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Probability Distributions Arising in Connection 
with the Inspection Paradox for the Poisson 
Process 

James E. Marengo, Anne Marino Himes, W. Cade Reinberger, David L. Farnsworth  

School of Mathematical Sciences, Rochester Institute of Technology, Rochester, USA  

 
 
 

Abstract 
The Inspection Paradox refers to the fact that in a Renewal Process, the length 
of the interarrival period which contains a fixed time is stochastically larger 
than the length of a typical interarrival period. To provide a more complete 
understanding of this phenomenon, conditioning arguments are used to ob-
tain the distributions and moments of the lengths of the interarrival periods oth-
er than the one containing this fixed time for the case of the time-homogeneous 
Poisson Process. Distributions of the waiting times for events that occur both 
before and after this fixed time are derived. This provides a fairly complete 
probabilistic analysis of the Inspection Paradox.  
 

Keywords 
Inspection Paradox, Interarrival Time, Poisson Process, Renewal Process, 
Waiting Time 

 

1. Introduction 

Consider a Renewal Process with interarrival times 1 2, ,X X   and waiting 
times 1

n
n kkS X

=
= ∑  for 1,2,n =  . Suppose that a piece of equipment, such as 

a battery, is installed at time zero and is immediately replaced upon failure by a 
similar battery. When this second battery fails, it is replaced by a similar battery, 
and this process is continued indefinitely. We can model this situation with a 
Renewal Process by regarding kX  as being the lifetime of the k-th battery, nS  
as the time at which the n-th battery fails, and ( )N t  as the number of failures 
(renewals) by time t. 

Now, fix 0t >  and consider the length ( ) 1N tX +  of the interarrival period 
which contains the instant t. Even though 1 2, ,X X   are independent and 
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identically distributed, ( ) 1N tX +  is stochastically larger than kX  for every posi-
tive integer k. This is the Inspection Paradox. With regard to the batteries, it says 
that the battery in use at time t tends to have a longer lifetime than an ordinary 
battery. Its explanation lies in the fact that a longer interarrival period, rather 
than a shorter one, is more likely to cover the instant t. 

The Inspection Paradox can arise in almost any sampling application. For 
example, there is a well-known result which says that in sampling by groups, one 
is less likely to encounter people who are in smaller groups [1]. This paradox 
appears in the sciences [2] and medicine [3]. In some circumstances, it can be 
remediated by using statistical procedures [4]. Its variations remain an area of 
study [5]. Instead of being regarded as a threat to the validity of an experiment, 
it can be used as a tool for gaining efficiency [6]. Our goal is to provide a more 
complete analysis of the paradox in the time-homogeneous Poisson Process case. 
We do this by deriving probability distributions and moments for the lengths of 
time periods that arise in the context of the paradox, and we examine some of 
their properties. 

We write  

( ) 1 ,t tN tX A Y+ = +                         (1) 

where  

( ) ( ) 1and .t tN t N tA t S Y S t+= − = −  

The random variable ( ) 1N tX +  may be regarded as the lifetime of the battery in 
operation at time t, tA  is the age at time t of the battery operating at that in-
stant, and tY  is the remaining life of this battery. 

In the following, take the Renewal Process to be a time-homogeneous Poisson 
Process with rate λ , interarrival times 1 2, ,X X   and waiting times  

1
n

n kkS X
=

= ∑  for 1,2,n =  . Such a process has independent increments and 
the number of events in any interval of length c has the Poisson distribution with 
mean cλ . The interarrival times are independent and identically distributed 
with the exponential distribution with mean 1 λ . The waiting time nS  has the 

( )Gamma ,n λ  distribution with probability density function  

( ) ( )
( )

1

0 if 0

e if 0
1 !

n
s

s

f s s
s

n
λ λ

λ
−

−

<


= 
≤ −

 

and distribution function  

( ) ( )1

0

0 if 0

1 e if 0
!

kn
s

k

s
F s s

s
k

λ λ−
−

=

<
= 
− ≤


∑

. 

nS  is called the “waiting time” because, starting at time zero, it is the amount 
of time that an observer of the process waits before the n-th event occurs. 

