region name=Base      x.min=-200 x.max=200 y.min=0.660 y.max=2.660  

 material=GaAs  donor=1e17            LED 

region name=BSF       x.min=-200 x.max=200 y.min=2.660 y.max=2.710  

 material=InGaP donor=1e18    x.comp=0.52 

region name=Sub       x.min=-200 x.max=200 y.min=2.710 y.max=2.810  

 material=GaAs  donor=1e18 

 

# Well Regions 

region name=Well1 x.min=-200 x.max=200 y.min=0.575 y.max=0.581  

 material=InAs LED acceptor=0 donor=0 

region name=Barr1 x.min=-200 x.max=200 y.min=0.581 y.max=0.591  

 material=GaAs LED acceptor=0 donor=0 

region name=Well2 x.min=-200 x.max=200 y.min=0.591 y.max=0.597  

 material=InAs LED acceptor=0 donor=0 

region name=Barr2 x.min=-200 x.max=200 y.min=0.597 y.max=0.607  

 material=GaAs LED acceptor=0 donor=0 

region name=Well3 x.min=-200 x.max=200 y.min=0.607 y.max=0.613  

 material=InAs LED acceptor=0 donor=0 

region name=Barr3 x.min=-200 x.max=200 y.min=0.613 y.max=0.623  

 material=GaAs LED acceptor=0 donor=0 

region name=Well4 x.min=-200 x.max=200 y.min=0.623 y.max=0.629  

 material=InAs LED acceptor=0 donor=0 

region name=Barr4 x.min=-200 x.max=200 y.min=0.629 y.max=0.639  

 material=GaAs LED acceptor=0 donor=0 

region name=Well5 x.min=-200 x.max=200 y.min=0.639 y.max=0.645  

 material=InAs LED acceptor=0 donor=0 

 

# Electrodes 

electrode name=Anode   x.min=-4 x.max=4 y.min=-0.010 y.max=0.000 

electrode name=Cathode bottom 

 

# Interfaces 

# Vacuum-Window 

interface x.min=-200 x.max=-4  y.min=0.008 y.max=0.012 s.n=1e8 

interface x.min=4    x.max=200 y.min=0.008 y.max=0.012 s.n=1e8 

# Back Window 

interface x.min=-200 x.max=200 y.min=0.058 y.max=0.062 s.s thermionic  

 tunnel 

# Back BSF 

interface x.min=-200 x.max=200 y.min=2.708 y.max=2.712 s.s thermionic  

 tunnel 

 

# Material Properties 

material taup=50e-9 taun=50e-9 

# GaAs 

material material=GaAs copt=7.2e-10 

# InGaP 
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material material=InGaP affinity=4.07 index.file=../InGaP.opt 

material name=Window    mun=600 mup=40 

material name=BSF       mun=800 mup=40 

# InAs 

material material=InAs index.file=../InAs.opt copt=1.1e-10 

# Contact 

material material=Conductor imag.index=1000 

 

# Models & Outputs 

model fermi SRH 

model material=GaAs conmob li spont print 

model material=InAs li qwell well.nx=9 well.ny=100 well.cnbs=1 well.vnbs=5  

 spont 

output val.band con.band opt.int u.aug u.srh u.rad 

 

# Initial solution 

solve init 

solve prev 

log outf=pv05a.log 

 

# IV sweep 

solve vanode=0.010 vstep=0.020 vfinal=0.400 name=anode 

save spectrum=spec05a.log lmin=0.5 lmax=4.0 nsamp=300 

 

tonyplot spec05.log -overlay spec05a.log 
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