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Physics-guided Neural Network for Predicting
Chemical Signatures

CARA P. MURPHY1,2,* AND JOHN KEREKES2

1 Systems & Technology Research, 600 West Cummings Park, Woburn, MA 01801, USA
2Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology, 54 Lomb Memorial
Drive, Rochester, NY 14623, USA
*Cara.Murphy@STResearch.com

Abstract: Achieving high classification accuracy on trace chemical residues in active spectro-
scopic sensing is challenging due to the limited amount of training data available to the classifier.
Such classifiers often rely on physics-based models for generating training data though these
models are not always accurate when compared to measured data. To overcome this challenge,
we developed a physics-guided neural network (PGNN) for predicting chemical reflectance for a
set of parameterized inputs that is more accurate than the state-of-the-art physics-based signature
model for chemical residues. After training the PGNN, we use it to generate a library of predicted
spectra for training a classifier. We compare the classification accuracy when using this PGNN
library versus a library generated by the physics-based model. Using the PGNN, the average
classification accuracy increases from 0.623 to 0.813 on real chemical reflectance data, including
data from chemicals not included in the PGNN training set.

© 2021 Optical Society of America

1. Introduction

Identifying trace amounts of chemicals on surfaces is a desirable capability for a wide range
of defense, intelligence, and law enforcement applications [1]. Chemicals of interest for these
applications include explosives, chemical warfare agents, narcotics, etc. Active infrared (IR)
spectroscopy is arguably the only technique capable of achieving high-sensitivity standoff
identification of trace chemicals on surfaces while achieving high areal coverage rates [2–4].
A notional example of an active long-wave IR (LWIR) hyperspectral imaging (HSI) system is
shown in Figure 1. The system operates by measuring the spectral reflectance, or the portion
of which is reflected back towards the sensor, of the target surface in the LWIR portion of the
optical spectrum using quantum cascade lasers (QCL) as the illumination source [3, 5, 6] and
comparing the measured signature to a spectral library of reference signatures. Because of the
wide range of relevant applications for this type of technology, the spectral library often includes
hundreds to thousands of reference chemicals, making the association of measured data with the
reference data very challenging.

Such a system might use one of several classes of chemical classification algorithms, including
subspace methods, least squares approaches, machine or deep learning, etc. [8, 9] to associate a
measurement with a reference chemical signature. Machine and deep learning algorithms, in
particular, have the benefit of being able to learn arbitrary rules to distinguish between data [10].
Over the last two decades, neural networks (NN), or artificial neural networks (ANN), have
become known as powerful machine learning tools for solving a variety of problems. More
recent research efforts use 1D convolutional neural networks (CNNs) for classifying pixels
in hyperspectral imagery [11]. For example, Riese and Keller developed the LucasCNN for
classifying soil in the Land Use / Cover Area Frame Statistical Survey (LUCAS) hyperspectral
dataset [12].
The major disadvantage in using any machine learning method for classification is that they

require a large amount of training data [13]. Therefore, it is common in many applications to



Fig. 1. A notional depiction of standoff trace chemical classification via an active
spectroscopic instrument. The reference signature library is pertinent to the system’s
ability to identify chemicals of interest [7].

train a classifier using simulated data [14]. Active spectroscopy of trace chemicals is one of
those applications because it is time-consuming and inefficient to measure all combinations
of chemicals, chemical form, and substrate. However, developing a signature simulation
model for trace chemical classification applications is challenging due to the phenomenological
complexities [15–28]. This is problematic because the performance ofmachine learning classifiers
degrades when the training data domain differs from the test data domain [29]. Domain adaptation
has recently demonstrated significant utility in translating data between domains (e.g. from the
simulated data domain to the measured data domain) [30–36]. Specifically, a 1D conditional
generative adversarial network (GAN) has been shown to improve classification accuracy on
active spectroscopic reflectance signatures of chemicals on surfaces by translating a simulated
training library to the measured data domain [37]. The classification accuracy improvement
in [37], however, is limited on chemicals that are not included in the GAN training set.
In recent years, the fusion of task-driven data science models with theoretical principles

