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Investigation of Atmospheric Microplasma Jet for Nanofabrication  

By  

Konstantin J. Yurchenko  

Masters of Science in Material Science and Engineering  

Abstract 

The last decade has seen an immense amount of research exploring advanced 

nanofabrication techniques. Many efforts on this front have moved closer to 

realization of industrially viable nanofabrication, i.e. nanomanufacturing.  

Plasma-assisted processes have proven to be particularly suitable for nanofabrication 

due to a non-equilibrium condition that offers high concentration of chemically 

reactive species at low gas temperatures. Recently, cost-effective atmospheric plasma 

technologies have been a subject of intense research. The possibility of producing 

plasma environments at atmospheric pressure similar to those found at low-pressure 

offer additional advantages for industrial implementation of nanofabrication 

processes and surface treatment. Atmospheric pressure equates to lower processing 

cost, higher reaction rates, and increased throughput. An effective way to produce 

plasmas at atmospheric pressure while maintaining a high degree of process 

flexibility is to confine them in sub-millimeter cavities, i.e. microplasmas.  

In this contribution, we have developed atmospheric microplasma systems and their 

applicability to nanofabrication is being considered. Contemporary research reports 

that plasma properties in the sub-millimeter range possess peculiar characteristics and 

a unique chemistry. The experiments described in this thesis aim to investigate these 

qualities. Discharge properties are examined using current-voltage measurements, 

optical emission spectroscopy, temperature measurements and optical photography 

and compared to numerical analysis. Preliminary results on the application of this 

plasma system to nanofabrication and surface treatment are provided.  
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1. Atmospheric microplasma processing  

1.1. Stated purpose of the study 

 The scope of this work is focused on the development of a system capable to 

produce non-thermal gas discharges in an atmospheric environment. The design of the 

planned system allows generating plasma that operates in a microplasma regime. Such 

plasmas do not require vacuum and increase process cost efficiency, as expensive 

auxiliary pumping equipment is not required. Due to this advantage, applications of 

atmospheric microplasmas can pave a way to an increase in throughput. A system like the 

one described here offers some unique properties that are useful for advanced material 

processing and biomedical applications [1].  

 Atmospheric plasmas in general are employed for processing substrates of 

complex geometry and pressure sensitive materials can be handled without additional 

damage. Atmospheric microplasma regime offers chemical environments that incorporate 

this feature and also lead to production of new materials. Atmospheric microplasmas are 

of great interest due to their practicability in producing nanocrystaline materials. To 

explore this possibility, synthesis of carbon-based materials and deposition of 

nanostructured metal oxides is attempted with the developed system and obtained results 

are reported here.  

 In general, plasma is extremely ubiquitous in manufacturing industry. It is used 

for treatment of polymers, paper, wood, fabric, and silicon. Recently, modification of 

tissue, cells and proteins using plasmas has been explored.  Plasmas require less energy 

comparing to that consumed by the traditional ways of sterilization of biologically 
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contaminated materials and that is why plasma processing technologies can be key to 

practical and sustainable manufacturing in the modern world. [2] 

1.2. Brief overview of plasma theory 

 A conglomeration of atoms on a large scale makes up all matter. Depending on 

the way, atoms interact a general distinction between the states of matter can be made. 

Plasma state is produced when electrons are stripped from gas atoms through an addition 

of energy. This physical process is known as ionization. Ionization process can be 

accomplished through supplying the gas with either thermal or electrical energy. In some 

other instances, ultraviolet or intense visible light can also play role as an example. The 

approximate ionization potentials for helium and argon are 24.5 eV and 16 eV 

respectively [3]. These gases are commonly used for basic plasma study.  

 When the added energy is sufficient for electrons to overcome an electric 

potential barrier that confines them to the molecules or atoms of the gas, chemically 

reactive ions are also formed. These together with the electrons, neutral atoms and 

molecules constitute the bulk of the plasma. Collisions among them can lead to further 

reactions such as chemical dissociation. Furthermore, photons are emitted as the species 

become de-excited during the plasma's lifetime. On the large scale, plasma is a balanced 

interaction of these species. However, freely moving electrons play a major and a 

fundamental role in plasma. They enhance further ionization and can be accelerated by 

electro-magnetic fields. The kinetic energy of the electrons can be affected either through 

an elastic or inelastic collision with an ion or interaction with an electric field.  

 Since, ions and electrons move at a particular average velocity, an average kinetic 

energy for either can be determined. This defines a distinction in the temperatures that 



 
 

 11 

may develop within the plasma. Having two types of temperature within the plasma, that 

of ions and electrons, gives rise to two categories in which plasmas can be generalized. In 

the first category, the temperatures of electrons and ions are comparable. Such plasmas 

are called thermal. The constituents (ions, electrons, neutrals) of thermal plasma are in 

thermodynamic equilibrium and can be characterized by a single temperature. This 

temperature can vary from a few thousand Kelvin for plasma torch to more than a million 

Kelvin in fusion plasma applications and in the interior of stars.  

 In the second category, the average kinetic energy of an electron is extremely high 

in contrast to that of an ion. Plasmas that contain species that fit this description are 

called non-thermal glow discharges. Glow discharges can be easily produced inside 

powered reactors filled with a gas. Current conducting electrodes are generally used to 

increase the kinetic energy of the electrons through coupling with an electric field.  For 

non-equilibrium (non-thermal) plasmas, the electron temperature is much higher than the 

mean ion temperature, which in turn is higher than the gas temperature, thereby giving 

access to high-energy electron-initiated reactions without accessing the high thermal gas 

temperature that can cause substrate degradation. In a non-thermal plasma, the electron 

temperature is much higher (10,000 K to more than 100,000 K) than the temperature of 

ions and neutrals, which are roughly the same and range from room temperature to about 

2500 K.  

 The many and wide varieties of plasma applications depend on the mixture of 

ions, electrons, neutral and excited molecules, and photons that co-exist in the plasma. 
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1.3. Plasma process and technology  

 Chemically reactive plasma discharges are widely used for modification of the 

surface properties of materials. Plasma processing technology is vitally important to 

several of the largest manufacturing industries in the world. Plasma-based surface 

processes are indispensable for manufacturing of integrated circuits (ICs) used by the 

electronic industry. Such processes are also critical for the aerospace, automotive, steel, 

biomedical, and toxic waste management industries. Materials and surface structures can 

be fabricated that are not attainable by any other commercial method, and the surface 

properties of materials can be modified in unique ways.   

