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Abstract 
 
 Protein structure prediction has gained increased attention over the past decades in a 

wide range of biological disciplines.  Creating an accurate visual model of a protein can aid 

in protein engineering; which has implications in the creation of therapeutic molecules as is 

the case with antibodies.  The third complementarity determining region of the heavy chain 

of antibodies (CDR-H3) is known to show a large degree of variation in sequence and in 

length, and therefore has provided difficulties for structure prediction.  By separating the 

CDR-H3 into two logical sections, the apex and base, and using a homology modeling 

techniques for each section, this study attempts to predict structure for this important region 

of antibodies.  This method also accounts for certain interactions proven to be relevant in 

CDR-H3 structure to select a suitable parent for modeling an unknown CDR-H3.  The 

selection algorithm was tested using a test set of proteins, selected based on base type, length 

and diversity.  Overall, there seemed to be a slight improvement in the prediction of CDR-H3 

by this method when compared with traditional homology methods; although both drastic 

improvements and evident decreases in accuracy of predictions from individual molecules 

can be observed. 
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 Introduction 

 Monoclonal antibodies have gathered increasing attention over the past decade as 

possible agents for the treatments for diseases, such as cancer and arthritis.  There are 

currently ten therapeutic monoclonal antibodies on the market and there is a significant 

amount of research attending this area currently.  In general, monoclonal antibodies can be 

developed more quickly and cheaply than small molecules, and therefore are deserving of 

such attention.  In the area of protein engineering, knowledge of structure is important as it 

ultimately determines function.  Using computational methods to predict structure will lead 

to a better understanding of how primary sequence determines a protein’s tertiary structure. 

 Antibodies are multi-domain proteins that contain active sites specific for a particular 

antigen.  Two domains, VL and VH, are positioned close together to form the scaffold upon 

which the antigen binding site is located.  The scaffold is relatively conserved as contrasted 

with the sequence and length variation seen in the complementarity determining regions 

(CDRs) that make up the antigen binding site (Wu, et al. 1970).  There are six such CDR 

loops, three on the light chain, L1, L2, L3, and three loops on the heavy chain, H1, H2, and 

H3.   

Even though these loops are highly variable, it has been shown that five out of six of 

the loops can take on only a limited number of main-chain conformations, known as 

canonical structures, based on a limited number of residues (Chothia, et al. 1987; 

Decanniere, et al. 2000).  Due to the large variety in length and sequence of the third CDR of 

the heavy chain (CDR-H3), a concrete set of canonical classes has not been assigned to this 

loop (Al-Lazikani, et al. 1997).  It has also been observed that CDR-H3 plays an important 

role in determining the specificity and affinity of the antigen binding site due to its great 

degree of variability. 
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A main contributor to the high degree of variability of antibodies comes from the 

process by which they are created.   An immature B-cell contains germline genes, or multiple 

exons, of various classes (named variable, diversity, and joining) which need to become 

rearranged in order for transcription to begin.  A gene (or group of exons) from each of these 

classes will remain in the mature B-cell, which will combine to produce a complete antibody 

molecule.  Antibodies that are produced from the same germline genes share similarities in 

sequence and therefore possibly share similarities in structure. 

CDR-H3, the most variable loop in the antigen binding domain, can be broken down 

into two regions:  the apex (or head of the loop) and the base (or torso), which are located 

distal and proximal to the framework region respectively (Shirai, et al. 1996).  For this study, 

the CDR-H3 region will be defined as in Morea, et al. 1998, which is comprised of the amino 

acids from 92Cys to 104Gly following the Kabat numbering scheme (Wu, et al. 1970).  The 

base of the loops are defined as the ten residues that reside proximal to the framework region, 

four residues from the N terminus and six residues from the C terminus (Morea, et al.1998) 

(figure 1).     

It has been observed that the base of CDR-H3 regions can take on one of two classes, 

kinked (K) or extended (E).  The conformation depends on a salt bridge commonly formed 

by the conserved 101Asp and an N-

terminal basic residue, resulting in a 

bulge at the 101st residue (Shirai, et 

al.1996) (table 1).  It was observed that 

the presence of a basic residue 

(Arg/Lys) at position 94 is essential for 

the bulged base region.  A sub-class, 

  Arg / Lys 94 

  Present Absent 

Present Bulged Non-Bulged 
Asp 101 

Absent Bulged No examples  
length > 10 

Table 1: Rules governing the bulged base. As propsed 
by Shirai et al. 1996. 
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kinked plus extra bulge (K+), can also be formed, with rules being defined by Shirai, et al. 

(1996). The three conformations can be seen in Figure 1.       

Along with molecular interactions within CDR-H3 itself, other inter-molecular 

interactions have been described (Morea, et al. 1998).  One notable interaction involves 

residue 100bH of H3, which interacts with the light chain through the VH – VL interface.  

More often than not, 100bH is a tyrosine which packs with the tyrosine commonly found at 

position 49L.  This is also the case if 100bH is a threonine.  If 100b is instead a tryptophan, 

the side chain points in the opposite direction and interacts with L3 instead of the normal 

framework interaction (49L).  It has also been observed that 100aH Phe will interact with 49L 

in the case that 100bH is a glycine (Morea, et al. 1998).  Since the side chain of 100bH 

determines the conformation of the backbone proximal to this residue, it can dramatically 

change the presentation of the apex into the antigen binding site, and therefore should be 

considered relevant in H3 structure. 

 Another interaction noted between H3 and the other variable loop domains involves 

Arg94.  Because this amino acid is also involved in determining the class of the base (E, K or 

K+), its interactions with the other loops depends on the base class.  If the H3 structure is in 

the bulged conformation, Arg94 usually packs against the aromatics found in 27 and 32 of 

H1.  If the base is extended, 27 and 32 will pack against either 96 or 99 of H3 if either of 

these residues is an aromatic (Morea et al. 1998).  It has not been determined if these 

interactions are relevant to the structure of H3 due to the lack of data when there is no 

interaction between H3 and amino acids 27 and 32 of H1.   

Determining rules governing the conformation of the apex has proven to be more 

difficult.  It has been seen that the conformation of the apex of a loop depends on the general 
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Figure 1 – The three basic conformations of base regions of CDR-H3.  Base shown in blue and apex 
in green. (a) Extended base conformation of 1MPA.  (b) Kinked base conformation of 1KB5. (c) 
Kinked plus bulge conformation of 1CLY.  Notice the disconfiguration of the C terminal (left side of 
loop in picture) region of base of (b) and (c). 

class of the torso region it rests on.  The extended base conformation usually has a short loop 

region which follows the general β-hairpin classification system described in Sibanda et al.  

1989.  The kinked bases, which do not conform to the normal hydrogen bonding pattern of an 

anti-parallel β-sheet, are often characterized by longer apex regions (Morea, et al. 1997).   

Culler et al. (2004) have used clustering and entropy information in order to define 

characteristics regarding the importance of specific residues in CDR loops.  They found that 

residue 95HV commonly points into the VH-VL interface, but in a few cases pointed upwards 

into the antigen binding site.  This is of importance in this study because of the residue’s 

possible role in antigen affinity in this uncommon conformation.  Another lab also found that 

this residue may play a role in antigen binding.  (Vargas-Mardrazo, et al. 2003).  

Due to the difficulties in identifying characteristics in CDR-H3, it has been difficult 

to model the entire antigen binding site (Morea, et al. 1998).  One technique used to predict 

the structure of CDR-H3, and often used to predict the structure of loops in general, is 
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extensive database searching.  This involves searching a database for loops that share similar 

sequences and similar lengths (Morea, et al. 1997; Shirai, et al. 1996) and searching for a 

relationship of sequence and structure.  These studies have resulted in limited success, but 

have generated some valuable information regarding CDR-H3 structure.  The lack of great 

success may be due to the limited number of proteins available at the time of the study. 

In general, homology modeling is based on the idea that if two molecules share 

similar sequence, primary structure, they will also share a similar tertiary structure.  By 

locating a parent molecule with known structure that matches the sequence an unknown one, 

it is possible to model the unknown molecule by using the coordinates of the former.  This 

procedure has resulted in a high level of accuracy when compared with alternative modeling 

methods.  Although the accuracy of the method is not yet 100%, there are benefits to using 

computational techniques to predict structures instead of more traditional techniques such as 

x-ray crystallography.  Computational methods are drastically quicker and cheaper to 

develop and when homology modelling’s weaknesses are kept in mind, this procedure can be 

used as an effective tool to help lead studies in a laboratory. 

Traditional homology based modeling methods have been studied and it has been 

shown that there are three important factors regarding this procedure (Sternberg, 1996).  The 

first is that automated methods, if they fail, usually fail due to a faulty multiple sequence 

alignment.  This is one of the first steps in homology modeling, and if the alignment is 

grossly incorrect, the rest of the prediction will also be flawed.  Secondly, Sternberg states 

that the modeling of variable loop regions is still very difficult (but improving).  The third 

general conclusion about comparative modeling is that energy minimization steps often 

resulted in a prediction that was further from the correct conformation than prior to the 

energy minimization step (Sternberg, 1996).  Energy minimization will often force the 
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protein to adopt a local minimum, which may or may not be equal to the protein’s absolute 

minimum energy conformation or represent the proteins native structure.  Further, in the 

context of only modeling a section of the protein, there may be other factors affecting the 

energy of a molecule which are not represented in the predicted model.  Without all the 

information, the energy minimization algorithm will not be able to incorporate all the data 

needed.  For both these reasons, we cannot be confident that energy minimization will 

increase the accuracy of the homology modeling technique. 

Other methods used to model variable loops, besides homology modeling, include 

various statistical techniques.  A clustering method based on sequence similarity of seven 

residue CDR-H3 loops, was performed (Martin, et al. 1996).  This resulted in identifying 

residues outside of the H3 loop that are commonly involved in the main chain conformation 

of H3.  Another novel approach to modeling CDR-H3 included a neural network technique 

(Reczko, et al. 1995).  This method proved successful for apices shorter than seven residues 

in length, while the longer loops had larger average root mean square deviations when 

compared with the actual crystal structure.  The neural network was used to predict φ and ψ 

angles of the main-chain backbone.    

