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Abstract

In this paper, we consider a non-autonomous piecewise linear difference
equation that describes a discrete version of a single neuron model with a
periodic (period two and period three) internal decay rate. We investigated
the periodic behavior of solutions relative to the periodic internal decay rate
in our previous papers. Our goal is to prove that this model contains a large
quantity of initial conditions that generate eventually periodic solutions. We
will show that only periodic solutions and eventually periodic solutions exist
in several cases.

Keywords: neuron model, difference equation, periodic solution, even-
tually periodic solution.

1 Introduction

In [18], the authors investigated the delayed differential equation

x′(t) = −g(x(t− τ)), (1)

that is used to model a single neuron with no internal decay, where g : R → R
is either a sigmoid function or a piecewise linear signal function and τ ≤ 0 is a
synaptic transmission delay. From (1) the corresponding difference equation was
obtained as a discrete-time network of a single neuron model ([8]):

xn+1 = βxn − g(xn), n = 0, 1, 2, ..., (2)

∗Corresponding author
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where β > 0 is an internal decay rate and g is a signal function. Several authors
investigated equation (2) (e.g., [5, 8, 17, 24, 23, 22, 25, 21, 20]). In addition, equa-
tion (2) have been investigated as a single neuron model where the signal function
g is the following piecewise constant function with McCulloch-Pitts nonlinearity:

g(x) =

{
1, x ≥ 0,
−1, x < 0.

(3)

In [2, 3], the authors studied models by applying a different signal function (with
more than one threshold). In [14], the authors investigated a discrete neuron
model with periodic solutions. Piecewise difference equations have been used as
mathematical models for various applications including neurons (see [13]).

Furthermore, in [6, 7], we studied the periodic character of the following non-
autonomous piecewise linear difference equation:

xn+1 = βnxn − g(xn), (4)

where

βn =

{
β0, if n = 2k,
β1, if n = 2k + 1,

k = 0, 1, 2, ..., β0 6= β1, (5)

and

βn =

 β0, if n = 3k,
β1, if n = 3k + 1,
β2, if n = 3k + 2,

k = 0, 1, 2, ..., β0 6= β1 or β0 6= β2, (6)

where βn > 0 for all n ≥ 0, and g is in the form (3).
In [6], the coefficient (βn)

∞
n=0 is a period two sequence (5) and in [7] (βn)

∞
n=0

is a period three sequence (6). In [6], we showed that periodic cycles can exist
only with even periods and investigated the stability character of these cycles.
In addition, in [7], we proved that periodic solutions can exist only with period
3k, k = 1, 2, 3, ... and examined their stability character.

While studying equation (4) with (5) or (6), we observed that cases appear
only when periodic and eventually periodic solutions exist. The goal of this paper
is to analytically investigate the existence of eventually periodic solutions of (4)
together with (5) and (6).

We give the necessary definitions about stable and unstable periodic orbits (see
[10] or [11]). Let

xn+1 = f(xn), (7)

where f : R → R. Then the orbit of a point x0 ∈ R is defined to be the set of
points

{x0, x1 = f(x0), x2 = f(f(x0)) = f2(x0), ..., xn = fn(x0), ...}.

Definition 1. A point x∗ is said to be a fixed point of the map f or an equilibrium
point of equation (7) if f(x∗) = x∗.

For an equilibrium point x∗ the orbit consists of only the point x∗. Closely
related to fixed points are the eventually fixed points.
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Definition 2. A point x is said to be an eventually fixed point of the map f if
there exists a positive integer r and a fixed point x∗ of f such that fr(x) = x∗, but
fr−1(x) 6= x∗.

If x is an eventually fixed point, then the orbit is

{x, x1 = f(x), ..., xr−1 = fr−1(x), xr = fr(x) = x∗, x∗, x∗, ...}.

Definition 3. The equilibrium point x∗ of (7) is stable if for any ε > 0 there
exists δ > 0 such that |x0 − x∗| < δ implies |fn(x0)− x∗| < ε for all n > 0. If x∗

is not stable, then it is called unstable.

The stability of an equilibrium x∗ means that initial condition x0 slightly
different from x∗ generate an orbit that remains close to the equilibrium.

