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Abstract 

 Microarray and 2D gel experiments are used for the large scale measurement, and 

comparison of gene expression.  Since these experiments generate large and complex amounts 

of data, a great challenge the researcher faces is trying to find ways to analyze this data.  This 

paper focuses on the tool DiffExpress, which was designed to make the gene expression 

analysis process easier.  One of the main features of DiffExpress is the user defined threshold 

which allows users to set their personal restriction of the expression change at which genes 

are differentially expressed.  DiffExpress also makes use of graphs such as the Scatter Plot, Box 

and Whisker Plot and Volcano Plot for easier visualization of data. 
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1 INTRODUCTION 

1.1 Genes and Proteins 

 The gene, often defined as the basic unit of heredity, is a segment of DNA which 

codes for a protein or RNA molecule.  Cells in the body contain identical genes, but in each 

cell, not all of these genes are expressed.  At any given time, a gene in one cell may be active 

while in another cell this same gene may be inactive. The type of cell and the cell’s 

environmental conditions are some factors that may determine which genes are expressed.  

 The protein is the product of gene expression.  It is one or more polypeptides folded 

into a specific 3-dimensional conformation.  A protein’s function is dependent on its specific 

3-dimensional conformation which in turn is dependent on the sequence of its amino acids.  

There are tens of thousands of proteins in the body, each with a specific function and 

structure.  It is the protein (not the gene) that carries out most of the work necessary for the 

cell to function normally.1 

1.2 Gene Expression: Genome to Proteome 

 Gene expression (also known as protein expression) is the process by which a gene is 

turned on, and its information is used in RNA production (RNAs other than mRNA which are 

a product of transcription) or protein production (transcription followed by translation).  A 

gene is said to be expressed when its mRNA or protein are detected.  When looking at gene 

expression, we want to identify which genes are expressed and the amount of expression.   

 Transcription (Figure 1) is the process by which a strand of DNA is used as a template 

to produce an RNA strand known as the primary transcript (pre-mRNA).  RNA processing 
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occurs and modifies the primary transcript, creating a mature mRNA.  In translation the 

mature mRNA is used to produce a polypeptide. 

 
Figure 1: Steps in Gene Expression and its Regulation 

 Cells are able to regulate gene expression by adjusting the rate of gene transcription 

and translation, hence determining which genes are being expressed and the quantity.  

Alterations in this cell regulation mechanism can cause over or under expression of genes, 
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RNA 
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causing diseases or other damage.  Regulation of gene expression usually occurs at the level of 

transcription.  This involves the binding of transcription factors to the promoters and 

enhancers of genes, helping to activate or inactivate these genes.  Gene expression may also 

be regulated at the level of translation, although it does not occur as much as regulation at the 

level of transcription.  RNA interference, riboswitches and proteins are some of the factors of 

gene expression regulation.2 

1.3 mRNA and Protein Expression Levels 

 Gene expression analysis involves the measurement and analysis of gene expression, 

using mRNA expression levels and/or protein expression levels in a sample.  It is easier to 

measure mRNA expression, but it is believed that measuring the variation in protein 

expression patterns is more accurate with respect to the analysis of gene expression.  

 Microarray analysis allows researchers to determine which genes in a sample are 

activated.3  In a sample, only active genes produce mRNA, so based on the mRNA present a 

gene expression profile can be constructed to obtain a map (list) of the genes that are active or 

inactive in the sample.3  mRNA levels can give a lot of information about the state of the cell 

and its gene activity.  Up-regulation and down-regulation of mRNA is believed to be 

associated with functional changes in the cell.  This is true in some cases, but it is usually the 

proteins that affect most of the cell’s processes. 

 Protein expression analysis is a collection of techniques that researchers use to 

determine which proteins are being produced in a sample and are functional.  A protein 

expression profile can be constructed to obtain a map (list) of all the proteins that are present 
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in a sample at a given time.1  Because of the many stages between mRNA expression and 

protein expression, there is not always a strong correlation between mRNA and protein 

expression.  A large quantity of mRNA may be produced, yet the protein produced may not 

display any over-expression.1 

1.4 DNA Microarrays 

 The DNA microarray is used for the simultaneous measurement and examination of 

thousands of mRNA expression levels (level of transcription) in a sample.  The microarray is 

simply a microscope slide, nylon membrane or silicon chip upon which thousands of genes 

(DNA targets) are spotted, printed or synthesized.4  

 DNA microarray technology takes advantage of the fact that mRNA molecules 

hybridize to their complementary DNA sequence.4  Target DNA is immobilized to a solid 

support to create the microarray.  Researchers use the location of the each spot on the 

microarray to identify a specific gene, therefore it is imperative that these targets are 

immobilized to the array in an orderly fashion.4  mRNA is isolated from samples and reverse 

transcribed into cDNA which is labeled and used as a probe.  These probes are incubated with 

the microarray and bind to their complementary target DNA.  By measuring the amount of 

mRNA adhered to each microarray spot, the expression level each gene can be obtained.  

 DNA microarrays are commonly used for comparing gene expression in different cell 

populations.  For example, the use of microarrays for the comparison of healthy cells/tissues 

versus diseased cells/tissues in order to discover which genes may be the potential cause of 

the disease. 
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 Another widely used application is in the examination of the effects of experimental 

conditions (e.g. drug response or time-course studies) by measuring and detecting the changes 

in gene expression levels of a sample under different conditions.  

 Two predominantly used types of microarrays are cDNA (complementary DNA) 

arrays and oligonucleotide arrays.  cDNA microarrays produce a ratio of red (cy5) channel to 

green (cy3) channel for each spot.  The ratio is indicative of the relative expression change for 

each gene under two different experimental conditions, and may be raw or log-transformed.  

Unlike cDNA microarrays, oligonucleotide microarrays do not produce ratios, but instead 

produce an absolute intensity for each spot. 

 
1.5 cDNA Microarrays 

 cDNA microarrays use DNA fragments which are 500 to 1500 base pairs long, and can 

be used to measure the change in expression between two different samples, for example a 

sample taken from healthy tissue and a second sample taken from diseased tissue.  Figure 2 

illustrates an example of the basic method for conducting an experiment using a cDNA 

microarray.  The fundamental steps in this method are as follows 6: 

1. DNA fragments (also known as probes) are spotted and immobilized onto the 

microarray (usually a glass slide). 

2. mRNA from two cell samples (usually a control cell and an experimental cell) in 

question is extracted and reverse-transcribed into cDNA . 
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3.  To differentiate between the two samples, the cDNA from each sample is labeled 

with either a red (Cy5) or green (Cy3) fluorescent dye.  For example the control 

sample’s cDNA may be labeled with Cy5 while the experimental sample’s cDNA is 

labeled with Cy3, or vice versa. 

4. The two pools of fluorescently labeled cDNA are combined in equal amounts and 

applied to the microarray. 

5. The labeled cDNA from each sample compete to hybridize to its complementary DNA 

fragment on the microarray.  The sample that contains more of an mRNA transcript 

for a specific gene will have a better chance of hybridizing to that gene. 

