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ABSTRACT 

 
 Microarrays, which allow for the measurement of thousands of gene expression 

levels in parallel, have created a wealth of data not previously available to biologists 

along with new computational challenges.   Microarray studies are characterized by a low 

sample number and a large feature space with many features irrelevant to the problem 

being studied. This makes feature selection a necessary pre-processing step for many 

analyses, particularly classification.  A Genetic Algorithm -Artificial Neural Network 

(ANN) wrapper approach is implemented to find the highest scoring set of features for an 

ANN classifier.  Each generation relies on the performance of a set of features trained on 

an ANN for fitness evaluation.  A publically-available leukemia microarray data set 

(Golub et al., 1999), consisting of 25 AML and 47 ALL Leukemia samples, each with 

7129 features, is used to evaluate this approach.  Results show an increased performance 

over Golub’s initial findings. 
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Introduction 
Central Dogma 

To fully understand this study, a basic knowledge of molecular biology and the data used 

is necessary.  At the heart of gene expression and cell biology is the Central Dogma.  The central 

dogma has influenced molecular biology since it was first described by Crick in 1956 (Watson, 

et al. 2004).  Simply, information is stored in DNA which passes through an intermediate 

molecule named mRNA to construct a protein as in Figure 1. 

 

 

Figure 1 A simplified view of the Central Dogma of molecular biology. 

 

DNA which has been described as the ‘blueprint’ of life is the initial source of 

information.  In eukaryotic organisms DNA is located in the nucleus of cells.  A DNA sequence 

can be thought of as a string of characters consisting of the letters, A, T, C and G.  These are 

representations of the bases, Adenine, Thymine, Cytosine, and Guanine.  An organization of 

these bases that expresses a polypeptide results in a gene.  While the exact definition of a gene is 

still debated amongst experts in the field, it can be understood as a substring of the entire DNA 

sequence that serves as a set of instructions for building a protein.  These instructions are read in 
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groups of three bases, together which code for an amino acid.   However the DNA does not leave 

the nucleus; it serves as a “permanent” memory that is accessed for its information and returned 

for storage.  In order to convert the information contained within a string of DNA to a functional 

protein, the sequence must first be converted into an intermediate molecule known as mRNA.  

Chemically mRNA differs in its backbone structure and its base usage (DNA uses Thymine, 

mRNA uses Uracil).  The “m” in mRNA stands for messenger, which accurately describes its 

purpose.  A series of enzymes read the DNA sequence and transcribe the DNA sequence into an 

mRNA molecule.  The mRNA molecule serves as an inverse mobile copy of the DNA sequence.  

The mRNA exits the nucleus of the cell where it is translated into a polypeptide by complexes of 

molecules in the cytoplasm called ribosomes.  These polypeptides go on to perform different 

functions throughout the cell.  One of the important roles these polypeptides play is in complex 

feedback loops that regulate the amount of themselves or other polypeptides; making cellular 

processes and regulation a complex web of non linear interactions. 

 

Cancer 

Cancer has afflicted humans throughout recorded history, with some of the earliest 

documented cases found in ancient Egyptian mummies (American Cancer Society, 2009).  

Cancer arises through several small accumulated mutations or a few large disruptions within the 

genetic material of cells (Hagemeijer & Grosveld, 1996).  These mutations can arise from DNA 

replication errors or through environmental effects such as radiation and chemical exposure.  

These mutations disrupt the normal functioning of a cell. 
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 Cellular division is the process that converts a single fertilized egg into an organism with 

billions or trillions of cells.  Normally cellular division is a tightly controlled process, where 

several systems ensure that cells divide only when appropriate.  However, if a cell collects 

enough mutations in these control systems over time, problems will arise and the cell will no 

longer possess the ability to control its cellular division. This results in an increase in aberrant, 

often non-functional cells, which can form a tumor.  The different subtypes of cancer derive 

from their tissues of origin.  For examples lung cancers arise from mutated lung cells and skin 

cancer from skin cells.  While all cells within an organism originally arise from a single cell, 

these cells undergo differentiation that result in physiologically different cells.  When these cells 

of different lineages become diseased they can become unique forms of cancer. 

Leukemia is a common cancer of the blood caused by diseased cells from an organism’s 

immune system. Approximately 231,641 people in the United States suffer from this disease 

(Leukemia and Lymphoma Society, 2009).  The two predominate forms of leukemia are Acute 

Myelogenous Leukemia and Acute Lymphoblastic Leukemia.  Both Acute Myelogenous 

Leukemia (AML) and Acute Lymphoblastic Leukemia (ALL) are characterized by increases in 

circulating non functional immune precursor cells. 

Leukemia cells arise from progenitor cells that normally undergo hematopoiesis.  

Hematopoiesis is the differentiation process that results in the different cell types of the immune 

system.  As a cell further divides in a differentiation pathway, its function becomes more 

specialized.  All of cells of the immune system start as a multipotential hematopoietic stem cell 

and then further differentiate into their specific cell types.  Stem cells retain the ability to 

differentiate into a specific type of cell.  While they can also renew themselves the hematopoietic 

cells follow two major lineages: myeloid and lymphoid as seen in Figure 2. 
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Figure 2 Hematopoiesis two major lineages, Lymphoid and Myeloid. 

 

The myeloid lineage gives rise to cells such as granulocytes, phagocytes and monocytes 

(Parham, 2005).  These cells primarily function as part of the innate immune response.  Cells of 

the innate immune response serve as the first responders to threats to the body.  This is 

contrasted to the lymphoid lineage which differentiates into B cells and T cells which are the key 

components of the adaptive immune response, which tailors antibodies to fight infections.   AML 

and ALL, respectively, refer to unregulated division of a myeloid lineage cell or a lymphoid 

lineage cell.  

Once these cells have lost the ability to control their division, they rapidly dominate the 

blood stream. This is contrasted with CML and CLL which are the chronic forms of disease that 

typically have a slower progression, and often arise from cancerous cells that are further 

differentiated. 
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Importance of Diagnostic Tests 

In prescribing treatment for these cancers, accurate diagnostic tests play an important 

role.  Without knowing the specific type of cancer, important decisions about treatment regimes 

are difficult for a doctor to make.  Due to the difference in origin, the cancerous cells respond 

differently to treatments and clinical outcome can vary (Poi & Evans, 1998).   Therapies that are 

tailored for AML do not work as well against ALL and vice versa, resulting in differences in 

patient outcome.  In the information age and with the future vision of personalized medicine, 

knowing specific details about a cancer can result in a much different prognosis and treatment.    

Leukemia cells are traditionally difficult to classify by morphology alone as seen in 

Figure 3, and require a series of immunological tests to determine their nature.  However these 

tests remain inaccurate by making diagnosis a subjective task.  Microarray profiling of cancer 

cells has been suggested as a more informative approach to diagnosis (Golub et al., 1999) 

 

 

ALL       AML 

Figure 3 Very similar morphologies between cancer cells 
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Microarrays 

Biologists are particularly interested in the types and amounts of proteins present within 

the cell under given conditions.  Because proteins act as the functional molecules of a cell, 

having different types and quantities changes the behavior of the cell.  In cancer this is of even 

greater interest, as cancers have different expression patterns.  However, measuring the amount 

of a specific protein remains a complicated process.  This is due to the complex, three-

dimensional structures of proteins.  A protein structure can be flexible and can vary greatly in 

shape and size, making high throughput measurement difficult (Primrose & Twyman, 2004).  To 

help infer the proteins present in a cell under given conditions, researchers measure mRNA.  

Since mRNA is a precursor for protein, it can be assumed with some confidence that the quantity 

of mRNA is proportional to the quantity of protein present.  The relationship is not always 1-to-1 

requiring further validation using protein studies. 

 Although it is a labile macromolecule, the structure of mRNA lends it to much easier 

measurement than protein.  Every protein is unique, making it difficult to design a tool that can 

measure thousands of proteins simultaneously.  Nucleic acids are able to hybridize to their 

complementary sequence.  Hybridization is the binding of complementary molecules in a low 

energy state that creates a double stranded molecule that does not easily separate.  In 

hybridization,  Adenine binds with Thymine and Cytosine binds with Guanine (Figure 4).  This 

highly specific molecular interaction allows for massive parallel comparison of thousands of 

sequences (Bevilacqua, 2006).  
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Figure 4 Hybridization between two DNA molecules 

 

When preparing a microarray, first mRNAs are isolated from a given sample representing 

a state of interest (cancer, non-cancer etc.) and reverse transcribed and labeled with a fluorescent 

tag.  Reverse transcription is the process of converting mRNA back into DNA, a more stable 

information carrier, using mRNA dependent DNA polymerase or reverse transcriptase. 

This solution of reverse transcribed cDNA, known as the target,  is then washed over the 

array and sequences are allowed to hybridize to the probes.  After hybridization, the remaining 

single stranded sequences are washed away, leaving only sequences that have found a 

complement among the probe sequences bound to the array.  The amount of double stranded 

DNA is then measured by the fluorescence intensities of the hybridized sequences for each 

location on the array.   

