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Abstract 
There are little-noticed points in the plane, which are artifacts of linear re-
gression. The points, which are called pivot points, are the intersections of 
sets of regression lines. We derive the coordinates of the pivot point and ex-
plain its sources. We show how a pivot point arises in a certain notable data 
set, which has been analyzed often for points of high leverage. We obtain the 
application of pivot points that shortens calculations when updating a set of 
bivariate observations by adding a new point. 
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1. Introduction 

It is common to produce many lines to fit bivariate data as the observations are 
being altered in some way. For example, in order to determine a particular data 
point’s influence on the best fit, the point may be moved by changing its y- 
coordinate and a new line created. Some diagnostic tests are based on this. A 
point, which is called the pivot point, is the intersection of certain lines that are 
often used for examining influence. 

An example of a pivot point is presented in Section 2. In Section 3, we derive 
the coordinates of the pivot point. We show that a pivot point can be created in 
two ways. One way is augmenting an original set of bivariate observations with 
an additional point, which can have arbitrary multiplicity. Another way is alter-
ing an existing observation’s y-coordinate as described above. Section 4 presents 
the benefit of the pivot point in that it can be useful to shorten calculations when 
adding a new observation. 

2. Illustrative Example 

Consider the data in Table 1 [1]. The predictor variable (x) is the age in months 
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at which a child says their first word, and the response variable (y) is the child’s 
Gesell Adaptive Score from an aptitude test. These data have been analyzed 
many times for influential and outlying observations [2]-[7]. Using various cri-
teria, Cases 2, 18, and 19 have been identified as significant. For illustrative pur-
poses, we focus on Case 18. 

When examining an individual observation’s influence on a bivariate least-squares 
linear regression, it is common to generate a sequence of regression lines. These lines 
fit the same set of observations, except that the y-coordinate is made to vary while 
its x-coordinate is unchanged for the specified data point of interest. The influ-
ence of Case 18 on the least-squares regression line is examined by keeping its 
x-coordinate of 42 and giving its y-coordinate the values 57, 77, 97, 117, and 137. 
This produces the five regression lines in Figure 1. Clearly, Case 18 could have a 
large influence on the regression line. Some authors have illustrated and eva-
luated leverage in this way [8] [9] [10] [11]. All these regression lines pass though 
a common point, called the pivot point [12]. In Figure 1, the pivot point (12.3, 
96.1) is shared by the five lines, and its location is indicated by the symbol ∆. 

3. Derivation of the Pivot Point 

We derive the formula for the coordinates of the pivot point. The pivot point 
can be created by augmenting an original set of bivariate observations with an 
additional point, which can have arbitrary multiplicity, which is another method 
to diagnose influence on the line [5] [13] [14] [15]. We show that formulation to 
be equivalent to varying the location of a single point, while keeping the same 
first coordinate, as is done in Figure 1. 

Consider the bivariate data set ( ){ }0 , : 1, 2, ,i iS x y i n= =  . For simplicity, as-
sume that coordinates are selected so that ( ) ( ), 0,0x n y n =∑ ∑ . Unindexed 
summations are over the elements of S0. Define 2V x n= ∑ . Introduce m cop-
ies of the new point R(u,v). If R is a point in S0, these are additional copies. The 
aggregate of S0 and m > 0 copies of R is denoted Sm. 

For m = 0, the least-squares regression line of S0 is 

( )2
0 0y a b x xy x x= + = ∑ ∑ . 

 
Table 1. Age at First Word (x) and Gesell Adaptive Score (y). 

Case x y Case x y Case x y 

1 15 95 8 11 100 15 11 102 

2 26 71 9 8 104 16 10 100 

3 10 83 10 20 94 17 12 105 

4 9 91 11 7 113 18 42 57 

5 15 102 12 9 96 19 17 121 

6 20 87 13 10 83 20 11 86 

7 18 93 14 11 84 21 10 100 
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(a) 

 
(b) 

 
(c) 
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(d) 

 
(e) 

Figure 1. Altering Case 18’s y-coordinate from 57 to 77, 97, 117, and 137, yielding five 
lines through a pivot point. (a) y = 57; (b) y = 77; (c) y = 97; (d) y = 117; (e) y = 137. 