Starting at time t, the time tY  until the next renewal is exponentially distri-
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buted with mean 1 λ  and is independent of tA . This follows from the memo-
ryless property of the exponential distribution. In fact, the independence of tA  
and tY  is known to characterize the Poisson Process. The distribution of tA  is 
given by  

( )
0 if 0
1 e if 0
1 if

x
t

x
P A x x t

t x

λ−

<
≤ = − ≤ <
 ≤

 

with expectation  

[ ] ( )1 1 e .t
tA λ

λ
−= −  

Thus, tA  has the same distribution as { }1min ,X t , and tY  has the same 
distribution as 1X . Each of these assertions separately are also known to cha-
racterize the Poisson Process. 

From (1), the distribution of ( ) 1N tX +  is the convolution of the distributions 
of tA  and tY . It follows that  

( )( ) ( )
( )

1

0 if 0
1 e 1 if 0
1 e 1 if

x
N t

x

x
P X x x x t

t t x

λ

λ

λ
λ

−
+

−

<
≤ = − + ≤ <
 − + ≤

 

with expectation  

( ) 1
2 1 e .t

N tX λ

λ λ
−

+
  = −   

As t →∞ ,  

( )exp ,D
tA λ→  

( ) ( )1 Gamma 2, ,D
N tX λ+ →  

and 

( ) 1
2 ,N tX
λ+

  →                         (2) 

where D→  indicates convergence in distribution. From (2) it follows that for 
large t, the expected life of the battery in operation at time t is approximately 
twice the expected life of an typical battery, whose lifetime has an exponential 
distribution with mean 1 λ . This background material is presented in [7] [8]. 

We give explicit formulas for the distributions and moments of the lengths of 
the interarrival periods other than the one containing a fixed instant t when the 
underlying Renewal Process is a time-homogeneous Poisson Process with rate 
λ . We show that the infinite sequence of lengths of the interarrival periods pre-
ceding the one containing t is strictly stochastically decreasing. Also, we demon-
strate that the lengths of the interarrival periods succeeding the one containing t 
are independent exponential random variables with mean 1 λ , and we derive 
the distributions and moments for ( )N t kS +  for every integer k. 
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Section 2 presents the probability distribution for the length of each interar-
rival period (e.g., lifetime) that ends before a fixed inspection time t and each 
one that begins after this time. It is noted that, proceeding backwards in time 
from the instant t, the lifetimes are strictly stochastically decreasing, and all 
moments for each of these lifetimes are presented. In light of the memoryless 
property of a Poisson process, it isn’t surprising that the lifetimes that begin after 
time t are independent and identically distributed exponential random variables 
having a distribution that doesn’t depend on t. Section 3 presents the probability 
distribution for the waiting time (i.e., partial sum) corresponding to each of the 
interarrival periods mentioned above. Section 4 summarizes these results and 
discusses the limitations of this study. 

2. Interarrival Times 

We begin with a definition. 
Definition 1. A random variable U is strictly stochastically smaller than a 

random variable V if for all real x,  

( ) ( ) ,P U x P V x≤ ≥ ≤  

and if the inequality between these two probabilities is strict for some real num-
ber x. A sequence { } 1n n

U ∞

=
 of random variables is strictly stochastically de-

creasing if 1nU +  is strictly stochastically smaller than nU  for 1n ≥ .  
It is well-known that, given that ( )N t n= , the conditional joint distribution 

of the waiting times that terminate prior to time t is the same as the joint distri-
bution of the order statistics for n independent random variables that are each 
uniformly distributed on the interval [ ]0, t  [8]. It follows that each of the 
lengths of the corresponding interarrival times have the same beta distribution 
with pdf ( ) ( )( ) 1nn

tf x n t t x −= −  for 0 x t< <  [9]. The following theorem 
gives the unconditional probability distribution and moments for the length of 
each of the interarrival periods that end before the fixed time t. 

Theorem 1. If { }0,1,j∈   and 0t > , then  

( )( ) ( ) ( )
1

0 if 0

1 e e if 0
!

