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Abstract 

Many media processing algorithms suffer from long execution times, which are most 

often not acceptable from an end user point of view.  Recently, this problem has been 

exacerbated because media has higher resolution.  One possible solution is through the 

use of Single Instruction Multiple Data (SIMD) architectures, such as ARM’s NEON. 

These architectures take advantage of the parallelism in media processing algorithms by 

operating on multiple pieces of data with just one instruction. SIMD instructions can 

significantly decrease the execution time of the algorithm, but require more time to 

implement. 

This thesis studies the use of SIMD instructions on a Cortex-A8 processor with 

NEON SIMD coprocessor. Both image processing algorithms, bilinear interpolation and 

distortion, are altered to process multiple pixels or colors simultaneously using the 

NEON coprocessor’s instruction set. The distortion algorithm is also altered at the 

assembly level through the removal of memory accesses and branches, adding data 

prefetch instructions, and interlacing ARM and NEON instructions.  Altering the 

assembly code requires a deeper understanding of the code and more time, but allows 

for more control and higher speedups. The theoretical speedup for the bilinear 

interpolation and distortion algorithms is three and four times respectively. The actual 

measured speedup for the bilinear interpolation algorithm is more than two times, and for 

the distortion algorithm is more than three times. The results show that SIMD 

instructions can provide a speedup to image processing algorithms following a correct 

sequence of modifications of the code. 
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Chapter 1  

Introduction 

The time required to process media, such as images and audio, has become 

increasingly longer over the past few years due to the increase in resolution. The speed 

of computing processors has not kept up with the time required to process images. One 

solution to this problem is the implementation of Single Instruction Multiple Data (SIMD) 

instruction sets. The SIMD instructions operate on multiple data with just one instruction. 

Instructions can be applied to data sets of four or more operands simultaneously. SIMD 

architectures, such as Intel’s WMMX and SSE and ARM’s NEON, can exploit the 

parallelism present in many image processing algorithms by operating on multiple pixels 

at a time. This can significantly increase the speed of algorithms by a factor of two or 

more, but additional time is required to implement the instructions.  

An ARM processor is used in many embedded applications such as cellular phones, 

televisions, and printers. An ARM processor is a 32-bit Reduced Instruction Set 

Computer (RISC) with a load/store architecture. The processor’s architecture is licensed 

from ARM and implemented by manufacturers such as Texas Instruments, Marvell, and 

others. The manufacturers implement the architecture, add custom components, and 

manufacture the processor. Advantages of an ARM processor include a simple unified 

design and low power consumption.  The unified design allows programmers to easily 

change from one processor manufacturer to another without learning a new instruction 

set. The ARM processors aim to be high performance with low power consumption. The 

low power consumption is ideal for mobile devices, which often have a limited supply of 

battery power. 

Recently, ARM processors have included two SIMD options, ARMv6 SIMD and 

NEON SIMD. The ARMv6 SIMD is included in the ARMv6 architecture and above. 

These SIMD instructions operate on the traditional 32-bit ARM registers, and can 

process up to four 8-bit operands at a time. The ARMv7 architecture introduced the 

NEON SIMD coprocessor in the Cortex-A8. This coprocessor is separate from the ARM 

processor and can process up to sixteen 8-bit operands at a time. The NEON 

coprocessor contains four times the capacity of the ARMv6 SIMD, which can increase 

the speedup even more. 
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Combining the ARM processor with the NEON SIMD coprocessor is ideal for 

embedded systems. Most embedded systems, such as cellular phones and printers, 

perform large amounts of media and data processing. In most cases, the user requires 

this processing to occur quickly, which is possible with SIMD instructions. Because most 

embedded systems already include an ARM based processor, changing to an ARM 

based processor with NEON coprocessor is trivial. The hardware may have to be altered 

slightly, but the software can remain mostly the same. The only major change is 

rewriting the code to include the SIMD instructions, which can be time consuming. The 

main drawback of using SIMD instructions is the increased development time. 

Previous studies on the use of SIMD instructions produced a speedup of less than 

three times. This thesis demonstrates how a speedup of greater than three times can be 

attained using SIMDs and other optimization techniques. The remainder of this thesis 

focuses on the implementation of NEON SIMD instructions on a bilinear interpolation 

algorithm and a distortion algorithm. The remaining chapters are organized as follows: 

Chapter 2 describes SIMD instructions, the NEON instruction set, and previous works 

related to SIMD image processing. Chapter 3 describes the hardware and software 

setup used, and the two algorithms used for testing. Chapter 4 presents the various test 

cases for both algorithms. Chapter 5 presents and discusses the results from all the test 

cases. Chapter 6 concludes the thesis with concluding remarks, and ideas for possible 

future work. 
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Chapter 2  

Background 

In the past few years, more emphasis has been placed on multimedia processing in 

computers. Image and audio files have become higher resolution, which requires more 

processing time than lower resolution files. To counteract the increased processing time, 

single instruction multiple data (SIMD) instruction set extensions have been developed 

to process more data during each instruction cycle. Section 2.1 explains the SIMD 

instructions, followed by section 2.2 which explains the NEON SIMD instructions from 

ARM, and finally section 2.3 explains how SIMD instructions can be specifically applied 

to image processing. 

2.1 SIMD Instruction Set Extensions 

SIMD instruction set extensions have become more popular over the years, and are 

being included in most current computer processors. Each SIMD instruction processes 

multiple data during its execution. The SIMD architecture can be implemented in two 

ways, modifications to the main processor or the addition of a coprocessor. The former 

uses the main processor’s 32 or 64 bit registers with small modifications to the functional 

units. The latter adds an additional coprocessor with separate larger 128 or 256 bit 

registers and functional units. When operating on the main processor’s registers, very 

little additional hardware is needed for implementation. Using a coprocessor architecture 

requires larger registers and larger functional units, which adds additional hardware and 

complexity to the design. However, each instruction is able to process more data 

compared to the main processor architecture.   

SIMD registers are divided into multiple lanes of 8 bits to 32 bits. Because most 

multimedia processing occurs with either 8 or 16 bit operands, up to 32 operands can be 

processed at a time with 256-bit registers . Figure 2.1 shows an example of addition 

using 32-bit registers divided into four lanes of 8 bits. Each individual lane of register A is 

added to each individual lane of register B to form the result in register C. Normally, this 

addition would require four instructions and four cycles to complete, but the SIMD 

addition requires one instruction and would most likely be completed in one cycle. This is 
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a speedup of four times, which is fairly significant if this operation is occurring in a large 

loop. 

Using SIMD instructions is typically more time consuming than writing non-SIMD 

code. For example, one has to ensure that each operand is in the correct lane and 

enough space is available to complete the operation. SIMD libraries or coding in 

assembly is often the best way to use the instructions. The libraries have functions that 

compile into SIMD instructions, which make writing the code easier. This allows the 

programmer to modify just the parts of the C code that need to be parallelized. To 

achieve best performance, SIMD instructions should be written at the assembly level. At 

this level, one has more control over what operands are in each register and can better 

optimize for performance. Since writing assembly code is even more time consuming 

and difficult, it is often done only when high performance is needed. Increasingly, 

compilers are able to vectorize loops and code SIMD instructions directly. Vectorizing a 

loop involves removing loop iterations with the use of SIMD instructions. The vectorizing 

compilers are still being developed and currently only vectorize about half of the possible 

loops . 

SIMD instructions can significantly decrease the processing time of programs which 

are parallelizable. Although, speedups of four or eight times are theoretically possible, 

practically these will be less. Overhead involved with using the instructions as well as 

non-vectorizable parts of the code will cause the speedup to be less than theoretical. 

The benefits of using SIMD instructions come with a cost. More time will be needed to 

implement these programs and the programmer will have to be more aware of how the 

Register A 

Register B 

A[3] A[2] A[1] A[0] 

31      24  23               16  15          8  7    0 

B[3] B[2] B[1] B[0] 

31      24  23               16  15          8  7    0 

+ 

A[3]+B[3] A[2]+B[2] A[1]+B[1] A[0]+B[0] 

31      24  23               16  15          8  7    0 

= 

Register C 

Figure 2.1: Example of SIMD Addition 
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operations can be executed in parallel. For some applications, the cost may outweigh 

the benefit, but for others this potential speedup is critical for the success of the 

program. 

2.2 NEON SIMD Architecture 

Many different SIMD architectures have been developed by different companies for use 

in their processors. ARM processors implement the NEON SIMD architecture, which 

consists of a coprocessor that is included in all Cortex-A8 processors and optional in 

Cortex-A9 processors . The full Cortex-A8 ARM and NEON pipeline is shown in Figure 

2.2. The ARM processor fetches SIMD instructions from the L1 instruction cache, and 

forwards them to the NEON coprocessor, which then decodes and executes the 

instructions. The coprocessor contains an integer Arithmetic Logic Unit (ALU), multiply 

unit, shift unit, and a floating point addition and multiply unit. The coprocessor and 

processor’s pipelines are 13 stages deep and all the functional units are pipelined to 

allow the execution of multiple instructions at a time. The NEON coprocessor has the 

Figure 2.2: ARM and NEON Pipeline for the Cortex-A8 [4] 
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ability to access the data in either the L1 data cache or L2 cache. It also has a separate 

register file from the ARM processor consisting of either 32 64-bit registers or 16 128-bit 

registers. The 128-bit quad registers are partitioned in half to create two 64-bit double 

registers as shown in Figure 2.3. The quad registers are labeled as q0 through q15, and  

the double registers are labeled as d0 through d31. These registers can be split into 

lanes consisting of 8, 16, 32, or 64 bits, and contain signed or unsigned integers, 

floating-point numbers, or polynomials .  

Coding using NEON SIMD instructions must be done to fully utilize the processor 

and avoid hazards which can cause stalls. Table 2.1 shows most instructions, with the 

exception of multiplication, complete in one cycle.  Also, the functional units are 

pipelined, therefore structural and data hazards do not occur very often. However, stalls 

can occur when moving data from the coprocessor to the ARM processor, or when the 

ARM and NEON load/store units access the same cache line. The former will cause a 

stall of 20 cycles for both the ARM and NEON pipelines. The latter can cause a stall of 

up to 20 cycles to handle cache ordering issues. The processor also has the option to 

dual issue instructions. This involves issuing two instructions in the same cycle, but one 

of the instructions must be either a load/store or a data move between processor and 

Instruction Type Instruction Example Number of Cycles 

ALU AND, SUB, MOV, ADD 1 

Multiply MUL, MLA 2 

Load/Store LDR, STR 1 

NEON ALU VADD, VAND, VSUB 1 

NEON Multiply VMUL, VMLA 4 

NEON Load/Store VLD1, VST1 2 

NEON Conversion VCVT 2 

   

Quad Register “q” 

d1 

127                       64  63     0 

d0 

q0 

Double Register “d” 

Figure 2.3: Partitioning of Quad Registers into Double Registers 

Table 2.1: Instruction Cycle Timing 
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coprocessor registers. Because of the large strides SIMD instructions take when 

processing data, the NEON coprocessor also has access directly to the L2 cache. If an 

L2 cache miss occurs from the NEON pipeline, then the main memory will be accessed 

and only the L2 cache will be filled . 

2.3 Image Processing using SIMD instructions 

Image processing speed can be significantly increased using SIMD instructions. Most 

images contain many pixels which are sequentially stored in memory. Each pixel 

consists of one or more 8-bit integer values which describe the intensity of the color(s) in 

the image. There is one color channel for black and white images and usually three color 

channels for color images. With non-SIMD image processing, the 8 bits only fill a quarter 

of the standard 32-bit register. Any operations on this register work on the full 32 bits, 

and therefore, some of the processing is done on the unneeded 24 bits. Many image 

algorithms are linear, and thus, the result from one pixel calculation does not affect other 

pixels . SIMD takes advantage of this parallelism by placing multiple sequential pixels 

into one register, and processing occurs on these pixels concurrently. 

