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Travis J. Desell*, AbdElRahman A. ElSaid, Zimeng Lyu, David
Stadem, Shuchita Patwardhan, and Steve Benson

Long Term Predictions of Coal Fired
Power Plant Data Using Evolved
Recurrent Neural Networks

Abstract: This work presents an investigation into the ability of recurrent neural
networks (RNNs) to provide long term predictions of time series data generated by
coal fired power plants. While there are numerous studies which have used artificial
neural networks (ANNs) to predict coal plant parameters, to the authors’ knowledge
these have almost entirely been restricted to predicting values at the next time
step, and not farther into the future. Using a novel neuro-evolution strategy called
Evolutionary eXploration of Augmenting Memory Models (EXAMM), we evolved
RNNs with advanced memory cells to predict per-minute plant parameters and
per-hour boiler parameters up to 8 hours into the future. These data sets were
challenging prediction tasks as they involve spiking behavior in the parameters
being predicted. While the evolved RNNs were able to successfully predict the
spikes in the hourly data they did not perform very well in accurately predicting
their severity. The per-minute data proved even more challenging as medium
range predictions miscalculated the beginning and ending of spikes, and longer
range predictions reverted to long term trends and ignored the spikes entirely.
We hope this initial study will motivate further study into this highly challenging
prediction problem. The use of fuel properties data generated by a new Coal Tracker
Optimization (CTO) program was also investigated and this work shows that their
use improved predictive ability of the evolved RNNs.
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1 Introduction

Being able to predict operational parameters of coal fired power plants is an area
of significant interest as accurate estimates can be used to improve plant efficient,
reduce emissions or inform plant operators about conditions within the system. In
particular, when conditions in the burners or other systems become poor due to
coal quality or other effects, the operator may need to provide supplementary fuel
to prevent the burner from going into shutdown. If these events can be predicted
early enough then plant conditions can be modified to avoid shutdown without the
use of supplementary fuel or other, potentially quite expensive, reactive methods.

Artificial neural networks (ANNs) have seen significant use in predicting plant
parameters such as coal ash fusion temperatures [1], boiler parameters [2], corrosion
rates [3], nitrogen oxide (NOx) emissions [4, 5, 6, 7, 8, 9], carbon monoxide (CO) [9],
and air coefficients [10]. Apart from the work by Safdarnejad et al. [9] which utilizes
a self generative model to predict CO and NOx up to three hours in the future, this
work has been limited to predicting only the next time step into the future. Indeed,
even some standard architectures such as Nonlinear Box-Jenkins (NBJ) [11] cannot
even perform far future predictions as they require the error of previous predictions
to be fed back into the network, which will not be known until that future time
arrives.

This work investigates the long term predictive capabilities of recurrent neural
networks (RNNs) by utilizing a novel neuro-evolution algorithm called EXAMM
(Evolutionary eXploration of Augmenting Memory Models), which uses a suite of
advanced recurrent memory cells, allowing for automated design of powerful RNN
architectures which are optimized for their target prediction tasks. This work also
examines the use of data generated by a new Coal Tracker Optimization (CTO)
program which predicts the properties of coal as it is fed into the plant’s burners.
The plant’s (net plant heat rate and nose gas temperature) were predicted using
hourly data, and main flame intensity was predicted from per-minute data from a
number of the plant’s burners.

2 Methodology

Neuro-evolution, or the use of artificial evolutionary processes (such as genetic
algorithms) to automate the design of ANNs, has been well applied to feed forward
and convolutional neural networks [12, 13, 14, 15, 16, 17]. However, less effort has
been put into exploring the evolution of RNNs.
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Several neuro-evolution methods have been proposed for evolving RNN topolo-
gies (along with the weight values themselves) with NeuroEvolution of Augmenting
Topologies (NEAT) [16] perhaps being the most well-known. Recent work by Rawal
and Miikkulainen investigated an information maximization objective [18] strategy
for evolving RNNs, which essentially operates similarly to NEAT except with
LSTM cells being used instead of simple (traditional) neurons. Research centered
around this line of NEAT-based approaches has also explored the use of a tree-based
encoding [19] to evolve recurrent cellular structures within fixed architectures. More
recently, work by Camero et al. has shown that a Mean Absolute Error (MAE)
random sampling strategy can provide good estimates of RNN performance [20],
successfully incorporating it into an LSTM-RNN neuro-evolution strategy [21]. Ant
colony optimization (ACO) has also been used as a strategy to optimize RNNs by
selecting subnetworks from within a larger fixed structure [22, 23].

