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A model is proposed for two-way tables of measurement data containing outliers. Te two independent variables are categorical
and error-free. Neither missing values nor replication is present. Te model consists of the sum of a customary additive part that
can be ft using least squares and a part that is composed of outliers. Recommendations are made for methods for identifying cells
containing outliers and ftting the model. A graph of the observations is used to determine the outliers’ locations. For all cells
containing an outlier, replacement values are determined simultaneously using a classical missing-data tool.Te result is called the
adjusted table. Te inserted values are such that, when a mean-based ftting of the adjusted table is performed, the residuals in
those cells are zero. Te outlying portion of the observation in each of those cells is the diference of the observation and the
replacement value. In this way, outliers are removed from further analyses of the adjusted table.Tis is particularly helpful because
outliers can greatly contaminate and alter computations and conclusions. Subsequently, the causes of the outliers might be
determined, and statistical estimation and testing can be implemented on the adjusted table.

1. Introduction

Te modeling of an m× n table that contains outliers and is
otherwise approximately additive is addressed. An outlier is
an observation that is substantially diferent from the other
observations ([1], p. 4; [2], p. 1; [3], pp. 3-4). Methods are
recommended for the identifcation of the cells containing
outliers, computation of replacement values for those cells,
and estimation of the sizes of the outliers beyond the re-
placement values. Tey fll the need for a set of systematic
and uncomplicated methods.

Te goal is a least-squares, i.e., mean-based, analysis of
the observations. However, when outliers are present, that
statistical analysis is unreliable due to cross contamination
among the table’s cells. Te cells that contain outliers are
identifed, and the outliers’ sizes are estimated in order to
determine whether they might be impactful on the statistical
analysis. In the model and ftting procedure, the underlying
additive observations are prepared for analyses, and the
outlying measurements, being isolated both in the model
and the ft, can be concurrently investigated, including for
causes.

Te approach is guided by a desire for simplicity, be-
lieving that little is gained from excessive computations and
manipulation of the observations and that, indeed, much can
be lost with subsequent misleading outcomes. Imposing or
guessing a probability model can cause its own problems. If
it is incorrect, non-outlying observations might be mis-
identifed as outlying because they do not ft the model or
might be missed because they do ([2], pp. 60–62).

It is required that the outliers’ identifcation method
always works, that is, outliers are not missed and non-
outliers are not identifed as outliers. Te method should not
presuppose a certain fxed number of outliers, as some
methods do. A governing principle is that the methods must
not break down.

Te cells that contain outlying values are found by ex-
amining a three-dimensional graph of the observations,
where it is extremely unlikely that outliers will be masked or
non-outliers will be misidentifed as outliers. Each outlier is
removed from the analysis, and a perfectly ftting value is
inserted into its cell. Te cell’s replacement value eliminates
repercussions by the outlier on further analyses. Te outliers
themselves can be important inmany ways ([2], pp. 399–418;
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[3], pp. 16-17, 199-200). To the person using the observa-
tions, the role of the outlying observations can be either
benefcial or harmful.Te outliers might indicate a cure for a
disease or combinations of the independent variables that
produce uniquely favorable outcomes with either high or
low values of the dependent variable. On the other hand,
outliers may highlight pairs of values of the independent
variables that cause harm and should be avoided. Te
identifed outlying values can be errors and might be in-
vestigated as such.

For measurement data yij, the model is

yij � μ + αi + βj + εij + 
(p,q)

δijI(i,j)�(p,q), (1)

with 1≤ i≤m, 1≤ j≤ n, m≥ 3, and n≥ 3, where there is one
observation per cell. Te frst four terms are considered a
conventional additive, mean-based model. Cells identifed as
(p, q) contain outliers of size δpq beyond the additive model.
Te function I is the indicator function.

Te graph of the observations serves the purpose of
fnding the locations of the outliers and checking the ap-
propriateness of the additive model. Te independent axes
are the row and column numbers i and j. Te graphing
program allows rotation of the axes, so that the observations
can be viewed from any vantage point. If the observations do

not appear sufciently planar, a transformation of the de-
pendent variable should be considered. If the points cor-
responding to a whole row or column are questionable, that
level of the dependent variable should be examined.

