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ARTICLE

A tighter constraint on Earth-system sensitivity
from long-term temperature and carbon-cycle
observations
Tony E. Wong 1✉, Ying Cui2✉, Dana L. Royer3 & Klaus Keller4,5

The long-term temperature response to a given change in CO2 forcing, or Earth-system

sensitivity (ESS), is a key parameter quantifying our understanding about the relationship

between changes in Earth’s radiative forcing and the resulting long-term Earth-system

response. Current ESS estimates are subject to sizable uncertainties. Long-term carbon

cycle models can provide a useful avenue to constrain ESS, but previous efforts either use

rather informal statistical approaches or focus on discrete paleoevents. Here, we improve on

previous ESS estimates by using a Bayesian approach to fuse deep-time CO2 and temperature

data over the last 420 Myrs with a long-term carbon cycle model. Our median ESS estimate

of 3.4 °C (2.6-4.7 °C; 5-95% range) shows a narrower range than previous assessments.

We show that weaker chemical weathering relative to the a priori model configuration via

reduced weatherable land area yields better agreement with temperature records during the

Cretaceous. Research into improving the understanding about these weathering mechanisms

hence provides potentially powerful avenues to further constrain this fundamental

Earth-system property.
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Understanding the relationship between changes in atmo-
spheric carbon dioxide (CO2) concentration and global
surface temperatures has been a scientific quest for

more than a century1. The current uncertainty surrounding this
relationship poses considerable challenges for the design of cli-
mate change policies2. Of particular interest is the equilibrium
response of global mean surface temperature to a doubling of
CO2 relative to preindustrial conditions, termed the “equilibrium
climate sensitivity”3 (ECS). The ECS is critical for mapping
changes in radiative forcing, including CO2 and other greenhouse
gases, to changes in global temperature. ECS is based on “fast”
feedback responses to changes in radiative forcing, including
changes in water vapor, lapse rate, cloud cover, snow/sea-ice
albedo, and the Planck feedback4. Even with detailed constraints
from the instrumental period, ECS estimates based on the historic
record alone are still subject to large uncertainties5–8. Based on
the understanding of feedback processes, historical climate and
paleoclimate records, a recent summary by Sherwood et al.9

concluded that the most likely range (66% confidence) for the
effective sensitivity (defined in terms of the 150-year temperature
response to a quadrupling of CO2 forcing in the context of their
general circulation model experiments) is 2.6–3.9 °C. Similar to
the ECS, the effective sensitivity does not include long-term
feedbacks, such as ice sheets, vegetation, and carbon cycle (ref. 9

and references therein).
In contrast to the shorter-term ECS that responds to relatively

fast feedback processes, consideration of longer-term responses
offers a glimpse into the deep-time paleoclimate evolution of the
sensitivity of the Earth-system temperature response to both fast
and slow feedbacks. In particular, a deep-time perspective offers
insight into the “Earth-system sensitivity” (ESS)—the long-term
equilibrium surface temperature response to a given CO2 forcing,
including all Earth-system feedbacks10. Sherwood et al. estimate
the ESS as their effective sensitivity multiplied by an inflation
factor, (1+ fESS), where fESS is sampled from a normal distribu-
tion with mean value of 0.5 and standard deviation of 0.25
(refs. 10,11). A growing body of evidence suggests covariations in
CO2 and temperature during the last 420 million years (Myr;
ref. 12). This long-term record enables improved quantification of
ESS and insights into factors affecting the climate response across
a wide range of climate states, including both icehouse and
greenhouse conditions10,13–18. This wide range of states and
variations in temperature and CO2 is also important to help
distinguish the long-term climate signal from the noise.

Previous studies estimate ESS over geological timescales using
varying combinations of global climate models, long-term car-
bon-cycle models, and proxy data for temperature and atmo-
spheric CO2. Royer et al.19 combines a geochemical model and
CO2 proxies from the past 420Myr, and concludes that ESS falls
between 1.6 and 5.5 °C (95% confidence). In addition, during
glacial periods, a given CO2 forcing will lead to a stronger tem-
perature change due to the land ice-albedo feedback. Thus, esti-
mates of ESS that do not explicitly account for land-ice feedbacks
will necessarily be higher than those that do. Arguments in (for
example) Park and Royer14 and Hansen et al.18 support such a
“glacial amplification” in ESS, giving 6 °C or more warming per
doubling of CO2. The former study uses model time steps of 10
Myr, so mechanisms such as orbital forcings, which operate on
timescales of 10–100s of thousands of years, are averaged
out and are not explicitly represented. Many studies suggest that
ESS >1.5 °C is a general feature of the Phanerozoic10,13,16,20,
although these studies generally vary in the types of external
forcings they consider and the confidence levels for the ranges
they report. By assuming different sets of external feedbacks,
forcings and (sea) surface temperatures, these previous studies
report different kinds of Earth-system sensitivities4. It is therefore

necessary to distinguish between various flavors of ESS4,15. For
example, the geochemical model from Royer et al.19 uses a form
of ESS that computes the overall global mean surface temperature
response by explicitly accounting for forcings from changes in
CO2, solar luminosity, and paleogeography. In the notation of
Rohling et al.4, this ESS is based on the specific paleoclimate
sensitivity S[CO2, geog, solar]. Krissansen-Totton and Catling21 also
account explicitly in their model for CO2, solar, and paleogeo-
graphic forcing over the past 100Myr, and compute a median
ESS of 5.6 °C (3.7–7.5 °C 90% credible interval). By contrast,
Anagnostou et al.22 account explicitly for CO2, solar luminosity,
paleogeography, and land ice, and find ESS estimates varying
from ~5–7 °C 53Myr ago to about 2 °C 30Myr ago. Following the
argument above, we expect that the inclusion of land-ice feed-
backs leads the ESS estimate of ref. 22 (based on S[CO2, geog, solar])
to be lower than that of ref. 21 (based on S[CO2, geog, solar, land ice]).