For this study, EXAMM was selected as the RNN evolution algorithm for a
number of reasons. In contrast to the well-known NEAT, EXAMM uses higher
order node-level mutation operations, Lamarckian weight initialization (or the
re-use of parental weights), and back-propagation through time (BPTT) to conduct
local search, the combination of which has been shown to speed up both ANN
training as well as the overall evolutionary process. Unlike the work by Rawal
and Miikkulainen, EXAMM operates with an easily-extensible suite of memory
cells, including LSTM, GRU, MGU, UGRNN, Δ-RNN cells and, more importantly,
has the natural ability to evolve deep recurrent connections over large, variable
time lags which has recently been shown to provide significant improvements in
predictive ability of RNNs [24]. In prior work it has also been shown to more
quickly and reliably evolve RNNs in parallel than training traditional layered RNNs
sequentially [25] and to significantly outperforming NEAT on time series prediction
tasks. For detailed EXAMM implementation details we refer the reader to [26].

3 Coal-fired Power Plant Data

This work uses data from both the boiler and burners of a coal fired power plant,
which was collected by Microbeam Technologies, Inc. (MTI).

3.1 Burner Data Set

The main burner data set consists of 10 days of data extracted from 12 of the plant’s
burners. Each of these 12 data files consisted of time series data from 12 sensors,
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recorded each minute (see Appendix A). To expand on these 12 sensor parameters,
Microbeam developed a program named Coal Tracker Optimization (CTO) which
simulates and projects as-fired coal quality at the burner [27, 28]. Coal quality
was collected from an online full stream elemental analyzer (FSEA) positioned at
the entry point to the fuel handling system at the plant. The program uses live
data from the plant to calculate the residence time of coal as it flows from the
FSEA through the coal delivery system and finally to the burner inlet. The CTO
program was designed using a mechanistic model that implemented abstractions of
different components in the coal tracking system. To calibrate the CTO program,
coal samples were collected at four burners and the analysis results were compared
to the calculated as-fired fuel quality from CTO. It was of particular interest to
see if the additional fuel properties information would improve predictions. The
additional time series variables provided by CTO are in Appendix B.

From this burner data set, main flame intensity was the parameter of interest
for prediction. It is measured by optical pyrometers positioned near the entry point
of coal into the burner. Changes in operational parameters often induce dramatic
changes in flame intensity: for example, instantaneous drops in flame intensity are
seen when the burner is turned off. Changing fuel properties can cause changes in
flame intensity on different time-scales, ranging from a few minutes to a few hours.
The impact of fuel properties on combustion is well-studied; however, it is rare for
a plant to monitor day-by-day or minute-by-minute fluctuations in fuel properties
at the burner. It is of particular interest in that sometimes planned outages occur
or conditions in the burner deteriorate so badly that it is temporarily shut down. In
these cases, sharp spikes occur during the shutdown, which last for an unspecified
period of time before the burner turns back on again and the flame intensity value
sharply increases.

3.2 Boiler Data Set

The boiler data set consisted of over a year of per-hour data readings from the
plant’s on-line coal analyzers, coal handling system, and steam generator. This
data divided into five separate data files, each representing a different period
of operation. These were 1688, 1289, 1522, 902 and 1997 hours long. This work
focused on predicting two different parameters which can be used in calculating
boiler efficiency, net plant heat rate and nose gas temperature. In total, the data
set consisted of 53 different input parameters (see Appendix C).
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4 Results

EXAMM was compared to standard Nonlinear Autoregressive Exogenous (NARX)
and Nonlinear Output Error (NOE) models which only achieved error rates of
18.65% and 18.75%, respectively, for 1 hour nose gas temperature predictions, and
24.3% and 24.8% for 1 hour heat rate predictions. For 1 minute predictions of main
flame intensity on the Burner data set, NARX and NOE only reached error rates
of 15.1% and 14.3%, respectively, for Cyclone 1 and 10.2% and 10.2% for Cyclone
3. As these results were up to an order of magnitude worse than EXAMM these
models were not further pursued.

4.1 Experiments

All the experiments performed used the same EXAMM and backpropagation
hyperparameters as described in prior work [26]. All EXAMM runs selected from
all possible neuron types (simple neurons, Δ-RNN, GRU, MGU, LSTM and
UGRNN memory cells) uniformly at random, which allowed EXAMM to select
the most effective architectural and memory components. Each run of EXAMM
generated and trained 10, 000 RNNs as part of the neuro-evolutionary process, and
was repeated 10 times to better account for the stochastic nature of the search.
All experiments were done using Rochester Institute of Technology’s SPORK high
performance computing cluster and were distributed across 20 compute nodes, each
with 36 cores for a total of 720 cores used by each run.

4.2 Boiler Parameter Predictions

For evaluating the predictive of the evolved RNNs on the boiler data, the first
four data files were used as training data and the last and longest (the 1997 hour
data file) was used as test data. Separate experiments were done using EXAMM
to predict the nose gas temperature and net plant heat rate parameters 1, 2, 4 and
8 hours into the future. Figure 1 presents the range of the error rates of the best
evolved RNNs on the test data after 2k, 5k and 10k trained RNNs. As expected,
predicting farther into the future resulted in higher error rates. Net plant heat rate
and significantly lower error, under 1% even at 8 hours, while nose gas temperature
increased from 3% to 7% as prediction time increased from 1 to 8 hours.