To simultaneously determine replacement values for all
the cells identifed as having an outlier, place a variable in each
of those cells and fnd the additive ft for them. Te ftted
values depend upon the variables in a linear way. Set each
ftted value equal to the respective variable. Te solution of
this system of linear equations is the replacement value for the
adjusted table. Tey give residuals of zero in those cells in
mean-based ftting of the adjusted table. Te estimates of the
sizes of the outlying portions are the diferences between the
observations and the replacement values. Te outlying por-
tions of the cells’ observations are segregated from the ad-
justed table. For each replaced value, one degree of freedom is
lost in subsequent analyses of the m× n adjusted table.

Example 1. Consider the artifcial data in Table 1 [4]. Fig-
ure 1 shows that, except for the two outliers in cells (1, 1) and
(3, 3), the data appear to be close to planar, thus additive. No
transformation is required. Placing y11′ and y33′ in cells (1, 1)
and (3, 3), fnding the ftted values, and setting the ftted
values equal to y11′ and y33′ gives

y11′ + 2 + 1 + 2
4

+
y11′ + 2 + 2

3
–
y11′ + 2 + 1 + 2 + 2 + 0 + 2 + 2 + 2 + 1 + y33′ + 0

12
� y11′ , (2)

and

2 + 1 + y33′ + 0
4

+
1 + 2 + y33′

3
–
y11′ + 2 + 1 + 2 + 2 + 0 + 2 + 2 + 2 + 1 + y33′ + 0

12
� y33′ , (3)

or 6y11′ + y33′ � 17 and y11′ + 6y33′ � 7, whose solution gives
the replacement values y11′ � 19/7 and y33′ � 5/7. Fitting the
adjusted table containing these values and using the outlying
portions 14–19/7 = 79/7 and 5–5/7 = 30/7 in cells (1, 1) and
(3, 3), the ft of the model is

yij �
61
42

+

10
21

1
21

–
11
21

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+
33
42

–
19
42

–
9
42

–
5
42

  +
79
7

I(i,j)�(1,1) +
30
7

I(i,j)�(3,3).

(4)

2. Computing the Replacement Values

Tis section formally presents the method employed to
compute the values for insertion into the adjusted table to

replace the values in the cells containing outliers. Te
method’s advantages are that it is computationally simple
even for a large number of outliers and requires no it-
erations. Te values are unique, if no entire row or column
is considered to be outlying. Te values yield residuals of
zero in subsequent mean-based analyses of the adjusted
table.

Designate the original m × n table by T. Table T′ is the
same as T, except that the cells containing outliers have
had their observations replaced by placeholders. Te
placeholder in cell (h, k) is designated by yhk

′ . Table T″ is
the same as T, except that the cells of T containing
outliers are composed of zeros. Te ftted value for cell (h,
k) in T is

fhk �


n
j�1 yhj

n
+


m
i�1 yik

m
–


m
i�1 

n
j�1 yij

mn
. (5)

Teftted values for cell (h, k) in T ′and T″are designated
as fhk
′ and fhk

″, respectively.
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Theorem  (one outlier). If T has one outlier, which is in cell
(h, k), then the replacement value is

yhk
′ �

mn

(m–1)(n–1)
fhk
″. (6)

Proof. Using (2) and setting the ftted value in T′equal to yhk
′

gives

fhk
′ �

yhk
′

n
+

yhk
′

m
–
yhk′
mn

+ fhk″ � yhk′ , (7)

whose solution is (6).

Te outlying portion of the observation in cell (h, k) in
Teorem 1 is defned to be yhk–yhk′ , which is an estimator of
δhk in model (1). □

Theorem 2 (two outliers). If T has two outliers, which are in
cells (h, k) and (s, t), then the replacement values are given by
the solutions to the following systems of linear equations,
whose solutions are unique.