6. The microarray is washed to eliminate any cDNA that was not hybridized. 

7. A digital image (e.g. Figure 4) is created of the red and green signals and computer 

software is used to calculate the red to green fluorescence ratio for each spot.  The 

signals from a spot indicate the relative abundance of the corresponding mRNA in the 

two cell populations.  For example, for a given gene, if the control sample was labeled 

with Cy3 and it contains more mRNA transcript than the experimental sample 

labeled with Cy5, then the probe (spot) on the array will be green.  If, on the other 

hand, the experimental sample’s mRNA content exceeds that of the control sample’s 

mRNA content, then the probe will fluoresce red.  If both the samples have the same 

amount of mRNA (hybridize equally to the target DNA), the dyes cancel each other 
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and the probe will fluoresce yellow.  If nothing has hybridized to the spot, then there 

will be no signal and the probe will be black.7 

 
Figure 2: cDNA Microarray Experiment Example 

Combine equal amounts and 
hybridize to microarray 

mRNA extracted from 
cell 

Reverse 
transcribe 
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transcribe 
and label 
with Cy5 

cDNA microarray Scan 

Experimental Cell Control Cell 
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 Experiment 1 Experiment 2 Experiment 3 

Gene A Red Green Red 

Gene B Black Red Yellow 

Gene C Yellow Black Green 

Figure 3: Simplified example of some cDNA signals in a digital image.   
Red indicates that Cy5 > Cy3, Green indicates that Cy3 > Cy5, Yellow indicates that Cy5 = Cy3 and 
Black indicates that no hybridization of the probe to the target occurred. 

 
Figure 4: Actual Representation of the colors of a microarray 
(http://www.liv.ac.uk/researchintelligence/issue23/geneactivity.html) 
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1.6 Oligonucleotide Arrays 

 Unlike cDNA microarrays, oligonucleotide arrays use short 25 base-pair DNA 

fragments as their probes and only one sample is hybridized to the array.  This type of array 

can be used to measure the RNA content in a sample, or it can be used to compare two 

different samples (these samples must be hybridized on separate arrays).   Figure 5 illustrates 

an example of a typical oligonucleotide array experiment.  The basic steps in this method are 

as follows  6: 

1. UV masks and photo-activated chemistry are used in cooperation to immobilize the 

DNA oligonucleotides on the microarray. 

2. mRNA is extracted from the sample and reversed transcribed into cDNA. 

3. cDNA is transcribed into cRNA and labeled (usually with biotin). 

4. The labeled cRNA is fragmented and hybridized to the oligonucleotide array. 

5. The array is washed to remove any excess cRNA, and stained to visualize the amount 

of hybridization. 
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Figure 5: Oligonucleotide Array Experiment Example 
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1.7 2D Gels and Mass Spectrometry 

 Like DNA microarrays, 2D gels and mass spectrometry are high-throughput 

techniques, but unlike DNA microarrays, 2D gels and mass spectrometry are associated with 

proteins and not mRNA.  Measuring protein expression is different from mRNA expression 

measurement.  Global changes in protein expression can be detected by the use of 2D gels and 

mass spectrometry.  2D gels are used to separate proteins in a sample while mass spectrometry 

is used for the large-scale protein identification and the measurement of expression of the 

proteins in the sample (and find differences in protein expression between two of more 

samples).1  In order to find proteins that are differentially expressed, data from different 

samples or from one sample under different conditions are compared.  Given two or more 

samples, comparing their mass spectra can provide information about variations in the 

protein expression level patterns between them.  There is software available that provides 

features for spot detection, spot quantification and comparison of multiple gels. 

1.8 Expression Data Analysis 

 Table 1 shows a very basic layout of an expression data matrix.  An expression matrix 

is a table of expression levels in the case of oligonucleotide microarray data, or expression 

level ratios in the case of cDNA microarray data.  Actual results usually contain thousands of 

gene/ spot id data.  The columns represent samples and experiments while the rows represent 

genes corresponding to an mRNA or protein.  Each cell (bordered by the bold shaded squares 

in Table 1) gives the expression level (oligonucleotide microarrays) or ratio of expression 

levels between two samples (cDNA microarrays) of a gene or protein (based on either mRNA 

or protein expression levels) to its corresponding sample.  For example, Expression Level C2 
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would either be the mRNA level or protein level of gene C in sample 2. 

  Samples 

  1 2 3 

A Expression Level A1 Expression Level A2 Expression Level A3 

B Expression Level B1 Expression Level B2 Expression Level B3 Gene 

C Expression Level C1 Expression Level C2 Expression Level C3 

Table 1: Simplified Example of an Expression Data Matrix 

 If we want to determine how similar or dissimilar the expressions of two genes are, 

we compare the rows (expression profiles).  Co-regulation of the genes can also be 

determined, i.e. if gene A is up-regulated (or down-regulated), are genes B or C also up-

regulated (or down-regulated). 

 If we want to determine if samples are related or unrelated, we compare the columns.  

If they are unrelated, genes that cause this dissimilarity can be found through the comparison.  

Alterations in gene expression can occur from drugs, changes in the environment, etc.  

Researchers may want to examine differences in expression between sample 1 and 2 given 

that (determine which genes change significantly across the samples): 
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1. Sample 1 and sample 2 are taken from the same sample under different experimental 

conditions (drug response experiment e.g. drug treatment, radiation).  For example in 

drug response experiments, sample 1 may be a cell treated with specific drug while 

sample 2 may be the same cell treated with a different drug (Figure 6). One drug may 

cause some changes in the expression of certain genes of the cell while the other drug 

may alter the expression of completely different genes.  Comparison of these two 

samples will then provide insight into which drug could possibly be successful in 

treating a specific condition. 

 
Figure 6: Examining the effects of experimental conditions 
Sample 1 is taken from the tissue treated with drug 1, while Sample 2 is taken from the tissue treated 
with drug 2. 

Dosage 1 

Tissue 

Sample 1 Sample 2 

Dosage 2 
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2. Sample 1 is a normal cell while sample 2 is a diseased cell.  A simple example of this is 

sample 1 is a cell taken from normal tissue while sample 2 is a cell taken from the 

tissue of a tumor (Figure 7).  Comparing these two samples, researchers may find 

genes/proteins that show a significantly different level of expression in the tumor cell.  

Discovering these significant genes or proteins can assist in providing a clue in 

determining disease susceptibility and will ultimately be useful in the diagnosis and 

treatment of various diseases. 

 
Figure 7: Comparing different cell populations 
Sample 1 is taken from normal tissue while Sample 2 is taken from diseased tissue 

Sample 1 

Normal 

Sample 2 

Diseased 
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3. Sample 1 and Sample 2 are taken from a cell or tissue at different times.  An 

experiment of this type is known as a time-course experiment and is basically the 

monitoring of a cell/ tissue’s gene expression over a time period.   
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2 RATIONALE 

 The introduction of microarray technology has been a significant asset to scientific 

research by saving researchers time and effort, but these researchers are faced with the 

challenge of the analysis of the microarray expression data.  One challenge is finding and 

making sense of the gene expression patterns which result from differing experiments.  

Detecting considerable increases or decreases in mRNA expression between experiments may 

lead to the discovery of significant genes causing a condition.  With such a plethora of data 

generated, it is difficult and time-consuming for researchers to compare and analyze 

microarray data by hand.  To reduce the amount of data (and discover significant genes), 

restrictions are set on the data. 

 2D gels can be difficult to analyze because of the many possible sources of error that 

become involved (e.g., over staining, differences in migration in either or both dimensions 

between different experiments, etc.).  Examining protein spots and detecting the changes in 

protein expression from the massive amount of protein expression data can be – as with the 

mRNA expression data analysis – lengthy and tedious when done manually.  Without 

software, researchers have to depend on setting the gels to be compared next to each other 

and matching up protein spots to visually detect expression differences.5  

 In both mRNA and protein expression analysis, one of the main challenges is 

examining large amounts of data and identifying patterns (e.g. similarly expressed 

mRNA/proteins) to determine differentially expressed genes.  This is where bioinformatics 

comes into play.  Many computational tools have been developed to assist researchers in areas 
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such as normalization, filtering, clustering and identification of differentially expressed genes 

among many other features. 