In long-term carbon-cycle models, many uncertainties stem
from how CO2 proxy data can best be used to improve estimates
of carbon-cycle model parameters14,19. Specifically, the errors in
proxy CO2 data are often asymmetric, where it is typical for the
upper error bound to be farther from the mean than the lower
error bound15,23. In addition, there is a complex interactive
relationship among the model parameters and their combined
effect on modeled CO2 concentrations. Previous assessments do
not fully account for these model parameter interactions15 or
neglect the asymmetric error structure21. This raises the related
questions of how these assumptions affect estimates of ESS,
and which research has the greatest promise to reduce biases and
constrain ESS, given this common model framework.

Here, we expand on previous work14,15,19 by improving the
uncertainty characterization of both proxy CO2, surface tempera-
ture, and associated parameters in a commonly used long-term
geochemical model. First, we consider interactions among model
parameters via a Monte Carlo precalibration approach to account
for uncertainties in the model parameters, and the surface tem-
perature and CO2 proxy data. We generate model ensembles that
agree with CO2 proxy data only, temperature reconstructions only,
and both, by imposing constraints on the goodness-of-fit of the
model simulations. This experimental setup allows us to characterize
the ability of each source of information to better constrain estimates
of model parameters, and to examine the correlations among model
parameters and periods of bias in the model output. We demon-
strate that improved constraint on the ESS model parameter ΔT2x
will result from both (i) improved constraint on the CO2 and/or
temperature hindcast and from (ii) using both CO2 and temperature
data to constrain estimates of ΔT2x.

Results
The GEOCARBSULFvolc model. GEOCARBSULFvolc is a long-
term carbon and sulfur cycle model that simulates atmospheric
concentrations of CO2 and O2 based on mass and isotopic bal-
ance over the past 570Myr. The GEOCARBSULFvolc model
(henceforth, “GEOCARB”) and its previous incarnations24,25

have been widely used in previous studies (e.g., refs. 14,15,19,26,27),
and includes a version of ESS where the only independent
radiative forcings are CO2, solar evolution, and changing geo-
graphy. In the notation of refs. 4,10, this ESS would be computed
from the specific paleoclimate sensitivity, S[CO2, geog, solar]. How-
ever, within GEOCARB and other such models (e.g., ref. 21), an
ESS model parameter links CO2 radiative forcing to the associated
temperature response, but also accounts internally for other
forcings in computing the total temperature response to radiative
forcing. In GEOCARB, the ESS model parameter ΔT2x corre-
sponds to the long-term temperature change resulting from
doubling CO2 relative to preindustrial levels, accounting for
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changes in solar evolution and continental geography. GEOCARB
assumes a linear increase in solar luminosity over time, corre-
sponding to the parameter Ws, and uses results from general
circulation model output to simulate the land temperature
change, resulting solely from changes in paleogeography (GEOG;
see Supplementary Fig. 1)28,29. Thus, appropriate choices for the
ESS parameter within GEOCARB are influenced by the balance of
forcing between CO2, solar luminosity, and paleogeographic
changes. For brevity, we will use ΔT2x when referring to ESS
within the GEOCARB model, and reserve the term “ESS” for
discussion of Earth-system sensitivity more generally.

While other long-term carbon-cycle model choices are
available21,30,31, we focus on the GEOCARB model due to
its extensive use as an inverse modeling tool for leveraging
CO2 proxy data to constrain ESS and other geophysical
uncertainties14,15,19,27. The inverse approach generates model
simulations using many different plausible values for ΔT2x to
determine which values for ΔT2x are likely, given the (mis)match
between the proxy data for CO2 and temperature and model
simulation output for these quantities. The model structure
assumes that the atmosphere and ocean is a single system, where
the weathering of organic-rich sediments and volcanic degassing
deliver carbon to the atmosphere–ocean system, while carbon is
lost via the burial of organic-rich sediments and carbonates24,32.
The shape of the modeled CO2 curve is well-characterized, with
high values (>1000 p.p.m.) between 540 and 400Myr and ~250
Myr15, consistent with the lower solar luminosity in the early
Phanerozoic26.

There are 68 GEOCARB model parameters, of which 56 are
constants and 12 are time series parameters. The constant
parameters have well-defined prior distributions from previous
work, and the time series parameters have central estimates
and independent uncertainties defined for each time point15.
Previous efforts to constrain the uncertainty in the GEOCARB
model parameters relied on several important, but limiting,
assumptions15. The prior distribution centers are held fixed in
their Monte Carlo resampling strategy and only the widths are
adjusted; if a parameter sample leads to model failure (e.g.,
through unphysical carbon or sulfur fluxes or unphysical O2 or
CO2 concentrations), then the input range is considered unlikely
and rejected. This resampling approach risks missing key
parameter interactions, and propagating biases in the centers of
parameters’ distributions.