of physics has produced models that are more accurate than those which derive solely from
physics [38–40]. For example, the physics-guided neural network (PGNN) defined in [41]
achieves an average reduction in model error of 46% relative to physical models when predicting
lake temperatures. The research in this paper applies the PGNN model concepts for predicting
chemical reflectance signatures for training a chemical classifier. The end goal of this research
is to present a method for producing a library of more realistic spectral signatures capable of
achieving high classification accuracy, as compared to libraries generated from state-of-the-art
physics-based methods, in real active spectroscopic data.

This paper is structured as follows. Section 2.1 explains the state-of-the-art physics-basedmodel
for predicting trace chemical reflectance signatures. Section 2.2 describes the PGNN approach
for generating more accurate chemical reflectance signatures for comparing to the physics-based



approach. Next, Section 2.3 discusses the recent LucasCNN classifier for hyperspectral data and
how it is used in this research to demonstrate the improvement made by the PGNN. The available
measured data used for analysis are described in Section 2.4 and Section 2.5 explains the data
preparation and model testing and training steps for performing analysis. The Results section
(Section 3) shows a comparison of chemical classification accuracy with and without the PGNN
when classifying measured chemical signatures as well as a qualitative comparison between the
physics-based model outputs and the PGNN model outputs.

2. Materials and Methods

2.1. Physics-Based Signature Model for Chemicals on Surfaces

This work considers reflectance signatures of trace chemical residues. The physics-based model
used for predicting trace chemical residue reflectance signatures in this research is the sparse
transfer matrix (STM) model [7]. STM is designed to specifically handle the physics of trace
chemical residue. STM assumes a thin chemical film with sparse coverage in the contaminated
area. The regions containing chemical are assumed to have a non-uniform thickness that follows
a log-normal distribution:

'() " (_) = �� '2ℎ4< (_) + (1 − ��) ((� 'BD1 (_), (1)

where _ is the wavenumber, �� is the fill factor (the fraction of a pixel covered by the chemical),
((� is the substrate scale factor (i.e. a proxy for the bidirectional reflectance factor), 'BD1 is the
measured bare substrate reflectance term, and '2ℎ4< is the chemical reflectance term calculated
by the transfer matrix (TM) model [42,43]. The TMmodel uses the Fresnel reflection coefficients
at the air / chemical (A1) and chemical / substrate interface (A1) to calculate reflectance [44–47]:
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where ∗ indicates the complex conjugate. The fill factor is a function of the chemical density,
mean particle diameter, particle size standard deviation, and the chemical concentration [7].

2.2. Physics-Guided Neural Network for Chemicals on Surfaces

The PGNN developed by Karpatne et al. is a hybrid physics-based data science model initially
developed for modeling lake water temperatures. The authors of the PGNN model describe a
standard NN model as 5## : � → . , where � is the set of input parameters and . is the target
variable. Similarly, a pure physics-based model can be expressed as 5%�. : � → . . The PGNN
model, however, is expressed as 5%�## : [�, .%�. ] → . , where the inputs include all the
relevant parameters as well as the output of the physics-based simulator, .%�. (Karpatne et al.
use the state-of-the-art physics-based General Lake Model [48]).
We use the general PGNN model design [49] for predicting chemical reflectance signatures

on surfaces. The model is scaled up to 16 hidden layers and 64 nodes per layer to handle
to complexity of the trace chemical reflectance signatures. The model input parameters, �,
are shown in Table 1. The substrate ID is an integer assigned to each substrate in the study.
We provide the model with the substrate ID as there are substrate attributes beyond substrate
reflectance and optical constants that can affect the reflectance of a chemical on the surface (e.g.
surface roughness, dielectric properties, specularity, etc.). Providing the substrate ID enables the
model to learn some of these substrate effects from the measured reflectance. We use the STM



simulation output as the input for .%�. and the corresponding measured reflectance as the target
variable, . . The PGNN model was found to have the best performance when it was also supplied
the preliminary terms A1, A2, and '2ℎ4< calculated by the STM model. We express our full
model as 5%�##2ℎ4< : [�, .C4A<B , .%�. ] → . , where .C4A<B is comprised of the preliminary
terms of the STM model. All optical constant and reflectance inputs (including A1 and A2) are
normalized to be between 0 and 1 for training the PGNN. We use the root-mean-square error as
the loss function as in [41] and [49].