There exist several forms of microarray, one of the most popular being Affymetrix 

GeneChip®.  An Affymetrix GeneChip® microarray contains thousands of individual DNA 

sequences called probes, affixed to the surface of a quartz wafer using photolithographic 

techniques (Draghici, 2003).  These probes contain the known complement to thousands of genes 

of interest.  The array uses multiple probes to interrogate a given gene to ensure a robust signal. 
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The expression values for a gene from Affymetrix® data actually represent an average of 

20 different probes pairs.  A probe pair consists of one perfect match (PM) probe and one 

mismatch (MM) probe. The perfect match regions are sequences that are perfectly 

complementary to a target sequence.  A mismatch contains the same sequence as the PM, except 

that it contains exactly one base difference in the middle of the probe and is considered to be a 

measurement of non-specific hybridization (Draghici, 2003).  This technique allows for 

correction of intensities to determine a more accurate measurement of the true amount of cRNA 

present.  Ideally the PM intensity is much greater than the MM intensity, allowing for a clear 

signal. 

   

Equation 1 

PM represents the perfect match probe intensity, MM the mismatch probe intensity, N the number of probe 

pairs. 
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Figure 5 Affymetrix® PM MM strategy 

 

The main benefit from microarray technology is the high throughput measurement of 

thousands of genes in parallel.  In the past, technologies such as the Northern blot analysis and 

real time PCR could only be used to quantify the expression of a handful of genes at a given time 

(Kuo, et al., 2004).  However a common problem in microarray data analysis is the small number 

of replicates.  This stems from the huge imbalance between the number of features (probes) and 

the number of samples. 

Traditionally microarray data has been analyzed using clustering techniques.  From this, a 

visual approximation is typically taken to determine if there is indeed a pattern present that 

warrants further study.  As microarray data is noisy, it can sometimes be difficult to determine 

where these patterns exist.  The clustering results are typically represented in what is called a 

heat map.  In Figure 6  the color and intensity represents the expression value across several 
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samples, and the y axis represents the genes analyzed.  This representation allows for quick 

visual interpretation of intensities that is easily interpretable by the human eye. 

 

Figure 6. Normalized gene expression values for 50 genes, represented as a heatmap from (Golubet al., 1999). 

Feature Subset Selection 

 Feature subset selection (FSS) is a well studied problem within the machine learning 

community.  This problem is characterized by a dataset with a large number of features.  Within 

this set of features there are a few features that contain relevant information, with the rest of the 

features being irrelevant or of low information content.  The highly informative features are 

typically used to build a classification model while the non informative are disregarded.  By 
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reducing the number of features that are ultimately used for classification, an increase in 

performance in the algorithm can be seen (Yang & Honavar, 1998).  Filter and wrapper 

approaches are the two primary methods that researchers utilize to tackle this problem.  The 

important difference between filter and wrapper methods is their use of univariate and 

multivariate analysis, respectively. 

The filter approach performs feature selection as a preprocessing step before the use of a 

classification algorithm (Yang & Honavar, 1998).  Here each feature is evaluated independently 

using a test statistic and acceptable features are used for the classification algorithm.  Studies of 

feature reduction of microarray data most commonly use this approach (Inza et al. 2004).  A 

commonly used test statistic in microarray studies is the t-test to isolate significantly 

differentially expressed genes. 

 The wrapper approach is any method that incorporates a classifier to select relevant 

features as a group (Yang & Honavar, 1998).  Groups of features are evaluated together using an 

algorithm, and the best set of features is retained before modifying the feature set.  This 

approach, while generally more accurate than the filter approach, comes at a computational cost 

(Inza et al. 2004).  The wrapper method relies on many evaluations of the data while the filter 

approach uses a single evaluation. 

Dataset 

 Within the microarray data mining community the Golub dataset (Golub et al., 1999) is 

often used as a standard for evaluating new algorithms.  The data is presented as a training set of 

38 samples and an independent testing set of 34 samples.  Each of these is represented in an n x 

m expression matrix, of 7129 rows and 38 and 34 columns respectively.  The expression matrix 
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contains the expression values for each sample at each feature.  The samples represent two types 

of leukemia, acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). 

 

Table 1 

Cancer Type  Training  Testing  

AML  11  14  

ALL  27  20  

Original data division from Golub 1999 

  

Golub et al.  (1999) developed a class prediction algorithm that achieved an accuracy of 

85% for samples presented and 100% for samples that were above a prediction strength 

threshold.  This method first identified samples that were significantly differentially expressed 

by a signal to noise statistic.  This statistic compares the average expression between two classes 

and looks for a high difference, representing high correlation between the gene and an idealized 

expression pattern of high expression in one class and low expression in the other. 

  

 Equation 2 

µ1=mean of genes in class 1, µ2=mean of genes in class 2, σ1= standard deviation of genes in class 1,σ2=standard 

deviation of genes in class 2 

A positive value reflects gene expression that is high in class 1 and low in class 2, 

whereas a negative value represents gene expression that is high in class 2 but low in class 1.  

The magnitude of the value represents the strength of the correlation.  This value is not bound 
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between -1 and 1 like a Pearson correlation.  The genes were then ranked based on this statistic.  

The set of n informative genes is constructed from  genes that are most highly correlated to 

high expression in class one and  genes that are most highly correlated to high expression in 

class two. 

 

Figure 7 Signal to noise distribution.  Negative values indicate a strong correlation to high expression in ALL samples one 

and low expression in AML samples.  Positive values indicate a strong correlation to low expression ALL samples and 

high expression in AML samples. 

From the set of informative genes from the training class a classifier was constructed.  

This classifier calculates a weighted vote for each informative gene.   
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Equation 3 

=Correlation, =Expression of gene, =  

The sum of the absolute values of the vote for each class is calculated to give the final 

prediction.  The winning class is determined by the most votes.  A larger difference in votes 

yields higher prediction strengths. 

  

Equation 4 

This model made strong predictions about most of the independent samples presented; it 

did not classify five of the samples above the set prediction strength threshold of 0.3, resulting in 

samples labeled “no call”.  Of the 34 independently tested samples, only 29 met or exceeded the 

threshold for prediction.  Therefore, it would be more accurate to claim that this technique 

classified correctly for ~85% of the samples that were presented to it.  Of the five samples that 

did not meet the prediction threshold, two did not correctly classify.  Golub et al.’s 1999 report 

of 100% accuracy is misleading and should be more properly reported as 100% accuracy of 

samples that exceeded the threshold. 

While they showed that there was sufficient information contained within the data to 

classify, they did not attempt to determine the minimum number of features for accurate 

prediction.  Ultimately Golub chose a subset of 50 genes to use as predictive features.  However, 

they state that this number is somewhat arbitrary as they found that predictors from 10 to 200 
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genes obtained the same percent accuracy (Golub et al., 1999).  Whether this represents a 

classification ability higher than the original 85%, remains unreported. 

 The number of samples within this dataset is adequate for accurate prediction according 

to Dobbin (Dobbin, Zhao, Simon, 2008) who created a new method to determine required 

sample sizes based on the maximum standardized fold change of the dataset.  Fold change is the 

ratio of the experimental group expression to the baseline group expression.  Dobbin uses 

Equation 5 to determine fold change for a gene. 

  

Equation 5 

B=Baseline group mean and E=Experimental Group mean 

  Using this method only 28 samples are required for a training set to produce an accurate 

classifier (Dobbin et al. 2008). 

Samples that are vastly different will require fewer features to classify on, and samples 

that are most similar will require more complex feature subsets to classify on.  The signal 

intensity patterns of the Golub dataset are expected to have a large number of features to classify 

upon. (Dobbin, Zhao, Simon, 2008). 

Normalization 

  To correct for intensity differences, Golub et al. (1999) used several normalization 

steps.  First a rescaling method based on regression was used to rescale the samples.  This 

method fits a linear regression model of genes that are present for a reference sample and another 
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sample.  The inverse of the slope is used as a multiplicative rescaling factor by which the data is 

multiplied by.  The closer a rescaling factor is to 1 the more similar it was to the reference 

sample.  For all samples within the Golub dataset, the greatest rescaling factor is 3.091. 

 

Additional preprocessing steps include (Dudoit, Fridlyand, & Speed, 2002):  

1)  

Equation 6 

Setting a minimum value of 100 and maximum value of 16000 for all expression 

measurements 

2)  

Equation 7 

Removing features that the maximum /minimum expression values for a gene are less 

than or equal to 5 or where difference between the maximum and minimum values is 

less than 500. 

 

Equation 8 

Log transformation of expression values 
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After performing these steps, 3051 features remained (Dudoit, Fridlyand & Speed, 

2002).  These were then used to calculate the signal to noise statistic (Dudoit, Fridlyand, 

& Speed, 2002).  Max and min refer to the maximum and minimum expression value 

respectively, for an individual gene.   

Neural networks 

Artificial Neural Networks (ANNs) are an attempt to model the power of the brain (Baldi 

& Brunak, 2001).   The brain has evolved many efficient ways to store and process information 

that we attempt to model through artificial neural networks.  

The Neuron 

Artificial neural networks had their start relatively recently in the 1940’s.  The basic 

processing unit of a neural network is the neuron.  The first model of the neuron was published 

by McCullough and Pitts in 1943 (Trappenberg, 2002).  At the highest level a neuron receives a 

series of inputs and depending upon the strength of the input and the connection determines 

whether the neuron will fire or not.  The inputs are multiplied by their synaptic connection and 

summed.  This sum is then used as input for a transfer function which calculates the output of the 

neuron.  This function is represented in Equation 9.  The basic conceptual framework for a single 

neuron is show in Figure 8. 