 This research focuses on the creation of a tool, DiffExpress, which takes as input a 

data matrix and provides as output, a list of variables (rows) that change by a specified 

threshold across two columns.  More specifically, the tool filters microarray expression data 

or 2D gel data and lists mRNA/protein that change by a given user-defined threshold between 

samples. The tool also supplies a variety of graphs such as the box plot and scatter plot, 

enabling easier visualization of the results.  Researchers can take the results, find patterns, co-

regulation, etc. and use this information to find which genes are associated with certain 

responses (e.g. disease, drug effects, etc.).  Identified genes may also be used in further 

statistical analysis (beyond the scope of this research). 
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3 METHODS 

 
Figure 8: Workflow of DiffExpress 

3.1 Input 

3.1.1 Input Data 

 Input for the tool is gene expression data in the form of an expression matrix (Table 

1).  Each column represents the expression levels from a single experiment, while each row 

represents the expression of a gene across all samples or experiments (gene expression vector). 

Input Data 
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3.1.2 Missing Values 

 Microarray data may often include missing values.  There are a variety of reasons for 

missing values in the data, the majority of these reasons being errors during the experiment: 

1. Hybridization may be poor or there may be spotting problems. 

2. There may be printing problems (e.g. corruption of images or inadequate resolution). 

3. Fabrication errors on slides, such as dust, fingerprints or scratches may also cause 

issues. 

4. The spot may simply be empty resulting in an intensity equal to zero. 

5. If the background intensity exceeds the spot intensity there will be low expression. 

6. A researcher may have noticed suspicious values in the data and removed these 

values. 

 The problem with missing values is that complete data expression matrices are 

necessary for many types of data analysis (e.g. hierarchical clustering and classification 

algorithms).  Since it is time consuming and expensive to repeat the whole experiment, 

researchers have come up with solutions to address the problem of these missing values.  

Imputation, which is the estimation of the missing values, is one of these solutions.  Three of 

the most widely used imputation methods are: 

1. Replacing the missing values with zeros. 
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2. Calculating the respective row or column averages and using these averages as 

replacement. 

3. k-nearest neighbor: k genes are chosen that are most similar to the gene with the 

missing value.  The missing value is then estimated as the weighted mean of the 

neighbors. 

Another popular but less sophisticated solution for missing values involves removing 

any rows and columns of the matrix that contain a significant amount of missing values. 

3.1.3 Input Data Limitations 

 As is the case with many tools, there is a specified format (Figure 9) for the input data 

which may be a limitation for some users: 

1. The input file should be a text (.txt) file. 

2. The rows in the expression data matrix should represent genes or spot ids. 

3. The columns in the expression data matrix should represent samples or experiments. 

4. Expression data matrix entries are real numbers. 

5. Expression data matrix should be tab-delimited. 

6. Newline or carriage return (\n) should be used between the rows.  The data file 

should also end with a newline. 
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7. Any descriptions or comments should be at the beginning of the file with each line 

beginning with an ampersand and a space (“& “). 

8. The first row after any comments should represent the number of variables.  This tool 

only accepts a maximum of four variables and a minimum of two variables.  These 

two variables are the genes or spotids and the samples.  Dosage and time are examples 

of additional variables (i.e. third and fourth variables). 

9. The row following the number of variables should display the sample ids. 

10. If there is a third variable, the next row should display this third variable’s ids. 

11. If there is a fourth variable, the next row should display the fourth variable’s ids. 

12. All rows after the above initial rows correspond to the gene or spot ids (the first 

column of each row) and the expression levels (the remaining columns of each row) 

of the actual expression data matrix. 

13. To conduct any statistical tests, the data should be normally distributed.  If data that is 

not normally distributed is entered, they will still get results but these results may be 

inaccurate. 

14.  The tool does not support preprocessing (i.e. normalization, missing values 

imputation, etc) of data, so any preprocessing of the data should be done before it is 

entered into the tool. 
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15. If the data is normalized then it should be normalized using log2 transformation (log10 

transformation is acceptable also, as long as it is used consistently). 

16. There should be no missing values in the data.  Any imputation or elimination of 

missing values should be executed before the data is entered into the tool. 

17. Regarding the naming convention for the gene/spot ids and the sample ids, there 

should be no spaces, i.e. each id should be a single string.  For example a dosage id 

should be 10mg and not 10 mg. 

& Example of Expression Data Format 

& This is a comment line 

3 

spo_0X spo_0.5X spo_2X spo_5X spo_7X spo_9X spo_11.5X   spo_earlyX     spo_midX 

10mg 17mg 13mg 5mg 15mg 16mg 7mg 18mg 19mg 

YAL001C -0.00 -0.40 -0.14 -0.26 -0.05 -0.16 0.03 0.31 0.07 

YAL002W 0.08 0.37 0.15 -0.33 -0.99 -0.60 0.05 0.02 -0.58 

YAL003W 0.27 -1.95 -1.28 -1.55 -2.03 -0.97 -1.00 -2.19 -3.09 

Figure 9: Example of the format for Input Data 



 

 
23

3.2 Analysis 

3.2.1 Advanced Data Information 

 
Figure 10: DiffExpress - Advanced Data Information Options Window 

 Before certain tasks (for example graphing) can be performed in DiffExpress, the type 

of input data, log transformation and comparison must be selected (Figure 10).  These 

selections allow the tool to know what type of data is being processed. 
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3.2.1.1 Input Data Type 

 DiffExpress can process cDNA microarray, oligonucleotide microarray or 2D gel data.  

Since oligonucleotide and 2D gel data use expression levels, while cDNA data uses a ratio of 

expression levels, processing between these input data types is different.  Different graphs are 

created and the expression change is calculated differently.  

3.2.1.2 Log Transformation Type 

 DiffExpress allows the user to enter log transformed data or raw data.  There are two 

ways that the data can be log transformed: log2 transformation and log10 transformation.  The 

calculations of the expression change will vary depending on which log transformation is 

used.  To give the user less limitation on the type of data that can be entered, options for 

either log2 or log10 transformed data were given.  This way, if the user’s data is log10 

transformed they will not have to convert it to data that is log2 transformed, and vice versa. 

3.2.1.3 Data Comparison 

 Before any calculation of the expression change can occur, the user must select a type 

of data comparison i.e. which samples are to be compared.  cDNA data is usually in the form 

of ratios representing expression changes, as a result there is no data comparison type to be 

selected before expression changes are calculated.  Since oligonucleotide or 2D gel data 

consists of expression levels, DiffExpress provides the user with three choices for the selection 

of samples before the calculation of the expression change: 

1. One-to-many comparison:  The user selects a single sample as the baseline sample and 

one or more samples as the experimental samples (Figure 11 and Figure 12).  The 
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baseline sample may be a gene knockout mouse sample, while the experimental 

samples may be wild type mice samples. 

 
Figure 11: One-to-many comparison 
Each of the samples B, C, D and E (experimental samples) will be compared to sample A (baseline 
sample). 

 
Figure 12: DiffExpress - One-to-many comparison 
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2. Paired Groups comparison: The user selects one or more samples as the baseline 

group, and their corresponding sample pairs as the experimental group (Figure 13 and 

Figure 14).  As an example, the baseline group may consist of samples from patients 

before a treatment while the experimental group may consist of samples from the 

same patients after a treatment has been administered.  Another example is that 

where patients are paired based on some factor (e.g. age, or weight) and one member 

of the pair is given a drug treatment while the other member is given a placebo.  

