
Rochester Institute of Technology Rochester Institute of Technology 

RIT Digital Institutional Repository RIT Digital Institutional Repository 

Articles Faculty & Staff Scholarship 

2-2022 

Probability Models with Discrete and Continuous Parts Probability Models with Discrete and Continuous Parts 

James E. Marengo 
Rochester Institute of Technology 

David L. Farnsworth 
Rochester Institute of Technology 

Follow this and additional works at: https://repository.rit.edu/article 

 Part of the Probability Commons 

Recommended Citation Recommended Citation 
Marengo, J.E. and Farnsworth, D.L. (2022) Probability Models with Discrete and Continuous Parts. Open 
Journal of Statistics, 12, 82-97. https://doi.org/10.4236/ojs.2022.121006 

This Article is brought to you for free and open access by the RIT Libraries. For more information, please contact 
repository@rit.edu. 

https://repository.rit.edu/
https://repository.rit.edu/article
https://repository.rit.edu/facstaff
https://repository.rit.edu/article?utm_source=repository.rit.edu%2Farticle%2F2118&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/212?utm_source=repository.rit.edu%2Farticle%2F2118&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu


Open Journal of Statistics, 2022, 12, 82-97 
https://www.scirp.org/journal/ojs 

ISSN Online: 2161-7198 
ISSN Print: 2161-718X 

 

DOI: 10.4236/ojs.2022.121006  Feb. 21, 2022 82 Open Journal of Statistics 
 

 
 
 

Probability Models with Discrete and 
Continuous Parts 

James E. Marengo, David L. Farnsworth 

School of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York, USA 

 
 
 

Abstract 
In mathematical statistics courses, students learn that the quadratic function 

( )( )2–E X x  is minimized when x is the mean of the random variable X, and 

that the graphs of this function for any two distributions of X are simply 
translates of each other. We focus on the problem of minimizing the function 
defined by ( ) ( )–y x E X x=  in the context of mixtures of probability dis-

tributions of the discrete, absolutely continuous, and singular continuous 
types. This problem is important, for example, in Bayesian statistics, when 
one attempts to compute the decision function, which minimizes the ex-
pected risk with respect to an absolute error loss function. Although the lite-
rature considers this problem, it does so only under restrictive conditions on 
the distribution of the random variable X, by, for example, assuming that the 
corresponding cumulative distribution function is discrete or absolutely con-
tinuous. By using Riemann-Stieltjes integration, we prove a theorem, which 
solves this minimization problem under completely general conditions on the 
distribution of X. We also illustrate our result by presenting examples in-
volving mixtures of distributions of the discrete and absolutely continuous 
types, and for the Cantor distribution, in which case the cumulative distribu-
tion function is singular continuous. Finally, we prove a theorem that eva-
luates the function y(x) when X has the Cantor distribution. 
 

Keywords 
Mixed-Type Distribution Function, Riemann-Stieltjes Integration, Median of 
a Random Variable, Cantor Distribution 

 

1. Introduction 

There are commonly used, continuous probability distributions of one variable, 
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such as the normal distribution and the exponential distribution. Likewise, there 
are discrete distributions that are well established, such as the binomial distribu-
tion and the Poisson distribution. Here, the much less routine situation in which 
there is a discrete component and a continuous component in a single probabil-
ity distribution is addressed. These are called mixed-type probability distribu-
tions. Often, the components can be entirely separated from each other, but 
sometimes it might reduce the effectiveness of the probability model to do so. 

An example of a mixed-type distribution is the lifetimes of electronic compo-
nents. Some components may have zero lifetimes, because they are defective 
from the onset, giving a discrete probability component at zero ([1], p. 72-73, 
121), while a continuous component is used for the remaining lifetimes. Biolog-
ical lifetimes can have this feature ([2], p. 34). 

Another example is the elapsed time at a stop sign at an intersection on a 
street. Some drivers will spend no time at the sign after stopping, because there 
is no cross traffic, giving the discrete component at elapsed time zero. Other 
drivers will linger until traffic clears, supplying the continuous component ([3], 
p. 63) ([4], p. 98-99). 

A third example of a mixed-type distribution is lifetimes in an experiment that 
is terminated at a predetermined time td. The complete lifetimes of those sub-
jects still living or objects that have not yet failed cannot be known. That group 
produces a discrete component at time td ([2], p. 52-63) ([5], p. 97-98). 

On occasion, there might be times during an experiment, or in the course of 
events, at which interventions can introduce discrete components. For instance, 
a planned medical procedure, mass vaccination, or military campaign could be 
such an intervention. 