 

 

Equation 9 
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w represents the weight of the synaptic connection between the input and the neuron, r represents the input 

value.  g represents the transfer function of the neuron. 

 

 

Figure 8 A Simple diagram of a perceptron.  Lines represent connections to other neurons (synapses).  

 

Each neuron utilizes a transfer function that determines a neurons response to the sum of 

its inputs.  Early neuronal models such as the McCullough Pitts neuron utilized a hard limit 

transfer function that produced a binary response if a threshold was met.  However newer models 

utilize continuous functions that allow for finer adjustments in neuronal output.  Some 

commonly used transfer functions are shown in Figure 9 
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Figure 9 Sample transfer/activation functions.  Different usage will give the network different dynamics.  (From 

http://www.mathworks.com/) 

These different transfer functions result in different neuron output.  For example a hard 

limit function will only propagate a 1 or a 0, revealing little information to how accurate the 

neuron is but resulting in very clear propagation of signal.  Whereas a continuous transfer 

function is much more precise with outputs but can potentially propagate irrelevant signals.  

 

Figure 10 Basic architecture of an artificial neural network.  Input neurons take in supplied values and connect to  one or 

more hidden layers.  This hidden layer can connect to another hidden layer or to an output layer depending on the 

architecture. 
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The basic architecture of an artificial neural network is seen in Figure 10.  Each circle 

represents a single neuron as seen in Figure 8, where the output of each serves as an input into the 

next layer.  This connection of simple neurons was first implemented in the perceptron model by 

Rosenblatt in 1958.  The connections between neurons represent a weighted connection called a 

synapse.  Like the single neuron seen the inputs are multiplied by the synaptic weight and passed 

through a transfer function.  A typical ANN consists of an input layer, k hidden layers, and an 

output layer.  This network topology is determined by the user and is based on the type and 

complexity of the problem space. 

Training 

Training is an iterative process that seeks to modify the network through numerous 

presentations of data.  There are many different methods to train neural networks, the two main 

distinctions are unsupervised and supervised learning.  An unsupervised neural network only 

uses the input data to adjust its synaptic weights.  Supervised learning however relies on a set of 

training data with known target values.  In other words, the training data consists of a set of input 

patterns and output values.  The goal of training is to optimize a function that will map the inputs 

to the outputs that can be used to correctly approximate unseen inputs. 

Constructing an ANN using a supervised learning methodology requires the initialization 

of a network with random synaptic weights between neurons.  At this point an input signal 

presented to the network would result in no meaningful output.  To derive a meaningful output 

the network synapses must be adjusted.  The method to adjust the many weights of the network 

requires a calculation of error of the network for an input pattern at each epoch.  An epoch 

represents an iteration of measuring the output error and updating the synaptic weights in 
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response.  The error of the network for a given input pattern is described as the difference 

between the network output and the desired output value.  A standard error measure, such as 

mean squared error is often used to describe this distance. 

 

Equation 10 

While this error value shows how far the network output is from a desired value, it does 

not reveal anything about how to correct the network to more closely match the desired value.  

To minimize the error value, the error is used in a learning function to update the synaptic 

connections of the network.  A simple synaptic learning function is shown in Equation 11 

 

Equation 11 

wnew represents the new weight of the input neuron, wold the old weight of the neuron, alpha the learning 

rate, targetValue-output is the error function and the input is the input that goes through the synapse 

A learning rate is often used to control how quickly the weights are updated.  If a large 

value is used the weights of the network will oscillate wildly if set too low it will take more 

epochs to adjust the weights.   

Several learning paradigms exist to train networks, one of the most commonly used is 

backpropagation.  Backpropagation originally described in 1974 by Paul Werbos (Chester, 1993) 

is an extension of Equation 11.  Simple learning methods are not able to directly compute the 

error from hidden layers of multilayered networks; however with the discovery of 

backpropagation, weights between hidden layers could be adjusted  thereby unlocking many new 
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topologies that were previously unavailable.  Backpropagation is accomplished through a process 

where error correction flows through the network in a reverse direction (Swamy, 2006).  

Backpropagation attempts to minimize the amount of error by modifying the synapses with the 

strongest connections. The weights of these synapses are then modified to a greater degree than 

their weaker counterparts using a method similar to Equation 11. 

 

Testing 

After training has been completed, usually signaled by a lack of further decrease in the 

error or after a set number of epochs, the weights of the network are set and testing of new 

samples begins.  During testing the testing data is presented to the network to obtain a measure 

of performance.  This performance is measured by a similar method that is used to determine the 

error of the network during training.  

Cross validation 

An important part in evaluation of any classifier is the use of cross validation. However 

with microarray data this is difficult, as typically there are a statistically small number of 

samples, making over fitting of the model a real possibility.  Some basic cross validation 

techniques include, leave one out, hold out and k-fold. 

 Leave one out cross validation is one of the most extreme cross validation methods.  In 

this case, 1 sample is used for testing and n-1 samples are used for training.  This is repeated n 

times, until all individuals have taken a turn as the testing sample.  This is a nearly unbiased 

estimate of the true error (Simon et al., 2003).  As expected the computational cost of this 
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method rapidly grows with larger sample sizes.  With 72 samples, this would take 72 repeat 

evaluations to build a fitness value. 

 The n-fold cross validation method is a scaled down version of the leave one out method, 

where the dataset is divided into n divisions.  Each of these divisions is used as a testing set 

while the classifier is trained on the remaining samples.   

 Hold out cross validation is commonly used for classifiers that have a low number of 

samples.  Typically in this case, 90% of the samples are used for training and the remaining 10% 

are used for testing procedures.  

While supervised artificial neural networks are powerful tools by themselves they can 

only sort what is presented to them.  The typical structure of microarray data has too many 

features and not enough replicates.  To alleviate this problem, a Genetic Algorithm (GA) can be 

used to evaluate combinations of genes. 

  

Genetic Algorithms 

Genetic algorithms comprise a search algorithm that guides its search based on a model 

of evolution (Mitchell, 1999).  Evolution is the process by which organisms continually improve 

over generations, through, selection, crossover and mutation.  Evolution derives its power by 

evaluating many possible solutions at once, and propagating the fittest.  

In a genetic algorithm, a population of organisms is represented by a population of short 

strings called chromosomes.  Each chromosome represents a different portion of the possible 

search space that is to be evaluated.  A search space is all of the possible combinations or values 
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of features for a given problem.  One could evaluate every possible solution for a problem, 

known as a brute force approach, but as the number of parameters increases the search space 

grows in dimensionality, resulting in problem spaces that are too large to search with exhaustive 

methods.  Genetic algorithms have been shown to be a robust search method for problems with 

extremely large search spaces (Goldberg, 1989).  Within a search space there are often many 

local minima/maxima and one global minima/maxima.  Local minima/maxima are solutions that 

are close but are not the best solution.  Minima or maxima are substituted depending on the 

direction that function is being optimized.  Many optimization algorithms go to great lengths to 

avoid or escape local solutions.  The global solutions represent the best possible solution and are 

often difficult to find. 

 

 

Figure 11 Overview of simple genetic algorithm 
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Representation 

The choice of representation in a genetic algorithm is of utmost importance; this process 

involves mapping parameters into a string that the algorithm can manipulate.  Poor choice of 

representation can limit how the algorithm works (Reeves & Wright,1995). 

Many Genetic algorithms utilize a binary representation of the data (Sivanandam and 

Deepa).  In a feature selection problem this would consist of a string the length of the feature set, 

where each character was a binary value that represented the presence (1) or absence (0) of a 

feature.   

Representation is also important due to linkage.  Linkage is the probability that genes will 

be inherited together.  This probability is based directly upon how far apart the genes are located 

from each other.  Two genes that are close together are less likely to separate than two genes that 

are located at either end of the chromosome (Goldberg, 1989).  This is because there are more 

possible crossover events that could separate the two genes when the genes are farther apart, than 

if the genes were adjacent  to each other. 

 

Fitness Function 

The fitness function represents the problem that the genetic algorithm seeks to solve.  At 

each generation the performance of the individuals within the population must be measured 

against this function (Srinivas & Patnaik, 1994).  The performance of an individual with the 

fitness function is used to determine which organisms are allowed to reproduce. 
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Selection 

Selection is the method by which GAs determine which chromosomes should propagate.  

The scores from the fitness function are evaluated by the selection function.  Individuals 

reproduce proportionately to their fitness.  There are several types of selection methods including 

ranked and tournament among others.  There is no correct answer for which selection method to 

use.  The method implemented here is that of a roulette wheel. 

  To implement a roulette wheel the fitness of the entire population must be evaluated at 

each generation.  Next the probability of selection for each individual is calculated by dividing 

the individual’s fitness by the sum of the population’s fitness (Zhong et al., 2005). 

  

Equation 12 

Individuals are then ranked in descending order and a vector is constructed of 

accumulating probabilities.   

