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Abstract 

Ozone was reacted with the aromatic membrane polyetheretherketone (PEEK) to form 

oxidized functional groups on the surface to enhance the attraction and transport of protons 

in fuel cells. Ozonation of unsaturated C-C sp2 bonds in PEEK formed a primary ozonide which 

dissociated to primarily produce O=C-O/O=C-OH moieties, and the root mean squared 

roughness factor (Rq) decreased from 7.4 nm, for the untreated sample, down to 3.1 nm. The 

oxidation of the surface and decrease in surface roughness made the surface increase in 

hydrophilicity as observed by the decrease in the water contact angle (CA) from 80.3° for 

untreated PEEK down to 21.7°. Washing the treated surface with solvent decreased the O at % 
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on the surface indicating the formation of a weak boundary layer because of bond breakage 

during the decomposition of the ozonide.  

Keywords  

Fuel cells; polyetheretherketone; ozone  

 

1. Introduction 

Renewable energy sources, such as, solar, wind, biomass, geothermal, and fuel cells, are 

providing important solutions to dependence on fossil fuels and reduction in climate change [1-3]. 

In a proton exchange membrane fuel cell (PEMFC), a polymer membrane is placed between two 

electrodes to form a membrane electrode assembly (MEA), which with hydrogen as the fuel, 

produces only water and heat as the by-products making the fuel cell an environmentally friendly 

technology [4-7].  

In the 1960s, Dupont developed the first ion exchange membrane, Nafion®, consisting of a 

perfluorinated backbone having sulfonic acid groups, -SO3H, for high proton conductivity which 

depended on its water content and dehydrated at temperatures higher than 90°C [7, 8]. Since higher 

temperatures (T ≥ 100°C) are often used in PEMFCs, modification of Nafion membranes have been 

studied, as well as, the development of novel conductive membranes consisting of the inorganic 

proton conductor, calcium phosphate, and ionic liquids supported on polytetrafluoroethylene [8]. 

For high temperature PEMFCs, phosphoric acid doped polybenzimidazole (PBI) membrane, is 

frequently used for proton conductivity via hydrogen bonding between the phosphoric acid and the 

nitrogen-containing groups in PBI [9-13]. However, at this high temperature, there is loss of H3PO4 

decreasing the performance of the fuel cell [14-17]. Therefore, to increase wettability and proton 

conductivity, surface oxidation of the aromatic groups in PBI were studied with ozone [18], O atoms 

[19], UV photo-oxidation [20], and vacuum UV photo-oxidation [21]. In addition, the performance 

of a phosphoric acid fuel cell with n-hexadecane fuel has shown promise for petroleum diesel or 

biodiesel fuels [22]. 

The high performance semicrystalline thermoplastic aromatic polymer, polyetheretherketone 

(PEEK) (Figure 1) has good mechanical properties, high thermal glass transition (143°C) and melting 

temperatures (343°C), as well as, chemical stability [23] resulting in many applications including the 

aerospace industry [24-26] and sterilization of water [27], where reaction with ozone may occur, as 

well as, in fuel cells [28]. However, PEEK lacks a sufficient level of proton conductivity and durability 

for fuel cells thus requiring modification [28], such as, sulfonation of PEEK to increase proton 

conductivity and higher stability [29].  
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Figure 1 Molecular structure of polyetheretherketone (PEEK). 

Interfacial properties of the fuel cell membrane are key to operation of the MEAs [30] and to 

attract protons the polar groups on the polymer backbone must be maximized [31]. Despite all of its 

benefits, the non-polar aromatic backbone of PEEK exhibits hydrophobic characteristics which limit 

adhesion and transport of protons [25, 32, 33]. Therefore, to decrease hydrophobicity, this research 

investigated oxidation of PEEK with ozone and measured surface changes in chemistry, surface 

roughness, and hydrophilicity with treatment time using X-ray Photo-electron Spectroscopy (XPS), 

Atomic Force Microscopy (AFM), and water contact angle (CA), respectively. 

2. Materials and Methods 

2.1 Materials 

Aldrich (GF77849881-5EA) 0.2 mm thick PEEK film was used which had glossy and rough sides. 

XPS detected small amounts of Si contamination in the silane/siloxane region of the Si 2p spectra. 

Therefore, the PEEK samples were cleaned by four procedures: abrading, low energy sputtering, 

and washing with isopropyl alcohol or hexane. Since hexane removed all the Si and the XPS atomic 

percentages (at %) agreed within experimental error of the theoretical value for the structure of 

PEEK, the glossy side of PEEK cleaned with hexane was treated. 