There are choices for the method for proceeding. One choice is to standardize 
the continuous portion, so that it has a probability density. This is usually ex-
pressed with conditional distributions ([2], p. 52-63) ([5], p. 97-98). The discrete 
portion might be standardized separately or ignored. Another choice, which is to 
proceed with a mixed-type probability distribution for the whole experiment, is 
focused on presently. 

For a discrete distribution, sums are used to compute probabilities and ex-
pected values. For continuous distributions that have a probability density func-
tion, Riemann integration is used. All discrete, continuous, and mixed-type dis-
tributions, including continuous distributions without a probability density 
function, which are discussed in Section 3, are covered simultaneously with 
Riemann-Stieltjes integration ([1], p. 118-126), ([2], p. 11-14, 34), ([6], p. 281-284). 

2. An Example of a Mixed-Type Distribution 

Consider the following example. 
Example 1 (mixed-type distribution). In a populous state in the USA, it has 

been determined by using surveys that there are three distinct types of voters for 
an upcoming ballot initiative. One type of voter definitely opposes the initiative 
and is believed to be 7/20 of the voters. These individuals are coded x = 0. 
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Another type is definitely in favor of the initiative and is 2/5 of the voters. Those 
individuals are coded x = 1. The third type is not polarized on the initiative, and 
their degree of support x is between zero and one. They are the remaining 1/4 of 
the voters. For these voters, the proportion of the population is modeled with 

( )1 5 1 10 x+ . The random variable X is an individual voter’s degree of positive 
support for the ballot initiative. 

The ( )1 5 1 10 x+  was obtained by first fitting, via a smoothed histogram 
from the sample’s non-polarized voters, a curve that represents the number of 
votes as a function of degree of support. The fit was a linear function such that 
the intercept term is twice the slope coefficient. Then, the values 1/5 and 1/10 
were determined from the requirement that the integral of the linear function 
from x = 0 to x = 1 must equal the remaining fraction, 1/4, of the voters. 

This is a mixed-type distribution with a discrete part for X = 0 and X = 1 and a 
continuous part for ( )0,1X ∈ . For every random variable X, the cumulative 
distribution function (cdf) is defined on   by ( ) ( )PrF x X x= ≤ . A cdf F(x) 
has a jump discontinuity at x = a when ( )Pr 0X a= > . Any discrete cdf has at 
most a countable number of jump discontinuities ([1], p. 74) ([7], p. 71). The 
continuous part of Example 1 is absolutely continuous. A cdf F(x) is defined to 
be absolutely continuous if there exists a nonnegative probability density func-
tion (pdf) f(x) that has   as its domain and ( ) ( ) ( )Pr d

x
F x X x f t t

∞−
= ≤ = ∫ , 

where the integral is a Riemann integral ([7], p. 127) ([8], p. 139-140). The de-
rivative of an absolutely continuous cdf is the pdf.  

The cumulative distribution function for Example 1 is 

( ) 2

0 0
7 1 1 0 1
20 5 20
1 1

x

y F x x x x

x

<
= = + + ≤ <


≤

,                (1) 

which is displayed in Figure 1.  
Use the fact that any cdf can be decomposed uniquely into a convex sum of a 

discrete cdf and a continuous cdf giving the Jordan decomposition  

( ) ( ) ( )1 2
d cF x c F x c F x= + ,                    (2) 

where c1 ≥ 0, c2 ≥ 0, c1 + c2 = 1, Fd(x) is a discrete cdf, and Fc(x) is a continuous 
cdf ([1], p. 121) ([5], p. 88-90) ([8], p. 138). Then, 

( )

0 0
7 0 1

15
1 1

d

x

x

x

F x

<


=  ≤ <


≤

 and ( ) 2

0 0
4 1 0 1
5 5
1 1

c

x

x x xF

x

x

<
 + ≤ <

≤

=



,      (3) 

which yield the probability mass function (pmf) and probability density function 
(pdf) 

( )

7 0
15
8 1

15
0 otherwise

d

x

xf x

 =

 =

=




 and ( )
4 2 0 1
5 5
0 otherwise

c x x
f x

 +
=

< <



,      (4) 
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Figure 1. The cumulative distribution function y = F(x) for X in Example 1. 

 
respectively, and c1 = 3/4 and c2 = 1/4. The weight c1 might be most easily com-
puted from the jumps in the original cdf F(x). Then, Pr(X = 0) + Pr(X = 1) = 
7/20 + 2/5 = 3/4, which is the divisor of each of the jumps 7/20 and 2/5 from (1), 
in order to obtain the discrete parts of (3) and (4) and the multiplier c1. For the 
continuous part, the normalizing divisor, and multiplier as well, is c2 = 1 – c1 = 
1/4 or ( )( )1

2 0
1 5 1 10 d 1 4c t t= + =∫ . Alternatively, obtain Fc from 

1

2

d
c F c FF

c
−

= . 

