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Near-Complete Genome Sequences of Vesicular Stomatitis
Virus Indiana Laboratory Strains HR and T1026R1 and Plaque
Isolates 22-20 and 22-25

Thomas M. Russell,a Evan E. Santo,a* Lisa Golebiewski,a Nathan S. Haseley,a* Maureen C. Ferrana

aThomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, USA

ABSTRACT We report four near-complete genome sequences of vesicular stomatitis
virus (VSV) Indiana obtained with Sanger and Illumina next-generation sequencing,
namely, laboratory strains HR (heat resistant) and T1026R1 and isolates 22-20 and
22-25. Previously, only the M gene of these viruses had been sequenced, and these
sequences were not deposited in GenBank.

Vesicular stomatitis virus (VSV) is a member of the genus Vesiculovirus in the family
Rhabdoviridae and has an �11-kb nonsegmented, negative-sense, single-stranded

RNA genome that encodes the nucleoprotein (N), matrix (M), glycoprotein (G), large (L),
and phosphoprotein (P) proteins (1). We report the near-complete genome sequences
of VSV Indiana laboratory strains HR (heat resistant) (2, 3) and T1026R1 (4) and plaque
isolates 22-20 and 22-25, derived from Indiana parent strain 22 (03/87-CR-B, number
22), which was originally isolated from an infected cow (5). HR encodes a wild-type (wt)
M protein and is therefore a virus that suppresses interferon (IFN) and inhibits host
transcription. T1026R1 encodes a M51R mutation in the M protein which abrogates
these functions of M (6–8). The M genes of 22-20 and 22-25 were reported to be
identical, even though these isolates are discordant for IFN production in chicken
embryo cells (9, 10). To determine if another viral component regulates IFN suppres-
sion, we sequenced the majority of these four virus genomes.

Virus stocks were propagated in Vero cells at a multiplicity of infection of 0.0001.
Once 80 to 90% of the cells exhibited a cytopathic effect, the supernatant was
harvested, centrifuged at 4,000 � g, aliquoted, and stored at �80°C. At least two virus
stocks of each strain were sequenced and found to be identical. Sanger sequencing was
performed first, and Illumina sequencing confirmed these results. Sanger and Illumina
sequences were aligned for each virus to generate a consensus genome. For Sanger
sequencing, the total RNA was extracted from L929 cells at 4 h postinfection
(RNAqueous-4-PCR kit, Ambion). Reverse transcription, PCR, product purification, and
sequencing were performed as previously described (11). For Illumina MiSeq sequenc-
ing, RNA was extracted from 1 ml of virus stock (QIAamp UltraSens virus kit, Qiagen).
RNA quality and concentration were determined (Bioanalyzer Agilent RNA 6000 Nano-
Assay), and a library was constructed (TruSeq Stranded mRNA sample preparation kit,
Illumina). The samples were pooled, and the multiplexed samples produced an average
of 207,990 paired-end reads per sample (2 � 151 read length). Files were demultiplexed
(bcl2fastq version 2.19.0), and adapters and low-quality reads were removed (Trim-
momatic version 0.36) (12). Processed, cleaned reads were mapped to the human
reference genome (GRCh38�gencode28) with STAR version 2.6.0c (13). Unmapped
reads were then assembled de novo with SPAdes version 3.11.1 (14).

Sanger and Illumina contigs were aligned to each other and mapped to the NCBI
reference sequence (GenBank accession number NC_001560) with CodonCode Aligner
(CodonCode Corp.). Open reading frames (ORFs) were predicted with ORF Finder (Web
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version, NCBI) (15). Genome comparison of HR and T1026R1 confirmed the M51R
mutation in the T1026R1 M protein and revealed a novel amino acid substitution in the
T1026R1 G protein (S431A). Comparison of 22-25 and 22-20 revealed a previously
unidentified D-to-G amino acid substitution at position 52 of the 22-20 M protein
(D52G). A single amino acid change was identified in the 22-20 M protein, which
suggests that this protein alone suppresses the IFN response. The genomes recovered
ranged from 11,115 to 11,143 nucleotides in length, obtaining 99.59 to 99.84% of the
genomes relative to the reference sequence. The missing nucleotides are located in
noncoding regions at the ends of the genomes.

Data availability. Genome sequences of 22-20, 22-25, T1026R21, and HR were
deposited in GenBank (accession numbers MH919396, MH919397, MH919398, and
MH919399, respectively). Raw Illumina reads were submitted to the Sequence Read
Archive (BioProject number PRJNA508804).
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