In this paper our goal is not to investigate the stability of equation (4) however
the stability is one of the main objectives in the theory of dynamical systems.
In many studies on solutions of difference schemes, the stability is established
under the assumption that the magnitude of the grid steps τ and h with respect
to time and space variables is connected. Of growing interest is the study of
absolutely stable difference schemes, in which the stability is established without
any assumptions with respect to the grid steps τ and h (see, for example, [19] and
[4]).

The concept of periodicity is one of the most important notion in the field
of dynamical systems. Its importance follows from the fact that many physical
phenomena have certain patterns that repeat themselves (for example, the motion
of a pendulum, the motion of planets, the population size of blowflies or other
insects at time n, the price of commodity at time n).

Let x be in the domain of a mapping f .

Definition 4. A point x is said to be a periodic point of f with period k if fk(x) =
x for some positive integer k. Note that x is a periodic point with period k if it is
a fixed point of the map fk.

For the periodic point x the orbit consists of k points that repeat infinitely
many times

{x, x1 = f(x), ..., xk−1 = fk−1(x)}.

Definition 5. A point x is said to be an eventually periodic point with period k if
x is not periodic, but there exists m > 0 such that fk+i(x) = f i(x) for all i ≥ m.
That is, f i(x) is periodic for i ≥ m.

For an eventually periodic point with period k the orbit consists of m points
in the beginning and k points which are repeated infinitely many times.

Definition 6. The periodic point x with period k of f is stable if it is a stable
fixed point of fk. If x is an unstable fixed point of fk, then it is called unstable.
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The goal of dynamical systems is to understand the nature of all orbits and to
identify the set of orbits which are periodic, eventually periodic, etc. Generally,
this is an impossible task. But for some mappings we can can obtain more precise
information about the behavior of solutions than for others. For example, in our
case we can find analytically periodic and eventually periodic solutions.

The existence of eventually periodic solutions of (2) was investigated in [8]
and [12]. Additional literature about difference equations with eventually periodic
solutions is available on max-type difference equations and their periodic character
([1, 9, 16, 15]).

2 Existence of Eventually Periodic Solutions if
the Internal Decay Rate is Periodic with Period
Two

In this section, we consider a difference equation (4) with a sequence of periodic
coefficients (βn)∞n=0 that are periodic with period two.

In [6], we proved that equation (4) with (5) has no periodic orbits of odd period
and that there exist solutions only with an even period. More precisely, we showed
that if the coefficients 0 < β0 ≤ 1 and 0 < β1 ≤ 1, that is, coefficients are in the
region I (see Fig.1), then there exist solutions only with period two. If coefficients
belong to the the region II, then exist solutions only with period four. If the
coefficients belong to the the region III, then exist solutions with period two but
in this case also exist solutions with an arbitrary even period. The surprising
situation is in the case when β1 = 1

β0
(except for β1 = β0 = 1). In this situation,

there exist segments of initial conditions from which period four solutions arise.
In [6], it has not been proved that for all other initial conditions solutions are
eventually periodic with period four.

-

6
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Figure 1: Existence of cycles depending on coefficients β0 > 0 and β1 > 0.

The first result in [6] is the following theorem.
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Theorem 1. ([6]) If 0 < β0 < 1 and 0 < β1 < 1 (one of two coefficients is possible
to be 1), then the periodic orbits{

1− β1
1− β0β1

,
β0 − 1

1− β0β1

}
and

{
β1 − 1

1− β0β1
,

1− β0
1− β0β1

}
are stable periodic orbits with period two.

Now the following theorem will address the question regarding the existence of
eventually periodic solutions.

Theorem 2. If 0 < β0 < 1 and 0 < β1 < 1, then the initial conditions

x0 =
2−βk0β

k
1 (1+β1)

βk0β
k
1 (1−β0β1)

> 0, k = 1, 2, ...,

x0 =
βk0β

k
1 (1+β1)−2β1

βk0β
k
1 (1−β0β1)

< 0, k = 1, 2, ...,

produce eventually periodic solutions; precisely, x2k = 1−β1

1−β0β1
.

Also the initial conditions

x0 =
2β1−βk0β

k
1 (1+β1)

βk0β
k
1 (1−β0β1)

> 0, k = 1, 2, ...,

x0 =
βk0β

k
1 (1+β1)−2

βk0β
k
1 (1−β0β1)

< 0, k = 1, 2, ...,

produce eventually periodic solutions; precisely, x2k = β1−1
1−β0β1

.