The study described herein proposes a new technique to modeling the antigen binding 

site, with an emphasis on predicting CDR-H3 structure by homology modeling.  By 

combining the rules and characteristics defined in the literature, data from recent 

residue/affinity experiments, along with existing technology, a semi-automated procedure for 

structure prediction is created.  This system can be applied in a multitude of ways.  In a most 

basic sense, it can be used to visualize a specific CDR-H3 with unknown structure, but the 

system set up can also be used for more functional purposes.  In the context of antibody 

active site structure prediction, this may prove a valuable resource in constructing a confident 
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variable loop region.  This system can also be applied in proteomics studies, where changing 

various amino acids at different points may change the structure (and possibly function) of 

the loop.   

 

Methods and Materials 

 The method described in this section will outline a technique that involves knowledge 

based homology modeling of a target unknown antibody by parts to parent CDR-H3 pieces 

with known structures.  The hypothesis for this technique is that modeling the base and the 

apex separately will result in a more accurate prediction of the entire CDR-H3 loop, due to 

the finding that the structures of these two sections are governed by separate sets of rules 

(Shirai et al. 1996).  It must also be noted that the interaction between these two sub-domains 

is also very important and was kept in mind throughout the project (as described in the 

following sections).   

 The methods section contains five general segments that outline distinct conceptual 

pieces of the project as a whole.  As these sections may appear grouped or overlapped in the 

actual project, they will be described as individual pieces for the sake of clarity.  Although 

the methods section describes the project in its final state, assessments were done during the 

development process to determine the effectiveness of the algorithm.  The results and 

description of points of assessment can be seen in the results section. 

 

Pre-processing 

 Before we can model an amino acid sequence by parts, we must first identify the 

parts.  The base (defined as the four residues most proximal to the N-terminus of the CDR 

and the six residues most proximal to the C-terminus) and the apex, the remaining residues 
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distal to the framework region, are these parts.  In order to speed up the homology search to 

identify a proper parent sequence (the sequence on which the target, or query, will be 

modeled on) a pre-processing stage is performed.  This involves searching the Brookhaven 

Protein Databank for immunoglobulin proteins and parsing out bases and apices of CDR-H3 

loops.  These short sequences are placed in a relational database, listed as sequence 

information with links relating to their three dimensional data, via their respective PDB ID.  

The process by which these segments of sequences will be parsed from entire sequence will 

be described later in this document (Materials and Methods: Identification of CDR-H3 

region). 

 Intra-peptide interactions have been described in the literature (Morea, et al. 1998) 

and include interactions between CDRH3 with other sections of the light chain.  As 

introduced above, a common interaction with structural consequences can be observed 

between 100bH (found within CDRH3) and 49L from the light chain.  These two amino acids 

are parsed out of the sequence separately using Kabat numbering and stored in the relational 

database.  This allows efficient access to information regarding the presence and type of 

interaction that may be present at these sections.   

 

Identification of CDR-H3 region 

 The target sequence can be in a variety of different states so that there is a freedom of 

input format.  It can be entered as an entire molecule (both heavy and light chains), just a 

heavy chain, or just a CDR-H3 region.  Due to the fact that the entire molecule can be used in 

this algorithm, it was predicted that the more information given to the algorithm, the more 

accurate the result, since the majority of the algorithm is based on more than just the CDR-

H3 sequence. 
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If the target sequence is given as an entire molecule or as a heavy chain, the CDR-H3 

needs to be parsed from the rest of the heavy chain.  As mentioned in the introduction, the 

CDR-H3 loop is highly variable, not only in sequence but also in length.  Although the 

patterns identifying the CDR-H3 loop itself will be a difficult marker to classify the region, it 

is known that the CDR loops reside on a more conserved β-framework region (Oliva, et al. 

1998).  The Kabat numbering system can also be used to define the various regions and to act 

as a map while traversing these molecules.  Important residues that do not reside within the 

CDR-H3 (such as residue 49L) are also collected to compare with the parent proteins.   

When the sequence is given as an entire antibody molecule (heavy and light chains, 

and the possibility for other molecules, e.g. antigens), the algorithm must determine which 

chain is heavy and which is light.  This is done by using a multiple sequence alignment of 

previously aligned heavy sequences to create a hidden markov model (HMM) which can be 

used to score the peptide chain in question.  The algorithm will score every chain present 

against the heavy chain HMM and then take a closer look at the highest scoring chain.  If the 

highest scoring chain scores above a certain threshold, it can be confidently used as the heavy 

chain.  The multiple sequence alignment was created by choosing antibodies that represented 

some diversity within the heavy chain, but conformed to the rules for heavy chains (i.e. so 

that extreme outliers were not used for the alignment).  See the discussion section for a 

complete analysis of the sequences used.  An HMM was created from this multiple sequence 

alignment and was tested against multiple other heavy chains (including outliers), light 

chains, sequences of similar length to heavy chains (randomly chosen) and sequences of 

varying lengths. 

Once the heavy chain is identified, the same multiple sequence alignment is used to 

parse out the CDR-H3.  The unknown heavy chain is aligned with the others.  Since it is 
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already known where the CDR-H3 is in the alignment, it is simply a text processing problem 

to retrieve the CDR-H3 from the unknown sequence (assuming the new sequence has been 

aligned correctly).  Because of the chance of outliers and sequences that, for some reason or 

another, do not align very well, the score of the alignment is parsed after the addition of the 

new heavy chain and if it is above a certain threshold, we can be confident that the sequence 

aligned properly and the CDR-H3 aligns with the known sequences.  If the alignment score is 

not above a certain threshold, we cannot be confident in the alignment and therefore must use 

a different technique to identify the CDR-H3. 

Martin, A. (2005) describes a method for identifying the CDR’s by “walking” 

through the sequences.  This is done by identifying patterns before and after the first CDR, 

and then using this location to find the second CDR, and so on.  If this method fails, a CDR-

H3 cannot be determined confidently and the sequence is discarded. 

As mentioned above, residues from other parts of the heavy chain and from the light 

chain also need to be parsed out at this step.  Those heavy chain residues are gathered during 

the alignment step described above.  The light chain is aligned in a very similar fashion as 

described for the heavy and the specific sequences can be seen in the results section. 
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Finding the Template 

 After retrieving the CDR-H3 from the target protein, this sequence is searched against 

the pre-processed database of antibody molecules in order to find a suitable apex and base 

that will be used to as templates for the target molecule.  The algorithm used to identify 

template protein segments is a weighted search algorithm.  Each potential template molecule 

is given a score based on a number of properties including sequence similarity, presence of 

important amino acids, structure class, and suspected interactions for both the base and apex 

separately.  The highest scoring apex and the highest scoring base, not necessarily from same 

molecule, are then chosen as templates for modeling the target molecule. 

 To score the base (four residues nearest the N terminus and six residues nearest the C 

terminus) we first looked at sequence similarity.  Since the length of the base is static, we can 

simply check residue to residue for similarities.  As described in Shirai et al. (1996) and 

summarized in table 1, there are three base types that are governed by key residues.  The 

algorithm awards a bonus to the base that fits the same base type.  This algorithm will allow 

slight variation in the sequence in order to retain the general structural class of the base.   

 The scoring algorithm for the apex is slightly more difficult due to the varying length 

of this section.  A simple residue comparison method cannot be employed, such as in the 

base scoring algorithm because of the variety of lengths and therefore an introduction of 

gaps, and it is important that a high-quality alignment be used to assess the sequence 

similarity between the target and potential template.  The algorithm therefore uses a global 

alignment algorithm to compare sequence similarities and parses the alignment score from an 

external alignment program.  Because an external global alignment program is used to 

determine the sequence similarity between two apices, the scales of the base and apex scores 
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do not match.  Therefore, these score cannot be compared to determine relative confidence in 

the match.   

 The multiple sequence alignment scores matched amino acids and gives a penalty for 

gaps.  The default parameters for this program were used and scores were not adjusted.  An 

interesting note about the algorithm is that gaps placed at the beginning or end of the 

sequence are not penalized.  Therefore apices of different lengths have the ability to score 

higher than two apices of the same length with similar sequence identity.  It has been found 

that β-hairpin structure can be broken into classes depending on the loop length (Sibanda et 

al. 1989).  In general, there are four classes (1-4), detemined solely by sequence length 

following the formula of n%(modulo)4, where n is the sequence length.  Therefore two 

apices that differ in length, even by one residue, would fall in different classes and therefore 

conform to a different structure.  A bonus is added (and scaled to be of importance with the 

external multiple sequence algorithm) for sequences of the same length. 

 An additional alignment method was developed as an alternative to the pairwise 

scoring using a multiple sequence alignment, comprised of 5 sequences (selection process 

described later).  A global alignment algorithm (Needleman, S.B. et al. 1970) was used in 

order to introduce a more controlled method of scoring sequence similarity.  This method is 

much more computationally intensive, but the parameters and finer details of the alignment 

method can be altered in order to achieve an ideal score.   

 As mentioned above, intra-peptide interactions are also of consideration in the 

template searching algorithm.  The interaction between residue 100bH of CDR-H3 and 49L of 

the light chain, in particular, is being used to help determine a suitable template molecule.  

Due to the high variation in length of the CDR-H3 molecule, 100bH is sometimes present in 

the apex, sometimes in the base and sometimes is not present at all.   Therefore it must be 
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determined where, if at all, 100bH is located and score a bonus in the corresponding section if 

this interaction is present in both the target and template molecules.  When this interaction is 

not present in both the target and template molecules, no bonus is scored because it is unclear 

from the literature whether or not a similar heavy-light chain interaction is present.  In other 

words, the lack of this interaction tells us nothing about the conformation of the molecules 

and is therefore left out of the scoring algorithm.     

 The final consideration in the scoring algorithm is to look at the overlap between the 

apex and base.  This step is important because it is the overlap area which will determine the 

presentation of the apex into the antigen binding site (Morea et al. 1998).  This is scored by a 

comparison of the four amino acids closest to the junction of the apex and base between the 

target and the template molecules, two on each side of the loop.  The residues are compared 

using a protein weight matrix under the assumption that similar amino acids will produce a 

similar ‘take off’ point for the apex.   

