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The Irwin-Hall distribution is the distribution of the sum of a finite number of independent identically distributed uniform random
variables on the unit interval. Many applications arise since round-off errors have a transformed Irwin-Hall distribution and the
distribution supplies spline approximations to normal distributions. We review some of the distribution’s history. The present
derivation is very transparent, since it is geometric and explicitly uses the inclusion-exclusion principle. In certain special cases, the
derivation can be extended to linear combinations of independent uniform random variables on other intervals of finite length.The
derivation adds to the literature about methodologies for finding distributions of sums of random variables, especially distributions
that have domains with boundaries so that the inclusion-exclusion principle might be employed.

1. Introduction

The simple continuous uniform or rectangular distribution
Uniform(0, 1) with probability density function (PDF)𝑓(𝑥) =1 for 0 < 𝑥 < 1 and 𝑓(𝑥) = 0 otherwise is very important.
Two applications arise in numerical simulation and Bayesian
analysis of proportions. If 𝐹 is the cumulative distribution
function (CDF) of the continuous random variable 𝑋, then
the random variable 𝑌 = 𝐹(𝑋) has a Uniform(0, 1) dis-
tribution. The random variable 𝑋 can be simulated by first
simulating 𝑌 and then letting 𝑋 = 𝐹–1(𝑌). This is called
the inversion method ([1, page 295], [2, pages 194–196]). The
transformation is called the probability integral transforma-
tion ([3], [4, pages 203-204]). The uniform distribution is a
Bayesian noninformative prior distribution for the distribu-
tion of a random variable defined on the unit interval, such
as a beta distribution for a proportion ([2, page 33], [5, pages
82–90]). For other applications and generalizations of the
uniform distribution, see [6–8].

The present goal is to derive the CDF and the PDF of
the sum 𝑇 = ∑𝑛𝑖=1𝑋𝑖, where 𝑋𝑖 are independent identically
distributed Uniform(0, 1) random variables for 𝑖 = 1, 2, . . . , 𝑛.
The CDF and PDF are

𝐹 (𝑡) = 𝑛∑
𝑖=0

[(−1)𝑖 (𝑛𝑖) (𝑡 − 𝑖)𝑛𝑛! 𝑠𝑖 (𝑡)] , (1)

𝑓 (𝑡) = 𝑛∑
𝑖=0

[(−1)𝑖 (𝑛𝑖) (𝑡 − 𝑖)𝑛–1(𝑛 − 1)! 𝑠𝑖 (𝑡)] , (2)

respectively, where 𝑠𝑎(𝑡) is the unit step function

𝑠𝑎 (𝑡) = {{{
0 𝑡 < 𝑎
1 𝑎 ≤ 𝑡. (3)

The derivation in Section 2 is geometric and explicitly uses
the inclusion-exclusion principle.

Derivations of the distribution, which more recently
acquired its name Irwin-Hall, go back to Lagrange and
Laplace in the latter 18th century and the early 19th century.
Lagrange used generating functions based on 𝑎𝑥 to obtain the
distribution of T ([9, pages 603–612], [10, page 283]). Those
generating functions are a predecessor of characteristic func-
tions [10, page 286]. Laplace often revisited the problem of
finding the distribution of 𝑇 and employed many methods
([9, pages 714-715], [10, pages 286–301]). The distribution is
described in [1, pages 296–300], where it is called the Irwin-
Hall distribution.

Some derivations employ characteristic functions in a
variety of ways, since the characteristic function of a sum
of independent random variables is the product of each
summand’s characteristic function and the inverse transform
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is not intractable ([11, pages 188-189], [12–14], [15, pages 362-
363], [16, 17]). Others utilize the convolution integral for sums
and mathematical induction ([4, page 225], [11, pages 190-191
and 244–246], [18]). The distribution of the sum of uniform
random variables that may have differing domains is found
in [18–21]. Sums of dependent uniform random variables are
examined in [22, 23].

Direct integration techniques can be used to obtain the
distribution of a linear combination of Uniform(0, 1) random
variables ([15, pages 358–360], [24, 25]). Similar techniques
are used in [26] for uniform distributions whose domains are
intervals with zero as their left endpoints. The distribution of
the mean is obtained when all the constants are 1/𝑛. In
this case, the distribution is called the Bates distribution
([1, page 297], [27]), which can also be found by a simple
transformation of the Irwin-Hall distribution ([15, page 359],
[25, page 241]). Using moment generating functions, instead
of characteristic functions, Gray and Odell [28] found the
distribution of any linear combination of uniform random
variables with different domains allowed. In Section 3, the
present method or style of proof is extended to those cases
giving the same distributions.