Proof. We will only prove the first case, when x0 =
2−βk0β

k
1 (1+β1)

βk0β
k
1 (1−β0β1)

. The second case

is symmetric as g is an odd function.

Let k = 1. Then x0 = 2−β0β1(1+β1)
β0β1(1−β0β1)

. Therefore we get

x1 = β0x0 − 1 = 2−β0β1(1+β1)
β1(1−β0β1)

− 1 = 2−β0β1−β1

β1(1−β0β1)
> 0,

x2 = β1x1 − 1 = 2−β0β1−β1

1−β0β1
− 1 = 1−β1

1−β0β1
.

We will assume that the initial condition x0 =
2−βk0β

k
1 (1+β1)

βk0β
k
1 (1−β0β1)

produces an eventually

periodic solution and x2k = 1−β1

1−β0β1
.

Now we consider the initial condition x0 =
2−βk+1

0 βk+1
1 (1+β1)

βk+1
0 βk+1

1 (1−β0β1)
> 0. We see that

x1 = β0x0 − 1 =
2−βk+1

0 βk+1
1 (1+β1)

βk0β
k+1
1 (1−β0β1)

− 1 =
2−βk+1

0 βk+1
1 −βk0β

k+1
1

βk0β
k+1
1 (1−β0β1)

> 0,

x2 = β1x1 − 1 =
2−βk+1

0 βk+1
1 −βk0β

k
1

βk0β
k
1 (1−β0β1)

− 1 =
2−βk0β

k
1 (1+β1)

βk0β
k
1 (1−β0β1)

and hence by induction we see that it is an eventually periodic solution and
therefore x2k+2 = 1−β1

1−β0β1
.

The proof for other cases is similar and is omitted.

In [6], we proved the theorem, which shows that there exist segments of initial
conditions from which period four solutions arise.
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Theorem 3. ([6]) Suppose that 0 < β0 < 1, β1 > 1 and β0β1 = 1, then every
initial condition in the following two intervals generates a period 4 cycle. In fact,
if x0 ∈ [0, 1

β0
− 1[, then we get the following period 4 cycle

{x0, β0x0 − 1, x0 − β1 + 1, β0x0 + β0} .

If x0 ∈ [− 1
β0

+ 1, 0[, then we get the following period 4 cycle

{x0, β0x0 + 1, x0 + β1 − 1, β0x0 − β0} .

In both cases the periodic orbits are stable except when x0 = 0 and x0 = − 1
β0

+ 1.

The case where β0 > 1, 0 < β1 < 1 and β0β1 = 1 is formulated in a similar
result. Now we will show that all initial conditions that are not in the segments
that are considered in Theorem 3 produce eventually periodic solutions.

Theorem 4. Suppose that 0 < β0 < 1 and β1 = 1
β0

, then every initial condition

x0 /∈ [− 1

β0
+ 1,

1

β0
− 1[

produces eventually periodic solution with period four.

Proof. We denote the following interval I = [− 1
β0

+ 1, 1
β0
− 1[.

First we consider case where 0 < β0 ≤ 1
2 . Then it follows that β1 = 1

β0
≥ 2

and [−1, 1[∈ I.
Our objective is to show that there exists k ∈ N such that x2k ∈ I.
We assume that x0 ≥ 1

β0
− 1. We devide the segment [− 1

β0
+ 1, +∞[ into

smaller segments

[
1

β0
− 1,

1

β0
[, [

1

β0
,

2

β0
[, ..., , [n+

n+ 1

β0
, n+

n+ 2

β0
[, [n+

n+ 2

β0
, n+ 1 +

n+ 2

β0
[, ...

(see Fig.2). Then there exists a segment such that x0 belongs to this segment.

1− 1
β0

−1 0 1
1
β0
−1

1
β0

2
β0

1+ 2
β0

1+ 3
β0

2+ 3
β0

2+ 4
β0

3+ 4
β0

3+ 5
β0

///�

IIIII

Figure 2: Partition of segment [1− 1
β0
, +∞[ if 0 < β0 ≤ 1

2 .

