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Abstract: Preparation for outbreaks of emerging infectious diseases is often predicated on beliefs
that we will be able to understand the epidemiological nature of an outbreak early into its inception.
However, since many rare emerging diseases exhibit different epidemiological behaviors from
outbreak to outbreak, early and accurate estimation of the epidemiological situation may not
be straightforward in all cases. Previous studies have proposed considering the role of active
asymptomatic infections co-emerging and co-circulating as part of the process of emergence of
a novel pathogen. Thus far, consideration of the role of asymptomatic infections in emerging
disease dynamics have usually avoided considering some important sets of influences. In this
paper, we present and analyze a mathematical model to explore the hypothetical scenario that some
(re)emerging diseases may actually be able to maintain stable, endemic circulation successfully in
an entirely asymptomatic state. We argue that an understanding of this potential mechanism for
diversity in observed epidemiological dynamics may be of considerable importance in understanding
and preparing for outbreaks of novel and/or emerging diseases.

Keywords: emerging and reemerging disease; asymptomatic infection; disease outbreaks

1. Introduction

Preparing for outbreaks of emerging infectious diseases is one of the great modern challenges in
global public health. Such preparation is often predicated on beliefs that we will be able to understand
the epidemiological nature of an outbreak early into its inception [1–3]. Rapid, early analysis is expected
to enable assessment of available interventions and inform effective action plans that minimize societal
disruption to the extent possible. Emerging diseases such as SARS and MERS are excellent examples
of early interventions limiting the global spread of new cases [4,5]. However, early and accurate
estimation of the epidemiological situation may not be so straightforward in all cases. Rare or emerging
diseases can exhibit different epidemiological behaviors from outbreak to outbreak, leaving it unclear
how to best characterize the relevant facets that could be exploited for outbreak mitigation/control.

Mathematical models frequently assume introduction of a novel pathogen into a population
assumed to be entirely susceptible to infection and explore the effects of extrinsic influences on the
subsequent epidemiological progression. These influences routinely include characterizing differences
in the physical environment (e.g., regional or seasonal climatic factors [6–8]), in human social behaviors
and therefore contact patterns (e.g., daily opportunities for passive transmission), in access to and
practice of medical care (either shifting the initial health and subsequent susceptibility to infection,
or altering care of those already infected and therefore changing the trajectory of their illness [9]), or in
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diversity in the pathogen itself due to parallel invasion by multiple strains [10] or due to ongoing
mutations as the pathogen spreads [11]. While each of these are of clear potential importance in shaping
the course of an outbreak, there may be an additional (and thus far mostly overlooked) mechanism
playing a significant role in the dynamics of emerging infections: the transmission and stable circulation
of asymptomatic infections [12,13] in the absence of medically observable or identifiable cases.
For example, neglecting asymptomatic carriers in a model of Ebola virus transmission was shown to
significantly overestimate the projected cumulative incidence of symptomatic infections [14,15].

Some studies have already proposed considering the role of active asymptomatic infections
co-emerging and co-circulating as part of the process of emergence of a novel pathogen. Discussions
have generally suggested that asymptomatic vs. clinical outcomes from disease exposure may be
due to underlying differences in general health, immunocompetence, or age of the host [6]. Critically,
most of these discussions also make the assumption that asymptomatic cases are due to insufficient
pathogen replication in the host, and therefore also assume that asymptomatic cases are relatively
incapable of transmitting infectious pathogens to others, although some studies have suggested
the need for expansion to include asymptomatic transmission [14–17]. Examples of such studies
include multi-strain SEIR epidemic models with general incidence that establish the global stability of
disease-free and various endemic equilibrium states [18,19].

Thus far, however, consideration of the role of asymptomatic infections in emerging disease
dynamics have usually avoided considering the full set of possible influences. In addition to the
simultaneous influence of clinical and asymptomatic cases competing for available susceptible hosts,
there is also the possibility that some diseases remain asymptomatic not due to poor relative replication
in a host after exposure to an average exposure to an infectious case, but instead that clinical outcomes
may be in response to exposure dosage. In this case, it is possible that asymptomatic cases themselves
produce doses of infectious exposure that an average immune response can control, but not so quickly
as to render the infection truly inert in the host. Note that most epidemiological models that account for
asymptomatic individuals assume that this latter human category can transmit the disease, but do not
show disease symptoms within the epidemic time frame [20,21]. However, in the case of endemicity
such as malaria, asymptomatic carriers were shown to have a major effect on the calculation for the
basic reproduction number, as well as in determining the bifurcations that might occur at the onset of
disease-free equilibrium [22]. The existence of dose-response based infection is already established for
some pathogens [23], therefore it may not be unreasonable to consider that such behaviors may play a
critical role in the emergence of some novel pathogens as well.

