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Abstract 
 

 

Devices capable of generating microscale plasma (microplasma) were designed, fabricated and 

characterized.  The microplasma was employed to disassociate hydrogen from hydrogen- 

constituent gases. The devices were designed such that the Ignition Voltage of plasma was low, 

at atmospheric pressure and non thermal in nature. The devices were tested while Argon (Ar) or 

Helium (He) was used as carrier gas. Two designs were conceived: a coplanar device and a 

parallel plate electrode device. The current-voltage (I-V) relationship and optical emission 

spectra (OES) characteristics were collected for the two designs with both gases. A fuel cell was 

used to verify the hydrogen generation from this process. Finally, a coil design for testing RF- 

powered device was fabricated and tested under original conditions. All of the results, fabrication 

methods and plasma analysis are explained. 
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Chapter 1 - Introduction 

The rise in global energy demand, combined with depleting reserves of fossil fuels and 

environmental considerations, have increased interest in alternative sources of energy with 

hydrogen fuel being one of the alternatives. At present, hydrogen generation (hydrogen 

reforming) mostly resorts to thermo-chemical conversion [1,2] − an energy intensive, but 

inefficient process. The reaction occurs at the catalytic surface and not in the whole reformer 

chamber. Plasma-based reformers can offer a great advantage and potential for hydrogen 

generation, in which volume reactivity exists and energy coupling is controlled through the 

application of electromagnetic fields, thereby reducing energy dissipation. Storage of hydrogen 

using conventional methods is not efficient. A gram of hydrogen gas occupies about 11 liters 

(2.9 gallons) of space at atmospheric pressure. For convenience, the gas must be intensely 

pressurized to several hundred atmospheres then stored in a pressure vessel. In liquid form, 

hydrogen can only be stored under cryogenic temperatures. Thus, generating hydrogen from 

constituent gases as and when required solves storage and transportation issues. Hydrogen fuel 

for mobile applications is a topic being widely researched. The ability to generate hydrogen as 

and when required by convenient means make hydrogen fuel safe and convenient.  This chapter 

discusses, in brief, the technique of hydrogen reforming with different processes on a large scale 

as well as the research being made to miniaturize the process and research being done in 

microplasma devices.   
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1.1  Hydrogen Reforming 

Hydrogen is a colorless and odorless gas. It is sparingly soluble in water and the 

solubility is not affected by change of temperature. It is a better conductor of heat than other 

gases, with its conductivity being about five times that of air. It reacts chemically with most 

elements; forms compounds with a large number of elements; and in many cases, compounds are 

formed by the direct combination of the elements 

Hydrogen demand, at present, is met by hydrogen production from fossil fuels. Most of 

the refineries are located in remote areas. The hydrogen produced must be delivered to the users 

either by truck or via hydrogen pipelines. Due to the inherently low energy density of hydrogen, 

transportation by truck is not a viable option. Hydrogen delivery using pipelines is not cost-

effective either because of the high cost of the pipelines. Therefore, hydrogen production for a 

future hydrogen economy is likely to be accomplished using a distributed system, where 

hydrogen is generated as and when required. 

Hydrogen production in a large scale by separating hydrogen from low-density 

hydrocarbons is known as steam reforming, with steam and high pressure being utilized for 

enabling the process. It is a thermo-chemical conversion; that is, an energy-intensive and 

inefficient process with the conversion taking place on the catalytic surface rather than in the 

whole reformer chamber.  The following are some popular techniques used for hydrogen 

reforming: 

a) Thermal process (heat treatment of hydrogen constituent gases and hydrocarbons) 

b) Electrolytic process (breakdown of water using electricity) 
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c) Photolytic process (use of light energy to split water), 

d) Plasma reforming. 

1.1.1 Thermal/Steam Process 

Steam reforming converts hydrocarbons such as methane present in natural gas into 

hydrogen and carbon monoxide by reaction with steam over a metal catalyst (commonly nickel). 

This process accounts most of the hydrogen generated at present. There are four main steps 

involved in hydrogen steam reforming. They are: 

1. Reformation of Natural Gas - The first step of the process involves natural gas reacting 

with steam at 750-800°C (1380-1470ºF) to produce a synthesis gas (syngas), a mixture 

primarily made up of hydrogen (H2) and carbon monoxide (CO). 

 CH4 + H2O → CO + 3 H2  (1.1) 

2. Shift Reaction - In the second step, known as water gas shift (WGS) reaction, the carbon 

monoxide produced in the first reaction reacts with steam over a catalyst (e.g. nickel) to form 

hydrogen and carbon dioxide (CO2). This process occurs in two stages, consisting of a high 

temperature shift (HTS) at 350ºC (662ºF) and a low temperature shift (LTS) at 190-210ºC 

(374-410ºF). 

 CO + H2O → CO2 + H2 (1.2) 

Hydrogen produced by steam reforming process includes small quantities of carbon 

monoxide, carbon dioxide, and hydrogen sulfide as impurities and, depending on use, may 

require further purification. The primary steps for purification include Feedstock Purification 

and Product Purification. 

  

http://en.wikipedia.org/wiki/Carbon_monoxide
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3. Feedstock Purification - This step removes poisons, including sulfur (S) and chloride (Cl), 

to increase the life of the downstream steam reforming and other catalysts. 

4. Product Purification - This step removes CO2 in a liquid absorption system. The product 

gas undergoes a methanation step to remove residual traces of carbon oxides. Newer SMR 

plants utilize a pressure swing absorption (PSA) unit instead, producing 99.99% pure product 

hydrogen. 

 

Figure 1-1: Steam Reforming 

Coal Gasification, Biomass Gasification, and Natural Gas Reforming all use similar 

techniques for hydrogen generation. Steam process is the most efficient process (85%-90%) 

for large scale hydrogen production [3].  

1.1.2 Electrolytic Process  

Conventional electrolysis uses only electric current to separate hydrogen from water, 

whereas high-temperature electrolysis enhances the efficiency of the process by adding 

substantial external heat (high-temperature steam). A high-temperature system has the potential 

to achieve overall conversion efficiencies of 45–50%, compared to approximately 30% for 

conventional electrolysis [4]. Commercial low temperature electrolyzers have system efficiencies 

of 56–73% (70.1–53.4 kWh/kg hydrogen at 1 atmosphere and 25 
o
C).  

The technology of hydrogen production through conventional water electrolysis is well-

established. As shown in Figure 1-2, electrolysis splits water into its components—hydrogen and 

oxygen—by charging water with an electrical current. The charge breaks the chemical bond 
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between the hydrogen and oxygen and splits apart the atomic components. The resulting ions 

form at two poles: the anode, which is positively charged, and the cathode, which is negatively 

charged. Hydrogen ions gather at the cathode and react with it to form hydrogen gas, which is 

then collected. Oxygen goes through a similar process at the anode. The below stated are the 

standard reactions. 