Now we show that
1) if x0 ∈ [n+ n+1

β0
, n+ n+2

β0
[, then x2 ∈ [n− 1 + n

β0
, n− 1 + n+1

β0
[, n = 1, 2, ..., and
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x2(n+1) ∈ I,

2) if x0 ∈ [n+ n+2
β0
, n+ 1 + n+2

β0
[, then x2 ∈ [n− 1 + n+1

β0
, n+ n+1

β0
[, n = 0, 1, 2, ...,

and x2(n+1) ∈ I.

In the first case, we let x0 ∈ [n+ n+1
β0
, n+ n+2

β0
[. Then we see that

x1 = β0x0 − 1 ≥ β0(n+
n+ 1

β0
)− 1 = nβ0 + n > 0,

x2 = 1
β0

(β0x0 − 1)− 1 = x0 − 1
β0
− 1 and therefore

n− 1 +
n

β0
= n+

n+ 1

β0
− 1

β0
− 1 ≤ x2 < n+

n+ 2

β0
− 1

β0
− 1 = n− 1 +

n+ 1

β0
.

Now we assume that x0 ∈ [ 1
β0
, 2
β0

[. Then we see that x1 = β0x0−1 ≥ β0 1
β0
−1 = 0.

Thus we get

−1 =
1

β0
− 1

β0
−1 ≤ x2 =

1

β0
(β0x0−1)−1 = x0−

1

β0
−1 <

2

β0
− 1

β0
−1 =

1

β0
−1

and consequently x2 ∈ [−1, 1
β0
− 1[⊂ I. This means that if we start with x0 ∈

[n+ n+1
β0
, n+ n+2

β0
[, then x2(n+1) ∈ I.

Now in the second case, we let x0 ∈ [n+ n+2
β0
, n+ 1 + n+2

β0
[. Then we see that

x1 = β0x0 − 1 ≥ β0(n+
n+ 2

β0
)− 1 = nβ0 + n+ 1 > 0,

x2 = 1
β0

(β0x0 − 1)− 1 = x0 − 1
β0
− 1 and therefore

n− 1 +
n+ 1

β0
= n+

n+ 2

β0
− 1

β0
− 1 ≤ x2 < n+ 1 +

n+ 2

β0
− 1

β0
− 1 = n+

n+ 1

β0
.

Now we assume that x0 ∈ [−1 + 1
β0
, 1
β0

[. Then it follows that x1 = β0x0 − 1
and

−β0 = β0(−1 +
1

β0
)− 1 ≤ x1 < β0

1

β0
− 1 = 0,

x1 < 0, x2 = 1
β0

(β0x0 − 1) + 1 = x0 − 1
β0

+ 1 and hence

0 = −1 +
1

β0
− 1

β0
+ 1 ≤ x2 <

1

β0
− 1

β0
+ 1 = 1.

Consequently, we get x2 ∈ [0, 1[⊂ I. This implies that if x0 ∈ [n+n+2
β0
, n+1+n+2

β0
[,

then x2(n+1) ∈ I.

The case where x0 < 1− 1
β0

is similar and will be omitted.

Now we consider the case where 1
2 < β0 < 1. Then 1 < β1 = 1

β0
< 2 and

0 < 1
β0
− 1 < 1 (therefore this situation is different from the previous where

0 < β ≤ 1
2 ). In this case we have I = [− 1

β0
+ 1, 1

β0
− 1[⊂ [−1, 1[.
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Now we let x0 ∈ I1+ = [ 1
β0
− 1, 2

β0
− 2[, then

x1 = β0x0 − 1 < β0(
2

β0
− 2)− 1 = 1− 2β0 < 0 (since β0 >

1

2
).

In addition, we acquire x2 = 1
β0

(β0x0 − 1) + 1 = x0 − 1
β0

+ 1 and it follows that

0 =
1

β0
− 1− 1

β0
+ 1 ≤ x0 −

1

β0
+ 1 <

2

β0
− 2− 1

β0
+ 1 =

1

β0
− 1,

and, consequently, we see that x2 ∈ I. Furthermore, if x0 ∈ I2+ = [2, 2
β0

[ then

x2 ∈ I. Moreover, in similar symmetric cases where x0 ∈ [2− 2
β0
, 1− 1

β0
[= I1− or

x0 ∈ [− 2
β0
, −2[= I2−, then x2 ∈ I (see Fig. 3).