Theoretically, SIMD instructions could produce a speedup factor of four to eight 

times when used with image processing . They have already been shown to provide 

speedups of 1.25 to 2 times in video processing algorithms , . This is significantly below 

the theoretical four times speedup, but it is still fairly significant for some algorithms. 

Speeding up algorithms can also effect power consumption. If the processor finishes the 

task much sooner, then it will have more time to go into low power mode and thus 

decrease power consumption. Also, if a processor and coprocessor are concurrently 

active, then the energy consumption may increase during that time. Speeding up any 

algorithm could significantly affect the end user with faster processing and decreased 

power consumption. 

Intel’s SIMD instructions are known as Streaming SIMD Extensions (SSE), and they 

operate in a similar way to ARM’s NEON. These instructions can be used for image and 

digital signal processing in Intel’s processors. The SSE architecture replaced the MMX 

architecture and includes eight 128-bit registers for integer or floating-point numbers. 

One study  used the SSE instructions to speed up the algorithms for a sepia filter and 

crossfade filter. The former converts an image to sepia tone, and the latter fades 

together two separate images. Because the filters work on uncorrelated pixels, the 

processing can happen on multiple pixels at a time. The algorithms processes four pixels 
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per iteration using SEE, and therefore, the theoretical speedup is four. Table 2.2 shows 

SIMD extensions provide an actual speedup of about 2.6 to 2.7 times for an integer only 

approach with the sepia filter depending on the resolution.  The crossfade filter algorithm 

produced a speedup of about 1.9 times depending on the resolution. 

These studies prove that SIMD extensions can increase the performance of image 

and video processing algorithms depending on the image size, although the actual 

speedup so far is much lower than the theoretical speedup. 

 

   

Filter Integer Speedup Floating-point Speedup 

Sepia 2.6 1.9 

Crossfade 2.7 1.9 

   

Table 2.2: Results from Intel SSE Study 
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Chapter 3  

Description of System 

The use of SIMD instructions is tested on an ARM processor containing a NEON 

coprocessor with two image processing algorithms. Section 3.1 and 3.2 describes the 

hardware and software setups, respectively, used for testing. Section 3.3 describes the 

bilinear interpolation and distortion algorithms used in implementing the SIMD 

instructions. 

3.1 Hardware Setup 

A BeagleBone prototyping board from beagleboard.org was chosen because of its use 

of a Texas Instruments AM3359 Cortex-A8 processor. The BeagleBone board can 

directly connect to the host PC using a standard USB-A to USB-mini connector or via an 

optional JTAG connector. The USB client allows Secure Shell (SSH) terminal access 

and SSH File Transfer Protocol (SFTP) file transfer between the host PC and 

BeagleBone board. The board contains 256 MB of random access memory and a 2 GB 

microSD card, which provides plenty of memory for image processing.  The microSD 

card comes preloaded with the Angstrom distribution of the Linux kernel version 3.2.14. 

The kernel allows programs to be easily compiled and provides easy file manipulations. 

The board also includes Ethernet and USB host ports, which allows for file transfer and 

installation of new packages .  

The AM3359 processor runs at 500 Mhz when powered via USB and 720 Mhz when 

powered by an external power supply. The processor includes 32 KB each of L1 

instruction cache and L1 data cache, and 256 KB of L2 cache. The L1 and L2 caches 

are 4-way and 8-way set associative, respectively, and have a line size of 64 bytes. The 

L2 cache has a 128-bit interface to the main memory, which corresponds to the size of 

the NEON registers. The processor’s bootloader is stored 176 KB ROM, and is used to 

start the Linux kernel .  

The Cortex-A8 is built on the ARMv7 RISC architecture, which includes 14 general 

purpose registers, one link register, one program counter (PC) register, and one Current 

Program Status Register (CSPR). The general purpose registers can hold any data or 

address for computation. The link register contains the return address when a branch 
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with link instruction is performed, or can be used as a general purpose register. When 

returning from a branch, the value from the link register is loaded into the PC register. 

The PC contains the address of the instruction to be issued next to the processor. The 

CSPR contains condition flags, such as overflow and carry, and the current mode of the 

processor. The architecture can execute either ARM or Thumb instructions. The former 

is the standard 32-bit instruction set included on ARM processors, and the latter is a 

compressed 16-bit instruction set, which allows more compact code to be compiled. 

 The Cortex-A8 includes program flow prediction, NEON advanced SIMD 

coprocessor, vector floating point (VFP) coprocessor, dual issue pipeline, and four 

performance counters. Program flow prediction is used to help avoid branch misses, and 

includes a 512-entry 2-way set associative branch target buffer. Each branch miss incurs 

a 13-cycle penalty because the pipeline must be flushed. Therefore, branch misses must 

be kept to a minimum. The NEON SIMD instructions were discussed previously in 

section 2.2. The VFP coprocessor is a floating point architecture that allows for fast 

floating point number operations. The VFP uses the same registers as the NEON 

coprocessor and supports either single or double precision floating point numbers. The 

dual issue pipeline allows a load or store instruction to be issued with another instruction 

providing no data, structural, or control hazards occur. Dual issuing can save many 

cycles and make load and store instructions less costly to perform. The performance 

counters are used to measure events triggered by the processor including branch 

predictions, cache accesses and misses, and stalls incurred by full instruction queues or 

data transfers . By default, the counters are not enabled on the BeagleBone board and 

must be enabled in the kernel or via a kernel module. 

The BeagleBone prototyping board can measure current and power consumption in 

two ways. The first method is using the on chip current measurement setup as described 

in the BeagleBone System Reference Manual (SRM) . This uses an analog input to the 

processor to measure the voltage drop over a 0.1 ohm resistor. From this voltage and 

the resistor value, the power consumption of the board can be measured. The second 

method is to directly measure the current into the board using a 5 volt power supply. 

Based on the current and power supply voltage, the power consumption can be 

measured. The on chip method is preferred because the program can set checkpoints 

throughout execution to record the current. This can be used to see how the board’s 

power consumption changes throughout the different stages of the program. According 

to the SRM the board’s current should be between 170 mA and 350 mA. 
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3.2 Software Setup 

The ARM Development Studio 5 (DS-5) was chosen for the IDE. DS-5 contains the GNU 

compiler version 4.5.1 and the ARM compiler version 5.01 for the ARM Linux kernel. The 

compilers enable programs to be compiled on the host PC and run on the board under 

the Linux kernel. The GNU version of the compiler was chosen because of its superior 

optimizations, including automatic vectorization, and open-source nature. DS-5 also 

contains a debugger, which is compatible with the BeagleBone. This allows stepping 

through a program, providing the location of errors, and inspection of the ARM and 

NEON register files. The IDE also contains support for SFTP, which is used to transfer 

the program and input data to the board and retrieve the output data, including resulting 

image and performance results. 

The GNU compiler is an open source compiler which can compile programs for use 

on ARM-Linux kernel. This compiler includes many advanced optimizations including 

function inlining, loop unrolling, instruction reordering, and automatic vectorization. The 

compiler also supports intrinsic functions for NEON SIMD. These functions can be called 

directly from C and will compile into NEON assembly instructions. Built-in functions are 

also included to provide hints about program execution to the compiler. The hints can 

include what data will be accessed next so the compiler can preload the cache or can 

include the likely direction a branch will take . 

The processor’s performance counters must be enabled from software within the 

kernel or in a kernel module to allow profiling of programs. The counters are located in 

coprocessor 15, the system coprocessor, which contains registers that have information 

about the processor’s configuration. The kernel had to be recompiled to allow a kernel 

module to be built. The Linux kernel version 3.2.23 was compiled with the PROFILING, 

FTRACE, ENABLE_DEFAULT_TRACERS, and HIGH_RES_TIMERS options enabled 

to allow the profiling. The kernel module is used to enable user mode access to the 

performance counters by setting the USEREN register . After user mode access is 

given, the counters are interfaced with the perf.cpp file shown in Appendix A. This file 

initializes the counters and output file using inline assembly. The code starts the 

counters with the perf_init function, allows checkpoints throughout execution with the 

perf_checkpoint function, and stops the counters and closes the file with the perf_exit 

function. The perf_init function receives the values for the performance metrics under 

investigation from the command line input when executing the code. The counter is 

selected with the PMNXSEL register, the metric’s value is set via the EVTSEL register, 
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and the counters are enabled using the PMNC register. Also, the output file “perf.csv” is 

opened, and the start time is recorded. The perf_checkpoint function receives the name 

for the checkpoint and whether this checkpoint is valid. This function selects the counter 

with the PMNXSEL register, and reads the performance metrics from the PMCNT 

register. The output file is written with the checkpoint name, counter values, time the 

checkpoint is called, and the value of the counter overflow register, FLAG. The FLAG 

register will report overflow if the counters exceed the 32-bit dimension. The perf_exit 

function is called at the end of the program to stop and write the final values of the 

counters, and close the file containing the results.  

3.3 Algorithms under Investigation 

Two algorithms are selected to test the NEON SIMD instructions. Both algorithms are 

used in image processing, and because they are linear, the processing can be 

accomplished in parallel. Section 3.3.1 and section 3.3.2 describes the bilinear 

interpolation and distortion algorithms, respectively. 

3.3.1 Bilinear Interpolation Algorithm 

Bilinear interpolation algorithms are used frequently in image processing. The purpose of 

bilinear interpolation is to either enlarge or shrink an image to a specified dimension. 

When an image is enlarged, the algorithm will attempt to fill in the missing data by 

averaging the surrounding pixels. Figure 3.1 shows an example 3x3 image which is 

interpolated to a 5x5 image. The algorithm takes the original image and expands it on 

the interpolated image (shown in grey). This process leaves space between the pixels 

(shown in white). This space is filled in by averaging the pixels around it. For example, 

four pixels surrounding the three in the interpolated image are one, two, four, and five. 

These four values are added together and divided by four to calculate the new value. At 

the sides of the image, the interpolation may occur with less than four values. After the 

averaging, fractional numbers are left. Because fractions cannot be values for pixels, the 

values must be rounded to the nearest integer. This type of algorithm uses a lot of 

floating point operations which is slower than integer operations in most processors. For 

performance reasons, an integer-only algorithm is chosen for testing. 

The algorithm chosen was written by Etienne Sobole  and the modified code is 

shown in the in Appendix B, and will be used as the baseline for comparison. An 

example input and output image is shown in Figure 3.2. This image was interpolated by 
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a factor of five from 484x700 pixels to 2240x3500 pixels. The interpolated image 

appears less blocky and smoother between the transitions from one object to another. 

This algorithm enlarges an image to a specified dimension, but cannot shrink the image. 

Also, there are no floating point operations, and the processing occurs in one pass. This 

helps increase performance because, when compared to integer, floating point 

manipulations usually take more time. Also, processing in one pass causes the 

destination image to be stored in memory just once, and this helps reduce the latency 

caused by cache accesses. The algorithm assumes that the color channels are stored 

as a 32-bit value, and all three color channels are contained in the lower 24 bits. The 

code starts by first determining the step through the source image as a 16-bit number.   

Next, it loops through the destination image starting in the x-direction. In the inner loop, 

the four surrounding pixels are retrieved from the source image. The destination pixel is 

calculated based on these four values with each color channel being processed 

separately. The result is written back to memory and the process is repeated for the 

remaining pixels. The only change from the original algorithm was moving from four 

color channels to three color channels. With only integer calculations and few loops, this 

baseline algorithm has very high performance.  

3.3.2 Distortion Algorithm 

The distortion algorithm was developed by HP and is used as the baseline for 

comparison. This algorithm removes the perceived distortion from a captured image. 

The program accepts an image as a *.dat file, created by MATLAB, and contains the 8-

bit raw pixel information for the source image. The *.dat file is divided into thirds, where 

each third corresponds to a color channel. The program also accepts a distortion matrix 

input, which is smaller than the input image and contains multiple 2-D vectors. The 

vectors are used to map the pixels from the source image to the destination image. This 

matrix is a floating point matrix, but is converted to integer representation to aid in 

increasing the performance. Figure 3.3 shows an original image and the image after the 

algorithm was applied. The results are very subtle, but it can be seen that the white dots 

in the source image are not perfectly aligned and have a slight convex curve to them. 