Case 1 (outliers in diferent rows and columns). If s≠ h and
t≠ k, then

(m–1)(n–1) yhk
′ + yst
′ � mnfhk

″, (8)

and

yhk
′ +(m–1)(n–1) yst

′ � mnfst
″. (9)

Case 2 (outliers in the same row and diferent columns). If
s� h and t≠ k, then

(m–1)(n–1) yhk
′ –(m–1) yht

′ � mnfhk
″, (10)

and

–(m–1) yhk
′ +(m–1)(n–1) yht

′ � mnfht
″. (11)

Case 3 (outliers in diferent rows and the same column). If
s≠ h and t� k, then

(m–1)(n–1) yhk
′ –(n–1) ysk

′ � mnfhk
″, (12)

and

–(n–1) yhk
′ +(m–1)(n–1) ysk

′ � mnfsk
″. (13)

Proof. For Case 1 using (5),

fhk
′ �

yhk
′

n
+

yhk
′

m
–
yhk′ + yst′
mn

+ fhk
″ � yhk
′ , (14)

and

fst
′ �

yst
′

n
+

yst
′

m
–
yhk′ + yst′
mn

+ fst
″ � yst
′, (15)

which are equivalent to (9). Since the determinant of the
coefcients is (m− 1)2(n− 1)2 −1> 0, there is just one
solution.

For Case 2,

fhk
′ �

yhk
′ + yht
′

n
+

yhk
′

m
–
yhk′ + yht′
mn

+ fhk
″ � yhk
′ , (16)

and

fht
′ �

yhk
′ + yht
′

n
+

yhk
′

m
–
yhk′ + yht′
mn

+ fht
″ � yht
′, (17)

which yields (11), where the determinant of the coefcients is
non-zero.

Te proof of Case 3 is similar to the proof of Case 2.

Te following theorem can be proven with the method of
the proof of Teorem 2. □

Theorem 3 (three outliers). If T has three outliers, which are
in cells (h, k), (s, t), and (u, v), then the replacement values are
given by the solutions to the following systems of linear
equations.

Case 4 (outliers in diferent rows and columns). If k, s, and u

are distinct and k, t, and v are distinct, then

(m–1)(n–1) yhk
′ + yst
′ + yuv
′ � mnfhk

″,
yhk
′ +(m–1)(n–1)yst′ + yuv′ � mnfst

″,
(18)

and

yhk
′ + yst
′ +(m–1)(n–1) yuv

′ � mnfuv
″. (19)

Table 1: Tukey’s artifcial data for Example 1.

14 2 1 2
2 0 2 2
2 1 5 0

16

14

12

10

8

6

4

2

0 0

0
-1

-1

1

1

2

2

3

3

4

4

5

5

6

6

7

y

x

(3, 3, 5)

(1, 1, 14)

z

Figure 1: Observations in Table 1 with (x, y, z)� (i, j, yij).
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Case 5 (two outliers in one row and the third in a diferent
row and all outliers are in diferent columns). If s� h≠ u and
k, t, and v are distinct, then

(m–1)(n–1)yhk′ –(m–1)yht′ + yuv′ � mnfhk
″,

–(m–1)yhk′ +(m–1)(n–1)yht′ + yuv′ � mnfht
″,

(20)

and

yhk
′ + yht
′ +(m–1)(n–1)yuv′ � mnfuv″. (21)

Case 6 (two outliers in one column and the third in a
diferent column and all outliers are in diferent rows). If
t� k≠ v and h, s, and u are distinct, then

(m–1)(n–1)yhk′ –(n–1)ysk′ + yuv′ � mnfhk
″,

–(n–1)yhk′ +(m–1)(n–1)ysk′ + yuv′ � mnfsk
″,

(22)

and

yhk
′ + ysk
′ +(m–1)(n–1)yuv′ � mnfuv″. (23)

Case 7 (two outliers in one row and the third in the same
column as one of the two). If s� h≠ u and v � k≠ t, then