Anode Reaction:  2H2O → O2 + 4H
+
 + 4e

- 
(1.3) 

Cathode Reaction:  4H
+
 + 4e

-
 → 2H2 (1.4) 

The main drawbacks of conventional electrolysis for large-scale hydrogen production are 

the amount of electricity required for the process and the high cost of membrane production. 

 

Figure 1-2: Electrolytic Reforming [4] 

  



6 

To reduce the required high electricity in electrolysis, High-Temperature Electrolysis 

(HTE) adds in some of the energy needed to split the water as heat instead of electricity; thus, 

reducing the overall energy required. HTE uses a device similar to a Solid Oxide Fuel Cell 

(SOFC). 

As shown in Figure 1-3, the electrolytic cell essentially consists of a solid oxide 

electrolyte with conducting electrodes deposited on either side of the electrolyte. A mixture of 

steam and hydrogen at 750-950ºC is supplied to the anode side of the electrolyte. Oxygen ions 

are drawn through the electrolyte by the electrical potential and combine to oxygen on the 

cathode side. The steam-hydrogen mixture exits and the water and hydrogen gas mixture are 

passed through a separator to separate hydrogen. 

The high-temperature system uses heat directly rather than converting heat to electricity, 

increasing efficiency. This direct use of heat is based on assumption that a readily-available, non 

fossil-fuel-based source of high heat is available. Advantages for high temperature electrolysis 

with a solid oxide based electrolyzer include the use of a solid electrolyte, which, is non-

corrosive and does not experience any liquid and flow distribution problems [5].   

 

Figure 1-3: High Temperature Electrolysis [5] 
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1.1.3 Photolytic Process  

The conversion of solar energy into useful energy forms can generally be divided into 

thermal and photonic processes. In solar thermal processes, solar energy is first converted to 

heat, which can either be used directly and stored in a thermal medium (e.g., water or dry rocks) 

or converted to mechanical and/or electrical energy by an appropriate machine (e.g., a steam 

turbine for the generation of electricity). In solar photonic processes, the solar photons are 

absorbed directly into an absorber, with little heat conversion. The absorber may convert parts of 

the photon energy to electricity (as in a photovoltaic cell), or store part as chemical energy in an 

endergonic chemical reaction (as in photosynthesis or the conversion of water to hydrogen and 

oxygen). Figure 1-4 shows typical process for hydrogen generation using sunlight. [7] 

 

Figure 1-4: Photolytic Reforming 

The other type of photo electrolysis is where a photocathode, a p-type material with 

excess holes, or a photo anode, an n-type of material with excess electrons, is immersed in an 

aqueous electrolyte rather than generating an electric current, where water is split to form 

hydrogen and oxygen. The oxygen and hydrogen gasses are separated, for example, by the use of 

a semi-permeable membrane [8]. 
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Electrolytic and Photolytic processes are incapable of generating hydrogen in large 

quantities. Steam reforming can generate large amounts of hydrogen. Generation of large 

quantities is not required for mobile applications. All of the three processes are inefficient for 

small scale hydrogen generation.   

1.1.4 Plasma Reforming 

In plasma reforming, the overall reforming reactions are the same as conventional 

reforming; however, energy and free radicals used for the reforming reaction are provided by 

plasma typically generated with electricity or heat [21-22]. Plasma has sufficient energy to split 

hydrogen containing molecules such as water. When water or steam is injected with the fuel,  

H, OH, and O radicals in addition to electrons are formed, and create conditions for both 

reductive and oxidative reactions to occur [23]. 

Plasmas can be configured to operate at lower temperatures than traditional reforming 

[22, 24, 25]. In the cases where no catalysts are used to assist the reforming, the process is highly 

sulfur tolerant [22, 24, 25]. The main reported disadvantages include the electrical requirements 

and high electrode erosion at elevated pressures [27]. 

 

Table 1-1: Different Plasma Reformer Efficiencies [26] 

Gliding arc plasma, dielectric barrier discharge (DBD), microwave plasma, and corona 

discharge are four types of non-thermal plasma. The first three types use dynamic discharge to 

create the plasma while the corona discharge generates the plasma with a static discharge. The 
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gliding arc plasma has two diverging electrodes.  An arc is formed where the gas enters by 

applying a high voltage. The gas pushes the arc down the length of the reactor. As the gas 

reaches the end of the reactor, the arc is turned off. Another arc is then formed at the gas 

entrance. The DBD reactor is typically an annular configuration. The gases flow in a small gap 

between the high-voltage electrode encased in a non-conductive material such as quartz, with the 

outer shell being the ground electrode. This process creates hydrogen. We found that when a 

pure methane feed is used, carbon black and a plasma polymerized carbon film are produced 

[28]. 

 

Figure 1-5: Dynamic Discharge in a Sliding Arc Non-Thermal Plasma Reactor  

(Copyright Elsevier) [26] 

1.2 Plasma  

It is known that there are four states in which matter can exist. The commonly know three 

states are Solid, Liquid, and Gaseous. The fourth state is Plasma.  In Solid state, all the molecules 

are tightly packed in either a repeated pattern or otherwise. In this state the matter has a fixed 

shape, which can be changed only by the influence of external factors (heat, pressure etc). In the 

Liquid state, all the molecules have very little interaction between one another. There is no 

pattern in which the molecules are arranged. Liquids take the shape of the container (water, 
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alcohol eg). In the Gaseous state, molecules are independent of interactions, with each molecule 

independent from one other. The molecules are in random motion and occupy any empty space. 

When gases are compressed, they start to repel from one another (Air, Helium) and apply 

pressure on the enclosing region. 

Plasma has well-defined regions. Plasma discharges evolve through four regions with 

increasing electric field strength, or voltage gradient (volts per meter), between the negative 

cathode and positive anode. Transitions from one region to another can be abrupt, with millivolts 

separating different regions [9]. Plasma is generally generated between oppositely charged 

electrodes and in a low pressure gaseous medium. There are several distinct plasma regions 

between the electrodes. As shown in Figure 1-6, the first region is the Cathode Dark Space 

starting from cathode side and is a relatively dark region with a strong electric field, a positive 

space charge, and a relatively high ion density. The second region is the Negative Glow, which 

has the brightest intensity of the entire discharge. Electrons accelerated in the cathode region to 

high speeds produce ionization while slower electrons with inelastic collisions produce 

excitations. The negative glow is generated by the slow electrons. The third region is the Farady 

Dark Space. It is a region of non-fluorescence that extends from the cathode for a distance 

dependent mainly on the gas pressure and fourth region is the positive column. Here the bright 

region is caused by charged particles that have a low net charge density. The electric field is just 

large enough to maintain the degree of ionization to reach the anode  
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Figure 1-6: DC Plasma and Its Regions [9]   

Plasma is an ionized gas; where free positive charges, negative charges, and neutral 

species co-exist.  The Plasma state can exist over a wide range as shown in Figure 1-7 and can 

conduct electricity and interact strongly with electric and magnetic fields. 