The processing works by moving and interpolating the pixels so these dots appear more 

aligned. Normally, this algorithm takes a few seconds to process. When combined with 

others, the processing of an image can take tens of seconds, which is too high for the 
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end user. Using SIMD instructions can be help increase the performance of this 

algorithm.   

The main image processing occurs in two nested loops, which move over the entire 

destination image as shown in Figure 3.4. The function map1bli begins by first setting 

the scale of the image, and setting the x and y indices of the distortion matrix with the 

SetIndexX and SetIndexY functions, respectively. This information is used by the 

algorithm to determine which value from the distortion matrix must be used. Next, the 

distortion vectors (dvx and dvy) are calculated in the GetDistortionVector function. The 

vectors are based on the distortion matrix and the current pixel being processed in the 

destination image. The function contains static variables (cx, cy, ccx, ccy), that don’t 

change every time the function is called. At the end of the function, the variables pxindex 

and pfyindex are set equal to xindex and fyindex, respectively. The new values of xindex 

and fyindex are compared to the saved values, pxindex and pfyindex, as shown. If they 

are equal, then the processing of the static variables is skipped to help increase the 

performance. If they are not equal, then the static variables must be recalculated.  These 

variables are then used to calculate the distortion vectors, dvx and dvy. The vectors 

contain an integer part in the 16 most significant bits and a fractional part in the 16 least 

significant bits. The GetDistortionVector function returns the vectors to the map1bli 

function.  

The fractional and integer parts of the distortion vectors are separated, and the 

integer part is used to determine the correct pixel from the source image. Next, the 

values of this pixel and three surrounding pixels are retrieved from the source image. 

Bilinear interpolation occurs between these pixels based on the fractional parts of the 

distortion vectors, and the resulting value is saved to the destination image. The process 

continues for all the pixels in the destination image. The color channels are processed 

separately; therefore, the map1bli function is called three times to process the three 

channels. This allows different distortion matrices to be applied to each channel.  
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Chapter 4  

Experimental Procedure 

The following sections describe the tests which were performed that utilized the NEON 

SIMD instructions. Section 4.1 and Section 4.2 describes the tests related to the bilinear 

interpolation algorithm and the distortion algorithm, respectively. 

4.1 Bilinear Interpolation Tests 

The bilinear interpolation algorithm has three test cases with each test performed over 

five different interpolation factors, and with a source image of one million total pixels. 

The NEON based code is written manually because the vectorizing compiler cannot find 

any vectorizable loops. The first test case is the baseline, which is described in Section 

3.3.1. Section 4.1.1 describes NEON1, which is the first test using the SIMD intrinsic 

functions with parallel color channel processing. Section 4.1.2 describes NEON2, which 

is the second test using the SIMD intrinsic functions with the processing of four pixels 

concurrently. 

4.1.1 NEON1 Test 

NEON1 is the first test case involving the NEON SIMD intrinsic functions. The code is 

shown in Appendix C, and the program’s flow is shown in Figure 4.1 with the vectorized 

parts in dark grey. This test processes all three color channels in parallel rather than 

sequentially. A lane of the NEON registers is not used because the image has three 

color channels, but four lanes in each register. All NEON variables use the 128-bit quad 

registers which require variables that are either 16 bits and fill eight lanes or 32 bits and 

fill four lanes. 

This test starts by calculating the variables hc1 and hc2 without the use of SIMD 

instructions. These variables are then duplicated into separate NEON registers, 

referenced as hc1vec and hc2vec.  The duplication instruction copies the value into each 

of the eight lanes. The same process is done for the variables wc1 and wc2 which are 

stored in NEON variables wc1vec and wc2vec, respectively. The image processing 

begins by first retrieving the four pixels used for interpolation and storing them into 

pixelavec and pixelbvec. The four pixels are chosen based on the values of OffsetX, 
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OffsetY, and the source image’s dimensions. The register layouts for the pixelavec and 

pixelbvec variables are shown in Figure 4.2. Because pixel1 and pixel3 are stored 

sequentially in memory, they are loaded with one instruction into a double NEON 

register (64 bits). Next, the values are reinterpreted from two 32-bit values to eight 8-bit 

values, and then extended to 16 bits. The extension fills the quad registers and allows 

the image processing to occur on a width of 16 bits.  The same process is done for 

pixelbvec with the pixel2 and pixel4 variables, which are also stored sequentially in 

memory. The builtin_prefetch function is used to preload the cache with the next likely 

source data. The function’s first argument is the address of the expected data, the 

second argument is set to zero for read/write access, and the third argument is set to 

two for locality. The locality determines how long the data should stay in the cache. The 

remaining image processing is similar to the baseline code except for the use of SIMD 

intrinsic functions. Many of the shift and bitwise AND operations are not needed because 

of how the NEON registers are set up. At the end, one double register contains the result 

with four lanes of 16-bit values. The values are reduced to four lanes of 8-bit values and 

stored in memory pointed to by the Dst variable. The Dst pointer is incremented, the 
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coefficients are increased, and the process repeats in a loop through all the pixels in the 

destination image.  

4.1.2 NEON2 Test 

NEON2 is the second test case involving the NEON SIMD intrinsic functions. The code 

is shown in Appendix D, and the program’s flow is shown in Figure 4.3 with the 

vectorized parts in dark grey. This test processes four sequential pixels in parallel rather 

than one at a time. As with the baseline, each color channel is processed separately. 

The variables use the quad registers, and each pixel has a 32-bit lane. Unlike NEON1, 

this setup does not waste lanes because four values are being processed concurrently 

and four lanes are available for processing. 

This test is very similar to the baseline except for the use of SIMD intrinsic functions. 

The factors hc1 and hc2 are calculated using ARM instructions and copied into the four 

32-bit lanes of hc1vec and hc2vec, respectively. The values for wc1 and wc2 change 

with each x-loop iteration. The x-loop is the inner loop of the processing and defines the 

x-coordinate for the destination pixel. Therefore, they are calculated as a four element 

array in a loop, and a NEON instruction is used to load them from memory into the 128-

bit registers. Each lane of the source image registers is set individually, because the 

values loaded into the NEON registers may not appear sequentially in memory. The 

interpolation part of the processing is accomplished in the same way as the baseline 

code except four pixels are processed concurrently. The whole destination register is 

pixelavec 
  C3  C2 C1     C3  C2 C1 

Pixel3 Pixel1 Variable 

Color Ch. 

pixelbvec 

   C3  C2 C1     C3  C2 C1 

Pixel4 Pixel2 Variable 

Color Ch. 

Unused lanes 16 bits 

Figure 4.2: Bilinear Interpolation NEON1’s SIMD Register Setup 
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sent to memory pointed by Dst. The destination pointer is incremented by four during 

each x-loop iteration and decremented at the end of the x-loop if the destination width is 

not divisible by four. This allows the x-loop to overstep and return if the destination 

image width is not divisible by four. This method does waste some processing time on 

pixel values that are in the end discarded. 

4.2 Distortion Tests 

The distortion algorithm is run with twelve different test cases with each test using the 

same input image of eight million pixels and three color channels, and a 23 by 17 

distortion matrix with two dimensional vectors. The code was compiled with the 

vectorizing compiler, but it could not find any vectorizable loops in the image processing 

part of the code. Therefore, the SIMD instructions were inserted manually. The first test 

is the baseline code as described in Section 3.3.2. The next four tests use the NEON 

SIMD intrinsic functions, and are described in Section 4.2.1 through Section 4.2.4. 

Section 4.2.5 through Section 4.2.7 describes the three assembly based tests in which 

Figure 4.3: Bilinear Interpolation’s Program Flow for NEON2 
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the assembly is altered with SIMD instructions and other techniques. The remaining 

tests attempted additional ways to speed-up the execution of the algorithm. Section 

4.2.8 explains the move from 32-bit operands to 16-bit operands. Section 4.2.9 

discusses the test using both the integer and floating point functional units. Section 

4.2.10 discusses using both the ARM processor and NEON coprocessor in parallel 

during the image processing. Section 4.2.11 discusses enhancements at the assembly 

level made to the baseline code without using NEON instructions. 

4.2.1 NEON1 Test 

This NEON1 test case applies NEON SIMD intrinsic functions to the main image 

processing by computing four pixels per iteration instead of one pixel as shown in Figure 

4.4 with the vectorized parts in dark grey. First, the GetDistortionVector function is 

altered by including the SetIndexX function so an extra function call can be eliminated. 

Second, because the GetDistortionVector function is a part of the code that cannot be 

calculated easily in parallel with SIMD instructions, it is executed four consecutive times 

using only ARM instructions. The result is saved to two 4-element C arrays, referenced 

as dvx[] and dvy[], which are then loaded into NEON registers. Next, the fractional and 

integer parts are separated and the index into the source image is created using parallel 

operations with the NEON coprocessor. The index is saved as a vector to memory 
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because the SIMD registers cannot be used as an index into memory. Saving the 

vectors to memory avoids the 20 cycle stall when transferring from the NEON 

coprocessor to the ARM processor. The ARM registers are loaded with the index from 

memory, which is then used by the NEON coprocessor to load the source image data 

into SIMD registers. Each NEON register lane is loaded individually from the source 

image because the pixels may not occur sequentially in memory and therefore multiple 

pixels cannot be loaded with one instruction.  Figure 4.5 shows how the four pixels are 

placed in a SIMD register. The pixels are 8-bit values, but they are loaded into 32-bit 

lanes because the bilinear interpolation step requires 32 bits to perform the 

computations. The bilinear interpolation of the four pixels occurs concurrently using the 

source image’s values and the fractional parts of the distortion vector. Each lane is 

saved individually to the destination image array. The destination array is incremented 

and the loop repeats until the destination image has been processed. 

4.2.2 NEON2 Test 

The NEON2 test case adds onto the NEON1 test case with vectorizing the calculations 

in the GetDistortionVector function. The program flow for this test is shown in Figure 4.6 

with the vectorized parts in dark grey. One way to accomplish the parallelizing is to 

compute all four components of the distortion vectors, dvx[] and dvy[], in parallel rather 

than in a loop. This requires removing the pfyindex and pxindex comparisons and 

computing the static variables cx, cy, ccx, and ccy during every function call. These are 

rarely recomputed (about once every 150 function calls) as recomputing them every 

function call would likely increase the time this function takes to complete. This option 

was not chosen for its likely performance decrease. 
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Another option is to leave the current structure of the function, and parallelize the 

computing of the cx, cy, ccx, and ccy variables and the distortion vectors. This option is 

more difficult because those variables are not easily calculated in parallel. Also, 

additional instructions are needed to ensure the data is in the correct lanes. The result of 

this function is two distortion vectors that are contained in NEON registers. This 

eliminated the need to load the vectors from memory to be processed. The main image 

processing is identical to the NEON1 test. This option is chosen because it does not 

recompute the static variables and thus should have increased performance. 

4.2.3 NEON3 Test 

The NEON3 test case adds onto the NEON1 test case with minor rearranging of the 

code. Figure 4.7 shows the program flow for this test with the vectorized parts shown in 

dark grey. The GetDistortionVector function was moved to before the start of the inner x-

loop and to the middle of image processing. The former is needed for the first run of the 

x-loop, and the latter will precompute the distortion vectors for the next iteration of the 

loop. However, the precomputation does not occur during the last iteration of the x-loop 

because the precomputation is not needed. The rearranging attempts to operate the 

ARM and NEON processors more concurrently, and help decrease the amount of stalls 

due to data dependencies. Because GetDistortionVector() uses mostly the ARM 
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processor and the image processing uses mostly the NEON coprocessor, placing this 

function in the middle of the image processing should allow the processors to act more 

in parallel.  