(m–1)(n–1)yhk′ –(m–1)yht′–(n–1)yuk′ � mnfhk
″,

–(m–1)yhk′ +(m–1)(n–1)yht′ + yuk′ � mnfht
″,

(24)

and

–(n–1)yhk′ + yht′ +(m–1)(n–1)yuk′ � mnfuk″. (25)

Case 8 (outliers in one row). If h� s� u and k, t, and v are
distinct, then

(m–1)(n–1)yhk′ –(m–1)yht′–(m–1)yhv′ � mnfhk
″,

–(m–1)yhk′ +(m–1)(n–1)yht′–(m–1)yhv′ � mnfht
″,

(26)

and

–(m–1)yhk′ –(m–1)yht′ +(m–1)(n–1)yhv′ � mnfhv″. (27)

Case 9 (outliers in one column). If k� t� v and h, s, and u

are distinct, then

(m–1)(n–1)yhk′ –(n–1)ysk′–(n–1)yuk′ � mnfhk
″,

–(n–1)yhk′ +(m–1)(n–1)ysk′–(n–1)yuk′ � mnfsk
″,

(28)

and

–(n–1)yhk′ –(n–1)ysk′ +(m–1)(n–1)yuk′ � mnfuk″. (29)

In Cases 4–7 of Teorem 3, the determinants of the
coefcients of the equations are non-zero form≥ 3 and n≥ 3,
so there is a unique solution. In Case 8, the determinant is
−(m− 1)3n(n− 3), which is zero solely for n� 3 columns. If
the table has only three columns and a particular row has
three outliers, the estimates are not uniquely determined.
Case 9 is similar with more than three rows being required

for uniqueness of the estimates. Cases 8 and 9 illustrate the
requirement for a unique solution that no single row or
column is comprised of outliers.

A pattern emerges from Teorems 1–3.

Theorem 4 (any number of outliers). For v cells that contain
outliers, the replacement values are given by the solutions to
the system of linear equations:

MUVYV
′ � mnFU

″, (30)

which are given in matrix notation, where the subscripts are
for all the cells (i, j) that are among the cells (p, q), as displayed
in model (1). Te vector YV

′ is a column of the replacement
values yij

′, which can be listed in any order, as long as
consistency is maintained. Te elements of column vector FU

″
are the appropriate fij

″. Te v × v matrix MUV is symmetric.
Each element on the main diagonal is (m− 1)(n− 1). Te of
-diagonal elements are +1, −(m− 1), or −(n− 1). Te entry
depends upon whether U and V represent cells that are in
neither the same row nor the same column, in the same row,
or in the same column, respectively. Te solution is unique if
there is no complete row or column of outliers.

If all cells of a row or column are deemed to contain
outliers, then the solution is not unique because adding
any number to each replacement value is also a solution.
At least one non-outlying cell is needed in the row or
column in order to anchor the row or column’s run, so
that the remaining values are unique. As few as minimum
{m, n} outliers are sufcient for non-uniqueness. A row or
column of outliers would indicate that the corresponding
level of the independent variable should be examined
before further analyses are attempted, so this is not a
threat to this procedure.

Te other extreme is that all replacement values are
unique if the cells are in anm− 1 by n− 1 block. In that case,
the determinant of MUV≠ 0, and a perfectly ftting, additive
adjusted table is obtained. Te row outside the block de-
termines the diferences for the additivity of the replacement
values, and the single data value in each of the other rows
determines the scale of its row. Because one degree of
freedom is lost in the error term of (1) for each replacement
value, determining the block’s (m− 1) (n− 1) replacement
values reduces the degrees of freedom to zero. Tis maxi-
mum number of outliers would indicate that the so-called
outliers are the typical data. Te number of cells that might
be considered to contain outliers gives reassurance that the
breakdown of this method will not be met in practice. In-
deed, this method is very safe.