Because 𝑇 is a sum, the Irwin-Hall distribution approx-
imates a normal distribution with a spline, since the Irwin-
Hall distribution in (2) is composed of polynomials.The sup-
port of 𝑇 is the interval [0, 𝑛]; the mean, mode, and median
of 𝑇 are 𝑛/2; and its variance is 𝑛/12. By symmetry, all odd
central moments are zero, including skewness. The kurtosis
is 3−6/(5𝑛) [1, page 300].This is the measure of kurtosis that
is 3 for a normal distribution, so Irwin-Hall distributions are
platykurtic, and the kurtosis is close to 3 for large 𝑛. According
to the Central Limit Theorem,

𝑍 = 𝑇 − 𝑛/2√𝑛/12 𝐷→ Normal (0, 1) as 𝑛 → ∞ (4)

([4, pages 280–283], [11, pages 213–218 and 245], [29, pages
220–222]). Figure 1 contains a normal distributionwithmean𝑛/2 = 3/2 and variance 𝑛/12 = 3/12 = 1/4 and its approx-
imating Irwin-Hall distribution with 𝑛 = 3. The approxi-
mation is very good even for this small value of 𝑛 [30]. The
uniform error bound for the normal(0, 1) CDF Φ(𝑧) is

|𝐹 (𝑧) − Φ (𝑧)| ≤ √320√𝑛 (5)

([31], [32, page 51]). Approximations with spline fitting can
be useful with or without complete information about the
distributional shape [33, 34].

Since round-off errors for random variables that are
rounded to the nearest integer are distributed Uniform(−1/2,
1/2), the sum of round-off errors is a linearly transformed
Irwin-Hall distribution [12]. For large 𝑛, the sum of round-off
errors is easily described with a normal distribution [29,
page 222]. For small 𝑛, the Irwin-Hall distribution is also
appropriate and not too complicated.

Lee et al. [35] use the Irwin-Hall distribution to examine
the efficacy of goodness-of-fit tests. Heinrich et al. [36]
adapt the Irwin-Hall distribution in consideration of the
accumulated accuracy of round-off errors. Inequalities for

0.5

0 1.5 3

1

f
(t

t

)

Figure 1: Irwin-Hall distribution with 𝑛 = 3 and the matching nor-
mal distribution with mean 3/2 and variance 1/4.

linear combinations of independent random variables whose
domains have an upper bound are given in [37].

2. Derivation of the Irwin-Hall Distribution

Theorem 1. Let 𝑋𝑖 for 𝑖 = 1, 2, . . . , 𝑛 be independent random
variables, each having the continuous uniform distribution on
the unit interval, and let 𝑇 = ∑𝑛𝑖=1𝑋𝑖. Then, the CDF and PDF
of 𝑇 are given by (1) and (2), respectively.

Proof. For𝑚 ∈ {0, 1, 2, . . . , 𝑛 − 1} and 𝑡 ∈ [𝑚,𝑚 + 1), let
𝐴𝑛 (𝑡) = {(𝑥1, 𝑥2, . . . , 𝑥𝑛) : 𝑥𝑖 ≥ 0 for 𝑖

∈ {1, 2, . . . , 𝑛} , 𝑛∑
𝑖=1

𝑥𝑖 ≤ 𝑡} ,
𝐵𝑗 (𝑡) = {(𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ 𝐴𝑛 (𝑡) : 𝑥𝑗 > 1} ,
𝐶𝑛 = {(𝑥1, 𝑥2, . . . , 𝑥𝑛) : 0 ≤ 𝑥𝑖 ≤ 1} ,

(6)

which is the 𝑛-dimensional unit cube.The set complement of𝐶𝑛 with respect toR𝑛 is denoted by 𝐶𝑛.
The hypervolume of the 𝑛-dimensional solid 𝐴𝑛(𝑡) has

value

Vol (𝐴𝑛 (𝑡)) = 𝑡𝑛𝑛! (7)

[38], since the solid is a standard orthogonal simplex from
the corner of an 𝑛-cube. Similarly, if 𝑘 ∈ {1, 2, . . . , 𝑚}, then
the hypervolume of⋂𝑘𝑗=1 𝐵𝑗(𝑡) is

Vol( 𝑘⋂
𝑗=1

𝐵𝑗 (𝑡)) = (𝑡 − 𝑘)𝑛𝑛! . (8)

For 𝑘 ∈ {𝑚 + 1,𝑚 + 2, . . . , 𝑛},
𝑘⋂
𝑗=1

𝐵𝑗 (𝑡) = 𝜑,

Vol( 𝑘⋂
𝑗=1

𝐵𝑗 (𝑡)) = 0,
(9)

since the sumof nonnegative coordinates exceeds the number
of coordinates which are greater than 1.
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Figure 2: The CDF 𝐹(𝑡) increases as 𝑡 increases.