We propose that some (re)emerging diseases may actually be able to maintain stable,
endemic circulation successfully in an entirely asymptomatic state. Circulating asymptomatic cases
could potentially provide hosts with immunity (either full or partial) to subsequent infection exposure.
For exposure to lead to infection, it may be possible that the cumulative action of relatively rapid
re-exposures to asymptomatic carriers could lead to a sufficient dose as to trigger clinical signs and
symptoms of infection (just as would be expected from naive exposure to a fully infectious host),
or conversely, these doses could be strictly insufficient to ever trigger full infection. The range of
potential behaviors in such hypothetical systems are substantially diverse. While there is currently
little evidence for the existence/prevalence of such systems, it is also true that they might be
prohibitively difficult to detect a priori. By their definition, emerging infectious diseases have not
yet been known to circulate widely. Few medical studies have focused on transmission dynamics for
microorganisms that are not currently understood to cause disease, unless they are close relatives
of existing pathogens (e.g., benign dermal staphylococcus colonization, etc. [24]). It is therefore
not unlikely that asymptomatic circulation might play a role in the disease dynamics of emerging
infections before we could even detect a first clinical case. This pre-circulation could conceivably
affect our ability to quantify transmission (β′s) and reproductive capability (R0) for outbreaks of novel
pathogens, causing fluctuation in estimates attributable to, all other things being equal, whether or not
asymptomatic infections had already been circulating unnoticed in the affected populations. This offers
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a potential alternative explanation for why outbreaks may behave very differently as they leave native
ranges, even (or possibly especially) when native-range outbreaks are rare, and therefore are not
expected to alter the epidemiological landscape for subsequent outbreaks within the same region.

For these hypothetical cases to be plausible for any emerging infectious disease, we must show
that stable endemic circulation for asymptomatic infections is possible without necessarily leading to
epidemic spread of clinical infections. Further, it would lend credibility to these scenarios if we could
show that rare outbreaks of clinically significant infections do not necessarily cause the population
to revert to fully susceptible and could instead allow stable populations of asymptomatic cases to
be maintained, even as the clinical infections die out with or without control measures. We here
present and analyze a mathematical model to explore the hypothetical existence of just such scenarios
and demonstrate the potential importance of asymptomatic infections in shaping the dynamics of
emerging infectious diseases. We argue that an understanding of this potential mechanism for diversity
in observed epidemiological dynamics may be of considerable importance in understanding and
preparing for outbreaks of novel and/or emerging diseases.

2. Methods

In this section we introduce a mathematical model for a generic viral, contact-transmissible
disease that includes different levels of asymptomatic (latent) stages of infection, as shown in
Figure 1. The mathematical model, which is compartmental of type SEIR [25–30], is based on the
framework in Figure 1. Note that this model is easily applicable to or extendable for a wide range
of diseases like Ebola Virus Disease (EVD), Staphylococcus aureus [14], Streptococcus pneumoniae [14],
and Neissera meningitidis [31].

Figure 1. Framework. The nodes with reddish colors (orange and red) represent the compartments
of humans that are infectious, while the nodes with greenish colors (black and green) represent
the compartments of humans that are not infectious. The various interactions are explained in the
descriptions of Equations (1)–(6).

We denote by S the number of humans who have not had any contact with the virus.
The compartment E is subdivided into several sub-compartments, Ei, i = 1, 2, . . . , n, that represent the
different levels of asymptomatic transmission. We assume that the force of transmission gets larger
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as the index i = 1, 2, . . . , n, increases; that is the probability of a successful infection after contact of
humans of type Ei with humans of type I is higher as i increases. We also assume that there exists
ñ, 1 ≤ ñ < n, such that Ek does not progress to higher levels of infectiousness (Ek+1, say) whenever
k ≤ ñ. This ñ accounts for the load of pathogens in the body that could be considered mild and unable
to cause more harm. We denote by I the number of infected humans who show clinical signs of the
disease, and by R the number of humans who recover from the disease.

Assumptions about the structure of our model include the following:

1. Individuals infected by symptomatic individuals immediately become symptomatic without
passing through an asymptomatic stage, whereas individuals infected by asymptomatic
individuals become asymptomatic. This assumption is inspired by an exponential shedding
dose-response curve, as illustrated in Figure 2.

2. Individuals at earlier asymptomatic stages require further infection events to progress to the next
asymptomatic stage, while individuals at later asymptomatic stages can automatically progress
to the symptomatic stage.

3. Individuals at earlier asymptomatic stages can only move onto the next asymptomatic stage if
infected by those at higher asymptomatic stages of infection, or symptomatic individuals.

4. Asymptomatic individuals can revert to earlier asymptomatic stages, but symptomatic individuals
cannot revert to asymptomatic infection.

5. For simplicity, we assume that pathogen mutations are not included, and thus, disease properties
such as transmission, aggressivity and mortality remain unchanged in time. We also do not
consider the intrinsic potential of the pathogen to lay dormant within the host, and assume that
the pathogen is always active and able to infect.

Figure 2. Profile for the parameters αi
′s, βi

′s and λi
′s, represented here by p = p0ci−(n+1)

p ,
i ∈ {1, 2, . . . , n}, where cp > 0 is a constant. More details in Technical Appendix.

In Figure 1, the nodes with reddish colors (orange and red) represent the compartments of humans
that are infectious (Ei

′s and I), while the nodes with greenish colors (black and green) represent the
compartments of humans that are not infectious (S and R).

Model Presentation

The list of the variables used in our model is presented in Table 1. We now describe the equations
for each variable.
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Table 1. Variables used in our model.