3. Example

Example 2. Consider the data in Table 2. A graph shows that
there are high outliers in cells (1, 2) and (1, 3) and a low
outlier in cell (3, 4). Tis is an instance of Case 5 of Teorem
3with (h, k) = (1, 2), (h, t) = (1, 3), and (u, v)= (3, 4). Table T″
is given in Table 3.

Te equations for the replacement values are
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8y12′ –2y13′ + y34′ � 24,

–2y12′ + 8y13′ + y34′ � 34,
(31)

and

y12′ + y13′ + 8y34′ � 117, (32)

whose solution is y12′ � 2, y13′ � 3, and y34′ � 14 Te cor-
responding outlying portions in those cells are 10− 2� 8,
12− 3� 9, and 4−14� −10.

4. Concluding Comments

Te cells designated as (p, q) in (1) are few in number and
contain values that might be called outliers, interactions,
errors, blunders, or contaminations or described as renegade,
rogue, spurious, deviant, unrepresentative, stray, discordant,
incongruous, or wild. Te designation outlier is used in order
to avoid words that might appear to prejudice the search for
the cause of an unusual value. Te model clarifes the manner
in which outliers are set aside for examination.

Te graphical method for identifying outliers does not
involve any manipulation of the observations, and thus no
assumptions or artifacts of calculations enter the procedure. In
particular, it does not involve residuals, which are widely used
but fraught with pitfalls ([1], pp. 281–328). An aim is to alter the
observations as little as possible by using a very light touch.

A graph of the observations may be the safest method for
determining the locations of outliers. Mean-based methods
using z-scores can be fawed because outliers tend to increase
standard deviations so that z-scores are reduced [5, 6].
Mean-based procedures have the feature that outliers con-
taminate multiple cells and lose their impact on their own
cells ([1], pp. 284–285, 301–318; [7], pp. 184–185; [8]). An

outlier biases the statistics that are being used to detect it and
introduces dependence among the residuals. For a very
simple example, take the artifcial observations in Table 4,
which have residuals of zero for an additive ft. Adding 9 to
the entry in cell (1, 3) and performing a mean-based additive
ft produce the residuals in Table 5.Te spurious value in cell
(1, 3) has produced non-zero residuals in every cell. Al-
though the largest residual is in cell (1, 3), if some noise was
present, the outlier could avoid detection and raise the
variance for a subsequent estimation or testing procedure.

Graphing allows the observations to speak for them-
selves with no contamination or distortions and, impor-
tantly, with no assumption about the number of outliers.
Decisions about the existence of a possible outlier do not
have to be made through the lens of statistical calculations.
Many graphing programs are freeware and work on many
diferent platforms.Tey allow the user to rotate the axes and
thus to examine the data cloud from any viewpoint, so that
observations away from the data cloud can be seen and
identifed. One program is GeoGebra [9] (available at
https://www.geogebra.org), which is used for Figure 1.

Some other options for identifying outliers are median
based because themedian is known for its resistance to outliers.
Two options that are often suggested are to ft the table using
median polish ([7], pp. 184–185) or to determine whether
observation is outside the inner fences, as in a boxplot [10].
However, both options have weaknesses. Median polish has the
signifcant disadvantage that it can fail when there are outliers in
all but one of the entries of a row or a column [8]. So, for a 3× 3
table with outliers in cells (1, 1) and (1, 2), median polish might
indicate that there is an outlier in cell (1, 3). Other unsatisfactory
features of median polish are that diferent results might be
obtained depending upon whether rows or columns are pol-
ished frst and whether the mid-median or the low median is
used. Te procedure can fail to terminate and may even cycle.

Te inner fences are Q1 − 1.5 IQR and Q3 + 1.5 IQR,
where Q1 and Q3 are the frst and third quartiles and IQR is
the interquartile range Q3 −Q1. Although this tool can be
efective for univariate data ([2], pp. 45-46; [3], pp. 13-14), it
ignores the row-column structure of the observations. It fails
for tables that are nearly additive and tilted. For example, if
the entries increase greatly to the right, and the outlier
occurs at the cell in the frst column whose underlying values
are small, then the outlier might be about the size of the
values in the right-hand columns and be undetected in the
undiferentiated batch of observations. It would be dis-
covered in a graph, as it would be far from the data cloud.