Table 1. The PGNN input parameters for predicting chemical reflectance.

Parameter

1 Wavenumber, _ [<−1]

2 Substrate ID

3 Chemical Concentration [<6/2<2]

4 Mean Particle Diameter, ` [`<]

5 Particle Size Standard Deviation, f [`<]

6 Substrate Scale Factor, ((�

7 Chemical Density [<6/2<3]

8 Substrate Complex Optical Constant, =̃BD1

9 Substrate Reflectance, 'BD1

10 Chemical Complex Optical Constant, =̃2ℎ4<

2.3. Chemical Classification

The main goal of this work is to improve chemical classification performance using PGNN-
predicted spectra. In particular, we are interested in the performance improvement when
classifying chemicals that were not used to train the PGNN. To demonstrate this, we compare
classification accuracy on several chemicals when training on STM-predicted spectra versus
PGNN-predicted spectra. We use the LucasCNN model as the classification algorithm for these
experiments. For each experiment, the LucasCNN model is trained for 10 epochs using a batch
size of 128 and the the Adam optimizer [50]. We provide details on the training and test data in
the next sections.

2.4. Chemical Reflectance Data

The chemical samples used in this research were provided by Johns Hopkins University Applied
Physical Laboratory (JHU/APL). JHU/APL prepared various substrate samples with chemical
residue contamination at a range of concentrations. Trace chemical residue is defined as the film-
like residue that remains on a surface after the evaporation of a solvent that contained the chemical.
The solid chemicals were first dissolved in a solvent and then evenly airbrushed over the substrates
using a mechanical arm. The active LWIR hyperspectral reflectance measurements were collected
by the system developed by Block MEMS for the IARPA SILMARILS (Standoff ILluminator for
Measuring Absorbance and Reflectance Infrared Light Signatures) program [5,6, 51]. In total,
JHU/APL prepared six different chemicals on four different substrates at concentrations ranging



from 50 to 150 `6/2<2, though not all of the chemicals were used on all of the substrates. The
breakdown of measured samples per chemical, substrate, and concentration are shown in Table 2.

The measured data is required for training the PGNN (i.e. it is used as the target variable, . ) as
well as testing the classifier accuracy. Of particular interest to this research is the improvement in
classification accuracy on chemicals that are not used for training the PGNN. In other words,
can the PGNN improve performance on chemicals we have never measured before? Therefore,
we separate the measured data into two datasets: dataset 1 (DS1) is used for training the PGNN
as well as testing the classifier and dataset 2 (DS2) is used for testing the classifier only. To
ensure the PGNN is as robust as possible to the substrate, we include all measurements of aspirin,
pentaerythritol, and saccharin (i.e. the three chemicals measured on all four substrates) in DS1.
All measurements of caffeine, lactose, and naproxen comprise DS2.

Table 2. The number of measured samples and their concentrations for each unique
chemical / substrate combination used in this study.