Use the property that the expectation of the function g(X) is  

( )( ) ( )( ) ( )( )1 2
d cE g X c E g X c E g X= + . 

where the expectations on the right-hand side are with respect to the similarly 
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superscripted pmf and pdf ([1], p. 121) ([3], p. 69). The left-hand side would be 
computed as a Riemann-Stieltjes integral, but, in Example 1, the right-hand side 
contains a summation and a Riemann integral. Thus, direct consideration of a 
Riemann-Stieltjes integration is sidestepped in this example. This formulation 
has the advantage of exhibiting the way that the expected value is a weighted av-
erage of the expectations with respect to the discrete and the continuous com-
ponents. For Y = g(X) = X, the expected value is 

( ) ( ) ( )
2 3

0

3 7 8 1 4 2 2 1 4 1 2 1 80 1 d
4 15 15 4 5 5 5 4 5 2 5 3 15

t
E X t t tµ

    = = + + + = + + =    
     

∫ . 

3. Singular Continuous CDFs 

Any cdf F(x) can be decomposed uniquely into a convex sum of a discrete cdf 
and a continuous cdf, as in (2). Further, the continuous component can be uni-
quely decomposed into an absolutely continuous component Fac(x) and a singu-
lar continuous component Fsc(x), giving the Lebesque decomposition 

( ) ( ) ( ) ( )1 2 3
d ac scF x c F x c F x c F x= + + , 

where c1, c2 , c3 ≥ 0, c1 + c2 + c3 = 1 ([7], p. 131) ([8], p. 142-143) ([9], p. 10-12). 
A function is singular continuous if it is a continuous function that is not iden-
tically zero and whose first derivative exists and equals zero almost everywhere 
([7], p. 131, 146-149) ([8], p. 141) ([9], p. 11). The main example is the Cantor 
distribution, but others, such as Minkowski’s singular continuous distribution, 
are well-known [10] [11]. The phrase “continuous random variable” refers to a 
random variable that has a cdf that is everywhere continuous. 

The Cantor set is created by an infinite process. Beginning with the closed in-
terval [0,1], during the nth step of the process, remove the 2n−1 middle-third open 
intervals, each of which has length 1/3n. After doing that step, there remain 2n 
disjoint, closed intervals. The infinite intersection of the closed sets is the Cantor 
set. The sum of the lengths of the deleted intervals is one, so the Cantor set has 
Lebesgue measure zero. The Cantor set is the support of the Cantor distribution, 
whose cdf is called the devil’s staircase. This cdf fails to be differentiable at every 
point of the Cantor set, but its derivative is zero on the set’s complement. Thus, 
probabilities cannot be recovered by integrating the derivative of the cdf. The 
devil’s staircase has no jumps, and so it is continuous at every real number. It is 
singular continuous, because it assigns probability one to the Cantor set, which 
has Lebesgue measure, i.e. length, zero. The devil’s staircase has no discrete 
component and no absolutely continuous component. The Cantor distribution 
and the devil’s staircase appear in the probability and statistics literature ([7], p. 
146-149) ([8], p. 35-36, 141, 146, 593), ([9], p. 13-15, 129, 174) [12] and the ma-
thematical modeling and real analysis literature ([6], p. 80-84, 90) [10] [11] 
([13], p. 249). It is the basis of Example 5 in Section 4.4. 

The first seven omitted intervals, where the devil’s staircase has slope zero, 
and the accompanying values of the cdf are 
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( )

1 1 2
8 27 27
1 1 2
4 9 9
3 7 8
8 27 27
1 1 2
2 3 3
5 19 20
8 27 27
3 7 8
4 9 9
7 25 26
8 27 27

x

x

x

F x x

x

x

x

 < <

 < <

 < <

= < <



< <

 < <

 < <

 

and are graphed in Figure 2. 

4. Medians 

A median of the random variable X, and therefore of F, is any real number m 
such that  

( )Pr 1 2X m≤ ≥  and ( )Pr 1 2X m≥ ≥ , 

or, equivalently,  

( )Pr 1 2X m≤ ≥  and ( )Pr 1 2X m< ≤ .              (5) 

For Example 1, the median of X is 

7 2 0.646m = − = ,                       (6) 

which is obtained from (1) by solving 

27 1 1 1
20 5 20 2

m m+ + = . 