 

Figure 1-7: Range of Plasma [10] 

Providing energy for producing electron-ion pairs generates plasma. Plasma is present 

everywhere in the universe.  The ionization degree in plasma can be defined as:   

 DI = ne/N, (1.5) 

where ne and N are the number densities of electrons and neutral species, respectively. 
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1.3 Ionization States   

The application of a potential difference between a pair of electrodes produces plasma 

discharges. The pressure and type of gas are the other determinants. When a gas is exposed to 

high electrical potential, the partial ionization of the gas takes place. Collisions between 

electrical charges and other particles induce the ionization of bound electrons with the 

consequent formation of free electrons and positively charged particles. The ionization of an 

atom is expressed as follows: 

The ionization is expressed as follows: 

 e
-
 + A → A

+
 + 2e

-
 (1.6) 

Ionization of molecules molecule ion formation: 

 e
-
 + AB → AB

+
 + 2e

-
 (1.7) 

Dissociative ionization and fragment ion formation: 

 e
-
 + A + B → A +B

+
 + 2e

-
 (1.8) 

Dissociative ionization and ion pair formation: 

 e
-
 + AB → A

+
 + B

+
 + 3e

-
 (1.9) 

where A and B represent two different species. The above steps can be summarized as 

basic ionization processes. 

In plasmas, atoms and ions are promoted to higher energy levels by absorbing energy. 

When the excited particles relax from higher energy level (Eq) to lower energy level (Ep), they 

emit radiation at specific wavelengths.  The wavelengths are dependent on the levels of the 

transitions involved. The wavelength (λ) is related to the frequency (ν) and the energies (Eq, Ep) 

of the atomic levels (q, p) between which the transition takes place and is expressed as: 
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 hvqp = hc / λ qp = Eq – Ep  (1.10) 

where, c is the speed of light and h is the Planck constant. 

1.4 Breakdown of Gases in Electric Fields  

Gas breakdown is fundamentally a threshold course of action.  This means breakdown 

only occurs when the field exceeds a value characterizing a specific set of conditions.  The 

breakdown voltage, or ignition potential, Vt depends on the gas components, the material of the 

cathode, the pressure, and the discharge gap width [11]. 

The uniform-field breakdown in most gases is described by the Paschen’s law, which 

relates the breakdown voltage (Vt) to the product of pressure (p) with distance (d).    

Paschen Law’s is as follow:   

𝑉𝑡 =
Bpd

ln  Apd  −ln(ln 1+
1

γ
 
 (1.11) 

where Vt is the ignition potential, A and B are constants, that depend on the gas being 

used; γ is the secondary electron emission coefficient for the cathode [11, 12].   

Before the ignition potential is reached, a very small current exists while the voltage 

across the discharge gap is gradually increased.   Ionization avalanche process occurs at a certain 

value of voltage, the ignition potential.  At this point, the current sharply increases and light 

emission is observed.  
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Figure 1-8:  Paschen Curves [11] 

1.5 Plasma Characterization  

Plasma has distinct properties that can be plotted (Figure 1-9). There are three main 

regions: dark, glow, and arc discharges. The first being is the dark discharge, or Townsend, 

region where the electric field is high enough for the electrons present in gas to acquire sufficient 

energy to ionize a neutral atom creating more free charged particles and this process multiplies. 

This is called the avalanche process. Glow Discharge is the region where plasma gas emits light 

because the electron energy and number density are high enough to generate excited gas atoms 

by collisions. The excited gas atoms eventually relax to their ground state by emission of photons 

and finally Arc Discharge is the region of electrical breakdown of a gas, which produces an 

ongoing plasma discharge resulting from a current flowing through normally nonconductive 

media such as air.  
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Figure 1-9:  Current-Voltage Characteristics of Discharge [13] 

1.6 What is Microplasma  

Continuing to follow Paschen’s law, microplasma takes advantage of the product of 

pressure and electrode gap which determines the plasma voltage. The gap can be reduced to 

microscale for plasma to be generated at atmospheric pressure. Microplasma has reactive, 

radiative, conductive and dielectric properties inherently. 

Microplasmas are usually functional at high-pressure, including atmospheric pressure, 

and have the characteristics that are not similar to low pressure plasmas because of different 

operating conditions and the miniature feature size. These new properties can be used along with 

the more traditional properties of plasma for design and application in many fields such as  

nano-material syntheses, micromachining tools, microchemical analyses, photonic devices, and 

biomaterial processing [14]. 

Figure 1-10a shows the types of devices being researched upon and how the gap between 

electrodes and electron density are related. Figure 1.10b shows how pressure determines the 

electron and gas temperature. 
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Figure 1-10: a) Microplasma Device Regions Based on Gap and Electron Density  

b) Pressure Dependence of Electron Temperature (Te) & Gas Temperature (Tg) [14] 

1.7 Microplasma MEMS Devices  

There are numerous ways of generating microplasma. The main requirements being a 

carrier gas, a power supply (DC, RF, PDC, MW), and gap between electrodes. All these things 

determine the microplasma. One of the designs is the Hollow Cathode design developed by 

Schoenbach’s (Figure 1-18) group for miniaturized structures and integrated assemblies. Their 

design is a simple metal–insulator–metal structure with a through-hole of hundreds micrometers 

in diameter. It allowed electrons to perform a pendulum motion in the cathode area for increasing 

the ionization rate, which is called the hollow cathode effect [15, 16]. 

The dielectric barrier discharge (DBD) configuration is shown in Figure 1-12. In this 

figure, at least one and sometimes both of the electrodes are covered with an insulating material. 

The unit cell of a current commercial plasma display panel (PDP) is an example. There are many 

configurations of devices that are fabricated based on requirement [17]. 

a) b) 
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Figure 1-11: Electrode Configurations for DBD Design [17] 

A 450 MHz power source is used in an Inductively Coupled Plasma (ICP) configuration. 

It has a thin tungsten wire coaxially in a quartz tube, making the ignition easier and helps in the 

discharge maintenance with the thermionic electron emission. The Figure 1-13 shows the image 

[18]. 

 

Figure 1-12: ICP-Type Microplasma Jet Driven by VHF (450 MHz) Source [18] 

Dr. J. Hopwood’s research group at Northeastern University has presented a ring 

resonator strip line is used to match the impedance with the plasma load produced at a slit in the 

ring, RF  power supply sustained plasma with Argon as carrier gas and a pressure of 8torras 

shown in Figure 1-14 [19]. 
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Figure 1-13: ICP Device [19] 

1.8 Microplasma for Hydrogen Generation 

All the present technologies deal with hydrogen generation at a large scale and then 

transportation as required. The idea behind our project is to generate hydrogen based on 

requirement. To achieve this plasma on a microscale is promising with such devices designed. 

Reformer-like devices used for disassociating constituent gases to obtain hydrogen are 

proposed and tested. The resultant hydrogen can be used in fuel cell for generating energy. 

 

Figure 1-14: Plasma Reforming 
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1.9 Thesis Outline  

The thesis presents the various aspects of the project in defined sections.  