Model configuration. Our adopted GEOCARB model15 is
structurally identical to the model as presented in Royer et al.15.
GEOCARB assumes a single ESS parameter (called ΔT2x within
the model and in previous studies14,15,21) for the past 420Myrs of
non-glacial periods, and includes a parameter (GLAC) to amplify
the ESS during the late Paleozoic (330–260Myr) and late Cen-
ozoic (40–0Myr) glacial periods. During glacial periods, the
effective ESS within GEOCARB is then GLAC × ΔT2x. The two
stable states, glacial and non-glacial, for ESS within GEOCARB
provide a simple representation of the type II state dependence
described by von der Heydt et al.33. However, temporal variation
in ESS within each of those stable states is not represented in
GEOCARB22,34. Some previous modeling efforts have assumed a
single value of ESS for multiple climate states (e.g., glacial and
non-glacial)19,21. This will generally increase the uncertainty in
the resulting scalar parameter estimate due to using a single
parameter to represent a quantity that is changing over time.

We briefly discuss the temperature and carbon mass balance
calculations within GEOCARB below, but further details on the
GEOCARB model structure and parameterizations may be found

in ref. 35. The temperature in GEOCARB is computed as

TðtÞ � Tð0Þ ¼ ΔT2x
lnðRCO2ðtÞÞ

lnð2Þ �Ws
t

570
þ GEOGðtÞ; ð1Þ

where T(t)–T(0) denotes the global mean surface temperature at
time t (Myr ago) relative to present (t= 0) and RCO2(t) is the
mass of atmospheric CO2 at time t relative to present. The time
series parameter GEOG describes the change in land temperature
attributable to changes in paleogeography and the parameter Ws

accounts for the linear trend in solar forcing over time. We follow
ref. 35 and assume a present (past 5 Myr) mean global surface
temperature of T(0)= 15 °C. In GEOCARB, a mass balance
governs changes in carbon over time in the surficial system, as
given in Eq. 1 of ref. 15:

dMc

dt
¼ Fwc þ Fwg þ Fmc þ Fmg � Fbc � Fbg; ð2Þ

where Mc is the total carbon mass in the surficial system, Fwc
represents the flux due to weathering of calcium and magnesium
carbonates, Fwg represents the weathering flux of sedimentary
organic carbon, Fmc represents the degassing flux from carbo-
nates, Fmg represents the degassing from organic carbon, Fbc
represents the burial of carbonate, and Fbg represents the burial of
organic carbon. An associated carbon isotopic mass balance
accompanies this as an additional constraint. Thus, the weath-
ering processes (Fwc and Fwg) are parameterized to capture the
average balance among these carbon sources and sinks, assuming
a steady state balance over the course of a 10Myr time step. For
modeling the long-term carbon cycle, no perturbations around
the steady state can persist for >500,000 years36, including for
alkalinity.

Parameter precalibration. The essence of our precalibration
method to fuse the GEOCARB model with data is to sample a
large number of model parameter sets from their prior distribu-
tions—these are the a priori parameter values, taken before any
data are fused with the model. Then, we rule out any combina-
tions of parameters that yield simulations that do not agree well
with the CO2 proxy or temperature data, given their uncertainties.
What remains are the a posteriori ensembles of parameters,
including ΔT2x. We use Latin hypercube sampling to draw
samples of the constant parameters and inverse Wishart sampling
to account for uncertainty and autocorrelation in the time series
parameters (see “Methods” and Supplementary Fig. 2). This
method improves on previous GEOCARB-based ESS estimates by
updating the centers of all parameters’ distributions.

In this setting, precalibration is preferable to formal calibration
methods (e.g., Markov chain Monte Carlo) to avoid potentially
overconstraining the system with a large and diverse calibration
data set. For example, data points with relatively lower
uncertainty can dominate the goodness-of-fit measure, leading
to poor agreement with the other data points. Here, the CO2 data
uncertainties scale roughly with CO2 concentration, so we employ
precalibration to avoid a low-CO2 bias (see Supplementary Fig. 3).
We establish a maximal +/−1σ window around all of the time
series data for each of temperature and CO2. For the CO2 data,
we use the proxy compilation of Foster et al.26, and for the
temperature data, we use the Phanerozoic temperature compila-
tion of Mills et al.12. As a goodness-of-fit measure, we use the
percentage of time steps in which a model simulation is outside
the range of the precalibration windows around the data, termed
“%outbound” following Mills et al.12. We create ensembles of
model simulations that match CO2 data, temperature data, or
both simultaneously by imposing limits of at most 50, 45, 40, 35,
and 30% of time steps to be out-of-bounds (for a total of 15 main
experiments). Unless otherwise stated, we present results for the
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30 %outbound experiment, using both CO2 and temperature
data. Figure 1 gives a schematic depicting the precalibration
workflow.