Those patients who are given the drug treatment may be assigned to the baseline 

group while those patients who are given the placebo treatment may be assigned to 

the experimental group (or vice versa). 

 
 

Figure 13: Paired Groups Comparison 
The experimental group comprised of the B samples will be compared to the baseline group comprised 
of the A samples. 
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Figure 14: DiffExpress – Paired Groups Comparison 

3. Unpaired Groups comparison: The user selects one or more samples as the baseline 

group and one or more samples as the experimental group (Figure 15 and Figure 16).  

These two groups should be unrelated, for example comparing the reaction in female 

patients (first group) and male patients (second group) who are given a drug. 

 
Figure 15: Unpaired Groups Comparison  
The experimental group (Samples E, F and G) will be compared to the baseline group (Samples A, B, C 
and D). 
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Figure 16: DiffExpress - Unpaired Groups Comparison 

3.2.2 User Defined Threshold 

 DiffExpress gives the user a choice of entering an above threshold, a below threshold, 

or both (Figure 17).  This choice provides the user with the option of focusing on the 

direction and magnitude of change in which they are interested, i.e. up-regulated genes or 

down-regulated genes, or both. The appropriate expression change is calculated and 

depending on the threshold range entered, the tool lists any gene whose calculated expression 

change is greater than or equal to the above threshold entered or is less than or equal to the 

below threshold entered. 

 
Figure 17: DiffExpress - Threshold Range 
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 The user-defined threshold is advantageous because the user gets to set their personal 

restriction of what threshold they consider the genes to be differentially expressed.  For 

example, if a threshold of two is entered, and there are too many resulting genes, the user 

may increase the threshold to a higher number to make the filtering process more sensitive.  

3.2.3 Expression Change 

 Expression change reveals how much a gene’s expression level varies across two 

different experimental conditions.  If oligonucleotide microarrays are being used, the 

expression change has to be calculated.  On the other hand, if cDNA microarrays are the 

microarray of choice the data is already represented as a ratio.  The user may opt to convert 

this predefined ratio into another form of expression change (for example intensity ratio to 

log2 ratio).  In this case, one or more samples may be selected, and the appropriate expression 

change option is chosen. 

 DiffExpress provides three ways to calculate expression change: the intensity ratio, 

log ratio and fold change (Figure 18).  The two latter measures are derived from the intensity 

ratio and are usually the preferred choices of measurement because they have more 

symmetrical qualities.8 

 
Figure 18: DiffExpress - Expression Change Option 
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 The intensity ratio is the easiest way to calculate the expression change.  For cDNA 

microarrays (two-color data) the calculation of the intensity ratio is as follows: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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'5
'3

Cy
CyRatioIntensity cDNA  (1)

 For oligonucleotide microarray data the intensity ratio is calculated by the formula 

(where expression level A is the expression level of a gene from the experimental (treatment) 

sample and expression level B is the expression level of the same gene from the baseline 

(control or reference) sample): 

⎟⎟
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⎞
⎜⎜
⎝

⎛
=

BlevelressionExp
AlevelressionExpRatioIntensity otideOligonucle  (2)

 The values for up-regulated genes range from one to infinity while values for down-

regulated genes range from zero to one.  Because of this asymmetrical distribution, intensity 

ratios may be problematic in statistical data.  In order to utilize many statistical methods, one 

of the assumptions is that the data is normally distributed (symmetric).  Transformation – a 

technique using functions or formulae to derive a new variable from another variable – can 

be applied to make a distribution more normal.  This technique is particularly useful when a 

ratio is involved because ratios tend to be skewed.  A form of transformation, log 

transformation (which is usually taken in base 2), is common in DNA microarray 

experiments.  A log transformation converts the original variable into a new variable called 

the log ratio.  The log ratio (Equation 3) is the change in expression level between two 

samples (intensity ratio) expressed as a log ratio. 
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( )ratioensityIntRatioLog 2log=  (3)

 The values for both up-regulated and down regulated genes range from negative 

infinity to positive infinity, while the value for an unchanged expression is zero. 

 The fold change is calculated in the same way as the intensity ratio (Equation 1 for 

cDNA data, and Equation 2 for oligonucleotide data) if expression level A is greater than or 

equal to expression level B.  If expression level A is less than expression level B the fold 

change is calculated by negating the inverse of the intensity ratio (Equation 4). 
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 Much like the log ratio, the values for both up-regulated and down regulated genes 

range from negative infinity to positive infinity, but unlike the log ratio, the value for an 

unchanged expression is one. 

 Expression  
Level A 

Expression 
Level B 

Intensity 
Ratio 

Log Ratio Fold Change 

Gene A 100 50 2 1 2 

Gene B 5 10 0.5 -1 -2 

Gene C 150 150 1 0 1 

Gene D 200 1 200 7.6439 200 

Table 2: Expression Change Calculation - raw oligonucleotide microarray data 
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 cDNA Spot Value Intensity Ratio Log Ratio Fold Change 

Gene A 2 2 1 2 

Gene B 0.5 0.5 -1 -2 

Gene C 1 1 0 1 

Gene D 200 200 7.6439 200 

Table 3: Expression Change Calculation - raw cDNA microarray data 
 

 Note that the above calculations in Table 1Table 2 and Table 3 refer to raw 

microarray data that has not been transformed.  If the expression levels from the 

oligonucleotide microarray data are normalized using a log2 transformation, this needs to be 

taken into account by un-logging the expression levels (i.e. )(2 levelExpression ) before any 

calculation (intensity ratio, log ratio or fold change) can be made.  If the ratios from the 

cDNA have been log2 transformed, each spot will correspond to the log ratio, therefore in 

order to calculate the intensity ratio, the log ratio must be unlogged.  The fold change will be 

calculated as usual, using the intensity ratio calculated by unlogging the log ratio (as shown in 

Table 4 and Table 5). 
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 Expression  
Level A 

Expression 
Level B 

Intensity 
Ratio 

Log Ratio Fold Change

Gene A 6.6439 5.6439 2 1 2 

Gene B 2.3219 3.3219 0.5 -1 -2 

Gene C 7.2288 7.2288 1 0 1 

Gene D 7.6439 0 200 7.6439 200 

Table 4: Expression Change Calculation - log transformed oligonucleotide microarray data 

 

 
 cDNA Spot Value Intensity Ratio Log Ratio Fold Change 

Gene A 1 2 1 2 

Gene B -1 0.5 -1 -2 

Gene C 0 1 0 1 

Gene D 7.6439 200 7.6439 200 

Table 5: Expression Change Calculation - log transformed cDNA microarray data 
 

 Table 6 displays a summary of the possible ranges for the three types of expression 

change and the type of regulation to be expected.  If the intensity ratio is greater than 1, up-

regulation has occurred.  If the intensity ratio is equal to 1 then there is no change between 

the two samples.  If the intensity ratio is less than 1, down-regulation has occurred. 

 If the log ratio is positive, up-regulation has occurred.  If the log ratio is equal to 0, 

then there is no change between the two samples.  If the log ratio is negative, down-

regulation has occurred. 
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 If the fold change is positive, up-regulation has occurred.  If the fold change is equal 

to 1 then there is no change between the two samples.  If the fold change is negative, down-

regulation has occurred. 