 The development of alternative ways of fabrication rises with the demand for 

advanced materials. Each year ever-smaller critical dimension is sought in the 

semiconductor industry. Old technologies such as photolithography and wet chemical 

etching process are unable to keep up with the manufacturing demands. Plasma on the 

other hand can remove and deposit materials used in the semiconductor industry with 

greater precision and control.  

 One of the examples of plasma used for material processing, are atmospheric-

pressure plasmas. Many types of atmospheric plasmas sources have been developed in a 

wide range of frequencies from dc to microwave, or in a short pulse. For example, a 

microwave and RF plasma torch, a dielectric barrier discharge (DBD), an arc plasma 

torch, a capacitively coupled, atmospheric-pressure plasma jet are well-known examples 

of atmospheric plasma sources. In some application areas of atmospheric plasmas, 

especially for surface modification of large-area materials such as fabrics, polymers, or 

glass plates for liquid crystal displays or plasma display panels, having large plasma 
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volume or area with high uniformity in plasma parameters is one of the most important 

requirements that the plasma source should satisfy.  

 In arcs and torches, the electron and neutral temperatures exceed 3000 °C and the 

densities of charge species range from 1016-1019 cm-3. Due to the high gas temperature, 

these plasmas are used primarily in metallurgy. Corona and dielectric barrier discharges 

produce non-equilibrium plasmas with gas temperatures between 50-400 °C and densities 

of charged species typical of weakly ionized gases. However, since these discharges are 

non-uniform, their use in materials processing is limited.  Atmospheric microplasmas 

provide interesting features that can address some of the limitation of current atmospheric 

plasma technology.  

1.4. Introduction to atmospheric microplasma 

 Microplasmas are highly reactive and are of high electron density. These are key 

properties that make them well suited for production of new materials and application in 

advanced processing. Electrons are a key enabler of chemical reactions and their density 

and mean energy may be used to indirectly assess plasma reactivity [4].  

 Decreasing the size of the reactor that confines the microplasma enhances its non-

equilibrium property.  Taking advantages of this relationship (Fig. 1.1) and designing a 

system accordingly can generate "colder" plasma through decrease in the overall gas 

temperature and change in the energy distribution of plasma constituents. Microplasma 

non-equilibrium can be influenced without compromising reactivity and the ability to 

produce radicals.  
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Figure 1.1 Non-equilibrium in small plasma cavities 

 Microplasmas obtained at 760 Torr are called atmospheric microplasmas. Ability 

to produce microplasma at atmospheric condition enables increase in manufacturing cost 

efficiency. This advantage makes processing with atmospheric microplasma competitive 

as well as complimentary in application.  

 The non-equilibrium nature of the atmospheric microplasma allows interaction 

with organic materials that produces no significant thermal damage. Properties that arise 

due to plasma's confinement promise to open a unique processing window. Both of these 

features of atmospheric microplasma can allow applications involving treatment of living 

cells and tissues such as high-precision plasma surgery, removal of cancer cells and 

cleaning of dental cavities [5].  

 Recently, an atmospheric-pressure microplasma jets has been developed, which 

exhibit many characteristics of a conventional, low-pressure glow discharge. In these, the 
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gas temperature ranges from 25°C-200°C, charged-particle densities are 1011-1012 cm-3 

and reactive species are present in high concentrations, i.e., 10-100 ppm. [6]  

2. Fabrication of advanced materials  

2.1. Introduction to nanotechnology and nanofabrication  

 Nanofabrication is a deliberately controlled manipulation and production of 

matter at the nanoscale (1 to 100nm). This manufacturing practice is aimed to create 

materials, devices, and systems with fundamentally new properties and functions.  

 Currently, the need for new materials is high in medical, optical and 

semiconductor industries. One of the ways to address this demand is through practices 

put forth by nanotechnology. To keep up with the creed of semiconductor industry of 

producing smaller features at a faster pace and reduced cost in accord with Moore's law, 

investment into alternative fabrication must be made. Nanotechnology is thought to 

enable the microelectronic industry with methods of uncapping the limitation modern 

world is currently facing in small feature manufacturing. Atmospheric microplasma is 

theorized to be a feasible technology for production of nanostructured materials.   

2.2. Overview of nanostructured materials  

2.2.1. Carbon-based materials 

  One of the most studied carbon based materials is carbon nanotubes. Carbon 

nanotubes are tubular allotropes of carbon and are one of instances of nanostructured 

matter currently pursued by industry. They are formed when carbon atoms are tied along 

a cylindrical surface and bonded by sp2 chemical bonds in an organized manner. This 
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compound is stronger than diamond formed by sp3 chemical bonds and is similar in 

composition to graphite.  

 Carbon nanotubes can be said to possess an inherent nanostructure. Advanced 

processes and technologies are required in order to arrange the chemistry of the carbon 

nanotubes in this way. The difference between the graphite and carbon nanotubes is that 

of structural geometry where graphite can be thought of a sheet like carbon arrangement 

and nanotube is cylindrical. 

 Generally for production of carbon nanomaterial such as carbon nanotubes, 

carbon feedstock and a metal catalyst that triggers organized growth are required. Once 

these ingredients are properly treated the end product can show nanostructured 

characteristics. The most common way to synthesize carbon nanotubes is to introduce a 

relevant amount of carbon feedstock into a heated chamber or plasma. This can enhance 

disassociation of hydrocarbon ions, resulting in radicals that can be employed in forming 

nanotubes. Carbon nanotubes are produced when carbon radicals agglomerate at the 

surface of catalyst particles that must be present at the target where carbon nanotubes 

growth is desired. Another way to synthesize carbon nanotubes is inside the plasma 

containing both the catalyst and reactive carbon species. The nanotubes can then be 

precipitated onto the target surface.  