 Chapter 1 briefly explains about hydrogen generation and other aspects related to fuel cells 

functioning.  

 Chapter 2 explains in detail the fabrication processes and materials used for all the different 

microplasma devices fabricated. The step by step process flow is explained.  

 Chapter 3 is a summary of all the data collected. It has current voltage curves, OES spectra 

data and flow rate analysis for DC supply testing with Argon and Helium carrier gas.  The 

hydrogen disassociated was used in fuel cell and analyzed.  

 Chapter 4 explains about the RF testing results and the new coil design.   

 Chapter 5 concludes all the results from different sections and discusses the future work for 

the project.  
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Chapter 2 Devices Design, and Fabrication 

This chapter discusses about the devices made and material used for this project. The 

fabrication process steps for each of the three devices (coplanar, parallel plate, and RF device 

design respectively) are presented. The procedures are explained step by step.  

2.1 Tools, and Materials   

The following are the materials and tools used throughout this thesis and are based on 

stated requirements: 

1. Substrates used: this section explains about the substrates and requirements taken into 

consideration. 

a) ITO-coated microscope slides (SPI brand,  70-100 ohms 3in by 1in by 1mm). 

Requirements: transparency of plasma region for detection and characterization 

b) Gold Coated microscope slides (Sigma Aldrich 100 Ang gold with 20 Ang Titanium seed 

layer, 3in by 1in by 1mm).  

Requirements: good adhesion to gold ions during electroplating 

c) Glass slides coated with Aluminum, clear 3in by 2in glass, with aluminum sputtered 

Requirements: coplanar device, good resistance to high power. 
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2. Resists used: this section explains about the resists and requirements taken into 

consideration. 

a) HPR 504 positive resist.  

Requirements: good chemical & heat resistance 

Developer for resist: Rohm & Haas CD 26 containing Tetra Methyl Ammonium 

Hydroxide 

b) SU 8 2010, SU 8 2050, SU 8 2035 negative resists (Microchem) 

Requirements: good chemical & heat resistance, thick resist coating, high contrast. 

Developer for resist: Microchem SU 8 developer containing 1-Methoxy-2-propyl acetate 

c) AZ 9260 positive resist (AZ materials) 

Requirements: good chemical & heat resistance, thick resist coating, high contrast 

Developer for resist: AZ400K developer containing potassium borates 

3. Other Solvents Used: 

Other common solvents like de-ionized water, acetone, isopropyl alcohol; aluminum 

and chrome etchants were utilized during fabrication processes. 

Transene Gold electrolyte containing potassium gold cyanide and potassium cyanide 

was used for electroplating of gold. Transene GE-8110 and GE-8111 Gold etchant containing 

potassium iodide and iodine (KI/I2) was used for etching gold. 
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4. Other Tools Used: 

The following is a list of tools used. These are available in any IC fabricating 

facilities. The tools were in a cleanroom environment. 

a) Karl Suss MA-55 Expose Aligner: Broad wavelength UV exposure.  

b) SCS spin coater: Manually programmable spin coater. (Model: SCS P6708) 

c) Kepco-DC supply range from 0-2000V and 0-2mA. 

d) Function generator from 10Hz to 10MHz 

e) Tokyo-Hy 13.56 MHz supply with output from 0-75W. 

f) Ocean optics HR4000 optical emission spectrometer. 

g) Argon, Helium & water vapor for plasma and hydrogen generation. 

h) 1mm thick diamond tipped drill bits. 

2.2 Coplanar Electrode Device 

2.2.1 Design 

In a coplanar device, the electrodes are on the same plane. The gap between them 

determines the plasma ignition voltage. There are some issues with peeling of film after etching. 

Ensuring a clean slide before sputtering of Aluminum resolves this issue. 

To create a controlled gap between two electrodes for plasma generation, the coplanar 

device was designed. Figure 2-1 shows the design and layout of the coplanar device. The 

electrodes are on the same plane and the electrode gap (d) was the distance between the 

electrodes. The smallest gap was 20μm. Other dimensions, including 3μm, 500 μm, 250 μm and 

100 μm, were tested. The electrodes were sealed with double sided tape (3M MMM137 Scotch 

Double Sided Tape, 3/4" Double-Sided Foam Tape) and glass slide. The glass slide had inlet and 
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outlet holes. The holes were drilled with a drill bit of 1mm thickness. A 1cm long by 0.5cm 

diameter brass hose was used as connector for gas flow. 

 

Figure 2-1:  Diagram of Coplanar Device 

2.2.2 Fabrication 

This section explains the fabrication process of coplanar device and the processes flow 

for making parallel electrode device is illustrated in Figure 2-2.   

1. Clean: 3in by 2in glass slides were rinsed a few times with acetone followed by Isopropyl 

alcohol (IPA) and de-ionized water (DIW). 

2. Metal Deposition: An aluminum film of 1.2µm was sputtered by using CVC 601. The 

aluminum target power was 2000W, argon gas flow rate was 20sccm and the pressure of 

sputter chamber was below 5E-5torr. The deposition rate was 390 Å/min. 

3. Photoresist Coating: The slides were coated with HPR-504 resist. The thickness was 1.2um. 

Photoresist was coated on SCS spin coater. The spin program used is shown in Appendix.   

4. Bake: The resist coated slides were baked at 115
0
C for 1 minute to remove solvents. 
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5. Exposure: The resist coated slides were exposed by using Karl Suss MA-55 contact aligner. 

The exposure time was set at 15sec. hard contact lithography was performed. The energy of 

lamp was 8mW/cm
2
. The dose for exposure was approximately 1.5 times silicon substrate. 

6. Resist Development: The exposed slides were developed in CD-26 for 45 seconds. This was 

done in a Petri dish. 

7. Etch Process of Electrode: Aluminum was etched with etchant from by J.T. Baker 

Company.  The Solution was a mixture of phosphoric, acetic, nitric acids and water 

(16:1:1:2).  The etch rate was dependent on temperature of the etch solution. The etch rate of 

the solution at 50°C was 5000 Å/min. The etching was inspected visually. 

8. Sample Clean: The slides were rinsed with acetone followed by IPA and de-ionized water 

(DIW). 

9. Seal and Packaging: The slides were sealed with a 2inx1in glass slide with double sided 

tape. The sealing glass had two 1mm diameter holes drilled for gas inlet/outlet. 
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Figure 2-2:  Coplanar Device Process Flow 

Figure 2-3 shows the device with and without packaging. 

    

Figure 2-3:  Coplanar Device After Process (left) and Its Final Packaging (right) 
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2.3 Parallel Plate Electrode Device  

2.3.1  Design 

The second design was parallel plate design. In this design two ITO coated slides were 

used as shown in Figure 2-4, they were spaced by photoresist. The bottom ITO slide was 

patterned and etched while the top layer was coated with photoresist which acted as spacer 

between electrodes and formed gas flow channel. Some problems faced included uneven resist 

coat, improper etching of ITO. The uneven coat and etching issues were solved by improving the 

process flow.  