 
For any integer m ≥ 0, the least-squares regression line of Sm is 

( )
( )

( )
( )

0 0
2 2m m

mV v b u m n Vb muv
y a b x x

m n V mu m n V mu
− + +

= + = +
+ + + +

,         (1) 

and the point of means is 

,m
m mM u v

m n m n
 =  + + 

,                    (2) 

which is on line (1) for Sm. 
When m > 0 and u ≠ 0, the pivot point 
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0,
VbVP

u u
 = − − 
 

                       (3) 

is on the least-squares line for all sets Sm. This can be seen by substituting point 
(3) into the equation of the line (1), that is, 

( ) 0m ma b V u Vb u+ − = − . 

Point P on (3) is called the pivot point of R with respect to S0, because P is on 
all regression lines for Sm, which have different slopes. Because the y-coordinate 
v of R is absent from the coordinates of P, it is also called the pivot point of u 
with respect to S0. The set of regression lines that is created by adding copies of 
R, is called a pencil of lines or fan of lines through P. 

When u = 0, the best-fit line (1) translates in the y-direction as m increases, 
and the pivot point is said to be at infinity. The pivot point is solely an artifact of 
the least-squares regression equations. Initially, it was found and explained in a 
linear-algebraic setting [12]. 

The regression lines in a fan, which is formed by vertically moving one point 
in the data set, intersect at the pivot point. In particular, the regression line 
formed by adding m copies of the point R(u,v) to S0 is equivalent to the line 
formed by adding a single point (u,vm) with 

( )
( )

( )( )
( )

2
0

2 2

11
,m

m n V un m Vb u
v v

m n V mu m n V mu

+ +−
= +

+ + + +  
which can be seen algebraically by setting m = 1 and mv v=  in line (1), which 
yields (1). 

Pivot points occur when the data are not centered at the origin. All best-fit 
lines can be rigidly translated, so that the new center is ( ),x y . The slope of each 
line can be found from 

( )( )
( )2

x x y y

x x

− −

−
∑
∑

, 

which shows the dependence solely on the differences of each coordinate from 
its mean. The observations in Figure 1 are centered at the data set’s mean point 
( ),x y . 

4. Computational Shortcuts When  
Augmenting a Bivariate Set 

The pivot point offers two shortcuts for computing equations for regression lines. 
This is analogous to adding the n + 1st value a to the data set { }: 1, 2, ,ix i n=  , 
whose mean is x . The new mean can be calculated using ( ) ( )1nx a n+ + , 
which requires considerably less computation than not using x  [11]. 

One shortcut is, given set S0, the regression line for Sm can be computed as the 
line containing the point of means (2) and the pivot point (3). Recall that in (4), 
V and b0 are based only on the unaugmented data set. 

The second shortcut involves the line obtained when multiplicity m becomes 
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very large, then the line (1) approaches the line 

( )0 0
2 2 ,

V v b u Vb uv
y a b x x

V u V u∞ ∞

− +
= + = +

+ +
               (4) 

which contains the new point R and the pivot point P. The coefficients in (4) 
provide the tool for rapid computation for the line (1) for any m, including m = 
1 for a single additional point. In (1), am is a weighted average of a0 and a∞ , and 
bm is a weighted average of b0 and b∞  with the same weights, in particular, 

( )0 1ma wa w a∞= + −  and ( )0 1 ,mb wb w b∞= + −           (5) 

where 

( ) 2 ,nVw
m n v mu

=
+ +

                      (6) 

Equations (5) are seen by substituting a0 and b0 from (1), a∞  and b∞  from (4), 
and w from (6) into the right-hand sides of (5), which yields am and bm in (1). 

5. Conclusion 

Pivot points are omnipresent in applications of bivariate linear regression. In 
particular, they are points through which new lines pass when a data point is al-
tered. One important purpose of altering a point is to determine its influence. 
We have displayed this phenomenon with the well-known data set of ages at first 
word versus Gesell scores, which has been analyzed by many authors from many 
points of view. A pivot point is a handy and efficient tool for shortening calcula-
tions when new data arises. 
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