Intensity Ratio Log Ratio Fold Change Regulation 

>1 + + Up-regulation 

1 0 1 No Change 

<1 - - Down-regulation 

Table 6: Summary of Expression Change and Types of Regulation 
 

3.3 Output 

3.3.1 Expression Change Detection 

 The task of identifying differentially expressed genes involves comparing samples and 

discovering differences in which genes are expressed and the level of expression of a given 

gene.  Expression change detection is one of the simplest approaches used to find 

differentially expressed genes and is used when the researcher simply wants to know which 

genes have been over-expressed or under-expressed in the experiment.  In this method the 

specified expression change (intensity ratio, log2 ratio or fold change) is calculated, and the 

user defined threshold is used as a cutoff.  Any gene whose calculated expression change falls 

above the user-defined above threshold and/or below the user-defined below threshold is 

added to the list of candidate differentially expressed genes or proteins list (Figure 19).   



 

 
35

 
Figure 19: DiffExpress - Output Display 

 The results may be saved to a text file (Figure 20).  This text file includes the 

following information: 

1. The type of data 

2. The type of transformation 

3. The type of comparison (for oligonucleotide and 2D gel data) 

4. The baseline sample and experimental samples (for a one-to-many comparison), or 

baseline groups and experimental samples (for paired and unpaired comparisons) 

5. The expression change chosen 

6. The threshold range entered 
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7. The number of candidate genes or proteins found to be differentially expressed 

8. The candidate gene or protein and the corresponding samples, as well as the 

expression change 

 
Figure 20: DiffExpress - Example of output text file 

3.3.2 Graphs 

 DiffExpress offers various optional graphs which enable easier visualization of the 

relationships and patterns in data, thereby simplifying data analysis. 



 

 
37

3.3.2.1 Outliers 

 
Figure 21: DiffExpress - An example of a Scatter Plot with an outlier.   
Most of the data is more or less clustered around an imaginary line with a negative slope except for the 
value with an expression level of 8.5 for sample 1 and an expression level of 5.0 for sample 5 

An outlier is a data value which appears to deviate from the distribution of the rest of 

the data.  Outliers can be extremely problematic in data analysis if they are not properly dealt 

with.  For example, they may cause an increase or decrease in the correlation coefficient or 

cause unreliable measures of spread.  Before disposing of outliers, care must be taken to 

ensure that the outlier is in fact an error in the dataset and not valuable information that 

could possibly be a breakthrough in research. 

In graphs, an outlier is usually represented as a data point that falls a significant 

distance from the remainder of the dataset.  Two graphs which can assist researchers in 

visually identifying outliers are the Box Plot and the Scatter Plot. 
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3.3.2.2 Box Plots 

 
Figure 22: DiffExpress - Box and Whiskers Plot 

A box plot can be used to graphically represent the minimum value, maximum value, 

lower quartile, upper quartile and median of a set of data.9  This graph can also be used to 

calculate the mean of the data and for the identification of outliers (unusual observations).  

Placing two or more categorical box plots (one for each condition) side by side on the same 

graph (Figure 22) can assist in comparing the datasets’ distributions and determining if there 

is any variation between the groups. 
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3.3.2.3 Scatter Plots 

 
Figure 23: DiffExpress - Scatter Plot 

 Scatter plots (Figure 23) graphically display the spread of the data, illustrate the 

relationship between two variables, and are helpful when determining if it is appropriate to 

calculate the correlation coefficient or fit a regression curve.  These graphs are also used for 

easier identification of outliers in datasets.  In cDNA microarrays, a common scatter plot 

drawn is that of green versus red channel intensities. 

 The pattern in these types of graphs (scatter plots) is more apparent when there is a 

plethora of data.  If the data points come close to forming a straight line, then the higher the 

correlation between the two variables.  If the slope of the graph rises from left to right (a 

diagonal line from the origin to high x and y values) a positive correlation is represented, 
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while a slope falling from left to right (diagonal line from high y values to high x values) 

represents a negative correlation. 

 A scatter plot may reveal some existing relationship between variables, but it does not 

mean that one variable is causing a change in another variable.  Another variable may be the 

reason why the two variables seem related or their relationship may simply be coincidental. 

3.3.2.4 Pearson Correlation Coefficient 

When examining the relationship between variables the following questions can be asked: 

1. Are two variables related in some way?  (As one variable changes, does the other 

variable also change in a linearly consistent way?) 

2. What is the strength of the relationship? 

The Pearson Correlation Coefficient (r) (Equation 5) is a number that describes the strength 

and the direction of a relationship.  The sign (+ or -) represents the direction (i.e. positive or 

negative) while the magnitude corresponds to the strength of the correlation (i.e. weak or 

strong correlation). 

 

(5) 
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Even if there is a correlation, it does not signify that there is a causal relationship.      A 

significant correlation will only demonstrate that the two variables linearly vary together in a 

certain direction (positively or negatively). 

3.3.2.5 RA Plot 

 
Figure 24: DiffExpress - RA Plot 

 The RA Plot of DiffExpress is a modified version of the volcano plot (Figure 24).   

 Volcano plots (Figure 25) graphically display the relationship between the expression 

change and statistical significance (using the t-test), thereby making it easier to detect 

significant differentially expressed genes.  The volcano plot’s horizontal axis(x) represents a 

measure of expression change (usually the log ratio) between the two groups while its vertical 

axis represents the negated log of the p-value (i.e. –log10 (p-value)).  The p-value is calculated 
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from the t-test, which is a parametric test used to assess whether there is a statistically 

significant difference between the means of two groups.10 

 The RA plot’s horizontal axis also represents a measure of expression change (usually 

the log ratio) between the two groups, but unlike the volcano plot, its vertical axis represents 

the t-value calculated from the t-test, not a p-value. 

 
Figure 25: Volcano Plot  
(http://genstat.co.uk/doc/8doc/html/marray/VolcanoPlot.htm) 

Region Expression Change Statistical Significance 
Upper Left and Right Greater than k-fold difference Statistically Significant 

Upper Middle Less than k-fold difference Statistically Significant 

Lower Left and Right Greater than k-fold difference Not Statistically Significant 

Lower Middle Less than k-fold difference Not Statistically Significant 

Table 7: Summary of Regions of the RA Plot and the Statistical Significance 
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 Genes/ Spot ids with statistically significant values based on the t-test and with a large 

log ratio will be identified as possibly being differentially expressed. The statistically 

significant values of interest are those that are in the upper left and right regions of the plot 

(Table 7). 

Paired t-test 

 The paired t-test is used to compare the means between two of the same or related 

samples, and is commonly used when a subject is measured before and after some 

experiment.11  For example, it may be interesting to test the significance of the differences of 

measurements of the pulse rate or blood pressure of a group of subjects before and after 

receiving a certain drug at different times during the day.  

Unpaired t-test 

 The unpaired t-test, also known as the independent group t-test, is used to compare 

the means of two independent groups.11  An example is the blood pressure between a group of 

patients who have received a certain medication and another group or patients who have 

received a placebo.  Unlike a paired test which uses non-random samples, this test should be 

used when a replicate is randomly chosen from a population. 

Expression Change 

 To calculate the expression change of the RA plot for both paired and unpaired 

groups, the log is taken of the mean of the y group divided by the mean of the x group 

(Equation 6). 
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3.3.3 Expression Profile 

 When the candidate differentially expressed genes are identified, DiffExpress allows 

the user to generate an expression profile (an example is shown in Figure 26).  Basically, this 

profile is a list of the candidate genes or proteins and the expression levels of the 

corresponding samples (expression changes when dealing with cDNA input data).  After the 

profile has been created, the data can be analyzed and scanned for patterns (up regulated or 

down regulated genes) or unusual values.  

 
Figure 26: DiffExpress - Gene Expression Profile 
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4 Implementation 

4.1 Java 

 Java was used to implement DiffExpress because it is fast, robust and platform-

independent (the same program can be executed on multiple operating systems).  The 

complete Javadoc documentation for this tool can be referenced from the folder containing 

the DiffExpress program files. 