Variables Descriptions

S number of susceptible humans

Ei
′s numbers of asymptomatic (latent) humans, of various stages

I number of infected humans who show clinical signs

R number of recovered humans

Equation for susceptible humans, S:

dS
dt

= b︸︷︷︸
new recruitment

+ ρE1 E1︸ ︷︷ ︸
gain from E1

+ ρrR︸︷︷︸
gain from wane of immunity

− ∑ βEi EiS︸ ︷︷ ︸
loss from Ei

′s–infection

− αSβ ISI︸ ︷︷ ︸
loss to I

− µS.︸︷︷︸
natural death

(1)

The first term in the right-hand side of Equation (1) is the gain in S as a result of natural birth or
human immigration. We assume that all new recruitment in the human population is through the
compartment of susceptible humans, S. We assume that humans at asymptomatic state E1 lose their
capacity of infecting humans of type S, and return to the compartment S after some time. The second
term represents the gain in S from the transition of asymptomatic compartment E1. When a sick person
is treated or recovers, he/she may eventually return to the class S by waning his/her immunity. This is
represented by the third term in the right-hand side of Equation (1). The fourth term is the loss in S
due to infection by contact with humans of asymptomatic type Ei, i = 1, 2, . . . , n. The fifth term is the
loss in S to I due to infection by I. We assume, for simplicity, that the baseline infection rate remains
constant throughout the year. We also assume that the infection term β ISI is weighted by a factor αS
that gauges the force of infection; while the last term is the loss in S by natural death or immigration.

Equations for exposed humans, Ek, k = 1, 2, . . . , n:

dE1

dt
= ∑ βEi EiS︸ ︷︷ ︸

gain from Ei
′s–infection

+ ρE2 E2︸ ︷︷ ︸
gain from E2

− ρE1 E1︸ ︷︷ ︸
loss to S

−
(

∑
i>1

βEi Ei + νE1 · 0
)

E1︸ ︷︷ ︸
loss to E2

− αE1 β I E1 I︸ ︷︷ ︸
loss to I

− λE1 E1︸ ︷︷ ︸
loss to R

− µE1.︸︷︷︸
natural death

(2)

We assume that when humans of type S are in contact with humans of type Ei, i = 1, 2, . . . , n, there may
be a change of state from S to E1. That is, there is a gain in E1, only, when S gets infected with Ei

′s.
This is represented by the first term in the right-hand side of Equation (2). The second term is similar
to the second term in the right-hand side of Equation (1); that is, the gain in E1 due to the transition
from E2 as a result of the wane of infectious force. The third term is the loss of E1 to S as described in
the second term of Equation (1). We assume that contacts between humans of type E1 and humans
of type Ei, i > 1, may lead to the transition to E2, only. This is represented by the fourth term in the
right-hand side of Equation (2) where the term νE1 E1, the transition from E1 to E2, is multiplied by
zero because we take ñ = 1; i.e., individuals with infectious level E1 do not progress to E2 in absence
of contacts with one or other higher sources of infection. Similar to the fifth term in the right-hand side
of Equation (1), the fifth term in the right-hand side of Equation (2) represents the loss in E1 due to
infection by I. This term has a weight αE1 that gauges the force of transition from E1 to S. Note that
αS < αE1 . The sixth term is the loss in E1 to R due to recovery, and the last term in natural death of E1.
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Recall that there exists ñ, 1 ≤ ñ < n, such that Ek can “naturally” transit to Ek+1 when
n > ñ, and they do not transit otherwise. Hence, for each intermediate level of asymptomatic class,
Ei, 1 < i < n, we have the following equation:

dEk
dt

=

(
∑

i>k−1
βEi Ei + νEk−1

)
Ek−1︸ ︷︷ ︸

gain from Ek−1

+ ρEk+1 Ek+1︸ ︷︷ ︸
gain from Ek+1

− ρEk Ek︸ ︷︷ ︸
loss to Ek−1

− αEk β I Ek I︸ ︷︷ ︸
loss to I

−
(

∑
i>k

βEi Ei + νEk · χñ(k)

)
Ek︸ ︷︷ ︸

loss to Ek+1

− λEk Ek︸ ︷︷ ︸
loss to R

− µEk︸︷︷︸
natural death

, k = 2, . . . , n− 1; (3)

where χñ(k) is a choice function that takes value 1 when k > ñ and 0 otherwise. The terms in the
right-hand side of Equation (3) are similar to the terms in the right-hand side of Equation (2) up to
respective indexes, except the first terms which are different, though having the same fundamental
meaning. The difference lies in the fact that in Equation (2), the first term includes contacts of all
humans of asymptomatic classes with S; while the first term in Equation (3) includes contacts of all
humans of asymptomatic classes with indexes greater than or equal to the current asymptomatic index
class (k) with the asymptomatic class of preceding index (k− 1). The last term is the natural death of
Ek, 1 < k < n.