1 if

kk
t xx

N t j
k j

x

t x
P X x x t

k
t x

λλ λ∞
− −−

−
= +

<


−≤ = − ≤ <

 ≤

∑      (3) 

and for 1,2,m =  , the m-th moment of ( )N t jX −  is  

( )
( )

1

! e .
!

k
m t
N t j m

k m j

tmX
k

λ λ
λ

∞
−

−
= + +

  =  ∑  

Proof. We define ( ) 0N t jX − =  if ( )j N t≥ , and we note that ( )0 N t jX t−≤ ≤ . 
By conditioning on the value of ( )N t , we have for [ ]0,x t∈  that  

( )( ) ( ) ( )( )
0 0

, .N t j N t j
n n

P X x P X x N t n
∞ ∞

− −
= =

≤ = ≤ =∑ ∑  

For 0,1, ,n j=  ,  
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( ) ( )( ) ( )( ) ( )
, e ,

!

n
t

N t j

t
P X x N t n P N t n

n
λ λ−

− ≤ = = = =          (4) 

where we have defined 0kX =  for 0k ≤ . 
For 1n j≥ + ,  

( ) ( )( ) ( )1, , , .n j n nN t jP X x N t n P X x S t S t− +− ≤ = = ≤ ≤ >         (5) 

This probability does not depend on { }0,1, , 1j n∈ − . Setting 0j =  in the 
right hand side of (5) and conditioning on the value of 1nS − , we have  

( ) ( )( )
( )

{ }( ) ( )

( ) ( )

( ) ( )

1 1 1

1 10

1 10

1 1

,

, ,

min , , d

, d

, d ,

N t j

n n n n n n

t
n n n n

t x
n n n n

t
n n n nt x

P X x N t n

P X x S X t S X X t

P X x t s X X t s F s

P X x X X t s F s

P X t s X X t s F s

−

− − +

+ −

−

+ −

+ −−

≤ =

= ≤ + ≤ + + >

= ≤ − + > −

= ≤ + > −

+ ≤ − + > −

∫

∫

∫

         (6) 

where ( )1nF s−  is the distribution function of 1nS − . 
For [ ]0,s t x∈ − ,  

( )
( ) ( ) ( ) ( )( )

( )( ) ( ) ( )( ) ( ) ( )

( )

1

1 1 2

,

, 1, 0

1 0 e e

e ,

n n n

t s xx

t s

P X x X X t s

P X x X X t s P N x N t s N x

P N x P N t s N x x

x

λλ

λ

λ

λ

+

− − −−

− −

≤ + > −

= ≤ + > − = = − − =

= = − − = =

=

     (7) 

where we have used the fact that a Poisson Process has independent increments. 
For [ ],s t x t∈ − ,  

( )
( ) ( )( )
( ) ( )

1

1 1 2

,

, 1

e .

n n n

t s

P X t s X X t s

P X t s X X t s P N t s

t s λλ

+

− −

≤ − + > −

= ≤ − + > − = − =

= −

           (8) 

We may use the fact that 1nS −  has the ( )Gamma 1,n λ−  distribution to ob-
tain from (6), (7), and (8) that for 1n j≥ + ,  

( ) ( )( )
( ) ( ) ( ) ( ) ( )

( ) ( )
1 10

,

e d e d

e .
! !

N t j

t x tt s t s
n nt x

n nn
t

P X x N t n

x F s t s F s

t t x
n n

λ λ

λ

λ λ

λ λ

−

− − − − −
− −−

−

≤ =

= + −

 − = − 
  

∫ ∫          (9) 

Using (4) and (9), we have after summing on n that for [ ]0,x t∈ ,  

( )( ) ( ) ( ) ( )

( ) ( )

0 1 1

1

e
! ! !

1 e e ,
!

n n nnj
t

N t j
n n j n j

kk
t xx

k j

t t t x
P X x

n n n

t x
k

λ

λλ

λ λ λ

λ

∞ ∞
−

−
= = + = +

∞
− −−

= +

 − ≤ = + − 
  

−
= −

∑ ∑ ∑

∑

 

which establishes (3). Therefore, we may write  
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( )( ) ( ) ( )
1

1 if 0

e e if 0 .
!