 

 

Figure 2. Portions of the devil’s staircase, which is the cdf of the Cantor distribution. 
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The main purpose of this section is to show that, if m is a median of the un-
ivariate random variable X and a∈ , then ( ) ( )E X a E X m− ≥ − , and this 
inequality is strict if a is not a median of X. To avoid trivialities, assume that 
these expectations exist as finite real numbers, which is assured by presupposing 
that ( )E X ∈ . Mood, Graybill, and Boes ([3], p. 83), Hogg, McKean, and 
Craig ([14], p. 58), and Parzen ([15], p. 213) consider this inequality for abso-
lutely continuous cdfs. Rohatgi ([5], p. 170-171) and Dwass ([16], p. 341-342) 
consider it separately for discrete and for absolutely continuous cdfs. The ad-
vantage of using Riemann-Stieltjes integration is that it covers the inequality for 
any discrete, continuous, and mixed type cdfs without exception with a single 
argument, which is presented in Theorem 1. 

4.1. Preliminaries 

The expectation ( )E X x−  is a convex function of x. Indeed, for ,c d ∈  and 
( )0,1t∈ , using the triangle inequality and the linearity of expectation, 

( )( )( ) ( ) ( ) ( )( )
( ) ( ) ( )( )
( )( ) ( ) ( )( )

1 1

1

1

E X tc t d E t X c t X d

E t X c t X d

tE X c t E X d

− + − = − + − −

≤ − + − −

= − + − − .

 

All convex functions are continuous ([6], p. 199) ([17], p. 149-152). 
For c∈ , define 

( ) ( )lim
x c
x c

F c F x
→
<

− = . 

Because ( ) ( )PrF c X c− = < , 

( ) ( ) ( )Pr X c F c F c= = − −  

([14], p. 38). Since F is right continuous ([1], p. 71) ([7], p. 70-71), 

( ) ( ) ( )lim
x c
x c

F c F x F c
→
>

+ = = . 

Thus, (5) can be expressed 

( ) 1–
2

F m ≤  and ( )1
2

F m≤ .                   (7) 

Assuming that g is a continuous positive function on the interval (c, d) and 
( ) ( )–F c F d< , 

( ) ( )
( ),

d 0
c d

g x F x >∫                        (8) 

([1], p. 118-119) ([6], p. 281-284). For ( ) ( )–F c F d< , 

( )
( )

( ) ( )
,

d
c d

F x F d F c= − −∫ . 

4.2. Lemma 1 

Lemma 1. Let X be a random variable with the cumulative distribution func-
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tion of F. Suppose that ( )E X ∈ . Then, for any a and b∈ , 

( ) ( )
( ) ( )

( )
( ) ( )( )

( ) ( )
( )

( ) ( )( )
,

,

– – –

2 d 1 2                           (9)

2 d 2 1                            (10)

a b

b a

E X a E X b

x a F x b a F b a b

a x F x a b F b b a

 − + − − − <
= 

− + − − <


∫

∫

 

Proof. Observe that the assumption that ( )E X ∈  is equivalent to E(|X|) < 
∞. If c∈ , then ( ) ( )E X c E X c− ≤ + < ∞  and 

( ) ( )
( )– ,

– – dE X c x c F x
∞ ∞

= ∫ . 

Consider two cases. 
Case 1 (a < b). Expanding gives 

( ) ( ) ( )
( )

( ) ( )
( )

( ) ( )
{ }

( ) ( )
( )

, ,

,

d d

d d

a a b

b b

E X a a x F x x a F x

b a F x x a F x
−∞

∞

− = − + −

+ − + −

∫ ∫

∫ ∫
 

and 

( ) ( ) ( )
( )

( ) ( )
{ }

( ) ( )
( )

( ) ( )
( )

,

, ,

d d

d d .

a a

a b b

E X b b x F x b a F x

b x F x x b F x

−∞

∞

− = − + −

+ − + −

∫ ∫

∫ ∫
 

Substituting gives 

( ) ( )
( ) ( )

( )
( ) ( )

( )
( ) ( )

( )

( ) ( ) ( )( ) ( ) ( ) ( )( )
, , ,

d 2 d d

 
a a b b

E X a E X b

a b F x x a b F x x a F x

b a F b F b b a F a F a
−∞ ∞

− − −

= − + − − + −

+ − − − − − − −

∫ ∫ ∫  

( ) ( ) ( )( ) ( )
( )

( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

( )
( ) ( ) ( )( )

( ) ( )( ) ( ) ( ) ( )( )

,

,

2 d 1

 

2 d

 1 ,

a b

a b

a b F a x a a b F x b a F b

b a F b F b b a F a F a

a b F a x a F x a b F b F a

b a F b b a F b F b

= − − + − + − + − −

+ − − − − − − −

= − − + − + − − −

+ − − + − − −

∫

∫
 

which yields (9). 
Case 2 (b < a). Interchanging the roles of a and b in (9) gives 

( ) ( )
( ) ( )

( )
( ) ( )( )

( ) ( )( ) ( )
( )

( ) ( )( )

( ) ( )
( )

( ) ( ) ( )( ) ( ) ( )( )

( ) ( )
( )

( ) ( )( )

,

,

,

,

2 d 1 2

2 d 1 2

2 d 2 1 2

2 d 1 2

b a

b a

b a

b a

E X b E X a

x b F x a b F a

x a b a F x a b F a

x a F x b a F a F b a b F a

x a F x a b F b

− − −

= − + − − −

= − − − + − − −

= − − − − − + − − −

= − + − −

∫

∫

∫

∫ .
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Multiplying by –1 yields (10).  

4.3. Theorem 1 

Theorem 1. Let X be a random variable. Suppose that ( )E X ∈  and 
m∈  is a median of X. Then, for any a∈ ,  

( ) ( ).E X a E X m− ≥ −                     (11) 

The inequality is strict if a is not a median of X. 
Proof. From the proof of Lemma 1, ( )E X a− < ∞ . Set b = m in Lemma 1. 

The integrals in (9) and (10) are nonnegative. Inequality (11) follows, because, 
using (7), the second terms on the right-hand sides of (9) and (10) are also non-
negative. To show that the inequality (11) is strict when a is not a median of X, 
consider the two cases in Lemma 1. 

Case 1 (a < m). From (7), either F(m–) < 1/2 or F(m–) = 1/2. If F(m–) < 1/2, 
then (m – a)(1 – 2F(m–)) > 0, so that the right-hand side of (9) is positive. If 
F(m–) = 1/2, then (m – a)(1 – 2F(m–)) = 0. Also, F(a) ≤ F(m–) = 1/2. Because a 
is not a median, F(a) ≠ 1/2 and, thus, F(a) < 1/2, F(a) < F(m–), and the integral 
in (9) is positive from (8). 

Case 2 (m < a). From (5), either 1/2 < F(m) or 1/2 = F(m). If 1/2 < F(m), then 
(a – m)(2F(m) – 1) > 0, so that the right-hand side of (10) is positive. If F(m) = 
1/2, then (a – m)(2F(m) – 1) = 0. Also, 1/2 = F(m) ≤ F(a–). Because a is not a 
median, F(a–) ≠ 1/2 and, thus, F(a–) > 1/2, F(m) < F(a–), and the integral in (10) 
is positive from (8).  

4.4. Representative Examples 

The following examples display the function ( )y E X x= −  and the locations 
of the medians for various distributions. The graphs illustrate that ( )y E X x= −  
is a convex and continuous function and that medians occur as single points or 
as all of the values in an interval. 

Example 1 revisited (mixed-type distribution). For the voter preference 
example,  

( ) ( )3 2

8                                    0
15
1 6 9 16        0 1
30

8                                    1
15

x x

y E X x x x x x

x x

 − <

= − = + − + ≤ <

 − ≤


, 

which is displayed in Figure 3. The minimum occurs at 7 2 0.646x m= = − ≈ , 
as computed in (6).  

Example 2 (absolutely continuous cdf). For the exponential random varia-
ble with pdf f(x) = e−x/3/3 for x > 0 and zero otherwise, Figure 4 displays 

( ) 3
3

0

3                    01 e d
3 3 3e        0

t
x

x x
y E X x t x t

x x

∞
−

−

− ≤
= − = − = 

− + >
∫ . 
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Figure 3. ( )y E X x= −  for the mixed-type distribution in Example 1. 

 

 

Figure 4. ( )y E X x= −  for the exponential distribution with mean μ = 3 in Example 2. 