Figure 2-4 shows the design and layout of the coplanar device. The electrodes are on the 

same plane and the electrode gap (d) is the spacing between the electrodes. The smallest gap is 

20μm. Other gaps, including 75μm, 50μm, 40μm and 30 m, are tested. The top electrode slide 

had inlet and outlet holes are drilled with a 1mm diameter drill bit. 

 

Figure 2-4:  Schematic of Parallel Plate-Electrode Device 
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2.3.2 Fabrication 

Processes flow for making parallel plate-electrode device was detailed in Figure 2-5 and 

explained as follows:   

Part A-Bottom Electrode Processing: 

1. Clean: ITO microscope slides (1in by 3in) were rinsed with acetone followed by IPA and DI 

water. 

2. Resist Bake: the slides were baked at 115
0
C for 1 minute to remove any moisture. 

3. Resist Coating: the cleaned slides were coated with HPR-504 resist. The thickness was 

1.2um. Photoresist was coated on SCS spin coater. Appendix has process flow details.   

4. Exposure: the coated slides were exposed by using Karl Suss MA-55 contact aligner. The 

exposure time was set at 15sec.  

5. Resist Development: The exposed slides were developed in CD-26 for 45 seconds. This was 

done in a Petri dish. 

6. Etch Process of ITO Electrodes: This was used for etching ITO. The etch rate was 

dependant on HCl and H20 ratio. A solution was prepared in such a proportion such that the 

etch time was 2 minutes. A new etch rate was determined each time a new lot of ITO slides 

was received; even when the type and manufacturer was same. The ratios used for SPI brand 

ITO unpolished 70-100 ohms was three parts of HCl: one part of water for first lot. 

  



28 

Part B-Top Electrode Processing Steps.  

The below steps are for the resist developed slide of parallel electrode device with 

negative/positive resist, this was creating gas flow channel: 

1. Clean: ITO microscope slides (1in by 3in) were scribed after determining the ITO side. 

These scribed slides were cleaned with acetone followed by IPA and de-ionized (DI) water. 

2. Bake: the slides were baked at 95
0
C for 1 minute. 

3. Resist Coating: The cleaned slides were coated with SU 8 2010, 2015, 2050 resists. The 

thickness was varied from 12um to 150um. Photoresist was coated on SCS coater. The curve 

to show the relationship between  speed and thickness can be found in Appendix. 

4. Exposure: The coated slides were exposed on Karl Suss MA-55 contact aligner. The 

exposure time was varied from 60 seconds to 160 seconds based on the thickness of resist. 

The dose was around 1000mj/cm
2
. 

5. Post Exposure Bake: The substrates were baked at 115°C for  7-12 minutes, depending on 

the thickness. 

6. Resist Development: The exposed slides were developed in SU 8 developer from 45 

seconds. 

SU 8 is a negative resist, in which unexposed regions clear off during development. SU 8 

2000 series resist provide a thick resist coating ranging from 2-200 µm thick. AZ9260 provides 

coating in the range 4-25 µm 

The aim was to achieve plasma ignition at lower part of Paschen curve for  

Argon/Helium by changing the electrode gap. AZ9260 positive resist and various SU8 negative 

resists were processed for finding the optimum resist. The process steps were the same for 
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AZ9260. AZ400K developer was the only different solution used for development of resist. 

Figure 2-5 shows the overall process. 

 

Figure 2-5:  Parallel Plate Device Process Flow 

Figure 2-6 shows the parallel plate device before and after packaging. The slides were 

sealed with double sided tapes with the ITO electrodes facing each other.  

 

Figure 2-6:  Photograph of the Fabricated Device 
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2.4 Device Design for RF Supply  

2.4.1 Design 

A new design for RF plasma was conceived with its fabrication process developed. The 

reasons for the new design are explained in Chapter 3. The main problem faced was deposition 

of thick film on glass substrate. The film was peeling off, electroplating was the solution. 

 

Figure 2-7: RF Design 

2.4.2 Fabrication 

To create a controllable gap between two electrodes for plasma generation, Figure 2-8 

shows processes flow for the device. The initial steps are similar to the previous section’s Part B 

(top electrode). After the mold was created, the following are process steps. 

1. Electroplating: The resist formed acted as a mold. The gold slide was connected to the 

cathode and a platinum wire was anode.  The current density was 15mA. The electroplating 

was performed for 15mins. The deposition rate was 0.4μm/min. 8µm of gold was deposited.  

2.  Etch Process: the resist on slides was removed with SU 8 resist stripper. The gold on slides 

was then etched with Gold etchant. A thin chrome seed layer present (J.T. Baker company) 

was etched by Chrome etchant.  

3. Clean: The slides were cleaned with acetone followed by IPA and de-ionized water (DIW). 
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4. Seal: The slides were sealed with a glass slide with double sided tape. The sealing glass had 

two 1mm diameter holes drilled for gas inlet/outlet. 

 

Figure 2-8: Processing Steps for RF Design, Electroplating Setup 

Figure 2-9 shows the image after electroplating and the final device after etching. 

                     

Figure 2-9: Gold Electroplating and Final Device 
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Chapter 3 - Characterization of Microplasma MEMS Device 

In this chapter, the plasma characteristics under different conditions are explained. The 

fabricated devices are first characterized by I-V curves, followed by OES to determine the gas 

molecules and finally the testing of gases disassociated from plasma for energy generation in a 

PEM fuel cell.  I-V characteristics for plasma with different carrier gases are presented. The 

effect of flow rate on plasma is discussed. OES data for Argon and Helium plasma are presented 

for devices. The OES is collected for carrier gas and for a mixture of water vapor and carrier gas 

plasma. A comparison is made between the two gases as a plasma source. The basic plasma 

characteristics are explained in Section 1.5. 

3.1 DC Setup for I-V Characterization 

The primary aspect of the project was to generate micro scale plasma at atmospheric 

pressure and low voltage. The easiest method of determining plasma was by its I-V 

characteristics. The set up, as in Figure 3-1, was used. A DC power supply (Kepco) was used. 

The negative output was connected to one of the two electrodes of plasma device. The positive 

output was connected to 2 MΩ Resistor; this was connected in series to a multimeter for current 

measurement. The output from the meter was connected to the second electrode. The supply 

voltage was measured along with the circuit current.  Negating the voltage of resistor from the 

supply voltage gave the plasma voltage. From here the plasma I-V curve was characterized.  
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Figure 3-1:  Schematic DC Test Setup 

3.2 Optical Emission Spectroscopy and Hydrogen Generation Set Up 

The second aspect of the project was to generate hydrogen from the microplasma. For 

achieving this, Ar/He gas was bubbled through water in a container. The output was a mixture of 

water vapor and the inert gas being used. This mixture was flown through the plasmas device 

and plasma was generated. The plasma generated with and without vapor was measured for 

intensity peaks using OES meter. The OES meter plotted wavelength (nm) vs. intensity (counts). 