By the inclusion-exclusion principle,
𝐹 (𝑡) = 𝑃 (𝑇 ≤ 𝑡) = Vol (𝐴𝑛 (𝑡) ∩ 𝐶𝑛) = Vol (𝐴𝑛 (𝑡))

− Vol (𝐴𝑛 (𝑡) ∩ 𝐶𝑛) = Vol (𝐴𝑛 (𝑡))
− Vol( 𝑛⋃

𝑗=1

𝐵𝑗 (𝑡)) = 𝑡𝑛𝑛! −
𝑚∑
𝑘=1

(–1)𝑘–1
⋅ ∑
1≤𝑗1<𝑗2<⋅⋅⋅<𝑗𝑘≤𝑛

Vol (𝐵𝑗1 (𝑡) ∩ 𝐵𝑗2 (𝑡) ∩ ⋅ ⋅ ⋅ ∩ 𝐵𝑗𝑘 (𝑡))
= 𝑡𝑛𝑛! −

𝑚∑
𝑘=1

(–1)𝑘–1

⋅ (𝑛𝑘)Vol (𝐵1 (𝑡) ∩ 𝐵2 (𝑡) ∩ ⋅ ⋅ ⋅ ∩ 𝐵𝑘 (𝑡)) = 𝑡𝑛𝑛!
− 𝑚∑
𝑘=1

(−1)𝑘–1 (𝑛𝑘) (𝑡 − 𝑘)𝑛𝑛! = 𝑚∑
𝑘=0

(−1)𝑘 (𝑛𝑘)
⋅ (𝑡 − 𝑘)𝑛𝑛! .

(10)

In (1), 𝐹(𝑛) is the Stirling number of the second kind with
both parameters equal to 𝑛 and has numerical value 1 [39,
pages 38-39]. If 𝑡 ≥ 𝑛, then 𝐶𝑛 ⊂ 𝐴𝑛(𝑡), so 𝐹(𝑡) = 1 in this
case. Since 𝐹 is a polynomial, ∑𝑛𝑘=0(–1)𝑘 ( 𝑛𝑘 ) ((𝑡–𝑘)𝑛/𝑛!) = 1
for all real-valued 𝑡. Introducing the unit step function gives
(1), and differentiation with respect to 𝑡 gives (2).
3. Discussion and a Generalization

Figures 2 and 3 reveal the structure of the CDF

𝐹 (𝑡) = 12𝑡2𝑠0 (𝑡) − (𝑡 − 1)2 𝑠1 (𝑡) + 12 (𝑡 − 2)2 𝑠2 (𝑡) (11)

for 𝑛 = 2. Figure 2 demonstrates how the hyperplane (line),
which is the line of a constant sumof the values of the random
variables and is perpendicular to the 𝑛-cube’s (square’s) main
diagonal, accrues volume (area) below it. Figure 3 illustrates
the regions that are included and excluded for various
positions of the hyperplane (line) and how vertices are meet
in sets. For 𝑛 = 2, the binomial coefficients, which provide the
counts of the vertices, are 1 for (0, 0), 2 for (1, 0) and (0, 1),
and 1 for (1, 1), as seen in Figures 2 and 3. In (11), the first
term is the area of the large triangle in Figures 3(a), 3(b),
and 3(c); the second term is the sum of the areas of the two
hatched triangles in Figure 3(b), where exactly one of {𝑥1, 𝑥2}
is greater than 1, and in Figure 3(c); and the third term is the
area of the crosshatched triangle in Figure 3(c), where both𝑥1 and 𝑥2 are greater than 1.

Figure 4 shows the same geometric interpretation for 𝑛 =3. In its CDF

𝐹 (𝑡) = 16𝑡3𝑠0 (𝑡) − 12 (𝑡 − 1)3 𝑠1 (𝑡) + 12 (𝑡 − 2)3 𝑠2 (𝑡)
− 16 (𝑡 − 3)3 𝑠3 (𝑡) ,