Inference for Earth-system sensitivity. We find an a posteriori
ensemble median ΔT2x of 3.4 °C per doubling of CO2 (mean is
3.5 °C and 5–95% credible range is 2.6–4.7 °C; Fig. 2). Our esti-
mates further improve constraint on the upper tail of the dis-
tribution for ΔT2x from previous GEOCARB work: 2.8 °C
(1.6–5.5 °C 95% confidence range) from Royer et al.19 and 3.8 °C
(1.6–7.6 °C 5–95% probability range) from Park and Royer14. We
find 0.1% probability associated with non-glacial ΔT2x >6 °C, in
contrast to 16% in Park and Royer14 (“PR2011” in Fig. 2).

The fact that the ΔT2x estimate of Krissansen-Totton and
Catling21 (3.7–7.5 °C 5–95% probability range) is centered higher
and has a wider uncertainty range than our study can be
attributed largely to their selection of a single constant sensitivity

value (see Supplementary Fig. 4). Our a posteriori estimates for
the glacial scaling factor, GLAC, are centered at 2.1 (ensemble
median; 5–95% credible range: 1.4–2.9), which is consistent with
the central value of 2 used in previous work14. This leads to our
estimated distribution for the net glacial period ΔT2x to be
centered at 7.1 °C (mean is 7.3 °C and 5–95% credible range is
4.4–11.0 °C). This result is centered slightly higher than the
estimate of 6–8 °C from a previous GEOCARB analysis14,
although still within the uncertainty ranges for that and other
glacial period ΔT2x estimates13. Our results thus reconcile the
distribution of ESS between estimates that place more probability
weight <2.5 °C (refs. 4,14,19) and the high-end estimates of
Krissansen-Totton and Catling21, whose posterior ΔT2x values
represent a mix of the glacial and non-glacial estimates
presented here.

As we consider increasingly tighter bounds on acceptable CO2

hindcasts without the use of temperature data, the corresponding
constraint on ΔT2x does not noticeably improve (Fig. 3). As we
progressively tighten constraint on temperature hindcasts,
however, the associated estimates of ΔT2x become better-
constrained: the uncertain ranges for ΔT2x become narrower.
This improvement is most prominent when CO2 and temperature
are used as complementary constraints (Fig. 3, bottom). In
addition, the ensemble median estimate of ΔT2x increases as
constraint on paleo global mean surface temperature improves
(Fig. 3, middle). Thus, two important related conclusions emerge:
(i) temperature provides an important constraint on ΔT2x, in
addition to CO2, and (ii) improved estimates of paleotempera-
tures likely lead to tighter estimates of ΔT2x. These results
highlight the importance of temperature data, in order to improve
estimates of ESS more generally.

Constraint of paleo CO2 evolution. We find that the assimilation
of the CO2 and temperature proxy data provides a tight con-
straint on the evolution of modeled paleoclimate CO2 and surface
temperature (Fig. 4). As expected, there is notable improvement
in the simulation of paleoclimate CO2 concentration when both
temperature and CO2 data are used for precalibration, as com-
pared to when only temperature data are used (Fig. 4a). When we
use only temperature data to constrain the model simulations,
10% of the 10,000 ensemble members are in agreement with the
proxy CO2 compilation at a %outbound level of 25% or better. By

Fig. 1 Schematic of the precalibration workflow. This workflow is repeated
to produce ensembles by varying the %outbound threshold and the data
sets employed.

Fig. 2 A posteriori probability density for Earth-system sensitivity
parameter (ΔT2x, solid blue line). The posterior density is plotted relative
to the prior density (dotted line) and the results from Park and Royer14

(PR2011, dashed black line). At bottom, the points provide median
estimates from this study (blue circle) and from Park and Royer14 (black
square) and whiskers denote the 5–95% probability ranges.
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including CO2 data in addition to temperature data, the number
of simulations that agree at the 25 %outbound level or better
improves to 85%. We focus on the 25 %outbound error level here
because that is roughly the lowest error magnitude reported by
Mills et al.12 (c.f. Fig. 11 in that work). We also observe dramatic
improvement in the temperature simulation: without temperature
data, only 0.14% of the 10,000 ensemble members have an error
<25 %outbound; by including temperature data in addition to
CO2 data, 3.8% of the ensemble members attain error margins
<25 %outbound in temperature. While 3.8% seems like a low
proportion of success, we note that (i) 25 %outbound in tem-
perature is comparable to the best error margins for the tuned
simulations of Mills et al.12, and (ii) this constitutes an order of
magnitude improvement relative to the model simulations that do
not employ temperature data.

Controls on Cretaceous temperature biases. Despite this
improvement in the match to paleotemperatures, it is still striking
that it is so rare to attain error margins that are <25 %outbound
for temperature. These results, taken together with the results
from the work of Mills et al.12, who also found it difficult to
further improve on the temperature simulation, highlight the
importance of examining the controls on paleotemperature
within the GEOCARB model structure. Specifically, during
the early Cretaceous (~100Myr ago), both our results and those
of Mills et al.12 display a substantial cool bias in temperature
relative to the proxies.

In light of these biases, we perform an additional sensitivity
experiment to investigate the controls on early Cretaceous
(140–90Myr ago) temperature, using the GEOCARB model.