Tere exist many diverse strategies for identifying out-
lying observations, which involve extra assumptions, sums of
squares or other distance measures or even altering the
defnition of outlying to being on the boundary of a data
cloud, all of which we have sought to circumvent. Tey in-
clude looking for reduction in variance [11], nearest neighbor
techniques [12], and fnding edges and corners in the data
cloud [13]. Another technique is to search for low-density
areas in the cloud of data [14], which can use few assumptions
but can be computationally intensive. Some of these methods
are difcult to implement when the independent variables’
values are not ordered, which is the case addressed here.

Table 4: Artifcial observations to show the impact of an outlier.

1 2 3
4 5 6
7 8 9

Table 5: Residuals for an additive ft to Table 4 with 9 added to the
cell (1, 3).

−2 −2 4
1 1 −2
1 1 −2

Table 2: Artifcial data T for Example 2.

1 10 12 4 5
6 7 8 9 10
11 12 13 4 15

Table 3: T″ corresponding to T in Table 2.

1 0 0 4 5
6 7 8 9 10
11 12 13 0 15

International Journal of Mathematics and Mathematical Sciences 5
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Te process used for fnding the replacement values in
the adjusted table refects the operations based on means,
which are envisioned for the adjusted table; consequently,
no new concepts are added to the analysis. Te calculations
are extremely simple; in particular, no iterations are
involved.

Te replacement values are numerically the same as Yates’
values used in cells where there are missing values ([15]; [16],
pp. 33–34). For just one missing value, which is in cell (h, k),

yhk
′ �

m 
n
j�1 yhj
″ + n 

m
i�1 yik
″–

m
i�1 

n
j�1 yij″

(m–1)(n–1)
, (33)

has been suggested to be inserted into the cell with the
missing value ([16], p. 34; [17]; [18], p. 9). Expressions (6)
and (33) are equivalent. Adding and subtracting yhk in each
of the three summations in (33) yields

yhk
′ �

mnfhk + (1–m–n)yhk
(m–1)(n–1)

, (34)

which is a weighted average that does not depend upon the
value of yhk. (34) uses quantities that contain yhk and
thereby makes unnecessary the introduction of T′ and T″.

Tere may be arguments in favor of other replacement
values. Leaving a hole is not recommended ([8], [16], pp. 4,
32–33). A candidate for a replacement value for a single
outlier in cell (h, k) is a weighted average of values in the
cell’s row and column. Using a cell’s nearest neighbors
requires care because neither the rows nor the columns are
ordered. Te only neighbors to a cell are the cells in its row
and column, and all those values are equally close.

When there are multiple outliers, replacement values for
the cells are determined simultaneously, so that the cells’
residuals would be zero in a mean-based ft of the table with
the replacement values. In this way, each cell’s value does not
contaminate the replacement values for the other cells. A
sequential accommodation of outliers that might eliminate
them one at a time has that shortcoming.

Te scope of this paper is limited to categorical or
qualitative independent variables and quantitative depen-
dent variables. Independent variables with more structure,
such as an ordering, might be taken advantage of by using
the fact that it creates a proximity measure. If the dependent
variables are counts with a sufcient range, they might be
treated as if they were continuous, instead of discrete. Te
feld of outlier detection and analysis for categorical de-
pendent variables is large and very active ([2], pp. 249–272;
[3], pp. 69–93). Its techniques depend upon the features of
the particular variables, in order to defne nearness or
similarities and to identify the appropriate discrete proba-
bility distributions.

Te suggested methodology is practical. Users are armed
with knowing the locations of the irregular observations and
possessing estimates of the sizes of these unusual values.
Tey can decide if they are meaningfully large in magnitude
and whether or not to search for causes. Since the recom-
mended technique is very accessible, straightforward, and
easy to implement, this is a suitable topic to introduce into
elementary statistics courses.
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