We now write the equation for the highest level of asymptomatic class of humans.

dEn

dt
= (βEn En + νEn−1)En−1︸ ︷︷ ︸

gain from En−1

− αEn β I En I︸ ︷︷ ︸
loss to I

− ρEn En︸ ︷︷ ︸
loss to En−1

− νEn En︸ ︷︷ ︸
fraction that show signs

− λEn En︸ ︷︷ ︸
loss to R

− µEn.︸︷︷︸
natural death

(4)

The fourth term in the right-hand side of Equation (4) is the loss in En to I due to clinical manifestation
of the disease. The remaining terms are similar to those in Equations (2) and (4)

Equation for infectious humans that show clinical signs, I:

dI
dt

= β I
(
αSS + ∑ αEi Ei

)
I︸ ︷︷ ︸

gain from S and Ei
′s

+ νEn En︸ ︷︷ ︸
fraction of En that show signs

− γθ I︸︷︷︸
disease–induced death

− γ(1− θ)I︸ ︷︷ ︸
loss from immunization

(5)

The first term in the right-hand side of Equation (5) is the gain in I due to infection of S and the Ei
′s

by contact with I. The second term in the gain in I as En show clinical signs of the disease. The third
term is the disease–induced death, while the last term is the loss as sick humans recover from the
disease. We assume that the time it takes for a sick person to die of, or recover from, the disease is
short enough so that we could neglect it, relative to the life expectancy of the individual under study.
As such, we drop the term for natural death of the sick humans.

Equation for recovered humans, R:

dR
dt

= γ(1− θ)I︸ ︷︷ ︸
gain from immunization

+ ∑ λEi Ei︸ ︷︷ ︸
gain from immunization

− ρrR︸︷︷︸
loss to S

− µR.︸︷︷︸
natural death

(6)
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The first term in the right-hand side of Equation (6) is the gain in R as I recovers. The second term is
the recovery of asymptomatic humans. The third term is the loss in R as recovered humans wane their
immunity, while the last term in the natural death of R.

The initial conditions for System (1)–(6) are such that

S(0) > 0, I(0) ≥ 0, R(0) ≥ 0, Ei(0) ≥ 0, i = 1, 2, . . . , n,

where Ej(0) > 0 for some j > ñ. (7)

At least one set of initial conditions in Equation (7) holds whenever infection occurs in a community.
Theorem 1 in [32] establishes that our model is well–posed. The values of the parameters that are used
subsequently are all starting values for demonstrating possible disease dynamics; these values are
further varied to show the effects of each parameter (Appendix A).

Numerical Results

We simulate Model (1)–(6) where n = 6 and ñ = 1. The values of the parameters are as in Table 2
and the initial conditions are given by

S(0) = N0, E1(0) = 1, Ei(0) = 0, i ∈ {2, 3, 4, 5, 6}, I(0) = R(0) = 0; or (8)

S(0) = N0, E1(0) = 0, E2(0) = 1, Ei(0) = 0, i ∈ {3, 4, 5, 6}, I(0) = R(0) = 0. (9)

The equations are reproduced for n = 3 and ñ = 1 in Appendix A.1, and the basic reproduction
number,R0, is calculated for this system of equations.

Table 2. Values for the parameters used in Model (1)–(6).

Parameters Descriptions Values Sources

αS, αi
′s weights of infectiousness of S and Ei

′s by
contact with I

0.036, 1.5i Appendix A.2.3

b rate of recruitment of humans 1.1× 10−4 × N0 per day Appendix A.2.1

β I , βEi
′s rates of transmission by contact with I

and Ei
′s

0.125, 1.5i−(n+1)β I per day Appendix A.2.2

ρr rate of wane of immunity of R 8.5× 10−3 per day Appendix A.2.5

ρEi
′s rates of loss of infectiousness of Ei

′s 1.5i−(n+1)ρr per day Appendix A.2.5

λEi
′s rates of gain of immunity of Ei

′s 1.5i−(n+1) × 0.102 per day Appendix A.2.4

γ rate of removal from sick class I 0.167 per day [33]

ν rate of transition from En to I 0.05 per day assumed

µ natural death rate of humans 3.4× 10−5 per day Appendix A.2.1

θ fraction of humans I who die 0.7 [33]

n number of asymptomatic stages 6 assumed

ñ number of asymptomatic stages that do not
transit to higher infection stage “naturally”

1 assumed

N0 Total initial population size 11.5 million assumed

We compute the ‘outbreak relative severity’ (ORS) as the ratio of the total number of new clinical
cases to the total number of new asymptomatic cases, and write:

ORS =

∫ T
t=0[New clinical cases at time t]dt∫ T

t=0

(
∑6

i=1[New asymptomatic cases at time t]
)

dt
, (10)
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where T is the observation time. ORS measures how many clinical cases have been recorded throughout
the outbreak as compared to the number of asymptomatic cases. Since the actual total number of
asymptomatic cases is usually not known, the ORS as derived by this model can serve as an estimation
for this number.

The profiles for all the variables of Model (1)–(6) with initial conditions (8) and (9), are shown
in Figures 3 and 4, respectively. The initial conditions (8) state that the first infectious case arises
in the asymptomatic class E1, which does not naturally advance to any higher level infectious class.
Thus, the total infectious population size is mostly represented by the class of E1 humans at equilibrium
(see Figure 3), whereas the asymptomatic and recovered are non-zero, and the sick humans and all
other Ei

′s, i ∈ {2, 3, 4, 5, 6} classes remain unchanged from their initial zero value. In this case, it is
natural that the outbreak relative severity takes value ORS = 0.