First, the point of this exercise is to examine the relationship
between Cretaceous temperatures and the model parameters (in
particular, the ESS parameter ΔT2x), so we relax the %outbound
threshold from 30 to 50%. This change allows more variation in
the model’s temperature simulations. Later, after making further
changes to improve the goodness-of-fit in the Cretaceous
temperature simulations, we tighten the error margin back to
30%, to show that the GEOCARB model is indeed quite capable
of matching well the Cretaceous temperature record. Our initial
sensitivity experiment is similar to the 50 %outbound experiment
from our main set of simulations, where the ensemble for analysis
consists only of simulations that match the CO2 temperature data
windows in at least 50% of the time steps. In our new experiment,
however, we retain only those simulations that pass through the
temperature data window at 90Myr ago. This time step was
chosen because it corresponds to the peak in the temperature
time series (Fig. 4b, gray-shaded region).

The Cretaceous-matching calibration experiment leads to an
increase in the estimated distribution for ΔT2x by ~0.2 °C relative
to the original results for the 50 %outbound experiment (median

Fig. 3 Medians and 50 and 90% credible intervals of the ESS model
parameter, ΔT2x. We use as observational constraints CO2 only (top set of
shaded blue boxplots), temperature only (middle set of shaded red
boxplots), or both CO2 and temperature (bottom set of shaded purple
boxplots). Each boxplot shows the 5–95% (light shading) and 25–75%
(dark shading) credible ranges and ensemble medians (solid lines). Within
each set of boxplots, from top to bottom, the boxplots depict the credible
ranges for the experiments using different thresholds for %outbound,
starting with %outbound of 50% (top row in each set) and ending with
30% (bottom row in each set).

Fig. 4 Model hindcast, using both CO2 and temperature data, for
precalibration and a %outbound threshold of 30% (shaded regions). The
gray-shaded regions show the data compilations for CO2 (ref. 26) and
temperature12. The lightest colored shaded regions denote the 95%
probability range from the precalibrated ensemble, the medium shading
denotes the 90% probability range, the darkest shading denotes the 50%
probability range, and the solid-colored lines show the ensemble medians.
To depict the marginal value of each data set, the dashed lines depict the
95% probability range from the precalibrated ensemble, when only
temperature data is used (a) and when only CO2 data is used (b).
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of 3.6 °C as compared to 3.4 °C in the original 50 %outbound
experiment). We examine the distributions of model input
parameters for the Cretaceous-matching experiment and find no
substantial changes in any of the 56 constant parameters.
However, several of the time series parameters’ distributions
change substantially. Specifically, we find that changes were
required in the time series for the land area relative to present
(fA), global river runoff relative to present (fD), the response of
temperature change on river runoff (RT), and the fraction of land
area that undergoes chemical weathering relative to present (fAW/
fA). Not surprisingly, the main changes to these time series
parameters occur primarily in the 90Myr time step (see
Supplementary Fig. 5). In order to match the Cretaceous
temperatures during that time, we observe slight decreases in
fA, fD, and RT 90Myr ago. However, we observe a sizable decrease
in fAW/fA (the weatherable land surface area), which is not well-
supported by paleoclimate modeling studies28,29.

To remove the effect of arguably unphysical parameter choices,
we generate a new set of 10,000 simulations that all match the
Cretaceous temperature 90Myr ago. We sample the time series
parameters by changing the centers of their multivariate normal
distributions to match the mean time series shown in Supple-
mentary Fig. 5 (dashed lines). We revert to using the 30 %
outbound threshold, in order to assess the degree to which our
best ESS estimates (the 30 %outbound experiments) are
influenced by biases in the Cretaceous temperatures, and to
improve these estimates by accounting for both the Cretaceous
temperature bias and the plausibility of forcing parameter values.
By restricting our set of simulations to only those in which the
fAW/fA time series does not stray too far from its original central
value, our updated set of Cretaceous-matching simulations has a
median ΔT2x of 3.3 °C, as compared to 3.4 °C in the original set of
experiments. The 5–95% probability range also shifts ~0.1–0.2 °C
cooler at 2.5–4.5 °C, as compared to 2.6–4.7 °C in the original 30
%outbound experiments (Fig. 5). From the fact that the
distribution of estimated ΔT2x changes by <0.2 °C, we conclude
that our estimates of ESS are not unduly influenced by biases in
the temperature simulation. Further, we conclude that GEO-
CARB is indeed capable of matching the temperature data,
although these results highlight that sampling via brute force
Monte Carlo requires a very large number of samples and some

statistical care is needed, in order to bring the modeled and proxy
temperatures into better agreement.

Discussion
We make a number of improvements relative to previous work
using the GEOCARBSULFvolc model14,19, which reduce the ESS
uncertainty compared to these previous studies14. This change
can be explained by our improved calibration approach and our
use of temperature data in addition to CO2. Specifically, we find
that a constraint on paleotemperature is critical for tightening our
estimates of the GEOCARB ESS parameter, ΔT2x; reducing the
uncertainty surrounding paleo CO2 concentrations on its own is
not sufficient. In addition, we include a larger CO2 proxy data
record26 and conduct a set of sensitivity experiments to analyze
the parametric controls on simulated CO2 concentrations and
global mean surface temperatures. Our results refine the char-
acterization of the Earth-system surface temperature response to
changes in atmospheric CO2 concentrations and can provide
guidance on where to focus future research to better understand
and quantify this relationship.