 At the end of this set of scoring (sequence similarity, interaction bonuses, overlap) 

there may still be a couple of parent molecules that share the highest score.  In order to break 

this tie, the set of germline genes is used to determine the best match.  By choosing the same 

germline gene, we can guarantee that the rest of the heavy chain (not just the CDR-H3) 

shares some sequence similarity.  This is important because the CDR-H3 interacts with the 

rest of the heavy chain; finding two molecules that share the same germline gene may also 

share similar interactions with relevance to CDR-H3 structure.  It should also be stated that 

the third hypervariable region is not encoded by a VH gene.  The end of the VH gene is the 

beginning of the third hypervariable region.  Instead, CDR-H3 comes from the diversity 

region.  This is not used in the scoring algorithm because of the high diversity seen within 

this region.  Identifying a D germline would be uncertain at best.   
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Generating the model 

 At this point, we have identified a base and apex parent and the CDR-H3 three 

dimensional model can be generated.  The program used in this section is Modeller, 

developed by Andrej Sali (1993).  Modeller is used for homology or comparative modeling 

of protein structures.  By using spatial restraints, the program will generate a model of a 

protein molecule from an alignment of unknown and related proteins with known structures.  

From this alignment, Modeller will give coordinates for all non-hydrogen molecules and 

output multiple predictions for its structure.  In this study, only three predictions were viewed 

and tested for accuracy. 

 Conveniently, Modeller natively supports modeling of an unknown protein by using 

known structures from multiple proteins.  An alignment is created that aligns the correct 

sections of the unknown protein with both the parent molecules.  This is given to Modeller as 

input and pdb files are exported as a result.  

 

Accuracy Evaluation 

 After the predictions have been made by Modeller (Sali et al. 1993), the accuracy of 

these threaded molecules must be evaluated for accuracy.  A test set of molecules was 

created before the testing of the system began, in order to rate the success of the system.  A 

test set of 23 antibodies was developed from a set of 231 antibodies used in the high 

resolution database (the pdb id’s of these data can be seen in table 2).  The test set was 

chosen randomly for diversity in apex length and base type.  These antibodies have known 

structures and were removed from the database for the duration of testing, so that they would 

not be chosen for the prediction of structures.   
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Table 2 – The test set of 22 immunoglobulins

By varying the length of the apex we can measure the success of the system on 

molecules of varying length.  In previous studies (Morea, et al. 1998) it has been stated that 

longer CDR-H3 molecules were more difficult to accurately predict the structure for and it 

will be interesting to see if this is the case with the data found here.  Only 22 of these 23 

antibodies were used in tests because there seemed to be a duplicate antibody in the PDB or 

at least a very similar antibody.  When using this specific antibody and threading on the 

molecule it scored to be the best match for a parent (which in this case was the same 

molecule for the base and apex) and the prediction was completed, the RMSD (described 

below) was unusually small and virtually zero, due to the presence of a highly similar 

molecule in the database.  This would have skewed the results of the testing by reducing the 

PDB ID CDRH3 CDRH3 Length 
1BAF CARGWPLAYWG 11 
1BQL CLHGNYDFDGWG 12 
1CIC CARGLAFYFDHWG 13 
1CT8 CARYRYDEGFAYWG 14 
1DBA CTRGDYVNWYFDVWG 15 
1H0D CTRLGDYGYAYTMDYWG 17 
1IKF CTRHTLYDTLYGNYPVWFADWG 22 
1MFB CTRGGHGYYGDYWG 14 
1NGW CTRRDMDYWG 10 
1Q9O CVRDIYSFGSRDGMDYWG 18 
1SBS CTRGAYYRYDYAMDYWG 17 
1UZ6 CARETGTRFDYWG 13 
2H1P CARRDSSASLYFDYWG 16 
1WT5 CARSGGPYFFDYWG 14 
2PCP CGRSTWDDFDYWG 13 
2A77 CARHDDYGKSPYFFDVWG 18 
1XIW CARSGYYGDSDWYFDVWG 18 
1EGJ CSRGDGIHGGFAYWG 15 
1G9M CAGVYEGEADEGEYRNNGFLKHWG 24 
1KC5 CARGGTGFDYWG 12 
1L7T CARAYYGYVGLVHWG 15 
1NFD CTRAGRFDHFDYWG 14 
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average distance of predicted molecules against their known structures.  Because of this 

finding, this antibody was omitted from the test set.   

 When a prediction is made for a molecule in the test set, the root means square 

deviation from the known structure is calculated.  This measurement can be defined as a 

means of measuring the overall distance of the molecule from its original state, in 

Angstroms.  By using this standard measurement we can quantify the molecular distance of 

one known structure from the predicted molecule and compare predictions to measure the 

accuracy of the system. 

 

Implementation 

This section describes the specific implementation of the above described method.  

Various considerations were made in order to maximize the accuracy of the system during 

the implementation process.  The system was developed on a linux system running Fedora 

Core 3.  The operability of the prediction on other operating system types was not in the 

scope of this project and therefore was not tested.   

The majority of the scripts were developed in the Perl programming language.  Since 

the majority of the process involves information related to antibodies, a Perl module was 

developed to handle the most commonly used antibody methods.  This pseudo-object 

oriented approach reduces the repetition of code and also allows a more abstract view of the 

process, from a programming standpoint.  The antibody module allows access to various 

antibody attributes, such as heavy and light chain, CDR-H3 sequence, resolution as reported 

in the pdb file etc.   

The high resolution database of antibodies was constructed using the Postgresql 

database management system filled automatically with a perl script.  The PDB ID’s of 
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antibodies were obtained from the web resource Summary of Antibody Structures in the 

Protein Databank (Allcorn et al. 2002).  They have developed a system titled Self-

Maintaining Database of Antibody Crystal Structures (SACS for short) which automatically 

searches the protein databank for immunoglobulin molecules by using an advanced text 

search.  SACS then provides an XML file of these molecules which is free to download.  The 

system described here in this paper uses this XML file and retrieves sequences from the PDB 

files listed in the XML file.  Since this file is regularly updated with new releases of the PDB, 

new structures can be added to the high resolution database easily.  The PDB was 

downloaded in October 2005 with 254 high resolution antibodies present in that release. 

In the high resolution database, N-terminal and C-terminal base sequences are stored 

along with the apex, pdb id, and 100bH, 100aH and 49L amino acids for each antibody.  The 

structure is only stored in the original files in locally stored protein databank.   

 In order to find the parent molecules on which to be modeled, a perl script, using the 

antibody module, along with another module used in the alignment method were written in 

order to score bases and apices of potential parent molecules.  The alignment module 

implements the Needleman Wunsch algorithm for finding similarities in proteins 

(Needleman, et al., 1970).  Using a dynamic programming algorithm, the module will return 

a score when given two sequences.  For the entirety of the system, a match is worth 4, a gap 

is -2 and a mis-match is -1.  The gap score is fixed and relatively mild because we want to 

encourage using a gap during the alignment (especially in searching for germline genes).  

This will encourage the maximum alignment of amino acids. 

 As mentioned above Modeller takes in an alignment of the unknown molecule to 

parent molecules with known structures.  The program also uses a python script for 
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instructions.  An example of the alignment file can be seen in figure 2.  Both the python 

script and the alignment are generated by a Perl script.   

 

 

 

 The Modeller alignment file is a modified fasta file with more information needed by 

the Modeller program.  Each sequence has its own entry and each contains three parts.  The 

first line, preceeded by a ‘>’, denotes the sequence type and identifier.  The P1; is simply an 

identifier to modeller that lets the program know that this line contains the identifier of the 

molecule.  The second line contains a series of information about the molecule if the 

structure information is available for that molecule, where the structure information can be 

found, the beginning and ending amino acids for the sequence and a chain identifier.  The 

start and end amino acid numbers must come from the pdb file for that molecule.  There are a 

couple numbering methods used for amino acid numbering of antibodies, which makes 

determining these data difficult.  The entire pdb file must be searched for these amino acids 

in the correct position.   

 

 

 

 

 

Figure 2 – Alignment file example used in Modeller.
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Table 3 – Sequences used in alignment for parsing 
the heavy chain of antibodies. 

Table 4 – HMM test scores.  Test proteins run against hmm 
created from heavy chain alignment shown in Appendix A.  
Scores are retrieved from the output of hmmsearch. 

Results 

 In order to parse the CDR-H3 regions of the molecules in this study, a multiple 

sequence alignment was created and used as templates for unknown sequences to be aligned 

to and to confidently identify the variable region.  Table 3 shows the sequences chosen, as 

previously described, and the alignment can be seen in Appendix A.  The CDR-H3 region of 

the alignment is highlighted. 

 Using this alignment, 

various sequences were added to 

see the range of scores that one 

would get and still confidently 

assume that the sequence used was 

a heavy chain.  A Hidden Markov 

Model was created from this 

alignment in order to score possible heavy chains.  The HMM used is not included, but was 

made from the alignment shown by using the program HMMer.  The scores in this table are 

used to illustrate the range of scores obtained using said hidden markov model to search 

against a putative heavy chain. 

 In this test, heavy 

and light chains from 

antibodies were used, and 

also random unrelated 

sequences.  The 

relevance of these 

PDB ID CDRH3 Total Length 
(Heavy Chain) 

15C8 CAADPPYYGHGDYWG 217 
1QBM CAGYDYGNFDYWG 219 
1OAY CARMWYYGTYYFDYWG 122 
1A14 CARSGGSYRYDGGFDYWG 120 
1MRD CANLRGYFDYWG 215 
1Q9W CVRDIYSFGSRDGMDYWG 226 
1PG7 CARDTAAYFDYWG 217 

PDB ID Description Chain ID HMM Score 
1ETZ Heavy Chain H 350 
1TXV Heavy Chain H 489 
1BM3 Heavy Chain H 425 
1OAK Light Chain L 29 
1A8J Light Chain L 56 
1PG7 Light Chain L 42 
13PK Kinase C -81 
1G53 Carbonic Anhydrase II A -81 
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Table 5 – Light chains 
used in the light chain 
alignment and hidden 
markov model used to 
identify light chains 
automatically. 

numbers is discussed later. 