 Usually, for production of carbon nanotubes various types of feedstock gases are 

used. Methane CH4 or acetylene C2H2 can be decomposed into ions that can disassociate 

into carbon rich radicals. Liquid vapor of organic solutions can also be decomposed to 

give similar reactive species. A liquid mixture of ferrocene powder and xylene serves as 

source of both, the carbon feedstock and metal catalyst. Ferrocene is a great powdery 



 
 

 17 

source of iron catalyst. Dissolving it in xylene, a carbon containing organic solvent 

produces a volatile liquid. When this liquid is heated to temperatures close to its boiling 

point, the vapor pressure of this fluid is overcome. The vapor produced in result can be 

added to the plasma discharge previously initiated. One of the advantages of using system 

that incorporates the latter is its ability to provide the catalyst along with the carbon 

feedstock.  

 The latter mechanism is known to open up possibilities of “in-flight” catalyst 

treatment that accommodates for synthesis of carbon nanotubes inside the plasma reactor 

and deposits the catalyst particle along with the carbon material.  

 The other way is based upon the activation of the catalyst already deposited on the 

substrate. This process triggers the growth of nanostructures outside the reactor and on 

the surfaces that come in contact with the plasma. To produce carbon-based 

nanocrystaline materials, heated catalyst must be submerged into a jet of plasma 

containing radicals necessary for self-assembled growth of carbon nanostructure. The 

electrodes used to generate plasma can serve as a substrate for carbon deposition.  

 Both processes require the presence of carbon feedstock within the plasma but 

differ in the location where the metal catalyst initiates the nanotube growth. The gas 

initially ionized is usually Ar or He. Such gas is called a carrier gas since it serves as a 

buffer for subsequent chemistry introduction as well as a source of energy for feedstock 

decomposition. Inert gases are selected because they are not reactive and generally safe to 

work with under most conditions.   
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  In both cases, the surface area of the catalyst is the factor limiting the volume of 

the carbon nanotubes grown. Fine tuning the diameter of the catalyst particle is an 

important practice that requires meticulous attention for a successful deposition result. 

Finely tuned ratios of involved chemicals and ionizing energies can trigger multitude of 

wanted and unwanted disassociation processes. Selecting the appropriate ones is the key 

for depositing a nanostructured material.  

2.2.2. Nanocrystaline metal oxides 

 Nanocrystaline metal oxides are important because they offer a number of unique 

electrocromic, photochromic and optical properties. Molybdenum oxide for example    

are recognized as a promising material for a rapidly increasing number of applications 

including, e.g., chemical synthesis, petroleum refining, sensors, optoelectronic devices, 

catalysis, smart windows, display, supercapacitor and battery applications [7]. Using 

microplasma, particles of nanocrystaline oxides can be formed with low processing 

temperatures. If the discharge parameters are tuned properly the shape and size of the 

resultant nanoparticles can be controlled. Oxygen and source of metal atoms must be 

present within the discharge that is used for substrate processing.   

 Metal oxides find use in many applications, for example systems for 

photochemical splitting of water into H2 and O2 molecules are based on TiO2 catalysts. 

Such systems usually employ solar energy in order to be powered [8]. 

 Nanocrystaline metal oxides find use as transparent conducting oxides as well as 

in gas sensor material. For example, SnO2 nanoparticles are extremely important sensor 

material practical for detection of leakage of inflammable gases due to their high 

sensitivity to low gas concentration [9]. 



 
 

 19 

 Battery electrodes made from Ni and Mo oxides can increase battery’s 

electrochemical capacities and increase charging rates [10], [11]. 

3. Description of atmospheric microplasma system 

3.1. System overview and design 

 System capable of generating atmospheric plasmas is assembled. This system is 

adaptable to some of ways currently investigated by the scientific community to produce 

crystalline carbon-based materials and metal-oxide nanostructures. To understand 

whether they are capable of generating and sustaining a microplasma, a preliminary 

classification of its competence is carried out. Such initial study allows exploration of 

operating conditions of the system and finding approximate parameters for 

nanofabrication.  

 The entire system is fairly complex however a number of major components can 

be clearly distinguished. Fig. 3.1 conveys the way these components interact and the 

overview of the system can be seen in Fig. 3.2. Unlike, any other block, plasma reactor is 

the only block easily swappable. The rest is permanently in place to service the plasma 

reactor. 
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Figure 3.1 Diagram of the experimental setup 
 

 

Figure 3.2 Photograph of the experimental setup 
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 Plasma discharges operating at atmospheric pressure are generally driven by 

sinusoidal voltages at frequencies ranging from 50 Hz up to RF and microwaves. [12] To 

address this design requirement, the system is based around 13.56 MHz radio frequency 

(RF) power source shown in Figure 3.3.a. Only one of the generators of this dual unit is 

used to power the plasma reactor. The lowest power that can be supplied by this source is 

10 Watts. The maximum of 2000 Watts allowed can be stepped up by increments of 5 

Watts. Since, the goal of this development is to produce a system that is also power 

efficient only lower ranges of power are explored. Also, higher power may not be 

suitable for generation of non-thermal stable discharge. 

  An automatic matching network (Fig 3.3.b) is used to manage the electrical power 

delivered from the power generator to the plasma reactor. When the system is 

operational, this unit adjusts its internal impedance to match the 50 Ω impedance required 

to minimize the reflected power. The matching can be accomplished in two ways: manual 

and automatic. Automatic matching uses algorithms in order to accommodate the 

complex impedance while manual matching is used for fine-tuning of unstable glow 

discharges and when automatic matching fails.  

 For characterization purposes the amount of power is monitored with V-I probe 

and impedance analyzer. This instrument shown in Figure 3.3 (c), (d) allows measuring 

and logging voltage-current characteristics of the plasma as well as its complex 

impedance. Using this instrument electrical data is collected based upon which 

information about the regimes of plasma, attainable by this system, is derived.  
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Figure 3.3 Power block a) CDX-2000 13.56MHz Dual RF Generator b) automatic matching network 
c) VI probe d) impedance analyzer 

  
 The distribution and mixing of the gases and their delivery to the plasma reactor is 

accomplished through a network of piping, plumbing fittings and valves managed by four 

mass flow controllers and a readout unit (Fig 3.4.a, b). The plasma chemistry, apparent 

due to the decomposition of the precursor inside the reactor, is a result of the incoming 

flux of the gases that an operator selects at the readout unit 
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Figure 3.4 Gas distribution block a) Mass flow controllers b) readout unit 
 