 

Equation 13 

The sum of all probabilities must equal one.  For example if the probabilities from a 4 

member population were (.50, .25, .14, .11), the resulting accumulated probability vector would 

be: (.50, .75, .89, 1). Next a random number is generated between zero and one.  Where the value 

falls indicates which individual is selected.  Continuing with the example, .453 is the random 

number generated.  This number is below .5 in the accumulated probability vector indicating that 
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individual 1 is selected.  Because the individuals with the highest contribution to the population 

fitness occupy a greater range of values between 0 and 1, they are selected more frequently into 

mating pairs.  However this does not prevent an individual who has a low probability from being 

selected, gives them as much opportunity as they provide fitness. This allows genes that 

potentially have fitness in other combinations to remain in the pool, but with low chance of being 

selected.  There is nothing to stop a high scoring individual from being selected to mate with 

itself, producing no new offspring. 

 

Figure 12 Probability vector. Genes with higher fitness occupy a greater range of the vector. 

 

Crossover 

Crossover is the process of swapping genes between individuals at each generation.  The 

mating pairs selected by the selection function will determine which individuals will cross with 

each other.  For an individual mating pair utilizing a single point of crossover, a random point is 

used and the strings are swapped at that index.  The offspring then replace the parents within the 

population.  For example if the crossover point was 5 and the length of the chromosome was 10, 

each child would contain half of the chromosome from each parent.  However, this process 

should not occur for every individual at each generation, as the GA will quickly converge to a 

solution that is not necessarily close to the global optimum.  To limit the amount of crossover, 

the crossover probability is left as a free parameter. 
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Figure 13 Overview of crossover operator 

 

Mutation 

The mutation operator is used as a source of genetic variation in the population.  This increases 

the features evaluated beyond the features within the initial population and allows the algorithm 

to escape local minima.  Without allowing for the addition of new genes the GA would quickly 

converge.  However if the mutation rate is set to high, the system becomes unstable and any 

performance increases are immediately wiped out by mutation.  Therefore the mutation rate must 

be set to an intermediate value.  
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Statistics 

 The central limit theorem is the backbone of statistical theory.  From Introductory 

Statistics by N. Weiss (page 346) 

“For a relatively large sample size, the variable x is approximately normally distributed 

regardless of the distribution of the variable under consideration.  The approximation becomes 

better with increasing sample size.”  

The basis of this theorem is that from a population, if a statistic, of all possible samples is 

calculated; for example the mean of these sample means will resemble a normal distribution.  A 

histogram of sample means is called a sampling distribution, and it is useful to show how 

probable a sample statistic is.  In building a sampling distribution one finds that as the number of 

samples increases, the closer the sampling distribution resembles a normal curve. 

 

Methods 

 A genetic algorithm that optimizes inputs for a neural network was constructed in 

MATLAB.  This system evaluated the classification ability of feature combinations using an 

artificial feed forward neural network.  Each set of features was used to train a neural network 

and then the classification ability of those features was evaluated.  High scoring features were 

preserved by the GA while low scoring features and feature combinations were discarded.  

The feature subset size was determined by the smallest subset size reported by Golub et 

al. (1999).  Golub reports that results from 10 to 50 features achieved the same classification 

ability.  To isolate a small number of features that could be useful for diagnostic purposes 10 
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features were used.  A fixed feature size was used because the neural network requires a fixed 

number of input features. 

The initial population of chromosomes was created by randomly generating a 10 x m 

matrix. The value 10 represents the number of features within a chromosome and m the 

population size.  The ceiling of each of the random values is multiplied by the maximum number 

of genes in the dataset, which returns a matrix of integers between 1 and the maximum number 

of features.  A chromosome containing the numbers 3780, 2387, 1816, etc. refer to the rows 

3780, 2387 and 1816 from the original expression matrix. 

Table 2 

Chromosome 
1 

Chromosome 
2 

Chromosome 
3 

Chromosome 
4 

Chromosome 
5 

3780 5519 3779 4856 5876 

2387 6532 4235 4808 1199 

1816 6751 3378 5348 2089 

2288 6837 5923 3287 2702 

6576 3316 396 59 4011 

1580 3601 2743 4051 5335 

1176 5968 756 2889 4515 

2791 1330 6765 687 5753 

3304 1854 5439 3920 3027 

5678 23 4576 7123 321 

Population of 5 chromosomes 

 

At each generation, selection was performed using roulette wheel selection to construct 

mating pairs.  Of the 50 mating pairs generated, approximately 75% crossed at each generation.  

For the pairs that did mate, a single crossover point was used to swap features.  The mutation 
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operator was called at each generation and it randomly changed 1% of the indices to a randomly 

generated index. 

 

Figure 14 Decoding of chromosomes.  Chromosome values are used to construct a matrix of expression values that are 

used as input for an artificial neural network. 

 

Data Division 

In most supervised learning studies, the dataset is divided into a training set and a testing 

set. The original data division of 38 training and 34 testing samples was changed in this study to 

increase the number of samples that could be included within the training dataset.  By increasing 

the number of samples in the training set, the ANN is able to perform at a higher level due to 

having a more robust training set. 

The testing samples from the original division samples are reported to be from 

independent sources that sometimes used different sample preparation techniques (Golub et al., 
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1999).  Given the noisy nature of microarray data this is an important consideration.  Training on 

samples from one laboratory and validating on independently collected samples could result in a 

classifier that is biased towards sample preparation methods from the training set.  To help 

diminish this effect the data was divided into 68 samples for training and testing the model, and 4 

samples were reserved for final validation.  Each leukemia type was represented by two samples 

within the validation data.  The 68 samples were further divided into a training set and a testing 

set, with 56 samples in the training and 12 samples for testing. 

AML samples were labeled with a target value of -1 and ALL samples with a target value 

of 1. 

Neural Network 

The neural network used to evaluate fitness consisted of two hidden layers and can be 

seen in Figure 15.  The first hidden layer contained two neurons, while the second contained a 

single neuron.   
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Figure 15 Structure of ANN used to evaluate feature sets 

 

 

Each neuron used a tangent sigmoid transfer function as seen in Equation 14. 

 

Equation 14 

Sigmoid transfer function (Trappenberg, 2002) 

  At every generation, each chromosome was decoded into its values and 56 samples were 

used to train a neural network using the MATLAB adapt function.  The adapt function uses 

incremental training, resulting in an update of weights after presentation of each input value.  



34 
 

Each network was initialized to the same weight values to decrease fluctuations in performance 

caused by randomized starting weights.  Each network was trained for 1000 epochs, after which 

classification ability was evaluated on the 12 testing samples.  For each network this process was 

repeated 20 times with different samples of training and testing classes.  This sampling method 

helped to build an accurate representation of the mean performance. The mean of the scores was 

taken as the fitness of the chromosome.  This process was repeated for each chromosome in the 

population at each generation.  As can be seen in Figure 16, as more samples of the training and 

testing sets are taken, the closer the histogram resembles a normal curve, making the mean more 

representative of the majority of the samples. 

 

Figure 16 Sampling distributions of ANN performance, 10, 25 and 100 samples 

Performance score 

The classification ability of each network was measured by the amount of error in the 

classification.  For each of the 12 testing samples, the error was measured by the following 

function. 

 

Equation 15 
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The difference between the actual target and network output is a standard measure of 

error that is used to train the network.  However, here the absolute value of this difference was 

subtracted from 2, as 2 is the largest error that performance could incur.  A perfect score would 

result in a value of 2 and a completely wrong classification would result in a score of 0.    While 

a binary “pass/fail” measure could be used to determine the performance, it would not be 

representative of prediction strength.  Acceptable prediction strength was set at 1.5, and any 

performance greater than 1.5 was set to 2, as shown in Equation 16.    This was done so that the 

performance measure could distinguish between performances that were weak on all testing 

samples and performances that were all correct except for a few samples.  These scores are then 

summed to create a single value of performance.  Thus over 12 samples a perfect score is 

represented by a performance of 24. 

 

Equation 16 

Thresholding equation for performance scores. 

 

To determine a satisfactory solution that met the GA stopping criteria, every 5 

generations the top two performing sets of features were isolated and trained on a network for 

2000 epochs.  If one of the fitness scores was perfect, then the GA was halted and the high 

scoring features were reported. 

The Affymetrix® analysis strategy today implements a more superior method than the 

method available in 1999.  However the Golub dataset utilizes methods from 1999 where 
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negative values are present in many of the rows within the expression matrix.  These values 

indicate that the mismatch probes, on average, bound more labeled transcript than the perfect 

match probes.  However in modern analysis, negative values are treated as noise and are 

corrected.    However Li et al. (2003) state that "...MM responses do contain information on the 

gene expression levels and that this information can be better recovered by analyzing the PM and 

MM responses separately."  Moreover, Li and Wong (2001) implemented a new model that 

corrected for probe-specific differences that they measured.  These researchers raise questions 

about what exactly is represented by the PM-MM difference values from the Golub study.   

If the original raw files from the Golub et al.  (1999) study were available, the raw data 

could be analyzed more thoroughly; however only average probe differences were released to the 

public.  Due to the inability to compute expression differences using newer methods, the data 

was left un-normalized to preserve as much signal as possible.  If there is no true signal within 

the negative of the dataset, then any chromosome containing a feature with uninformative 

negative values will be at a disadvantage by having a feature with no difference between classes.  