Substrate / Cardboard Glass High-density Rough Aluminum

Chemical Polyethylene (HDPE)

Aspirin 14 at 50 `6/2<2 1 at 100 `6/2<2 2 at 100 `6/2<2 7 at 100 `6/2<2

Caffeine 15 at 50 `6/2<2 1 at 50 `6/2<2 3 at 100 `6/2<2

6 at 100 `6/2<2

3 at 150 `6/2<2

Lactose 1 at 50 `6/2<2 3 at 50 `6/2<2

3 at 100 `6/2<2

Naproxen 1 at 100 `6/2<2 1 at 100 `6/2<2

2 at 150 `6/2<2 3 at 150 `6/2<2

Penta- 15 at 50 `6/2<2 2 at 150 `6/2<2 3 at 100 `6/2<2 5 at 100 `6/2<2

erythritol 1 at 150 `6/2<2

Saccharin 2 at 50 `6/2<2 6 at 100 `6/2<2 2 at 100 `6/2<2 5 at 100 `6/2<2

3 at 100 `6/2<2 1 at 150 `6/2<2

We generate the simulated data for training the PGNN and classifier using the STM model
described in Section 2.1. The STM model has three parameters the user must set [7]: the particle
diameter mean and standard deviation and the substrate scale factor. The range of parameter
values used in this study are summarized in Table 3. (Information for setting these parameter
values can be found in [7].) To create the STM-predicted library, we generate an STM simulation
for each parameter combination in Table 3 for each chemical, substrate, and concentration (i.e.
125 parameter combinations for 6 chemicals, 4 substrates, and 3 concentrations). This library is
used for training the LucasCNN classifier later. The output of the STM simulator is the '() "
term. To train the PGNN, each measurement . in DS1 needs a corresponding '() " term as well
as the corresponding set of parameters in Table 1. For each measurement in DS1, we select the
entry in the STM library that provides the best fit (in an ℓ2 sense) to the measurement to generate
the PGNN inputs, [�, .C4A<B , .%�. ], where the values of � are the parameters used to find



the best fitting '() " and .C4A<B are the preliminary terms used to calculate '() " . Both the
simulated and real data used for this analysis consist of 200 wavenumbers from 980 to 1290 2<−1

with an 1.55 2<−1 spacing and are normalized prior to training the PGNN or LucasCNN models.

Table 3. STM tunable parameters and their values used for our experiments.

Parameter Experiment Values

Mean particle diameter, ` 0.10, 0.32, 1.00, 3.20, 10.00 `<

Particle diameter standard deviation, f 0.10, 0.20, 0.40, 0.79, 1.59 `<

Substrate scale factor, ((� 0.10, 0.32, 1.00, 3.20, 10.00

2.5. Data Augmentation and Model Training and Testing

Neither DS1 nor DS2 contain sufficient samples for training or testing. To augment the datasets
for training and testing, we replicate each measurement for a total of 100 entries per pair and
add white Gaussian noise to each. (The sensor used for data collection was shot-noise limited
with noise following an approximately Gaussian distribution.) Additionally, we add a random
gradual slope in magnitude of up to ±20% of the total magnitude and a random wavenumber shift
between ±4.652<−1 to the PGNN training data. In addition to increasing the number of unique
samples for training, the data augmentation steps also increase the PGNN model’s robustness to
common calibration errors in active spectroscopic data. The random slope adds robustness to
slight reflectance calibration offsets (as seen in measurements of bare rough aluminum during
the data collection) while the wavenumber shift adds robustness to calibration errors in the QCLs
(i.e. wavenumber drift [52]).

The PGNN model is trained using a subset of the augmented DS1 data and corresponding
input parameters. To obtain training and testing data, DS1 is split across unique measurements
(i.e. all 100 entries derived from a particular measurement exist entirely in either the training or
test set) with stratification across the chemical label. We use a training ratio of 0.8 such that we
have 5500 spectra for training and 1400 for testing in DS1. When training the model, we use
a validation ratio of 0.1. The model is trained for 5 epochs using a batch size of 200 and the
Adagrad optimizer [53]. Each training epoch takes ∼2 minutes on a 2019 MacBook Pro running
macOS 10.15.7 with a 2.4 GHz 8-Core Intel Core i9 processor.
After the PGNN is trained, we compare classification accuracy using the STM-predicted