 This gas delivery system also includes a 294 cm3 bubbler (Fig. 3.5.a) that is used 

for evaporation of liquids and water. Heating the bubbler containing a volatile solution 

produces vapor that can be used as a precursor gas for deposition.  Using a bubbler is a 

potential for generating hydrogen and oxygen ions. Boiling water can provide a source of 

hydrogen that could be ionized within the reactor. Water can also serve as a source for 

oxygen for oxidation of metals for metal oxide deposition. The gas lines and the bubbler 

are heated using line heater that was put together for this study (Fig. 3.5.b). This self-

adjusting unit assists in production of vapor precursors. 
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Figure 3.5 Gas distribution block a) bubbler b) line heater 
 
 The placement of the plasma reactor in relation to the substrate can be adjusted 

using a micropositioner shown in Fig. 3.6. This device allows controlling the distance 

between the reactor and the target substrate.  
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Figure 3.6 Micropostitioning manipulator 
 
 In order to assist the dissociative and formative processes at the sample's surface a 

hot plate (Fig. 3.7) is used to control the substrate’s temperature. Using this unit 

temperature below 350 °C can be attained.  
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Figure 3.7 Hot plate 

3.2. Microplasma reactors  

 Four types of microplasma reactors are considered in this investigation.  These 

can be swapped around and are application specific. The first type of reactor called 

"linear plasma head" (LPH) was mainly used for basic investigation of the microplasma 

regime. The other three types have been used for nanofabrication.  These reactors were 

designed in such a way that they integrate with the power and gas components previously 

described with minimal system adjustments.   

3.2.1. Linear plasma head reactor  

 This reactor is of planar geometry and consists of two parallel aluminium plates 

separated by sub-millimeter distance. For the purpose of investigating microplasma, this 

distance, also referred to as the electrode spacing, can be varied. The maximum electrode 

distance that can be achieved through an adjustment is about a couple of millimeters and 



 
 

 27 

the minimum is around 100 µm.  The minimum distance is dictated by the surface 

roughness of the aluminum plates. The presented investigation for this reactor was 

carried out only for distances inside 100-800 µm range. 

 

Figure 3.8 Working principle of a linear plasma head 
 
 The electrode width and length are fixed at 5 and 10 cm respectively. Current and 

power densities established in the reactor can be estimated using the surface area of the 

electrodes and the current flow through the plasma.  



 
 

 28 

 

Figure 3.9 Photo of linear plasma head 
 
 With the ability to measure the voltage-current characteristics of the plasma, other 

plasma characteristics such as the thickness of the plasma sheath can be calculated. This 

reactor is well fitted for investigation of the microplasma regime.  

 In this setup electric field needed to ionize gas is established perpendicular to the 

gas flow. It is worthwhile of noting, that this reactor allowed mixing of relatively large 

volumes of gases. The gas-mixing scheme for this reactor is shown in Fig. 3.10. This 

demonstrates the constraints put on this reactor by the gas equipment as well as the range 

of available gas combinations. The difficulty of the characterization of this setup is not 

only limited to the large number of possible gas combination. Factors such as electrode 

spacing and applied power also play a significant role and must be also included in the 

consideration. Before the investigation of the properties of the plasma could be carried 

out only those parameters are selected that produce a stable plasma discharge.    
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Figure 3.10 Gas mixing in linear plasma head 
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3.2.2. Capillary plasma reactors  

 This type of reactor is formed inside of a needle-like assembly and is a subject to 

number of unique ways in which it can be powered. The design of the reactor is based on 

concentrically nested quartz and metal cylindrical tubing and wire. In particular three 

configurations that adapted three different powering schemes are explored. These are 

tube-ring (Fig. 3.11.a), ring-wire (Fig. 3.11.b) and patch-tube (Fig. 3.11.c). 

 

Figure 3.11 Powering schemes of microplasma reactors a) tube-ring, b) ring-wire, c) patch-tube 
 
 In the first two configurations, the assembly is inserted into a copper ring 

electrode and is put together in such a way that the ring’s edge is at a distance from the 

end of the inside electrode. Plasma is generated within the electrode spacing and this 
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distance is comparable to electrode spacing of the linear plasma head. Depending on the 

configuration, the ring can serve as either the powered or the grounded electrode. The gap 

between the electrodes can be adjusted using the micropostioning manipulator mentioned 

previously in section 3.2. 

 The first two arrangements allows generation of Ar-based plasmas. No argon 

microplasma can be generated using the linear plasma head set up since it does not allow 

to decrease the electrode spacing sufficiently to small dimension at which the ionization 

energy is efficiently distributed among the plasma constituents. 

 

Figure 3.12 Photo of capillary reactor with tube-ring powering scheme 
 
 By investing into quartz capillary of different diameters reactor size can 

be altered. Different metals and diameters can be used for the tube electrodes. For the 

ring-wire configuration, the wire-electrode gauge and composition can be varied as well. 

Capillary plasma reactors are disposable and offer advantages for nanofabrication in 
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comparison to the linear plasma head since they address the issues found with linear 

model described in the nanofabrication section of this report.  

 These reactors can be started with low volumes of gas mixtures (< 20 sccm) and 

small amount of applied power. Since power and gas are conserved, the advantage of 

these assemblies for thin film production is noted. However, gas flow to area coverage 

must be investigated. In the ring-wire configuration, radicals are produced by 

decomposition of the wire’s surface and are used for deposition at the remote substrate. 

The wire can be of different composition and gauge hence yielding various plasma 

chemistries. Molybdenum, nickel and titanium are examples of some metal that were 

investigated for the ground electrode compostion.  

 

Figure 3.13 Capillary plasma reactor in operation 
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 For this study, quartz tubing of 700 µm inner diameter and of 300 µm wall 

thickness was used. Nickel is chosen to be the material of the inner tube electrode. The 

available inner tubing diameter is 150 µm with wall thickness of 450 µm. 

 Since this reactor is fragile and the electrode size only allows ionizing small 

volume of gas, mass flow controllers only of small resolution can be used. The 

complexity of the mixing scheme shown in Fig. 3.13 provides innumerable amount of 

recipes that expands as factors such as experiment time, electrode spacing, plasma power, 

electrode composition are considered.  