Figure 2 presents the predictions of the best found RNNs evolved by EXAMM
for each prediction offset. All these RNNs were fairly effective at capturing the
sharp changes in net plant heat rate and nose gas temperature, however the farther
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Fig. 1: Mean absolute error (MAE) rates for the boiler parameters for a range of time
offsets into the future (1 hour to 8 hours).

the prediction was into the future the less accurate it was in determining the
beginning of a spike as well as calculating the minimum or maximum value the
spike would reach. The prediction plots also show why the RNNs performed worse
on nose gas temperature, as the spikes within this data were much more dramatic
making for a highly challenging prediction problem.

4.3 Flame Intensity Predictions

Determining the effect of using the additional CTO generated fuel properties
parameters to predict main flame intensity was of particular interest. Three separate
types of runs were done utilizing various sets of input parameters. The first used
only the burner parameters, the second used all the burner parameters and fuel
properties parameters and the last used a reduced set of burner parameters along
with the fuel properties parameters. These were labeled as Burner, Burner + Fuel
and Burner ∼ Fuel, respectively. RNNs were trained on the first 7.5 days of the
data sets, and validated on the remaining 2.5 days, allowing enough time for fuel
and plant data to be retained by the RNNs to predict spiking events.

While EXAMM can remove input parameters which are unneeded or con-
founding during the neuro-evolution process, having almost twice as many input
parameters between the data sets could provide for a larger search space and
potentially slow how fast EXAMM finds well performing RNNs. Because of this,
the additional Burner ∼ Fuel set of input parameters was tested, which removed
out the tertiary air split, secondary air split, secondary air ratio, system secondary
air flow total, primary air split, tertiary air flow, primary air flow and conditioner
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(a) Nose Gas Temperature

(b) Net Plant Heat Rate

Fig. 2: Predictions of the evolved RNNs on the boiler parameters, predicting 1 to 8 hours
into the future.

outlet temp variables resulting in the same number of input parameters as the
Burner runs, as these were shown to have the least statistical significance to main
flame intensity in cross-correlation tests.

Figure 3 presents the mean absolute error (MAE) of the ten repeated runs
predicting flame intensity 1, 15, 30, 60, 120, 240, and 480 minutes into the future
for a representative selection of 2 cyclones (cyclones 1 and 3) for each of the three
sets of possible input parameters. While these represent similar time ranges of
prediction as done for the boiler parameters (up to 8 hours), they do present a much
more complicated learning task for the RNNs due to the higher time frequency of
recordings – the memory cells and recurrent connections need to remember prior
important information for significantly more time steps (480 vs 8, in the example
of 8 hours). As examples, Figure 4 shows the predictions made by the best evolved
RNNs for each input parameter set and prediction time offset.

Predictions were fairly accurate, ranging from 3.5% MAE in the best case for 1
minute predictions and up to 10% MAE for longer term predictions. Across nearly
every experiment, the Burner + Fuel input parameters outperformed the other two
input parameter sets, which show that the additional data provided by the CTO
program was improving predictions. Further, it shows that EXAMM is performing
well with the increased parameters which did not seem to degrade its performance.

While many of the cyclones saw increasing error rates for longer term pre-
dictions, on some cyclones the error rates decreased for longer term predictions
(as shown in cyclone 1), which was quite surprising. However, as can be seen in
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Fig. 3: Mean absolute error (MAE) rates for a selection of cyclones with various input
parameters for a range of time offsets into the future (1 minute to 480 minutes).

Figure 4, this is unfortunately due to the RNNs learning average trends and simply
ignoring potential spikes. While the predictions 1 minute into the future follow
spikes very well, those done 15 or 30 minutes into the future, especially for cyclone
1 lag behind the spikes and do not appear to be able to anticipate the upcoming
spikes – which could be very important information to improve plant operations.