− 2
β0

I2−

−2 2− 2
β0

I1−

1− 1
β0

0

I

1
β0
−1

I1+

2
β0
−2 2

2
β0

I2+

Figure 3: If x0 ∈ I2− ∪ I1− ∪ I1+ ∪ I2+, then x2 ∈ I ( 1
2 < β0 < 1).

Now let 2
β0
− 2 ≤ x0 < 2. Then

1− 2β0 = β0(
2

β0
− 2)− 1 ≤ x1 = β0x0 − 1 < 2β0 − 1.

If 2
β0
− 2 ≤ x0 <

1
β0

, then x1 < 0. Hence we see that x2 = x0 − 1
β0

+ 1 and it
follows that

1

β0
− 1 =

2

β0
− 2− 1

β0
+ 1 ≤ x2 <

1

β0
− 1

β0
+ 1 = 1.

Since I1+ =
[

1
β0
− 1, 2

β0
− 2
[

and 1
β0
−1 ≤ x2 < 1, then x2 ∈ I1+ only if 1 ≤ 2

β0
−2

or β0 ≤ 2
3 . In this case x4 ∈ I. If, on the other hand β0 > 2

3 , then for all
x0 ∈ [ 2

β0
−2, 3

β0
−3[= I3+ corresponding x2 ∈ I1+ (consequently x4 ∈ I). However,

if we continue further with β0 >
2
3 and

3

β0
− 3 ≤ x0 <

1

β0
,

then we obtain

x3 = β0(x0 − 1
β0

+ 1)− 1 = β0(x0 + 1)− 2 < β0( 1
β0

+ 1)− 2 = β0 − 1 < 0,

x4 = 1
β0

(β0(x0 + 1)− 2) + 1 = x0 + 2− 2
β0

and we get

1

β0
− 1 =

3

β0
− 3 + 2− 2

β0
≤ x4 <

1

β0
+ 2− 2

β0
= 2− 1

β0
.
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Now note that if

2− 1

β0
≤ 3

β0
− 3 or equivalent β0 ≤

4

5
,

then x4 ∈ I1+ ∪ I3+ and all the initial conditions from the segment [ 3
β0
− 3, 1

β0
[

produce eventually periodic solutions. However, if β0 >
4
5 , then only the initial

condition x0 ∈ [ 3
β0
− 3, 4

β0
− 4[= I4+ produces eventually periodic solutions and

we can continue further with β0 >
4
5 and

4

β0
− 4 ≤ x0 <

1

β0
.

Since β0 is fixed, then ∃n ∈ {2, 3, 4, ...} such that (n−1)− n−2
β0
≤ n

β0
−n holds

or equivalent form β0 ≤ 2n−2
2n−1 . This implies that all the initial conditions x0 from

the segment [ 1
β0
− 1, 1

β0
[ produce eventually periodic solutions.

The case where x1 ≥ 0 (that is, 1
β0
≤ x0 < 2) is similar and is omitted.

We can obtain very similar results if we start with x0 ∈ [−2, 2 − 2
β0

[ and we
can conclude that all the solutions with x0 from the previously mentioned segment
become eventually periodic.

Moreover, we remark that if x2n − x2n+2 = 1 + 1
β0

, x2n > 2
β0

, x2n+2 >
2
β0

,

then the sequence (x2n)N∈N is strictly decreasing and there exists k such that
x2k ∈ [− 2

β0
, 2
β0

[ and therefore for all the initial conditions x0 /∈ [− 2
β0
, 2
β0

[ the
corresponding solutions are eventually periodic.

If both periodic coefficients β0 and β1 are greater than 1, then there exist
periodic solutions with period two and other periodic solutions with even periods.
For example, in [6] the authors proved the following result.

Theorem 5. ([6]) If β0 > 1 and β1 ≥ 1, then the periodic orbit{
β1 − 1

β0β1 − 1
,

1− β0
β0β1 − 1

}
of equation (4) with (5) is an unstable periodic orbit with period two.

Now we formulate the corresponding result about the eventually periodic so-
lutions.

Theorem 6. If β0 > 1 and β1 ≥ 1, then the initial conditions

x0 =
βk0β

k
1 (1 + β1)− 2

βk0β
k
1 (β0β1 − 1)

> 0, k = 1, 2, ...,

produce eventually periodic solutions; precisely, x2k = β1−1
β0β1−1 .