The initial conditions (9) state that the infectious case occurs in the asymptomatic class E2,
which can naturally advance to the next higher level infectious class E3, which can advance to E4,
which can advance to E5, which can advance to E6, which in turn can advance to I. Figure 4 shows
that there is a delay in the dynamics of each infectious class, including the sick and the recovered
humans. In fact, the variables Ei

′s, i ∈ {1, 2, 3, 4, 5, 6}, I and R all remain very low for a minimum of
approximately 1 year, then they increase sharply to their respective maximum values in a sequential
order, before the decrease dramatically and stabilize at non-zero values (persistence). Similar results
are obtained when the first infection case occurs in other higher level infectious classes, with the
disease spreading to all other infectious classes. In this case of initial conditions (9), the outbreak
relative severity ORS = 1 : 38.

Applications of our model to actual disease data are presented in Appendix B where we fit our
model to data from the DRC 1995 Ebola outbreaks (Appendix B.1) and the 2020 COVID-19 outbreak in
New York State (Appendix B.2).

Figure 3. Profiles for all the variables of Model (1)–(6). The horizontal axes scale the time in days and
the vertical axes scale the population sizes percentages. The first infectious case arises in the population
E1 and does not spread to the other infectious classes. ‘Sick’ humans are those of the class I who show
clinical signs of the disease. ORS = 0.
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Figure 4. Profiles for all the variables of Model (1)–(6). The horizontal axes scale the time in days
and the vertical axes scale the population sizes in percentages. The first infectious case arises in the
population E2 and is able to spread to other infectious classes so that the disease is maintained in the
population. ‘Sick’ humans are those of the class I who show clinical signs of the disease. ORS = 1 : 38.

3. Discussion and Conclusion

In this paper, we introduced a mathematical model for infectious disease that includes different
levels of asymptomatic latent stages of infection. While some studies have previously examined the role
of asymptomatic infections co-circulating with active clinical infections during an infectious disease
outbreak, we here extend this line of thinking to examine how active and circulating asymptomatic
infections and associated gains in immunity can alter the disease landscape in a population, even in the
absence of clinically observable cases. This initial exploration shows that the existence of asymptomatic
infections can have a significant impact on the dynamics of infectious disease outbreaks, as well as
drastically alter the disease landscape for future outbreaks.

These results do not alter the importance of finding and isolating clinical cases and their contacts
during an outbreak response. However, if virus transmission can occur at the asymptomatic stages,
there may be occasional instances of clinical cases that do not appear to have another clinical case
as their origin. Such events have been observed in previous outbreaks (e.g., [34]), and, while not a
definitive indicator of asymptomatic transmission, are usually attributed to failure to “capture” the
appropriate index case. Importantly, the frequency of clinical cases arising solely from exposure to
asymptomatic infections (and whether or not these events would alter an outbreak response plan)
is certain to be highly dependent on specific characteristics of a particular outbreak and of the particular
virus itself. It should be noted that the findings in the present paper pertain mainly to this model
which has a number of assumptions (e.g., relationship between α, β, and λ at different i, and dynamics
of transition between the Ei

′s), and this model might be reasonable for some diseases that have an
asymptomatic state (HIV, syphilis, H. pylori etc.) but not others. More study is needed to determine
critical thresholds at which response plans should be modified to account for asymptomatic carriers
given these characteristics.

There are available laboratory methods for many diseases that allow us to confirm whether
virus is present in individuals who are not experiencing clinical symptoms, as well as test for
immunity/antibodies that would indicate prior infection even if the individual did not experience
symptoms. However, in an outbreak setting, conducting studies to determine which individuals have
an asymptomatic infection would be a massive strain on any outbreak response and is highly unlikely
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to be implemented due to prioritization of locating clinical cases and limiting more common sources of
the onward spread of disease. In non-outbreak situations, sampling a population to determine levels
of immunity or antibodies is only slightly more feasible; in many areas, there would likely be cultural
and logistical difficulties in conducting such a study (i.e., cultural: testing asymptomatic individuals
for Ebola virus would likely have a large stigma attached to it; logistical: rural native ranges for a
variety of emerging pathogens).

The mathematical model in this paper, for the role of asymptomatic infection in outbreaks of
emerging pathogens, is generic in the sense that it can be applied to a wide range of diseases in which
asymptomatic carriers play an important role. Such diseases include H1N1 influenza [35], Ebola [36],
HIV [37], SARS-CoV-2 [38], hepacivirus [39], herpesvirus [40], Mycobacterium tuberculosis [41] and
Yersinia pestis [42]. The model developed in this paper may be useful in studying these diseases
specifically when data are available. At this time, the conclusions of the model can be viewed as
hypotheses to be validated, or modified, when disease-specific experimental data are available.