The peaks were determined based on the constituent particles present in the gas. When water 

vapor was present, H, O peaks was visible. In the absence of water vapor, these peaks were 

absent.  

The setup for this process is shown in Figure 3-2 below. The relative humidity was 

measured. From this absolute, humidity was found with the amount of water present in flowing 

gas determined. The Appendix includes related data. 
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Figure 3-2:  Schematic of Setup for Hydrogen Generation 

3.2.1 OES  

Ocean Optics HR4000 Spectrometer was used to collect spectra. There are several parts 

in the meter, including (1) Subminiature version A (SMA) connector, (2) Slit, (3) Filter, (4) 

Collimating mirror, (5) Grating, (6) Focusing mirror,  (7) Collection lens, and (8) Charge-

coupled device (CCD) detector.  

The emissions enter from connector (1). The emissions are then split and separated based 

on emission wavelengths with the help of slit, filter and other components of OES.  The split 

emissions are collected with the help of a CCD.   This spectra collected determines the material 

present in light source; in our case, this source is microplasma. 
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Figure 3-3:  OES Spectrometer Schematic [20] 

Each material has its own specific spectral lines. The spectral lines for each individual 

elemant is catalogued on the NIST  spectral line webpage [21]. The gases of interest for our 

experiment are hydrogen and the carrier gases used.  These lines are identified and looked for in 

the OES data collected to determine the atoms presemt in plasma. Figure 3-4 shows the OES 

output for plasma device. The range for which data is collected is from 200nm to 1200nm. The 

range useful to us is between 400-700nm, with the wavelengths being where hydrogen spectra 

are visible. For this reason the other wavelengths are not plotted for analysis. The peaks are 

dependent on the carrier gas and the gas mixture.   



36 

 

Figure 3-4:  OES Output 

Figure 3-5 shows the peaks for Argon and Helium plasma. These peaks were present in 

all the OES data collected. These peaks are not shown in the OES analysis as explained earlier.  

 

Figure 3-5:  OES Peaks for Argn and Helium 
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3.3 Fuel Cell Voltage Test Setup 

The final aspect of the project was to use the hydrogen generated for generating voltage 

in a PEM fuel cell. The OES data of plasma showed that hydrogen atoms were present for both 

coplanar and parallel plate devices. Hydrogen was also present with both carrier gases (Argon & 

Helium). The Fuel cell test was done with only coplanar device. The reason being the life time of 

ITO electrode was limited to around 15 minutes. The electrodes designed were such that plasma 

was genrated in a small regions. In the case of a coplanar device, the life time was more than one 

hour. The electrode design allowed long plasma regions. It was assumed that the more plasma 

generated, the more hydrogen generated. The setup for testing Hydrogen with Fuel cell was as 

shown in the Figure 3-6. The oxygen was supplied from the elctrolysis process. This was stored 

in the oxygen chamber. The hydrogen from electroplating was drained from the storage chamber 

and substituted with the gas mixture from plasma chamber. The mixture of carrier gas, water 

vapor was flown into the hydrogen part cell of the Fuel cell, after passing over plasma region. 

 

Figure 3-6:  Fuel Cell Test Setup 
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Figure 3-7 shows the image of setup for Fuel cell test setup. As seen Helium/Argon gas 

can be switched as required. For fuel cell setup the outlet from flow meter goes into the bubbler. 

The output of bubbler is connected to the input of plasma device. The output from plasma device 

is inserted into the hydrogen storage chamber of fuel cell. The hydrogen cell seal was left open to 

allow continuous flow of input gases. 

 

Figure 3-7:  Image of Test Setup 

Figure 3-8 shows the I-V plot for parallel plate device with Argon and Helium carrier 

gas. The sustenance voltage for Helium plasma is much less than Argon plasma. For Argon 

plasma, the sustenance voltage is 210V in case of Helium of plasma it was around 155V. 

 

Figure 3-8:  I-V Plot for Parallel Plate Device with Argon & Helium 
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3.4 OES Data 

Figure 3-9 shows the OES data from plasma with Argon only as well as with water vapor 

and Argon for parallel plate electrode design. Hydrogen peaks are visible at 486nm and 656nm. 

This shows plasma-disassociated water vapor. The oxygen peaks indicate dissociation of ITO 

electrode 

 

Figure 3-9:  Spectra of Argon Plasma for Parallel Plate Device 

In Figure 3-10, the OES data from plasma with Helium only as well as with water vapor 

and Helium for parallel plate electrode device are shown. Hydrogen peaks are visible at 486nm 

and 656nm. This shows plasma-disassociated water vapor. The oxygen peaks indicate 

dissociation of ITO electrode. In case of helium plasma, peak is observed at 587 for both 

coplanar and parallel plate device. This is the peal of Helium. When water vapor is introduced 

into parallel plate device, the oxygen and helium peaks are indistinguishable. 
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Figure 3-10:  Spectra of Helium Plasma for Parallel Plate Device 

Figure 3-11 depicts the I-V plot for coplanar device with Argon and Helium carrier gas. 

The sustenance voltage for Helium plasma is much less than Argon plasma. For Argon plasma, 

the sustenance voltage was 230V in case of Helium of plasma it was around 165V. 

 

Figure 3-11:  I-V Plot for Coplanar Device with Argon & Helium 
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Figure 3-12 shows the OES data from plasma with Argon only and with water vapor and 

Argon for coplanar device. Hydrogen peaks are visible at 486nm and 656nm. This shows 

plasma-disassociated water vapor.  

 

Figure 3-12:  Spectra of Argon Plasma for Coplanar Device 

Figure 3-13 shows the OES data from plasma with Argon only as well as with water 

vapor and Argon for coplanar device. Hydrogen peaks are visible at 486nm and 656nm. This 

shows plasma-disassociated water vapor. 

 

Figure 3-13:  Spectra of Helium Plasma for Coplanar Device 
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3.5 Fuel Cell Analysis 

Figure 3-14 shows fuel cell voltage being generated with a constant plasma voltage with 

Argon carrier gas. The initial fuel cell voltage starts from 23mV when Argon and water vapor 

mixture flow into fuel cell. This could be some kind of leakage error. The fuel cell takes 

approximately 35minutes to reach the maximum voltage of 43mV. The gas flow is maintained at 

55sccm. 

 

Figure 3-14:  Fuel Cell Voltage Test for Coplanar Device with Argon 

Figure 3-15 shows fuel cell voltage being generated with a constant plasma voltage with 

Helium carrier gas. There was no initial voltage as from previous case. The gas mixture 

generated a maximum of 61.7mV. This is nearly three times higher than the results from Argon 

plasma.  