2.2 Production of Ozone 

This study was conducted similar to the reaction of ozone with polybenzimidazole (PBI) [18] 

where oxygen with a flow rate of 2.5 l/h was fed into an Enaly Ozone Generator model 1000BT-12 

(Shanghai, China), which contains a corona discharge tube, to convert about 6 ± 2% of the volume 

of oxygen into ozone. The ozone/oxygen mixture was then flowed over the sample in a quartz 

cylindrical cell with the exiting gas passed through a solution of KI to convert the remaining ozone 

to oxygen before emission into the vacuum hood.  

2.3 X-ray Photoelectron Spectroscopy (XPS) 

Physical Electronics Versaprobe II 5000 XPS analyzed the top 2–5 nm of a rectangular region of 

about 1400 μm by 600 μm of the sample’s surface with a take-off angle of 45°. The quantitative 

analyses are precise to within 5 and 10% relative for major and minor constituents, respectively. 
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The high resolution C 1s and O 1s spectra were normalized to the peak intensities at the main 

hydrocarbon and C-O peaks, respectively. Initially, curve-fitting was done by subtracting the control 

spectrum from that of the treated sample to determine the number of peaks, their binding energies, 

and peak widths. The peaks were then used to curve-fit the total treated spectrum. Any missing 

peaks, such as weak energy loss peaks, were then added to achieve a good chi square fit. A materials 

balance was calculated to test if the results of the curve fitting agreed with the concentrations as 

determined from the quantitative analyses. 

2.4 Atomic Force Microscopy (AFM) 

Surface roughness was measured using a Bruker DI-3000 AFM in the tapping mode. For each 

specimen, a 15 μm × 15 μm image was obtained with the same Olympus OTESPA tip. 

2.5 Contact Angle (CA) Goniometry 

A Ramé-Hart model 250-F1 Standard Contact Angle Goniometer was used to determine the water 

CA. A micropipette was used to deposit a 10 µL deionized water droplet on the surface. As soon as 

the water droplet was placed on the film, a picture was captured by the U1 Series Camera. The left 

side and the right side contact angles were measured by the functioning DROPimage contact angle 

(CA) program. The standard deviation of the measurements was about ±2.5°. 

This research did not involve any human, animal, plant or subjects requiring an ethics committee 

or institutional review board approval. 

3. Results 

3.1 XPS Quantitative Analyses 

XPS detected only C and O on four hexane cleaned and untreated samples with the average O 

at % being 13.7 ± 0.2 in good agreement with the 13.6 at % O in the molecular structure of PEEK 

(Figure 1). 

Three separate sets of hexane cleaned PEEK samples were treated with ozone for 15, 30, 45 and 

60 min resulting in a saturation level of 22.3 ± 0.2 at % O after ca. 15 min of treatment.  

3.2 XPS Chemical State Analysis 

An example of the overlapped C 1s spectra for the control and ozone-treated PEEK samples are 

displayed in Figure 2 with the curve-fitting results in Table 1 showing primarily a decrease in C-C 

aromatic ring bonding and formation of the O=C-O/O=C-OH moieties, and a small increase in the C-

O and C=O functional groups. 
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Figure 2 C 1s spectra for control and ozone-treated PEEK samples with the arrow 

indicating increasing treatment time for 0 (red), 15 (blue), 30 (green), 45 (orange) and 

60 (light blue) min. 

Table 1 Assignments [34] and % areas for the C 1s peaks in Figure 2 as determined by 

curve-fitting. 

Binding 
Energy (eV) 

Species  Treatment Time (min) 

 0 15 30 45 60 

284.7 C-C, aromatic ring 70.0 66.0 66.9 66.2 66.9 
286.3 C-O 17.9 18.9 18.0 18.6 18.7 
287.1 C=O 4.9 5.7 5.8 6.8 5.7 
289.0 O=C-O, O=C-OH 0.0 4.5 4.5 4.8 4.7 
291.6 Energy Loss Peak 7.2 4.9 4.8 3.6 4.0 
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For the same samples, the overlapped O 1s spectra are shown in Figure 3 with the curve-fitting 

results in Table 2 confirming the substantial increase in the presence of the O=C-O/O=C-OH moieties. 

 

Figure 3 O 1s spectra for control and ozone-treated PEEK samples with the arrow 

indicates increasing treatment time for 0 (red), 15 (blue), 30 (green), 45 (orange), and 60 

(light blue) min. 

Table 2 Assignments [34] and % areas for the O 1s peaks in Figure 3 as determined by 

curve-fitting. 