(12)

the first term is the volume using (7) of the large orthogonal
simplex in Figures 4(a), 4(b), and 4(c) with edges of length 𝑡.
The second term is the sum of the volumes using (8) of the
three orthogonal simplexes, where exactly one of {𝑥1, 𝑥2, 𝑥3}
is greater than 1. In Figure 4(b), the vertices 𝑃1, 𝑃2, 𝑃3, and 𝑃4
of the simplex with 𝑥1 > 1 are labeled. Their coordinates are𝑃1 : (𝑡, 0, 0), 𝑃2 : (1, 0, 𝑡−1), 𝑃3 : (1, 𝑡−1, 0), and 𝑃4 : (1, 0, 0).
The lengths of the edges 𝑃1𝑃4, 𝑃2𝑃4, and 𝑃3𝑃4 are 𝑡 − 1. The
third term of (12) is the sum of the three volumes using
(8), where exactly two of {𝑥1, 𝑥2, 𝑥3} are greater than 1.
In Figure 4(c), the vertices are labeled 𝑃3, 𝑃5, 𝑃6, and 𝑃7 in
the region where both 𝑥1 and 𝑥2 are greater than 1. Their
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Figure 3: Computing the CDF for 𝑛 = 2 for increasing values of 𝑡.

coordinates are 𝑃3 : (1, 𝑡 − 1, 0), 𝑃5 : (𝑡 − 1, 1, 0), 𝑃6 : (1, 1, 𝑡 −2), and 𝑃7 : (1, 1, 0). The lengths of the edges 𝑃3𝑃7, 𝑃5𝑃7, and𝑃6𝑃7 are 𝑡 − 2. The fourth term is the region that is shared by
all the other regions, analogous to the crosshatched region in
Figure 3(c).

In the same way, for any 𝑛, the terms are the 𝑛-volumes
of orthogonal 𝑛-simplexes, whose multiplicity is counted by
binomial coefficients determined by the number of vertices
of the 𝑛-cube in sets as the “moving” 𝑛 − 1-dimensional
hyperplane “passes” them as 𝑡 increases. The hyperplane is
perpendicular to the diagonal line 𝑥1 = 𝑥2 = 𝑥3 = ⋅ ⋅ ⋅ = 𝑥𝑛.
The volumes of the simplexes are computed using (7) and (8).

The Website [40] has a free simulator for 𝑇, where
selecting 𝑛 yields the PDF (2). Other calculators are at [41, 42].

The method of proof in Section 2 can be extended to
linear combinations of uniform randomvariables on different
intervals. Suppose that 𝑋1, 𝑋2, . . . , 𝑋𝑛 are independent, that

𝑋𝑘 is uniformly distributed on the interval [𝑎𝑘, 𝑏𝑘], and that𝑐1, 𝑐2, . . . , 𝑐𝑛 are real constants. Also,
𝑃( 𝑛∑
𝑘=1

𝑐𝑘𝑋𝑘 ≤ 𝑡) = 𝑃( 𝑛∑
𝑘=1

𝑑𝑘𝑌𝑘 ≤ 𝑡) , (13)

where

𝑌𝑘 = 𝑋𝑘 − 𝑎𝑘𝑏𝑘 − 𝑎𝑘 ,
𝑑𝑘 = 𝑐𝑘 (𝑏𝑘 − 𝑎𝑘) ,
𝑡 = 𝑛∑
𝑘=1

𝑎𝑘𝑐𝑘.
(14)

Then, 𝑌1, 𝑌2, . . . , 𝑌𝑛 are independent uniform random vari-
ables on [0, 1], and 𝑃(∑𝑛𝑘=1 𝑐𝑘𝑋𝑘 ≤ 𝑡) can be interpreted as
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Figure 4: Computing the CDF for 𝑛 = 3 for increasing values of 𝑡.

the hypervolume of the solid that consists of all points that lie
inside the unit hypercube [0, 1]𝑛 and on one side of the hyper-
plane∑𝑛𝑘=1 𝑑𝑘𝑌𝑘 = 𝑡. Now, proceed by inclusion-exclusion as
in Section 2. In general, the formula for 𝑃(∑𝑛𝑘=1 𝑐𝑘𝑋𝑘 ≤ 𝑡) is
complicated because of the lack of symmetry that is caused
by the presence of 𝑑1, 𝑑2, . . . , 𝑑𝑛. This increases the number
cases and removes the congruence of the solids of each size
whose hypervolumes need to be added or subtracted at each
stage of the inclusion-exclusion process. Nevertheless, the
correct distribution is obtained in this manner. A special case
in which these problems disappear is 𝑑1 = 𝑑2 = ⋅ ⋅ ⋅ = 𝑑𝑛 = 𝑑,
so that

𝑃( 𝑛∑
𝑘=1

𝑐𝑘𝑋𝑘 ≤ 𝑡) =
{{{{{{{{{{{

𝐹(𝑡𝑑) for 𝑑 > 0
1 − 𝐹(𝑡𝑑) for 𝑑 < 0,

(15)

where 𝐹 is given in (1).
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