library described in Section 2.4 and the PGNN-predicted library for training the LucasCNN
model. The PGNN-predicted library is the output of the trained PGNN model given the STM
library and corresponding parameters as inputs. Generating the PGNN-predicted library takes
∼1.7 minutes (<0.02 seconds per spectrum) on the same machine used for training. A separate
LucasCNNmodel instance is trained for each library. Both model instances are tested on the same
measured data from the DS1 test set (1400 spectra) and DS2 (4200 spectra). Due to the unequal
number of samples per class in DS1, we perform a 10-fold training/test data split and average
classification accuracy results across the 10 experiments, retraining the PGNN and LucasCNN
models each time. The classification performance on DS1 chemicals tells us how well the PGNN
learns to predict signatures for the chemicals included in the PGNN training. The classification
performance on DS2 chemicals tells us how well the PGNN will predict signatures for chemicals
we have never measured before.



Fig. 2. Normalized confusion matrices for each LucasCNNmodel training method when
testing on the measured test data. Training the LucasCNN model on the STM-predicted
library (a) gives an overall classification accuracy of 0.623 across all chemicals while
training on the PGNN-predicted library (b) gives an overall accuracy of 0.813. Notably,
the PGNN library doubled the classification accuracy on lactose, one of the chemicals
that were excluded from the PGNN training set.

3. Results and Discussion

After training each 10-fold iteration of the PGNN model, we perform classification on the
measured test data using the LucasCNN model when training with the STM versus PGNN
outputs. We compute the overall classification accuracy (i.e. we sum the number of chemicals
identified as belonging to a particular class across all iterations and divide by the total number of
test measurements per class). The ratios of correct and incorrect chemical predictions are shown
in Figure 2 for each classifier training method. The classifier achieves better performance on
all chemicals using the PGNN library. Overall, the PGNN library increases the classification
accuracy from 0.623 to 0.813 with significant improvement on some of the more challenging
chemicals that were excluded from the PGNN training set: caffeine and lactose.



Fig. 3. Measured spectra of (a) 50 `6/2<2 of aspirin on cardboard and (b) 100
`6/2<2 of saccharin on glass are shown by the black curves. The corresponding STM
predictions are shown by the dotted red curves while the PGNN predictions are shown
by the dashed gray curves. Overall, the PGNN predictions provide a better match to the
measured data.

A more qualitative result is shown in Figure 3. Measured spectra of aspirin on cardboard
and saccharin on glass are shown on the same plot as their corresponding best-fitting STM
simulations and their corresponding PGNN-predicted spectra from a single trained PGNN model.
As shown in Figure 3, even the best fits from the STM simulation model do not provide a perfect
fit to the measured data. The PGNN spectra, however, provide a very strong fit to the measured
data. Note, the measured spectra shown in these results were taken from the DS1 test set rather
than the PGNN training set.

4. Summary

In this work, we present a novel concept for enhancing trace chemical reflectance signature
predictions. We begin with the physics-based STM signature model for simulating chemical
residue reflectance. We suggest that though the model is best-suited for modeling chemical
residue phenomenology, there are some limitations in its ability to fit to real data. To solve
this problem, we trained a PGNN to more accurately predict chemical reflectance based on
parameterized inputs. We demonstrate the performance of the PGNN by comparing classification
accuracy when a classifier is trained using the STM library versus the PGNN library. Overall,
the PGNN library increases the classification accuracy from 0.623 to 0.813 and much of the
improvement is demonstrated on chemicals that were not included in the PGNN training set.
These results indicate that the PGNN model is robust to new chemicals (and possibly new
substrates, parameters, etc.) and can be used to improve chemical classification performance
on all targets, including those that have not been measured previously. As stated in Section 2.5,
the number of samples used for this analysis is limited. The number of unique combinations of
physical parameters we can use for training the PGNN model is also limited by the availability
of representative data. We expect the PGNN to better generalize the mapping from the input
parameter space to the measured reflectance space with more variable training data. Therefore,
we also expect the classification performance improvement to increase as more data becomes
available.
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