 
The expected value is μ = 3. The minimum is at the unique median m = 3ln2 ≈ 

2.08.  
Example 3 (discrete cdf and a single median). For the binomial distribution 

with n = 3 and p = 0.7, the expected value is μ = np = 2.1. Figure 5 displays 

( )

2.1                       0
0.946 2.1            0 1
0.568 1.722        1 2

0.314 0.042          2 3
2.1                         3

x x
x x

y E X x x x
x x

x x

− + <
− + ≤ <= − = − + ≤ <
 − ≤ <

− ≤

. 

The minimum is at the unique median m = 2.  
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Figure 5. ( )y E X x= −  for the binomial distribution with n = 3 and p = 0.7 in Exam-

ple 3. 
 

Example 4 (discrete cdf and an interval of medians). For the binomial dis-
tribution with n = 5 and p = 0.5, the expected value is μ = np = 2.5. Figure 6 dis-
plays  

( )

2.5                          0
0.9375 2.5             0 1
0.625 2.1875         1 2

0.9375                         2 3
0.625 0.9375           3 4
0.9375 2.1875         4 5

2.5  

x x
x x

x x
y E X x x

x x
x x

x

− + <
− + ≤ <
− + ≤ <

= − = ≤ <
− ≤ <
− ≤ <

−                           5 x










 ≤

. 

Note that every number in the interval [2, 3] is a median.  
Example 5 (singular continuous distribution). The Cantor distribution has 

mean 0.5 and median any ( )1 3,2 3m∈ . Because the derivation of an expres-
sion for ( )y E X x= −  is more complicated than the previous examples, de-
tails are presented.  

During the nth step of the process that leads to the Cantor set, remove the 2n−1 
middle-third open intervals, each of which has length 1/3n. After doing such a 
step, there remain 2n disjoint, closed intervals, which are denoted by  

( ) ( ) ( ),n n n
k k kI a b =    

for 1,2, , 2nk =  , where 
( ) ( ) ( )
1 2 2

.n
nn na a a< < <  

The following lemma provides a recursive formula that is used for computing

( )
( )

d
n

kI

x F x∫ . 
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Figure 6. ( )y E X x= −  for the binomial distribution with n = 5 and p = 0.5 in Exam-

ple 4. 
 

Lemma 2. Define 

( ) ( )
1

0
1

0

dc x F x= ∫  and ( ) ( )
( )

( )

d
n

k

n
k

b
n

k

a

c x F x= ∫  

for n ≥ 1. Then 

( )0
1

1
2

c =  

and 

( )

( )

( )

1 1

1 1
2 1

1              1, 2, , 2
6
1       2 1, 2 2, , 2
2 n

n n
k

n
k

n n n n
n k

c k
c

c k

− −

− −
+ −

 == 
 − = + +






. 

Proof. Because 

( )
3 2

F xxF   = 
 

 and ( ) ( )1 1F x F x− = −  

for [ ]0,1x∈  ([9], p. 15), 

( )d
d

3 2
F xxF   = 

 
 and ( ) ( )d 1 dF x F x− = − . 

Hence, 

( ) ( ) ( ) ( ) ( ) ( )
1 1 1

0 0
1 1

0 0 0

1 1 d 1 1 d d .c x F x t F t t F t c− = − = − − = =∫ ∫ ∫  

Thus, 

( )0
1

1
2

c = . 
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Consider n ≥ 1. For 1 ≤ k ≤ 2n−1, 

( ) ( ) ( ) ( )1 11 1, ,
3 3

n n n n
k k k ka a b b− −= =  

and 

( ) ( )
( )

( )

( )

( )

( )

( )
( ) ( )

1 1

1 1

1d 1d d .
3 3 3 2 6

n n n
k k k

n n n
k k k

b b b
n n

k k

a a a

F tt t tc x F x F c
− −

− −

− = = = = 
 ∫ ∫ ∫  

Let 2n−1 + 1 ≤ k ≤ 2n. From 

( ) ( ) ( ) ( )
2 1 2 1

1 ,  1 ,n n
n nn n

k kk k
a b b a

+ − + −
= − = −  and ( )( ) ( )( )2 1 2 1

1 ,
2n n

n n
nk k

F b F a
+ − + −

− =  

it follows that  

( ) ( )
( )

( )

( ) ( )
( )

( )

( )
2 1

2 1

2 1

1d 1 d .
2

nn
nk k

n
n n

k n k

bb
nn

k n k
a a

c x F x t F t c
+ −

+ −

+ −
= = − = −∫ ∫   

The numerical values of the definite integrals ( )n
kc  for n = 1, 2, and 3 are in 

Table 1. 
Theorem 2. Let ( ) ( ) ( )