 A similar process was repeated for light chains.  The light chains of the antibodies in 

table 5 were aligned and used to create hidden markov model in which to detect light chains.  

The program locates heavy and light chains separately because often times there are more 

than just the heavy and light chains described in the PDB file.  By looking for each chain 

separately, we can be more confident in the automatic retrieval and identification of antibody 

chains.   

 A fewer number of sequences were used in the light chain 

alignment due to the lower amount of diversity present within this 

chain.  It must also be added at this point, that it seems that some of 

the light and heavy chains seem incomplete.  For example, 1AP2 

used in the light chain alignment aligned very well with the other 

sequences, and it is known (Morea et al. 1998) that there is not that 

much variation in the sequences of light chains.  The chain was included in the alignment 

because this would make the hidden markov model more flexible.  This results in lower 

scores overall for light chains, but would give a shorter, incomplete chain a reasonable score.  

Without including one of these sequences to the alignment, the hidden markov model would 

score very low against such sequences, even though the sequence is a light chain.  The light 

chain alignment can also be seen in Appendix A. 

 As a control, the test was ran against the high resolution database, comparing the 

sequence of the CDR-H3 molecule with the known structures.  Only one parent was used to 

model the CDR-H3 of this test and the selection of a parent was based solely on sequence 

similarity (Table 6).   

 

PDB ID Length 
1CT8 214 
1BAF 214 
1NCW 219 
1T4K 217 
1AP2 113 
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Test 
Antibody 

Parent 
Antibody 

Run 1 
(RMSD) 

Run 2 
(RMSD) 

Run 3 
(RMSD) 

Average 
(RMSD) 

1BAF 1NJ9 1.611 1.089 1.217 1.306
1BQL 1MRC 2.910 2.062 1.940 2.304
1CIC 1AD0 1.339 1.323 1.740 1.467
1CT8 1FRG 1.566 2.199 1.119 1.628
1DBA 1IQW 2.046 1.956 2.572 2.191
1H0D 1TXV 3.146 3.354 2.321 2.940
1IKF 1FN4 8.507 6.754 7.715 7.659
1MFB 1BZ7 2.438 1.993 1.668 2.033
1NGW 1N7M 0.506 0.545 0.722 0.591
1Q9O 1A14 2.296 2.819 2.050 2.388
1SBS 1I8M 2.077 2.638 2.473 2.396
1UZ6 1BEY 4.157 3.852 4.442 4.150
2H1P 1A6U 2.627 2.410 3.003 2.680
1WT5 1JFQ 2.546 2.361 2.357 2.421
2PCP 1KB5 2.933 1.316 1.814 2.021
2A77 2A1W 2.584 1.925 1.453 1.987
1XIW 1HYX 3.034 3.139 3.746 3.306
1EGJ 1CLY 1.911 2.252 2.618 2.260
1G9M 1GC1 4.266 5.871 4.172 4.770
1KC5 1KCR 1.911 1.521 1.024 1.485
1L7T 1I9I 3.263 2.724 2.549 2.845
1NFD 1AD0 1.699 2.002 1.899 1.867
Average  2.751 2.583 2.503 2.612

 

 

 During each test, three models were made for each prediction.  With these data, we 

can see if there are any trends based on which prediction is closest to the actual, if any.  This 

data will be summarized later in this section once more test sets have been presented.  Each 

prediction was then viewed in PyMol and aligned with the known structure for the antibody 

and the resulting root mean square deviation (in angstroms) was recorded.   

 For the remaining data, an apex and base were selected individually.  The first set of 

data produced selected the base parent molecule by comparing sequence similarity and 

adding bonuses based on interactions described in the methods section.  The apex for this test 

was selected based solely on the sequence similarity.  As mentioned above, two scoring 

algorithms were used to compare the sequence similarity.   The first approach usied ClustalW 

Table 6 – RMSD values of structure prediction of test set for traditional homology 
modeling.  The parent molecule was chosen based on sequence similarity alone and three 
models were made.  
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(Thompson et al. 1994), aligned the two sequences and parsed the score from the output.  

The second algorithm is the Needleman-Wunsch (Needleman et al. 1970) dynamic 

programming algorithm, doing a more complete analysis of amino acid similarity.  The latter 

does an exhaustive search of possible alignments and selects the optimum alignment, and 

therefore will produce an accurate score.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Test 
Antibody 

Base 
Parent 

Apex 
Parent 
(ClustalW)

Apex 
Parent 
(NW) 

ClustalW 
Average 
RMSD 

NW 
Average 
RMSD 

1BAF 1CLY 1F3D 1DZB 1.587 1.472 
1BQL 1AXS 1H3P 1AHW 2.540 1.737 
1CIC 1LO4 1JPS 7FAB 1.699 2.227 
1CT8 1FRG 1FRG 1FRG 1.628 1.628 
1DBA 1MHP 1KNO 1IQW 2.967 2.277 
1H0D 1KFA 1OTS 1FNS 2.714 3.107 
1IKF 1B2W 1FOR 1FNS 2.676 4.085 
1MFB 1BZ7 1IGT 1IGT 2.501 2.501 
1NGW 1N7M 1AJ7 1AJ7 0.591 0.591 
1Q9O 1QKZ 1UWX 1HYX 3.046 3.518 
1SBS 1I8I 1BM3 1FNS 3.167 2.589 
1UZ6 1A2Y 1IEH 1CBV 2.316 2.472 
2H1P 1A6T 1I8I 1I8I 2.872 3.021 
1WT5 1A14 1A3L 1IGT 3.199 2.412 
2PCP 1A14 1TET 1NCW 3.246 2.518 
2A77 2A1W 2A1W 2A1W 1.987 1.987 
1XIW 1AY1 1FBI 1J05 3.521 2.950 
1EGJ 1CLY 1A3L 1MHP 2.365 2.465 
1G9M 1GC1 1GC1 1GC1 4.770 4.770 
1KC5 1A14 1KCR 1KCR 1.843 1.843 
1L7T 1I9I 1AY1 1I9I 3.278 2.845 
1NFD 1AD0 1PLG 1OB1 2.453 2.764 

Table 7 – Test set of antibodies predicted structures against known for two apex algorithms. The base 
parent molecule was chosen based upon sequence similarity, awarding bonuses for stated amino acids 
present.  Apices are selected by sequence similarity alone.  The average RMSD of three predicted 
models is shown.  The ClustalW column signifies a scoring algorithm based on using ClustalW.  The 
NW column represents those apices that are selected based on the Needleman-Wunsch alignment 
algorithm.  The base parent is the same between both algorithms since the base selection algorithm 
was not changed between the two test sets.  The rows highlighted in gray are those where the apex did 
not change between the two algorithms. 
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Table 7 shows the data produced using both these strategies.  Only the average RMSD is 

given for each set of three predictions.  Although only the average for these data is given  

here, the differences between runs one, two, and three will be reported and discussed later. 

 The data in Table 8 shows the results for the next stage of the assessment.  During 

this test, again both ClustalW and NW algorithms were used in retrieving the apices.  In 

addition, one interaction in particular was looked at.  The interaction of 100b (or 100a in 

some cases) of the heavy chain with 49L was tested in this set.  Since this interaction is not 

present in all cases, and, within this test case, only affected a few of the antibodies, only the 

test CDR-H3 molecules whose apex or base parent changed will be presented.  Those data 

that are omitted can be assumed to have the same data as in Table 7.   Since this interaction 

can affect either the base or apex of the antibody (depending on the length of the antibody 

and therefore where 100b lies within CDR-H3) both the base parent and apex parent are 

shown.  It must also be noted that none of the parent molecules changed (for either base or 

apex) for the ClustalW selection algorithm and therefore are also omitted from Table 8.  This 

will be discussed in a later section.  We can also see that none of the bases changed from the 

previous test set, only apices.   

 

 

 

 
 
 
 
 
 
 
 

 

Test 
Antibody

Base 
Parent 

Apex 
Parent 
(NW) 

NW 
Average 
RMSD 

1H0D 1KFA 1LMK 2.814 
1IKF 1B2W 1DFB 3.493 
1SBS 1I8I 1IBG 2.673 
2H1P 1NC2 1I8I 2.865 

Table 8 – RMSD values of changed predictions with 100b interaction.  The test antibodies that did 
not change from the last assessment point to this one were omitted from this table.  Also omitted 
are the results from the ClustalW apex scoring algorithm due to the lack of change from the last 
assessment.  Shown is the average RMSD from three predicted models from Modeller.    
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 Also included in the parent search algorithm to choose the best base and apex is the 

overlap between these two molecules.  As stated above, the overlap was used to capture the 

angle at which the apex is presented from the base molecule.  Therefore, when looking for a 

correct apex, an overlap from a putative apex that matches the unknown molecule’s base 

would score a bonus.  At this point in the development, the ClustalW algorithm was dropped 

due to the inadequacy of the prediction from this apex selection method and only the NW 

algorithm was used.  This decision is further discussed in the next section.   

 The data contained in Table 9 describe the prediction method after adding the overlap 

bonus.  The bonus is given to the apex, since the apex (in this classification) has most of the 

variability and should have a similar take off point.  The overlap is defined as the two amino 

acids most near the apex for the base and the two distal amino acids for the apex.  Together, 

these four amino acids are searched against potential base and apex molecules and the apex is 

given a bonus if such a match is found.  Again, only the test antibodies that changed from the 

previous assessment are included in table 9. 