The most immediate relevance of these results comes in the implications for how we expect an
epidemic to develop, especially in its early stages. If a pathogen is able to sustain asymptomatic
circulation (and associated levels of immunity) even in the absence of apparent clinical infections,
then this inherently violates the traditional assumption that an outbreak is invading a wholly
susceptible population. Such a mechanism could offer an additional explanation for why we do
not see large-scale outbreaks of particular pathogens in their native ranges; but do see recurrent small
outbreaks, while non-native ranges are more likely to see explosive outbreaks of clinical cases in the
population, given an introduction of the pathogen. Most recently, the Ebola outbreak of 2014 may fit
all the criteria for possible involvement of asymptomatic circulation. The behavior of the disease in its
non-native range was substantially different from previous outbreaks [15], attempts to fit traditional
SIR models suggested a role for co-emerging asymptomatic infection in West Africa [5], but to the
best of our knowledge, no study has yet completed the inference to suggest that earlier outbreaks
may have been intrusions of clinical cases into populations in which asymptomatic infection may
already have altered the disease landscape. Extending our present model to include the movements of
humans between geographic patches, the pathogen intrinsic mutations that lead to the change in the
disease properties of transmission, aggressivity and mortality as a function of time, or the stochasticity
of pathogen gaining endemic foothold in the community, is a logical next step in understanding
this phenomenon.
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Appendix A. Existence of Oscillatory Outbreak Equilibrium Points

In this section, we set values for the parameters and initial conditions necessary for simulating
Model (1)–(6). For illustration, we use six asymptomatic stages, n = 6. The list of all parameters of the
model and their numerical values is given in Table 2. Most of the parameters are taken, or estimated,
from the experimental literature [43,44]. All the computations are done using Python 2.7.6.



Trop. Med. Infect. Dis. 2020, 5, 184 11 of 20

Appendix A.1. Local Stability Analysis of Disease-Free Equilibrium

We write the full system of equations for n = 3, ñ = 1, and formulate conditions for the disease
eradication or persistence.

dS
dt

= b + ρE1 E1 + ρrR−
3

∑
i=1

βEi EiS− αSβ I I − µS

dE1

dt
=

3

∑
i=1

βEi EiS + ρE2 E2 − ρE1 E1 −
3

∑
i=2

βEi EiE1 − αE1 β I E1 I − λE1 E1 − µE1

dE2

dt
=

3

∑
i=2

βEi EiE1 + ρE3 E3 − ρE2 E2 − αE2 β I E2 I − βE2 E3E2 − νE2 E2 − λE2 E2 − µE2

dE3

dt
= βE3 E3E2 + νE2 E2 − αE3 β I E3 I − ρE3 E3 − νE3 E3 − λE3 E3 − µE3 (A1)

dI
dt

= β I

(
αS +

3

∑
i=1

αEi Ei

)
I + νE3 E3 − γI

dR
dt

= γ(1− θ)I +
3

∑
i=1

λEi Ei − ρrR− µR

The following result is easily proven by applying the next generation matrix method for computing
the basic reproduction numberR0:

The disease-free equilibrium for (A1) is given by

DFE = (S∗, E∗1 , E∗2 , E∗3 , I∗, R∗) = (b/µ, 0, 0, 0, 0, 0).

We use the next generation matrix method to compute the basic reproduction:

R0 = spectral_radius(FV−1) =
b
µ
×max

{
βE1

λE1 + ρE1 + µ
,

αSβ I
γ

}
, (A2)

where

F =


bβE1 /µ bβE2 /µ bβE3 /µ 0

0 0 0 0
0 0 0 0
0 0 0 bαSβ I/µ


and

V =


λE1 + ρE1 + µ ρE2 0 0

0 λE2 + νE2 + ρE2 + µ −ρE3 0
0 −νE2 λE3 + νE3 + ρE3 + µ 0
0 0 −νE3 γ

 .

We therefore conclude that the DFE is stable whenR0 < 1, and unstable whenR0 > 1.
The expression ofR0 in (A2) shows that the disease can be controlled by minimizing the contacts

of susceptible humans with symptomatic patients (αSβ I/γ), but also by minimizing the contacts
between susceptible humans and level-1-asymptomatic humans (βE1 /(λE1 + ρE1 + µ)). Note that
level-1-asymptomatic humans (E1) are the stable carriers through which the pathogens persist in the
community in absence of clinical cases.

The existence of endemic equilibrium states was investigated in Figure 3 where I∗ = 0,
and Figure 4 where I∗ 6= 0.
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Appendix A.2. Parameters Estimation

Assumptions about relationships between model parameters include the following:

(a) the rates of transmission from asymptomatic and symptomatic individuals are related
(increasing one necessarily increases the other, for example).

(b) The rate of waning immunity from R is related to the rate of loss of infectiousness of Ei
′s.

(c) As individuals progress through asymptomatic classes Ei, their susceptibility, transmissibility,
rate of loss of infectiousness, and rate of gain of immunity all increase.

Appendix A.2.1. Estimate for b and µ:

According to [45], between 2008–2015, the yearly human birth rate in Africa ranged between
0.034–0.045. Similarly, within the same period of time, the yearly human death rate in Africa ranged
between 0.01–0.015. We take the averages of these ranges and estimate b and µ as follows:

b = 1.1× 10−4 × N0 per day, and µ = 3.4× 10−5 per day,

where N0 is the initial total human population.
In the estimation of the parameters αi

′s, βi
′s and λi

′s, we assume that p1 < p2 < · · · < pn,
where p is either α, β or λ. Note that while this ordering may be intuitive for the α′s and the β′s,
we assume that individuals who recover from higher levels of infectiousness gain larger immunity
rates, the λ′s. Moreover, we assume that each parameter pi takes the form

pi = p0ci−(n+1)
p , i ∈ {1, 2, . . . , n},

where p0 is the maximum value attained by the parameter p and cp is a positive constant. Figure 2
shows the profile of p as the asymptomatic stage index i varies.