11 2 2
, , , n

nn nJ J J −  be the disjoint open intervals that are re-
moved during the nth step of the construction of the Cantor set, where the mid-
points of these intervals are strictly increasing. For ( )n

kx J∈ ,  

( ) ( ) ( ) ( )
1 2 1 2

1
1 2

2 1 2 .
2

nn k
n n

j jn
j j k

ky y x E X x x c c
− −

−
= =

− −
= = − = − +∑ ∑         (12) 

Proof. For ( )n
kx J∈ , it follows from Lemma 2 that 

( ) ( ) ( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( )

( ) ( )

2

1

2 1 2

1 2

2 1 2

1 2

1 2 1 2

1
1 2

d d

d d

2 2

2 1 2 .
2

n

n
j

n

n n
j j

n

n

j I

k

j j kI I

k
n n

j jn n
j j k

n k
n n

j jn
j j k

y y x E X x t x F t t x F t

t x F t t x F t

x xc c

k x c c

∞

=−∞

−

= =

−

= =

− −

−
= =

= = − = − = −

= − + −

   = − + −   
   

− −
= − +

∑∫ ∫

∑ ∑∫ ∫

∑ ∑

∑ ∑

  

Since the complement of the Cantor set in [0, 1] is dense in that interval, and 
since the value of a continuous function at any number in [0, 1] is determined by 
its values on a dense subset ([6], p. 121), Theorem 2 determines the value of 

( )E X x−  for [ ]0,1x∈ . Additionally, y(x) = 1/2 – x for every x < 0 and y(x) = 
x – 1/2 for x > 0.  

For 11, 2, , 2nk −=  , the graph of y on ( )n
kJ  is a line segment with slope 

1

1

2 1 2
2

n

n

k −

−

− − . 

Equation (13) and Figure 7 display the values and give the graph of y = y(x) 
for the Cantor distribution for ( )n

kJ  with n = 1, 2, and 3. 
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Table 1. Numerical values of ( ) ( )
( )

( )

d
n

k

n
k

b
n

k

a

c x F x= ∫  for n = 1, 2, 3 and 1,2, ,2nk =  . 

n k  

1 

1 ( ) ( )1 0
1 1

1 1 1 1
6 6 2 12

c c= = =  

2 ( ) ( )1 1
2 1

1 1 1 5
2 2 12 12

c c= − = − =  

2 

1 ( ) ( )2 1
1 1

1 1 1 1
6 6 12 72

c c= = =  

2 ( ) ( )2 1
2 2

1 1 5 5
6 6 12 72

c c= = =  

3 ( ) ( )2 2
3 22

1 1 5 13
2 4 72 72

c c= − = − =  

4 ( ) ( )2 2
4 12

1 1 1 17
2 4 72 72

c c= − = − =  

3 

1 ( ) ( )3 2
1 1

1 1 1 1
6 6 72 432

c c= = =  

2 ( ) ( )3 2
2 2

1 1 5 5
6 6 72 432

c c= = =  

3 ( ) ( )3 2
3 3

1 1 13 13
6 6 72 432

c c= = =  

4 ( ) ( )3 2
4 4

1 1 17 17
6 6 12 432

c c= = =  

5 ( ) ( )3 3
5 43

1 1 17 37
2 8 432 432

c c= − = − =  

6 ( ) ( )3 3
6 33

1 1 13 41
2 8 432 432

c c= − = − =  

7 ( ) ( )3 3
7 23

1 1 5 49
2 8 432 432

c c= − = − =  

8 ( ) ( )3 3
8 13

1 1 1 53
2 8 432 432

c c= − = − =  

 

( )

( )
( )
( )

( )
( )
( )

1 2 0
107 216 3 4 1 27 2 27
17 36 1 2 1 9 2 9
89 216 1 4 7 27 8 27
1 3 1 3 2 3
1 4 35 216 19 27 20 27
1 2 1 36 7 9 8 9
3 4 55 216 25 27 26 27

1 2 1

x x
x x

x x
x x

y E X x x
x x
x x
x x

x x

− <
 − < <
 − < <


− < <= − = < <
 + < <

− < <
 − < <
 − <

          (13) 
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Figure 7. A portion of the graph for ( )y E X x= −  for the Cantor distribution in Ex-

ample 5. 
 