  

Test 
Antibody

Base 
Parent 

Apex 
Parent 
(NW) 

NW 
Average 
RMSD 

1CIC 1LO4 8FAB 1.387 
1H0D 1KFA 1A3L 2.720 
1IKF 1B2W 2A1W 5.005 
1MFB 1BZ7 1A3L 1.552 
1NGW 1N7M 1N7M 0.591 
1SBS 1I8I 1J05 3.167 
1WT5 1A14 1FOR 2.649 
2PCP 1A14 1S3K 1.911 
1XIW 1AY1 1BJ1 3.174 
1NFD 1AD0 1MHP 1.867 

 

 
 
 

Table 9 – RMSD values of changed predictions with overlap bonus. This data set includes those 
antibodies whose apex parents changed from the addition of the overlap bonus.  This assessment 
includes only the NW apex scoring algorithm (the ClustalW scoring algorithm was eliminated for 
the remainder of the tests).      
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 Even after the sequence similarity scoring, 100b (100a) – 49L, overlap, and 

structurally important amino acid bonuses, there are sometimes ties for the highest scoring 

apex or base parent molecules.  In the case of a tie, the algorithm will search the VH 

(variable heavy) germline, from which the molecule came from and pick the base or apex if 

the two molecules came from the same germline VH gene, the algorithm would choose this 

molecule.   Both human and mouse VH genes are used to compare, since we are unsure from 

which species the antibody came from. It is also possible that the sequence is engineered.  

The algorithm searches through 228 VH genes and finds the sequence with the highest 

similarity.  Although an exact match of VH genes is ideal, if there is not such a condition, the 

family of the VH genes are then compared and a molecule is chosen if it is in the same VH 

gene family.   If neither of these rules apply, then the algorithm uses the old method of 

selecting the molecule with the highest sequence similarity to the target protein. 

 Table 10 shows the test set of antibodies after the addition of the ‘VH gene tie 

selector’ portion algorithm.  Again, the antibodies that did not show a change at this 

assessment are omitted from the table.  

 

Test 
Antibody

Base 
Parent 

Apex 
Parent 
(NW) 

NW 
Average 
RMSD 

1UZ6 1A2Y 1CBV 2.064 
2PCP 1A14 1S3K 1.428 

 

 
 
 

 

 

 

Table 10 – RMSD values of changed predictions after VH gene tie rule.  This data set includes the 
two molecules thats chosen parents were changed due to the ‘VH gene’ tie rule.   
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Discussion 

 The objective of this study is to look at various factors regarding the structure of the 

third complementary determining region of antibodies.  There were many considerations and 

assumptions made during this study and this section will take a look at those in context of the 

data presented.  At many stages during the study, assumptions were made based on research 

and experience gained while doing the experiment.  Here, these considerations and 

assumptions are discussed through each step of the study. 

 Although antibodies have been studied extensively over the past few decades and the 

domains of heavy chains have been characterized well, automatically parsing out the CDR-

H3 region is not a trivial task.  Many of the structure files of antibodies publicly available 

contain antigen structures and the chains are not labeled with a standard; making it necessary 

to identify the heavy and light chains by sequence alone.  In this study, a Hidden Markov 

Model (HMM) was used to search the putative heavy or light chain.  As seen in Table 4, the 

heavy chain HMM was tested by searching various sequences known to be heavy chains, 

light chains, or a random unrelated sequence.  The known heavy chains are common heavy 

chains that have recognizable characteristics, such as a common framework region.  These 

scored very high on the model.  The heavy chain of 1ETZ was similar to the other heavy 

chains, except that it was slightly shorter, like some of the publicly available sequences 

found.  This heavy chain scored slightly lower at 350 when compared with the 450+ of the 

other two heavy chains.   

 The HMM was also compared with antibody light chains.  A light chain is relatively 

the same length as a heavy chain when compared with the wide range of protein lengths and 

also share a similar overall three dimensional shape, with three antigen binding loops 

pointing into the antigen binding pocket.  It was also necessary to be sure that the HMM 
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could discriminate between a heavy and light chain.  The scores for the three light chains 

shown in Table 4 were much lower than the heavy chain examples used, but slightly higher 

than the unrelated sequences.   

 The unrelated sequences were chosen completely at random with no regard for length 

or sequence content.  Although this was a very small sample, it is clear that the HMM can 

discriminate between a heavy chain and another sequence, be it a light chain or otherwise.  

The light chain HMM was tested in much the same way, producing comparable results.   

 A cutoff score of 150 was chosen for using the HMM, only to be completely 

confident that the protein chain in question was indeed a heavy chain.  If no chain scored 

above a 150 from an HMM search, the highest scoring chain is printed out with the score for 

user inspection.  Many times, the sequence is truncated in the PDB file and therefore much 

shorter than the expected heavy chain.  For example, the antibody 1AP2 contains a heavy 

chain that ends only a few amino acids after CDR-H3, and therefore produces a score of 106 

against the HMM.  This happens in a few cases, and it is often caused by a truncated heavy 

chain.   

 A remedy to this situation would be to include shorter heavy chain sequences in the 

alignment into the HMM.  This was not done because this would also reduce the specificity 

of the heavy search.  In this case we would much rather not include an unusual heavy chain, 

than to include a false positive where the CDR-H3 could not be parsed out or false data be 

put into the high resolution database.   

 The high resolution database contains all PDB files that have been identified by the 

“Self-Maintaining Database of Antibody Crystal Structures” or SACS that contain a 

resolution of 2.5 angstroms or higher.  This number was chosen to follow with previous 

studies done on CDR-H3 structure by Shirai et al. (1996) and Morea et al. (1998).  This is 
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Table 11 – The heavy sequences for 1FVC and 1FVD molecules. 

just above the length of a hydrogen bond (1.98 angstroms) and therefore we can be confident 

of the data present in these files.   

 The test set developed (shown in Table 2) needed to have sufficient diversity to 

represent a wide range of CDR-H3 regions.  Therefore the test set needs to be of an 

appropriate size to incorporate this diversity, but larger is not necessarily better. Since this 

study bases its predictions on a limited set of molecules, a decrease in the number of 

antibodies in the high resolution database could hurt the accuracy of predictions.  There were 

originally 255 antibodies placed in the high resolution database and 23 of those were chosen 

based on their CDR-H3 length and base type.  This leaves 232 molecules to be chosen for 

putative parent molecules for structure prediction.  Although this number would ideally be 

higher (and of course, it would be ideal for both the test set and possible known structure to 

be larger), this is all that there is currently available in the public domain.  In the future more 

sequences can be added as new structures are discovered and consequently placed in the 

PDB.   

 In Table 2, there are only 22 molecules shown.  The 23rd molecule that was omitted 

from the test set was 1FVC due to its high similarity to the molecule 1FVD.  As seen in table 

11, the sequences are very similar only differing in the length of the sequence.  When used  

 

PDB ID Heavy Chain Sequence 
1FVC  

EVQLVESGGGLVQPGGSLRLSCAASGFNIKDTYIHWVRQAPGKGLEWVARIYPTNGYTRYADSVKGRF
TISADTSKNTAYLQMNSLRAEDTAVYYCSRWGGDGFYAMDYWGQGTLVTVSS 
 

1FVD  
EVQLVESGGGLVQPGGSLRLSCAASGFNIKDTYIHWVRQAPGKGLEWVARIYPTNGYTRYADSVKGRF
TISADTSKNTLYLQMNSLRAEDTAVYYCSRWGGDGFYAMDVWGQGTLVTVSSASTKGPSVFPLAPSS
KSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICN
VNHKPSNTKVDKKVEPKSC 
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for prediction on the 1FVC CDR-H3, 1FVD was chosen for both the base and apex (as it 

should) and the three predictions scored very low, 0.001, 0.000, and 0.005 for the three 

models produced.  The molecules were also produced by the same lab group (the reference 

papers have the same main author) and were deposited on the same date with the same 

description.  The shorter sequence has a better resolution (2.20 vs. 2.50 angstroms for the 

longer heavy sequence, 1FVD).  The reason these two molecules were deposited separately 

and under differing PDB ID’s was not investigated.  Instead, the molecule 1FVC was 

removed from the test set, so that it would not lower the averages for the RMSD scores 

falsely.   

 The test was first run under a more traditional context of homology modeling, where 

one parent was chosen and used for the basis upon which the unknown is threaded.  This will 

be used as a control to compare the system to as new factors are introduced into searching 

algorithm.   

 Throughout the analysis of this project, the measurements are given as root means 

square deviations (RMSD) in angstroms.  This can basically be explained as the average 

distance between the atoms of each molecule.  The side chains were not included in this 

alignment; only the alpha carbon backbones were aligned.  The general shape of the domain 

is tested in this case, instead of the specific side chain positions.  Since the entire molecule is 

not being modeled, it would be difficult to enforce a certain side chain position if it were to 

have an interaction with another molecule not present in the structure prediction.  For 

example, if a tyrosine in the CDR-H3 of the molecule being modeled were to natively 

interact with an amino acid in the light chain, there would be no information for the threading 

program to correctly place the tyrosine in the correct orientation.  Due to this fact, they will 

be left out of the final alignments and therefore will not count for or against the model.   
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Figure 3 – The predicted 1NGW molecule 
aligned with its known structure.  Predicture 
structure shown in blue, known structure in 
green.  Model generated with PyMol. 

 The results for the ‘one parent’ model set varied.  The range of predictions were as 

low as 0.506 Å(1NGW, Run 1) and as high as 8.507 Å(1IKF, Run 1).  The two molecules 

that produced these results definitely seem to be outliers when looking at the rest of the data.  

These values are in angstroms, and at this point, one may want to compare these values to 

known lengths in angstroms, such as the hydrogen bond length of 1.98 angstroms.  It would 

seem then, that these predictions (an average of 2.577 angstroms) would be very close, just 

over the length of one hydrogen bond.  But we must also take into account into our analysis 

that the molecules we are modeling are very short sequences, and the set of putative parents 

are generally of the same shape and have similar function.  It would be expected for the 

values produced by such a method to be lower than for modeling an entire molecule.  On the 

contrary, the CDR-H3 is the most variable out of the six hyper-variable regions and has 

evaded very accurate structure prediction in the past.   