We adopt a well-studied, state-of-the-art, yet still relatively
simple model. This model simplicity provides the advantages of
transparency and the ability to perform careful and exhaustive
uncertainty and sensitivity analyses37. These advantages come,
however, with several caveats that point to fruitful research
directions. One key caveat stems from the fact that GEOCARB is
a coarse-resolution and highly parameterized model with a long
(10 Myr) time step and many (68) parameters (including 12 time
series). A second related caveat arises from the still highly stylized
representation of feedbacks and processes that is characteristic of
such models (e.g., refs. 21,30). As previously discussed (e.g.,
refs. 12,22,33), the current assumption in the model of using a
constant ΔT2x for each of the glacial and non-glacial stable cli-
mate states risks missing processes leading to gradual changes in
ΔT2x within one of the larger stable climate states. The work of
ref. 12 further points to the potential importance of capturing this
type I state dependence in ΔT2x, because their results indicate an
increasing trend in ΔT2x beginning ~130Myr ago. In the GEO-
CARB model, however, the ΔT2x ESS parameter is assumed to be
constant at its non-glacial value from 260 to 40Myr ago, then
shifts immediately to its glacial value from 40 to 0Myr ago. We
evaluate the impacts of this type I state dependence in an
experiment, where we linearly increase ΔT2x from its non-glacial
value 130Myr ago to its glacial value 40Myr ago; the parameter
remains constant at its glacial value from 40 to 0Myr ago. This
linear change in ΔT2x (as opposed to the step function transitions
in the base-case version of the model) has little effect on
the temperature hindcast (Supplementary Fig. 6). This simple
experiment, of course, scratches only the surface of the challenge
to represent type I state dependence for ESS. This result suggests,
however, that a simple refinement of type I state dependency does
not substantially impact our results.

The assumed time series of forcing parameters may also
introduce biases. For example, uncertainty in paleogeographical
changes, such as the opening of the Drake Passage, while not
explicitly represented in the GEOCARB inputs or processes,
indeed contributes to uncertainty in such parameters as GEOG
(the temperature change resulting from changes in paleogeo-
graphy, assuming fixed CO2 and solar luminosity). In addition,
GEOCARB does not explicitly account for non-CO2 greenhouse
gases or aerosols. This limitation of GEOCARB and other similar
models (e.g., ref. 21) may risk overestimating ΔT2x by assuming
that all of the observed temperature change is attributable to the
CO2 forcing (along with paleogeography and solar luminosity in
the case of GEOCARB). However, our experiment examining the

Fig. 5 A posteriori probability density for Earth-system sensitivity
parameter (ΔT2x). Shown are the densities for the original calibration
experiment using the 30 %outbound threshold and both CO2 and
temperature data (solid blue line) and the experiment, where the simulated
temperature is forced to agree with the data compilation of ref. 12 in the
90Myr ago time step (dashed red line).
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Cretaceous cool temperature bias suggests that our estimates of
ESS are robust to these variations associated with improving the
Cretaceous temperatures.

Our use of a precalibration approach to avoid overfitting data
points with low-CO2 concentrations minimizes the low-CO2 bias
found throughout the Mesozoic Era characteristic of previous
GEOCARB analyses14,15. Indeed, when we fit a mixture model
distribution to the CO2 proxy data, this distribution reveals
strong multimodality in the CO2 proxy record (see Supplemen-
tary Fig. 7). This multimodality is a likely culprit for the low-CO2

bias observed in previous work14,15, as formal calibration pro-
cedures (e.g., Markov chain Monte Carlo21) may improve the
model fit to the data by tuning the model to better represent
modes in the data that have narrower uncertainty ranges at the
expense of adequately representing data points with higher
uncertainties (Supplementary Fig. 7a).

We find that the efficiency of chemical weathering, as modu-
lated by weatherable land surface area and riverine discharge to
oceans, offers an avenue to improve the representation of
paleotemperature in GEOCARB. Given the important role of
temperature in obtaining better-constrained estimates of ΔT2x,
this highlights the importance of these weathering mechanisms
for constraining ESS, thereby improving our understanding of the
relationship between atmospheric CO2 concentrations and
changes in Earth’s climate.