Proof. The proof is similar as in Theorem 2.

Fig. 4 is an illustration of Theorem 6 with k = 4. If β0 = 1.4 and β1 = 3, then
x0 ≈ 1.247991449 and x8 = 0.625 that is the first point of cycle {0.625, −0.125}.
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Figure 4: Solution of difference equation (4), if β0 = 1.4, β1 = 3 and x0 ≈
1.247991449.

3 Existence of Eventually Periodic Solutions if
the Internal Decay Rate is Periodic with Period
Three

In this section, we consider a difference equation (4) with a sequence of periodic
coefficients (βn)∞n=0 that are periodic with period three.

If the internal decay rate (βn)n∈N is a periodic with period three, then we
obtain some similar properties of solutions as in Sect. 2. However, different
properties emerge as well.

First of all, if all three periodic coefficients are less than 1, then there are no
periodic solutions with period three, and we acquire periodic solutions with period
six instead. However, if β0β1β2 > 1, then we obtain a different result.

Theorem 7. ([7]) If β0β1β2 > 1, then initial conditions

x0 =
β1β2 + β2 + 1

β0β1β2 − 1
and x0 = −β1β2 + β2 + 1

β0β1β2 − 1

form periodic solutions of equation (4) with period three; in fact, all points of the
orbit are positive in first case, are negative in the second case and both orbits are
unstable.

In [7], it is shown that if β0β1β2 > 1 and x0 >
β1β2+β2+1
β0β1β2−1 , then the solution is

unbounded - going to +∞ (in negative case similar).
This means that in Theorem 7 we cannot find an initial condition, which is

greater than the first point of cycle which forms an eventually periodic solution.
Furthermore, in this situation eventually periodic solutions exist. For instance, see
Fig. 5. In fact, in this case we have β0 = 1.5, β1 = 4, β2 = 3 and x0 is determined
by the following formula

x0 =
2 + 2β2 + β0β1β2(β1β2 − β2 − 1)

β0β1β2(β0β1β2 − 1)
.
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Figure 5: Solution of difference equation (4) with (6), if β0 = 1.5, β1 = 4, β2 = 3
and x0 ≈ 0, 496732026.

Then x3 is the starting point of the period three cycle. This formula, however,
does not always work. In fact, the coefficients β0, β1 and β2 > 1 must satisfy
particular conditions.

Now we will focus our attention on the case when there exists a segment of
initial points such that all points are periodic points with period three.

Theorem 8. ([7]) Let β0β1β2 = 1. Then the following statements are true
1) if 1−β1β2−β2 = 0 (this equality holds when β0 > 1, β1 = 1

β0−1 and β2 = β0−1
β0

),

then every initial condition x0 ∈ [−1,− 1
β0

[∪[ 1
β0
, 1[ produces cycles with period three

which are stable periodic orbits except when x0 = 1
β0

and x0 = −1;

2) if β2−β1β2−1 = 0 (this equality holds when β0 > 0, β1 = 1
β0+1 and β2 = β0+1

β0
),

then every initial condition x0 ∈ [− 1
β0
, 1
β0

[ produces cycles with period three which

are stable periodic orbits except when x0 = 0 and x0 = − 1
β0

;

3) if 1 + β2 − β1β2 = 0 (this equality holds when 0 < β0 < 1, β1 = 1
1−β0

and

β2 = 1−β0

β0
), then every initial condition x0 ∈ [−1, 1[ produces cycles with period

three which are stable periodic orbits except x0 = 0 and x0 = −1.

The vital question to address: what will occur with the solution when x0 does
not belong to the designated segment of Theorem 8? Here we will analyze only
case 1) of Theorem 8 and show that all solutions that start outside the segment
[−1,− 1

β0
[∪[ 1

β0
, 1[ become eventually periodic with period three.

Theorem 9. Let β0β1β2 = 1. If β0 > 1, β1 = 1
β0−1 and β2 = β0−1

β0
, then every

initial condition

x0 /∈ [−1,− 1

β0
[∪[

1

β0
, 1[

produces eventually periodic solution with period three.