 As seen in figure 3, the prediction of 1NGW molecule from Run 1 is shown.  We can 

see that the prediction is quite close to the 

known structure of 1NGW.  The predicted 

molecule is shown in blue, where as the 

known structure is shown in green.  It 

would seem that the majority of the 

difference accounting for the score would 

be at the two termini of the molecule.  For 

both the C and N termini, the predicted 

points one way while the actual goes the 

other.  This may be a consequence of the 

parent molecule CDR-H3 launching off the 
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Figure 4 – 1IKF prediction aligned with 
known structure.  The predicted 1IKF CDR-
H3 using 1FN4 as a parent in blue.  The 
known 1IKF structure depicted in green. 

framework region at a different angle the 1NGW CDR-H3.  Since this section of the region is 

not looked at, it would make sense for there to be diversity in the predictions at this section 

of the region.   

 Figure 4 depicts the predicted CDR-H3 

(1IKF) using 1FN4 as a parent.  The score for 

this prediction was 8.507 from the first out of 

three runs for this prediciton.  There is a huge 

difference between the two aligned molecules, 

as we can see.  It seems that one of the major 

differences, which may cause the poor 

alignment score, is the placement of the hairpin 

loop.  The predicted structure for 1IKF (shown 

in blue) is very lopsided in its CDR-H3 

structure, as opposed to the known structure 

(shown in green).  There seems to be many 

more amino acids on one side of the hairpin 

turn than on the other, and on th 

e known structure there seems to be an equal 

number.  We can also see a break in the 

backbone chain for both the prediction and 

known structure.  The missing amino acid in the prediction structure could have been caused 

in one of two ways.  The first would be caused by a gap produced in the alignment given to 

the Modeller program. This would cause the prediction to have a break in the backbone such 

as seen in figure 4.  In the case of the break in the known structure, this is most likely caused 
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by missing amino acid three dimensional information.  It is interesting to note that there are 

both breaks in near same positions in both the predicted and known structures.  Anything 

more than coincidence as the cause for this cannot be determined. 

 If we look at these two predictions (for 1NGW and 1IKF, representing the best and 

worst) and compare the predictions with their CDR-H3 lengths, we can see that our highest 

and lowest scoring RMSD values were also the second to longest and shortest CDR-H3 

values respectively.  It has been stated that longer CDR lengths are more difficult to predict 

an appropriate structure (Morea et al. 1998).  We can see a summary of the CDR-H3 lengths 

versus the average prediction scores in figure 5. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 – CDR-H3 Length and Prediction RMSD values.  Using data shown in Linear 
trend line was added to show general relationship of data. 
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 Figure 5 shows the relationship between CDR-H3 length and the root means square 

deviation from the known structure.  A general trend can be seen, such that the prediction is 

closer to the known structure as the CDR-H3 gets shorter.  This could be due to the fewer 

conformations the region of protein can take as fewer amino acids are present.  There were a 

few regions that tend to stray from the general region, such as 1UZ6 which was recorded at 

4.150.  We will see if these predictions can be improved as other criteria for parent selection 

are added.  

 One assumption made in this study was that choosing a parent base and parent apex 

region separately to model on would make the prediction method more flexible.  The first set 

of data produced from this algorithm involved two separate searching methods, one for the 

base and one for the apex.  The apex method involves a sequence similarity search based on 

two different methods as described in the Methods section.  The two methods will be referred 

to as the ClustalW method and the other as Needleman-Wunsch method, referring to the 

alignment and scoring implementations.  The base scoring algorithm that produced the data 

for this assessment involved an initial sequence similarity comparison and bonuses for base 

types of the same class (as described in Shirai et al. 1996).  Figure 6 describes these data and 

summarizes the data seen in tables 6 and 7 (in results).   

 The comparison that needs to be made is that between the single parent selection 

algorithm against the separate base and apex parent selection algorithms.  In most of the 

cases (16 out of 22), the single parent CDR-H3 algorithm performed slightly better than at 

least one of the two apex and base separated algorithms.  This does not support the 

hypothesis that selecting separate base and apex regions will increase the accuracy at which 

we can predict the target’s CDR-H3 region’s structure.  The overall average of the three 

algorithms (taken by averaging each run for each molecule and then combing those to find 



 

 34 

the overall average for that run) were 2.612 for the single parent, 2.589 for the ClustalW 

algorithm and 2.529 for the NW algorithm.  This is a crude approximation for the overall 

performance for the system.  Since there were only a few test proteins, more complicated 

statistical analyses would not prove useful as well.  Instead, it should prove beneficial to look 

at places where the program has improved or gotten worse and try to account for this 

happening in the system. 

 As mentioned above, in many cases the single parent algorithm out performed the 

other two methods by a slight amount.  A more obvious observation of the data is the drastic 

improvement for the CDR-H3 region for the antibody 1IKF.  In the single antibody 

prediction the average RMSD was around 7.6 while the ClustalW and NW algorithms 

produced average RMSD values at 2.6 and 4.0 respectively.  It should also be noted that the 

base parent used for the prediction of this molecule did not change between each of the 

methods.  Only the apex selection algorithm was changed and therefore change in 

performance of the system can be attributed to the apex.  This shows us that the majority of 

error (or success for that matter) can be attributed to the apex region.  Since the base is fairly 

static and base classes have been characterized by Shirai et al. (1996), this would make 

sense.   

 Another molecule that showed drastic improvements was 1UZ6.  For the one parent 

prediction algorithm, the average RMSD score was 4.2.  For the ClustalW and NW 

algorithms the predictions score a better 2.3Å and 2.5Å respectively.  Figure 7 shows the 

predictions aligned with their known structures for 1UZ6 for both the single parent algorithm 

and the NW algorithm (prediction was taken from Run 1 of the three structures output by 

Modeller).  Interestingly, the dramatic improvement of the score can barely be noticed when 

looking at the actual structures.  One structural detail that’s difficult to see without being able  



 

 35 

R
M

SD
 fo

r O
ne

 P
ar

en
t P

re
di

ct
io

n 
vs

. B
as

e/
A

pe
x 

C
lu

st
al

W
 v

s.
 B

as
e/

A
pe

x 
N

W

0.
00

0

1.
00

0

2.
00

0

3.
00

0

4.
00

0

5.
00

0

6.
00

0

7.
00

0

8.
00

0

9.
00

0 1B
AF

1B
QL

1C
IC

1C
T8

1D
BA

1H
0D

1IK
F

1M
FB 1N
GW

1Q
9O

1S
BS

1U
Z6

2H
1P

1W
T5

2P
CP

2A
77

1X
IW

1E
GJ

1G
9M

1K
C5

1L
7T

1N
FD

PD
B 

ID

RMSD

O
ne

 P
ar

en
t

B
as

e/
A

pe
x 

C
lu

st
al

W
B

as
e/

A
pe

x 
N

W

 

 

 

 

 

 

 

 

 

 

 

 

 

Fi
gu

re
 6

 –
 R

M
SD

 o
f t

ra
di

tio
na

l h
om

ol
og

y 
m

od
el

in
g 

co
m

pa
re

d 
w

ith
 tw

o 
ap

ex
 se

le
ct

io
n 

al
go

rit
hm

.  
G

ra
ph

 sh
ow

in
g 

th
e 

ch
an

ge
 in

 R
M

SD
 v

al
ue

s f
or

 th
e 

te
st

 se
t. 

 T
he

 fi
rs

t s
er

ie
s s

ho
w

s 
th

e 
pr

ed
ic

te
d 

ro
ot

 m
ea

ns
 sq

ua
re

 d
ev

ia
tio

n 
fr

om
 th

e 
kn

ow
n 

st
ru

ct
ur

e 
fo

r t
he

 o
ne

 p
ar

en
t 

al
go

rit
hm

 (t
ra

di
tio

na
l h

om
ol

og
y 

m
od

el
in

g)
.  

Th
e 

se
co

nd
 se

rie
s s

ho
w

s t
he

 p
re

di
ct

io
n 

al
go

rit
hm

 
in

vo
lv

in
g 

bo
th

 a
pe

x 
an

d 
ba

se
 se

le
ct

io
n 

cr
ite

ria
 w

ith
 th

e 
C

lu
st

al
W

 a
pe

x 
se

le
ct

io
n 

al
go

rit
hm

.  
Th

e 
th

ird
 se

rie
s r

ep
re

se
nt

s t
he

 N
W

 a
lg

or
ith

m
. 



 

 36 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 

 

    

Figure 8 – 1IKF prediction for traditional and apex/base selection algorithms.  
(a) CDR-H3 of 1IKF predicted (blue) aligned with know structure (green) using 
the one parent method.  (b) 1IKF CDR-H3, predicted (blue) aligned with known 
(green) using NW method. 

Figure 7 – 1UZ6 prediction comparing traditional homology modeling and 
base/apex selection.  (a) CDR-H3 of 1UZ6 predicted (blue) aligned with know 
structure (green) using the one parent method.  (b) 1UZ6 CDR-H3, predicted 
(blue) aligned with known (green) using NW method. 
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to manipulate a 3D model is the angle of the apex.  The single parent algorithm missed the 

prediction angles for the apex off of the base which may have caused a few amino acids to be 

placed relatively far from their known structure counterparts, which could account for the 

much higher scores for this prediction. 

 Figure 8 shows the difference in predictions from the single parent method to the NW 

method.  This prediction caused a drastic change in the predicted molecule.  We can see that 

the predicted molecule actually resembles an antigen binding loop which would account for 

the much better score. 

 There were not any notable times when the single parent prediction method 

significantly beat the other two prediction methods.  It seems selecting a base and apex 

separately dramatically increased the accuracy of the worst predictions, but at the cost of a 

slight decrease in accuracy of the other predictions.   

 The next sets of data did not produce a change of parents for the ClustalW method, 

therefore the numbers were not reported for the rest of the tests, although they were 

conducted.  This was an unwanted side effect of the alignment method and the reason a new 

alignment technique was developed.  After just looking at sequence similarity and base type 

for scoring, it seems that the ClustalW method is slightly better, although it did not change 

over the following data sets, and the NW method did.  So therefore as the NW selection 

algorithm got better, it seemed to improve past the prediction accuracy of the ClustalW 

method.   

 The failure of the other criteria (100b-49L interaction, overlap) in changing 

predictions for the ClustalW method was a result of the ClustalW scoring.  The score range 

was very large in comparison to the base alignment scoring, and also did not scale in a linear 

fashion.  For the algorithm, the scores were adjusted by dividing by the number of amino 
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acids present in the unknown CDR-H3.   It seems that this score was also too inflated, and 

the bonuses that were given seemed to be drowned out by the alignment score alone.   