 

Figure 3-15:  Fuel Cell Voltage Test for Coplanar Device with Helium 
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Figure 3-16 shows fuel cell voltage being generated with a constant plasma voltage with 

Argon carrier gas followed by Helium gas. After the voltage generated from Argon plasma 

stabilized, the Argon gas was shut off and Helium gas was turned on. Argon plasma generated a 

maximum voltage of 21.6mV. This is the same as in first case without the addition of initial 

voltage from fuel cell. This plot shows the maximum voltage Argon gas plasma generated is 

three times less than Helium plasma with the other conditions being similar.  

 

Figure 3-16:  Fuel Cell Voltage Test for Coplanar Device with Argon & Helium 

For generating hydrogen and oxygen from fuel cell a bulb can be used as substitute for 

sunlight. A normal glow light (fluorescent) though can generate voltage from Solar cell; this 

voltage is not enough for splitting water. When hydrogen from the storage chamber is drained 

(oxygen present) the fuel cell voltage goes to zero. Similarly when oxygen is drained (hydrogen 

present) from the chamber the fuel cell voltage doesn’t go to zero. The fuel cell generates about 

100mV. When the gas mixture from plasma device is sent into the oxygen chamber of fuel cell; 

it generates some voltage. This could be because of the oxygen present in the mixture. 
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Figures 3-17 and 3-18 show the plasma glow at different flow rates for Argon and 

Helium gases for parallel plate device. In case of Argon at 40sccm the plasma glow was weak, at 

70 sccm the glow was brightest and at 100 sccm the glow was flickering. This was evident from 

the plasma voltage as shown in the above table. The plasma voltage fluctuated considerably. The 

other test conditions were not changed. The supply voltage was set to 500 V. The circuit current 

changed as the flow rate was changed. In case of Helium at 40 sccm the glow was bright in 

comparison to Argon gas and the plasma got brighter at as the flow rate was increased. There 

was no flickering observed at 100sccm. The circuit current was almost constant at different flow 

rates. 

The current-voltage table shows that voltage and current changed minimally for Helium 

gas while the fluctuations were much greater for Argon gas. The sustenance voltage for Helium 

gas reduced from Argon gas. 

 

Figure 3-17: Argon Flow at 40, 70, 100 sccm Respectively for Parallel Plate Device 

 

Figure 3-18: Helium 40, 70, 100 sccm Respectively for Parallel Plate Device 



45 

 

 

 

Table 3-1: I-V Data at Different Flow Rates for Parallel Plate Device 

Figures 3-19 and 3-20 show the plasma glow at different flow rates for Argon and 

Helium gases. As in the case of parallel plate device the results for coplanar device were similar. 

In case of Argon at 40sccm, the plasma glow was weak. At 70 sccm, the glow was brightest. At 

100sccm, the glow was flickering. This was evident from the plasma voltage as shown in the 

table above. The plasma voltage fluctuated considerably. The other test conditions were not 

changed. The supply voltage was set to 500V for Helium flow while the supply voltage was 

changed to 540V and 560V for 70sccm & 100sccm for Argon plasma measurements. The circuit 

current changed as the flow rate was changed. In case of Helium at 40sccm was bright in 

comparison to Argon gas and the plasma got brighter at as the flow rate was increased. The 

circuit current was almost constant at different flow rates. 

The I-V table shows the changes for helium plasma were not significant. In case of Argon 

plasma the supply voltage had to be increased for sustaining the voltage. 

This experiment showed that Helium is better for plasma generation at different flow 

rates. The voltage didn’t fluctuate as in the case of Argon gas. 

Device Carrier gas 

Flow 

rate 40sccm  70sccm  100sccm  

Parallel 

Plate  

Argon 

I(μA)  150 145 135 

ITO V(V)  200 210 230 

            

Parallel 

Plate  

Helium 

I(μA)  166 163 159 

ITO V(V)  168 174 182 
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Figure 3-19: Argon Flow at 40, 70 and 100sccm for Coplanar Device 

 

Figure 3-20: Helium Flow at 40, 70 and 100sccm for Coplanar Device 

  

Device Carrier gas 

Flow 

rate 40sccm  70sccm  100sccm  

Coplanar 

Argon 

I(μA)  130 160 170 

Aluminum V(V)  240 220 230 

            

Coplanar 

Helium 

I(μA)  167 169 166 

Aluminum V(V)  166 162 168 

Table 3-2: I-V Data at Different Flow Rates for Coplanar Device 

Figure 3-21 shows plasma for Argon and Helium with a parallel plate device.  Argon- 

sustained plasma at 230V and helium at 165V. The flow rate and gap were 55sccm and 20 µm, 

respectively.  
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Figure 3-21: Plasma with Argon and Helium Gas in Parallel Plate Device 

The Figure 3-22 shows plasma for argon and helium plasma coplanar device. Argon 

sustained plasma at 370V (gap 500µm) and Helium at 170V (gap 20µm). The flow rate and gap 

was 55sccm  

 

Figure 3-22: Plasma with Argon and Helium Gas in Coplanar Device 
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Chapter 4 - RF Design and Results 

The DC plasma results were encouraging. One main drawback of DC plasma was the 

lifetime of electrodes (aluminum and ITO) was short. This was because of the electron 

bombardment of electrodes. A RF supply was much less stressful on the electrodes. To 

characterize RF plasma, the devices were tested with a 13.56MHz supply. 

Figure 4-1 shows the setup for microplasma generation and characterization with a RF 

supply (13.56MHz).  The power supply is specially designed for this purpose. The power supply 

has output in Watts, with the power forward and power reflected being approximately 10% for 

obtaining the best results. The RF power supply consists of two modules; namely, the power 

supply and the matching network.  The RF supply has an indicator lamp, which illuminates as 

the capacitance of the circuit increases. Ideally, this light should not illuminate.  The output cable 

has two connectors. One is the signal wire and the other is ground. The signal wire has the entire 

signal and must be handled with caution. The capacitance for the devices should be less than 

50pF.   

 

Figure 4-1:  RF Device Test Setup 
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4.1 First Attempt: Coplanar and Parallel-Plate Electrode Devices for RF Microplasma 

The coplanar and parallel plate devices fabricated for DC testing were used for the first 

attempt of generating RF plasma. The coplanar and parallel plate devices were connected to 

signal and ground of RF power and tested for plasma. In case of coplanar device, there was 

plasma at 8W. The plasma was very bright and hot (evident from substrate cracking). This lead 

to very rapid disintegration (3 mins) of the electrode and caused the glass substrate to crack.  

In case of parallel plate device, the resist which acted as seal and gap melted and the 

substrate cracked. The resist melted when the power supplied was 5W. This lead carrier gas to 

escape and no plasma was generated. 

 

Figure 4-2:  RF Plasma & After Effects 

4.2 The Second Attempt: Coil Design   

4.2.1 Device Design 

The device design was adapted from a paper authored by Dr. J. Hopwood of Northeastern 

University titled ―A microfabricated inductively charged plasma generator‖[19]. In this paper 

they showed the following results 

 The plasma is sustained without electrodes by inductively coupling a 450 MHz current into a 

region of low pressure gas.  
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 Both argon and air plasmas are generated over a range of gas pressures from 0.1 torr to 10 

torr (13.3 Pa - 1333 Pa).  