Proof. First, we start with x0 ≥ 1. We denote I1 = [−1,− 1
β0

[, I2 = [ 1
β0
, 1[ and

I = I1 ∪ I2. Our goal is to show that there exists k ∈ N such that x3k ∈ I. Since

11



β0 > 1 and x0 ≥ 1, then it follows that

x1 = β0x0 − 1 > 0,

x2 = β1x1 − 1 = 1
β0−1 (β0x0 − 1)− 1 = β0(x0−1)

β0−1 ≥ 0,

x3 = β2x2 − 1 = β0−1
β0

β0(x0−1)
β0−1 − 1 = x0 − 2.

Note that if x0 ∈ [1, 2− 1
β0

[∪[2 + 1
β0
, 3[, then x3 ∈ I. Also if x0 ∈ [2− 1

β0
, 2 + 1

β0
[,

then x3 ∈ [− 1
β0
, 1
β0

[.
Now observe that if x0 ≥ 3, then we determine the next iterations of our

solution
x4 = β0(x0 − 2)− 1 > 0,

x5 = 1
β0−1 (β0(x0 − 2)− 1)− 1 = β0(x0−3)

β0−1 ≥ 0,

x6 = β0−1
β0

β0(x0−3)
β0−1 − 1 = x0 − 4.

Hence we conclude that if x0 ∈ [3, 4− 1
β0

[∪[4 + 1
β0
, 5[, then x6 ∈ I; furthermore, if

x0 ∈ [4− 1
β0
, 4+ 1

β0
[, then x6 ∈ [− 1

β0
, 1
β0

[. Now note that it is possible that x0 ≥ 5.
Inductively, we conclude that there exists k ∈ N such that

x0 ∈ [2k − 1, 2k − 1

β0
[∪[2k +

1

β0
, 2k + 1[ and then x3k ∈ I or

x0 ∈ [2k − 1

β0
, 2k +

1

β0
[ and then x3k ∈ [− 1

β0
,

1

β0
[, k = 1, 2, 3, ....

Similarly if we start with x0 < −1, we conclude that there exists k ∈ N
such that x0 ∈ [−2k − 1,−2k − 1

β0
[∪[−2k + 1

β0
,−2k + 1[ and then x3k ∈ I or

x0 ∈ [−2k − 1
β0
,−2k + 1

β0
[ and then x3k ∈ [− 1

β0
, 1
β0

[, k = 1, 2, 3, ... .
This means that all initial conditions

x0 ∈
−∞⋃
i=−1

[2i+
1

β0
, 2i+2− 1

β0
[∪

+∞⋃
i=1

[2i+
1

β0
, 2i+2− 1

β0
[∪[−2+

1

β0
,−1[∪[1, 2− 1

β0
[

produce eventually periodic solutions.
Now our problem is with the initial conditions that are in the segment [− 1

β0
, 1
β0

[.

So let 0 ≤ x0 < 1
β0

. Then we see that

x1 = β0x0 − 1 < 0,

x2 = 1
β0−1 (β0x0 − 1) + 1 = β0(x0+1)−2

β0−1 .

Notice that the inequality β0(x0 + 1) − 2 ≥ 0 holds if x0 ≥ 2
β0
− 1. Also if

β0 ≥ 2, then 0 ≥ 2
β0
− 1 and the last inequality is always true. Therefore, if

2
β0
− 1 ≤ x0 < 1

β0
, then x2 ≥ 0. In addition, we see that

x3 =
β0 − 1

β0

β0(x0 + 1)− 2

β0 − 1
− 1 = x0 −

2

β0
,

12



−1 < x3 = x0 − 2
β0
< − 1

β0
and therefore x3 ∈ I1.

Furthermore, if 0 ≤ x0 < 2
β0
−1 (it is possible only if 1 < β0 < 2!), then x2 < 0

and

x3 =
β0 − 1

β0

β0(x0 + 1)− 2

β0 − 1
+ 1 = x0 + 2− 2

β0
.

We now conclude that

0 < 2− 2

β0
≤ x3 = x0 + 2− 2

β0
<

2

β0
− 1 + 2− 2

β0
= 1.

Moreover, if x0 + 2 − 2
β0
≥ 1

β0
, then x3 ∈ I2. Otherwise if 0 ≤ x0 <

3
β0
− 2 (it

is possible only when 1 < β0 <
3
2 !) then x3 /∈ I. In this case we continue with

this iterative and inductive process by determining the next three iterations of the
solution

x4 = β0
β0(x0+2)−2

β0
− 1 = β0(x0 + 2)− 3 < β0( 3

β0
− 2 + 2)− 3 = 0,

x5 = 1
β0−1 (β0(x0 + 2)− 3) + 1 = β0(x0+3)−4

β0−1 <
β0(

3
β0
−2+3)−4
β0−1 = 1.