 

Figure 3.14 Available gas flows for capillary reactors 
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3.3. Diagnostics  

 A range of stable plasma operation parameters can be established for various 

plasma chemistries produced inside the reactors. Flow of the current through the gas can 

be controlled by application of voltage. Knowing the voltage and current characteristics 

of plasma can help determining electron temperature and density that are useful for 

plasma characterization. The electrical characteristics of the produced plasma is 

measured by the V-I probe which was described previously. 

 Producing V-I curves for different discharges is not the only way to study the 

characteristics of the plasma discharge. Another method available for this study is 

spectral characterization or optical emission spectroscopy (OES). This technique is 

relatively inexpensive and convenient means of studying plasma. Qualitative overview of 

plasma composition can be obtained quickly from line/band intensities and some more 

elaborated analysis can provide information about various excitation/ionization processes 

and temperatures in the plasma. It is important to note that controlling the deposition 

process by monitoring the optical emission of particular species can allow obtaining good 

reproducibility of the undertaken deposition process [13].  

 Concentrations of reactive species can be characterized. Detection of impurities 

within the plasma discharge can also be investigated using this technique. For instance, 

when the gas flow rate is low, air leaks into the reactor. Its content must be investigated 

since it has an effect on the breakdown voltage of the gas and thus on consequent plasma 

behaviour. Leakage of air in the system can be detected from the emission intensities of 

Nitrogen bands.  
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 Finally, temperature probes have been used to measure and monitor the gas 

temperature at the outlet of each plasma reactor and at the substrate. 

4. Basic plasma characterization 

4.1. Investigation of the microplasma regime  

 The basic investigation of microplasma properties is carried out using the linear 

plasma head reactor 

 In theory, when a plasma discharge is produced two main regions are formed. 

One is a region of high space charge gradient called sheath. The other is the plasma’s 

bulk. Sheath develops at the surface where plasma interacts with an electrode. It is a 

positively charged layer and mostly made up from ions.  The bulk of the plasma consists 

of neutral gas molecules, electrons as well as other species. When a plasma discharge is 

produced between two electrodes, two sheath regions are developed and the bulk plasma 

is contained between them (Fig. 4.1). 

 As long as the sheath thickness is adequate, electrons can reach the gas ionization 

energy and create new electron-ion pairs that assist in sustaining a stable plasma 

discharge. When the electrode spacing is significantly large the developed sheath is fully 

formed and its characteristics depend solely on the current density at the electrode. The 

thickness of the bulk region is dependent on the variance in the electrode spacing. 

Increasing the current density of the discharge decreases the sheath thickness and 

increases the size of the bulk.  
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Figure 4.1 Glow discharge region formation 
 
 Usually, the thickness of the sheath is fixed and independent of the electrode 

spacing. However, it has been observed that shrinking the distance between the electrodes 

containing the bulk can also affect the sheath structure in some cases. Decreasing this 

distance to dimensions comparable to the thickness of the sheath can prevent the full 

development of the regions’ structure and give plasma unique characteristics. When the 

electrode distance is decreased, the electron trapping is weakened and the discharge 

structure deviates from the basic sheath-bulk composition of glow discharges and their 

physical properties depart from the conventional discharges produced under atmospheric 

pressure [4]. 
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 In our experiments at sub-millimetre electrode spacings, we have observed that 

the sheath structure is dependent on the dimension of the plasma confinement indicating 

a transition to a new regime with unique characteristic features. This regime is what we 

call a microplasma regime.  

 To investigate microplasma properties, current and voltage of the discharge were 

measured and the relationship between the two was plotted in Fig. 4.2. In this figure, the 

two types of atmospheric glow are apparent. It is evident that for the electrodes spacing 

that falls within the range from 500 to 800 µm, the voltage developed across the sheaths 

is independent on electrode the separation. The voltages developed in the discharge 

produced in the linear head with electrode spacing of 500, 600, 700 and 800 µm did not 

vary by much. However, as the electrode distance was decreased to smaller distances a 

change in voltage behavior is observed and it follows the spacing scaling. The voltages 

developed for 100 and 250 µm electrode spacing do not consolidate in the similar region 

of the graph showing a transition of the classic atmospheric plasma to atmospheric 

microplasma.  
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Figure 4.2 Voltage developed across plasma discharge 
 
 RF plasma bulk and sheaths can be characterized by their thickness, voltage and 

electric field. Bulk is the resistive component of the plasma where sheath is the capacitive 

one. The thickness of the sheath can be determined since the geometry of the electrodes is 

known and the capacitance of the plasma is determined with the V-I measurements. The 

capacitance of a parallel-plate capacitor can be estimated using  

€ 

C = ε
A
d

, 

where A is the area of the electrode, and d is the thickness of the sheath. It is assumed 

that the permittivity of the sheath, ε, is that of vacuum. Since, both the capacitance and 

the area of electrodes are known the sheath thickness can be estimated for the plasma 
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produced in the LPH reactor with different electrode spacing if it is assumed to behave as 

a capacitor.  

 

Figure 4.3 Developed sheath thickness 
 
 Using Fig. 4.3, it can be concluded that for a given electrode gap, the partition of 

the bulk and sheath plasma regions depends on current density. The sheath thickness is 

found to diminish with the increase in current density. The effect of the electrode gap on 

the disruption of the sheath-bulk equilibrium is found to take place when the electrode 

gap employed has fallen to smaller sizes, 100 µm and 250 µm.  

 The development of the electric field across the bulk can be also calculated. The 

bulk size can be determined by subtracting the known sheath thickness from the electrode 

spacing. The voltage across the bulk can be determined by considering the Ohm’s law. 
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The current though the plasma is constant and at the bulk it is equal to the current 

developed between the electrodes as the voltage is applied. This value is determined by 

the measurement with the V-I probe. The bulk is the resistive component of the plasma 

and its resistance is the real part of the complex impedance of the plasma. Since the V-I 

probe can measure, the magnitude and the phase of the impedance, the resistance of the 

bulk can be calculated. A number for the voltage developed across the bulk can be found, 

once the determined resistance is multiplied by the developed current. The electric field is 

found by dividing the voltage established across the bulk by its width.  