Methods
Parameter precalibration. We use the parameter means and uncertainty ranges
given by Park and Royer14. There are 68 parameters in total: 56 constant parameters
and 12 time series parameters. The time series parameters include isotopic ratios for
strontium (87Sr/86Sr, to track the weathering fraction of volcanic rocks), carbon and
sulfur isotope ratios (δ13C and δ34S, to track burial, degassing, and weathering
fluxes); paleogeographical factors (including continental relief, total land area, land
area susceptible to weathering, land area covered by carbonates, river runoff, and the
effect of paleogeographical changes on temperature); and degassing and seafloor
spreading. The parameters are described along with their prior and posterior ranges
in the Supplemental Material accompanying this work, and in much greater detail in
Royer et al.15. The essence of any Bayesian calibration scheme is to update our a
priori beliefs about probable parameter values in light of the available data. Our a
priori beliefs about the parameters’ probable values and their uncertainties are
characterized by assigning the parameters prior distributions. The constant para-
meters are assigned Gaussian prior distributions, with the exception of the Earth-
system sensitivity parameter, ΔT2x, which we assign a log-normal prior
distribution14. Each of the time series parameters takes on distinct values at each of
the 58 model time steps. Following previous work, we assume the model and forcing
time series parameters are in steady state between model time steps14. Each time
series parameter is sampled from a 58-dimensional (number of time steps) multi-
variate normal distribution, whose mean is taken to match the central estimates
from previous work15. The covariance matrix for this multivariate normal dis-
tribution is sampled from an inverse Wishart distribution. We choose the degrees of
freedom for the inverse Wishart distributions such that the widths of the prior
distributions match those from Royer et al.15. We update the time series for seafloor
spreading rate (fSR) to match the more recent work of Domeier and Torsvik38, and
evaluate the sensitivity of our results to this improvement in a set of supplemental
experiments (see Supplementary Fig. 1). In our adopted GEOCARB model, we have
fixed an error that was noted in previous GEOCARB versions27, wherein the forcing
time series for the fraction of land area that undergoes chemical weathering relative
to present (the parameter fAW/fA) was previously not normalized to 1 relative to the
final model time step (which roughly represents present-day conditions).

Model–data fusion. Using the CO2 proxy data set as in Foster et al.26, containing
1215 proxy data points, we first discard two data points with unphysical negative
CO2 concentration values. For each model time step (10Myr), we construct a
precalibration window as follows (see Supplementary Fig. 8). We pool all data
points within 5Myr of the given time step’s center. We compute the upper and
lower 1σ bounds on each of the data points within the given time step. From the set
of upper 1σ bounds, we take their maximum as the upper limit of the precalibration
window for this time step. Similarly, we use the minimum of the data points’ lower
1σ bounds for the lower bound for each of the windows. Any time steps that have
no CO2 proxy data points within them are assigned a window of 0–50,000 p.p.m.v.
CO2 (ref. 15). For paleoclimate global mean surface temperature reconstructions,
we use the reconstruction of Mills et al.12. The gray-shaded regions in Fig. 4
correspond to the time series of precalibration windows. We measure a model
simulation’s goodness-of-fit to the proxy data using the percentage of time steps, in

which the model hindcast time series is outside of the precalibration windows
around the data, termed “%outbound” following Mills et al.12. We use thresholds of
%outbound varying from 30 to 50%, in order to evaluate the impacts of improved
fit to the data. As examples, a %outbound threshold of 100% amounts to sampling
from the prior distributions, and a 0 %outbound threshold requires the model
simulations to go through all of the precalibration windows. For each of the %
outbound thresholds between 30 and 50% (in increments of 5%), we generate
model ensembles that agree with CO2 proxy data only, with temperature recon-
structions only, and both data sources.

Parameter sampling. We use a Latin hypercube approach to sample from the
prior distributions of the model parameters, and use the precalibration windowing
procedure described above to cull the prior samples down to only those that match
the data (temperature, CO2 or both) to within the desired %outbound threshold.
We use an initial sample size of 2 × 107 parameter sets, but cease sampling once we
achieve at least 10,000 samples that are within the %outbound threshold for the
given experiment. Experiments adjusting the final sample size confirmed that our a
posteriori estimates of ΔT2x are insensitive to changes in sample size beyond
~1000 samples (see Supplementary Fig. 9).

In our experiment examining the Cretaceous temperature bias, we sample the
time series parameters by changing the centers of their multivariate normal
distributions to the a posteriori means from a set of simulations that are forced to
agree with the temperature data at the 90 Myr ago time step. We retain only the
plausible simulations in our experiment by removing any simulations where the
value for the fAW/fA time series at 90Myr ago was more than one standard
deviation away from its original central value. This leaves 2139 simulations out of
the original 10,000.

Data availability
All input data sets are provided with the model codes and are freely available from
https://doi.org/10.5281/zenodo.4562996. Model output results files used for analysis are
freely available from https://doi.org/10.5281/zenodo.4563019. All are provided under the
GNU general public license.

Code availability
All model codes and analysis codes used for analysis are freely available from https://doi.
org/10.5281/zenodo.4562996, and are distributed under the GNU general public license.
Large model output data sets are linked in the “Data availability” section.
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Supplementary Information 
Accompanying “A tighter constraint on Earth-system sensitivity from long-term temperature and carbon-
cycle observations”, by Tony E. Wong, Ying Cui, Dana L. Royer and Klaus Keller 
 
 
This supplement contains figures supporting the results and discussion presented in the main text. 
Specifically, we present: 

• additional plots showing the 5-95% probability ranges and best estimates of the time series 
parameters (Supplementary Figure 1) and the autocorrelation functions for each time series 
parameter (Supplementary Figure 2); 

• the relationship between the proxy data CO2 concentrations and the width of the uncertainty range 
for each data point (Supplementary Figure 3); 

• the distributions of estimated Earth-system sensitivity parameter (DT2x) in the control experiments, 
as well as the results of Krissansen-Totton and Catling (2017)1 and the sensitivity experiment in 
which the model simulations are forced into agreement with the Cretaceous temperatures at 90 
Myr ago (Supplementary Figure 4); 

• the a posteriori mean time series parameters that are most affected in the Cretaceous temperature-
matching experiment, relative to the original set of experiments (Supplementary Figure 5); 

• a sensitivity experiment in which a linear change in DT2x is assumed instead of the step function 
change in the default GEOCARB configuration (Supplementary Figure 6); 

• a hypothetical likelihood surface in which a skew-normal mixture model is fit to the data within 
each 10 Myr model time step (Supplementary Figure 7); 

• the raw CO2 concentration data from Foster et al. (2017)2 and the fitted precalibration windows 
used in the main text (Supplementary Figure 8); and 

• boxplots for the distributions of DT2x for sub-sample sizes ranging from 1,000 to 10,000 (full 
sample) (Supplementary Figure 9). 