Binding 
Energy (eV) 

Species  Treatment Time (min) 
 0 15 30 45 60 

531.4 O=C 28.2 16.6 16.7 19.2 17.0 
532.2 O=C-O, O=C-OH 0.0 36.2 35.9 34.4 38.8 
533.6 (ring) C-O-C (ring) 71.8 47.2 47.4 46.4 44.2 
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3.3 Surface Topography for PEEK Treated with Ozone 

AFM measurements of the treated surface showed a decrease in the root mean squared 

roughness factor (Rq) from 7.4 nm, for the untreated sample, down to 3.1 nm after 60 min of 

treatment (Figure 4). 

 

Figure 4 AFM surface topographic images (15 µ × 15 µ) showing the root mean squared 

roughness factors (Rq) in nms after treatment for 0, 15, 30, 45, and 60 min. 

3.4 Water Contact Angle (CA) Measurements 

As shown in Figure 5, treatment of PEEK with ozone made the surface more hydrophilic with 

treatment time. 
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Figure 5 Images of water droplet on PEEK surfaces as a function of treatment time with 

ozone. 

On average, the CA decreased from 80.3° for the control sample down to 21.7° after 45 min of 

treatment time (Figure 6). However, as shown in Figure 6, washing the treated samples with ethanol 

increased the CA back up to ca. 55°. 
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Figure 6 Water contact angle as a function of treatment time for ozone reacting with 

PEEK (•) and then washed with ethanol after treatment (▲). 

4. Discussion 

Little research was done previously on ozone-gas treatment of PEEK. In this study, cleaning of 

four samples of untreated PEEK with hexane gave an O at % of 13.7 ± 0.2 in good agreement with 

the theoretical value of 13.6 at % in the molecular structure of PEEK (Figure 1). When a PEEK board 

was machined to obtain discs which were sandblasted with alumina particles and then treated with 

gaseous ozone the O at % reported was 19.05 ± 0.33 for a bare sample [35]. In this study, the O at % 

for treated PEEK samples increased up to a saturation level of 22.3 ± 0.2 at % compared to 34.88 ± 

0.93 at % [35] which probably used higher concentrations of ozone. The O 1s XPS spectra (Figure 3) 

showed the formation of a new peak at 532.2 eV corresponding to the ester/carboxylic acid, O=C-

O/O=C-OH, functional groups which contains the O-H bond that was reported to react with 

phosphoryl chloride in the presence of trimethylamine to prepare phosphate-modified PEEK [35]. 

UV/ozone photo-oxidation of PEEK also reported the development of the C 1s XPS peak due to the 

formation of the ester/carboxylic acid groups [36]. 

Since the reaction of ozone with ethers in organic solutions indicate the attachment of ozone to 

α-hydrogen near the ether group [37], Figure 7 shows ozonation of the unsaturated C-C sp2 bond 

closest to the ether group in PEEK to form a primary ozonide [38] similar to the reaction of ozone 

with the fuel cell membrane polybenzimdazole (PBI) [18]. Figure 7 displays the possible 

decomposition steps marked “a” and “b” in addition to breakage of the “c” bond. Breakage of the 

“b” bond forms a compound containing the ester/carboxylic moieties, which is detected in this study 

(Table 1 and Table 2), and a criegee intemediate that may also produce an ester group with the 

release of CO2 [38]. While step “a” would form an C=O containing aldehyde and an oxygenated 

criegree intermediate that could produce a O-(C=O)-O containing product which was not detected 

in this study (Table 2). Thus, the preferred pathway of decomposition appears to be step “b” 

consistent with the decomposition of PBI [18] where nitrogen-containing, and not oxygen-

containing, groups are in the PBI stucture. 
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Figure 7 Decomposition of the primary ozonide of PEEK [38]. 

The increase in oxidation of the surface and decrease in surface roughness both contribute to 

the decrease in CA and increase in hydrophilicity relative to untreated PEEK. Breakage of the bonds 

with ozonization leads to the formation of a weak boundary layer which is washed away with solvent 

increasing the CA (Figure 6). 

5. Conclusions 

Hexane cleaning of untreated fuel cell membrane PEEK gave an O at % of 13.7 ± 0.2 in good 

agreement with 13.6 at % in its molecular structure. Gas phase treatment of PEEK with ozone 

increased the O concentration up to a saturation level of 22.3 ± 0.2 at %. Water contact angle 

measurements showed that the surface became more hydrophilic due to the formation of O=C-

O/O=C-OH moieties and a decrease in surface roughness. Washing the treated PEEK samples 

decreased the O at % indicating the formation of a weak boundary layer due to breakage of bonds 

during the decomposition of the primary ozonide. Oxidation of PEEK with ozone added polar 

functional groups to the surface which should help attract protons in fuel cells. 
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