0 if

kk
t xx

N t j
k j

x

t s
P X x x t

k
t x

λλ λ∞
− −−

−
= +

<


−> = ≤ <

 ≤

∑  

Then,  

( ) ( )( )
( ) ( )

( ) ( )

( )

1
0

1
0

1

1
0

0

1 1
0 0

0

d

e e d
!

e 1 e d
!

e d e d .
!

m m
N t j N t j

kk
t t xm x

k j

kkjt t xm x

k

kjt t km x t m

k

X mx P X x x

t x
mx x

k

t x
mx x

k

mx x mx t x x
k

λλ

λλ

λ λ

λ

λ

λ

∞ −
− −

∞
− −− −

= +

− −− −

=

− − − −

=

  = > 

−
=

 −
 = −
 
 

= − −

∫

∑∫

∑∫

∑∫ ∫



 

Now,  

( )
( )

( )1 1
1

0 0
0

! !e d e d 1 e ,
1 ! !

m kmt tm x x t
m m

k

x tm mmx x x
m k

λ λ λλ λ
λ

λ λ

− −
− − − −

=

 
 = = −
 −  

∑∫ ∫  

where the last equality follows from the fact the last integrand is the value at t of 
the distribution function for the ( )Gamma ,m λ  distribution. Also,  

( ) ( ) ( )
11 1

0 0

! !d 1 d .
!

t k km m k m m k m kmx t x x t my y y t
m k

− + − +− = − =
+∫ ∫  

Therefore,  

( )
( )

( )

( )

1

0 0

1

! ! !1 e e
! ! !

! e .
!

k kjm
m t t m k
N t j m

k k

k
t

m
k m j

tm m kX t
k k m k

tm
k

λ λ

λ

λ λ
λ

λ
λ

−
− − +

−
= =

∞
−

= + +

 
   = − −    + 

=

∑ ∑

∑


 

Remark 1. It follows from Theorem 1 that as t →∞   

( ) ( )1 1
!and for 1,2, .D m m

N t j N t j m

mX X X X m
λ− −

   → → = =      

Since exponential growth dominates polynomial growth, one minus the sum 
that appears in the statement of Theorem 1 approaches zero as t approaches in-
finity for fixed j. So ( )N t jX −  converges in distribution to 1X  as t approaches 
infinity. Moreover,  

( )( ) 1 e for 0,x
N t jP X x xλ−

− ≤ > − >  

and so ( )N tX  is strictly stochastically smaller than kX  for every positive in-
teger k. Since ( )N t  is a finite random variable,  

( )( )0 for sufficiently large 1N t jP X j− = = . The sequence ( ){ }
0N t j j

X
∞

− =
 is strictly 

stochastically decreasing, and the distribution function of ( )N t jX −  has a single 
jump of size 
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( )( ) ( )
0
e

!

kj
t

k

t
P N t j

k
λ λ−

=

≤ = ∑  

at zero. Of course, the size of this jump tends to zero as t →∞ . Routine calcu-
lus shows that the probability density function associated with the absolutely 
continuous part of the distribution function of ( )N t jX −  is strictly decreasing 
and concave up on the interval ( )0, t . If 1j ≥ , this density is continuous eve-
rywhere except at zero where it has a jump of size  

( ) ( )
1e e

! !

k k
t t

k j k j

t t
k k

λ λλ λ
λ ∞ ∞− −

= = +

   
   
   
   
∑ ∑ . If 0j = , the density of ( )N t jX −  is  

continuous everywhere except at zero, where it has a jump of size ( )1 e tλλ −− , 
and at t, where it has a jump of size ( )e 1 et tλ λλ − −− .  

The next theorem gives the probability distribution for the length of each of 
the interarrival periods that begin after the fixed time t. 

Theorem 2. If { }2,3,j∈   and 0t > , then ( )N t jX +  is exponentially dis-
tributed with mean 1 λ .  

Proof. We condition on the value of ( )N t  to obtain for 0x >  that  

( )( ) ( ) ( )( )
( )

( ) ( )

( ) ( )( )

0

1
0

1
0

0

,

, ,

,

1 e 1 e .

