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Abstract 
Our purpose is twofold: to present a prototypical example of the conditioning 
technique to obtain the best estimator of a parameter and to show that this 
technique resides in the structure of an inner product space. The technique 
uses conditioning of an unbiased estimator on a sufficient statistic. This pro-
cedure is founded upon the conditional variance formula, which leads to an 
inner product space and a geometric interpretation. The example clearly illu-
strates the dependence on the sampling methodology. These advantages show 
the power and centrality of this process. 
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1. Introduction 

We are given a coin that has probability θ of coming up heads when tossed once, 
where θ is an unknown real number in the interval (0, 1). We wish to estimate θ. 
Typically, we toss this coin a number of times, which is fixed in advance, and use 
the proportion of heads that appear as an estimator of θ. This approach not only 
makes sense intuitively, but also is optimal in that this estimator is unbiased and 
has the smallest possible variance based on the fixed number of tosses. It is the 
minimum variance unbiased estimator (MVUE) of θ [1]. The sample proportion 
is also the maximum likelihood estimator (MLE) of θ, because it maximizes the 
likelihood of obtaining the observed result of these coin tosses [1] [2]. 

Suppose that we proceed in a different way. We perform a “do until” experi-
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ment. Instead of fixing the number of tosses in advance, we toss this coin until 
we obtain heads for the nth time, where n is fixed. The recorded data are 

1 2, , , nx x x , where x1 is the number of tosses it takes to obtain heads for the first 
time, and for 2 ≤ k ≤ n, xk is the additional number of tosses it takes to obtain the 
kth occurrence of heads after we have obtained heads k − 1 times. These data are 
realizations of independent random variables 1 2, , , nX X X , each of which has 
the geometric distribution with probability mass function (pmf) 

( ) ( ) 1; 1 xp x θ θ θ−= −  for 1,2,3,x =   

[1] [2]. Our goal is to find the MVUE of θ based on this alternative data. 
We use this example to illustrate how conditioning an unbiased estimator on a 

sufficient statistic can be used to find a MVUE. This shows how we can discover 
the best estimator by using the very important concept of conditioning. The 
example demonstrates that this is not simply of theoretical interest. Finding ap-
propriate estimators is a consequential problem in inference, decision-making, 
and data reduction. In practical terms, an advantage of this method of using 
conditioning in this manner is that it is guaranteed to yield minimum variance 
and unbiased estimators. While they might be considered by some to be intui-
tive, other techniques, such as the method of moments, may not produce esti-
mators with those desirable properties [1] [2]. 

2. The Minimum Variance and Unbiased Estimator (MVUE) 

One way to find an unbiased estimator of θ for the geometric distribution and 
the data 1 2, , , nx x x  is to start with X1. Because ( )1Pr 1X θ= = , the estimator 

( ) 1
1

1

1      if  1
0     if  1

X
u X

X
=

=  >
 

is an unbiased estimator of θ. However, this estimator ignores the values of 

2 3, , , nX X X , which makes it suspect. Indeed, it is not the MVUE of θ unless n 
= 1. 

The random variable 1
n

kkY X
=

= ∑  is the total number of tosses of the coin 
that it takes to obtain n heads. It has the negative binomial distribution with pmf 

( ) ( ) –1
Pr 1

1
y n ny

Y y
n

θ θ
− 

= = − − 
 for , 1,y n n= +   

[1] [2]. The variable Y is a sufficient statistic for θ in the sense that the conditional, 
joint distribution of ( 1 2, , , nX X X ), given the value of Y, does not depend upon 
θ, as we now demonstrate. For { }1 2, , , 0,1nx x x ∈  and 1

n
kky x

=
= ∑ , 

( )

( )

( )
( )

( )

11

Pr  for 1, 2, ,
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1
1 1
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=
−

=

−

∑
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= −
= = =

− −=    
−   − −   

∏



          (1) 

when 1
n

kky x
=

≠ ∑ , the probability is zero. 
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The denominator of (1) is the number of ordered n-tuples of positive integers 
that sum to y. We conclude that, given Y = y, the conditional distribution of 
( 1 2, , , nX X X ) is uniformly distributed on the set of all such n-tuples. The dis-
tribution does not depend upon θ. This means that, as long as the experimenters 
retain the value Y, they may discard the data ( 1 2, , , nx x x ) without losing any 
information about θ. The statistic Y is therefore sufficient or good enough, be-
cause it contains all the knowledge about the value of θ that is available in the 
data. In other words, Y drains the data of all the useful information that it has to 
convey about the value of θ. 

The estimator 

( ) ( )( )1v Y YE u X=
 

is unbiased for θ, because 

( )( ) ( )( )( ) ( )( )1 1 1Y XE v Y E E u X Y E u X θ= = = . 

Thus, u(X1) and v(Y) are both unbiased estimators of θ which can be com-
puted from the data ( 1 2, , , nx x x ). 

According to the conditional variance formula 

( )( ) ( )( )( ) ( )( )( )1 1 1Var u X E Var u X Y Var E u X Y= +          (2) 

[1] [3] [4], so 

( )( ) ( )( )( ) ( )( )1 1 .Var v Y Var E u X Y Var u X= ≤            (3) 

This reasoning says that the MVUE of θ must be a function of Y, because we 
can use the conditional variance formula to condition any unbiased estimator of 
θ, which is not a function of Y, on Y itself to obtain another unbiased estimator 
of θ, which is a function of Y having a smaller variance. This is the content of the 
Rao-Blackwell theorem [3] [4]. 