 In Fig 4.4, curves produced for gaps lower than 250 µm are overlapping. The 

electric field developed across the bulk was found to be highest at smaller electrode 

distance. However, when the gap was sufficiently large the electric field developed across 

the bulk was independent of the electrode spacing. Higher electric field cause electrons to 

obtain higher kinetic energy thus making plasmas more reactive. 
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Figure 4.4 Electric field across the plasma bulk 
 
 In order to obtain an informative result for this study, only constant gas velocities 

are considered. The flow of the gas through the reactor therefore is scaled in such a way 

that the velocity remains steady. During the experiment, the flow rate is regulated to 

reflect the adjustment in the electrode spacing.  

4.2.  Gas temperature measurement and verification of non-

equilibrium 

 To confirm that the generated microplasma was non-thermal, temperature 

measurements of the effluent were taken. The data was collected for both linear plasma 

head and capillary reactors. 
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Figure 4.5 Helium effluent temperature measurements in linear plasma head 
  

 Fig. 4.5 demonstrates an approximation of linear behavior observed in the 

relationship between the applied power and the developed gas temperature in helium 

plasma produced in linear head. Changing the gas velocity did not produce any 

significant deviation in temperature characteristic and the temperature value obtained at 

different power densities were similar for different gas flows. Light emission was 

observed leading to conclusion that electrons acquired enough of kinetic energy to 

produce excited states that were able to relax and emit photons. This was also confirmed 

by the data collected with OES. Overall, gas temperature was low and the plasma 

generated in linear head was considered non-thermal.  
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 Argon glow could not be produced successfully inside the linear plasma head 

even at smallest gap resolution used for helium. Ionization/excitation of helium and argon 

occurs in different ways and this can explain the circumstance. Energies needed to ionize 

and to excite helium are fairly close. However, argon ionization is a significantly more 

complicated process than that of helium. The energy usually spent for ionization also 

must accommodate most of the possible ways of excitation before the discharge is 

produced. In helium plasma, this is achieved more readily than in argon. However, the 

capillary setups were able to address this challenge. It is reasonable to note that helium is 

more expensive than argon that is why it is not preferred for manufacturing 

 Since the capillary reactor was designated for manufacturing, argon plasma was 

considered and measurements were taken when stable discharge was produced. For this 

reactor low gas flow was considered (150 sccm) and the powering scheme investigated 

was tube-ring. It was assumed that the other powering schemes would produce similar 

results since the amount of power used for powering the reactor did not vary between the 

configurations. 
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Figure 4.6 Argon effluent temperature measurements for capillary setup 
 
 Capillary plasma reactor was able to produce non-thermal plasma. Fig. 4.6 shows 

linear increase in gas temperature with of supplied power. Rapidity in the increase of the 

gas temperature was explained due to contribution from the resistive heating of the 

powered electrode. The gas temperature was found to be linearly dependent on the power 

applied to the gas. Each value was obtained as the temperature stabilized over time. 

Helium data could not be collected due to unexpected electrical interference of the 

temperature probe with the electromagnetic field of the plasma. 
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4.3. Effect of precursor plasma non-equilibrium  

 It was observed that addition of methane precursor to helium plasma generated 

inside the linear plasma head had no significant effect on the developed gas temperature. 

Different mixture ratios have been investigated and the linear relationship between the 

applied power and the temperature was preserved. Fig. 4.7 provides the data for the 

temperature measurements carried at the outlet of the reactor when 0.5 vol%, 1.0 vol%, 

1.5 vol%, and 2.0 vol% methane/helium mixtures were ionized.   

 

Figure 4.7 Effect of precursor on effluent temperature 
 
Temperature observations allowed confirm non-equilibrium within the plasma equipping 

the system ready for nanofabrication. 
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4.4. Spectral analysis of reactive plasma components  

 Decomposition of acetylene and methane feedstock inside the argon plasma was 

scrutinized for presence of the reactive species. The emitted lines resulted mainly from 

the dissociative excitation of the CH4/C2H2 molecules and from electron impact 

excitation of the radicals and atoms. One of the excitation path most commonly observed 

for CH4 is  

CH4 + e → CH* + H2 + H + e 

 Relative concentration of some of these species could be relatively estimated 

using the spectral data. Fig. 4.8 shows the decomposition of argon inside the capillary 

plasma reactor powered with 40 watts of applied power. This confirmed our ability to 

produce plasma using the capillary reactor and production of reactive species capable to 

ionize the feedstock.  
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Figure 4.8 Argon emission spectrum  
  

Emission species Wavelength, nm Normalized 

intensity 

698.37 0.88 

765.67 1.00 

Ar 

774.45 0.99 

Table 1 Reactive species summary 
 
 Our ability to decompose acetylene and methane precursors was verified as well. 

Spectral data was attained for ionized argon/methane (Fig. 4.10) and argon/acetylene 

(Fig. 4.12) mixtures inside the capillary reactor in tube-ring powering configuration. Both 

spectrums demonstrated that the precursor gases were disassociated successfully and 
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yielded CH radicals needed for production of carbon-based material.  Some peaks 

observed between the 450 and 500 nm point out to formation of hydrogen species within 

the gas discharge. It is thought that increasing their concentration can enable plasma to 

produce hydrogen ions that can play a role for treating the catalysts for carbon nanotube 

synthesis as well as for cleaning the plasma reactor during the deposition. Such data can 

also be used to estimate and tune deposition rates of the nanomaterials.  

 

Figure 4.9 Argon/methane mixture emission spectrum 
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Emission species Wavelength, nm 
Normalized 

intensity 

698.37 0.47 

765.67 1.00 Ar 

774.45 0.56 

387.64 0.14 

388.43 0.17 CH 

389.74 0.13 

N 359.15 0.03 

Table 2 Reactive species summary 
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Figure 4.10 Argon/methane mixture emission spectrum 
  

Emission species Wavelength, nm 
Normalized 

intensity 

698.37 0.88 

765.67 1.00 Ar 

774.45 0.99 

388.43 0.09 

431.50 0.04 CH 

432.81 0.07 

N 359.15 0.03 

Table 3 Reactive species summary 
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 The mixtures used in this study were ionized with 30 Watts of applied power. The 

flow rate of argon used for data collection was 100 sccm producing a 1 vol% dilute 

mixture of methane or acetylene. 