 Also at this point, it was realized that the ClustalW algorithm does not penalize an 

alignment with gaps at the end.  This is an undesired way to score apices for modeling 

because it is known that there are classes of β-turns (the structure of the apex) that are based 

upon the length of the apex.  If gaps at the end (or beginning) of the sequence are not 

penalized, an apex may be chosen that is of different length, and would have an equal or 

higher score than an equally similar apex of the same length.  Therefore, the Needleman-

Wunsch algorithm was implemented as a replacement and the scoring was therefore lower 

and would allow the input of the various criteria to help select a suitable apex.  Gaps at the 

beginning and ends of sequences would also be penalized, therefore favoring an apex 

selection of the same length and thus a more favorable, theoretically, scoring algorithm. 

 With the introduction of new criteria, the 100b – 49L interaction, only a few apices 

changed.  Although only four predictions changed with this addition (table 8), this was higher 

than expected.  Since this interaction is very specific (requiring a specific set of amino acids 

in positions 100b and 49L, or 100b, 100a and 49L) it was expected that only one or two, if 

any, predictions would contain this interaction.  From the results reported, it can be seen that 

at least four of the molecules contain this interaction and it played a role in selecting a new 

parent.  This does not mean that the conformation described by Morea et al. (1998) was 

present in all these molecules, but it is assumed that they would.  It would seem that this 

interaction was more common than originally thought, being present in 18% of the test set.  

Again, since the test set is very small, and the entire set of antibodies was not sampled (only 

those that have well determined structures), this can not be seen as an accurate representation 

of the whole population.   
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 Figure 9 shows compares the RMSD values of the prediction method for the one 

parent traditional method, along with the apex/base NW prediction with and without the 

100b-49L interaction. 

 

Changed Predictions with Addition of 100b-49L Interaction
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 The amino acid in position 100b can be located in either the base or the apex of a 

CDR-H3.  Therefore, it is possible for either the base or the apex to be changed by this step.  

For the first three proteins in the table (1H0D, 1IKF, 1SBS) the apex was changed.  The 

protein 2H1P was the only CDR-H3 whose base was affected by this change in the 

algorithm.  As seen above, the introduction of a separate base and apex scoring algorithm 

Figure 9 – CDR-H3 region predictions changed with the addition of 
the 100b-49L (white) interaction, shown against one parent prediction 
(blue), and without the 100b interaction (purple).  
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greatly increased the prediction accuracy for the relatively long 1IKF CDR-H3 region.  The 

100b – 49L for this molecule also increase the average RMSD score by more than half an 

angstrom.   

 The new apex selected for the 1H0D prediction (1LMK) seems also to be a better  

choice, lowering the average RMSD value by almost half an angstrom.  This model also 

seems to be an improvement over the parent template molecules chosen by the one parent 

selection algorithm, although only slightly.  In the other two molecules, there was only a 

slight change from the other two prediction methods.   

 In order to put these changes in perspective, taking a look at the predicted structures 

compared with the known that revealed the RMSD values is important.  As an example, lets 

take a look at molecules 1IKF (again) and 1SBS.  The 1IKF prediction benefited from the 

addition of the 100b – 49L interaction and 1SBS seemed to reveal a more inaccurate 

prediction.  Figures 10  and 11 should reveal the scale that the average RMSD score changes 

represent. 

 

 

 

 

 

 

 

 

 

 Figure 10 – 1IKF structure alignment with known with and without 100b bonus in 
selection.  1IKF predictions in blue, known 1IKF structure in green.  (a) Prediction based 
on parent selection algorithm without 100b interaction. (RMSD score of 4.085)  (b) 
Prediction base on parent selection algorithm with 100b interaction. (RMSD of 3.493)
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 The improvement in the alignment of the known molecule with the predicted for 

1IKF (figure 10a) seems to be concentrated in the base of the CDR-H3 molecule.  The 

predicted molecule (using the 100b interaction) generated a molecule with a very similar 

base region, but a lot of variation in the apex region.  This result is exaggerated by the way 

the two molecules were aligned.  The region of the apex nearest to the base also seem to 

align fairly well, with the tip of the apex slightly wider and pointed in a different direction 

accounting for the majority of the difference. 

 

Figure 11 – 1SBS structure alignment with and without 100b interaction bonus.  1SBS 
predictions in blue against known 1SBS structure in green.  (a) Prediction based on parent 
selection algorithm without 100b interaction. (RMSD score of 2.589)  (b) Prediction base 
on parent selection algorithm with 100b interaction. (RMSD of 2.673)
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Changed Parent Selection Prediction Scores from Addition of Overlap Bonus
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 The 1SBS molecule, which resulted in a slightly worse RMSD value after the 

addition of 100b interaction in the selection algorithm, seems not to have a large change 

between the two prediction methods.  It can be seen that the new apex selected for this 

prediction did change the structure of the molecule, but did not see an improvement, which 

we expected to see given the small change in the RMSD values.  Overall, the 100b 

interaction did not drastically change the prediction accuracy in these selected regions, with 

the exception of 1IKF; although the predicted apex of 1IKF is very different from the known 

structure. 

 To ensure a good fit of the apex upon  the base, the overlap between these two regions 

was used in the scoring algorithm.  A bonus is given to the apex of a potential parent apex if 

Figure 13 – Changed prediction RMSD values with addition of overlap bonus.  This graph 
includes those predictions that were changed by the addition of the overlap bonus in the 
apex parent selection algorithm.  Shown are the RMSD scores before and after the 
addition.  
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the overlap of this molecules base and apex match those of the unknown CDR-H3.  In theory, 

by this would allow the selection of an apex to have a similar take off region and therefore 

share a similar angle that the apex is presented by the base.  As seen in figure 12, the results 

for this section were mixed.   

 The parent apex for the prediction of 1IKF was changed, once again, for this section 

of the molecule.  As discussed above, the apex of this prediction seemed to contribute the 

most to the high RMSD value.  With the addition of the overlap and using 2A1W for the 

prediction of the apex, the RMSD value actually went up, resulting in a worse prediction.  

Figure 13 shows this new alignment with the known.  Although, it is interesting to note that 

the average for the three predictions (5.005) for this section is very misleading.  The scores 

for each of the three predictions output by Modeller were 3.723, 7.843, and 3.809.  Shown in 

figure 13 is the first prediction given. 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 13 – Prediction of 1IKF using 
overlap bonus.  This shows the first 
prediction output by Modeller, using the 
parents 2A1W for the apex and 1B2W for 
the base.  The RMSD score for this 
alignment was 3.723. 
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Comparison of RMSD Values With and Without VH Germline Gene Tie Break Rule
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Although the base of the prediction in figure 13 does not align very well, the apex 

seems to be much closer in shape.  Again, if the base amino acids were aligned with known 

structure from the prediction, the angle at which the apex comes off from that base would be 

much different from the known.   

The final addition to the parent selection algorithm is used to break a potential tie in 

the selection of a base and apex.  If there are more than one apex or base selected for a 

prediction, the germline VH gene is identified for those high scoring parents.  The parent 

with a matching VH germline gene, or a germline gene from the same family is then selected 

for modeling.  Table 10 shows the two CDR-H3 regions that were affected by this tie 

breaking rule.  Figure 14 shows the change of RMSD values for these two predictions after 

the new base was selected.   

 

 

 

 

 

 

 

 

 

 

 

Figure 14 – Changes in prediction RMSD values with addition of VH gene tie break rule.  
The two CDR-H3 predictions that changed due to the VH Germline tie break rule. 
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 In both cases the RMSD values were lowered slightly when the VH gene information 

was included in the selection algorithm.  In a B cell, the VH gene does not code for the CDR-

H3, but instead, codes for the amino acids directly preceding this region.  In both cases stated 

above, the base parent changed and the scores improved; this may be due to some interaction 

with the portion of the protein that is coded for by the VH gene.  This interaction would be 

impossible for Modeller to predict, because it only receives information about the CDR-H3 

and models only based upon this region. 

 With some of the data presented, it is not a stretch to think that the more valid 

information the prediction program is given (in this case, Modeller), the better prediction it 

will yield.  Also, we can also see from the data that the longer the region given to the 

prediction program, the more possible conformations the protein as a whole can take, 

therefore creating a much larger problem.  Perhaps there is some middle ground, where more 

important amino acids can be given to a prediction program that have proven to be relevant 

in the structure of the molecule, without overloading the prediction software with masses of 

amino acids.  This is taken from the observation that Modeller would be unable to predict 

many interactions on the basis that all the amino acids were not given to the program, as seen 

in the case of the 100b – 49L, where the amino acid at position 49L was not even given to the 

prediction algorithm, but was hoped that this conformation would be adopted from the 

parent.   

 Another interesting observation of the data discussed earlier in this section was the 

direct relationship of RMSD value and CDR-H3 length (which maps directly to apex length, 

since the base is constantly 10 amino acids long.  Figure 15 shows the final RMSD values 

(including the 100b-49L bonus, overlap bonus, and the VH germline tie break bonus each 

with using the NW alignment scoring for apex selection) against the length of the CDR-H3. 
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RMSD Value of CDR-H3 Prediction vs CDR-H3 Length
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 As was expected and seen in past studies, the prediction seems to get worse as the 

CDR-H3 gets longer.  In the final assessment we did lessen the range of RMSD from the 

known, by reducing 1IKF by almost 3 angstroms.  The other CDR-H3 predictions resulted in 

relatively the same quality as with the one parent, most having a small improvement in the 

RMSD.   As seen in the visualizations included in this section we can also see that the apex is 

the main hurdle in determining full CDR-H3 structure, especially when the apex is longer 

than 10 amino acids, as seen in molecules 1IKF and 1G9M (22 and 24 amino acids 

respectively).  The apices for these molecules were difficult to predict, but the model of 1IKF 

was dramatically improved by introducing a separate apex and base selection system.   