4.2.4 NEON4 Test 

The NEON4 test case adds onto the NEON3 test case with the use of the compiler’s 

“hint” functions. The cache “hint” function is used to prefetch the expected source and 

destination images for the next iteration of the x-loop. The builtin_prefetch function is 

implemented with the expected next address of the source or destination pixels as the 

first argument. The second argument is set to zero for the read only source image and 

set to one for the write to the destination image. The third argument is set to two to leave 

the data in the cache as long as possible.  The “hint” function for the branch prediction is 

used when calling the GetDistortionVector function within the image processing part of 

the code. This is accomplished with the builtin_expect function, which uses the 

comparison expression as the first argument, and the expected result of the comparison 

as the second argument. Because the GetDistortionVector function is called every x-loop 

iteration except for the last, it can be expected that the branch will always be true. 

Therefore the second argument is set to one which tells the compiler the branch is 

usually taken.  
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4.2.5 ASM1 Test 

The ASM1 test case starts with the assembly code from the NEON4 case. Figure 4.8 

shows the program flow for this test with the NEON vectorized parts shown in dark grey. 

The compiler performed a few optimizations with the code. First, it inlined the 

GetDistortionVector function both before the x-loop (shown as GetDistortionVector) and 

in the middle of image processing (shown as GetDistortionVector_prefetch). Inlining 

functions decreases the number of branches, which can decrease the branch 

mispredictions. Second, the i-loops in both of these functions are unrolled by four and a 

few unneeded branches are eliminated. This should help reduce the number of program 

counter changes and possibly the number of branch mispredictions. The compiler 

builtin_prefetch function is compiled into an assembly PLD instruction. This instruction 

signals to the memory system that a data load from the specified address is likely. The 

compiler builtin_expect function did not compile into an assembly instruction and there is 

no evidence that this function is implemented.  

Using the compiler’s assembly code, this test removes one branch and some 

unneeded loads from and stores to memory. The first change removes the equality 

check for pfyindex and fyindex. The fyindex variable only changes after the SetIndexY 

function is called, and the pfyindex variable is set equal to fyindex after the distortion 

vectors are computed. Therefore, the GetDistortionVector function always initially 

processes cx, cy, ccx, and ccy because it is after the SetIndexY function. In the 

GetDistortionVector_prefetch function, the equality check for fyindex and pfyindex is not 

needed because they will always be equal. The second change involves altering how the 

program stores static variables used by the distortion vector functions. The compiler 

handles the variables by storing their address, instead of the actual value, to the stack. 

To access these variables, the address must first be loaded from the stack and then the 

value can be loaded or stored based upon that address. This was changed to save or 

load the value directly to or from the stack which eliminated a load for each of the static 

variables. The third change altered the calculations of the cx, cy, ccx, and ccy variables. 

The compiler does not fully utilize the ARM registers and therefore intermediate values 

are stored to memory rather than kept in registers. The code is rearranged and registers 

changes such that the intermediate values were rarely stored to memory, which 

eliminated many load and stores instructions. 

The NEON SIMD code has a few modifications as well. One modification helps to 

more fully utilize the NEON register file by keeping constant values in registers. Some  
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values in the image processing do not change with each loop iteration. Intially, these 

values are loaded from memory or computed during each loop iteration as needed. This 

test case keeps the constant variables in the NEON registers. This change makes 

processing the image more difficult because there are less registers available to keep 

data. Another change exploits the option of dual issuing instructions. The NEON and 

ARM processors can issue two instructions at a time if one instruction is a load or store 

and no dependencies exist. The compiler attempts to accomplish this, but manually 

altering the code exploits this possibility even more. The code is modified to put load and 

store instructions near other instructions and to remove data dependencies between 

instructions.  

4.2.6 ASM2 Test 

The ASM2 test case uses the assembly from the ASM1 test, and vectorizes the 

calculation of the distortion vectors, dvx and dvy, in both the GetDistortionVector and 

GetDistortionVector_prefetch functions. Figure 4.9 shows the program flow for this test 

with the NEON vectorized parts shown in dark grey.  The static variables ccx and ccy 

used for this calculation are either calculated with ARM instructions and transferred to 

NEON registers, or loaded from memory into NEON registers. The distortion vectors are 

then calculated based on these variables, and kept in NEON registers until they are 

separated into their integer and fractional parts in the image processing part of the code. 

This saves an extra store from ARM to memory and load from memory to NEON, and 

processes the vectors in parallel. The image processing part of the code is identical to 

the ASM1 test. 

4.2.7 ASM3 Test 

This final assembly test builds on the ASM2 test, but processes eight pixels instead of 

four pixels per iteration. In previous tests, the NEON registers were not fully utilized 

during the image processing. These extra registers are now used to process twice the 

number of pixels per iteration which can increase performance. Calculating more pixels 

can help limit the data dependency stalls between the instructions and reduce the 

number of branches. Stalls from structural dependencies may arise, but because the 

NEON functional units are pipelined, the effect should be minimal. The calculation of 

distortion vectors are unrolled by a factor of eight to correspond with the eight pixels 

being processed. The preload cache instruction (PLD) is removed to see the effect of not 
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preloading the cache has on the performance. Although the preload instruction could 

minimize cache misses, the instruction does take time to execute. 

4.2.8 32-bit to 16-bit test 

This test takes the baseline code and alters it by using 16-bit operands instead of 32-bit 

operands with non-SIMD code. For the distortion vectors, the 16-bit operands require 

changing from 16-bit integer and fractional parts to 8-bit parts. The rest of the image 

processing occurs with 16 bit values. Truncating and rounding will be likely during the 

multiplication and addition of variables. Using 16 bits doubles the amount pixels that can 

be in a NEON register which should increase performance. However, losing half the 

precision could cause undesirable errors in the destination image. 

4.2.9 Integer and Floating Point Test 

This test uses the integer and floating point functional units of the NEON coprocessor in 

parallel. The NEON coprocessor has an integer ALU, multiplier, and shifter and a 

floating point adder and multiplier. The test uses the NEON intrinsic functions, with 

integer and floating point data types, and processes four pixels using integer calculations 

in parallel with four pixels using floating point calculations. The only portion of the code 

tested is the bilinear interpolation in the image processing, but the test could be 

expanded to the rest of the code. The source pixels and distortion vectors are converted 

to floating point numbers and stored in NEON registers. The code has shift left 

operations which are not able to be processed with the floating point functional units. So 

instead of shifting left, the floating point numbers are multiplied by a power of two 

corresponding to the shift. A shift right operation is also present in the algorithm. 

Because a floating point shifter or divider are not available, the shift right is 

accomplished in the integer part of the coprocessor. The conversion between integer 

and floating point numbers takes two cycles to complete for the NEON coprocessor. The 

initial conversion and converting for shift right instructions will likely cause an increase in 

the number of cycles and therefore decreased performance. The test uses single 

precision floating point numbers which reserve 23 bits for the fractional part. Moving 

from 32-bit operations to 23-bit operations may produce errors in the destination image 

due to the truncation of values. The added cycles along with image errors may cause 

this test to perform insufficiently. 
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4.2.10 ARM and NEON Test 

This test uses the NEON4 test case, and adds the processing of one pixel per iteration 

with the ARM processor to the four pixels per iteration with the NEON coprocessor. The 

ARM and NEON coprocessors can run in parallel and this test attempts to exploit this 

feature. First, the loop in the GetDistortionVector function is changed to produce five 

value dvx and dvy distortion vectors. Four values are used for SIMD and one value is 

used for ARM processing. Processing five pixels per iteration should cause a small 

increase in performance because structural hazards will not be present between the 

ARM and NEON pipeline. However, the ARM and NEON coprocessors will have to 

access the same cache block which could cause some stalls due to ordering issues. 

This test could also be expanded to ten pixels per iteration with eight pixels being 

processed with SIMDs and two pixels being processed without SIMDs. 

4.2.11 Revised Baseline Test 

This test converts the baseline code without NEON instructions to assembly, and applies 

the same non-NEON optimizations that are present in the ASM1 test case. First, the 

GetDistortionVector function is moved before the x-loop and in the middle of the image 

processing so the distortion vectors are prefetched. Second, unneeded comparisons and 

branches in the fyindex and pfyindex are removed. Third, the loads and stores of the 

static variables are changed to store and load directly to the stack instead of the address 

pointed to by the stack. This test only processed one pixel per iteration, but could be 

expanded to process four pixels per iteration. Four pixels per iteration would better 

match the NEON tests, but would likely not increase the speedup up due to insufficient 

number of ARM registers. 

This test is used as another baseline to see how the NEON SIMD instructions 

improved the performance. The test can be compared to the best performing assembly 

test. If the performance increase of the baseline and assembly is the same, then SIMD 

instructions do not provide a performance benefit. Most likely, the performance increase 

of the baseline will be less than that of the assembly test. This can help show that SIMD 

instructions are very valuable in increasing the performance of this and other algorithms.  
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Chapter 5  

Results and Discussions 

Both algorithms demonstrate increased performance when using the NEON SIMD 

instructions. Using SIMD instructions alone doubled the speed of both algorithms, and 

altering the assembly code of the distortion algorithm tripled the speed. Section 5.1 and 

section 5.2 discuss the results of the bilinear interpolation algorithm and the distortion 

algorithm, respectively. Section 5.4 concludes with the contributions this work can 

provide to others. 

5.1 Bilinear Interpolation Results 

The highest performing bilinear interpolation test is nearly twice as fast when compared 

to the baseline. The NEON1 test case processes one pixel per iteration and the three 

color channels in parallel. The NEON2 test case processes four pixels per iteration and 

the three color channels separately. The theoretical maximum speedups for the NEON1 

and NEON2 test cases are three and four, respectively. Figure 5.1 shows the actual 
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speedup of the three test cases relative to the baseline (5.06 seconds). Five different 

interpolation factors are chosen to interpolate a one million pixel image. For example, an 

interpolation factor of two doubles both the width and the length of the image. When 

using an interpolation factor of one, the image does not change size, but the 

interpolation still occurs on this image. The speedup is not affected much by the 

interpolation factors, but is affected by the algorithm used. The NEON1 test case has the 

highest speedup which ranges from 1.97 for a factor of one to 2.06 for a factor of three. 

The NEON2 test case is slower than the baseline with speedups ranging from 0.86 for a 

factor of one to 0.83 for a factor of three.  

The low speed-up in the NEON2 test could be caused by the increased number of 

instructions and data dependencies. The NEON1 test is able to load two pixels from 

memory with one instruction because of how the pixels are stored in memory. The 

NEON2 test uses one instruction for each pixel because the algorithm may not select 

sequential pixels from the source image array. Also, the NEON2 test case has more 

instructions due to the shift, AND, and multiply operations, and these instructions can 

cause more stalls due to data dependencies. The NEON2 test has four more shift and 

twelve more AND operations per four pixels, when compared to the NEON1 test case. 

These 16 additional instructions can require about 16 million more cycles to complete 

when interpolating a four million pixel image (interpolation factor of two). Although, most 

instructions take one cycle to complete, the NEON multiply instruction takes four cycles. 

The NEON1 test has 16 multiply instructions for every four pixels, and the NEON2 test 

has 18 multiply instructions for every four pixels. For example, a four million pixel target 

image would require two million extra multiplies for the NEON2 test. This translates to up 

to eight million extra cycles, assuming that each multiply has a data dependency. The 

NEON2 test has about a quarter the instructions of the baseline. However, there are 

more cache accesses because of how the wc1vec and wc2vec variables are loaded. 

Also, when a cache access does occur, the slower L2 cache is accessed rather than the 

faster L1 cache. With other instructions included, the NEON2 test case requires many 

more cycles to complete, which can be attributed to the low speed-up.  