Appendix A.2.2. Estimate for β I and βEi , i = 1, 2, . . . , n:

Siewe et al. [46] estimated the range for the rate of transmission of Evd in DRC to be 0.0798–0.13 per
day; we take β I = 0.125 per day. Since the force of infection of asymptomatic humans Ei

′s increases as
the index i increases, we assume that

βEi = ci−(n+1)
β β I = ci−(n+1)

β × 0.125 per day, i = 1, 2, . . . , n, (A3)

where n is the number of asymptomatic levels considered.

Appendix A.2.3. Estimate for αS and αEi , i = 1, 2, . . . , n:

We take the value of αS in the term αSβ ISI in Equation (2.1) to be αS = 0.036. Now, we assume
that αE1 < αE2 < · · · < αEn , and take

αEi = ci−(n+1)
α αS = ci−(n+1)

α × 0.036, i = 1, 2, . . . , n, (A4)

Appendix A.2.4. Estimate for λEi , i = 1, 2, . . . , n:

We assume that the rates at which the asymptomatic humans gain immunity is larger as the level
of infectiousness increases. That is, we assume that λEn > · · · > λE2 > λE1 and take

λEi = ci−(n+1)
λ × 0.0102, i = 1, 2, . . . , n. (A5)



Trop. Med. Infect. Dis. 2020, 5, 184 13 of 20

Appendix A.2.5. Estimate for ρEi , i = 1, 2, . . . , n:

We assume that the rates at which the asymptomatic humans lose infectious severity is larger as
the level of infectiousness increases. That is, we assume that ρEn > · · · > ρE2 > ρE1 and take

ρEi = ci−(n+1)
ρ × 3.8× 10−4, i = 1, 2, . . . , n. (A6)

In the sequel, we take cp = 1.5, where p ∈ {α, β, λ, ρ}.

Appendix A.2.6. Effects of Number of Asymptomatic Cases, n

Since asymptomatic infection in reality does not occur on a discretized scale, increasing the
number of asymptomatic bins can be interpreted as increasing the average human tolerance for viral
load before clinical signs begin to show. We vary n between 2–6, with ñ = 1, while we keep the values
for all other parameters fixed at their baselines in Table 2. Figure A1 shows the change in the end
points of the levels for each variable in Model (2.1)–(2.6), with respect to n. We see that the disease can
be eradicated for n ≤ 3. There is disease persistence when n > 3 which eventually leads to a branch of
disease eradication for n large enough.

Figure A1. Behaviors of infectious classes relative to n. The horizontal axes represent the number of
asymptomatic stages and the vertical axes represent the percentage of human populations. The disease
can be eradicated for n ≤ 3. There is disease persistence when n > 3 which eventually leads to a
branch of disease eradication for n large enough.

Appendix A.2.7. Effects of the Asymptomatic Transmission Rates βEi
′s

We vary β I in (A3) between 0–0.03 and record the values of the variables in (2.1)–(2.6) after
fifteen years of control. We see in Figure A2 that there is a regime for the values of β I for which the
disease does not persist into the population (approximately β I < 0.014). The disease persists into the
population with oscillating behavior when 0.014 < β I < 0.015. For values of β I > 0.015, the disease
persists in the population stationarilly.
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Figure A2. Oscillatory behaviors of infectious classes relative to the βEi
′s (represented here by β I as

in (A3)). The horizontal axes scale the baseline β I and the vertical axes represent percentages of human
populations. There is a regime for the values of β I for which the disease does not persist into the
population (approximately β I < 0.014). The disease persists into the population with oscillating profile
when 0.014 < β I < 0.015; for β I > 0.015, the disease persists into the population stationarilly.

Appendix A.2.8. Effects of the Loss/Recovery of Asymptomatic Infection Rates ρEi
′s

We vary ρr in (A6) between 0–8 and record the values of the variables in (2.1)–(2.6) after fifteen
years of control. We see in Figure A3 that increasing the rate of loosing immunity causes oscillations in
equilibrium points of the system. In fact, the disease depicts an endemic stationary branch followed by
a chaotic behavior, then another stationary branch where the disease is eradicated.

Figure A3. Behaviors of infectious classes relative to the ρEi
′s (represented here by ρr as in (A6)).

The horizontal axes scale the parameters ρr and the vertical axes represent human populations.
The profiles for the variables depict an endemic stationary branch followed by a chaotic behavior,
then another stationary branch where the disease is eradicated.
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Appendix A.2.9. Effects of the Clinical Transmission Rates αEi
′s

We vary αS in (A4) between 0–0.7 and record the values of the variables in (2.1)–(2.6) after
fifteen years of control. Figure A4 shows that he disease fatality (symptomatic cases) increases slowly
(αS < 0.53), then increases rapidly (αS > 0.53).