There is only one function of Y that is an unbiased estimator of θ, which is 
demonstrated as follows. Suppose that there are two such estimators ( )1v Y  and 

( )2v Y , then 

( )( ) ( )( )1 2E v Y E v Yθ= =
 

and 

( ) ( )( ) ( ) ( )( ) ( ) –
1 2 1 2

1
0 1 .

1
y nn

y n

y
E v Y v Y v y v y

n
θ θ

∞

=

− 
= − = − − − 

∑
 

Because the series of powers of 1 – θ is identically zero for 0 < θ < 1, all of its 
coefficients must be zero. Therefore, ( ) ( )1 2v y v y=  for , 1,y n n= +  , and the 
uniqueness is established. Thus, ( ) ( )( )1v Y E u X Y=  must be the unique MVUE 
of θ. 

To compute the estimator, proceed as follows: 

( )( ) ( ) ( )
1

1 1 1 1
1

Pr
x

E u X Y y u x X x Y y
∞

=

= = = =∑  
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where the independence of 1 2, , , nX X X  yields the last equality. Further, 

( )( )
( )( ) ( )

( )

1 1 1

1

2
1

2 1.
1 1

1
1

y n n

y n n

y
n nE u X Y y

y y
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− −   

Hence, the MVUE of θ is 
1ˆ .
1

n
Y

θ −
=

−  

3. Geometric Interpretation 

There is a geometric interpretation of the conditional variance formula (2) that 
can provide a deeper understanding of these results. There is a long tradition of 
showing that variables and statistics reside in geometric spaces. Herr [5] gives a 
history of these representations. See [6] [7] [8] for other examples. The concept 
of projection, which is the essence of the present geometric approach, is widely 
used elsewhere, for example in machine learning. This approach places the process 
of computing MVUEs in the framework of the universally important concept of 
an inner product space and thus provides a deeper mathematical insight into 
this process. 

The set of random variables on a fixed probability space which have finite 
second moment is a Hilbert space 2L , where its inner product ,• •  and me-
tric d are defined for points 2,U V ∈L  as 

( ),U V E UV=  
and 

( ) ( )( )2,d U V E U V= −  

[9]. The conditional variance formula (2) is the “Pythagorean Theorem” in 2L  
as 

( ) ( )( )( )
( ) ( )( )( ) ( )( ) ( )( )( )

2
1 1

2 2
1 1 1 1

,

, , ,

d u X E u X

d u X E u X Y d E u X Y E u X= +
       (4) 

because 

( ) ( )( )( ) ( ) ( )( )( )( )
( ) ( )( )( )( ) ( )( )( )1

22
1 1 1 1

2

1 1 1

,

Y X

d u X E u X Y E u X E u X Y

E E u X E u X Y Y E Var u X Y

= −

 = − = 
   

https://doi.org/10.4236/ojs.2021.113027


J. E. Marengo, D. L. Farnsworth 
 

 

DOI: 10.4236/ojs.2021.113027 441 Open Journal of Statistics 
 

and 

( )( ) ( )( )( )
( )( ) ( )( )( )( ) ( )( )( )

2
1 1

2

1 1

,

,

d E u X Y E u X

E E u X Y E u X Var E u X Y= − =
 

by employing ( )( )( ) ( )( )1 1 1Y XE E u X Y E u X= . Equation (4) makes clear that 
( )( )1E u X Y  is the orthogonal projection of ( )1u X  onto the subspace of ran-

dom variables that are functions of Y, as the representational illustration in Fig-
ure 1 shows. 

If the unbiased estimator ( )1u X  is not a function of Y, then  
( ) ( )( )( )1 1, 0d u X E u X Y > , and from (4) 

( )( ) ( )( )( ) ( ) ( )( )( )1 1 1 1, , .d E u X Y E u X d u X E u X<
 

That is, 

( )( )( ) ( )( )1 1 ,Var E u X Y Var u X<
 

as in (3). 
Because the hypotenuse of a right triangle is its longest side, Figure 1 makes it 

clear that the variance of v(Y) is strictly less than the variance of u(X1). 

4. Conclusions 

Using a prototypical example, we have shown how the powerful technique of 
conditioning can be used to find the minimum variance unbiased estimator 
(MVUE) of a parameter. The data collection technique and the observations’ 
probability distribution determine the MVUE. Oftentimes, these MVUEs are not 
simply standard statistics, like means and variances, as the example illustrates. 
The geometry of the conditional variance formula shows how the minimum va-
riance estimator is obtained as a projection. 

Future endeavors might involve further development of the geometrical re-
presentation of this technique. Also, the example reveals how a feature of a  

 

 

Figure 1. ( )( )1E u X Y  as the result of an orthogonal projection in the Hilbert space 2L . 
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physical population can be viewed as a parameter in different probability distri-
butions, depending upon the sampling methods. In the example, θ is in a Ber-
noulli distribution and a geometric distribution. Topics for potential study are 
such choices, the ease of the sampling methods, the required sample sizes or ef-
ficiency, and the formulations of the MVUEs. 
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