For a sample calculation, using (12) and Table 1, take n = 2 and k = 1 in (13), 

( ) 2 1

2 1

2 1 1 2 1 5 13 17 17 1 .
72 72 72 72 36 22

y x x
−

−

− −
= − + + + = −  

5. Concluding Comments 

The necessary and sufficient condition that x minimizes ( ) ( )y x E X x= −  for 
medians of the distribution of X has been established under completely general 
conditions on the distribution of X and illustrated for various pure and mixed 
cumulative distribution functions, including the devil’s staircase of the Cantor 
distribution. We have evaluated the function ( ) ( )y x E X x= −  when X has the 
Cantor distribution, and we have also demonstrated the way in which the nature 
of this function depends heavily on the distribution of X in other cases. By way 
of contrast, the minimum value of the quadratic function ( )( )2E X x−  is 
Var(X), and the minimizing value of x is E(X). Its graph depends only on this 
mean and variance, and any two distributions for X yield graphs that are trans-
lates of each other. 

Acknowledgements 

The authors want to thank the anonymous referees for many insightful com-
ments. 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this 
paper.  

References 
[1] Lindgren, B.W. (1976) Statistical Theory. 3rd Edition, Macmillan, New York. 

https://doi.org/10.4236/ojs.2022.121006


J. E. Marengo, D. L. Farnsworth 
 

 

DOI: 10.4236/ojs.2022.121006 97 Open Journal of Statistics 
 

[2] Lawless, J.F. (2003) Statistical Models and Methods for Lifetime Data. 2nd Edition, 
Wiley, Hoboken. https://doi.org/10.1002/9781118033005 

[3] Mood, A.M., Graybill, F.A. and Boes, D.C. (1974) Introduction to the Theory of 
Statistics. 3rd Edition, McGraw-Hill, New York.  

[4] Bain, L.J. and Engelhardt, M. (1987) Introduction to Probability and Mathematical 
Statistics. Duxbury Press, Boston. 

[5] Rohatgi, V.K. (2003) Statistical Inference. Dover, Mineola.  

[6] Stromberg, K.R. (1981) An Introduction to Classical Analysis. Wadsworth, Bel-
mont. 

[7] Dudewicz, E.J. and Mishra, S.N. (1998) Modern Mathematical Statistics. Wiley, 
New York. 

[8] Feller, W. (1971) An Introduction to Probability Theory and Its Applications. Vo-
lume 2, 2nd Edition, Wiley, New York. 

[9] Chung, K.L. (2001) A Course in Probability Theory. 3rd Edition, Academic Press, 
San Diego. 

[10] Salem, R. (1943) On Some Singular Monotonic Functions Which Are Strictly In-
creasing. Transactions of the American Mathematical Society, 53, 427-439.  
https://doi.org/10.1090/S0002-9947-1943-0007929-6 

[11] Bernstein, D. (2013) Algorithmic Definitions of Singular Functions. Department of 
Mathematics, Davidson College, Davidson. 

[12] Lad, F.R. and Taylor, W.F.C. (1992) The Moments of the Cantor Distribution. Sta-
tistics and Probability Letters, 13, 307-310.  
https://doi.org/10.1016/0167-7152(92)90039-8 

[13] Apostol, T.M. (1957) Mathematical Analysis. Addison-Wesley, Reading. 

[14] Hogg, R.V., McKean, J.W. and Craig, A.T. (2005) Introduction to Mathematical 
Statistics. 6th Edition, Pearson Prentice Hall, Upper Saddle River.  

[15] Parzen, E. (1960) Modern Probability Theory and Its Applications. Wiley, New 
York. https://doi.org/10.1063/1.3056709 

[16] Dwass, M. (1970) Probability and Statistics. W.A. Benjamin, New York.  

[17] Bauschke, H.H. and Combettes, P.L. (2017) Convex Analysis and Monotone Oper-
ator Theory in Hilbert Spaces. 2nd Edition, Springer, Cham.  
https://doi.org/10.1007/978-3-319-48311-5 

 
 

https://doi.org/10.4236/ojs.2022.121006
https://doi.org/10.1002/9781118033005
https://doi.org/10.1090/S0002-9947-1943-0007929-6
https://doi.org/10.1016/0167-7152(92)90039-8
https://doi.org/10.1063/1.3056709
https://doi.org/10.1007/978-3-319-48311-5

	Probability Models with Discrete and Continuous Parts
	Recommended Citation

	Probability Models with Discrete and Continuous Parts
	Abstract
	Keywords
	1. Introduction
	2. An Example of a Mixed-Type Distribution
	3. Singular Continuous CDFs
	4. Medians
	4.1. Preliminaries
	4.2. Lemma 1
	4.3. Theorem 1
	4.4. Representative Examples

	5. Concluding Comments
	Acknowledgements
	Conflicts of Interest
	References