 

Figure 15 – Final RMSD predictions against the length of the CDR-H3. 
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Conclusion 

 Many of the interactions and structurally relevant information incorporated into the 

parent selection algorithm for homology modeling of the CDR-H3 region have shown to 

improve the modeling capabilities of the Modeller program in isolated cases.  There was no 

overall improvement throughout the entire test set, just isolated cases where the RMSD was 

improved (or in some cases the quality of prediction was decreased).  From such a small test 

set, it is difficult to tell if separately selecting the base and apex as parents is of benefit.  It 

can be said though, in 1IKF, this technique dramatically improved the prediction made by the 

Modeller program.   

 It can also be said that as CDR-H3 lengths increased, so did the RMSD values for the 

prediction of their molecules.  This general trend (seen in figures 5 and 15) was fairly 

obvious given the data and also has been reported prior to this study (Shirai et al. 1996, 

Morea et al. 1998).   

 Since homology modeling relies on a large set of proteins to draw their own structure 

from, a larger high resolution database of antibodies would only benefit this system.  A larger 

diversity of antibody lengths and conformations could lead to the selection of a parent more 

closely related to the region being modeled.  This is happening over time, as more and more 

antibodies are being sequenced and their structures are being discovered.  There were also a 

smaller proportion of longer CDR-H3 regions in the protein databank, which could have also 

contributed to the poor structure prediction of the longer regions.   

 The test set used, although relatively small, showed diversity in modeling accuracies, 

from the dramatically incorrect to very close models.  If the dataset were able to be increased, 

this would more confidently reveal the real accuracy of the system.  Due to the small number 

of high resolution sequences available at the time of the study, the test set could not 
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realistically be increased in numbers.  It would also be of benefit to the system if the number 

of antibodies to be modeled on was increased.  This would also be interesting to test, to see if 

the results found here were due to poor selection of parent molecules or rather, if there was 

not a suitable parent available to be modeled on.  If it were reasonable, we could find the 

parent apex and base that would be responsible for the best homology model view these 

sequences and determine characteristics, but this would take a lot of time and computational 

power. 

 A confident, automated method for parsing out the highly variable CDR-H3 region 

was developed using modern bioinformatics techniques.  Although parsing this section out 

by eye has been easily done in the past, automatic computational methods for parsing this 

region from the rest of the sequence have proven difficult for even the most flexible regular 

expressions.   

 Overall, we did not see a huge improvement of modeling using this system when 

compared with the traditional homology method.  Although, individual improvements, as 

well as declines in accuracy, have been seen and discussed.  The possible reasons for the 

accuracy of the predictions vary for each molecule or set of molecules.  Perhaps a larger, 

more diverse set of antibody structures are needed to accurately determine a set of rules.  
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A1 

Appendix A 
 
Heavy Chain Sequence Alignment 
 
 
15C8_H          EVQLQQSGAELVKPGASVKLSCTASGFNIKDTYMHWVKQKPEQGLEWIAQID--PANGNT 
1QBM_H          EVQLQQSGAELVKPGASVKLSCTASGFNIKDTYMHWVKQRPEKGLEWIGRID--PASGNT 
1OAY_H          EVQLQQSGAELVKPGASVKLSCKASGYTFTSYWMHWVKQRPGRGLEWIGRID--PNGGGT 
1A14_H          QVQLQQSGAELVKPGASVRMSCKASGYTFTNYNMYWVKQSPGQGLEWIGIFY--PGNGDT 
1MRD_H          QVQLQQSGAELVKPGASVKLSCKASGYTFTSYWMQWVKQRPGQGLEWIGEID--PSDSYT 
1Q9W_D          EVILVESGGGLVQPGGSLRLSCSTSGFTFTDYYMSWVRQPPGKALEWLGFIRNKPKGYTT 
1PG7_H          EVQLVESGGGLVQPGGSLRLSCAASGFNIKEYYMHWVRQAPGKGLEWVGLID--PEQGNT 
                :* * :**. **:**.*:::** :**:.:..  * **:* * :.***:. :   *    * 
 
15C8_H          KYDPKFQGKATITADTSSNTAYLHLSSLTSEDSAVYYCAADPPYYGH---GDYWGQGTTL 
1QBM_H          KYDPKFQDKATITADTSSNTAYLQLSSLTSEDTAVYYCAGYD--YGN---FDYWGQGTTL 
1OAY_H          KYNLKFKSKATLTVDKPSSTAYMQLSSLTSEDSAVYYCARMWYYGTYY--FDYWGQGTTL 
1A14_H          SYNQKFKDKATLTADKSSNTAYMQLSSLTSEDSAVYYCARSGGSYRYDGGFDYWGQGTTV 
1MRD_H          NYNQKFKGKATLTVDTSSSTAYMQLSSLTSEDSAVYYCANLRG-Y-----FDYWGQGTTL 
1Q9W_D          EYSASVKGRFTISRDNSQSILYLQMNTLRAEDSATYYCVRDIYSFGSRDGMDYWGQGTSV 
1PG7_H          IYDPKFQDRATISADNSKNTAYLQMNSLRAEDTAVYYCARDTAAY-----FDYWGQGTLV 
                 *. ..:.: *:: *....  *:::.:* :**:*.***.            ******* : 
 
15C8_H          TVSSAKTTPPSVYPLAPGSAAQTNSMVTLGCLVKGYFPEPVTVTWNSGSLSSGVHTFPAV 
1QBM_H          TVSSAETTPPSVYPLAPGTAALKSSMVTLGCLVKGYFPEPVTVTWNSGSLSSGVHTFPAV 
1OAY_H          TVSSAA------------------------------------------------------ 
1A14_H          TV---------------------------------------------------------- 
1MRD_H          TVSSAKTTPPSVYPLAPGCGDTTGSSVTLGCLVKGYFPESVTVTWNSGSLSSSVHTFPAL 
1Q9W_D          TVSSAKTTPPSVYPLAPGSAAQTNSMVTLGCLVKGYFPEPVTVTWNSGSLSSGVHTFPAV 
1PG7_H          TVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAV 
                **                                                           
15C8_H          LQS-DLYTLSSSVTVPSSTWPSETVTCNVAHPASSTKVDKKIV---- 
1QBM_H          LQS-DLYTLSSSVTVPSSTWPSQTVTCNVAHPASSTKVDKKIVPRNC 
1OAY_H          ----------------------------------------------- 
1A14_H          ----------------------------------------------- 
1MRD_H          LQS-GLYTMSSSVTVPSSTWPSQTVTCSVAHPASSTTVDKKLEP--- 
1Q9W_D          LQS-DLYTLSSSVTVPSSTWPSETVTCNVAHPASSTKVDKKIVPRDC 
1PG7_H          LQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEP--- 
 
 
 
 
 

Figure A1 – Heavy chain alignment used to parse CDR-H3 regions.  Also used in the 
creation of an HMM used to identify heavy chains. 
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1CT8_A      ELVMTQTPATLSVTPGDSVSLSCRASQSVSN------KLHWYQQKSHESP 
1BAF_L      QIVLTQSPAIMSASPGEKVTMTCSASSSVY-------YMYWYQQKPGSSP 
1NCW_L      DVVMTQSPKTISVTIGQPASISCKSSQRLLNSNGKT-FLNWLLQRPGQSP 
1T4K_A      DIQMTQSPSSLAVSPGEKVTMSCRSSQSLFNSRTRKNYLAWYQQKPGQSP 
1AP2_A      DIVMTQSPSSLTVTAGEKVTMSCKSSQSLLNSGNQKNYLTWYQQKPGQPP 
            :: :**:*  ::.: *: .:::* :*. :         : *  *:. ..* 
 
1CT8_A      RLLIKFASQSIPGIPSRFSGSGSGSDFTLSINSVETEDFGIYFCHQTHGR 
1BAF_L      RLLIYDTSNLASGVPVRFSGSGSGTSYSLTISRMEAEDAATYYCQQWSSY 
1NCW_L      KRLIYLGTKLDSGVPDRFTGSGSGTDFTLKISRVEAEDLGVYYCWQGTHF 
1T4K_A      TKLIYWASTRESGVPDRFTGSGSGTDFTLTISSVQAEDLAIYYCKQSYDL 
1AP2_A      KLLIYWASTRESGVPDRFTGSGSGTDFTLTISSVQAEDLAVYYCQNDYSY 
              **   :   .*:* **:*****:.::*.*. :::** . *:* :     
 
1CT8_A      -PLTFGAGTKLELKRADAAPTVSIFPPSSEQLTSGGASVVCFLNNFYPKD 
1BAF_L      PPITFGVGTKLELKRADAAPTVSIFPPSSEQLTSGGASVVCFLNNFYPKD 
1NCW_L      -PYTFGGGTKLEIKRADAAPTVSIFPPSSEQLTSGGASVVCFLNNFYPKD 
1T4K_A      --PTFGAGTKLELKRSDAAPTVSIFPPSSEQLTSGGASVVCFLNNFYPKD 
1AP2_A      -PLTFGAGTKLEPG------------------------------------ 
               *** *****                                       
 
1CT8_A      INVKWKIDGSERQNGVLNSWTDQDSKDSTYSMSSTLTLTKDEYERHNSYT 
1BAF_L      INVKWKIDGSERQNGVLNSWTDQDSKDSTYSMSSTLTLTKDEYERHNSYT 
1NCW_L      INVKWKIDGSERQNGVLNSWTDQDSKDSTYSMSSTLTLTKDEYERHNSYT 
1T4K_A      INVKWKIDGSERQNGVLNSWTDQDSKDSTYSMSSTLTLTKDEYERHNSYT 
1AP2_A      -------------------------------------------------- 
                                                                                    
 
1CT8_A      CEATHKTSTSPIVKSFNRNEC 
1BAF_L      CEATHKTSTSPIVKSFNRNEC 
1NCW_L      CEATHKTSTSPIVKSFNRNEC 
1T4K_A      CEATHKTSTSPIVKSFNRN-- 
1AP2_A      --------------------- 
 
 
Figure A2 - Light chain alignment used to parse residues from light chain.  Also 
used in the creation of the light chain HMM to identify light chains. 
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