5 Conclusions

This work presents a study investigating the capabilities of recurrent neural networks
for predicting time series data farther in the future than the next time step of data.
Additionally, instead of simply training fixed traditional architectures, a powerful
neuro-evolution algorithm called EXAMM was utilized to automate the design and
selection of recurrent memory cell types to provide the best possible predictions.
This work provides some positive results, in that the use of new fuel properties
data generated by a new Coal Tracker Optimization (CTO) program improved the
RNNs predictive abilities and that EXAMM was not hindered by having additional
input parameters to select from. However, it does also illustrate challenges which
will drive future work in this area. For the prediction of boiler parameters using
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(a) Cyclone 1 - Burner Parameters Only

(b) Cyclone 1 - Burner Parameters + Fuel Properties

(c) Cyclone 1 - Burner Parameters ∼ Fuel Properties (Reduced)

(d) Cyclone 3 - Burner Parameters Only

(e) Cyclone 3 - Burner Parameters + Fuel Properties

(f) Cyclone 3 - Burner Parameters ∼ Fuel Properties (Reduced)

Fig. 4: Predictions of the evolved RNNs on the boiler parameters for cyclone 3, predicting
1 to 8 hours into the future
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hourly data, it was shown that the RNNs were capable of predicting most spikes in
the data, however the longer term predictions performed more poorly in accurately
capturing the magnitude of those spikes. Predicting burner data with a per-minute
frequency proved to be an even more challenging task. RNNs were very capable
of predicting one minute into the future, however in the mid range (15 minutes
to 1 hour), RNNs lagged behind capturing spiking events and did not anticipate
them. For the longer term predictions (2 to 8 hours), the RNNs simply ignored
the spiking events and instead predicted average trends. Given these difficulties,
improving these longer term predictions makes for an interesting and challenging
avenue of future work. A major area of potential benefit is to use future coal
property forecasts from CTO and combine them with current time values of burner
parameters, as this study only used fuel properties up to the time the prediction
was made. Other potential areas to study will include varying the frequencies of
the input data, e.g., using hourly averages instead of per minute data, as well as
enhancing EXAMM with more powerful mutation operations such as adding entire
layers of memory cells at once and co-evolving memory cell structures instead of
using fixed traditional memory cells.

Acknowledgment: This material is in part supported by the U.S. Department of
Energy, Office of Science, Office of Advanced Combustion Systems under Award
Number #FE0031547. We also thank Microbeam Technologies, Inc., for their help
in collecting and preparing the coal-fired power plant.
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Appendix

A Burner Parameters

1. Conditioner Inlet Temp
2. Conditioner Outlet Temp
3. Coal Feeder Rate
4. Primary Air Flow
5. Primary Air Split
6. System Secondary Air Flow Total

7. Secondary Air Flow
8. Secondary Air Split
9. Tertiary Air Split
10. Total Combined Air Flow
11. Supplementary Fuel Flow
12. Main Flame Intensity

B Fuel Properties Parameters

1. Base Acid Ratio
2. Ash Content
3. Na (Sodium) Content
4. Fe (Iron) Content

5. BTU
6. Ash Flow
7. Na (Sodium) Flow
8. Fe (Iron) Flow

C Boiler Parameters

1. Cold Reheat Steam Temperature
2. ECON Flue Gas Out Press
3. ECON HDR 01 Out Temp
4. ECON HDR 02 Out Temp
5. ECON In Gas Temp
6. Economizer Differential
7. Economizer Gas Outlet O2 Level
8. Economizer Inlet Feedwater Flow
9. Economizer Inlet Feedwater Tem-

perature
10. Economizer Outlet Avg
11. Economizer Gas Recirc Outlet Tem-

perature

12. Fuel Cost For 1 Btu/Kwh Heat Rate
Deviation

13. Gross Generator Output
14. Hot Reheat Temperature (Reheater

Outlet)
15. Main Steam Pressure At Boiler
16. Main Steam Temp (Superheater

Outlet)
17. Main Steam Press
18. Main Steam Spray Flow
19. Main Steam Spray Press
20. NOx Master Out
21. Net Plant Heat Rate
22. Net Unit Generation



14 REFERENCES

23. Nose Gas Temperature
24. Prim Suphtr Differential
25. PSH Gas Outlet Temperature
26. PSH Outlet Avg
27. PSH Superheater Gas Inlet Temper-

ature
28. RH Suphtr Bank-1 Diff
29. RH Suphtr Bank-2 Diff
30. Sec SH Inlet Temp Avg
31. Sec SH Outlet Temp Avg
32. SSH Inlet HDR 01 Temp
33. SSH Inlet HDR 04 Temp
34. SSH Out HDR TC 01 Temp
35. SSH Out HDR TC 02 Temp
36. SSH Out HDR TC 03 Temp
37. SSH Out HDR TC 04 Temp

38. SSH Outlet HDR TC 05 Temp
39. Total OFA Air Flow
40. Water Wall Raw Cleanliness
41. Avg Conditioner Inlet Temp
42. Avg Conditioner Outlet Temp
43. Total Lignite Feeder Rate
44. Total Primary Air Flow
45. Avg Primary Air Split
46. Total Secondary Air Flow
47. Avg Secondary Air Split
48. Total Tertiary Air Flow
49. Avg Tertiary Air Split
50. Total Combined Air Flow
51. Total Main Oil Flow
52. Avg Main Flame Intensity
53. Time Until Next Shutdown
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