Now we see that only two cases are possible. In the first case if we let 4
β0
− 3 ≤

x0 <
3
β0
− 2, then x5 ≥ 0 and

x6 =
β0 − 1

β0

β0(x0 + 3)− 4

β0 − 1
− 1 = x0 + 2− 4

β0
.

Therefore −1 = 4
β0
−3+2− 4

β0
≤ x0 +2− 4

β0
< 3

β0
−2+2− 4

β0
= − 1

β0
and x6 ∈ I1.

In the second case, 0 ≤ x0 < 4
β0
− 3 (it is possible only when 1 < β0 <

4
3 !) and

x5 < 0. Therefore

x6 =
β0 − 1

β0

β0(x0 + 3)− 4

β0 − 1
+ 1 = x0 + 4− 4

β0
.

From the restriction of x0, we obtain that 0 ≤ x6 < 1. This means that if x6 ≥ 1
β0

or x0 ≥ 5
β0
−4, then x6 ∈ I2. However, if x6 <

1
β0

or 0 ≤ x0 < 5
β0
−4 (it is possible

only when 1 < β0 <
5
4 !), then x6 /∈ I.

Inductively, we conclude that for every fixed 1 < β0 < 2 and every fixed
0 ≤ x0 < 1

β0
there exists M ∈ N, M ≥ 2 such that

2M + 1

2M
≤ β0 <

2M

2M − 1
or

2M

2M − 1
≤ β0 <

2M − 1

2M − 2

(this means that 2M+1
β0
− 2M ≤ 0 or 2M

β0
− (2M − 1) ≤ 0) and there exists

n ∈ {1, 2, ..., M} such that

2n
β0
− (2n− 1) ≤ x0 < 2n−1

β0
− (2n− 2) and then x3n ∈ I1 or

2n+1
β0
− 2n ≤ x0 < 2n

β0
− (2n− 1) and then x3n ∈ I2.

The case where − 1
β0
≤ x0 < 0 is similar.
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The last part of proof shows that if β0 is very close to 1 and the corresponding
x0 is close to 0, then it will require many more iterations until xn belongs to I as
β0 is not so close to 1.

Example 1. For instance, if we let M = 10, then 2M+1
2M = 21

20 = 1.05 and
2M

2M−1 = 20
19 ≈ 1.0526. Let β0 = 1.05. Then 2M−1

β0
− (2M −2) = 19

1.05 −18 ≈ 0.0952

and 2M
β0
− (2M − 1) = 20

1.05 − 19 ≈ 0.0476. If x0 = 0.05, then x30 ≈ −0.99761 ∈ I1,
and if x0 = 0.03, then x30 ≈ 0.98238 ∈ I2. See Fig.6 with x0 = 0.05.

Figure 6: Solution of difference equation (4), if β0 = 1.05 and x0 = 0.05.

4 Conclusion

Our main goal of this paper was to show the existence of eventually periodic
solutions for the single neuron model (4). However, we did not consider all the
possible cases. In fact, the most challenging cases emerge in Theorems 4 and 9
where the solutions of (4) are either periodic or eventually periodic.

In [18], x denotes the activation level of a neuron. First of all, if one neuron
works as the proposed model suggests, we can then interpret a stationary state
as an equilibrium state where the activation level is constant. Second of all, the
periodic orbit indicates the periodic changes of the activation level. On one hand,
a chaotic orbit implies unpredictable changes of the activation level. On the
other hand, we cannot provide an accurate interpretation of the unstable orbit
that gradually diverges to infinity where the activation level increases without
restriction. In this paper, we studied the existence and patterns of eventually
periodic solutions; in particular, we examined the stability character of periodic
orbits where the activation level is bounded.

Finally, we conclude that our model (4) with the signal function (3) and
an internal periodic decay rate (with period two and period three), describe a
substantially different situation in comparison to [5], [8], [17], [20], [21], [22], [23],
[24], [25] and [18]. In the mentioned papers the model has not been studied with
a periodic coefficient.
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