 Presence of N ions was observed during the decomposition of the precursor 

however no N peaks are seen inside the argon plasma. Perhaps, addition of precursor 

opens up pathways for ionization of nitrogen that leaks into the reactors during 

processing. 

 The intensities of the peaks were found to vary linearly with the applied power, 

however no detailed study of the evolution behavior of the spectra with respect to power 

and gas flow has been carried out. All peaks were identified using NIST Atomic Spectra 

Database and publications available in plasma research [14], [15].  

5. Fabrication and characterization of nanostructures 

5.1.  Introduction and sample preparation 

 In order to ignite plasma, electrode conditioning was found to be a necessary 

initial step.  This preliminary preparation of the plasma reactor is thought to be viable for 

removing parasitic capacitance present at the electrode. The removal was carried out 

through application of electric power that exceeded the reactor’s ignition power. 

 To ensure that the contamination was not hindering the deposition of materials, 

the substrates were wiped with acetone. Two types of samples were considered for 

experimentation with the microplasma treatment.  For production of nanocrystaline metal 

oxides a bare silicon substrate was processed.  A substrate covered with a thin layer of 
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oxide and Fe-Ni was used for production of carbon materials. To enhance the activation 

of the catalyst, the samples in the latter case were heated with the available hot plate prior 

to the deposition. To produce nanocrystaline metal oxide, the wire electrode of the 

capillary reactor in ring-wire configuration is cleaned with acetone prior to assembly.  

 During processing of the substrates, unwanted carbon deposition on the electrodes 

and in the reactor’s inner walls was significant and dictated the number of times a 

reactor could be used before cleaning or replacement of components was required. No 

functional way to clean either of the plasma reactors was proposed other than using 

reactive hydrogen or oxygen species to remove reactor contaminants.  Reactive 

hydrogen ions are known for their ability of etching amorphous carbon efficiently but 

no efficient parameters have been found under which adequate densities of hydrogen 

species could be generated from either methane or acetylene.  

 Contamination observed inside the linear plasma head during the feedstock 

decomposition was so significant that the plasma would extinguish in some cases within 

a few minutes of existence. Unwanted carbon deposition produced on the surface of the 

electrodes during the nanofabrication experiments is shown in Fig. 5.1. 
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Figure 5.1 Contamination of linear plasma head electrodes  
  

 Capillary reactors would also become contaminated with use. However, using a 

new capillary reactor for processing each sample addressed this challenge and a set of 

new disposable reactors was manufactured each time prior to the deposition 

experiments.  

5.2. Carbon nanoparticles  

 Despite of the observed contamination, Ni-Fe bearing substrates were treated with 

linear plasma head. The samples were heated to 350 °C. Only those flow ratios could be 

used for deposition that could maintain stable plasma. For methane, plasma glow can be 

obtained only at ratio smaller than 2.0 vol% in a mixture with helium. The constraints of 

the mass flow controllers enabled only small window of exploration, luckily it allowed 

for deposition of brown film with acetylene precursor.  

 A sample with was produced with this range in mind. A network of carbon 

structures with nanometer feature size was observed upon the microscopic investigation. 

Fig. 5.2 shows the size of the network and give the relative scale by which the width of 
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the single strand can be estimated. It is apparent that the produced strands are much 

narrower than the micrometer mark provided to describe the depositions scale. 

 

Figure 5.2 SEM analysis of carbon deposition produced with acetylene precursor 
 
This sample was prepared using 1.0 vol % mixture of acetylene and helium in the linear 

plasma head at 30 watts of power.  

 TEM analysis (Fig. 5.3) of the material of this sample showed that it consisted of 

carbon nanoparticles of sizes smaller than 100 nm. Electron diffraction pattern showed 

that the material was crystalline. 
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Figure 5.3 TEM analysis of deposition produced with acetylene precursor 

 

5.3. Progress in carbon nanotube fabrication 

 With the aim of producing carbon nanotubes, deposition of carbon-based 

materials is also attempted using the capillary plasma reactor in tube-ring configuration. 

Samples in this case were also heated to 350 °C. 
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Figure 5.4 Carbon deposition on Ni-Fe substrate 
 
 Carbon deposition was obtained at the samples (Fig. 5.4) processed with plasma 

carrying methane and xylene precursors. In order to produce these samples a vapor of 

mixture of xylene solvent and ferrocene powder was added to the argon plasma. Both 

substrates shown in Fig 5.5 and 5.6 were processed for 1 minute and plasma at 30 watts. 

A 1.0 vol % mixture of methane and argon was used for the first case and 50-50 mixture 

of helium and helium carrying xylene vapor for the second case. Newly manufactured 

reactor was used for each run. The set up of the gas delivery system did not allow 

production of carbon material with argon when xylene precursor is employed. 
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Figure 5.5 Carbon particle deposition produced with methane precursor 
 

 

Figure 5.6 Carbon particle depostion produced with xylene precursor 
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Figure 5.7 Raman spectroscopy of carbon particle 
 
 Energy shifts detected by Raman spectroscopy at the 1588 cm-1 and 2640 cm-1 

peaks (Fig 5.7) describe the first of the samples containing crystalline carbon. Highly 

ordered graphite is known to exhibit 1582 cm-1 band and also show second order features 

in ranges of 2400 and 3300 cm-1. The obtained results are correlated with the reported 

vibrational modes for graphitic materials found in literature [16].  

 Microscopic analysis of electrode’s tip has shown a deposition of fibrous material 

(Fig. 5.8).  Tubular shape of this material resembles a carbon nanotube however no TEM 

analysis was carried out to determine whether the produced structures were hollow. 
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Figure 5.8 Carbon deposition at the electrode of the capillary reactor 
 
 Carbon nanotubes were not produced with certainty and further work is needed to 

explore fabrication parameter range.  

5.4. Metal and metal oxide deposition 

Deposition of metals was undertaken using a capillary reactor in ring-wire configuration. 

For this purpose three types of wire were used which included Ti, Ni and Mo. For each 

run the substrate was processed for 1 minute and was not heated. The reactors with three 

types of wire electrode yielded deposition (Fig. 5.9). It has been observed that when a 

thick wire of Ni (0.15 mm) was used as the reactor’s electrode no film was deposited. 