  



 2 

 
Supplementary Figure 1. Time series GEOCARB input parameters prior ranges (gray shaded region), 
precalibration results for the 95% credible range (red shaded region) and median (solid red lines). (a) 
isotope ratio 87Sr/86Sr of shallow-marine carbonate, where the values given here are the third and fourth 
decimal places of the ratios, (b) isotope ratio δ13C of shallow-marine carbonate, (c) isotope ratio δ34S of 
marine sulfate, (d) fR, the effect of continental relief on chemical weathering rates, relative to present-day, 
(e) fL, the fraction of total land area covered by carbonates, relative to present-day, (f) fA, the land area 
relative to present-day, (g) fD, the global river runoff relative to present-day, (h) fAW/fA, the fraction of total 
land area that undergoes chemical weathering, relative to present-day, (i) RT, a coefficient modulating 
how changes in temperature affect the runoff rate, (j) GEOG, the change in global surface temperature 
relative to present-day, assuming present-day CO2 and solar luminosity, (k) fSR, the rate of seafloor 
spreading relative to present-day, and (l) fC, the effect of carbonate sediments in subducting oceanic crust 
on CO2 degassing rate. 
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Supplementary Figure 2. Autocorrelation function for the time series parameters from the ensemble 
using both CO2 and temperature data and a %outbound threshold of 30%. The solid black central lines 
denote the ensemble median and the gray shaded ranges denote the 95% credible range. The 12 time series 
parameters shown are: (a) isotope ratio 87Sr/86Sr of shallow-marine carbonate, (b) isotope ratio δ13C of 
shallow-marine carbonate, (c) isotope ratio δ34S of marine sulfate, (d) fR, the effect of continental relief on 
chemical weathering rates, (e) fL, the fraction of total land area covered by carbonates, (f) fA, the land area, 
(g) fD, the global river runoff, (h) fAW/fA, the fraction of total land area that undergoes chemical weathering, 
(i) RT, a coefficient modulating how changes in temperature affect the runoff rate, (j) GEOG, the change 
in global surface temperature, assuming present-day CO2 and solar luminosity, (k) fSR, the rate of seafloor 
spreading, and (l) fC, the effect of carbonate sediments in subducting oceanic crust on CO2 degassing rate. 
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 4 

 
Supplementary Figure 3. Relationship between CO2 concentration and uncertainty. The uncertainty 
(vertical axis) is measured by the difference between the high and low uncertainty estimates for each CO2 
proxy data point given by ref. 2. 

 

 
Supplementary Figure 4. Results for ESS parameter ∆T2x from main text with a %outbound threshold of 
30% (solid blue line and filled circle), the corresponding glacial period ∆T2x (orange dot-dashed line and 
open circle), the ∆T2x distribution from the Cretaceous temperature-matching experiment, and the 5-95% 
probability range for ∆T2x reported by ref. 1 (black range and filled triangle). 
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Supplementary Figure 5. A posteriori means for the most affected time series parameters from the 
original (solid black line) and Cretaceous-matching (dashed red line) experiments. Shown are the time 
series for (a) the land area relative to present, (b) the global river runoff relative to present, (c) the fraction 
of land area that undergoes chemical weathering relative to present, and (d) the response of temperature 
change on river runoff. 
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 6 

 
Supplementary Figure 6. Model hindcast, using both CO2 and temperature data for precalibration and a 
%outbound threshold of 50% (shaded regions). The gray shaded regions show the data compilations for 
CO2

2 and temperature3. The light colored shaded regions denote the 90% probability range from the 
precalibrated ensemble, the dark shading denotes the 50% probability range and the solid colored lines 
show the ensemble medians. The top row (a, b) corresponds to the control experiment (analogous to Fig. 
3); the bottom row (c, d) corresponds to the experiment where the Earth system sensitivity parameter 
undergoes a linear change from its nonglacial value to its glacial value between 130 and 40 Myr ago. 
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Supplementary Figure 7. Time slices of a skew-normal mixture model likelihood surface at ages 240 
Myr (a) and 50 Myr (b). 
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Supplementary Figure 8. CO2 proxy data points2 (x) and the fitted precalibration windows (gray shaded 
region).  
 

 
Supplementary Figure 9. Estimated 95% (light shading) and 50% (dark shading) credible ranges and 
medians for Earth-system sensitivity parameter (∆T2x) from the experiments presented in the main text for 
sample sizes ranging from 1,000 to 10,000 in increments of 1,000. 
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