4.2 JFreeChart 

 JFreeChart (used for the creation of all DiffExpress graphs) is a chart library founded 

by David Gilbert and written entirely in Java.  JFreeChart supports the drawing of various 

graphs such as histograms, pie charts, bar charts and scatter plots, just to name a few.  Details 

of this library can be found at: http://www.jfree.org/jfreechart/index.html. 

4.3 Packages 

 A Java package is comprised of a group of related classes and interfaces.  Five of the 

main packages in DiffExpress (Basics, Comparators, Datasets, Frames and Graphs), are 

described below. 

4.3.1 Basics 

The Basics package comprises of the majority of the classes designed to perform calculations 

in DiffExpress. 

Class Description 
FoldChange Calculates the intensity ratio, log2 ratio or fold change for the input 

data types (cDNA, oligonucleotide and 2D gels) and comparison types 
(one-to-many, paired groups, unpaired groups). 
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Outliers Performs all calculations associated with identifying outliers using 
Tukey’s method.  For each dataset, this class calculates the mean, 
median, interquartile range, maximum value, minimum value and 
cutoffs for mild and extreme outliers.  

PCC Calculates the pearson correlation coefficient between two samples. 

ReadInData Enters the input data into DiffExpress. 

RAPlot Calculates t-values and fold changes for the RA plot. 

 

4.3.2 Comparators 

This package consists of all the comparators. 

Class Description 
BWDatasetComparator Comparator to sort the box and whisker’s dataset. 

FourthVarIDComparator Comparator to sort the samples by the second condition. 

SampleIDComparator Comparator to sort the samples by the sample id. 

ThirdVarIDComparator Comparator to sort the samples by the first condition. 

 

4.3.3 Datasets 

This package comprises of all the dataset classes and basic classes. 

Class Description 
BWDataset Box and whiskers dataset object. 

CustomXYDataset Creates XY datasets for the RA Plot, Outliers Plot, Expression Levels 
Plot and Expression Change Plot. 

Samples Samples object. 

Settings Settings object. 

xyDataset XY dataset object. 
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4.3.4 Frames 

This package contains the user interfaces for DiffExpress. 

Class Description 
ExpressionFrame Main application window.  The user can select samples, 

choose the type of expression change, enter the 
threshold range, and obtain a list of the candidate 
differentially expressed genes or proteins. (Figure 27) 

cDNAScatterPlotFrame Options window for cDNA expression changes scatter 
plot.  The user selects a sample from the “Choose 
Sample 1” list, and selects one or more samples from 
the “Choose Other Samples” list. (Figure 28) 

ExpressionChangeScatterPlotFrame Options window for oligonucleotide and 2D gels 
expression change scatter plots.  The user can select a 
baseline sample and two experimental samples.  They 
can draw intensity ratio, log2 ratio or fold change 
scatter plots, and calculate the pearson correlation 
coefficient for the samples selected. (Figure 29) 

ExpressionLevelsBasicPlotFrame Options window for expression levels basic plot.  The 
user can select one or more samples to plot on the same 
graph. (Figure 30) 

GeneProfileTableFrame Window for the gene expression profile of candidate 
genes window. 

GraphFrame Window for all individual graphs (i.e. the user has not 
opted for “Multiple Plots in a Single Window”). 

OutliersFrame Outliers and Box and Whiskers plot options window.  
The user can select one or more samples and select a 
plot to be drawn.  From the “Display Outlier 
Information” tab they may also display the values for 
the non-outliers, outliers and statistical values. (Figure 
31 and Figure 32) 

PCCFrame Pearson correlation coefficient options window.  The 
user can select two samples and calculate their pearson 
correlation coefficient. (Figure 33) 

RAErrorFrame RA plot error dialog.  If the two group sizes for a paired 
t-test are not equal, this window pops up. (Figure 34) 

RAPlotFrame RA plot options window.  The user can select the 
samples for each of their two groups (paired or 
unpaired), enter a t-value cutoff percent rank and enter 
a threshold range for the RA Plot. (Figure 35) 
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Figure 27: DiffExpress - Main Application Window 
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Figure 28: DiffExpress - cDNA Scatter Plot Options Window 
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Figure 29: DiffExpress – Expression Change Scatter Plot Options Window 
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Figure 30: DiffExpress - Expression Levels Basic Plot Options Window 

 
Figure 31: DiffExpress - Outliers and Box & Whiskers Plot: Plot Graphs 

 
Figure 32: DiffExpress - Outliers and Box & Whiskers Plot: Display Outliers Information 
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Figure 33: DiffExpress - Pearson Correlation Coefficient Options Window 

 
Figure 34: RA Plot Error Frame 
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Figure 35: DiffExpress - RA Plot Options Window 
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4.3.5 Graphs 

This package contains classes that plot the various graphs that DiffExpress supports. 

Class Description 
MyBoxPlot Draws the box and whiskers plot for any type of input data. 

PlotBasicGraph Draws the expression levels basic plot for oligonucleotide 
and 2D gel data, i.e. Expression level vs. gene. 

PlotGraph Draws the expression change basic plot for any type of input 
data, i.e. Expression change vs. gene. 

PlotOutlier Draws the outliers plot for any type of input data. 

PlotRAPlot Draws the RA plot for oligonucleotide or 2D gel data. 

PlotScatterPlot Draws the scatter plot for any type of input data. 
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5 PROBLEMS FACED 

5.1 Missing Values 

 Missing values in the expression data matrix proved to be a problem initially.  There 

are a variety of ways to account for missing values, but in the end it was decided that the user 

should do any preprocessing regarding missing values before the data file is loaded into the 

tool.  This way allows the user some flexibility on how to deal with their missing values, 

rather than having the tool use a default that may not be suitable to their needs.   

5.2 Infinity Values 

 Some infinity values appeared when the calculation of the expression change was 

performed.  Infinity values are problematic when creating the graphs because they are out of 

range of the particular axis with which they belong.  Initially the infinity values were 

converted to zeroes, but this led to inaccurate graphs.  In the end it was easier to exclude the 

data points with infinity values from the graph completely. 
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6 FUTURE WORK 

6.1 Preprocessing 

 Preprocessing is used to make data suitable for analysis purposes.  DiffExpress 

performs no preprocessing; instead the user has to enter data that has already been 

preprocessed.  Some suggestions for preprocessing methods that can be added to DiffExpress 

are as follows: 

1. Imputation: for missing values. 

2. Normalization: to ensure that differences in intensities are because of differential 

expression and not errors made when the experiment was carried out. 

3. Averaging replicates. 

4. Filtering bad data. 

6.2 Volcano Plot Implementation 

 The current version of DiffExpress implements the RA Plot – a modified version of 

the Volcano Plot.  An improvement to DiffExpress would be to implement an actual Volcano 

Plot which uses the p-value. 

6.3 Clustering 

 Another addition to DiffExpress could be that of clustering.  Clustering of data is 

advantageous because it helps to group genes according to patterns in their expression.  Some 

commonly used clustering methods are: hierarchical clustering, self-organizing maps, k-

nearest neighbor, k-means and principal component analysis. 
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6.4 Identification of Differentially Expressed Genes 

 Implementing more methods for finding differentially expressed genes is also an 

excellent addition.  Chen’s single slide method, Sapir and Churchill’s single slide method, and 

Newton’s single slide method are some of the methods used in this area. 