However if there is any signal within these values, the ANN will detect it.   

 

Logging 

 Population values are logged at each generation, and used to create graphs summarizing 

the performance of the population.  The x-axis represents the generation while the y-axis 

represents the fitness score as seen in Figure 17.  Each chromosome is represented by a single 

point at each generation.  The mean fitness of the population is calculated and plotted on this 

graph as well.  This graph is useful for showing average fitness and the variance of the 
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population over generations.  It also helps to quickly analyze the results while the GA 

continuously runs.  At each generation a log file is updated with the fitness scores and the 

chromosomes present within the population.  This is used as a method to restart the GA if a 

power failure or computer crash should occur before saving.  Retaining the population at each 

generation also allows for analysis of the appearance of features within the generation.  Finally a 

log of the gene names within the final population, with frequencies and accession numbers, is 

created.  These numbers help provide insight into which genes are most important. 

 

Parallel Computing 

Parallel computing is used to distribute workloads over multiple nodes.  In the most basic terms 

this is a division of computational processing that allows independent tasks to be run on multiple 

machines simultaneously.  The fitness evaluation procedure for the GA is scalable to a parallel 

architecture.  While the GA eventually needs to compare the fitness of the individual with 

respect to the rest of the population, the computation of fitness of a given individual does not 

require information from any of the other individuals.  In parallel computing this type of function 

is referred to as “embarrassingly parallel.” 

To optimize this code, the fitness function was converted to a parallel for loop.  The population 

was divided into 4 groups, one for each processor.  The processors then independently calculated 

the fitness for each individual and reported the values back to a central array.  The scores in this 

array were then used for the selection method. 
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Results 

The GA/ANN isolated a high scoring solution on the training data after 131 generations.  

This simulation took approximately a week and a half to complete, and in total 262,000 neural 

networks were trained and tested.  Of all the 7129 features, only approximately 27% percent of 

these features were represented within the population.  The mutation rate was set at 1% for all 

features present and 75% of the selected mating pairs were crossed.  The population size was set 

at 100 individuals.  These parameters are summarized in Table 3 

 

Table 3 

Number of Features 10 
Population Size 100 
Number of Epochs 1000 
Max Generation 2000 
Size of Hidden Layer 2 
Size Hidden Layer 2 1 
Mutation Rate 0.01 
Crossover Probability 0.75 

Genetic Algorithm parameters. 

 

Figure 17 shows the individual fitness scores along with the mean of the population over 

131 generations.   Each circle represents the fitness of an individual chromosome at a specific 

generation and the solid blue line represents the population mean.  This figure helps to illustrate 

the diversity of the population and the overall performance of the system.  Over time, the 

population's mean steadily increased and the variance decreased slowly.  In the first generations 

the variance was very high, however as the algorithm converged on high scoring solutions the 

variance decreased (Appendix 7).  A small number of chromosomes retained a low level of 
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fitness at each generation.  The largest increase in performance occurred over the first 20 

generations. 

To show that the genetic algorithm became more specific at each generation, a histogram 

of the features at generation 1 and generation 131 was generated and can be seen in Figure 18.  

This histogram shows the frequency of all of the features within the population.  At generation 1, 

the frequency of any given feature was very low, as expected due to random initialization.  

However by generation 131 a select number of features reached a very high frequency. 

The appearance of a feature within the population can help determine how useful the 

GA/ANN found that feature for classifying.   Features that appeared in generation 1 were part of 

the initial random population that survived until the last generation.  Features that appeared in 

later generations arose through the mutation operator.  The longer a feature has been in the 

population the more ways it has been represented and tested.   For example, if a feature appeared 

in generation 130, that feature did not receive the same fitness evaluation as a feature that 

appeared in generation 1 and would be less likely to contain meaningful information. 
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Figure 17 Fitness of population over 131 generations.  Fitness increased with occasional dips in performance. 

 



41 
 

 

Figure 18 Histogram of the final population frequencies.  The x-axis shows the index of a feature and the y-axis the 

frequency of that feature within the population (a) Generation 1, almost uniform for genes that are present(b) Generation 

131, several genes have frequencies greater than 50. 
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Validation 

To determine how accurate the isolated features were in classifying, a final network was 

trained on all of the training data (68 samples) and tested on the 4 reserved validation samples.  

The GA/ANN solution correctly classified the 4 validation samples with 100% accuracy.   

Each time a new neural network is initialized within MATLAB it starts with different 

weights. To ensure no bias in the selected features towards the locked-in weights of the ANN, 

the feature set was tested on 20 different networks.  As stated previously, samples with 

performance values greater than 1.5 were set to 2.  On the validation samples a value of 8 

represents perfect classification.  While a value below 8 does not mean that it did not make an 

accurate prediction, it means that a sample did not accurately predict at a satisfactory level. 

Table 4 

Probe Name Class 
correlation 

Pass 
Golub 
filter 

Rank Golub 
classifier 

First 
Gen. |S/N| 

CST 3 Cystatin C ALL Yes 3 Yes 58

MPO from human myeloperoxidase ALL Yes 140 No 25

MB-1 gene AML Yes 7 yes 1

PLCB2 Phospholipase C, beta 2 ALL Yes 247 No 1

KIAA0128 gene partial cds AML Yes 158 No 1

MYBPC1 Myosin-binding protein C,  
slow-type 

ALL Yes 1555 No 42

Mucin 1 epithelial, Alt. Splice 6 - No - - 1

Phosphatidylinositol 4-kinase ALL Yes 2341 No 5

PZP pregnancy-zone protein - No - - 31

Triadin mRNA - No - - 1

 

Ten genes isolated by the GA/ANN after 131 generations.  Golub Filter is in reference to preprocessing equations 6, 7 and 

8.  The rank of the signal to noise score represents the absolute value of these scores.  Golub classifier shows which 

features found were part of the original set of features used by Golub et al. (1999).  First gen refers to the first instance of 

that feature within the population. 
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Ten genes were isolated by the GA/ANN and are shown in Table 4.  To better understand 

how the GA/ANN compared to the classifier from Golub 1999, the signal to noise scores ( 

Equation 2 ) for each feature was reported.  For features that did not pass the preprocessing steps 

(Equations Equation 6Equation 7 and Equation 8) the signal to noise statistic was not calculated.  

The absolute value of the signal to noise statistic was calculated and the features were ranked by 

value to determine the most informative genes regardless of class correlation.  A high score on 

this statistic represents a feature containing a large difference between the two sample means.  

Evaluating the top ten GA/NN isolated features, it was found that Cystatin C was the 

third most informative gene, while MB-1 was the 7th and MPO was the 140th when using the 

signal/noise filtering statistic.  Of the 10 features only Cystatin C and MB-1 gene were included 

in the original Golub classifier. 

Architecture Performance 

Neural network architecture plays a large role in how the neural network performs.  To 

evaluate the effect of the architecture chosen, additional architectures were evaluated.  Along 

with this the effect of epoch number on these topologies was evaluated and can be seen in Table 

5. Architectures are denoted by the number of hidden layers present.  Each integer represents a 

hidden layer, and the value of the integer represents the number of neurons within that hidden 

layer.  Each architecture was trained for 6 different epoch lengths of 1, 100, 1000, 2000, 5000 

and 10000 epochs.  This was done because varying the structure of the network modifies the 

amount of time required to sufficiently fit the data.  As more hidden layers are added, it takes 

longer to train the network.  These networks were trained on the ten features isolated by the 

GA/ANN 
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Two effects can be measured in Table 5, showing the effect of different ANN 

architectures and the required training time to reach an acceptable performance.  Each value is 

the average of 20 networks under the same conditions.  All conditions eventually reached an 

acceptable performance threshold, but as expected, required different training lengths.   

As shown in Table 5, increasing the number of neurons within a single layer did not have 

as large of an impact as increasing the number of hidden layers. The architecture used by the 

GA/ANN of two hidden layers with three total nodes reached sufficient training performance by 

epoch 1000.  In networks with a third hidden layer, such as the [2,2,1] and [3,2,1] networks, the 

number of epochs required to reach a satisfactory performance score increased from 1000 to 

10,000 epochs.   

Table 5 

Hidden 
Layers 

1  
epoch 

100 
epochs

1,000 
epochs

2,000 
epochs

5,000 
epochs 

10,000 
epochs 

[2,1] 4.66 5.55 8 8 8 8 
[1,2] 4.41 4.80 8 8 8 8 

[3] 3.85 4.98 8 8 8 8 
[5] 4.25 5.56 7.89 8 8 8 

[10] 4.01 5.04 8 8 8 8 
[20] 4.91 6.94 8 8 8 8 

[2,2] 4.07 4.39 7.07 7.80 8 8 
[3,2,1] 3.74 5.16 7.2 7.2 7.47 8 
[2,2,1] 4.35 4.37 6.29 7.20 7.74 8 

Performance of different ANN architectures with different training lengths. The notation [x,y] represents two hidden 
layers with x number of neurons in the first layer and y number of neurons in the second layer. 

 

Feature Combinations 

Because the feature number was locked at 10 features for the GA/ANN, a number of 

other combinations of features were used to train and validate a [2,1] network for 1000 epochs.  