However, when thinner wire was used 0.05 mm some deposition was attained (Fig. 5.10). 



 
 

 60 

Argon was flown at 150 sccm for both cases and the power to initiate plasma was 30 

Watts. 

 

Figure 5.9 Metal deposition on Si substrate 
 

 

Figure 5.10 Deposited Ni film 
 
 Another metal deposition with the same gas and power parameters was attempted 

with molybdenum wire in place. Plasma did not ignite with this gas flow, however, 

decreasing it to 75 sccm yielded stable discharge. The gauge of the wire studied was 0.07 

mm and this experiment has produced a film of structures (Fig. 5.10).  
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Figure 5.11 Deposited Mo film 
 
 Upon TEM analysis the film was found to consist of molybdenum nanorods 

shown in Fig. 5.12. According to the electron diffraction pattern, the produced material 

was crystalline MoO3. The oxygen to produce this material was thought to come from the 

air surrounding the sample during processing. The average diameter of the nanorod is 

roughly estimated to fall below 20 nm. 

 



 
 

 62 

        

Figure 5.12 Molybdenum oxide nanorods 
 
 Since atmospheric microplasmas are highly reactive small portion of the electrode 

was consumed during processing, this also limited reactors use because the placement of 

the ring electrode had to be adjusted to maintain fixed electrode spacing. 
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5.5. Metal etching 

 

Figure 5.13 Etching of nickel film achieved using atmospheric microplasma 
 
 At high power argon microplasma was capable of etching the nickel-iron film 

deposited on a silicon substrate (Fig. 5.13). Upon microscopic analysis no thermal 

damage was observed leading to a speculation that the etching was completed through a 

non-thermal reactive mechanism. Also, as it was stated above in Section 4.2, the 

measured temperature of the ionized effluent was not sufficiently high to deteriorate 

nickel film thermally. To achieve etching, the nickel substrate was processed with argon 

plasma. Capillary reactor in tube-ring powering configuration was used to ionize argon 

flowing at rate of 100 sccm. Power applied to the reactor was 40 Watts and the sample 

was processed for 1 minute. Etching trials on similar nickel samples showed that 
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increasing the power and the gas flow supplied to the reactor gave an increase in the 

surface area etched away. 

6. Conclusion 

6.1. Summary 

 A setup that can accommodate different types of plasma reactors was put 

together. The analysis of the electrical characteristics of the plasma generated inside these 

reactors identified a unique regime of plasma operation. This regime, that we call 

microplasma, was investigated as a viable solution for producing nanostructrured and 

crystalline materials under atmospheric condition.     

 Using this setup, a number of advanced materials were deposited on silicon 

samples. Analysis with Raman spectroscopy and transmission electron microscopy found 

that the deposited carbon based materials were crystalline in nature. Molybdenum oxide 

deposited with this system was shown to feature structures of nanoscale dimensions.  

    

6.2. Challenges and future work 

 During this study, various factors affecting the produced plasma discharges were 

observed. For a successful employment of microplasma in manufacturing, attention must 

be paid to design of the reactors. In particular, attention to electrode placement during the 

assembly of the capillary reactor must be paid. This practice can enable production of 

plasma characteristics invariable run-to-run. Precision in the electrode spacing can be 

assured, if investment into appropriate advanced micropositioning equipment is made. 
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 Since the deposition of the metal oxide was found to relate to the electrode’s 

geometry, an advanced study must be carried to determine this dependency. Experiments 

that consider different gauges of the electrode wire in the ring-wire configuration must be 

conducted. Once, the invariability in setup of the capillary reactors is established, a more 

detailed study of the carrier/precursor mixing ratios can be performed so the correlation 

between the plasma processes and the resulting deposition is more explicit.   

 In situ cleaning of the reactors must be worked out in order to conserve time and 

materials used up for manufacturing of new capillary reactors. To achieve this the system 

must be adapted for safe handling of hydrogen gas. The process of generating hydrogen 

ions from the hydrocarbon precursor can also be investigated. For continuation of the 

study without the in-situ cleaning, a process of making the capillary reactors with 

different powering configurations must be made more efficient.  

 Also possibility of using capillary reactors bundled in an array to increase 

processing area of a substrate must be explored. For this purpose, new powering and gas 

delivery schemes must be considered and efficiency of such setup investigated. If 

different gases are supplied to different rows of the array multiple processing steps can be 

carried out sequentially as the bundle is scanned over the target surface. 
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APPENDIX 

 Produced samples were analyzed using metrology equipment available at 

Semiconductor and Microsystems Fabrication Laboratory and NanoImaging Laboratory 

at Rochester Institute of Technology as well as facilities at University of Ulster. Some 

instruments used for sample analysis were scanning electron microscope (SEM), 

transmission electron microscope (TEM) and electron diffraction technique, Raman 

spectroscope, and an optical microscope. 

 The scanning electron microscope (SEM) is a type of electron microscope that 

images the sample surface by scanning it with a high-energy beam of electrons in a raster 

scan pattern. The electrons interact with the atoms that make up the sample producing 

signals that contain information about the sample's surface topography, composition and 

other properties such as electrical conductivity. For the investigation JEOL JSM-6400V 

SEM, Amray 1830 SEM, and LEO EVO50 SEM were used. 

 Transmission electron microscopy (TEM) is a microscopy technique whereby a 

beam of electrons is transmitted through an ultra thin specimen, interacting with the 

specimen as it passes through. An image is formed from the interaction of the electrons 

transmitted through the specimen; the image is magnified and focused onto an imaging 

device, such as a fluorescent screen, on a layer of photographic film, or to be detected by 

a sensor such as a CCD camera. In order to scrutinize samples JEOL JEM-100CXII 

tunnelling electron microscope was used electron diffraction patterning was also 

completed using this tool. 
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 Raman spectroscopy is a spectroscopic technique used in condensed matter 

physics and chemistry to study vibrational, rotational, and other low-frequency modes in 

a system. It relies on inelastic scattering, or Raman scattering, of monochromatic light, 

usually from a laser in the visible, near infrared, or near ultraviolet range. The laser light 

interacts with phonons or other excitations in the system, resulting in the energy of the 

laser photons being shifted up or down. The shift in energy gives information about the 

phonon modes in the system. 
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