 

 
58

REFERENCES 

1. University of Utah.; Profiling Technique: Protein Expression Analysis, 
http://gslc.genetics.utah.edu/units/pharma/phprotan/ (accessed November 13th 2005). 

2. Kimball, J.; “Gene Translation: RNA  Protein.” Biology, 
http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/T/Translation.html (accessed 
November 13th 2005). 

3. University of Utah.; Profiling Technique: Microarray Analysis, 
http://gslc.genetics.utah.edu/units/pharma/phmicroarray/ (accessed November 13th 2005). 

4. National Center for Biotechnology Information. Microarrays: Chipping Away At the 
Mysteries of Science and Medicine. 
http://www.ncbi.nlm.nih.gov/About/primer/microarrays.html (accessed April 24th 2006). 

5. Borman, S.; “Proteomics: Taking Over Where Genomics Leaves Off.”  
Science/Technology.  78: 31-37 (2000). 

6. Coe, B.; Antler, C.  Spot Your Genes – An Overview of the Microarray. 
http://www.bioteach.ubc.ca/MolecularBiology/microarray/ (accessed April 25th 2006). 

7. Bonetta, L.  The Basics of DNA Microarrays. 
http://www.hhmi.org/biointeractive/genomics/microarray.html (accessed April 25th 
2006). 

8. Saeed, A.; Analyzing Multiple Experiments with MeV, 
http://www.jax.org/courses/archives/2004/MicroF04_Saeed_Presentation.pdf (accessed 
November 1st 2005). 

9. How to Draw a Boxplot. http://exploringdata.cqu.edu.au/box_draw.htm (accessed April 
25th 2006). 

10. Cui, X.; Churchill, G.; “Statistical Tests for Differential Expression in cDNA Microarray 
Experiments.” Genome Biology. 4:210 (2003). 

11. Hampton, R.E.  Inferences Concerning Two Populations. Introductory Biological 
Statistics; Waveland Press: Long Grove, Illinois, 2003; Chapter 6. 



 

 
59

 

 

 

 

 

 

 

 

 

 

 

APPENDIX A 



 

 
60

DIFFEXPRESS USER GUIDE 

1 GETTING STARTED 

In order to begin using DiffExpress, double click the Threshold.jar file, or the following 

command: java –jar Threshold.jar may be run from the command line or terminal window.   

2 DIFFEXPRESS INTERFACE 

The interface (Figure A1) consists of a menu bar (Figure A2) and a work space (Figure A7). 

 
Figure A1: DiffExpress User Interface  

 



 

 
61

2.1 Menu Bar 

 
Figure A2: DiffExpress Menu Bar 

2.1.1 File 

 
Figure A3: File Menu 

Menu Item Description 

File/ Open Input File Load a new expression matrix by opening a new file. 

File/ Load Project Load an existing project. 

File/ Save/ Save Output Save differentially expressed genes output. 

File/ Save/ Save Project Save current settings. 

File/ Close Project Close current project. 

File/ Exit Exit DiffExpress. 

 

2.1.2 View 

 
Figure A4: View Menu 
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Menu Item Description 

View/ Graphs/ cDNA Graphs/ 
Expression Change Plot 

Create cDNA expression change basic plot. 

View/ Graphs/ cDNA Graphs/ 
Expression Change Scatter Plot 

Create cDNA expression change scatter plot. 

View/ Graphs/ Oligonucleotide or 2D 
Gel Graphs/ Basic Plots/ Expression 
Levels Plot 

Create oligonucleotide or 2D gel expression levels 
basic plot. 

View/ Graphs/ Oligonucleotide or 2D 
Gel Graphs/ Basic Plots/ Expression 
Change Scatter Plot 

Create oligonucleotide or 2D gel expression change 
scatter plot. 

View/ Graphs/ Oligonucleotide or 2D 
Gel Graphs/ Comparison Plots/ 
Expression Change Plot 

Create oligonucleotide or 2D gel expression change 
basic plot. 

View/ Graphs/ Oligonucleotide or 2D 
Gel Graphs/ Comparison Plots/ 
Expression Levels Scatter Plot 

Create oligonucleotide or 2D gel expression levels 
scatter plot. 

View/ Graphs/ RA Plot Create RA plot. 

View/ Graphs/ Box and Whiskers Plot Create Outliers plot or Box and Whiskers plot. 

View/ External File View an external text file. 

View/ Gene Expression Profile View the gene expression profile of differentially 
expressed genes. 

 

2.1.3 Tools 

 
Figure A5: Tools Menu 
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Menu Item Description 

Tools/ Options/ Sort Samples List Sort sample list by sample id, first condition, or second 
condition. 

Tools/ Options/ Multiple Plots in a 
Single Window 

Group related graphs in a single window. 

Tools/ Data Information/ Basic Data 
Information 

View basic information about the input data, such as 
number of genes or spot ids, number of samples, gene 
ids or spot ids, and sample ids.  

Tools/ Data Information/ Advanced 
Data Information 

Enables user to specify the type of input data loaded. 

Tools/ Calculate PCC Calculate the Pearson correlation coefficient between 
two selected samples. 

2.1.4 Help 

 
Figure A6: Help Menu 

Menu Item Description 

Help/ Help Contents Displays a user guide for DiffExpress. 

 



 

 
64

2.2 Work Space 

 
Figure A7: DiffExpress Workspace 
(A) Samples Lists, (B) Expression change and Threshold Range options, (C) Output Window 

The work space allows the user to select samples, choose an expression change, enter a 

threshold range, and view the differentially expressed genes. 

3 LOADING DATA 

Expression data can be loaded either by opening a new input file (File/ Open Input File) or 

loading an existing project (File/ Load Project).  If a new input file is opened, the Advanced 

Data Information Option Window will open (Figure A8).  This option window allows the 

user to specify the type of input data that has been loaded.  This information may be entered 

A 

C 

B 
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now or at a later time, but it must be entered before any analysis and viewing of graphs can 

be performed. 

 
Figure A8: Advanced Data Information Option Window 

If the user would like to change the advanced data information at anytime, they can do so by 

performing the following from the menu bar: Tools/ Data/ Information/ Advanced Data 

Information. 
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4 SAVING 

4.1 Save Output 

The information in the Output Window of the work space may be saved to a text file if 

desired (File/ Save Output). 

4.2 Save Project 

To save the current settings perform the following from the menu bar: File/ Save Project.  

These saved settings are the files used when loading existing projects. 

4.3 Save Graphs 

Graphs may be saved in jpeg format by using the File/ Save option on the respective graph’s 

menu bar, or (on Windows systems) by right clicking on the graph and selecting the Save as 

option (Figure A9). 

 
Figure A9: Saving a Graph 
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5 Viewing 

5.1 View Graphs 

DiffExpress provides basic plots, scatter plots, outliers plots, box and whiskers plots and RA 

plots. 

5.1.1 cDNA Data Graphs 

Expression Change Plot 

This is a plot of expression change versus genes for selected samples.  Follow these steps to 

create an expression change plot (Figure A10): 

1. Select one or more samples from the Baseline Samples list. 

2. Choose a type of expression change. 

3. Enter in a threshold range. 

4. From the menu bar: View/ Graphs/ cDNA Graphs/ Expression Change Plot 

 
Figure A10: Drawing cDNA Expression Change Plot 
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Expression Change Scatter Plot 

This is a scatter plot of the expression change of one or more selected samples versus the 

expression change of another sample.  Follow these steps to create an expression change 

scatter plot (Figure A11): 

1. From the menu bar: View/ Graphs/ cDNA Graphs/ Expression Change Scatter Plot. 

2. Select one sample from the Choose Sample 1 list. 

3. Select one or more samples from the Choose Other Samples list. 

4. Click the Plot Scatter Plot button. 

 

 
Figure A11: cDNA Scatter Plot Options Window 
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5.1.2 Oligonucleotide or 2D Gel Data Graphs 

5.1.2.1 Basic Plots 

Basic Plots do not require the user to make selections DiffExpress’ work space.  They have 

their own dialogs from which selections can be made. 