For each of the features that passed the filtering statistic, the signal to noise statistic was 
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calculated (Golub, 1999).  The top 2 features, according to the signal/noise statistic, were tested 

and resulted in a classification score of 7.6.  However this did not meet the acceptable threshold 

of 8.  Using the top 4 features (Signal/Noise rank < 300) did not increase the performance of the 

classifier.  Using features that would not have passed a preprocessing step resulted in a 

classification score close to random.  Using only the features that passed the preprocessing steps 

in equations Equation 6,Equation 7Equation 8, resulted in a classification score of 7.   The top ten 

features ranked by the Golub 1999 signal to noise statistic resulted in a perfect classification. 

 

Table 6 

Combination Score

Top 2 (Signal/Noise) 

 MB-1 & CST3 

7.6

Eliminated in preprocessing 

PZP, Mucin, Traidin 

3.98

Signal/Noise rank<300 

MB-1, CST3, KIAA, & PLCB2 

7.6

Passed preprocessing  

all but PZP, Mucin, Triadin 

7

Golub top 10 8

GA/NN selected 8

Performance of different feature combinations 
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Discussion 
 

Genetic Algorithm Considerations 

The solution found by the combine GA/ANN algorithm performed perfectly when 

validated.  However the algorithm would most likely converge on a different solution if the 

algorithm were run again as indicated by the performance of the top ten features from Golub et 

al. (1999).  This is due to the high information content within the dataset and differences between 

the two cancer types.  Because the GA only focuses on accurate classification, local minima are 

acceptable if they reach an acceptable threshold.  This is shown by the perfect performance of 

the 10 features isolated using Golub’s method and the GA/ANN method.  

The ability of the GA to only represent slightly more than a quarter of the features and 

find an acceptable solution could be indicative of effective GA exploration or of many high 

scoring local minima that are easily found. 

Linkage most likely plays a role in the preservation of some of the lower scoring features.  

If two features are close together on a chromosome, it is more probable that they will be 

inherited together because they are not likely to be separated by the crossover operator.  This 

appears to have resulted in the genetic algorithm holding on to several of the lower scoring 

features, as the low scoring features were always physically next to high scoring features within 

the chromosome.  This is consistent regardless of fitness measure (Signal/Noise or ANN).  The 

majority of the low scoring features were present within the population from the first generation.  

It could be that the low scoring features were linked to high scoring features and simply did not 
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have enough generations to separate.  However when only the high scoring features were tested 

the classification accuracy was less than perfect, signaling some information loss with the 

exclusion of the low scoring features. Therefore, linkage alone cannot explain the retention of 

these lower scoring features, and the features most likely contribute some signal. 

 

GA Parameters 

Machine learning methods require the specification of several parameters by the user.  

The changing of these values can greatly alter the efficiency and performance of an evolutionary 

system.  Several pre-runs were conducted to help determine the free parameters of the system.  

Of interest was an early run that led to the implementation of the sampling method used.  In this 

run a high scoring feature set was found after a lengthy search process.  However when attempts 

were made to validate the accuracy on a differently sampled set the fitness of this solution was 

found to be substandard.  This discovery led to the implementation of the cross-validation 

technique that ensured that the fitness level used by the genetic algorithm was representative of 

the feature sets true performance. The sampling method helped to build an accurate assessment 

for a set of features from 20 samples of the training data.  While larger samples will allow for a 

more accurate mean, it is not computationally feasible to sample excessively.  For example, 100 

samples of the training data would require 100 neural networks to be trained and tested to 

evaluate a single individual at each generation.  For n samples this quickly increases the 

computational cost.  Sample sizes greater than or equal to thirty are traditionally used for 

accurate estimation (Weiss, 2008).  To balance the computation time with accuracy of 

performance, the average of 20 samples was used.  This allows for a more accurate estimate of 
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the mean, while not requiring excessive computation.  Ideally a larger dataset would eliminate 

the need for this sampling method as more samples could be used for both training and 

validation. 

The population size of 100 resulted in a solution by generation 131. Increasing the 

population size would most likely have resulted in a longer time to reach convergence, but it 

would have performed a more thorough search that might have found a high scoring solution 

sooner.  A larger population will increase the number of new features that are introduced by the 

mutation operator and in the original population.  This allows for a greater number of features to 

be evaluated.  By exposing the GA/ANN to more possible features the GA would more likely 

converge on a solution closer to the global minima.  The crossover rate used could have been 

lowered and have resulted in a more stable increase in the population’s average fitness, but 

would be dependent upon the mutation operator.   

Throughout the simulation, the algorithm retained a higher degree of variance that only 

decreased towards the end of the simulation (Appendix 7).   This could be due to the crossover 

and mutation operators.  If a high scoring feature set relies on interactions between all of its 

features for an accurate performance, a disruption of any of those features could radically drop 

that set’s performance.  This disruption could occur through the mutation or crossover operator.  

The mutation operator in general should be the more disruptive operator as it is more likely to 

introduce a low scoring feature than the crossover operator as the generations increase. 
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Neural Network Considerations 

By limiting the number of epochs to a low value, the GA/ANN isolated features that were 

able to quickly classify.  If the value was increased to 10,000 epochs or beyond, less information 

carrying genes could have been selected for high scoring feature combinations.  This is because 

as the training epoch’s increases the model has more time to fit its weights to minimize error.  If 

one set of features could have classified within 1000 epochs and the other only after 8,000 

epochs, there would be no measurable difference between the performances by epoch 10,000.  

By epoch 10000 the performance of the first set of features may have degraded due to a model 

that memorized the training data. 

The performance score implemented does not allow for searching for the global minima.  

By accepting values that possibly still contain some error, local minima are accepted.  To search 

for the global minima this threshold could be removed.  However the goal of this study was to 

accurately classify, so local minima that can achieve this result are deemed acceptable.  By 

adjusting the threshold, the specificity of the algorithm is modified.  For example, by setting the 

threshold value very low, combinations of features that were accurate predictors would be 

included even though these combinations are not the most informative.  This would not preclude 

high-scoring features from being found, but would allow for low-scoring and high-scoring 

combinations of features to be selected as a solution.  Setting a higher threshold would force the 

algorithm to search for combinations of features that would be easily separable. 

Comparisons to Golub et al. (1999) 

 Several of the features that were isolated in this experiment would have been eliminated 

by using the preprocessing statistics used by Golub and coworkers. It was hypothesized that 
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eliminating these features would result in no decrease in the performance score, as the 

preprocessing steps should ideally only eliminate features that contain no significant signal.  A 

classifier built only using the features that passed the filtering conditions was tested. This 

classifier performed worse than the full set of features isolated by the GA/ANN.  Several factors 

could account for this.  First, there could be a small signal within the features that the filtering 

methods deemed insignificant.  Another possibility is that a complex interaction between the 

features allows for a small signal to convey enough information for the ANN to detect.  Complex 

non-linear relationships are common in gene expression patterns and possibly could have 

allowed for a small set of weakly interacting signals to convey a significant signal. 

 As shown previously in Table 6, the highest non-perfect combination score was obtained 

by using only the two highest signal to noise scoring features isolated by the GA/ANN.  This 

performance did not decrease when the set was enlarged to include the top 4 features (overall 

rank less than 300).  This indicates that the inclusion of two more features within the feature set 

did not increase the average performance.  This could be because the expression profiles 

contained redundant information to the features already present. The features by themselves 

showed high information content. 

Evaluating the top ten selected features from Golub’s signal to noise statistic (5 highly 

correlated to each class) show that several combinations of features exist that have perfect 

classification ability.  This also highlights the potential use of a filtering statistic that could be 

used to eliminate a large number of features from the data set before applying the GA/ANN 

search.  However this comes at the cost of not finding novel combinations of features that allow 

for a perfect classification score. 
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An interesting note is that the isolated features included more features that were closely 

correlated to high ALL expression than AML expression.  This could account for some of the 

increased performance of the classifier over those used in Golub’s original study.  Golub’s study 

relied on using an equal number of features from each class (top 25).  By doing this, features that 

contained a greater class difference (by having a highly correlated expression pattern to one type 

of leukemia) could have been excluded.  However the weighted voting method relies on equal 

votes from each class to not tip the scales in favor of one class.  Thus the weighted voting 

method is must use samples that have strong correlation patterns in both classes. 

The architecture of the ANN played a large role in the classification ability of features.  

As expected for each network, training after one epoch resulted in a classification score close to 

random and as the epoch number increased the classification accuracy increased.  If a larger 

neural network had been used, the epoch number would have to be adjusted accordingly to 

achieve accurate classification.  Increasing the number of hidden layers while not increasing the 

epochs would most likely result in finding features that contained only a very high average 

difference that the model could quickly fit.  A good balance was found by using the [2,1] 

architecture. However using a [1,2] or a [3] architecture resulted in the same classification 

accuracy.  Increasing the number of hidden layers required a greater number of generations to 

achieve accurate performance.  This is because a greater number of weights must be adjusted to 

achieve acceptable performance. 