The baseline test has fewer L2 cache accesses than the SIMD tests. Figure 5.2 

compares the L2 cache accesses and misses of the three test cases when interpolating 

an image by a factor of two. The baseline has the least number of L2 cache accesses 

most likely because the data it needs is loaded into the L1 cache, and the high L2 cache 

miss rate is due to the data only being used once. Initially, when the algorithm needs 
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either source or destination image data, it will be written to the L1 and L2 caches, 

resulting in misses for both caches. After the data is written to or read from, it is unlikely 

to be accessed again, and will then be removed from the caches when more space is 

needed. So, although spatial locality will cause a high hit rate in the L1 cache, the L2 

cache will have a high miss rate. The NEON tests have more L2 accesses than the 

baseline because the NEON load and store instructions can access the L2 cache 

directly without using the L1 cache. When source or destination image data is needed, 

the NEON coprocessor will load the L2 cache from memory and bypass the L1 cache. 

The NEON2 test case has more L2 cache accesses than the NEON1 test case because 

the increased number of instructions likely requires the intermediate values to be saved 

to memory due to insufficient number of registers. The cache preload instruction 

decreases the L2 miss rate for the NEON tests, and would likely have similar results for 

the baseline test. The miss rate went from 29.5% to 1.0% and 8.1% to 7.9% for the 

NEON1 and NEON2 tests, respectively. This is a fairly large change in miss rate for the 

NEON1 test, which may also contribute to the large performance improvement. 

Mispredicted branches can also decrease the runtime performance of code. Each 

branch misprediction causes the pipeline to empty and this incurs a 13 cycle penalty. 

The number of branches must be kept low to minimize the impact of mispredictions. 

Also, the branches should have a predictable pattern so the program flow prediction 

hardware can guess the direction of branches with greater accuracy. Figure 5.3 shows 
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the number of mispredictions from the three bilinear interpolation tests. The NEON1 test 

case has fewer mispredictions than both the baseline and the NEON2 test. The NEON2 

test case has a loop to create the wc1 and wc2 variables which could increase the 

number of branches, and therefore increase the number of mispredictions. The branches 

for the NEON1 and baseline tests are identical. The low mispredictions in the NEON1 

test could be attributed to the branch prediction hardware. The branch predictor, 

implemented as a branch target buffer (section 3.1), may work better for smaller loops, 

which is the case for the NEON1 test case. The high number of branch mispredictions 

could be the reason for the slower performance of NEON2 when compared to the 

baseline and NEON1.  

For optimum performance, a balance between ARM and NEON instructions must be 

found. First, the number of SIMD instructions executed in a row must be kept to a 

minimum to ensure the NEON instruction or memory queue is not filled. When a queue 

is filled, no more instructions can be issued from the ARM processor to the NEON 

coprocessor, and a stall occurs. Figure 5.4 shows the number of cycles the processor 

stalls as a result of a full NEON queue. The baseline does not show any stalls because 

SIMD instructions are not used here so the NEON queues are not filled. The NEON2 

test showed many more stalls because more SIMD instructions are used here, and the 

number of load and stores are greater than the NEON1 test. For this metric, the NEON1 

test outperforms the NEON2 test, which results in its higher speedup. Second, for 

optimum performance the ARM and NEON coprocessors should be active for as many 
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cycles as possible. Figure 5.4 shows the percentage of total cycles in which both 

processors are actively executing instructions. This is computed by dividing the number 

of cycles the processors work in parallel by the total cycles the algorithm takes. Ideally, 

this number should be close to 100% to show that the ARM and NEON coprocessors 

are always working in parallel. Again, the baseline does not show any concurrent cycles 

because the NEON coprocessor is not executing instructions. The NEON2 test has a 

higher percentage of cycles where the processors work in parallel. Loading pixels from 

Figure 5.4: Bilinear Interpolation’s Full NEON Queue Stalls 

Figure 5.5: Bilinear Interpolation’s Both Processors Active 
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memory uses both ARM and NEON instructions, and therefore, the larger number of 

load operations in NEON2 can cause the processors to work more concurrently. In both 

cases, the interpolating of the destination pixel uses SIMD instructions, not ARM 

instructions. Therefore, the theoretical maximum of 100% concurrent activity cannot be 

achieved with the bilinear interpolation algorithm. 

The same three test cases are applied to five different images from the Berkley 

image database . These images contain 154,401 pixels per color channel and three 

color channels. Because the five images contain the same number of pixels, the 

speedup should be approximately the same for all five images. The speedups for the 
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NEON1 and NEON2 test cases when compared to the baseline are shown in Figure 5.6 

for three interpolation factors. As expected, the speedups are independent of the image, 

but are dependent on the interpolation factor. The previous results showed the NEON1 

test case to have a speedup of between 1.97 and 2.06 times, which is approximately the 

speedups with this test. The NEON2 test case showed a similar pattern with the 

previous test having speedups between 0.83 and 0.86 times. This test shows the 

speedups are independent on the image size or content, but are dependent on the 

interpolation factor. 

Although, neither test reached its theoretical maximum speed-up, the NEON1 test 

case shows the greatest speedup. The speedup of the test can be mostly attributed to 

smaller code due to the use of SIMD instructions. The use of SIMD instructions 

significantly reduces the number of instructions to be executed during the processing. 

The speedup can also be attributed to low cache misses, low branch mispredictions, and 

concurrent use of the ARM processor with the NEON coprocessor. 

5.2 Distortion Results 

The distortion algorithm shows similar speedup results to the bilinear interpolation 

algorithm. The distortion algorithm uses the SIMD intrinsic functions as with the bilinear 

interpolation algorithm, but it also uses assembly code for an even larger speedup. 

Section 5.2.1 discusses the main results of the NEON and ASM tests. Section 5.2.2 

discusses the results from other attempts to fully utilize the processor. 

5.2.1 Main Results 

Figure 5.7 shows the speedup of the different test cases relative to the baseline test 

(10.01 seconds). Because the test cases process four pixels per iteration of the inner 

loop, the theoretical maximum speedup should be four. However, the maximum speedup 

obtained using only the SIMD intrinsic functions is 2.195, and using modified assembly 

code is 3.090. Modifying the assembly code significantly increases the speedup of the 

algorithm, but the speedup does not approach the theoretical maximum. As shown, the 

NEON2 test case does not show an increased speedup compared to the NEON1 test 

case, and therefore, its code is not used in any subsequent test cases. Several 

performance metrics are obtained for the tests and are shown in the remainder of this 

section. 



39 

   

L2 cache accesses and L1 cache misses should be kept at a minimum to achieve 

optimum performance. Each cache access or miss can stall the processor, which 

decreases the performance of the algorithm. The NEON coprocessor is the main cause 

of L2 cache accesses because it can read/write data from/to the L2 cache directly 

without updating the L1 cache. Approximately 65% of all L2 cache accesses in the SIMD 

test cases are from the NEON coprocessor. For the SIMD intrinsic functions test cases 

the NEON coprocessor has a miss rate of approximately 5%. Figure 5.8 shows the total 

L2 cache accesses and misses for the distortion algorithm test cases. All the tests 

except the baseline and NEON2 tests have relatively the same amount of cache 

accesses. The baseline test shows the least amount of cache accesses because it does 

not contain any NEON instructions, and the ARM processor primarily uses the L1 cache. 

The NEON2 test uses SIMD instructions in the GetDistortionVector function in an effort 

to increase performance. This function has many static variables which need to be 

loaded from memory on a function call and stored to memory on a return. These 

variables will likely be saved to the L2 cache by the NEON coprocessor. Saving and 

loading the static variables likely results in higher cache accesses for the NEON2 test. 

All the tests have relatively low miss rates (3.4% to 9.1%). Adding the cache preload 

instruction in the NEON4 test caused the miss rate to change from 8.9% to 3.4% when 

compared to the NEON3 test. The preload instruction is used to preload the L2 data 

Figure 5.7: Distortion Algorithm’s Speedup Relative to Baseline 
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cache with the data expected to be accessed next. This can save a cache miss and 

increase performance. With ASM3, the cache preload instruction is removed resulting in 

a slight increase in speedup and increase in L2 cache misses. Most likely the overhead 

in issuing that instruction is much greater than the performance increase it provided. In 

all test cases, the miss rate was kept below 10% which means that the faster L2 cache 

is accessed more frequently than the slower external memory.  

Branch mispredictions can also have a major impact on the performance of the 

algorithm. With the Cortex-A8 processor, each branch misprediction causes the pipeline 

to empty which incurs a 13 cycle penalty. Figure 5.9 shows the number of branch 

mispredictions for the various test cases of the distortion algorithm. The NEON2 test 

case shows the most branch misses most likely due to the vectorization of the 

GetDistortionVector function. The other test cases show relatively the same amount of 

branch misses. In the assembly based tests the code is altered to remove unneeded 

branches to help reduce mispredictions. As the figure shows the assembly tests have 

approximately the same number of misses as the other tests. Most likely the branch 

prediction hardware is able to correctly guess the direction a branch takes, and 

therefore, the alternations do not affect the branch mispredictions. The main flow of the 

program does not change much between the different tests. The same number of 

Figure 5.8: Distortion Algorithm’s L2 Cache Events  
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branches and the direction of branches are about the same during all the tests. The 

small fluctuations of the branch misses can be due to how the hardware implements the 

branch prediction unit.  

For optimum performance, both processors should be concurrently executing 

instructions at all times. The ARM and NEON coprocessors are separate from each 

other, and therefore, the have the ability to operate in parallel. Issuing a mix of ARM and 

NEON instructions is a way in which this option can be exploited. For example, SIMD 

load and store operations use both ARM and NEON instructions. For a SIMD load or 

store, the address is calculated with the ARM  processor and then passed to the NEON 

coprocessor where the memory access occurs. The processing of an image is mostly 

done with SIMD instructions. So, image processing does not use the ARM and NEON 

coprocessor in parallel. Figure 5.10 shows the percentage of cycles that both processors 

are active for the various distortion test cases. The theoretical maximum is 100% which 

corresponds to both processors always being active. The baseline does not show any 

concurrent cycles because the NEON coprocessor was inactive during this time. The 

tests have instances where more NEON instructions are used than ARM, and instances 

where the opposite occurs. The NEON2 and ASM3 tests have about the same 

percentage of concurrent cycles. In the NEON2 test, NEON and ARM instructions are 

used in the GetDistortionVector function which helps operate the processors in parallel. 

Figure 5.9: Distortion Algorithm’s Branch Mispredictions 
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In the ASM2 and ASM3 test cases, some ARM instructions are replaced with NEON 

instructions and the image is processed at eight pixels per inner loop iteration. This 

resulted in more NEON instructions and more cycles that the processors are 

concurrently active. Moving from the NEON1 test to the NEON3 test made a small 

improvement in this metric. The mainly ARM instruction based GetDistortionVector 

function is placed in the middle of the mainly NEON instruction based image processing. 

The result is more concurrent activity of the two processors and a small increase in 

speedup. Although, the theoretical maximum cannot be reached, it is still important to 

run the processors concurrently when possible to help increase performance.  

ARM and NEON instructions should also be mixed to avoid stalls to the NEON 

coprocessor from either a full instruction queue or a full load and store queue. Normally, 

one or two instructions are issued every cycle. If an instruction takes longer than one 

cycle to complete, the next instruction will be added to queue. Once the queue is filled, 

no more instructions can be issued and the processor stalls. The same occurs if too 

many memory accesses are requested. Figure 5.11 shows the number of cycles the 

NEON coprocessor stalls as a result of a full instruction or load and store queue. For 

best performance, this metric should be kept to a minimum. Again, the baseline does not 

have any stalled cycles because the NEON coprocessor is not active. The most 

significant change is shown between NEON1 and NEON3. Moving the 

Figure 5.10: Distortion Algorithm’s Both Processors Active 
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GetDistortionVector function into the main image processing part of the code mixes the 

NEON and ARM instructions. This results in fewer stalls from a full queue because less 

NEON instructions are issued sequentially. In subsequent tests, ARM instructions are 

removed and NEON instructions are added, which causes more stalls in the NEON 

coprocessor. Although, measuring the stalls from a full ARM instruction or load and store 

queue is not possible, the ARM processor likely shows an inverse relationship to the 

NEON processor’s queue stalls. With less ARM and more NEON instructions, the ARM 

processor’s queue should not fill as quickly and stalls should be less prevalent. When 

comparing the ASM2 test to the ASM3 test, many more sequential NEON instructions 

are added. The increase in NEON instructions causes the queues to fill up faster and 

therefore the ASM3 test shows many more stalled cycles. Increasing performance can 

be achieved by mixing the ARM and NEON instructions which will help to reduce the 

number of stalls from a full NEON coprocessor queue. 