Figure A4. Behaviors of infectious classes relative to the αEi
′s (represented here by αS as in (A4)).

The horizontal axes scale the parameters αS and the vertical axes represent percentages of human
populations. The disease fatality (symptomatic cases) increases slowly (αS < 0.53), then increases
rapidly (αS > 0.53).

Appendix A.2.10. Effects of the Gain of Immunity Rates by Asymptomatic Humans, λEi
′s

We vary λE1 in (A5) between 0–0.7 and record the values of the variables in (2.1)–(2.6) after fifteen
years of control. Figure A5 shows that the disease persists for λE1 small, then the disease is eradicated
as λE1 increases. Interestingly, the population becomes mainly susceptible for λE1 very large.

Figure A5. Behaviors of infectious classes relative to the λ′s (represented here by λE1 as in (A5)).
The horizontal axes scale the parameter λE1 and the vertical axes represent the percentage of human
populations. The disease persists for λE1 small, then the disease is eradicated as λE1 increases.



Trop. Med. Infect. Dis. 2020, 5, 184 16 of 20

Appendix A.2.11. Effects of Birth Rate, b

We vary b between 0–0.0035 and record the values of the variables in (2.1)–(2.6) after fifteen
years of control. Figure A6 shows that the disease fatality (asymptomatic cases) mildly increases
as b increases.

Figure A6. Behaviors of infectious classes relative to b. The horizontal axes scale the parameter b and
the vertical axes represent percentage of human populations. The disease fatality (asymptomatic cases)
mildly increases as b increases.

Appendix B. Ebola (DRC 1995) and COVID-19 (New York 2020)

In this section, we compare the simulations of our parameterized model with n = 3, ñ = 1
in (A1) with actual data from a previous Ebola outbreak in DRC (Figure 1 in [47]), and COVID-19
in New York (29 February–4 August 2020 [48,49]) and capture the number of new cases from these
outbreaks, defined by

new_cases(t) =
∫ t

0

(
3

∑
i=1

βEi Ei(τ) + αSβ I I(τ)

)
S(τ)dτ. (A7)

We measure the goodness of fit by computing the basic reproduction number R0 in (A2) and the
data-simulations relative error (RE) as follows:

RE =
∑(simulations-data)2

∑(data)2 (×100%). (A8)

Note that the outbreaks evolve in two parts: the increasing phase of the infection where the number
of new cases increases exponentially, and the decreasing phase where the number of new infectious
cases drops. These two phases of of the outbreaks are represented in our model by adjusting the
rates of transmission by contact with infectious humans to be time dependent, and we take the
following reverse Hill function which represents the time of infection without intervention and the
time with intervention:

β̃ I(t) = β I H(t), where H(t) =
t−nH

t−nH + t−nH
0

; (A9)

β I is outbreak-specific and the corresponding β̃Ei
′s are defined as in (A3).
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Figure A7. Reverse Hill Function—Phases of outbreaks without interventions and with interventions.
The horizontal axis represents time in days, and the vertical axis represents the values of the reversed
Hill function in (A9). The disease progresses without interventions when time t < t0 and the β̃x = βx

for all x; the disease spreads with interventions when t > t0 and the β̃x ' 0.

Appendix B.1. Ebola in the Democratic Republic of Congo (DRC) 1995

To capture the number of new Ebola cases for the DRC 1995, we take the value of N0 to be the
approximate total population size in the DRC province of Bandudu (N0 = 8 millions). Figure A8
shows our model simulations and actual data for the DRC 1995 Ebola outbreak, where RE= 21.04%
which indicates good fit, and the basic reproduction number R0 = 1.49 which compares well with
those in the literature (R0 = 1.83 in [26] andR0 = 1.53 in [46]).

Figure A8. The horizontal axis represents the time in days and the vertical axis represents the
cumulative number of new Ebola cases from the model simulations and actual data (data are from
Figure 1 in [47]). The values of the parameters are as follows: N0 = 8 millions, β I = 0.023 per day,
t0 = 164 days, nH = 20, and the values for the other parameters are as in Table 2. RE= 21.04%
andR0 = 1.49.
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Appendix B.2. COVID-19 in New York State (February 29–4 August 2020)

We show our model simulations and actual data for the New York 2020 Covid-19 outbreaks in
Figure A9. The cases were reported between 29 February (first reported case) and 4 August 2020.
We obtain a fit of RE=23.2% andR0 = 12.3. Our model does not capture the resurgence of the disease
after the first three months of outbreak. In fact, we see that while our model simulations are represented
by a plateau due to the assumption of ‘perfect’ intervention or prevention methods (see Figure A7),
the actual data continue to increase at smaller rate beyond the first three months of outbreak.

Figure A9. The horizontal axis represents the time in days and the vertical axis represents the
cumulative number of new COVID-19 cases from the model simulations and actual data (data are
from [48,49]). The values of the parameters are as follows: µ = 3.37 × 10−5 per day [50],
b = 6.4× 10−4 pop. per day [51], N0 = 19.8 millions [51], β I = 0.066 per day, t0 = 30 days, nH = 5,
and the values for the other parameters are as in Table 2. RE= 23.2% andR0 = 12.3.
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