An interesting result is found in the overall frequency of the features within the final 

population.  The full table is presented in Appendix 4.  For ten features that were isolated, only 8 

were among the most frequent in the population.   
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A very interesting finding is that MPO, one of the highest scoring features on the absolute 

Golub ranking, only occurred 4 times in the final population.  However, this gene had been 

present from generation 25.  In Appendix 1, it can be seen how the frequencies of the individual 

features varied through the generations.  This low presence in the final generation indicates that 

it was very close to being completely lost from the population. 

Cursory analyses of the features selected by the GA/ANN reveals a diverse set of cellular 

processes.  EntrezGene summaries are presented in Appendix 1.  While an attempt to build a 

unifying theory for their expression pattern could be attempted, the scientific validity of any 

theory would be highly questionable.  The found feature set represents a set of ten features that 

can accurately classify these leukemia types.  Because this was pre-set at ten features, no greater 

number of potentially important features can be included.  Because many acceptable local 

minima also exist, there is no guarantee that the GA/ANN would return the same set of ten 

features after every run as this simulation only encountered 27% of the possible features.   The 

frequency of features through several GA/ANN runs would be needed to verify the results of this 

one simulation.  Only then would it be prudent to attempt to understand why these features play a 

biological role in classification.  These ten features could also be artifacts of many different 

methods, including the preparation techniques used in 1999 or of the array technology utilized in 

1999.  While these features are able to accurately classify on the training data from this dataset, 

including a greater training and testing set would add further validation to this data. 
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Conclusions 

The GA/ANN hybrid system helped to isolate interesting combinations of features that 

were able to accurately classify Leukemia samples.  This system could be of great supplemental 

use to physicians attempting to make an accurate diagnosis between leukemia samples.  From the 

isolated features, a diagnostic test could also be built around this minimal set of measurements. 

The ability of the wrapper method to isolate interesting combinations of features exceeds 

that of the filter method.  Neural networks remain a powerful tool for building classifiers.  While 

the implementation of a GA/ANN wrapper method comes at a high computational cost, the 

discovery of high scoring feature combinations that would have been ignored using a filter 

method justifies its use.  Genetic Algorithms are able to effectively explore large search spaces 

without doing an exhaustive search.  However they run into difficulties when attempting to find 

global minima.  This problem is compounded within this study due to the scoring and sampling 

methods.  As the same chromosome can take on different scoring values each time it is 

evaluated, the global minima remain an elusive target.  The algorithm usually had no difficulty 

reaching a high scoring solution.  However running the algorithm several times would help to 

isolate consistently high scoring feature combinations 

 For researchers looking for a quick answer with highly probable results, the filter method 

is the best choice.  However in methods that seek to isolate interesting combinations that can 

build robust and thorough classifiers, the wrapper approach provides a more thorough 

examination. 

 The GA/ANN approach could be scaled to run much faster if distributed over a greater 

number of nodes.  Since the evaluation process is not dependent upon the other members in the 
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population, distribution of chromosome evaluations saved a great deal of computational time in 

this study but could have run faster by further distribution. 

Because the GA/ANN has a large number of free parameters, an evolutionary approach 

could be applied to optimize these parameters after or concurrent with the feature selection 

process.  Allowing an evolvable neural network architecture would help to locate an ideal 

architecture and the best inputs for that architecture. However, because the Golub dataset 

contains a large difference between the classes, this method would not add much value.  A major 

genetic algorithm parameter change would be to increase the population size.  By increasing the 

population size, the algorithm would perform a more thorough search of the solution space and 

would be more likely to locate the global minima.  Another beneficial measure would be to re-

run the simulation several more times and compare the solutions found.  There is no guarantee 

that the algorithm would settle on the same set of features, yet features that appeared more often 

over many runs most likely would be the most informative.   

More subtle combinations of features could be detected by the GA/ANN method by 

eliminating the strong signals prior to implementation of this algorithm.  By eliminating the 

features with strong signals, the GA/ANN would be forced to search for more complex and 

subtle interactions that may be passed over by less sensitive methods. 

High throughput technologies are generating datasets that are becoming increasingly 

larger and more complex.  To extract meaningful information from these data sets remains a 

complex task.  The ability of machine learning methods that can detect complex signal patterns 

can help research and modern personalized medicine advance at a much faster rate. 
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Appendix 1 

EntrezGene summaries for isolated features 

Phosphatidylinositol 4-kinase 

Function: Phosphorylates phosphatidylinositol (PI) in the first committed step in the production 
of the second messenger inositol-1,4,5,-trisphosphate (PIP). May regulate Golgi 
disintegration/reorganization during mitosis, possibly via its phosphorylation 

May play a possible role in Golgi reorganization during mitosis (http://www.genecards.org/cgi-
bin/carddisp.pl?gene=PI4KB&search=U81802&suff=txt). 

 

KIAA0128 gene partial cds 

This gene is a member of the septin family of GTPases. Members of this family are required for 
cytokinesis. One version of pediatric acute myeloid leukemia is the result of a reciprocal 
translocation between chromosomes 11 and X, with the breakpoint associated with the genes 
encoding the mixed-lineage leukemia and septin 2 proteins. This gene encodes four transcript 
variants encoding three distinct isoforms. An additional transcript variant has been identified, but 
its biological validity has not been determined. [provided by RefSeq] 
 
PZP pregnancy-zone protein 
UniProtKB/Swiss-Prot: PZP_HUMAN, P20742 
Function: Is able to inhibit all four classes of proteinases by a unique 'trapping' mechanism. This 
protein has a peptide stretch, called the 'bait region' which contains specific cleavage sites for 
different proteinases. When a proteinase cleaves the bait region, a conformational change is 
induced in the protein which traps the proteinase. The entrapped enzyme remains active against 
low molecular weight substrates (activity against high molecular weight substrates is greatly 
reduced). Following cleavage in the bait region a thioester bond is hydrolyzed and mediates the 
covalent binding of the protein to the proteinase 
 

MB-1 gene 

Function: Required in cooperation with CD79B for initiation of the signal transduction cascade 
activated by binding of antigen to the B-cell antigen receptor complex (BCR) which leads to 
internalization of the complex, trafficking to late endosomes and antigen presentation. Also 
required for BCR surface expression and for efficient differentiation of pro- and pre-B-cells. 
Stimulates SYK autophosphorylation and activation. Binds to BLNK, bringing BLNK into 
proximity with SYK and allowing SYK to phosphorylate BLNK. Also interacts with and 
increases activity of some Src-family tyrosine kinases. Represses BCR signaling during 
development of immature B cells 
 
EntrezGene summary for CD79A: 
 
The B lymphocyte antigen receptor is a multimeric complex that includes the antigen-specific 
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component, surface immunoglobulin (Ig). Surface Ig non-covalently associates with two other 
proteins, Ig-alpha and Ig-beta, which are necessary for expression and function of the B-cell 
antigen receptor. This gene encodes the Ig-alpha protein of the B-cell antigen component. 
Alternatively spliced transcript variants encoding different isoforms have been described. 
[provided by RefSeq] 
 

Mucin 1 epithelial, Alt. Splice 6 

EntrezGene summary for MUC1: 
This gene is a member of the mucin family and encodes a membrane bound, glycosylated 
phosphoprotein. The protein is anchored to the apical surface of many epithelia by a 
transmembrane domain, with the degree of glycosylation varying with cell type. It also includes 
a 20 aa variable number tandem repeat (VNTR) domain, with the number of repeats varying 
from 20 to 120 in different individuals. The protein serves a protective function by binding to 
pathogens and also functions in a cell signaling capacity. Overexpression, aberrant intracellular 
localization, and changes in glycosylation of this protein have been associated with carcinomas. 
Multiple alternatively spliced transcript variants that encode different isoforms of this gene have 
been reported, but the full-length nature of only some has been determined. [provided by 
RefSeq] 
 
UniProtKB/Swiss-Prot: MUC1_HUMAN, P15941 
 
Function: The beta subunit contains a C-terminal domain which is involved in cell signaling, 
through phosphorylations and protein-protein interactions. Modulates signaling in ERK, Src and 
NF-kappaB pathways. In activated T-cells, influences directly or indirectly the Ras/MAPK 
pathway. Promotes tumor progression. Regulates P53-mediated transcription and determines cell 
fate in the genotoxic stress response. Binds, together with KLF4, the PE21 promoter element of 
P53 and represses P53 activity 
 

MYBPC1 Myosin-binding protein C, slow-type 

UniProtKB/Swiss-Prot: MYPC1_HUMAN, Q00872 
Function: Thick filament-associated protein located in the crossbridge region of vertebrate 
striated muscle a bands. In vitro it binds MHC, F-actin and native thin filaments, and modifies 
the activity of actin-activated myosin ATPase. It may modulate muscle contraction or may play a 
more structural role 
 