 The power used to sustain the plasma is 350 mW, although ~1.5 W is required to initiate the 

discharge.  

 Network analysis of the plasma generator circuit shows over 99% of the applied RF power 

can be absorbed by the device. Of this, ~50% is absorbed by the plasma and the remainder of 

the power is dissipated as ohmic heating.  

 An argon ion current of up to 4.5 mA/cm
2
 has been extracted from the plasma and the 

electron temperature is 52,000 K at 0.1 torr.  

 

Figure 4-3: RF Plasma Device [19] 

The results were similar to our goals of low power plasma; hence, the design was used. 
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4.2.2 Fabrication 

The fabrication steps were explained in Section 2.4.2. The initial steps were similar and 

repetitive. A new process flow for electroplating was designed. Gold electroplating process was 

developed. The process development required selection of the best resist and determination of 

the current density for even deposition. The electrolyte contained potassium cyanide. Therefore, 

work was performed with extreme caution.   

Figure 4-4 shows electroplating setup for electroplating gold. The anode is a platinum 

wire; cathode is the gold substrate with Su 8 resist mold. The electrolyte solution contains gold 

particles; cations are formed when a current is passed through the setup. The solution is at 60 
0
C. 

The gold deposition rate is determined by the current flown. Lower flow ensures even 

deposition. The current density is set at 15mA and the deposition rate is 0.4μm/min. 

 

Figure 4-4: Gold Electroplating  
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4.3 Process Development 

Figure 4-5 a) is a mold with AZ9260 while Figure 4-5 b) is electroplating on gold 

substrate with AZ mold. The figure shows the electroplating process flow development.  A mold 

is made with AZ9260 resist on gold substrate with electroplating performed on this mold. The 

electroplating process is performed. The resist peels off. The resist peels off in the solution and 

with deposition all over the substrate. While the resist has a good mold, it is not strong enough 

for the electroplating process. AZ9260 is discarded. 

 

Figure 4-5:  Process Development 

The same process as before was followed for SU 8 resist. First the mold was made 

followed by electroplating. Figure 4-6 shows the electroplated substrate. The SU 8 mold was 

strong and the deposition was uniform. SU 8 resist was used for processing. 

 

Figure 4-6:  c) Electroplating on Gold Substrate with SU 8 Mold 

SU 8 resist was chosen as mold and the processing was done. The first step (a) being 

creating a mold on the slides, followed by (b) electroplating, and finally (c) resist stripping, gold 

and chrome seed layer etching, the process images are shown in Figure 4-7. 
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Figure 4-7:  RF Device 

The coil design had same overheating issue as the coplanar and parallel plate designs. 

The glass substrate cracked when RF power was applied. The power at which it cracked was 8W. 

The power was increased to the previous maximum voltage in a couple of minutes. There was no 

plasma, but the substrate cracked.  

 

Figure 4-8:  RF Device After Testing 

A new process flow for the RF device, which does not generate heat, has to be designed. 

In the coil design, no plasma was generated. The devices cracked before any plasma was 

generated. The design on which this device was based was tested in a low-pressure environment, 

with variable output frequency and power. This could be a reason why the coil device was not 

functional. A power supply, which has more options than the one present, could help solve the 

issue. 

  



54 

Chapter 5 - Conclusion and Future Work 

5.1 Conclusion 

The project showed that Plasma can be generated at low DC voltage and at atmospheric 

pressure.  Argon and Helium gases generated plasma. Plasma with Argon was at slightly higher 

voltages than at Helium. This was most likely because Argon was much heavier and larger than 

Helium, though Argon requires lesser energy (15.5ev/atom) for exciting electrons than helium 

(24.8ev/atom). Coplanar and parallel plate devices for the same electrode gap had identical, but 

not exactly the same results. Parallel plate device had lower ignition and sustenance voltage than 

coplanar device for both Argon and Helium. ITO lifetime was limited. Few hundred nanometers 

of Magnesium Oxide (MgO) film was deposited on ITO electrodes. This did not help in 

improving the lifetime. The Aluminum electrode life time depended on the thickness of film. The 

thicker the film, the longer was the life time. 1.2μm aluminum film has a lifetime of longer than 

1 hour.  ITO film was much stronger in comparison. ITO film was 750 Angstrom thick and had a 

life time of approximately 15minutes.  The fuel cell used was from Thames and Kronos Fuel 

Cell Car Kit. The voltage generated from recombination of Hydrogen and Oxygen was 0.9V. 

Argon plasma generated much less voltage than Helium plasma from the fuel cell. The 

maximum voltage from Argon plasma in the fuel cell was 21.7mV and in case of helium plasma 

it was 61.7mV.  

The fabrication process for devices is simple and repeatable. All the devices can be 

fabricated in any lab where the tools are available. All the materials used are commonly used in 

semiconductor processing. Fabrication process of either coplanar, parallel plate or RF device is 

less than a day’s work.  
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I-V characteristics of devices showed that plasma can be generated and sustained at lower 

voltage for Helium than Argon.  Helium plasma is more consistent at varied gas flow rates.  

Based on Paschen curves the I-V characteristics of Argon and Helium should be similar for the 

given p*d.  This was not the case. The reason could be the atomic size of the gases. 

RF device testing was not successful. The plasma generated was thermal in nature and 

caused substrate to crack and rapid degradation of electrode. Plasma was generated at 8W power 

with the coplanar device. A thick electrode is supposed to reduce heat being generated. This did 

not happen. In the new coil design, electrodes were 7µm thick. A new substrate is to be found or 

the design changed. 

5.2 Future Work 

The electrode life time has to be improved considerably. This can be achieved by 

increasing the thickness of the electrode. An insulating material on top of the electrodes reduces 

the electrode disintegration.  

A method for separating hydrogen from mixture of gases is to be looked into for 

improving the efficiency of plasma device.  Most of the hydrogen separation techniques 

available are energy consuming techniques, which require high temperature and/or high pressure. 

A cost-efficient method of separation of gases will make microplasma device very efficient.   
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Appendix 

 

Figure A-1: Process Flow for Parallel Plate Device with AZ9260 Resist 

 

Figure A-2: Process Flow for Parallel Plate Device with SU 8 Resist  
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Figure A-3 shows the "absolute humidity" in g/m
3
 (upper line) and the "dew point 

temperature" of the air in°C (lower line) for certain air temperatures as a function of "relative 

humidity.   

  

Figure A-3: Relative Humidity to Absolute Humidity Conversion Chart  

The spin speed curves are not repeatable perfectly; especially since we were using 

substrates that were not standard. The curves below were referred to get an estimate and design 

process rather than create a complete spin speed curve.   



61 

 

Figure A-4: SU 8 Resist Speed vs. Thickness Plot  

 

Figure A-5: AZ9260 Resist Speed vs. Thickness Plot  
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