Moving data from a coprocessor register, such as a NEON register, to an ARM 

register is a costly process. The move takes 20 cycles to complete and stalls the ARM 

pipeline while the data is being transferred. Figure 5.12 shows the number of cycles the 

ARM processor stalls while waiting for data from a coprocessor. The distortion algorithm 

avoids these stalls by not directly transferring data from the NEON coprocessor to the 

ARM processor. If a transfer is needed, the data is stored by the NEON coprocessor to 
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memory and the ARM processor then loads this data. This process can still cause stalls, 

but it eliminates the 20 cycle penalty from a direct register to register transfer. The stalls 

for all the tests are very low in comparison to stalls previously discussed. The metric is 

likely measuring the transfers from the performance counter registers to the ARM 

registers. The distortion algorithm’s test cases have no NEON coprocessor to ARM 

processor transfers to keep stalls to a minimum.  

5.2.2 Other Considerations 

Using 16-bit operands instead of 32-bit operands does not produce an acceptable 

resulting image. This doubles the amount of data that can be packed into a NEON 

register which should double the performance. Figure 5.13 shows the resulting image 

from this test, which is unacceptable. Normally, the algorithm packs the integer and 

fractional parts of the distortion vectors into the two halves of a 32-bit register. When 

using a 16-bit register, the integer and fractional parts are truncated to 8 bits and lose 

much of their precision. For this particular image processing algorithm, the 16-bit 

operands do not provide enough precision to produce an accurate result. 

Using the integer and floating point functional units in parallel also do not produce an 

acceptable result. This test case should remove some structural hazards related to 

insufficient functional units. It uses the integer ALU, shift, and multiply units for four 

Figure 5.12: Distortion Algorithm’s Coprocessor to Processor Transfer Stalls 
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Figure 5.13: 16-bit Distortion Test Result 

Figure 5.14: Integer and Floating Point 
Distortions Results 
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pixels, and the floating point ALU and multiply units for four pixels. The resulting image, 

shown in Figure 5.14, shows many artifacts from this test. Looking at the image as 

whole, not many faults can be seen, but when the image is enlarged, the faults become 

evident. The pixels processed with the integer functional units appear to be accurate, but 

the pixels processed with floating point functional units show many artifacts that are not 

acceptable for a resulting image. These are likely due to the loss in precision when 

moving from 32-bit integer operands to 32-bit floating point operands. Although, both 

operands are the same size, floating point numbers only reserve 23 bits for the fractional 

part.  The remaining 9 bits are reserved for the sign and exponent, and therefore, the 

entire 32-bit floating point register cannot be used to its full precision. Also, the overhead 

when converting from integer to floating point may cause slowdowns in the processing 

and therefore the speedup may be negligible. Using both the integer and floating point 

functional units produces an unacceptable image and is unlikely to produce any increase 

in performance. 

Another way to full utilize the processor is to process the image using both the ARM 

and NEON processors. This test processed four pixels of the image with the NEON 

coprocessor and one pixel with the ARM processor. So this test should be 1.25 times 

faster than the NEON only approach. The resulting image matches the expected result 

obtained by the baseline test. However, the speedup went from 2.195 in the NEON4 test 

to 1.468 in this test, which is a significant decrease in speed. The decreased 

performance is likely caused by the 20 cycle stall occurring when the ARM and NEON 

coprocessors access the same cache block. This occurs when the source image is 

loaded from memory, or the destination image is stored to memory. One alternative 

would be to have the ARM processor process one part of the image while the NEON 

coprocessor processes another part of the image. For the distortion algorithm, this is not 

possible due to the GetDistortionVector function which cannot process the image out of 

order. Although the resulting image is correct, this test case provided a slowdown in 

speed. 

The final test speeds up the baseline algorithm by applying the same non-SIMD 

assembly based optimizations that were applied to the assembly tests. As expected, the 

resulting image matches the expected image from the baseline test. This test did show a 

speedup of 1.52 over the original baseline test. The branch miss-predictions decreased 

by 15% and the L2 cache miss rate decreased by 4.3%. This test shows the importance 

of optimizations at the assembly level because the compiler can only optimize the 
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program to a certain level. Further optimization must be done manually. In this case the 

manual optimization shows an acceptable performance increase when modifying the 

assembly code. This test also shows that the NEON SIMD instructions have a major 

impact on the overall speedup of the algorithm. Performing the same optimizations with 

and without SIMD instructions shows that the SIMD instructions provide a greater 

performance improvement over the non-SIMD version.  

The resulting images from the test cases differ from the resulting image from the 

baseline test. First, the error was computed by subtracting the pixel values and scaling 

to a 100% scale. Figure 5.15 shows the error of the output image from the NEON4 test 

when compared to the baseline test. The error for most of the image is zero, but parts of 

the image, especially where a transition occurs, have error. The maximum error is 

0.391%, which is acceptable and not visible on the image. The error can likely be 

attributed to the way the ARM and NEON coprocessors differ in truncating or rounding of 

register values. The correlation coefficient can also be used to compare two images. 

Coefficients of greater than 0.95 are sufficient to conclude the images match . For these 

tests, the MATLAB corr2 function is applied to the baseline image and the image under 

Figure 5.15: Distortion’s Image Error Compared to Baseline Image 
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test. The function is applied to each color channel and the three results are then 

averaged. For the main results, the computer coefficient is 0.99999 which is greater than 

0.95, and therefore the images match. The 16-bit test case produced a coefficient of 

0.30913 which is less than 0.95. Therefore the images are uncorrelated and which 

explains why the resultant image is unacceptable. The integer and floating point test 

case produced a higher coefficient of 0.86914, but this number is still less than 0.95 and 

the resultant image is unacceptable.  

With a speedup of 3.090, the distortion algorithm approaches the theoretical 

speedup factor of four. The use of SIMD instructions and modification of the assembly 

code are important factors to achieve this speedup. Some test cases attempt alternate 

methods to fully utilize the processor, but these methods can either produce an 

inaccurate result image or show a decrease in performance. The results of this test show 

that the performance of this and possibly other image processing algorithms can 

significantly benefit from the use of SIMD instructions. 

5.3  Power Assessment 

The power is measured using both the on-board method and the external power supply 

method. Table 5.1 shows the current and power measurements from the idle, NEON, 

and non-NEON distortion algorithm tests. The NEON and non-NEON test results are 

from the ASM3 and baseline test cases, respectively. The table shows the two methods 

produced non-similar results. The on-board method shows the current to be about 

double the expected value, and far exceeds the 502 mA expected maximum when 

processing. Therefore, these results are considered not valid. The external method’s 

current results are within the range of expected values. The processing with the NEON 

instructions uses about 3.1% more power than the baseline processing. This can be 

attributed to the NEON coprocessor being in a low power mode when no NEON 

instructions are issued. Although, the NEON processing requires more power, the 

energy used during the entire image processing time is less because the execution time 

is shorter. 

The power results from the bilinear interpolation, shown in Table 5.2, are similar to 

the distortion algorithm’s results. In both cases using the NEON and ARM coprocessors 

uses more power than the ARM processor only. The NEON1 and NEON2 test cases use 

120% and 40% more power than the baseline test, respectively. Although, the NEON1 

test case uses more power, it completes in less time. Therefore, the overall energy  
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Table 5.1: Distortion Algorithm’s Power Consumption 

Test Method Current (mA) Power (W) 

Idle On-board 494 2.39 

Processing with NEON On-board 677 3.20 

Idle External 270 1.35 

Processing with NEON External 330 1.65 

Processing without NEON External 320 1.60 

    

Table 5.2: Bilinear Interpolation Algorithm’s Power Consumption 

Test Method Current (mA) Power (W) 

Idle External 330 1.65 

Baseline External 380 1.9 

Processing with NEON1 External 440 2.2 

Processing with NEON2 External 400 2.0 

    

consumed will be equal or less in the baseline test case.  

Both algorithms show enabling the NEON coprocessor uses more power than not 

enabling it. However, the decreased processing time should keep the overall power 

consumption approximately the same. 

5.4 Contributions 

The results show that using SIMD instructions can provide a significant speedup to 

image processing algorithms. The speedup can only be reached when processing 

multiple pixels or colors at a time, which is possible in many algorithms. The use of 

SIMD instructions was tested on a BeagleBone prototyping board containing a TI 

AM3359 Cortex-A8 processor with a NEON SIMD coprocessor. The bilinear interpolation 

and distortion algorithms were chosen for testing because they are able to process 

multiple pixels or colors simultaneously. Using SIMD intrinsic functions for the GNU ARM 

compiler, the speed up both algorithms were increased by a factor of about two over the 
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non-SIMD test cases. Furthermore, the distortion algorithm achieved a speedup of over 

three times after modifications were made to the assembly code. When an algorithm 

normally takes ten or more seconds to complete, this speedup can be significant and 

provide a faster experience to the end user. 

Although, neither of the algorithms achieved its theoretical maximum speedup, many 

lessons were learned about implementing NEON SIMD instructions. First, correctly using 

SIMD instructions is important to maximize the speedup. Some algorithms may be 

difficult to parallelize, and therefore, additional instructions may have to be used to move 

the data between registers and lanes. These added instructions may cause the SIMD 

code to perform slower than the non-SIMD code. This was shown in both the bilinear 

interpolation algorithm’s NEON2 and distortion algorithm’s NEON2 test cases. Second, a 

mix of ARM and NEON instructions should be used when possible. This will help avoid 

stalls related to a full NEON coprocessor instruction or memory queue and it will run the 

ARM and NEON coprocessors more concurrently. The former must be avoided so 

instructions can keep being issued and stalled cycles avoided resulting in more 

processing time. Running the coprocessors concurrently can double the number of 

instructions issued each clock cycle, which should decrease the time needed to execute 

the algorithm. Thus, the use of SIMD instructions must be done carefully so a 

performance benefit can be achieved. 

Lessons were also learned about increasing the performance of the algorithms with 

non-SIMD techniques. First, cache accesses and cache misses must be kept to a 

minimum. Each cache access means the data is not in the processor’s registers and 

must be loaded from the cache, which takes time. Each cache miss means the cache 

does not have the requested data and must access it from a higher hierarchical memory 

level, which requires even more time. Second, cache preload instructions can be used to 

reduce cache miss rates. The L2 cache preload instruction was able to decrease the 

cache miss rate in both algorithms, which should increase performance. The tests using 

the intrinsic functions showed an increased speed, but the assembly tests showed a 

decreased speed, likely due to the time required to issue the instruction. Therefore, the 

cache preload instruction can be beneficial in some cases, but harmful in others. Finally, 

branches should be eliminated when possible to help reduce the number of branch 

mispredictions. With the ARM processor, each branch misprediction incurs a 13 cycle 

penalty. Although not all mispredictions can be eliminated, minimizing them can greatly 

increase the speed.  
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Other techniques to increase the speedup were unsuccessful for the distortion 

algorithm, but may work for other image processing algorithms. The first attempt was to 

use 16-bit operands instead of 32-bit operands. Halving the precision of the calculations 

caused an incorrect resulting image, but in other algorithms where 16-bit operations are 

permitted, this technique can provide a speedup. The second attempt was to use the 

integer and floating point functional units in parallel. Again, the reduced precision 

resulted in an incorrect image, and the conversion between floating point numbers and 

integers caused a decrease in speed. This technique may work with other algorithms, 

but one must consider the reduced precision and time for conversions. The final attempt 

was to concurrently use the ARM and NEON coprocessors to process the image. A 

correct resulting image was created, but the attempt showed a decrease in speed, which 

is likely due to the coprocessors accessing the same cache line. Other algorithms would 

likely see the same results from this technique. Therefore, this technique shouldn’t be 

used. 