N t j N t j
n

n j n n
n

n j n n
n

x x

n

P X x P X x N t n

P X x S t S t

P X x P S t S t

P N t nλ λ

∞

+ +
=

∞

+ +
=

∞

+ +
=

∞
− −

=

≤ = ≤ =

= ≤ ≤ >

= ≤ ≤ >

= − = = −

∑

∑

∑

∑

 

Remark 2. This proof can be shortened by observing that, since ( ) 1N t +  is a 
stopping time for 1 2, ,X X  , the event ( )N t n=  is independent of n jX +  for 

2j ≥ .  

3. Waiting Times 

The next theorem gives the distribution of the waiting time for each event which 
occurs before the fixed time t. 

Theorem 3. If { }0,1,2,j∈   and 0t > , then  

( )( ) ( )
0 if 0

if 0
1 if

N t j

s
P t S s P Y s s t

t s
−

<
− ≤ = ≤ ≤ <
 ≤

 

where Y has the ( )Gamma 1,j λ+  distribution.  
Proof. Observe that ( )0 N t jS t−≤ ≤ . If 0 s t≤ < , then  

( )( ) ( ) ( )( )
( ) ( )

0

1

1 e .
!

N t j

kj
s

k

P t S s P N t N t s j

s
P Y s

k
λ λ

−

−

=

− ≤ = − − ≥ +

= − = ≤∑
 

Remark 3. From Theorem 3, as t →∞ , 
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( ) ( )Gamma 1, ,D
N t jt S j λ−− → +  

Theorem 3 states that for s t< , ( )( ) ( )N t jP S s Pr Y s− ≤ = ≤ . So ( )N t jS −  
converges in distribution to Y as t approaches infinity. But Y has the  

( )Gamma 1, lambdaj +  distribution. Since ( )N t  is a finite random variable, 

( )( )0 for sufficiently large 1N t jP S j− = = . The distribution function of ( )N t jt S −−  
has a single jump of size  

( )( ) ( )
0

e
!

kj
t

k

t
P N t j

k
λ λ−

=

≤ = ∑  

at t. A straightforward, but tedious, calculation yields that  

( )( ) ( )1

0 0

1! e .
1 !

j m km t
N t j m

k

tm j m kmt S
m m

λ λ
λ

− +
−

−
= =

 + − +     − = −      −       
∑ ∑







  

It follows that as t →∞   

( )( ) ! ,
m m

N t j m

m jmt S Y
mλ−

+    − → =       
   

where Y has the ( )Gamma 1,j λ+  distribution.  
Our last theorem gives the distribution of the waiting time for each event that 

occurs after the fixed time t. Although these distributions are of primarily theo-
retical interest, knowing them provides a more complete understanding of the 
Poisson Process. 

Theorem 4. If { }1,2,j∈   and 0t > , then ( )N t jS t+ −  has the ( )Gamma ,j λ  
distribution.  

Proof. Note that ( ) 0N t jS t+ − > . For 0x > ,  

( )( ) ( ) ( )( ) ( )1

0
1 e .

!

kj
x

N t j
k

x
P S t x P N t x N t j

k
λ λ−

−
+

=

− ≤ = + − ≥ = −∑  

Remark 4. The following is another proof of Theorem 4. Recall that tY  is 
exponentially distributed with mean 1 λ , and, from Theorem 2, observe that 
for 2, ,k j=  , ( )N t kX +  also has that distribution. Because ( ) 1N t +  is a stop-
ping time for the sequence 1 2, ,X X  , the random variables ( ) 2, ,t N tY X +  , and 

( )N t jX +  are independent. Since 

( ) ( )
2

,
j

tN t j N t k
k

S t Y X+ +
=

− = +∑  

Theorem 4 follows. 

4. Conclusion 

In summary, we have effectively completed the mathematical study of the In-
spection Paradox for the case of the Poisson Process. We have accomplished this 
by deriving the probability distributions and moments for all of the interarrival 
periods other than the one containing the fixed inspection time under consider-
ation, and also by finding the distributions and moments of the associated wait-
ing times. We note that our results apply only in the case of a Poisson process 
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and not for an arbitrary renewal process. Since such a process doesn’t necessarily 
have memoryless interarrival times, the theoretical challenges associated with 
accomplishing this generalization seem formidable. 
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