CST3 Cystatin C 

EntrezGene summary for CST3: 
The cystatin superfamily encompasses proteins that contain multiple cystatin-like sequences. 
Some of the members are active cysteine protease inhibitors, while others have lost or perhaps 
never acquired this inhibitory activity. There are three inhibitory families in the superfamily, 
including the type 1 cystatins (stefins), type 2 cystatins and the kininogens. The type 2 cystatin 
proteins are a class of cysteine proteinase inhibitors found in a variety of human fluids and 
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secretions, where they appear to provide protective functions. The cystatin locus on chromosome 
20 contains the majority of the type 2 cystatin genes and pseudogenes. This gene is located in the 
cystatin locus and encodes the most abundant extracellular inhibitor of cysteine proteases, which 
is found in high concentrations in biological fluids and is expressed in virtually all organs of 
the body. A mutation in this gene has been associated with amyloid angiopathy. Expression of 
this protein in vascular wall smooth muscle cells is severely reduced in both atherosclerotic and 
aneurysmal aortic lesions, establishing its role in vascular disease. [provided by RefSeq] 
 
UniProtKB/Swiss-Prot: CYTC_HUMAN, P01034 
 Function: As an inhibitor of cysteine proteinases, this protein is thought to serve an important 
physiological role as a local regulator of this enzyme activity 
 

MPO from human myeloperoxidase 

EntrezGene summary for MPO: 
Myeloperoxidase (MPO) is a heme protein synthesized during myeloid differentiation that 
constitutes the major component of neutrophil azurophilic granules. Produced as a single chain 
precursor, myeloperoxidase is subsequently cleaved into a light and heavy chain. The mature 
myeloperoxidase is a tetramer composed of 2 light chains and 2 heavy chains. This enzyme 
produces hypohalous acids central to the microbicidal activity of netrophils. [provided by 
RefSeq] 
 
UniProtKB/Swiss-Prot: PERM_HUMAN, P05164 
Function: Part of the host defense system of polymorphonuclear leukocytes. It is responsible for 
microbicidal activity against a wide range of organisms. In the stimulated PMN, MPO catalyzes 
the production of hypohalous acids, primarily hypochlorous acid in physiologic situations, and 
other toxic intermediates that greatly enhance PMN microbicidal activity 
 

Triadin mRNA 

UniProtKB/Swiss-Prot: TRDN_HUMAN, Q13061 
Function: May be involved in anchoring calsequestrin to the junctional sarcoplasmic reticulum 
and allowing its functional coupling with the ryanodine receptor (By similarity) 
 

PLCB2 Phospholipase C, beta 2 

UniProtKB/Swiss-Prot: PLCB2_HUMAN, Q00722 
Function: The production of the second messenger molecules diacylglycerol (DAG) and inositol 
1,4,5-trisphosphate (IP3) is mediated by activated phosphatidylinositol-specific phospholipase C 
enzymes 
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Appendix 2 

To implement the mutation operator each generation a random matrix with dimensions 
matching the population is created.  The matrix is searched for values below the user set 
mutation rate.  If a value is found a random gene index is generated and replaces that value in 
that chromosome  

 
Figure 16.  Overview of mutation operator 

 

Appendix 3 

Probe Name Probe 
number 

Phosphatidylinositol 4-
kinase 

3826 

KIAA0128 gene partial cds 490 
PZP pregnancy-zone protein 4263 
MB-1 gene 2642 
Mucin 1 epithelial, Alt. 
Splice 6 

5856 

MYBPC1 Myosin-binding 
protein C, slow-type 

6688 

CST3 Cystatin C 1882 
MPO from human 
myeloperoxidase 

6215 

Triadin mRNA 2874 
PLCB2 Phospholipase C, 
beta 2 

2394 
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Appendix 4 

Number of Features:  10 
Population Size: 100 
Number of Epochs: 1000 
Number of Generations: 2000 
Size of Hidden Layer: 2 
Mutation Rate: 0.01 
Crossover Prob: 0.75 
Hidden Layer 2: 1 
Percentage Covered: 27.4372 
Genes and prevalence in population 
 
----------------------------------- 
 
M27891_at 90 CST3 Cystatin C (amyloid angiopathy and cerebral hemorrhage) 
U81802_at 90 Phosphatidylinositol 4-kinase 
M95678_at 88 "PLCB2 Phospholipase C, beta 2" 
U05259_rna1_at 84 MB-1 gene 
U18985_at 78 Triadin mRNA 
M57731_s_at 68 GRO2 GRO2 oncogene 
X54380_at 60 PZP Pregnancy-zone protein 
X66087_at 47 MYBL1 V-myb avian myeloblastosis viral oncogene homolog-like 1 
X66276_s_at 35 "MYBPC1 Myosin-binding protein C, slow-type" 
D50918_at 30 "KIAA0128 gene, partial cds" 
L38820_at 28 "CD1D CD1D antigen, d polypeptide" 
U33054_at 26 G PROTEIN-COUPLED RECEPTOR KINASE GRK4 
HG371-HT1063_s_at 23 "Mucin 1, Epithelial, Alt. Splice 6" 
X14362_at 22 "CR1 Complement component (3b/4b) receptor 1, including Knops blood group system" 
M21119_s_at 18 LYZ Lysozyme 
X74837_at 16 HUMM9 mRNA 
U78107_at 15 Gamma SNAP mRNA 
X86163_at 12 BDKRB2 Bradykinin receptor B2 
M27533_s_at 12 GB DEF = Ig rearranged B7 protein mRNA VC1-region 
L48516_at 11 "GB DEF = Paraoxonase 3 (PON3) mRNA, 3' end of cds" 
U35376_at 11 Repressor transcriptional factor (ZNF85) mRNA 
U83192_at 9 Post-synaptic density protein 95 (PSD95) mRNA 
U68162_cds1_s_at 8 MPL gene (thrombopoietin receptor) extracted from Human thrombopoietin 
receptor (MPL) gene 
HG4390-HT4660_at 7 Ribosomal Protein L18a Homolog 
U73191_at 6 Inward rectifier potassium channel (Kir1.3) 
X61072_at 6 "T cell receptor, clone IGRA17" 
X66362_at 6 PCTK3 PCTAIRE protein kinase 3 
Z79581_at 6 "GB DEF = LAZ3/BCL6 gene, first non coding exon" 
AB002318_at 5 "KIAA0320 gene, partial cds" 
D00760_at 5 PSMA3 Proteasome component C3 
D14694_at 5 PHOSPHATIDYLSERINE SYNTHASE I 
D86971_at 5 "KIAA0217 gene, partial cds" 
X17042_at 5 "PRG1 Proteoglycan 1, secretory granule" 
U26424_at 5 Stress responsive serine/threonine protein kinase Krs-1 mRNA 
L33801_at 4 Protein kinase mRNA 
M91592_at 4 ZNF76 Zinc finger protein 76 
X96783_rna1_at 4 Syt V gene (genomic and cDNA sequence) 
M19508_xpt3_s_at 4 "MPO from  Human myeloperoxidase gene, exons 1-4./ntype=DNA 
/annot=exon" 
M64676_at 3 GB DEF = K+ channel subunit gene 
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M92439_at 3 130 KD LEUCINE-RICH PROTEIN 
M94893_at 3 "TSPY Testis specific protein, Y-linked" 
J03779_at 2 "MME Membrane metallo-endopeptidase (neutral endopeptidase, enkephalinase, 
CALLA, CD10)" 
X66403_at 2 "CHRNE Cholinergic receptor, nicotinic, epsilon polypeptide" 
X99802_at 2 ZYG homologue 
Y09306_at 2 "GB DEF = Protein kinase, Dyrk6, partial" 
J03634_at 2 "INHBA Inhibin, beta A (activin A, activin AB alpha polypeptide)" 
D43772_at 1 Squamous cell carcinama of esophagus mRNA for GRB-7 SH2 domain protein 
D63813_at 1 Rod photoreceptor protein 
HG908-HT908_at 1 Mg61 Protein (Gb:L08239) 
M20530_at 1 "SPINK1 Serine protease inhibitor, Kazal type 1" 
M24439_at 1 "ALPL Alkaline phosphatase, liver/bone/kidney" 
M68840_at 1 MAOA Monoamine oxidase A 
U38980_at 1 "PMS8 mRNA (yeast mismatch repair gene PMS1 homologue), partial cds (C-terminal 
region)" 
U70735_at 1 GB DEF = 34 kDa mov34 isologue mRNA 
U79301_at 1 Clone 23842 mRNA sequence 
X54162_at 1 64 KD AUTOANTIGEN D1 
X57830_at 1 Serotonin 5-HT2 receptor mRNA 
X58723_at 1 GB DEF = MDR1 (multidrug resistance) gene for P-glycoprotein 
X79536_at 1 HNRPA1 Heterogeneous nuclear ribonucleoprotein A1 
X89894_at 1 Nuclear receptor 
X90828_at 1 "Transcription factor, Lbx1" 
X93036_at 1 MAT8 protein 
Z11697_at 1 CD83 ANTIGEN PRECURSOR 
D28791_at 1 "PIGA Phosphatidylinositol glycan, class A (paroxysmal nocturnal hemoglobinuria)" 
L43576_at 1 (clone EST02946) mRNA 
HG2271-HT2367_s_at 1 Profilaggrin 
M16707_rna1_at 1 "Histone H4 gene, clone FO108" 
M87507_s_at 1 "IL1BC Interleukin 1, beta, convertase" 
X06700_s_at 1 COL3A1 Alpha-1 type 3 collagen 
 

Appendix 5 

Red represents high expression blue low expression.  Standardized across samples 
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Appendix 6 

Feature frequencies over generations 
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Appendix 7 

Population Variance 
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