Using SIMD instructions can benefit image processing algorithms, but they are 

difficult to implement. To achieve some speedup, the SIMD intrinsic functions can be 

used within an existing code. However, these functions require time to implement and an 

understanding of how the code has to be parallelized. If higher speedup is needed, then 

the code can be modified at the assembly level. Modifying the assembly code requires 

more time and a greater understanding of how the algorithm works. The use of 

vectorizing compilers can reduce the time and understanding level required. Both tested 

algorithms used the automatic vectorization, but the compiler was not able to find any 

vectorizable loops. Specifically, the bilinear interpolation algorithm can likely be sped up 

more, but the distortion algorithm is close to its maximum speedup. The bilinear 

interpolation algorithm only used SIMD instructions with intrinsic functions and no 

modified assembly code. Many of the lessons learned from the distortion algorithm’s 

assembly test cases could be applied to it.  Minor improvements can likely be achieved 

by reordering instructions and by register renaming to reduce data dependencies. For 

both algorithms, using alternative compilers may result in a better optimization and 

produce even greater speedups. 

Figure 5.16 shows the steps we believe one should follow when attempting to use 

SIMD instructions to speedup other image processing algorithms. At the end of each 

step the speedup should be checked to ensure an increase has occurred.  Each step is 

self-explanatory. 
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Figure 5.16: Recommended steps to follow in the use of SIMD Instructions  



53 

   

Chapter 6  

Conclusions 

This thesis has shown that through the proper use of SIMD instructions and assembly 

coding, image processing algorithms can be sped up by a factor of more than three. 

Previous works have only achieved speedups of up to 2.7 times with simpler algorithms. 

The results and methods presented can be extrapolated to other image processing 

algorithms. The speedup can only be reached when processing multiple pixels or colors 

at a time, which is possible in a majority of image processing algorithms.  
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Appendix A  

Performance Counter Code 

1 #define OUT_FILE "perf.csv" 

2  

3 #include <stdlib.h> 

4 #include <stdio.h> 

5 #include <time.h> 

6 #include "bilin.h" 

7  

8 //intialize globals 

9 FILE *perf; 

10 clock_t perf_start; 

11 uint32 event[4]; 

12 bool enable = FALSE; 

13  

14 void perf_init(uint32 g_perf[4]){ 

15  for(int i = 0; i < 4; i++){ 

16   event[i] = g_perf[i]; 

17   if(event[i] != 0) enable = TRUE; 

18  } 

19  if(enable){ 

20   //reset counters and overflow 

21   asm("MCR p15, 0, %0, c9, c12, 0" :: "r"(0x41002007)); 

22   asm("MCR p15, 0, %0, c9, c12, 3" :: "r"(0x8000000f)); 

23  

24   //setup output file 

25   perf = fopen(OUT_FILE, "w"); 

26   fprintf(perf,"%s, %s, %d, %d, %d, %d, 

%s\n","Name","time",event[0],event[1],event[2],event[3],"V Status"); 

27  

28   //setup events 

29   asm("MCR p15, 0, %0, c9, c12, 5" :: "r"(0x00000000)); 

30   asm("MCR p15, 0, %0, c9, c13, 1" :: "r"(event[0])); 

31   asm("MCR p15, 0, %0, c9, c12, 5" :: "r"(0x00000001)); 

32   asm("MCR p15, 0, %0, c9, c13, 1" :: "r"(event[1])); 

33   asm("MCR p15, 0, %0, c9, c12, 5" :: "r"(0x00000002)); 

34   asm("MCR p15, 0, %0, c9, c13, 1" :: "r"(event[2])); 

35   asm("MCR p15, 0, %0, c9, c12, 5" :: "r"(0x00000003)); 

36   asm("MCR p15, 0, %0, c9, c13, 1" :: "r"(event[3])); 

37   

38   //start counters 

39   asm("MCR p15, 0, %0, c9, c12, 1" :: "r"(0x8000000f)); 

40  

41   //get start time 

42   perf_start = clock(); 

43  } 

44  

45 } 

46  

47 void perf_checkpoint(char* name, uint32 disable){ 

48  //function will only run when disable is 0 

49  if(disable == 0 && enable){ 

50   unsigned int value[5]; 

51   float time_dif; 

52  

53   //get current time 

54   time_dif=(float)(clock() - perf_start)/CLOCKS_PER_SEC; 

55   

56   //get perf counter values including CC and overflow 

57   //asm("MRC p15, 0, %0, c9, c13, 0" : "=r"(value[0])); 

58   asm("MCR p15, 0, %0, c9, c12, 5" :: "r"(0x00000000)); 

59   asm("MRC p15, 0, %0, c9, c13, 2" : "=r"(value[0])); 

60   asm("MCR p15, 0, %0, c9, c12, 5" :: "r"(0x00000001)); 

61   asm("MRC p15, 0, %0, c9, c13, 2" : "=r"(value[1])); 
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62   asm("MCR p15, 0, %0, c9, c12, 5" :: "r"(0x00000002)); 

63   asm("MRC p15, 0, %0, c9, c13, 2" : "=r"(value[2])); 

64   asm("MCR p15, 0, %0, c9, c12, 5" :: "r"(0x00000003)); 

65   asm("MRC p15, 0, %0, c9, c13, 2" : "=r"(value[3])); 

66   asm("MRC p15, 0, %0, c9, c12, 3" : "=r"(value[4])); 

67  

68   //Print values to file 

69   fprintf(perf,"%s, %.3f, %u, %u, %u, %u, 

0x%X\n",name,time_dif,value[0],value[1],value[2],value[3],value[4]); 

70  } 

71   

72 } 

73  

74 void perf_exit(){ 

75  if(enable){ 

76   unsigned int value[5]; 

77   float time_dif; 

78  

79   //get current time 

80   time_dif=(float)(clock() - perf_start)/CLOCKS_PER_SEC; 

81   

82   //get perf counter values including CC and overflow 

83   //asm("MRC p15, 0, %0, c9, c13, 0" : "=r"(value[0])); 

84   asm("MCR p15, 0, %0, c9, c12, 5" :: "r"(0x00000000)); 

85   asm("MRC p15, 0, %0, c9, c13, 2" : "=r"(value[0])); 

86   asm("MCR p15, 0, %0, c9, c12, 5" :: "r"(0x00000001)); 

87   asm("MRC p15, 0, %0, c9, c13, 2" : "=r"(value[1])); 

88   asm("MCR p15, 0, %0, c9, c12, 5" :: "r"(0x00000002)); 

89   asm("MRC p15, 0, %0, c9, c13, 2" : "=r"(value[2])); 

90   asm("MCR p15, 0, %0, c9, c12, 5" :: "r"(0x00000003)); 

91   asm("MRC p15, 0, %0, c9, c13, 2" : "=r"(value[3])); 

92   asm("MRC p15, 0, %0, c9, c12, 3" : "=r"(value[4])); 

93  

94   //Print values to file 

95   fprintf(perf,"%s, %.3f, %u, %u, %u, %u, 

0x%X\n","END",time_dif,value[0],value[1],value[2],value[3],value[4]); 

96  

97   //close file 

98   fclose(perf); 

99  } 

100   

101 } 
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Appendix B  

Bilinear Interpolation Baseline Code 

1 //*********************************************************************** 

2 //                            Stretch function 

3 //                      Algorithm taken from and adapted:  

4 //    http://pulsar.webshaker.net/2011/05/25/bilinear-enlarge-with-neon/ 

5 //************************************************************************ 

6  

7 int stretch_c(unsigned int *bSrc, unsigned int *bDst, int wDst, int hDst, bool 

test, int mult) 

8 { 

9  unsigned int wSrc = INPUT_SIZEy; 

10  unsigned int hSrc = INPUT_SIZEx; 

11  unsigned int *Dst; 

12  unsigned int wStepFixed16b, hStepFixed16b, wCoef, hCoef, x, y; 

13  unsigned int pixel1, pixel2, pixel3, pixel4; 

14  unsigned int pixela, pixelb; 

15  unsigned int hc1, hc2, wc1, wc2, offsetX, offsetY; 

16  unsigned int c, b, a, i; 

17  unsigned int a1, a2, a3; 

18  unsigned int hca, wca; 

19  unsigned int error = 0; 

20  bool passed = 1; 

21   

22  wStepFixed16b = ((wSrc - 1) << 16) / (wDst - 1); 

23  hStepFixed16b = ((hSrc - 1) << 16) / (hDst - 1); 

24  

25  for(i=mult;i>0;i--){ 

26   Dst=bDst; 

27   hCoef = 0; 

28  

29  

30   for (y = 0 ; y < hDst ; y++) //begin y-loop 

31   { 

32    hc2 = (hCoef >> 9) & 127; 

33    hc1 = 128 - hc2; 

34    offsetY = (hCoef >> 16); 

35    wCoef = 0; 

36  

37    for (x = 0 ; x < wDst ; x++) //begin x-loop 

38    { 

39     offsetX = (wCoef >> 16); 

40     wc2 = (wCoef >> 9) & 127; 

41     wc1 = 128 - wc2; 

42  

43     //Each pixel is 24 bits with 3 color channels of 8 bits 

44     pixel1 = *(bSrc + offsetY * wSrc + offsetX); 

45     pixel2 = *(bSrc + (offsetY + 1) * wSrc + offsetX); 

46     pixel3 = *(bSrc + offsetY * wSrc + offsetX + 1); 

47     pixel4 = *(bSrc + (offsetY + 1) * wSrc + offsetX + 1); 

48  

49     a = ((((pixel1 >> 0) & 255) * hc1 + ((pixel2 >> 0) & 255) * hc2) * wc1 + 

50     (((pixel3 >> 0) & 255) * hc1 + ((pixel4 >> 0) & 255) * hc2) * wc2) >> 14; 

51     b = ((((pixel1 >> 8) & 255) * hc1 + ((pixel2 >> 8) & 255) * hc2) * wc1 + 

52     (((pixel3 >> 8) & 255) * hc1 + ((pixel4 >> 8) & 255) * hc2) * wc2) >> 14; 

53     c = ((((pixel1 >> 16) & 255) * hc1 + ((pixel2 >> 16) & 255) * hc2) * wc1 + 

54     (((pixel3 >> 16) & 255) * hc1 + ((pixel4 >> 16) & 255) * hc2) * wc2) >> 14; 

55  

56     *Dst++ = (c << 16) + (b << 8) + (a); 

57     wCoef += wStepFixed16b; 

58    } //end x-loop 

59    hCoef += hStepFixed16b; 

60   } //end y-loop 

61  } 

62  



59 

   

63 //    Check for calculation to match expected result form data2.h 

64  if(test){ 

65   Dst=bDst; 

66   for(i=0;i<wDst*hDst-1 && error < 10;i++){ 

67    if(expected_data[i] != *Dst){ 

68     printf("ERROR at [%d] (%X != %X)\n",i,*Dst,expected_data[i]); 

69     error++; 

70    } 

71    Dst++; 

72   } 

73   printf("%d error(s) occured.\n", error); 

74   if(error>0) passed=0; 

75  } 

76  return(passed); 

77 } 

78  
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Appendix C  

Bilinear Interpolation NEON1 Code 

1 //*********************************************************************** 

2 //                     Stretch function of NEON1 test case 

3 //                      Algorithm taken from and adapted:  

4 //    http://pulsar.webshaker.net/2011/05/25/bilinear-enlarge-with-neon/ 

5 //************************************************************************ 

6  

7 int stretch_neon(unsigned int *bSrc, unsigned int *bDst, int wDst, int hDst, bool 

test, int mult) 

8 { 

9  unsigned int wSrc = INPUT_SIZEy; 