Expression Levels Plot 

This is a plot of expression levels versus genes for selected samples.  Follow these steps to 

create an expression levels plot (Figure A12): 

1. From the menu bar: View/ Graphs/ Oligonucleotide or 2D Gel Graphs/ Basic Plots/ 

Expression Levels Plot. 

2. Select one or more samples from the Samples List list. 

3. Click the Plot button. 

 

 
Figure A12: Expression Levels Basic Plot Options Window 
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Expression Change Scatter Plot 

This is a plot of the expression change between the selected baseline sample and the first 

selected experimental sample versus the expression change between the baseline sample and 

the second selected experimental sample.  Follow these steps to create an expression change 

scatter plot (Figure A13): 

1. From the menu bar: View/ Graphs/ Oligonucleotide or 2D Gel Graphs/ Basic Plots/ 

Expression Change Scatter Plot. 

2. Select one sample from the Baseline Samples list. 

3. Select a sample from the Experimental Samples list, and click the Add Experimental 

Sample 1 button.  Select another sample from the Experimental Samples list, and click 

the Add Experimental Sample 2 button. 

4. Click one of the scatter plot buttons: Intensity Ratio Scatter Plot, Log Ratio Scatter 

Plot, or Fold Change Scatter Plot. 

5. To calculate the Pearson correlation coefficient of the expression changes click the 

Calculate PCC button. 
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Figure A13: Expression Change Scatter Plot Options Window 
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5.1.2.2 Comparison Plots 

Comparison Plots require the user to make selections from the work space in order to draw 

the specified graph. 

Expression Change Plot 

This is a plot of expression changes between selected baseline samples and selected 

experimental samples versus genes.  Follow these steps to create an expression change plot 

(Figure A14): 

1. Select one or more baseline samples (dependent on the comparison type: one-to-

many, paired, unpaired). 

2. Select one or more experimental samples. 

3. Choose expression change. 

4. Enter a threshold range. 

5. From the menu bar: View/ Graphs/ Oligonucleotide or 2D Gel Graphs/ Comparison 

Plots/ Expression Change Plot. 

 
Figure A14: Create Expression Change Plot 
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Expression Levels Scatter Plot 

This is a plot of selected experimental samples’ expression levels versus selected baseline 

samples’ expression levels.  Follow these steps to create an expression levels scatter plot 

(Figure A15): 

1. Select one or more baseline samples (dependent on the comparison type: one-to-

many, paired, unpaired). 

2. Select one or more experimental samples 

3. From the menu bar: View/ Graphs/ Oligonucleotide or 2D Gel Graphs/ Comparison 

Plots/ Expression Levels Scatter Plot 

 
Figure A15: Create Expression Levels Scatter Plot 
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5.1.3 RA Plot 

This is a plot of t-values versus log2 ratio.  Follow these steps to create an RA plot (Figure 

A16): 

1. Select one or more baseline samples (dependent on the comparison type: paired or 

unpaired). 

2. Select one or more experimental samples. 

3. Enter a threshold range. 

4. From the menu bar: View/ Graphs/ RA Plot. 

5. Choose a t-test type (paired or unpaired), and enter a t-value cutoff rank. 

6. To get threshold range from the work space, check the Get Threshold from Main 

Frame check box.  The user may also enter a new threshold range by leaving the 

check box unchecked and entering new values in the allotted text fields of the RA 

Plot Options Window. 

7. To get groups from the work space, check the Get Groups from Main Frame check 

box.  The user may also reselect groups in the RA Plot Options Window: 

a. Select one or more samples for group one. 

b. Select one or more samples for group two. 

8. (Optional) Save text results by checking the Save Results to Text File check box 

9. Click the Plot RA Plot button. 
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Figure A16: RA Plot Options Window 
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5.1.4 Outliers Plot and Box and Whiskers Plot 

The Outliers plot and Box and Whiskers plot both show the mild and extreme outliers.  

Follow these steps to create an Outlier plot or a Box and Whiskers plot (Figure A17 and 

Figure A18): 

1. From the menu bar: View/ Graphs/ Box and Whiskers Plot. 

2. Select one or more samples from the Samples List list. 

3. Click the button for the type of plot to be drawn (Plot Outliers button or Plot Box 

Plot button). 

4. To view the results in text format, go to the Display Outliers Information tab. 

5. Check the check boxes of all the results to be viewed. 

6. To save text results to a text file, check the Send to Text File button. 

7. Click the Display Outliers button. 

 
 
 

 
Figure A17: Outliers and Box & Whiskers Plot: Plot Graphs 
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Figure A18: Outliers and Box & Whiskers Plot: Display Outliers Information 

5.2 View External Files 

Follow these steps to view external text files: 

1. From the menu bar: View/ External File. 

 
Figure A19: Viewing External Text Files 

5.3 View Gene Expression Profile 

Follow these steps to view the gene expression profile: 

1. From the menu bar: View/ Gene Expression Profile. 

 
Figure A20: Viewing Gene Expression Profile 
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6 Tools 

6.1 Sorting 

Follow these steps to sort the sample lists (Figure A21): 

1. From the menu bar: Tools/ Options/ Sort Sample Lists/ (Sort By Sample ID, or Sort By 

3rd Variable, or Sort By 4th Variable). 

 
Figure A21: Sorting Sample Lists 

6.2 Multiple Plots in a Single Window 

Follow these steps to group plots of the same type in a single window (Figure A22): 

1. From the menu bar: Tools/ Options/ Multiple Plots in a Single Window. 

 
Figure A22: Multiple Plots in a Single Window 
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6.3 Data Information 

6.3.1 Basic Data Information 

Follow these steps to get the number of genes or spot ids, number of samples, gene ids or spot 

ids, sample ids, and number of variables (Figure A23): 

1. From the menu bar: Tools/ Data Information/ Basic Data Information. 

 
Figure A23: Basic Data Information 

6.3.2 Advanced Data Information 

Follow these steps to specify the type of input data loaded (Figure A24): 

1. From the menu bar: Tools/ Data Information/ Advanced Data Information. 

2. Select type of input data. 

3. Select log transformation type. 

4. Select comparison type and Click the OK button. 

 

 

 

 
Figure A24: Advanced Data Information 
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6.4 Calculate PCC 

Follow these steps to calculate the Pearson correlation coefficient between two samples 

(Figure A25): 

1. From the menu bar: Tools/ Calculate PCC 

2. From the Samples List list, select a sample and click the Add Sample 1 button.  Select 

another sample and click the Add Sample 2 button. 

3. Click the Calculate PCC  button. 

 
 
 

 
Figure A25: Pearson Correlation Coefficient Options Window 
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7 Listing Differentially Expressed Genes or Proteins 

Follow the steps below to get a list of differentially expressed genes based on expression 

change (Figure A26): 

1. Select one or more baseline samples. 

2. If dealing with oligonucleotide or 2D gel data, select one or more experimental 

samples. 

3. Choose an expression change. 

4. Enter a threshold range. 

5. Click the List Genes button. 

 
Figure A26: Identifying Differentially Expressed Genes 

8 Help 

When clicked, the Help button (Figure A27) featured throughout DiffExpress displays help 

for its respective window. 

 
Figure A27: Help Button 
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