10  unsigned int hSrc = INPUT_SIZEx; 

11  unsigned int *Dst; 

12  unsigned int wStepFixed16b, hStepFixed16b, wCoef, hCoef, x, y; 

13  unsigned int hc1, hc2, wc1, wc2, offsetX, offsetY; 

14  unsigned int i; 

15  unsigned int error = 0; 

16  bool passed = 1; 

17  uint16x8_t hc2vec, hc1vec; 

18  uint16x4_t wc2vec, wc1vec; 

19  uint32x4_t res1, res2; 

20  uint16x8_t pixelavec, pixelbvec; 

21  uint32x2_t destvec; 

22  

23  wStepFixed16b = ((wSrc - 1) << 16) / (wDst - 1); 

24  hStepFixed16b = ((hSrc - 1) << 16) / (hDst - 1); 

25  

26  for(i=mult;i>0;i--){ 

27   Dst=bDst; 

28   hCoef = 0; 

29  

30  

31   for (y = 0 ; y < hDst ; y++) //begin y-loop 

32   { 

33    hc2 = (hCoef / 512) & 127; 

34    hc1 = 128 - hc2; 

35    hc2vec = vdupq_n_u16(hc2); 

36    hc1vec = vdupq_n_u16(hc1); 

37    offsetY = (hCoef / 65536); 

38    wCoef = 0; 

39  

40    for (x = 0 ; x < wDst ; x++) //begin x-loop 

41    { 

42     offsetX = (wCoef / 65536); 

43     wc2 = (wCoef / 512) & 127; 

44     wc1 = 128 - wc2; 

45     wc1vec = vdup_n_u16(wc1); 

46     wc2vec = vdup_n_u16(wc2);  

47  

48     //Each pixel is 24 bits with 3 color channels of 8 bits 

49     //load pixel3|pixel1 

50     pixelavec = vmovl_u8(vreinterpret_u8_u32(vld1_u32(bSrc + offsetY * wSrc + 

offsetX))); 

51     //preload next likely source into cache  

52     __builtin_prefetch(bSrc + offsetY * wSrc + offsetX + 2, 0, 2);  

53     //load pixel4|pixel2 

54     pixelbvec = vmovl_u8(vreinterpret_u8_u32(vld1_u32(bSrc + (offsetY + 1) * wSrc 

+ offsetX)));  

55     //preload next likely source into cache 

56     __builtin_prefetch(bSrc + (offsetY + 1) * wSrc + offsetX + 2, 0, 2);  

57  

58     pixelavec = vmulq_u16(pixelavec, hc1vec); 

59     pixelbvec = vmulq_u16(pixelbvec, hc2vec); 

60     pixelavec = vaddq_u16(pixelavec, pixelbvec); 
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61     res1 = vmull_u16(vget_high_u16(pixelavec), wc2vec); 

62     res2 = vmull_u16(vget_low_u16(pixelavec), wc1vec); 

63     res1 = vaddq_u32(res1, res2); 

64     pixelavec = vcombine_u16(vshrn_n_u32(res1, 14), vshrn_n_u32(res1, 14)); 

65      

66     destvec = vreinterpret_u32_u8(vmovn_u16(pixelavec)); 

67     vst1_lane_u32(Dst++, destvec, 0); 

68      

69     wCoef += wStepFixed16b; 

70    } //end x-loop 

71    hCoef += hStepFixed16b; 

72   } //end y-loop 

73  } 

74  

75  if(test){ 

76   Dst=bDst; 

77   for(i=0;i<wDst*hDst-1 && error < 10;i++){ 

78    if(expected_data[i] != *Dst){ 

79     printf("ERROR at [%d] (%X != %X)\n",i,*Dst,expected_data[i]); 

80     error++; 

81    } 

82    Dst++; 

83   } 

84   printf("%d error(s) occured.\n", error); 

85   if(error>0) passed=0; 

86  } 

87  return(passed); 

88 } 
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Appendix D  

Bilinear Interpolation NEON2 Code 

1 //*********************************************************************** 

2 //                     Stretch function of NEON2 test case 

3 //                      Algorithm taken from and adapted:  

4 //    http://pulsar.webshaker.net/2011/05/25/bilinear-enlarge-with-neon/ 

5 //************************************************************************ 

6  

7 int stretch_neon2(unsigned int *bSrc, unsigned int *bDst, int wDst, int hDst, bool 

test, int mult) 

8 { 

9  unsigned int wSrc = INPUT_SIZEy; 

10  unsigned int hSrc = INPUT_SIZEx; 

11  unsigned int *Dst; 

12  unsigned int wStepFixed16b, hStepFixed16b, wCoef, hCoef, x, y; 

13  unsigned int hc1, hc2, wc1[4], wc2[4], offsetX[4], offsetY; 

14  unsigned int i; 

15  unsigned int error = 0; 

16  bool passed = 1; 

17  uint32x4_t hc2vec, hc1vec; 

18  uint32x4_t wc2vec, wc1vec; 

19  uint32x4_t pixel1vec, pixel2vec, pixel3vec, pixel4vec; 

20  uint32x4_t destvec; 

21  uint32x4_t avec, bvec, cvec; 

22  uint32x4_t FFmask = vdupq_n_u32(255); 

23  

24  wStepFixed16b = ((wSrc - 1) << 16) / (wDst - 1); 

25  hStepFixed16b = ((hSrc - 1) << 16) / (hDst - 1); 

26  

27  for(i=mult;i>0;i--){ 

28   Dst=bDst; 

29   hCoef = 0; 

30  

31  

32   for (y = 0 ; y < hDst ; y++) //begin y-loop 

33   { 

34    hc2 = (hCoef / 512) & 127; 

35    hc2vec = vdupq_n_u32(hc2); 

36    // hc1 = 128 - hc2; 

37    hc1vec = vdupq_n_u32(128 - hc2); 

38    offsetY = hCoef / 65536; 

39    wCoef = 0; 

40   

41    for (x = 0 ; x < wDst ; x+=4) //begin x-loop 

42    { 

43     for(int z=0; z<4; z++) //begin i-loop 

44     {  

45      offsetX[z] = (wCoef / 65536); 

46      wc2[z] = (wCoef / 512) & 127; 

47      wc1[z] = 128 - wc2[z]; 

48      wCoef += wStepFixed16b; 

49     } //end i-loop 

50      

51     wc2vec = vld1q_u32(wc2); 

52     wc1vec = vld1q_u32(wc1); 

53  

54     //Each pixel is 24 bits with 3 color channels of 8 bits 

55     //preload next likely source into cache 

56     __builtin_prefetch(bSrc + offsetY * wSrc + offsetX[3] + 2, 0, 2);  

57     pixel1vec = vld1q_lane_u32(bSrc + offsetY * wSrc + offsetX[0], pixel1vec, 0); 

58     pixel1vec = vld1q_lane_u32(bSrc + offsetY * wSrc + offsetX[1], pixel1vec, 1); 

59     pixel1vec = vld1q_lane_u32(bSrc + offsetY * wSrc + offsetX[2], pixel1vec, 2); 

60     pixel1vec = vld1q_lane_u32(bSrc + offsetY * wSrc + offsetX[3], pixel1vec, 3); 

61  
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62     pixel3vec = vld1q_lane_u32(bSrc + offsetY * wSrc + offsetX[0] + 1, pixel3vec, 

0); 

63     pixel3vec = vld1q_lane_u32(bSrc + offsetY * wSrc + offsetX[1] + 1, pixel3vec, 

1); 

64     pixel3vec = vld1q_lane_u32(bSrc + offsetY * wSrc + offsetX[2] + 1, pixel3vec, 

2); 

65     pixel3vec = vld1q_lane_u32(bSrc + offsetY * wSrc + offsetX[3] + 1, pixel3vec, 

3); 

66      

67     //preload next likely source into cache 

68     __builtin_prefetch(bSrc + (offsetY + 1) * wSrc + offsetX[3] + 2, 0, 2);  

69     pixel2vec = vld1q_lane_u32(bSrc + (offsetY + 1) * wSrc + offsetX[0], 

pixel2vec, 0); 

70     pixel2vec = vld1q_lane_u32(bSrc + (offsetY + 1) * wSrc + offsetX[1], 

pixel2vec, 1); 

71     pixel2vec = vld1q_lane_u32(bSrc + (offsetY + 1) * wSrc + offsetX[2], 

pixel2vec, 2); 

72     pixel2vec = vld1q_lane_u32(bSrc + (offsetY + 1) * wSrc + offsetX[3], 

pixel2vec, 3); 

73      

74     pixel4vec = vld1q_lane_u32(bSrc + (offsetY + 1) * wSrc + offsetX[0] + 1, 

pixel4vec, 0); 

75     pixel4vec = vld1q_lane_u32(bSrc + (offsetY + 1) * wSrc + offsetX[1] + 1, 

pixel4vec, 1); 

76     pixel4vec = vld1q_lane_u32(bSrc + (offsetY + 1) * wSrc + offsetX[2] + 1, 

pixel4vec, 2); 

77     pixel4vec = vld1q_lane_u32(bSrc + (offsetY + 1) * wSrc + offsetX[3] + 1, 

pixel4vec, 3); 

78  

79     avec = 

vshrq_n_u32(vaddq_u32(vmulq_u32(vaddq_u32(vmulq_u32(vandq_u32(pixel1vec, FFmask), 

hc1vec), vmulq_u32(vandq_u32(pixel2vec, FFmask), hc2vec)), wc1vec), 

vmulq_u32(vaddq_u32(vmulq_u32(vandq_u32(pixel3vec, FFmask), hc1vec), 

vmulq_u32(vandq_u32(pixel4vec, FFmask), hc2vec)), wc2vec)), 14); 

80      

81     bvec = 

vshrq_n_u32(vaddq_u32(vmulq_u32(vaddq_u32(vmulq_u32(vandq_u32(vshrq_n_u32(pixel1ve

c, 8), FFmask), hc1vec), vmulq_u32(vandq_u32(vshrq_n_u32(pixel2vec, 8), FFmask), 

hc2vec)), wc1vec), vmulq_u32(vaddq_u32(vmulq_u32(vandq_u32(vshrq_n_u32(pixel3vec, 

8), FFmask), hc1vec), vmulq_u32(vandq_u32(vshrq_n_u32(pixel4vec, 8), FFmask), 

hc2vec)), wc2vec)), 14);     

82  

83     cvec = 

vshrq_n_u32(vaddq_u32(vmulq_u32(vaddq_u32(vmulq_u32(vandq_u32(vshrq_n_u32(pixel1ve

c, 16), FFmask), hc1vec), vmulq_u32(vandq_u32(vshrq_n_u32(pixel2vec, 16), FFmask), 

hc2vec)), wc1vec), vmulq_u32(vaddq_u32(vmulq_u32(vandq_u32(vshrq_n_u32(pixel3vec, 

16), FFmask), hc1vec), vmulq_u32(vandq_u32(vshrq_n_u32(pixel4vec, 16), FFmask), 

hc2vec)), wc2vec)), 14);     

84      

85     destvec = vaddq_u32(vaddq_u32(vshlq_n_u32(cvec, 16), vshlq_n_u32(bvec, 8)), 

avec); 

86     vst1q_u32(Dst, destvec); 

87     Dst += 4; 

88      

89    } //end x-loop 

90    Dst -= 4-(wDst%4); 

91    hCoef += hStepFixed16b; 

92   } //end y-loop 

93  } 

94  

95  

96  if(test){ 

97   Dst=bDst; 

98   for(i=0;i<wDst*hDst-1 && error < 10;i++){ 

99    if(expected_data[i] != *Dst){ 

100     printf("ERROR at [%d] (%X != %X)\n",i,*Dst,expected_data[i]); 
101     error++; 
102    } 
103    Dst++; 
104   } 
105   printf("%d error(s) occured.\n", error); 
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106   if(error>0) passed=0; 
107  } 
108  return(passed); 
109 } 
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